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ABSTRACT

The Milky Way and a majority of external galaxies possess a thick disc. However, the dynamical role of the (geometrically) thick disc
in the bar formation and evolution is not fully understood. Here, we investigate the effect of thick discs in the formation and evolution
of bars by means of a suite of N-body models of (kinematically cold) thin and (kinematically hot) thick discs. We systematically
varied the mass fraction of the thick disc, the thin-to-thick disc scale length ratio, and the thick disc scale height to examine the bar
formation under diverse dynamical scenarios. Bars form almost always in our models, even in the presence of a massive thick disc.
The part of the bar that consists of the thick disc closely follows the overall growth and temporal evolution of the part of the bar that
consists of the thin disc, but the part of the bar in the thick disc is weaker than the part of the bar in the thin disc. The formation
of stronger bars is associated with a simultaneous greater loss of angular momentum and a more intense radial heating. In addition,
we demonstrate a preferential loss of angular momentum and a preferential radial heating of disc stars in the azimuthal direction
within the extent of the bar in both thin and thick disc stars. For purely thick-disc models (without any thin disc), the bar formation
critically depends on the disc scale length and scale height. A larger scale length and/or a larger vertical scale height delays the bar
formation time and/or suppresses the bar formation almost completely in thick-disc-only models. We find that the Ostriker-Peeble
criterion predicts the bar instability scenarios in our models better than the Efstathiou-Lake-Negroponte criterion.
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1. Introduction

Stellar bars are one of the most abundant non-axisymmetric
structures in disc galaxies. About two-thirds of the disc galax-
ies in the local Universe harbour stellar bars, as revealed by
various optical and near-infrared surveys of galaxy morphology
(e.g., see Eskridge et al. 2000; Whyte et al. 2002; Aguerri et al.
2009; Nair & Abraham 2010; Masters et al. 2011; Kim et al.
2015; Kruk et al. 2017), and about one-third of them host strong
bars. The bar fraction varies strongly with the stellar mass (e.g.,
Nair & Abraham 2010) or Hubble type (e.g., Aguerri et al. 2009;
Buta et al. 2010; Nair & Abraham 2010; Barway et al. 2011) of
the host galaxies. The question remains whether the remaining
one-third of the disc galaxies in the local Universe are hostile
to bar formation and their subsequent growth, or if bars are
destroyed during their evolutionary pathway.

Much of our current understanding of the bar formation
and its growth in disc galaxies was gleaned from numeri-
cal simulations. Several studies using N-body simulations have
shown that an axisymmetric disc galaxy forms a bar spon-
taneously when the disc becomes unstable to the formation
of a bar. When a bar forms, orbits that are close to circu-
lar become more elongated, with the bar being comprised of
elongated orbits (which are called the x1 family of orbits;
e.g., see Contopoulos & Grosbol 1989; Martinez-Valpuesta et al.
2006). Previous theoretical studies have shown that a mas-
sive central mass concentration and/or inflow of the interstel-

lar gas in the central region can weaken/destroy stellar bars
(e.g., see Pfenniger & Norman 1990; Shen & Sellwood 2004;
Athanassoula et al. 2005, 2013; Bournaud et al. 2005; Hozumi &
Hernquist 2005). While in principle, these mechanisms can lead
to the (complete) destruction of bars, they might still require a
very high central mass concentration or prodigious amount of
gas inflow (Athanassoula et al. 2005). Furthermore, recent work
by Ghosh et al. (2021) demonstrated that a minor merger can
also lead to a substantial weakening of stellar bars, and in some
cases, cause even a complete destruction of stellar bars in the
host galaxies.

On the other hand, a disc galaxy might be dynamically hot
enough, or equivalently, have a higher value of the Toomre Q
parameter to prevent the bar instability, which in turn causes a
disc galaxy to remain unbarred throughout its lifetime (e.g., see
Toomre 1964; Binney & Tremaine 2008). Moreover, a (rigid)
compact and dense dark matter halo was thought to suppress the
bar instability in a disc galaxy (e.g., Mihos et al. 1997). Later
N-body studies in which the dark matter halo was treated as live,
revealed the opposite trend, that is, disc galaxies with a higher
halo concentration develop a much stronger, larger, and thin-
ner bar; however, the bar formation is still delayed (e.g., see
Debattista & Sellwood 1998, 2000; Athanassoula & Misiriotis
2002; Athanassoula 2003).

Several theoretical efforts have been made towards determin-
ing the dynamical condition for a disc to become bar-unstable.
Earlier works of Ostriker & Peebles (1973) showed that a stellar
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disc would enter into the bar instability phase if the ratio of the
rotational kinetic energy to the potential energy, W, exceeds a
critical limit of 0.14 ± 0.003. This criterion has been tested fur-
ther in recent N-body simulation (e.g., see Saha & Elmegreen
2018). On the other hand, Efstathiou et al. (1982), using 2D
N-body simulations (with a rigid dark matter halo), proposed
an analytic criterion for the global stability of cold exponential
stellar discs. To illustrate this, a disc becomes bar-stable if the
dimensionless quantity ε =

Vmax
(αMdiscG)1/2 becomes greater than 1.1,

where Vmax is the maximum rotational velocity, Mdisc is the total
disc mass, and α (=R−1

d ) is the inverse of the disc scale length
(Efstathiou et al. 1982). Later, this criterion has been tested in
context of galaxies from the cosmological zoom-in simulations
as well as for the observed galaxies (e.g., see the recent works of
Izquierdo-Villalba et al. 2022; Romeo et al. 2023).

Bars are present in the high-redshift galaxies as well.
However, some studies claimed a decreasing bar fraction with
increasing redshift (e.g., see Sheth et al. 2008; Melvin et al.
2014; Simmons et al. 2014), while some other studies showed
a constant bar fraction up to redshift z ∼ 1 (e.g., Elmegreen et al.
2004; Jogee et al. 2004). Hence, the fraction of galaxies in the
high-redshift hosting bar still remains debated. In addition, cos-
mological simulations find that bars already start to form at
z ∼ 1 (e.g., see Kraljic et al. 2012; Fragkoudi et al. 2020, 2021;
Rosas-Guevara et al. 2022). Furthermore, the recent photomet-
ric study by Guo et al. (2023) using the rest-frame near-infrared
images from the James Webb Space Telescope (JWST), unveiled
the presence of stellar bars in disc galaxies at high redshifts
(z > 1). At high redshift, discs are known to be thick, kine-
matically hot (and turbulent), and more gas rich. The question
therefore remains whether bars can form in these thick discs.

The existence of a thick-disc component is now observation-
ally well established in the Milky Way and in external galaxies
(e.g., see Tsikoudi 1979; Burstein 1979; Gilmore & Reid 1983;
Yoachim & Dalcanton 2006; Comerón et al. 2011a,b, 2018).
For external galaxies, thick discs are found along the whole
Hubble sequence, from early-type S0 galaxies (Pohlen et al.
2004; Kasparova et al. 2016; Comerón et al. 2016; Pinna et al.
2019b,a) to late-type galaxies (Yoachim & Dalcanton 2006;
Comerón et al. 2019; Martig et al. 2021; Scott et al. 2021). The
thick-disc component is in general vertically more extended
and kinematically hotter than the thin-disc component (e.g.,
see Jurić et al. 2008; Bovy et al. 2012, 2016; Vieira et al. 2022).
Recent studies of the chemical evolution of α-enhanced stars
in the Milky Way indicated that the mass of the chemically
thick disc can be of the same order as that of the thin disc
(e.g., Haywood et al. 2013; Snaith et al. 2015). Furthermore,
Comerón et al. (2011a) argued that (geometrically) thick discs
can constitute a significant fraction of the baryonic content of
galaxies.

