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Abstract 

Current neurobiological models of semantic cognition have been predominately 

derived from studies of single-words or sentences which may provide an 

impoverished estimate of how semantic processing occurs in real-world contexts. 

Studies that make use of more ecologically valid stimuli such as natural language or 

narratives suggest that, counter to the hub-and-spoke framework in which the 

anterior temporal lobe (ATL) serves as a graded hub integrating information from 

proximal sensorimotor spokes, the semantic system displays voxel-wise category 

specialization tiled across a large, distributed network. A complicating factor in 

reconciling these seemingly conflicting claims is the over-reliance on concrete 

conceptual knowledge in describing the organization of the semantic system. A 

recent theoretical account argues that social knowledge, like other types of semantic 

knowledge, is processed within the ventrolateral ATL, but this claim has not been 

tested using naturalistic stimuli, which better sample abstract social knowledge, 

including pragmatic inference.  

This thesis investigates the organization of the semantic system across multiple 

scales, from isolated words to multimodal narratives, and across multiple types of 

semantic conceptual knowledge, from concrete to abstract. Using comprehension of 

concrete words as a starting point, the first study describes a critical examination of 

specialization within the semantic system for taxonomic (dog – bear) and thematic 

(dog – leash) relations using intracranial EEG recordings from an array of depth 

electrodes within ATL, inferior parietal lobule (IPL), and two regions within the 

semantic control network, inferior frontal gyrus (IFG) and posterior middle temporal 

gyrus (pMTG). Moving across the context and conceptual scale to build upon this 

work, the second study investigated how the concrete and abstract lexical and 

semantic properties of single-words, akin to those that informed the hub-and-spoke 

model, are processed in a complex, complete narrative presented to participants 

during fMRI scanning. In doing so, this study enabled comparisons between prior 

studies of isolated words and naturalistic work, thus moving toward an integrated 

cross-scale account of semantic cognition. Using the same neuroimaging data, the 

third study extended this work to investigate how context contributes to the 

construction of meaning by studying how the semantic and social cognitive systems 

are engaged by social and pragmatic sentence-level content. This enabled a direct, 
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naturalistic test of the claim that social knowledge is housed within the semantic 

system. The fourth study investigated shared processing between social and 

semantic systems using fMRI data collected during movie-viewing, which captures 

the multimodal environment in which social knowledge is exchanged.  

The results of these studies collectively demonstrate that the semantic and social 

systems are differentially engaged across the scales investigated here. Concrete 

conceptual relations engage one (or more) specialized hubs within the semantic 

system, whereas processing of naturalistic verbal and event content co-varies with 

activation in large brain networks. There is evidence of functional gradations within 

ATL that are differentially sensitive to the demands of narrative comprehension – the 

anterior superior temporal gyrus (i.e., dorsolateral subregion) and anterior fusiform 

(i.e., ventral subregion) appear to be particularly sensitive to the quantity and 

informativeness of external input whereas the anterior middle and inferior temporal 

gyri (i.e., ventrolateral subregion) appear to be engaged by internal, or endogenous, 

semantic processing during narrative comprehension. Engagement of this same 

ventrolateral subregion is observed in response to social word and sentence content, 

providing support for the claim that social processing is subsumed within the 

semantic system. Taken together, the results suggest an extension to the current 

neurobiological model of semantic cognition that accommodates comprehension 

contexts. The studies undertaken as part of this thesis build upon the existing 

concept-level frameworks towards a narrative-level framework of semantic cognition. 
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Lay Summary 

A critical goal in research on human cognition is to understand how our brains 

make sense of the world around us. Existing models of how verbal and non-verbal 

knowledge, or semantic memory, is processed in the brain are based on studying 

responses to single words or sentences. This approach might not fully represent how 

our brain processes meaning in everyday life. How this system functions in real-

world situations is particularly important for social communication and behaviour. A 

recent theory proposes that social knowledge is processed in the semantic system, 

but this has not been fully tested with realistic stimuli that better capture social 

processing and subtle social cues, like understanding implied meanings in 

conversations. 

To explore this, this thesis examined how our brain's semantic system works at 

different levels, from understanding single words to complex stories like audiobooks 

and movies. It also looks at how our brain handles different types of knowledge, from 

tangible objects to abstract ideas. The studies described in this thesis use brain 

imaging techniques to see how different brain regions are engaged during these 

tasks. 

The first study uses recordings from electrodes placed inside the brain to 

examine how the brain processes different types of concrete word relationships. The 

second study uses brain scans (functional MRI) to see how the brain processes the 

meaning of words and concepts within a complete story. The third study looks at how 

social and pragmatic content in sentences within the same story are processed 

within the brain's semantic and social cognitive systems. The fourth study uses fMRI 

during movie-watching to understand how the brain processes semantic and social 

knowledge in a multimodal narrative. 

The results from these studies show that current models of the semantic system 

underestimate the extent and function of the system across naturalistic contexts. For 

concrete concepts, there is evidence of two “hub” regions. For more natural and 

complex content, such as audiobooks and movies, there is evidence of subregions 

within the semantic system that support different aspects of narrative 

comprehension: (1) processing the rapid and almost constant input, (2) accessing 

the meaning of the individual words, and (3) reflecting on how the information relates 
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to the overall narrative. Social processing, including making social inferences, 

appears to be supported by one of these subregions, consistent with the theory that 

social information is processed within the semantic system. Overall, this thesis 

provides a model for how our brains understand meaning in stories and highlights 

the need for a more comprehensive model that considers naturalistic contexts. 
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Chapter 1 

INTRODUCTION 

 

The semantic memory system stores the conceptual knowledge we acquire as 

we navigate life, encountering new objects, engaging in new experiences, and 

interacting with other people (McRae & Jones, 2013). We flexibly, and often 

effortlessly, access this verbal and non-verbal knowledge to communicate complex 

and nuanced ideas, understand the connections between the objects and events we 

encounter, comprehend detailed stories and conversations, and recognise and 

describe our own and others’ behaviour. Semantic cognition is thus integral to 

everyday life. Despite this, much of what is known about the neural basis of semantic 

cognition is based on studies conducted in constrained settings that minimally 

incorporate context as it occurs in the real world. This thesis sought to remedy this 

by examining comprehension across contexts – from word pairs having different 

semantic relations to audiobooks and movies.  

The following sections provide a description of the current neurobiological model 

of semantic cognition including opportunities for advancement that were pursued in 

the studies in this thesis. The relevant literature motivating each study is contained 

within each empirical chapter and is only broadly outlined here to provide general 

background information and to help situate the studies in relation to each other. An 

overview of the studies included in this thesis is provided at the end of this chapter. 

 

1 Current Neural Model 

1.1 Hub-and-spoke model 

A confluence of multiple streams of complementary research undertaken over the 

course of the last several decades has resulted in a converging neurocomputational 

model of semantic cognition. Cognitive accounts of the acquisition and organisation 

of semantic knowledge were informed by research on embodied cognition (Barsalou 

et al., 2003) and computational models (Rogers & McClelland, 2004). In these 

accounts, semantic representations arise from sensory-motor experiences and are 

grounded in these features of the environment, but no claims about the neural 
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instantiations of this process are made. The Wernicke-Meynert model, an early 

precursor to the contemporary model, proposed that conceptualizations could arise 

from widespread and interconnected brain areas storing modality-specific 

information that are reactivated when an object or concept is re-encountered 

(Eggert, 1977). Building upon this idea, the “convergence-divergence zone” theory 

emerged to describe a general neural framework that aligned with these accounts, 

providing a precursor to the current prevailing model. In this neural architecture, 

amodal zones, or association cortices, interface with sensorimotor neurons via 

bidirectional projections which provides an account of how representational feature 

information is both acquired and combined during subsequent retrieval (Damasio, 

1989).  