While significant efforts have been devoted towards under-
standing the bar instability scenario in disc galaxies, a majority
of the N-body simulations considered a one-component stellar
disc. A few studies in the past have investigated how the disc
stars would become trapped in the bar instability as a function
of how dynamical hot or cold the underlying population is (e.g.,
see Hohl 1971; Athanassoula & Sellwood 1986; Athanassoula
2003; Debattista et al. 2017). Aumer & Binney (2017) showed
that the presence of a thick disc delays the bar formation. In addi-
tion, the study by Klypin et al. (2009) showed that N-body mod-
els with thick discs (scale height-to-length ratio =0.2) produce
very long and slowly rotating bars. Furthermore, Fragkoudi et al.
(2017) studied the effect of this thick disc component on the bar
and the boxy/peanut formation using a fiducial two-component

thin+thick model where the thick disc constitutes 30% of the
total stellar mass. However, a systematic study of the bar forma-
tion in disc galaxies with different hot and cold discs, as well as
composite thin and thick discs, is still lacking. We aim to address
this here.

In this work, we systematically investigate the dynamical
role of the thick-disc component in the bar formation and growth
by making use of a suite of N-body models with (kinematically
cold) thin and (kinematically hot) thick discs. Within the suite
of N-body models, we vary the thick-disc mass fraction and
consider different geometric configurations (a varying ratio of
the thin- and thick-disc scale lengths). Furthermore, for some
models, we vary the disc scale height as well (while keeping
the scale length fixed) to examine the bar formation scenario
in these cases. We quantify the strength and growth of the bars
in thin- and thick-disc stars, and we also study the underlying
dynamical mechanisms, such as angular momentum transport
and radial heating within the bar region. In addition, we test
some of the most commonly used bar instability criteria, as men-
tioned before, in the suite of N-body models considered here.

The rest of the paper is organised as follows. Section 2 pro-
vides the details of the simulation set-up and the initial equi-
librium models. Section 3 quantifies the properties of the bars
in different models and the associated temporal evolution, while
Sect. 4 discusses the effect of the disc scale height on the bar for-
mation. Section 5 provides the details of the angular momentum
transport and the radial heating within the bar region. Section 6
contains the results related to applying a few instability criteria
on the thin+thick disc models considered here. Section 7 con-
tains the discussion, and Sect. 8 summarizes the main findings
of this work.

2. Simulation set-up and N-body models

To motivate our study, we developed a suite of N-body mod-
els, consisting of a thin and a thick stellar disc. The whole sys-
tem was embedded in a live dark matter halo. One such model
has been presented in Fragkoudi et al. (2017). Here, we built a
suite of numerical models of thin+thick discs while systemati-
cally varying the thick-disc mass fraction as well as the ratio of
the thick-to-thin disc scale lengths.

Each of the thin and thick discs is modelled with
a Miyamoto–Nagai profile whose potential has the form
(Miyamoto & Nagai 1975)

Φd = −
GMd√

R2 +

(
Rd +

√
z2 + z2

d

)2
, (1)

where Rd and zd are the characteristic disc scale length and scale
height, respectively, and Md is the total mass of the disc. The
dark matter halo is modelled with a Plummer sphere whose
potential has the form (Plummer 1911)

Φdm(r) = −
GMdm√
r2 + R2

H

, (2)

where RH is the characteristic scale length, and Mdm is the total
halo mass. Here, r and R are the radius in the spherical and the
cylindrical coordinates, respectively. The values of the key struc-
tural parameters for the thin and thick discs as well as the dark
matter halo are listed in Table 1. The total number of particles
used to model each of these structural components is also listed
in Table 1.
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Table 1. Key structural parameters for the equilibrium models.

Model(1) fthick
(2) Rd,thin

(3) Rd,thick
(4) zd,thin

(5) zd,thick
(6) Mstar

(7) RH
(8) Mdm

(9) nstar
(10) ndm

(11)

(kpc) (kpc) (kpc) (kpc) (×1011 M�) (kpc) (×1011 M�) (×105) (×105)
rthick0.0 – 4.7 – 0.3 – 1 10 1.6 10 5

rthickS0.1 0.1 4.7 2.3 0.3 0.9 1 10 1.6 10 5
rthickE0.1 0.1 4.7 4.7 0.3 0.9 1 10 1.6 10 5
rthickG0.1 0.1 4.7 5.6 0.3 0.9 1 10 1.6 10 5
rthickS0.3 0.3 4.7 2.3 0.3 0.9 1 10 1.6 10 5
rthickE0.3 0.3 4.7 4.7 0.3 0.9 1 10 1.6 10 5
rthickG0.3 0.3 4.7 5.6 0.3 0.9 1 10 1.6 10 5
rthickS0.5 0.5 4.7 2.3 0.3 0.9 1 10 1.6 10 5
rthickE0.5 0.5 4.7 4.7 0.3 0.9 1 10 1.6 10 5
rthickG0.5 0.5 4.7 5.6 0.3 0.9 1 10 1.6 10 5
rthickS0.7 0.7 4.7 2.3 0.3 0.9 1 10 1.6 10 5
rthickE0.7 0.7 4.7 4.7 0.3 0.9 1 10 1.6 10 5
rthickG0.7 0.7 4.7 5.6 0.3 0.9 1 10 1.6 10 5
rthickS0.9 0.9 4.7 2.3 0.3 0.9 1 10 1.6 10 5
rthickE0.9 0.9 4.7 4.7 0.3 0.9 1 10 1.6 10 5
rthickG0.9 0.9 4.7 5.6 0.3 0.9 1 10 1.6 10 5
rthickS1.0 1 – 2.3 – 0.9 1 10 1.6 10 5
rthickE1.0 1 – 4.7 – 0.9 1 10 1.6 10 5
rthickG1.0 1 – 5.6 – 0.9 1 10 1.6 10 5

rthickS1.0zd2.3 1 – 2.3 – 2.3 1 10 1.6 10 5
rthickE1.0zd2.3 1 – 4.7 – 2.3 1 10 1.6 10 5
rthickG1.0zd2.3 1 – 5.6 – 2.3 1 10 1.6 10 5
rthickE1.0zd4.7 1 – 4.7 – 4.7 1 10 1.6 10 5
rthickG1.0zd4.7 1 – 5.6 – 4.7 1 10 1.6 10 5
rthickG1.0zd5.6 1 – 5.6 – 5.6 1 10 1.6 10 5

Notes. Column (1): Name of the model. Column (2): thick-disc mass fraction. Column (3): scale length of the thin disc. Column (4): scale length
of the thick disc. Column (5): scale height of the thin disc. Column (6): scale height of the thick disc. Column (7): mass of the stellar thin+thick
disc. Column (8): characteristic scale length of the dark matter halo. Column (9): mass of the dark matter halo. Column (10): total number of
particles in the stellar thin+thick disc. Column (11): total number of particles in the dark matter halo.

The initial conditions of the discs were obtained using the
iterative method algorithm (see Rodionov et al. 2009). This algo-
rithm constructs equilibrium-phase models for stellar systems by
making use of a constrained evolution in such a way that the
equilibrium solution has the number of desired parameters. For
this work, we only constrained the density profile of the stellar
discs (following Eq. (1)) while allowing the velocity dispersions
(of the radial and vertical components) to vary in such a way that
the system converged to an equilibrium solution (for details, see
Fragkoudi et al. 2017).

In the initial equilibrium set-up for the thin+thick disc mod-
els, we considered three different scenarios for the scale lengths
of the two disc (thin and thick) components. In rthickE mod-
els, the scale lengths of the thin and thick discs are kept same
(Rd,thick = Rd,thin), whereas in rthickG models, the scale length
of the thick disc component is larger than that for the thin
disc (Rd,thick > Rd,thin). In rthickS models, the scale length of
the thick-disc component is shorter than that for the thin disc
(Rd,thick < Rd,thin). For each of these three configurations, the
fraction of total stellar particles that are in the thick disc com-
ponent ( fthick)1 was systematically varied from 0.1 to 0.9 (with
a step size of 0.2). Thus, we had a total of 15 such thin+thick
models. We analyse them later in this work. In addition, we
considered one purely thin-disc model ( fthick = 0) and three
purely thick-disc models ( fthick = 1) to augment this study.
Furthermore, to study the effect of the disc scale height on the
bar formation (see Sect. 4), we constructed another six thick-
disc-only models while varying the vertical scale height of the

1 Or equivalently, the mass fraction in the thick disc, because all the
disc particles have the same mass.

thick disc. The values of the key structural parameters for these
six models are also listed in Table 1. Thus, we analysed a total
of 25 N-body models for this work.

The simulations were run using the TreeSPH code by
Semelin & Combes (2002). This code has been extensively used
to simulate interacting and merging galaxies as well as isolated
galaxies (e.g., Fragkoudi et al. 2017; Jean-Baptiste et al. 2017).
The hierarchical tree method (Barnes & Hut 1986) with a toler-
ance parameter2 θ = 0.7 was employed to calculate the gravita-
tional force, which includes terms up to the quadrupole order in
the multipole expansion. A Plummer potential was used to soften
the gravitational forces with a softening length ε = 150 pc. The
equations of motion were integrated using the leapfrog algo-
rithm (Press et al. 1986) with a fixed time step of ∆t = 0.25 Myr.
All the models considered here were evolved for a total time of
9 Gyr.

For consistency, any thin+thick model is referred to as a
unique string ‘[model configuration][thick disc frac-
tion]’. [model configuration] denotes the corresponding
thin-to-thick disc scale length configuration, that is, rthickG,
rthickE, or rthickS, whereas [thick disc fraction] denotes
the fraction of the total disc mass that is in the thick-disc
population. To illustrate this, rthickG0.3 denotes the model in
which the scale length of the thick-disc component is larger
than that for the thin disc, and 30% of the total disc mass is

2 This is the angular size of a group of distant particles, seen from
the particle. If the angular size of the group, seen from the particle,
is smaller than θ, then the tree code computes the contribution of the
gravitational force (by that group of distant particles) acting on a given
particle using the multipole moments of the group mass distribution.

A128, page 3 of 20



Ghosh, S., et al.: A&A 674, A128 (2023)

in the thick-disc component. The purely thin-disc-only model is
referred to as rthick0.0, and the purely thick-disc-only models
are referred to as rthickS1.0, rthickE1.0, and rthickG1.0. Sim-
ilarly, the six thick-disc-only models (in which we varied the
scale height) are referred to as rthickE1.0zd2.3, rthickG1.0zd2.3,
rthickE1.0zd4.7, rthickE1.0zd4.7, and rthickG1.0zd5.6. To illus-
trate this, rthickS1.0zd2.3 denotes a thick-disc-only model with
the thick disc scale height set to 2.3 kpc (while keeping the other
parameters unchanged), and so on.

3. Formation and evolution of the bar for different
thick-disc mass fractions

Before we present the results, we mention that we can identify
and separate by construction in our thin+thick disc models the
stars that are are members of the thin-disc and the thick-disc
component, and we can track them as the system evolves self-
consistently. Throughout this paper, we therefore refer to the bar
as seen exclusively in the thin-disc population as the thin-disc
bar, or equivalently, the bar in the thin disc, and the bar seen
exclusively in the thick-disc population as the thick-disc bar, or
equivalently, the bar in the thick disc.

Figure 1 shows the density distribution of all stars
(thin+thick) in the face-on projection (x−y-plane) for all
thin+thick disc models (with fthick varying from 0.1 to 1) con-
sidered here, at the end of the simulation run (t = 9 Gyr). Even a
mere visual inspection reveals that almost all the models develop
a strong bar by 9 Gyr. We further checked the same face-on
density distribution, computed separately for thin and thick disc
stars. Both of them show a prominent bar. For the sake of brevity,
we do not show it here (however, see Fig. 2 in Fragkoudi et al.
2017).

To quantify the strength of the bars in the thin- and thick-
disc components of our models, we first computed the radial
profiles of the m = 2, 4, 6 Fourier coefficients using (e.g., see
Saha & Elmegreen 2018; Ghosh et al. 2021)

Am/A0(R) =

∑
i mieimφi∑

i mi
, (3)

where Am is the coefficient of the mth Fourier moment of the
density distribution, mi is the mass of the ith particle, and φi is
its cylindrical angle. The summation runs over all the particles
within the radial annulus [R,R+∆R], with ∆R = 0.5 kpc. In Fig. 2
we show the corresponding radial profiles of m = 2, 4, 6 Fourier
coefficients for the thin, thick, and thin+thick discs as a func-
tion of time for the model rthickE0.5. The prominent peak in the
A2/A0 radial profiles, accompanied by a similar peak (but with
a lower peak value) in the A4/A0 radial profiles clearly confirms
the presence of a strong, central stellar bar in the thin- and thick-
disc components. Moreover, the peaks in the radial profiles of the
m = 2, 4, 6 Fourier coefficients shift towards the outer regions
at later times, indicating that the peak of the non-axisymmetry
moves towards larger radii as time progresses. This trend is
present in the thin- and the thick-disc component. Furthermore,
at later times, the radial profiles of the m = 2 Fourier coefficient
show multiple peaks that are spatially well separated. We veri-
fied that the outward shift of the peaks in the radial profiles of
the Fourier coefficients as well as the presence of multiple peaks
in the m = 2 profiles are seen in other thin+thick disc models as
well. These models develop a prominent boxy/peanut structure
at later times (for details, see Fragkoudi et al. 2017). The forma-
tion of multiple peaks might be linked to the formation of a 3D
boxy/peanut structure, as demonstrated in Saha et al. (2018) and

Vynatheya et al. (2021). The details of the boxy/peanut forma-
tion and their properties are beyond the scope of this paper and
will be taken up in a future work.

Next, we studied the temporal evolution of the strength of
the bars in thin and thick disc separately, and also for the thin
and thick disc combined. At any time t, we defined the strength
of the bar, Sbar, as the peak value of the m = 2 Fourier coefficient
(A2/A0). The resulting temporal variation in the bar strength of
the thin and thick discs and of the thin+thick disc are shown in
Fig. 3 for all models considered here. Figure 3 clearly shows
that regardless of the geometric configuration, that is, the scale
length of the thick disc with respect to the scale length of the thin
disc, the temporal evolution of the bar strength in the thick-disc
component closely follows that for the bar in the thin-disc com-
ponent. However, the bar in the thick-disc component remains
weaker than the bar in the thin-disc component; this remains true
for all times and for all the thin+thick models considered here.
This agrees with the earlier findings of Fragkoudi et al. (2017).
The temporal evolution of Sbar for the model rthickG0.9 mer-
its some discussion. The bar strength for model rthickG0.9 is
weaker than for the other rthickG models, as revealed by the val-
ues of Sbar.

The thin-disc-only (rthick0.0) model also develops a promi-
nent bar during the evolution, similar to other thin+thick mod-
els. The bar forms quite early on (within ∼2 Gyr), grows
for a certain time, and then saturates (see Fig. 3). For the
thick-disc-only models, all three models, namely, rthickS1.0,
rthickE1.0, and rthickG1.0, form a prominent bar by the end of
the simulation run. However, the bar in the rthickG1.0 remains
weaker than that in the other two thick-disc-only models (see
Fig. 3).