Strong neural evidence of the central role of the anterior temporal lobe (ATL) in 

semantic cognition emerged from neuropsychological research focusing on impaired 

semantic processing in semantic dementia, or semantic variant primary progressive 

aphasia, which results in neurodegeneration of the anterior temporal lobes (Bonner 

et al., 2010; Patterson et al., 2007). Degeneration is observed bilaterally in ATL but 

is often asymmetrical. Greater left-sided atrophy is associated with lexical-semantic 

impairments whereas greater right-sided atrophy is associated with disruptions in 

personality and behaviour (Snowden et al., 1989; Thompson et al., 2003). These 

patients exhibit a specific impairment of semantic memory in the context of relatively 

preserved autobiographical, or episodic, memory (Hodges et al., 1992; Snowden et 

al., 1989; Warrington, 1975). This is in contrast to Alzheimer’s disease in which 

episodic memory is predominately impacted and there is minimal degeneration of 

temporal lobes. This dissociation is not perfect, however, as episodic memory can 

start to degrade over time in patients with semantic dementia (Matuszewski et al., 

2009). Critically, the semantic impairments associated with semantic dementia are 

observed across modalities, across conceptual categories, and in expressive and 

receptive language abilities. Participants with semantic dementia perform worse on 

picture naming, picture categorization, color and object recognition, delayed-copy 

drawing, and single word recognition tasks but have preserved phonology and 

syntax (Hodges et al., 1992; Patterson et al., 2007; Snowden et al., 1989; 

Warrington, 1975). As a result, they tend to rely on their perceptual, rather than 

semantic, systems to recognize objects and slight changes in the perceptual features 
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of a recognized object can result in a lack of recognition (Graham et al., 2000). 

Damage to the temporal lobes, in semantic dementia or in other neuropsychological 

conditions, can also often result in surface dyslexia in which irregular words are not 

recognized on sight and are instead pronounced, incorrectly, as regular words 

(Jefferies et al., 2004; Woollams et al., 2007). This multimodal semantic loss 

appears to be impacted by the familiarity, typicality, and specificity. Impairments are 

greater for less familiar and less typical concepts (Adlam et al., 2006), and retrieval 

of superordinate categories (e.g., mammal) tends to be preserved over retrieval of 

subordinate categories (e.g., grizzly bear) (Warrington, 1975). Taken together, the 

specific multimodal semantic loss observed in semantic dementia provides strong 

evidence of ATL involvement in semantic processing.  

This is further supported by evidence from other conditions with acquired damage 

to ATL such as temporal lobe epilepsy (TLE), herpes simplex virus encephalitis 

(HSVE), and post-stroke aphasia (Lambon Ralph et al., 2012; Schwartz et al., 2009). 

These studies have shown that semantic impairments are more strongly associated 

with bilateral ATL damage, with unilateral ATL damage resulting in more mild 

semantic impairments. Damage to other parts of the semantic system outwith ATL is 

associated with less domain-general impairments, instead resulting in semantic 

impairments that disproportionally affect specific semantic categories or particular 

modalities. Damage to posterior middle temporal gyrus (pMTG), for instance, tends 

to result in greater impairment in recognition of tools compared to animals (Chen et 

al., 2017). In visual agnosia, visual object recognition is impaired but tactile 

recognition is sometimes spared (Devinsky et al., 2008), and a similar modality 

specific impairment in visual object naming is observed in optic aphasia (Plaut, 2002; 

Riddoch & Humphreys, 1987). Patients with transcortical sensory aphasia, which 

often results from lesions in left frontal or parietal areas, display similar semantic 

deficits as those observed in semantic dementia, but the impairments appear to be 

limited to semantic control processes rather than a degeneration of conceptual 

knowledge (Jefferies & Lambon Ralph, 2006). Reduced semantic performance is 

also reported in TMS studies disrupting ATL activity in neurotypical adults (Binney et 

al., 2010; Pobric et al., 2007). Integration of these streams of research and the 

application of neuroimaging methods to study the semantic system (Rogers et al., 
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2006) resulted in the prevailing hub-and-spoke neurocomputational account of 

semantic cognition (Lambon Ralph et al., 2017). 

The hub-and-spoke model posits that ATL serves as a hub integrating 

information via the structural connections of the brain from surrounding sensorimotor 

spokes to arrive at semantic representations (Chen et al., 2017; Lambon Ralph et 

al., 2017). The model presumes an embodied cognition framework in which semantic 

knowledge is acquired through interactions with sensorimotor and perceptual 

features. There are six proposed spokes: 1) sound - auditory cortices, 2) vision - 

occipital cortex, 3) praxis, or action knowledge - inferior parietal lobule, 4) valence - 

orbitofrontal cortex, 5) speech - inferior frontal gyri, and 6) function - posterior middle 

temporal gyri. There are functional gradations within the ATL – extending outward 

from the ventral portion of ATL in anterior fusiform which is the transmodal hub 

receiving equal input from the surrounding spokes. ATL regions proximal to this hub 

display graded semantic specialization driven by the inputs received from the nearby 

sensory association cortices. Several white matter tracts terminate within the ATL, 

and the sites of termination are only partially overlapping, providing additional 

evidence for this claim (Binney et al., 2012). That ATL is a critical hub for semantic 

processing is uncontroversial given the strength of the converging evidence across 

neuropsychological, computational, and cognitive neuroscience studies. The 

functional gradations of the hub, specialization for varied types of abstract 

representations which emerge via acquired embodiment in the absence of direct 

sensorimotor referents (Hoffman, 2016; Hoffman et al., 2018), and engagement in 

response to naturalistic stimuli remains relatively less explored, however. 

 

1.2 Semantic control 

The hub-and-spoke model has been further extended to incorporate semantic 

control, which is the ability to select appropriate, task-relevant conceptual 

information, inhibit or filter out unrelated or extraneous information, and resolve 

ambiguities in language (Jackson, 2021). The control network is thought to be 

separate from the semantic system, although it exerts an influence on the semantic 

system in directing and constraining the retrieval of semantic knowledge (Lambon 

Ralph et al., 2017). Within the controlled semantic cognition framework, the 

interacting systems work cooperatively: semantic concepts are activated within the 
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transmodal ATL hub and the respective sensorimotor spokes, and an executive 

mechanism constrains and directs the flow of information to facilitate retrieval of the 

necessary semantic knowledge (Jefferies et al., 2019; Lambon Ralph et al., 2017; 

Whitney et al., 2011). The left inferior frontal gyrus (IFG) and posterior middle 

temporal gyrus (pMTG) are consistently reported in studies of semantic control 

(Jackson, 2021). 

 

2 Opportunities for Advancement 

The hub-and-spoke model provides a clear and robust framework predominately 

focusing on lexical semantics and provides a good account of the comprehension of 

single words and isolated sentences. This is particularly true for concrete concepts, 

although theoretical (Barsalou & Wiemer-Hastings, 2005; Hoffman, 2016; Hoffman et 

al., 2018) and empirical (Arioli et al., 2020; Bucur & Papagno, 2021) accounts 

incorporating abstract and social concepts are emerging. There remain several 

opportunities to further refine and extend the model to accommodate other types of 

conceptual knowledge and comprehension of that knowledge in varied contexts. 

These opportunities are outlined in the sections below.  

 

2.1 Accounting for divisions within the semantic system 

There is evidence suggesting that semantic memory is comprised of distinct 

semantic systems corresponding to different conceptual relations (Mirman et al., 

2017). Models of semantic memory have predominately focused on feature-based, 

or taxonomic, relations at the exclusion of event-based, or thematic, relations. 

Taxonomic relations are based on feature similarity and can be determined from 

objects presented in isolation. In contrast, thematic relations are based on co-

occurrence within an event or scenario, which requires greater consideration of the 

context that is shared between the concepts. For instance, consideration of the 

relation between the concepts “cat” and “lap”, which have no feature overlap, 

requires recalling the event of a cat sitting on an owner’s lap. Although only two 

concepts are presented, which minimizes the local context, successful recognition of 

the relation requires knowledge of and access to the context that drove the 

association. Although a type of concrete conceptual knowledge, thematic relations 
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may shed light on how abstract and social information, which may similarly emerge 

from co-occurrence in context (Barsalou & Wiemer-Hastings, 2005; Hoffman et al., 

2018), are processed within the semantic system.  

Prior research indicates that there is a neural dissociation between the 

processing of taxonomic and thematic relations (Schwartz et al., 2011; Xu et al., 

2018). This work suggests that taxonomic relations are preferentially processed in 

the semantic hub in ATL, whereas a possible second hub in inferior parietal lobule 

(IPL) may preferentially process thematic relations. Evidence of a dual-hub 

architecture is mixed (Mirman et al., 2017) and requires further investigation, 

including evidence from neuroimaging modalities that provide complementary 

information to lesion-based and fMRI methods which account for much of the 

research in this domain. 

There is some evidence that the semantic control system is differentially engaged 

for processing taxonomic and thematic relations, although this may be driven by 

association strength rather than relation type (Geller et al., 2019; Jefferies et al., 

2019; Thompson et al., 2018). In requiring retrieval of relevant contextual 

information, thematic relations may require control mechanisms whereas taxonomic 

relations share properties that are embedded within the objects themselves and 

feature comparison can be done quickly and efficiently.  

 

2.2 Comprehending narratives 

There has been a disproportionate amount of research investigating how the hub-

and-spoke model supports comprehension of single words, primarily concrete 

concepts, with comparatively little research focused on how the semantic system 

supports comprehension within narratives. As a result, the neural basis of single 

word comprehension is well-established, but less is known about what it means to 

hold a representation of a narrative and which neural networks support 

comprehension. 

It is possible, and maybe the presumption, that a neurobiological model 

developed within artificial laboratory contexts would operate in approximately the 

same manner in naturalistic settings, but the demands of narrative comprehension 

suggest otherwise. In order to successfully comprehend the narrative, for instance, 
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the reader or listener must rapidly retrieve the meaning of the words and integrate 

them into an evolving mental representation, or situation model, of the events within 

the narrative (Yarkoni et al., 2008; Zwaan, 2004; Zwaan & Radvansky, 1998). In 

addition, context changes how word and sentence meaning is constructed (Deniz et 

al., 2023; Yee & Thompson-Schill, 2016). Unlike single word or sentence studies, 

newly presented information in a narrative is interpreted with respect to both the local 

and global events.  

Prior studies have examined the neural processing of semantic features in 

complex narratives. Some of these investigations provide evidence that, in a 

narrative context, individual concepts still engage the semantic system in expected 

ways. For example, activation in action planning and execution areas is positively 

modulated by manipulable nouns presented in written text (Desai et al., 2016). 

However, several attempts to comprehensively characterize the neural processing of 

the semantic features of natural language make claims about the organization of the 

semantic system that ostensibly conflict with the hub-and-spoke framework. These 

studies have found semantic representations distributed across a much broader, 

bilateral semantic network (Huth et al., 2016), that is independent of sensory input 

modality (Deniz et al., 2019; Zhang et al., 2020). This network of regions does not 

map onto the hub-and-spoke semantic system, though these descriptions of the 

semantic system may not be mutually exclusive or incompatible (Rogers & Lambon 

Ralph, 2022). It remains unclear how the lexical and semantic variables that directly 

informed the hub-and-spoke model are processed when presented in a naturalistic 

stimulus. Further, there is poor understanding of how more complex dimensions like 

ambiguity, emotion, and socialness are represented. 

The richness of narrative data provides both challenges and opportunities in 

addressing these gaps. Narratives have multiple, nested feature layers ranging from 

the words used to construct the narrative to the events that move the story forward 

(Willems et al., 2020). The complexity of the narrative thus allows for several levels 

of analysis. As an example, consider the word “die” – people tend to rate this word 

as having a strong, negative emotional valence (i.e., unpleasantness) (Warriner et 

al., 2013). Now consider the sentence “How did my father die?”. The word “die” still 

carries a negative emotional valence, but the conceptual representation, and likely 
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the emotional impact, is modified by the prior word. Finally, consider this brief 

passage from Star Wars: Episode IV – A New Hope: 

Luke: How did my father die? 

Obi-Wan: A young Jedi named Darth Vader, who was a pupil of mine until he 

turned to evil, helped the Empire hunt down and destroy the Jedi Knights. He 

betrayed and murdered your father. Now the Jedi are all but extinct. Vader 

was seduced by the dark side of the Force. 

Even this short exchange highlights some of the challenges of operationalizing 

semantic content in narratives. In response to Luke’s simple question, Obi-Wan 

provides a brief answer that is rife with information, requiring a significant update to 

the viewer’s situation model of Luke and his familial relations, the interpersonal 

connections between the characters with the introduction of a narrative antagonist, 

and the current state of the Jedi order and Vader’s role in its demise. A common 

approach to capturing sentence and passage level content is to aggregate the 

features of the words in the sentence to approximately estimate the emotional 

content (Anderson et al., 2017). The lexical and semantic properties of the words in 

the passage might provide an estimate of the content – “evil”, “destroy”, “betrayed”, 

and “murdered” may capture the negative emotional weight of the message, for 

example. This approach does not take narrative context into account, however. 

Instead, the words are treated as mapping the same meaning regardless of the 

surrounding narrative content, an approach which has received criticism (Yee & 

Thompson-Schill, 2016). Subjective sentence-level ratings of the content may 

provide a more accurate and integrative estimation of the content – that the final 

sentence is less social than the first sentence allows for investigations of the 

moment-by-moment fluctuations in social (or other) content. Incorporating even 

greater context, the entire passage could be considered a single event embedded in 

the overall narrative and given a rating relative to the surrounding events. The 

studies described in this thesis quantify the lexical and semantic properties of 

narratives across these scales – at the word, sentence, and event level – in an effort 

to comprehensively characterise how the semantic system is engaged across 

comprehension contexts.  
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2.3 Role of the semantic system in social cognition 

There is considerable neural overlap between the semantic and social cognition 

brain networks (Adolphs, 2001; Patterson et al., 2007) and, social concepts, like 

other types of semantic knowledge, are acquired through interactions in social 

environments in which individuals display or communicate about the behaviours 

associated with these concepts (Barsalou, 2020; Borghi & Binkofski, 2014). This 

provides compelling support for the role of semantic cognition in acquiring and 

accessing social information, and has motivated an account which argues that social 

cognition requires semantic memory, relying on the neural architecture of the 

semantic cognition and semantic control systems (Balgova et al., 2022; Binney et al., 

2016; Binney & Ramsey, 2020). The same ventrolateral portion of left ATL is 

engaged by theory of mind processing and non-verbal semantic processing (Balgova 

et al., 2022), and a recent meta-analysis found that both cognitive systems rely on a 

shared cognitive control network (Diveica et al., 2021). 

It is not clear how social content, ranging from highly social concepts to the need 

for perspective-taking, is processed within the semantic system in naturalistic 

contexts. Understanding a highly social moment in a narrative, for example, requires 

not only understanding the word meanings but also decoding the interpersonal 

dynamics at play by simulating the mental states of the character(s) (Mar & Oatley, 

2008). Research on pragmatics shows that social cognition plays an important role in 

communication, where context and non-linguistic features convey critical information 

that is not present in the lexical units or syntactic structures themselves. This 

pragmatic content allows comprehension of the intended meaning beyond the 

surface linguistic content (Bambini, 2010; Hagoort & Levinson, 2014) and requires 

the social cognitive process of mentalizing about the perspectives of the other 

agents in the environment (Levinson, 2006). Retrieval of the relevant social 

knowledge - from the names and behaviours of the people we encounter to the 

concepts used to label those behaviours - may rely on semantic memory. This thesis 

will investigate the processing of varied social information in narratives and examine 

the degree to which it is facilitated by the semantic cognition system. 

Importantly, social cognition refers to several cognitive abilities ranging from the 

representation of social information to the wide variety of processes that act on those 

representations. These processes include reasoning about the minds of others as 
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well as imitating, empathizing, and sharing attention with others (Frith & Frith, 2008; 

Happé et al., 2017). Although engaging in these processes requires access to social 

conceptual knowledge, they are a distinct aspect of social cognition. Such a 

dissociation is sometimes observed, for instance, in frontotemporal lobar 

degeneration (FTLD) in which patients may have impaired social conceptual 

knowledge and preserved understanding of the consequences of social behaviour, 

or vice versa (Zahn et al., 2017). By using narrative stimuli, the studies described in 

this thesis predominately capture the representation of social information at the 

word, sentence, and event level during a passive listening or viewing task. 