To further quantify the epoch of bar formation and how fast
the bar grows in an individual model, we defined the growth
rate, dSbar/dt, as the time derivative of the strength of bar. The
resulting variation in the growth rate as a function of time is
shown in Fig. 4 for thin-, thick-, and thin+thick disc particles
for all models. In the thin and thick discs, the bar displays
a fast growth phase at initial times, followed by one/multiple
buckling phases (for details of the buckling instability, see, e.g.,
Combes et al. 1990; Martinez-Valpuesta et al. 2006), as indi-
cated by the prominent dip (negative values) in the temporal evo-
lution of dSbar/dt. However, at later times (t > 6 Gyr), the bars
no longer grow, as indicated by dSbar/dt ∼ 0, and remain as a
steady non-axisymmetric feature. We found no time lag between
the epochs of bar formation (or bar growth) in the thin and thick
discs. Furthermore, a careful inspection of Figs. 3 and 4 reveals
that the bars in most of the rthickS configuration form at an ear-
lier epoch than in the other two configurations considered here.
Moreover, during the initial rapid bar formation phase, the bars
in the rthickS configuration grow at a much faster rate than the
bars in other two configurations, and this trend holds for almost
all fthick values considered here.

In addition, the temporal evolution of dSbar/dt for the three
thick-disc-only models (see the bottom panels of Fig. 4) reveals
that the bar in the rthickG1.0 model forms at a much later time
(∼6.1 Gyr), while the bar in the rthickS1.0 model forms at a
much earlier time (within ∼1 Gyr). Thus, for the rthickS mod-
els, the bar seems to grow fast and become quite strong regard-
less of the mass of the thick disc. The rthickS model with 90%
of the mass in the thick disc still forms a bar. This is also true
for the case in which 100% of the mass is in the thick disc.
This demonstrates that centrally concentrated discs are unstable
to bar formation even when they are kinematically hot. As the
disc scale length increases (in rthickE and rthickG models), the
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Fig. 1. Face-on density distribution of all disc particles (thin+thick) at the end of the simulation run (t = 9 Gyr) for all thin+thick disc models with
varying fthick values. The white solid lines denote the constant density contours. The solid black circle in each sub-panel denotes the corresponding
extent of the bar (Rbar). Left panels: density distribution for the rthickS models, and the middle and right panels: density distribution for the rthickE
and rthickG models, respectively. The thick disc fraction ( fthick) varies from 0.1 to 1 (top to bottom), as indicated in the left-most panel of each
row. A prominent bar forms in almost all models considered here.
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Fig. 2. Radial profiles of the m = 2, 4, 6 Fourier coefficients (normalised by the m = 0 component), for the thin disc (left panels), thick-disc stars
(middle panels), and total (thin+thick) disc stars (right panels) as a function of time (shown in the colour bar) for the model rthickE0.5. At later
times, the peaks of the radial profiles of the m = 2, 4, 6 Fourier coefficients shift towards the outer regions.

bar formation epoch is progressively delayed and also results in
forming a progressively weaker bar.

4. Effect of the disc scale height on the formation of
a bar

Here, we examine the effect of an increased disc scale height
that therefore makes the disc kinematically hotter (in vz) on bar
formation for the thick-disc-only models. To achieve this, we
investigated the growth and evolution of the bar strength in the
six thick-disc-only models by varying the disc scale height (for
details, see Sect. 2).

We calculated the temporal evolution of the bar strength, Sbar
for these six models. This is shown in Fig. 5. Now, we considered
Sbar = 0.2 as the (operational) definition for denoting the onset
of the bar, as has commonly been done in the literature (see e.g.,
Ghosh et al. 2021, and references therein). When we applied this
criterion, we found that the model rthickS1.0zd2.3 developed a
weak bar (with Sbar ∼ 0.2) at about 9 Gyr. For the other five
models, the Sbar values lie below about 0.1, thereby confirming
that these model do not form a central bar in 9 Gyr. However,

for some these models, the temporal evolution of Sbar increased
(with a much shallower slope dSbar/dt), thereby indicating that
they might form a bar at later times (>9 Gyr).

To conclude, the bar formation is delayed in presence of a
much more vertically extended thick disc. This scenario is drasti-
cally different from the models rthickS1.0 and rthickG1.0, which
form a prominent bar by the end of the simulation (compare
Figs. 3 and 5) even though the entire stellar population is in
the thick-disc component (i.e. fthick=1). We calculated the radial
profiles of the velocity dispersion in the radial as well as in the
vertical directions for these six models. With increasing scale
height of the disc, the corresponding vertical velocity dispersion
also increased monotonically (see e.g., van der Kruit & Freeman
2011), while the radial velocity dispersion remained almost
unchanged. For the sake of brevity, they are not shown here.
This demonstrates the vital dynamical effect of the vertical scale
height and hot vertical kinematics in the context of the bar
formation scenario, in agreement with past findings (e.g., see
Combes et al. 1990; Athanassoula 2003). A similar scenario of
the suppression of the non-axisymmetric instability with increas-
ing disc scale height is also seen for spiral arms (Ghosh & Jog
2018, 2022).
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Fig. 3. Temporal evolution of the bar strength, Sbar, for the thin-disc (upper panels), thick-disc (middle panels), and total (thin+thick) disc stars
(lower panels) for all thin+thick disc models with varying fthick values (see the colour bar). Left panels: bar strength evolution for the rthickS
models, and the middle and right panels: evolution of the bar strength for the rthickE and rthickG models, respectively. The thick-disc fraction
( fthick) varies from 0.1 to 0.9 (with a step size of 0.2), as indicated in the colour bar. The solid blue lines in the bottom row denote the three
thick-disc-only models ( fthick = 1), and the solid red line in the top middle panel denotes the thin-disc-only model ( fthick = 0). For details see text.

5. Angular momentum exchange and radial heating
within the bar region

It is known that a stellar bar grows in a disc galaxy by
transferring angular momentum from the disc to the dark
matter halo. This transfer preferentially occurs at the reso-
nance points of the bar (e.g., see Tremaine & Weinberg 1984;
Hernquist & Weinberg 1992; Debattista & Sellwood 2000;
Athanassoula & Misiriotis 2002; Sellwood & Debattista 2006;
Dubinski et al. 2009; Saha & Naab 2013). Conversely, the
weakening/destruction of a bar is associated with the gain in the
angular momentum in the central region of disc galaxies (e.g.,
see Bournaud et al. 2005; Ghosh et al. 2021). At the same time,
as a bar grows, it heats the disc through its action on the stars
(e.g., see Saha et al. 2010; Saha 2014). Here, we quantify the
change in the angular momentum content and the radial heating
within the bar region as a function of time for all models (with
varying fthick values) considered here.

Before we present the results related to the angular momen-
tum transport and radial heating, we mention that for these anal-
yses, we considered all stellar particles that currently lie within
the extent of the bar (defined by Rbar) at a certain time t. In other

words, we did not distinguish the stars that are a part of the bar
and those that are only located within the bar region. The same
scheme is applied throughout Sect. 5 and in the subsequent sec-
tions, unless defined otherwise.