Therefore, these studies examine the representation and access of social 

knowledge. At several points throughout the thesis the term social process is used to 

broadly refer to social cognition, though the studies minimally capture the kind of 

social processes usually studied in social cognition research and are instead 

investigating how access to and retrieval of social conceptual knowledge occurs 

during narrative comprehension and whether it relies on the semantic cognition 

network. 

 

3 Thesis Overview 

The empirical chapters in this thesis make reference to each other and form a 

coherent body of research, but are presented as self-contained journal articles 

because two are already published, one is a Stage 2 in-principle-accepted registered 

report, and one will be submitted soon. They are organised by data sets and 

comprehension contexts, ranging from highly restricted context to multimodal 

narrative context, rather than by chronological order.  

Chapter 2 (published as Thye et al., 2021) describes an investigation of the 

neural processing of taxonomic and thematic relations using intracranial EEG. It 

provides the first step towards characterizing comprehension across contexts by 

using isolated word pairs, thus minimizing the local context within the paradigm, but 

requiring participants to consider relations that either require (i.e., thematic) or do not 

require (i.e., taxonomic) consideration of shared context. The results suggest that the 

semantic system is supported by a dual-hub architecture with specialization for 

taxonomic relations in ATL and for thematic relations in IPL. The specialization was 

https://doi.org/10.1016/j.cortex.2021.03.018
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time-limited, however, and likely not detectable using fMRI methods which have 

poorer temporal resolution. 

Chapter 3 (published as Thye et al., 2023) presents an investigation of the neural 

processing of the lexical-semantic content of single words presented in the coherent 

context of an audiobook. Like the work described in Chapter 2, this study examined 

brain activation in response to word-level conceptual information, but these words 

were presented in the global context of the narrative. Both concrete and abstract 

word-properties were investigated, including the socialness of the words. As a result, 

this study took advantage of the opportunities to characterise the neural basis of the 

semantic system during narrative comprehension and to investigate how social 

processing relies on this system. The results suggest that processing semantic 

content during narrative comprehension requires a more extensive network than 

described in the hub-and-spoke model. There is evidence of a hub structure, 

however, with subregions within the ATL displaying varied sensitivity to semantic and 

social content as well as narrative moments that provide listeners with an opportunity 

to reflect on and integrate narrative information. 

Chapter 4 reports a follow-up study using the same data set as Chapter 3, but 

instead quantifies analogous content at the sentence-level. This allowed for two 

extensions of the work outlined in the prior chapters: (1) an investigation of the 

semantic system using predictors that incorporate more of the narrative context and 

(2) quantification of non-lexical social information in the narrative such as 

interpersonal interactions and pragmatic inference. Both social and pragmatic 

sentence-level content engaged ventrolateral ATL, and there was evidence of 

functional divisions within ATL that were driven by the different demands of narrative 

comprehension. 

Chapter 5 is the Stage 2 manuscript of a Registered Report that was submitted 

for Stage 1 review prior to conducting the study described in Chapter 3, but uses 

similar methods to quantify the word-level variables in an independent data set. The 

Registered Report format was chosen to constrain the analysis plan and the 

interpretations given to the results as well as to provide a hypothesis-driven 

complement to the exploratory analyses described in Chapter 3. In this chapter, the 

narrative context is multimodal – movies – and both word-level and event-level 

predictors were used to characterise the semantic system, and social processing 

https://doi.org/10.1016/j.neuroimage.2023.120204
https://osf.io/acwqy
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within the system, in response to narrative stimuli. By quantifying the semantic and 

social event-level content, the narrative context is more closely approximated and 

accounted for in this study in comparison to the prior chapters. This allowed for a test 

of multiple levels of social processing, from words to interactions. The results 

suggest that semantic word-level and event-level content engage a robust 

comprehension network whereas social words, but not events, engage ventrolateral 

ATL. 

Chapter 6 summarises the patterns across chapters, focusing on the cross-

cutting implications of the results, and proposes an extension to the current hub-and-

spoke model that accounts for comprehension of narratives based on those patterns 

and the broader literature. 
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Chapter 2 

INTRACRANIAL EEG EVIDENCE OF FUNCTIONAL SPECIALIZATION FOR 

TAXONOMIC AND THEMATIC RELATIONS 

 

Abstract 

The dual-hub account posits that the neural organization of semantic knowledge 

is segregated by the type of semantic relation with anterior temporal lobe (ATL) 

specializing for taxonomic relations and inferior parietal lobule (IPL) for thematic 

relations. This study critically examined this account by recording intracranial EEG 

from an array of depth electrodes within ATL, IPL, and two regions within the 

semantic control network, inferior frontal gyrus (IFG) and posterior middle temporal 

gyrus (pMTG), while 17 participants with refractory epilepsy completed a semantic 

relatedness judgment task. We observed a significant difference between relation 

types in ATL and IPL approximately 600–800ms after trial presentation, and no 

significant differences in IFG or pMTG. Within this time window, alpha and theta 

suppression indexing cognitive effort and memory retrieval was observed in ATL for 

taxonomic trials and in IPL for thematic trials. These results suggest taxonomic 

specialization in ATL and thematic specialization in IPL, consistent with the dual-hub 

account of semantic cognition. 

 

Keywords 

semantic cognition; intracranial EEG; taxonomic; thematic 
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Graphical Abstract 
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1 Introduction 

Semantic knowledge is an integral aspect of human cognition. It provides an 

interpretive framework through which humans interact with their environment and 

attribute meaning to the objects and events they encounter (Kumar, 2020; McRae & 

Jones, 2013). Models of semantic memory predominately account for taxonomic 

relations, focusing on feature overlap to assign concrete concepts into categories 

within a hierarchical structure (Binney et al., 2010; Lambon Ralph et al., 2017; 

Patterson et al., 2007). In addition to these taxonomic relations, semantic knowledge 

also includes thematic relations based on shared context or co-occurrence of events 

(Binder et al., 2009; Goldwater et al., 2011; Mirman et al., 2017; Mirman & Graziano, 

2012; Schwartz et al., 2011). The process of acquiring thematic knowledge is distinct 

from that of taxonomic knowledge (Estes et al., 2011), and there is a processing time 

cost to switching between taxonomic and thematic relations (Landrigan & Mirman, 

2018). This suggests that these are distinct semantic systems. A recent systematic 

review found that there are consistent individual differences in strength of taxonomic 

versus thematic semantic knowledge, that taxonomic and thematic relations make 

independent contributions to relatedness, and that they have different time courses 

of activation (Mirman et al., 2017). The systematic review also suggested differences 

in the neural basis of taxonomic and thematic semantic cognition, but these results 

were mixed.  

There are two opposing accounts of semantic cognition that make different 

predictions about how taxonomic and thematic knowledge are represented and 

retrieved in the semantic brain network. The first account, the hub-and-spoke model, 

posits that the anterior temporal lobes (ATLs), which have been consistently 

identified as central to semantic cognition (Binney et al., 2010; Lambon Ralph et al., 

2017; Patterson et al., 2007; Wong & Gallate, 2012), serve as transmodal hubs 

integrating information from surrounding sensorimotor spokes to arrive at semantic 

representations (Lambon Ralph et al., 2010; Rogers et al., 2004). Within the hub-

and-spoke model, no neural dissociation would be seen in processing taxonomic and 

thematic relations. A number of studies have reported such dissociations, however 

(de Zubicaray et al., 2013; Geng & Schnur, 2016; Kalénine et al., 2009; Kalénine & 

Buxbaum, 2016; Sass et al., 2009; Schwartz et al., 2011; Tsagkaridis et al., 2014; 

Wu et al., 2007; Xu et al., 2018). The second theoretical account, the dual-hub 
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model, suggests that the central role of ATL in models of semantic cognition may be 

driven, in part, by the over-representation of studies examining taxonomic relations 

and the difficulty of constructing stimuli and tasks that effectively distinguish 

taxonomic and thematic relations without introducing differential cognitive demands. 