5.1. Exchange of angular momentum

At time t, we calculated the z-component of the angular momen-
tum (Lz) of the disc particles within the bar region using

Lz(t; R < Rbar) =

N(t)∑
i=1

mi

[
xi(t)vyi (t) − yi(t)vxi (t)

]
, (4)

where N(t) is the total number of stellar particles contained
within the bar region at time t, and x, y, vx, vy are the position
and velocity of the particles. However, we point out that, in our
thin+thick models, the fraction of particles assigned to the thin
and thick disc changes in different models as the thick-disc frac-
tion varies across models. Therefore, comparing Lz(t; R < Rbar)
for various models (with different fthick values) will introduce
certain biases as these quantities involved summation over all
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Fig. 4. Temporal evolution of the growth/decay rate of the bar strength (dSbar/dt), for the thin-, thick-, and total (thin+thick) disc components
for all models with varying fthick values. Left panels: evolution for the rthickS models, and the middle and right panels: evolution for the rthickE
and rthickG models, respectively. The fthick values are indicated in the left-most panel of each row. Top middle row: growth/decay rate of the bar
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tional) limit for the onset of bar formation.

thin- and thick-disc particles within the bar region. For a uni-
form comparison among all the thin+thick models considered
here, we therefore computed the specific angular momentum (lz)
within the bar region using

lz(t; R < Rbar) =
1

N(t)

N(t)∑
i=1

[
xi(t)vyi (t) − yi(t)vxi (t)

]
. (5)

The resulting temporal evolution of lz within the bar region for
the thin-, thick-, and total (thin+thick) disc particles is shown
in Fig. 6 for all thin+thick disc models. During the total evolu-
tion time-span, the bar in the thin and thick disc grows substan-
tially (by a factor of ∼2). Therefore, allowing Rbar to vary and
then computing the specific angular momentum (lz) within the
bar region (using Eq. (5)) essentially blurs the intrinsic changes
in the specific angular momentum. However, in an individual
model, after about 6 Gyr, the bar does not grow appreciably
(see Fig. 3), and the values of Rbar also saturate, with occa-
sional fluctuations. Therefore, we took this value as the repre-
sentative value for Rbar for that particular model. One such Rbar
determination for the model rthickE0.5 is further illustrated in
Appendix A.

Figure 6 clearly shows a substantial loss of specific angular
momentum (within the central bar region, defined by the extent
of Rbar) during the entire evolution of the bar. This trend remains
true for the thin- and thick-disc components and for all the
thin+thick models. The net loss in the specific angular momen-
tum for the thin-disc component is always larger than that for
the thick-disc component (as also discussed in Fragkoudi et al.
2017). In the initial rapid bar growth phase, the loss in the lz
component is larger, but at later times (about t > 6 Gyr), when
the bar remains steady, the loss in the lz component becomes
negligible. This is true for the thin- and thick-disc particles and
for all the thin+thick models considered here. For the thick-disc-
only models, the loss of specific angular momentum (within the
bar region) is progressively weaker from model rthickS1.0 to

rthickE1.0 and to rthickG1.0 (see the bottom panels of Fig. 6).
This matches the expectation because the formation of progres-
sively weaker bars should be associated with progressively less
angular momentum transfer from the central bar region.

While Fig. 6 clearly demonstrates that as the bar grows, there
is an associated loss of the angular momentum in the central bar
region (for thin and thick discs), it still remains unclear whether
the loss in the lz component displays any characteristic azimuthal
variation in the radial extent encompassing the bar. To inves-
tigate this, we computed the 2D distribution of the lz compo-
nent in the face-on projection at five different times. Figure 7
shows one such distribution, computed using the thin-, thick-,
and thin+thick disc particles for the model rthickE0.5. Figure 7
shows that along the bar, there is a prominent preferential defi-
ciency of the specific angular momentum, and this holds true for
the thin and thick disc. As the bar grows over time, this prefer-
ential deficiency in lz along the bar becomes more prominent
(for the thin and thick disc). Moreover, the thin-disc compo-
nent shows a larger deficiency of the specific angular momen-
tum within the bar region than that for the thick-disc component
(compare the left and middle panels of Fig. 7). This is expected
because the bar in the thin-disc component is stronger than the
bar in the thick-disc component, and a stronger bar is expected
to transfer angular momentum more vigorously from the disc
particles (as also discussed in Fragkoudi et al. 2017). We further
computed the same 2D distribution of the lz component in the
face-on projection at different times for all other thin+thick disc
models considered here. We found that the trend of a preferential
deficit of the specific angular momentum along the bar remains
generic for all thin+thick models.

5.2. Radial heating of disc particles within the bar region

It is known from the literature that a bar heats the disc materials
in the radial and vertical directions (e.g., see Grand et al. 2016;
Pinna et al. 2018). However, here, we investigated how the disc
particles in the inner part of the disc are heated as the bar grows
over time. In the literature, the radial heating is quantified via
radial random kinetic energy (ΠR), which is calculated (within
the bar region) using

ΠR(t; R < Rbar) =

N(t)∑
i=1

miσ
2
R, (6)

where N(t) is the total number of stellar particles within the bar
region at time t, and σR is the radial component of the veloc-
ity dispersion. However, this quantity is again a summation over
thin- or thick-disc particles (whichever is applicable), and hence
is prone to certain biases because the fthick values vary in our
models (see the discussion in the last section). To circumvent
this, we instead calculated the average radial random kinetic
energy (〈ΠR〉) within the bar,

〈ΠR(t; R < Rbar)〉 =

∑N(t)
i=1 miσ

2
R∑N(t)

i=1 mi
· (7)

The resulting temporal evolution of 〈ΠR〉
3 within the bar region

for the thin-, thick-, and total (thin+thick) disc particles is shown
in Fig. 8 for all the thin+thick disc models and for the three
thick-disc-only models. Figure 8 shows that initially, the thin
disc remains kinematically colder than the thick disc. How-
ever, as the bar grows, the radial mean random kinetic energy

3 This is basically the specific radial random kinetic energy.
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Fig. 6. Temporal evolution of the z-component of the specific angular momentum, calculated within the extent of the bar, lz(t; R < Rbar) (see
Eq. (5)), for the thin- (in blue), thick- (in red), and total (thin+thick) disc (in black) particles for all thin+thick disc models. For each model, Rbar
was first fixed to a saturation/representative value. For details, see Sect. 5.1. Left panels: evolution for the rthickS models, and the middle and right
panels: evolution for the rthickE and rthickG models, respectively. The thick-disc fraction ( fthick) varies from 0.1 to 1 (top to bottom), as indicated
in the left-most panel of each row. The extents of bars in each sub-panel are as indicated in Fig. 1 (see the solid black circles there).

for both the disc components (thin and thick) increases mono-
tonically with time. At later times (t > 6 Gyr), when the bar
no longer grows appreciably, the corresponding increment in
the 〈ΠR(t; R < Rbar)〉 also becomes smaller. This holds true for
both the thin and thick components. These overall trends in the
temporal evolution of 〈ΠR(t; R < Rbar)〉 hold true for almost all
the thin+thick models considered here. Interestingly, at the end

of simulation (t = 9 Gyr), the average radial random kinetic
energy for the thin and thick particles (within the bar region)
becomes similar, although the thin disc was initially kinemat-
ically colder than the thick disc. A similar finding was also
reported in Di Matteo et al. (2019). The only difference is that
in their idealized model, the thin and thick disc initially share
the same vertical velocity dispersion and differ in terms of the
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Fig. 7. Distribution of the z-component of the specific angular momentum in the face-on projection ((x, y)-plane) at different times for the thin-
(left panels), thick- (middle panels), and thin+thick disc particles (right panels) for the model rthickE0.5. The dotted lines denote the contours of
the total (thin+thick) surface density. The dashed black circle in each sub-panel denotes the extent of the bar.

in-plane velocity dispersion. For the thick-disc-only models, the
radial heating of stars within the bar region is progressively
weaker from model rthickS1.0 to rthickE1.0 and to rthickG1.0
(see the bottom panels of Fig. 8). This is expected because the
formation of progressively weaker bars is thought to be associ-
ated with progressively weaker radial disc heating in the central
bar region.

Next, we studied the 2D distribution of the change in the
average random kinetic energy in the face-on projection. In par-
ticular, we searched for any characteristic variation in the aver-
age radial random kinetic energy along the bar. To quantify this,
at any time t, we defined the change in the average radial random
kinetic energy as
∆〈ΠR〉(x, y, t) = 〈ΠR〉(x, y, t) − 〈ΠR〉(x, y, t = 0). (8)
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Fig. 8. Temporal evolution of the average radial random kinetic energy, calculated within the extent of the bar, 〈ΠR(t; R < Rbar)〉 (see Eq. (7)),
for the thin- (in blue), thick- (in red), and total (thin+thick) disc (in black) particles for all thin+thick disc models. For each model, Rbar was first
fixed to a saturation/representative value. For details, see Sect. 5.1. Left panels: evolution for the rthickS models, and the middle and right panels:
evolution for models rthickE and rthickG, respectively. The value of fthick varies from 0.1 to 1 (top to bottom), as indicated in the left-most panel
of each row. The extents of the bars in each sub-panel are indicated in Fig. 1 (see the solid black circles there).

In Fig. 9 we show the resulting variation in ∆〈ΠR〉(x, y, t) in the
(x−y)-plane, calculated for the thin-, thick-, and thin+thick disc
particles for model rthickE0.5. Figure 9 clearly shows a prefer-
ential excess of radial heating that traces the spatial 2D extent
of the bar (in the face-on projection). This holds true for the
thin- and the thick-disc components. When the bar is not very
strong, the corresponding (preferential) increment of the aver-

age radial random kinetic energy is initially also small. Subse-
quently, as the bar grows with time, so does the radial random
kinetic energy, and at the end of the simulation run (t = 9 Gyr),
when the bar is fully grown, the corresponding radial random
kinetic energy also reaches its maximum value. Within the bar
region, the thin-disc particles are heated more strongly than the
thick-disc particles. This confirms that the development of a
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Fig. 9. Distribution of the change in the average radial random kinetic energy, ∆〈ΠR〉(x, y, t) (see Eq. (8)), calculated in the face-on projection
((x, y)-plane) at different times for the thin- (left panels), thick- (middle panels), and thin+thick disc particles (right panels) for model rthickE0.5.
The dotted lines denote the contours of the total (thin+thick) surface density. The dashed black circle in each sub-panel denotes the extent of the
bar.

stronger bar is associated with a higher degree of radial heat-
ing. We further confirmed this for the other thin+thick models
as well. The preferential excess of radial heating along the bar
(for the thin and thick components) remains a generic trend.

Lastly, we investigated the correlation (if any) between the
changes in the specific angular momentum and the radial heating

and the bar strength in the thin+thick models. To achieve this,
we first computed the change in the specific angular momentum
for the total (thin+thick) disc particles, within the bar region by
using

∆lz(R < Rbar) = lz(tend; R < Rbar) − lz(t0; R < Rbar), (9)
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and then we also computed the change in the (average) radial
heating within the bar region by using

∆〈ΠR(R < Rbar)〉 = 〈ΠR(tend; R < Rbar)〉 − 〈ΠR(t0; R < Rbar)〉.
(10)

This is shown in Fig. 10. Figure 10 clearly shows that a
stronger bar correlates with a higher angular momentum loss
and a higher degree of radial heating for the stars. This trend
holds for a wide variety of configurations (thin-to-thick disc
scale-length ratio) and for different fthick values. This demon-
strates that a stronger bar is associated with a larger amount of
disc heating and a larger transfer of angular momentum from
the disc particles, in agreement with previous findings (e.g.,
see Tremaine & Weinberg 1984; Debattista & Sellwood 2000;
Saha et al. 2010; Grand et al. 2016).

6. Testing the bar instability criteria

We tested two bar instability criteria that are widely used in the
past literature on all the thin+thick models we considered to
explore whether these criteria can indeed reveal when a bar will
form. In Sect. 6.1 we investigated the Ostriker-Peebles (OP) cri-
terion for the bar formation whereas in Sect. 6.2 we investigated
the Efstathiou-Lake-Negroponte (ELN) criterion for the bar for-
mation.

6.1. Ostriker-Peebles (OP) criterion

Using N-body simulations of disc galaxies, the seminal work
by Ostriker & Peebles (1973) showed that a stellar disc would
enter into the bar instability phase if the ratio of the total mean
kinetic energy to the potential energy, W, exceeds a critical limit
of 0.14 ± 0.003. Assuming that the virial theorem holds for our
simulation snapshots, we can convert this criterion in terms of
the rotational kinetic energy and the random kinetic energy. The

random kinetic energy is calculated using

Π(R) = ΠR(R) + Πφ(R) + Πz(R), (11)

where each component of the random kinetic energy is calcu-
lated as (Binney & Tremaine 2008)

Π j(R) =

NR∑
i=1

m(i)σ2
j (R). (12)

Here, j = R, φ, z; σ j is the corresponding velocity dispersion,
and m(i) is the mass of the ith disc particle. Similarly, the total
mean kinetic energy is calculated as

Tmean(R) = TR(R) + Tφ(R) + Tz(R), (13)

where each component of the mean kinetic energy is calculated
as (Binney & Tremaine 2008)

T j(R) =

NR∑
i=1

1
2

m(i)〈v j(R)〉2. (14)

Here also, j = R, φ, z; 〈v j〉 is the corresponding mean velocity,
and NR is the total number of particles in the radial extent [R,R+
∆R]. Now, following the tensor-virial theorem in a steady state,
taking the trace of the kinetic and the potential tensors, we obtain
(Binney & Tremaine 2008)

Π + 2Tmean + W = 0. (15)

Then, applying the OP criterion, we obtain (for details, see
Saha & Elmegreen 2018)

Tmean

|Π + 2Tmean|
> 0.14, (16)

or equivalently,

Π/Tmean + 2 < 7.14⇒ Π/Tmean < 5.14. (17)
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Fig. 11. Ostriker-Peeble (OP) criterion: ratio of the total mean kinetic energy to the total random kinetic energy, calculated within the extent of
the bar, (Π/Tmean(t; R < Rbar)), at t = 0 for the total (thin+thick) disc as a function of the maximum bar strength (Sbar,max). Left panels: evolution
for the rthickS models, and the middle and right panels: evolution for models rthickE and rthickG, respectively. The points are colour-coded by
the corresponding thick-disc fraction, fthick (see the colour bar). Different symbols represent thin+thick models with different scale heights. For
details, see the text. The shaded region denotes the bar-stable zone according to the OP criterion.

To explain this, if the ratio Π/Tmean is lower than 5.14, the stellar
disc enters the bar instability phase, and if the ratio Π/Tmean is
greater than 5.14, the corresponding stellar disc remains stable
against the bar formation.

In Fig. 11 we show the ratio Π/Tmean, calculated at t = 0,
within the extent of the bar, plotted against the maximum val-
ues of the bar strength for all 25 models we considered. The
Π/Tmean(t = 0) values for the 15 thin+thick models that even-
tually develop a strong bar lie below 5.14, which means that
the bar is unstable according to the OP criterion. The OP cri-
terion also successfully predicts that the thick-disc-only models,
namely rthickS1.0, rthickE1.0, and rthickG1.0, are bar unstable
(with Π/Tmean(t = 0) < 5.14). However, the OP criterion fails
to predict the bar stability scenario correctly for the thick-disc-
only models, for which we increased the disc scale height. In
other words, the Π/Tmean(t = 0) values for these models remain
lower than 5.14, which means that the bar is unstable according
to the OP criterion. However, most of these thick-disc-only mod-
els (with a larger scale height) do not form a prominent bar at
all within the simulation run (9 Gyr). Nevertheless, we found an
anti-correlation between the Π/Tmean(t = 0) values and the max-
imum bar strength (Sbar,max), which is expected in the sense that a
system with lower Π/Tmean(t = 0) indeed develops a stronger bar
in the disc (see Fig. 11). We further checked whether the tempo-
ral evolution of Π/Tmean(t) and the growth rate of the bar are cor-
related. This is shown in Fig. 12 for the models considered here.
For most of the models, the growth rate of the bar clearly sta-
bilises (i.e. dSbar/dt ∼ 0) after Π/Tmean(t) crosses the value 5.14.
In other words, when the system eventually becomes bar stable
according to the OP criterion, the bar does not grow drastically
either (although it might enter the buckling phase). While this
trend remains true for most of the models, Π/Tmean(t) remains
low for the models that do not form a strong bar, for example,
rthickG1.0 (bottom right panel in Fig. 12). One plausible expla-
nation might be that because these models do not form a strong
bar, the disc stars are not heated by the action of a (strong) bar.
Hence, the total random kinetic energy remains low, which in

turn keeps the ratio Π/Tmean lower than or closer to 5.14. In addi-
tion, for some models (see the bottom left panels of Fig. 12), the
bar strength does not increase even though the values of Π/Tmean
increase steadily.