In addition, meta-analyses of semantic cognition have identified a possible second 

semantic hub which supports retrieval of thematic semantic knowledge in the inferior 

parietal lobule (IPL), comprised of the supramarginal and angular gyri (Binder et al., 

2009; Binder & Desai, 2011; Jefferies et al., 2019). The “dual-hub” view suggests 

that this IPL hub is specialized for thematic relations whereas the ATL hub is 

specialized for taxonomic relations (Mirman et al., 2017; Xu et al., 2018). 

A related extension of the hub-and-spoke-model, the controlled semantic 

cognition (CSC) framework, additionally highlights the role of a semantic control 

system, comprised of the inferior frontal gyrus (IFG) and posterior middle temporal 

gyrus (pMTG) that works alongside the semantic system in directing and 

constraining the retrieval of relevant semantic knowledge (Jefferies et al., 2019; 

Lambon Ralph et al., 2017; Thompson et al., 2017; Whitney et al., 2011; Zhang et 

al., 2020). This semantic control system is especially relevant for retrieving weak 

semantic relations and selecting task-relevant information. The CSC framework 

makes two important observations regarding the taxonomic-thematic distinction. 

First, taxonomically related objects share properties that are inherent to the objects 

themselves and feature comparison can be done quickly and efficiently. Thematic 

relations (especially weak relations), however, are not inherent to the objects 

themselves, so the relevant contextual information must be retrieved, often (though 

not always) requiring additional semantic control (Thompson et al., 2018; Whitney et 

al., 2011; Zhang et al., 2020). Second, there is a functional dissociation between the 

pMTG, which is part of the semantic control system, and the IPL, which is engaged 

during “automatic” semantic retrieval (Jefferies et al., 2019). The proximity of these 

regions may have led prior studies to confuse engagement of the pMTG during 

control-demanding thematic tasks with automatic semantic retrieval supported by 

IPL. Within the CSC framework, the angular gyrus works alongside ATL in retrieving 

strong semantic relations and neither region is specialized for processing specific 

semantic relations, while IFG and pMTG form a semantic control system that is 

engaged for weak semantic relations or otherwise retrieval-demanding semantic 
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tasks (Jefferies et al., 2019; Thompson et al., 2017). Support for this position was 

seen in a MEG study which found that ATL showed a greater response for 

taxonomic relations whereas thematic relations elicited a stronger response in 

pMTG. In addition, ATL responded more on strongly related trials, whereas pMTG 

responded more on weakly related trials, highlighting the role of this region in 

semantic control (Teige et al., 2019). 

The primary aim of the present study was to directly compare the single-hub and 

dual-hub accounts of semantic cognition by assessing neural responses to 

taxonomic and thematic relations using a method with high spatial and temporal 

resolution. Previous studies of semantic cognition have been restricted to 

neuroimaging methods with limited spatial (centimetre) and temporal (second) 

resolution, which are not capable of fully exploring the dynamics of the semantic 

system. Stereoelectroencephalography (sEEG), records directly from an array of 

depth electrodes implanted throughout the brain and, therefore, captures the spatio-

temporal transitions within networks on a much finer neuroanatomical (millimeter) 

and temporal (millisecond) scale providing an ideal avenue to study semantic 

processing. A secondary aim was to evaluate whether taxonomic and thematic 

relations differentially recruit semantic control regions when task demands are 

matched (i.e., using highly related pairs). This provides an opportunity to directly test 

the predictions of the CSC framework and leverage the spatial resolution provided by 

intracranial EEG to dissociate the contributions of pMTG and IPL within the semantic 

system. The key neural measures in the present study were spectral power in the 

theta (4-7Hz), alpha (8-12Hz), and high gamma (70-150Hz) bands, which have been 

used in previous intracranial EEG studies as indices for memory recall (Herweg et 

al., 2020), active engagement (Klimesch, 2012), and higher-order cognition (Jia & 

Kohn, 2011), respectively. Specifically, decreases in the theta and alpha power (i.e., 

alpha suppression) are associated with successful memory retrieval and increased 

attention, effort, or task engagement (Drijvers et al., 2018; Herweg et al., 2020). 

Analogous decreases in low frequency power during memory retrieval and attention 

have been reported across a broad network of left hemisphere language regions 

(Solomon et al., 2017; Weidemann et al., 2019). Although low frequency power was 

of primary interest, high gamma band power strongly correlates with BOLD activation 
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and thus provides complementary information albeit at a much finer spatiotemporal 

resolution (Engell et al., 2012; Lachaux et al., 2007). 

In line with the dual-hub account, it was hypothesized that decreased theta and 

alpha power would be observed in ATL on taxonomic trials (relative to thematic 

trials) and in IPL on thematic trials (relative to taxonomic trials). The converse pattern 

should be observed in the high gamma band: increased power in ATL on taxonomic 

trials (relative to thematic trials) and in IPL on thematic trials (relative to taxonomic 

trials). Regarding the secondary aim of investigating the claims of the controlled 

semantic cognition framework, thematic semantic retrieval was not expected to pose 

additional control demands especially when stimuli were designed to have minimal 

semantic control demands, so no differences in processing taxonomic and thematic 

trials were expected within the semantic control regions (IFG and pMTG). Neither the 

single-hub nor dual-hub account make claims about the time course of processing 

taxonomic and thematic relations, so this is left as an exploratory element of this 

study. The temporal resolution of intracranial EEG provides a unique opportunity to 

understand how activation within the semantic system unfolds on a millisecond 

timescale which, when combined with the spatial specificity of the data, can augment 

current knowledge and yield new predictions about the neural basis of semantic 

cognition. 

 

2 Methods 

2.1 Participants 

Thirty-one patients with refractory epilepsy took part in this study after written 

informed consent was obtained. All participants were undergoing in-patient phase II 

video and EEG monitoring to localize seizure onset in preparation for possible 

surgical resection; all were tested at least 24 hours after implantation of electrodes 

and were sufficiently recovered from the anesthesia as documented by normal (or at 

baseline) neurological examination before obtaining consent and performing study 

procedures.  All determinations of the return to normal (or baseline) neurological 

examination were performed by a neurologist or neurosurgeon not affiliated with the 

study. SEEG electrode localization was determined by evaluation needs (standard of 

care) and additional electrodes were not added for the purpose of this study. 
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Participants were excluded from analysis if they had low accuracy (<60%) in either 

task condition (n=2), both Full Scale and Verbal IQ in the mildly impaired range (<70) 

(n=2), seizure activity during the task (n=1), errors in data recording (n=3), or lack of 

electrodes in the regions of interest (n=6). Exclusion criteria were established prior to 

data analysis. The final sample for analysis consisted of 17 participants. The 

demographic and neuropsychological information is provided in Table 1. The 

participant-level electrode coverage within each region of interest is provided in 

Appendix A: Supplemental Table 1. The study was carried out in accordance with 

protocols approved by the Institutional Review Board at the University of Alabama at 

Birmingham. All participants signed an informed consent. 

 

Table 1 

Participant Information 

 N Mean (SD) Range 

Age (years) 17 35.75 (8.79) 24-49 
Full Scale IQ 16 87.38 (19.09) 61-129 
Verbal IQ 17 94.82 (19.27) 63-130 
Semantic Fluency 14 17.43 (5.12) 9-24 
Accuracy (%)    

Taxonomic Trials 17 83.82 (11.49) 68.75-100 
Thematic Trials 17 86.40 (10.88) 62.50-100 

Reaction Time (s)    
Taxonomic Trials 17 4.11 (1.87) 1.12-8.47 

Thematic Trials 17 3.99 (2.29) 1.21-9.52 
Sex (M:F) 6:11   
Race (B:W) 6:11   

 N No. Channels Coverage Mean (Range) 

ATL 8 56 7 (4-10) 
IPL 6 25 4 (1-8) 
IFG 16 116 7 (2-12) 
pMTG 14 62 4 (1-11) 

Note. Semantic fluency scores were derived by asking participants to list as many 

animals as they could within one minute. N, number of participants; SD, standard 

deviation of the mean; s, seconds; No., number; M, Male; F, Female; B, Black; W, 

White; ATL, anterior temporal lobe; IPL, inferior parietal lobule; IFG, inferior frontal 

gyrus; pMTG, posterior middle temporal gyrus; Coverage Mean (Range), mean 

number of electrode channels and the range of coverage for participants with 

electrodes within each region (indicated by N). 
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2.2 Materials 

Participants completed a semantic relatedness judgment task that has been used 

in a previous study with neurologically typical participants (Geller et al., 2019). 