6.2. Efstathiou-Lake-Negroponte (ELN) criterion

Efstathiou et al. (1982) proposed an analytic criterion to deter-
mine the stability of a stellar disc against the bar formation:

ε =
vc,max

(αMdiscG)1/2 , (18)

where vc,max is the maximum circular velocity, Mdisc is the total
disc mass, and α = R−1

d , Rd is the scale length of the stellar disc.
A stellar disc would become bar unstable for ε ≤ 1.1, and if
ε > 1.1, the stellar disc would be stable against the bar formation
(for details, see Efstathiou et al. 1982).

To compute ε at t = 0 for the total (thin+thick) disc, we
first calculated the initial (t = 0) circular velocity profiles for
the whole system and then determined the peak value of the cir-
cular velocity. The circular velocity (or equivalently, the rota-
tion curve) of the radial profiles at t = 0 was first derived from
the underlying (equilibrium) mass distribution at the initial time.
Then, from the radial variation, we took the maximum value of
the vc as vc,max. To determine Rd, we point out that our thin+thick
models consist of a thin and a thick disc, with varying disc scale
lengths (see Table 1). Therefore, we computed the average disc
scale length, 〈Rd〉, in the following fashion:

〈Rd〉 =
Md,thinRd,thin + Md,thickRd,thick

Md,thin + Md,thick
· (19)

Figure 13 shows the resulting values of the dimensionless
quantity, ε, corresponding to the equilibrium models (t = 0),
plotted against the maximum values of the bar strength for all
25 models we considered. The ε values for the 15 thin+thick
models that eventually develop a strong bar lie below 1.1, which
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Fig. 12. Evolution of the ratio of the total mean kinetic energy to total random kinetic energy, calculated within the extent of the bar, (Π/Tmean(t; R <
Rbar)), for the total (thin+thick) disc particles, plotted against the growth rate of the bar (dSbar/dt) for all thin+thick models with varying fthick
values. Left panels: evolution for the rthickS models, and the middle and right panels: evolution for models rthickE and rthickG, respectively. The
thick-disc fraction ( fthick) varies from 0.1 to 1 (top to bottom), as indicated in the left-most panel of each row. The points are colour-coded by the
simulation time (see the colour bar). The vertical black line denotes Π/Tmean = 5.14, which serves as a boundary for the bar instability phase, and
the grey shaded region (in each sub-panel) denotes the bar-stable phase according to the OP criterion. For details, see the text.

means that the bar is unstable according to the ELN criterion.
The ELN criterion also successfully predicts that the thick-disc-
only models, namely rthickS1.0, rthickE1.0, and rthickG1.0, are
bar unstable (with ε < 1.1). However, the ELN criterion fails
to predict the bar stability scenario correctly for the thick-disc-
only models, for which we increased the disc scale height. In

other words, the ε values for these models remain lower than
1.1, which means that the bar is unstable according to the ELN
criterion. However, most of these thick-disc-only models (with a
larger scale height) do not form a prominent bar at all within the
simulation run (9 Gyr). Moreover, we found no anti-correlation
between the ε values and the maximum bar strength (Sbar,max),
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Fig. 13. Efstathiou-Lake-Negroponte criterion: quantity vc,max/(αMdiscG)1/2, calculated at t = 0, for all thin+thick disc models as a function of
maximum bar strength (Sbar,max). Left panels: evolution for the rthickS models, and the middle and right panels show the evolution for models
rthickE and rthickG, respectively. The points are colour-coded by the corresponding thick-disc fraction, fthick (see the colour bar). The different
symbols represent thin+thick models with different scale heights. The horizontal line (in black) denotes vc,max/(αMdiscG)1/2 = 1.1, which serves as
a boundary for the bar instability phase. For details, see the text.

which was expected because a system with a lower ε value
should have developed a stronger bar in the disc.

7. Discussion

7.1. Caveat to our analysis

In what follows, we discuss some of the implications and limi-
tations of this work. First, in the thin+thick models we consid-
ered, the stars are separated into two well-defined and distinct
populations, namely, thin- and thick-disc stars. We point out that
this scheme of segregating stars into two distinct populations
might be suitable for external galaxies, which have two discrete
disc structures, but this is a simplification for the Milky Way,
where stars of different mono-abundance populations smoothly
transition from a thin to a thick disc. Bovy et al. (2012) showed
that the disc properties vary continuously with the scale height.
Treating the stars separated into two distinct populations there-
fore reduces the complexity that is expected to be present in the
Milky Way. Nevertheless, this discretised treatment of stars with
a varying fraction of thick disc stars provides valuable insight
into the trends that will be followed by the stellar populations in
the external disc galaxies. We further mention that some of the
findings of this work can be extended to more complex configu-
rations. For example, a similar radial velocity dispersion for the
thin and thick disc at the end of the simulation run, as shown
here, was also found in Di Matteo et al. (2019), who modelled
the galaxy with three components (thin, intermediate, and thick
discs).

The radial extents of the thin and thick discs merit some dis-
cussion. The extent of the thick disc partially depends on how
it is defined. To illustrate this, when the thick disc component
for the Milky Way is defined in terms of the α-enhanced stars,
the scale length of the thick disc is smaller than that for the thin
disc. However, when the classification for the thick disc is based
on colours and not the chemical abundances, the thick-disc scale
length is larger than that of the thin disc (e.g., see Jurić et al.

2008). In external galaxies, the thick discs are generally also
more extended than the thin disc (e.g., see Yoachim & Dalcanton
2006). This motivated us to consider all three possibilities for
the thin-to-thick disc scale length ratio (rthickS, rthickE, and
rthickG) and to address the bar formation scenario for a wide
range of thin- to thick-disc geometry configurations.

Furthermore, the thin+thick models we used are colli-
sionless simulations and do not contain any interstellar gas.
The dynamical role of the interstellar gas in the context of
the generation/destruction of disc instabilities, such as bars
(Bournaud et al. 2005) and spiral arms (Sellwood & Carlberg
1984; Ghosh & Jog 2015, 2016, 2022), has been investigated
in the literature. The presence of a (dynamically) cold compo-
nent, such as gas, makes the disc more susceptible to gravi-
tational instabilities (e.g., see Jog & Solomon 1984; Jog 1996;
Bertin 2000). Furthermore, Bournaud et al. (2005) argued that
the inflow of the gas into the central region infuses angular
momentum, thereby leading to a significant bar weakening.
However, recent observational work by Pahwa & Saha (2018)
showed prominent bars in several low surface brightness (LSB)
galaxies with a high gas fraction. Nevertheless, the bar formation
scenario in the presence of the thick disc and the interstellar gas
is well worth investigating.

7.2. Formation of bars in thick discs

The simulations analysed in this paper show that a bar can also
form in thick-disc-dominated galaxies or in purely thick-disc
galaxies for sufficiently compact distributions (in terms of scale
lengths and heights). In particular, our models show that a bar
could also have formed in thick discs with characteristics sim-
ilar to those of the α-enhanced thick disc of the Milky Way
(scale length of 2 kpc, scale height of 0.9 kpc; see Bovy et al.
2012), even if the thin-disc counterpart were not yet in place.
For a galaxy such as the Milky Way, the formation of the thin
disc started about 9 Gyr ago (z ∼ 1; see Haywood et al. 2013;
Snaith et al. 2014). This suggests that the Milky Way bar may
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have been forming or been in place already at these epochs. This
finding may in principle push (Haywood et al. 2016; Bovy et al.
2019) the time of the bar formation in our Galaxy to earlier
epochs than suggested so far, with an upper limit to its formation
possibly set by the end of the epoch of significant mergers expe-
rienced by the Milky Way, which is currently estimated at about
10±1 Gyr ago (see Belokurov et al. 2018; Di Matteo et al. 2019;
Kruijssen et al. 2020). As discussed previously, it would be cru-
cial to investigate how the inclusion of gas in the models can
modify these suggestions. Furthermore, recent observations of
rest-frame near-infrared images with the JWST clearly showed
prominent bars in disc galaxies in the high-redshift universe
(z> 1) as well (Guo et al. 2023). In these redshift ranges, the disc
galaxies are thought to be clumpy, turbulent, and more impor-
tantly, to have thick discs (e.g., see Hamilton-Campos et al.
2023). The results presented here clearly demonstrated that bar
formation in the presence of thick discs is possible even when
the thick-disc stars dominate the underlying mass distribution.
Therefore, our study here provides a natural explanation for
the bar formation scenario in high-redshift galaxies, as recently
unveiled by the JWST observations.

7.3. Criteria for the bar formation

As shown earlier, the OP criterion fails to predict the bar forma-
tion scenario correctly for some cases, especially for the thick-
disc-only models with larger scale heights. However, this is
expected because the OP criterion does not include all the com-
plexity related to the bar formation and its growth. For exam-
ple, the formalism does not take the interaction between the disc
and the dark matter halo into account. The limiting value of the
ratio of the rotational kinetic energy to the potential energy, W,
exceeding 0.14±0.003 in order to become bar stable was derived
from simulations with a rigid and not a live dark matter halo (also
see the discussion in Athanassoula 2008).

The limited success of the predictability of the ELN criterion
for our models is also expected because the ELN criterion was
originally developed based on 2D simulation models, and hence
it does not take into account the (destabilising) effect of the disc-
dark matter halo interaction. Furthermore, it does not take into
account the (stabilising) effect of the disc velocity dispersion or
the central concentration of the dark matter halo (for details, see
the discussions in Athanassoula 2008; Romeo et al. 2023). The
recent study of Romeo et al. (2023) showed that for their sam-
ple of selected observed galaxies, in only 50−55% of the cases
did the ELN criterion successfully predict the bar formation sce-
nario. On the other hand, the study of Izquierdo-Villalba et al.
(2022) showed that for about 70−80% of the galaxies taken from
the IllustrisTNG simulations, the ELN criterion correctly pre-
dicted the bar formation scenario.

8. Summary

In summary, we investigated the dynamical effect of a geometri-
cally thick disc on the bar formation and evolution scenario. We
constructed a suite of N-body models of thin+thick discs and
systematically varied mass fraction of the thick disc and the dif-
ferent thin-to-thick disc scale length ratios. Our main findings
are listed below.

– Bars form in almost all thin+thick disc models with a varying
thick disc mass fraction and for all three geometric configu-
rations with different thin-to-thick disc scale length ratios.
The bar is present in both thin- and thick-disc stars. The bar
in the thick disc always remains weaker than the bar in the

thin-disc stars. Nevertheless, the overall trend of the bar evo-
lution and growth in the thin and thick disc is similar.

– Bars form quite early (∼2 Gyr) in almost all thin+thick disc
models we considered. The models in which the thick-disc
scale length is shorter than that of the thin disc (rthickS mod-
els) form the bar relatively earlier than in the other two geom-
etry configurations. In addition, the bars in the rthickS mod-
els display a more rapid growth in the initial phase than the
other two geometry configurations.

– The bar formation in thick-disc-only simulations (without
any thin disc) critically depends on the scale length and scale
height of the thick disc. With increasing scale length (and
for a fixed scale height), the bar formation epoch is delayed,
and the resulting bar is progressively weaker. Similarly, with
increasing scale height (and for a fixed scale length), the
system becomes progressively hostile to bar formation.

– The formation of a stronger bar is associated with a higher
angular momentum loss and with a more intense radial
heating within the bar region, in agreement with previ-
ous findings. Moreover, we demonstrated a preferential loss
of angular momentum and a preferentially increased radial
heating along the 2D extent of the bar. This trend holds true
for the thin- and thick-disc stars, and it remains generic for
all thin+thick models we considered.

– We find that the OP criterion is a better prescription than
the ELN criterion for predicting bar formation scenarios in
our thin+thick models. While the OP criterion almost always
correctly predicts the bar instability in our models, the suc-
cess of predicting the bar instability from the ELN criterion
remains only limited for our models.

To conclude, even the inclusion of a massive (kinematically
hot) thick-disc component is not efficient in suppressing the bar
instability, suggesting that bars can form in hot thick discs at
high redshifts. These results agree with recent observational evi-
dence from the JWST, and provide a natural explanation for the
bar formation scenario in disc galaxies in the high-redshift uni-
verse (z > 1). Our study demonstrated that if the disc galaxy
consists only of a thick disc, the bar formation can only be
delayed/prevented (within a Hubble time) if the disc scale length
is larger (i.e., with less centrally concentrated surface density)
and/or if the vertical scale height is larger (i.e., more vertically
extended and kinematically hotter) in disc galaxies.
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Appendix A: Rbar measurement for the thin+thick
models

In the literature, both observationally and from simulations, a
wide variety of techniques has been employed to measure the bar
length, Rbar. This includes isophotal fitting with an ellipse (e.g.,
Wozniak & Pierce 1991; Wozniak et al. 1995), a Fourier analy-
sis of the azimuthal luminosity profiles (e.g., Ohta et al. 1990),
measuring the location of the maximum of the bar– inter-bar
luminosity ratio (Aguerri et al. 2000), finding the deviation in
the phase angle by a certain amount (5− 10◦), and by measuring
the location in which the A2/A0 (m = 2 Fourier coefficient) drops
to a certain fraction of its peak value.

We briefly describe how we calculated the Rbar in our
thin+thick disc models. To achieve this, we used two methods.
In the first method, we defined Rbar as the location in which
the A2/A0 value drops to 60% of its peak value. In the sec-
ond method, we defined the Rbar as the location in which the
A2/A0 value drops to 70% of its peak value. The corresponding
temporal evolution of Rbar, calculated for the total (thin+thick)
disc particles, is shown in Fig. A.1 for model rthickE0.5. The
values of Rbar clearly increase quite significantly, by almost a
factor of about two. However, after about 6 Gyr, the bar does
not grow appreciably, and the values of Rbar also saturate, with
occasional fluctuations (compare Figs. 3 and A.1). Therefore,
we took this value as the representative value for Rbar (see the
horizontal magenta line in Fig. A.1). The Rbar values for all
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Fig. A.1. Temporal evolution of the bar length, Rbar, measured by the
two methods we adopted (see the text for details) for model rthickE0.5.
The horizontal magenta line denotes the representative value for the Rbar
we used for this model.

other thin+thick disc models were determined in this fashion,
and they are indicated in Fig. 1 (see the dashed black circles
there).

A128, page 20 of 20


	Introduction
	Simulation set-up and N-body models
	Formation and evolution of the bar for different thick-disc mass fractions
	Effect of the disc scale height on the formation of a bar
	Angular momentum exchange and radial heating within the bar region
	Exchange of angular momentum
	Radial heating of disc particles within the bar region

	Testing the bar instability criteria
	Ostriker-Peebles (OP) criterion
	Efstathiou-Lake-Negroponte (ELN) criterion

	Discussion
	Caveat to our analysis
	Formation of bars in thick discs
	Criteria for the bar formation

	Summary
	References
	Rbar measurement for the thin+thick models