Critical word pairs were derived from publicly available word norms of taxonomic and 

thematic relations (Landrigan & Mirman, 2016) and differed in the type of semantic 

relationship (taxonomic or thematic) and the strength of the semantic relationship 

(strongly related or weakly related). The stimuli and word properties are available on 

the project OSF page (https://osf.io/xtfah/). Only the strongly related trials were 

analysed in the current study (Appendix A: Supplemental Table 2)1. These strongly 

related stimuli were previously found to be matched in terms of control demands 

based on response times, accuracy, and a psychophysiological measure of cognitive 

effort (i.e., task-evoked pupillary response (TEPR); Geller et al., 2019). Filler trials of 

unrelated word pairs comprised 50% of the total number of trials. Conditions were 

matched on word length (in letters, syllables, and phonemes), word frequency 

(Brysbaert & New, 2009), imageability, and orthographic neighbourhood size. 

 

2.3 Procedure 

Participants completed an approximately one-hour testing session consisting of 

four language tasks during continuous sEEG monitoring. Intracranial video-EEG 

from an array of multi-contact depth electrodes (8-16 contacts, 2 mm contact length, 

0.8 mm contact diameter, 1.5 mm inter-contact distance) were recorded using Natus 

Xltek with sampling at 2 kHz to allow for better processing of the signal. 

All tasks were administered in each participant’s hospital room via a laptop 

positioned within arm’s reach of the participant on an adjustable table. Task 

instructions were presented on screen and explained verbally, and participants 

completed several practice trials prior to beginning each task. During the semantic 

relatedness task, two words appeared on the screen, and participants were asked to 

                                                           
1 Accuracy on weakly related trials was relatively poor across participants (M = 
73.5%) and below the 60% threshold for 6 of the 17 participants, which drastically 
reduces the sample size and makes the data unreliable both statistically (error trials 
were excluded, so the number of analysed trials would be low) and theoretically (with 
accuracy close to the 50% chance level for several participants, even the correct 
responses could be guesses, so it cannot be assumed that the correct semantic 
relations were retrieved on those trials either). 

https://osf.io/xtfah/
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judge whether the words were related or unrelated. Responses were indicated via 

the laptop keyboard using the “Z” key for related and the “M” key for unrelated. A 

total of 128 trials (64 critical trials, 16 in each condition) were presented in random 

order with an inter-trial interval of 2000ms during which participants saw a fixation 

cross. Trials were presented within 8 discrete blocks, and participants were given a 

break after each block. Trial onset signals from the experiment software were 

converted into TTL pulses by a custom-built Arduino device to mark trial onsets in 

the EEG data. All tasks were programmed in E-Prime 2.0 software (Psychology 

Software Tools, 2016). 

 

2.4 Data preprocessing 

Participant pre-operative MRI scans were processed through FreeSurfer (Dale et 

al., 1999) to generate a cortical surface mesh and co-registered with the post-

implantation CT scan. Electrodes were manually localized in native space by 

identifying the centre of the visible artefact on the CT scan using the iElectrodes 

program (Blenkmann et al., 2017). Electrode coordinates were normalized to 

template space using the MATLAB-based FieldTrip toolbox (Oostenveld et al., 2011) 

and referenced to standard atlases using code adapted from Stolk et al. (2018). 

Electrode locations were visualized by generating a 3mm sphere around each 

normalized coordinate using AFNI (Cox, 1996). 

Signal data were processed in MATLAB 2019a (MATLAB, 2019) using the signal 

processing and FieldTrip toolboxes. A detailed overview of the pipeline and the code 

used to run all analyses are available on OSF (https://osf.io/xtfah/). Data were 

segmented into 2500ms windows capturing the trial and baseline period (500ms). 

Trials were demeaned and line noise around 60Hz (and its 2nd and 3rd order 

harmonics) was attenuated with a notch filter. Data were visually inspected, and 

channels with excessive spiking across trials were removed (n=25). An automated 

artefact rejection algorithm was run on the z-transformed data (threshold=7), and 

trials which contained an artefact were excluded from analysis. Data were 

downsampled to 500Hz and each channel was re-referenced to the median value of 

the other channels on the electrode shaft. The resulting data were bandpass filtered 

using a 6th order Butterworth filter to separately extract the theta band (4–7Hz), the 

https://osf.io/xtfah/
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alpha band (8–12Hz), and high gamma band (70–150Hz). The Hilbert transform was 

applied to compute the analytic signal within each of the extracted frequency bands, 

and the data were smoothed using overlapping sliding windows of 250ms every 

30ms and baseline corrected using the percent change from the 300ms prior to the 

trial onset. 

Data were recorded from a total of 1298 electrode channels for the 17 

participants included in the analysis, of which 1039 were excluded from analyses 

due to the presence of excessive artefacts or placement outside of the regions of 

interest (ROIs). The ROIs were derived using the cortical parcellation of several 

atlases due to the lack of a clearly defined ATL or IPL region in any single atlas, 

although there was significant overlap in the region definitions across atlases. The 

left ATL region was comprised of the middle and superior temporal pole regions 

within the AAL atlas (Tzourio-Mazoyer et al., 2002), the temporal pole region with the 

Harvard–Oxford atlas, and the temporal pole region within the Destrieux atlas 

(defined in participant native space) (Destrieux et al., 2010). The left IPL region was 

comprised of the supramarginal and angular gyri regions within the AAL atlas and 

the supramarginal region within the Desikan-Killiany atlas (defined in participant 

native space) (Desikan et al., 2006). The left IFG region was comprised of the 

orbital, triangular, and opercular parts of the inferior frontal gyrus in the AAL atlas, 

and the IFG region within the Brainnetome (Fan et al., 2016) and AFNI Talairach–

Tournoux (Lancaster et al., 1997) atlases. The left pMTG region was defined as the 

posterior division and the temporo-occipital part of the middle temporal gyrus within 

the Harvard–Oxford atlas. See Figure 1 for electrode coverage across participants 

within the regions of interest and the location of the electrodes within each ROI. 
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Figure 1. Electrode coverage. (A) Spatial coverage map illustrating the number of 

participants with electrodes in the same brain areas. Electrodes which fall outside of 

the regions of interest are not shown. (B) Electrodes within each region of interest 

(ATL – blue; IPL – red; IFG – green; pMTG – yellow). 

 

2.5 Statistical analysis 

Filler, weakly related, inaccurate (14.9%), and slow response (RT>10s; 6.8%) 

trials were removed prior to analysis. The statistical analyses were conducted using 

a 2s window starting at stimulus onset. To capture changes in the time course of 

activation, the data were analysed using generalized additive mixed models 

(GAMMs; Winter & Wieling, 2016; Wood, 2017). GAMMs have several advantages 

compared to more widely adopted point-by-point methods: (1) GAMMs are more 

conservative and do not require a multiple comparisons correction. (2) Complex 

nonlinear relationships can be modelled flexibly while accounting for variation that 

may arise across participants, trials, and electrodes. This is especially relevant for 

modelling the fluctuations in the neural signal over the course of the extracted time 

window. (3) An autoregressive model component can be included to limit the 

autocorrelation of errors which poses a significant concern in direct analyses of time 

series data (Baayen et al., 2018). (4) Of particular relevance for the data analysed 

here, the GAMM approach of fitting smooth splines is a better representation of the 

underlying data generating process. In contrast, point-by-point comparisons treat 

each point as an independent observation. This modelling approach has been 

applied to pupillometry (van Rij et al., 2019), eye-tracking, and event-related 
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potentials (Porretta et al., 2017), highlighting the applicability of GAMMs to a variety 

of non-linear time series data. 

A generalized additive mixed model was run for each ROI predicting the log-

transformed signal (Smulders et al., 2018) within each frequency band with fixed 

effects of trial type (taxonomic vs thematic), a general smooth effect of time to model 

the nonlinear change in the signal across the trial duration, and a smooth over time 

effect for each trial type (i.e., time course differences between taxonomic and 

thematic conditions). The random effects structure consisted of a by-participant-

electrode factor smooth over time (time course differences between individual 

participant electrodes) and a random intercept of subject-trial. Individual differences 

across electrodes within subjects and trials within subjects are thus captured within 

the model specification2. Due to high autocorrelation of the residuals within the time 

series (rho=.92–.97), the first-order autoregressive model was accounted for in the 

model estimation. Smoothing was estimated via restricted maximum likelihood 

(REML). Model predictions were used to isolate the windows of time where the 

signal differed by trial type. This was done by calculating the difference curve 

between the fitted smooth condition terms from the model predictions using 

simulation-derived simultaneous 95% confidence intervals. The statistical analyses 

were run in R using the mgcv (Wood, 2004) and itsadug (van Rij et al., 2020) 

packages. The data and code used to run the analysis and additional details 

regarding the diagnostic plots and model specification are available on OSF 

(https://osf.io/xtfah/). The diagnostic plots are presented in Appendix A: 

Supplemental Figure 1. 

 

3 Results 

There were no significant differences in accuracy (t(16)=1.05, p = .31) or reaction 

time (t(16) = −.27, p = .79) between the taxonomic and thematic trials, consistent 

                                                           
2 The models were also run with reaction time included as a fixed effect, and the 
results were the same. Reaction time was not a significant predictor (p > .10) in all 
but one model (alpha band analysis within IFG: p = .02). Model comparisons 
indicated that the models without the fixed effect of reaction time were preferred. 
Therefore, the statistically preferred models without the reaction time effect are 
reported here. Additional information on the reaction time analyses are available on 
the project OSF page. 

https://osf.io/xtfah/
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with previously reported behavioural results from a sample of neurotypical adults 

(Geller et al., 2019) and further indicating that the control demands were comparable 

for each condition. 

The model estimates for the fixed and random effects are presented in Appendix 

A: Supplemental Table 3. These parameter estimates do not directly answer the 

research questions, but the model predictions were used to identify time intervals 

with statistically significant condition differences. Figure 2 shows the signal time 

course for each frequency band in each ROI for taxonomic and thematic conditions. 

The time intervals in which there was a statistically significant difference between 

conditions are indicated with dashed lines3. Time-frequency plots showing the global 

condition effects across frequency bands are presented in Appendix A: 

Supplemental Figure 2. 

 

                                                           
3 The results from a cluster-based permutation analysis approach largely converged 
with the results reported here with the exception of additional time windows of 
significant condition difference due to the less conservative nature of this analysis. 
Additional information regarding these analyses are available on the project OSF 
page. 
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Figure 2. Signal time course results. The time course of spectral power for the 

theta (top row), alpha (middle row), and high gamma (bottom row) frequency bands 

for ATL (left column), IPL (middle column), and IFG and pMTG (right column). For 

the semantic control regions shown in the right column, IFG data are plotted with 

filled triangles and pMTG data are plotted with open circles. Time (0-2000ms post 

trial onset) is shown on the x-axis and the log transformed signal is shown on the y-

axis. Thematic relation trials are shown in red, taxonomic trials are shown in blue, 

and the time windows with statistically significant differences between conditions are 

marked by dashed vertical lines.  
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3.1 Theta 

Within the ATL, theta band power was significantly lower on taxonomic trials 

compared to thematic trials from 597 to 886ms after the trial onset. The opposite 

pattern was observed in the IPL with lower theta band power on thematic compared 

to taxonomic trials from 717 to 806ms and again from 1264 to 1622ms after trial 

onset. There were no significant windows of time where the signal differed by 

condition in either IFG or pMTG. 

 

3.2 Alpha 

The pattern of results in the alpha band was similar to the theta band. Within the 

ATL, alpha band power was significantly lower on taxonomic trials compared to 

thematic trials from 547 to 726ms after trial onset. In IPL, alpha band power was 

lower on thematic trials compared to taxonomic trials from 577 to 766ms. There were 

no significant differences between the conditions across the time course in either 

IFG or pMTG. 

 

3.3 High gamma 

Unlike the theta and alpha bands, the course of high gamma band power was 

highly variable, with only a small window of significant difference between taxonomic 

and thematic trials: greater high gamma band power in ATL on taxonomic trials 

compared to thematic trials from 1115 to 1194ms4. There were no significant 

differences between the conditions across the time course in the IPL, IFG, or pMTG. 

 

4 Discussion 

Two opposing theoretical accounts of semantic cognition were examined using 

intracranial EEG. These accounts make different predictions about the functional 

specialization for taxonomic and thematic knowledge. The single-hub account 

predicts equal responses for taxonomic and thematic relations in ATL and no 

                                                           
4 Diagnostic plots indicated that the distribution of residuals was heavy-tailed in the 
gamma models, so these models were re-run using a scaled T distribution. With 
these models, the condition effect in ATL was no longer significant. 
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evidence of specialization within IPL. Conversely, the dual-hub account predicts 

stronger response in ATL for taxonomic relations and in IPL for thematic relations. 

Differences in the relative reliance on a broader semantic control network were also 

investigated by examining responses in IFG and pMTG. Using prior norming, 

behavioural, and psychophysiological evidence (Geller et al., 2019; Landrigan & 

Mirman, 2016), the stimuli were designed to minimise and match control demands 

for the taxonomic and thematic semantic relation conditions, which presented an 

opportunity to test whether thematic relations inherently recruit the semantic control 

system. Based on prior intracranial EEG studies, stronger neural response was 

operationalised as reduced theta and alpha power and increased high gamma power 

(Herweg et al., 2020; Klimesch, 2012; Lachaux et al., 2007). 

The ATL and IPL showed differential responsiveness to taxonomic and thematic 

relations in low frequency bands, where reduced spectral power is associated with 

task engagement and memory retrieval (Drijvers et al., 2018; Herweg et al., 2020; 

Klimesch, 2012). In ATL, the taxonomic condition response was significantly reduced 

relative to the thematic condition response from 597 to 886ms in the theta band and 

from 547 to 726ms in the alpha band. The opposite pattern was seen in IPL, with 

reduced theta power on thematic compared to taxonomic trials from 717 to 806ms 

and again from 1264 to 1622ms and reduced alpha power from 577 to 766ms. 

These results are consistent with the dual-hub prediction of greater ATL engagement 

in retrieving taxonomic relations and greater IPL engagement in retrieving thematic 

relations. 

The relatively symmetric functional specialisation observed in this study is likely a 

product of the matched taxonomic and thematic stimuli and task, combined with the 

high spatial and temporal resolution of sEEG. Other studies that showed converging 

evidence of functional specialisation have not always found such symmetric effects. 

For instance, in picture naming, participants usually make more taxonomic errors 

than thematic errors, possibly because visual features – which tend to be shared 

among taxonomically-related items – are more salient in a picture-based task. The 

lesion-symptom mapping analyses in Schwartz et al. (2011) showed that increased 

rate of taxonomic errors controlling for rate of thematic errors was associated with 

ATL damage and increased rate of thematic errors controlling for rate of taxonomic 

errors was associated with IPL damage. That is, although all participants made more 
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taxonomic errors than thematic errors, the magnitude of that difference depended on 

the lesion location. 

The timing of the observed effect may also be an important consideration when 

situating the present results in the broader literature. The specialization observed 

here was relatively early, transient, and primarily in the lower frequencies – the ATL 

and IPL hubs showed different degrees of suppression of low frequency (theta and 

alpha band) oscillations early after trial onset, but then seemed to work cooperatively 

to retrieve taxonomic and thematic relations. Studies using fMRI may not have been 

able to capture this transient dissociation given the lack of temporal resolution and 

may have been primarily capturing high gamma band power, which is more strongly 

associated with the BOLD signal. For example, a recent fMRI study using 

representational similarity analysis found that representational patterns in IPL 

showed approximately equal taxonomic and thematic similarity, while 

representational patterns in ATL showed much stronger taxonomic similarity than 

thematic similarity (i.e., Xu et al., 2018). Although both the Xu et al. fMRI study and 

the current sEEG study provide very clear evidence consistent with the dual-hub 

account, they do so on the basis of rather different neural signatures. 

Alpha and theta suppression were most prominent in both ATL and IPL relatively 

early in the time course, approximately 550–750ms after trial onset. The time course 

of activation was largely consistent across the low frequency bands and condition 

differences occurred at approximately the same time within ATL and IPL. It is 

important to note that the statistically significant time windows should not be 

interpreted as qualitatively distinct stages; they identify time points that passed a 

statistical significance threshold, thus highlighting the time points where the 

differences were strongest. However, the stimulus-evoked responses evolve 

gradually, so the adjacent time points outside of the identified windows likely fall just 

below the statistical threshold. These results do indicate that the differential 

response is a transient aspect that occurs early in semantic retrieval. Methods with 

coarser temporal resolution (such as fMRI) would be unlikely to capture these 

transient differences which underscores the value of using intracranial methods to 

enhance current neurobiological models of semantic cognition. Across most of the 

time course, ATL and IPL responded similarly on taxonomic and thematic trials, 

suggesting substantial coordinated processing between these semantic hubs. 
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Although neither the single-hub nor dual-hub account make any particular claims 

about the time course of activation, the transient differential response conflicts with 

the single-hub CSC framework prediction that ATL and IPL should respond equally 

to taxonomic and thematic relations under conditions requiring minimal semantic 

control. The stimuli and task were specifically designed to minimise and match 

semantic control demands and the lack of condition differences in IFG and pMTG 

suggest that this was successful. It is important to note that electrode coverage 

within the most posterior portion of pMTG was limited in this sample of participants, 

but no condition effect was observed in either semantic control region. Retrieval of 

strongly related taxonomic and thematic relations did not exert differential demands 

on the semantic control system. 

Within the high gamma band, the taxonomic condition response was significantly 

higher than the thematic condition response from 1115 to 1194ms in ATL, but no 

condition differences were seen in either IPL, IFG, or pMTG. Taken together with the 

theta and alpha band, these results align with the spectral tilt phenomenon reported 

in studies of human memory wherein decreased power is observed in lower 

frequency bands (i.e., theta and alpha) with corresponding power increases seen in 

higher frequencies (>30Hz) (Herweg et al., 2020). Although the time window is 

relatively brief, this is consistent with the ATL preferentially processing taxonomic 

relations, though a complementary tilt for thematic relations was not found in IPL and 

the low-frequency ATL response appears to be more robust. Given the known 

correspondence between high gamma band power and the BOLD response (Engell 

et al., 2012; Lachaux et al., 2007), this result may explain the mixed reports of ATL 

and IPL involvement in fMRI studies investigating taxonomic and thematic relations 

(Geng & Schnur, 2016; Jackson et al., 2015; Xu et al., 2018). 

Previous scalp EEG and MEG studies have attempted to isolate the time course 

of activation associated with processing taxonomic and thematic relations, although 

without the spatial resolution provided by intracranial recording. Many of these 

studies have reported key differences in processing of taxonomic compared to 

thematic relations. For instance, taxonomic and thematic relations were found to 

produce distinguishably different N400 amplitudes (Honke et al., 2020), P600 

amplitudes were significantly larger for taxonomic compared to thematic items (Savic 

et al., 2017), and a larger frontal P600 response was observed for taxonomic 



31 
 

compared to thematic relations (Chen et al., 2013). One scalp EEG study reported 

increased theta power in right frontal regions for thematic relations and increased 

alpha power over parietal areas for taxonomic relations (Maguire et al., 2010) which 

is largely consistent with the alpha and theta suppression observed in the current 

study. It is important to note, however, that scalp EEG and MEG may not be directly 

comparable to intracranial EEG: these methods consistently produce discrepant 

results, suggesting that they are capturing different properties of the frequency band. 

In particular, intracranial recordings capture oscillations in local field potentials that 

are interpreted as general increases in power when coarsely recorded at the scalp 

(Herweg et al., 2020). The results of the present study highlight the applicability and 

potential of intracranial EEG to further current understanding of human cognition. 

The functional specialization observed in this study is consistent with the 

“architectural specialization” hypothesis proposed by Mirman et al., (2017) in which 

the neural architecture of semantic cognition is divided according to the differential 

demands of identification and prediction. Identification and categorization of 

concepts based on features captures taxonomic relations whereas prediction based 

on temporal regularities of events captures thematic relations (for a related 

computational implementation see Hoffman et al., 2018). The present data suggest 

that ATL is specialized for identification, categorization, and taxonomic relations 

(consistent with extensive prior research, e.g., (Lambon Ralph et al., 2017; Patterson 

et al., 2007), while IPL is specialized for prediction and thematic relations (e.g., 

Matchin et al., 2017; van Kemenade et al., 2017; Xu et al., 2018). The emphasis on 

prediction is consistent with previous evidence indicating that thematic relations are 

asymmetrical. Semantic retrieval of causal relations (one kind of thematic relations) 

is facilitated when they are presented in cause-effect order (Fenker et al., 2005). 

Regularities in sequences of how concepts co-occur in an event may drive 

asymmetries in semantic association that have been demonstrated in semantic 

priming (Hutchison, 2002). Although not explicitly tested in this study, altering the 

direction of thematic (but not taxonomic) relations may result in varied IPL 

involvement due to increased prediction demands. The transient differential 

response observed in the present experiment suggests that, in a general semantic 

relation judgment task with randomly interspersed taxonomic and thematic trials, 

both hubs were substantively engaged on each trial; however, on taxonomic trials, a 
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coherent relation was activated in ATL, whereas on thematic trials, the coherent 

relation was activated in IPL. 

 

5 Conclusion 

Intracranial EEG was used to investigate the spatio-temporal dynamics of 

semantic cognition. A neural dissociation in response to semantic relation type was 

observed in the two major semantic hubs. Early decreases in low frequency power 

were stronger for taxonomic relations in ATL and for thematic relations in IPL. No 

difference was found in either semantic control region suggesting equal semantic 

control demands for strongly related taxonomic and thematic relations. These results 

are consistent with a dual-hub account in which ATL is functionally specialized for 

taxonomic relations and IPL for thematic relations, although the transience of the 

effect suggests close coordination between these two hubs. 
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Chapter 3 

THE WORDS THAT LITTLE BY LITTLE REVEALED EVERYTHING: NEURAL 

RESPONSE TO LEXICAL-SEMANTIC CONTENT DURING NARRATIVE 

COMPREHENSION 

 

Highlights 

• Narrative comprehension requires rapid retrieval and integration of word 

meanings. 

• Large brain networks respond to word-level lexical-semantic content in an 

audiobook. 

• Ventral ATL was engaged by semantic content, other ATL subregions were not. 

• Semantic control network was engaged by infrequent, less semantically diverse 

words. 

• Social content engages semantic network in dorsolateral and ventrolateral ATL. 

 

Abstract 

The ease with which narratives are understood belies the complexity of the 

information being conveyed and the cognitive processes that support 

comprehension. The meanings of the words must be rapidly accessed and 

integrated with the reader's mental representation of the overarching, unfolding 

scenario. A broad, bilateral brain network is engaged by this process, but it is not 

clear how words that vary on specific semantic dimensions, such as ambiguity, 

emotion, or socialness, engage the semantic, semantic control, or social cognition 

systems. In the present study, data from 48 participants who listened to The Little 

Prince audiobook during MRI scanning were selected from the Le Petit Prince 

dataset. The lexical and semantic content within the narrative was quantified from 

the transcript words with factor scores capturing Word Length, Semantic Flexibility, 

Emotional Strength, and Social Impact. These scores, along with word quantity 

variables, were used to investigate where these predictors co-vary with activation 

across the brain. In contrast to studies of isolated word processing, large networks 
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were found to co-vary with the lexical and semantic content within the narrative. An 

increase in semantic content engaged the ventral portion of ventrolateral ATL, 

consistent with its role as a semantic hub. Decreased semantic content engaged 

temporal pole and inferior parietal lobule, which may reflect semantic integration. 

The semantic control network was engaged by words with low Semantic Flexibility, 

perhaps due to the demand required to process infrequent, less semantically diverse 

language. Activation in ATL co-varied with an increase in Social Impact, which is 

consistent with the claim that social knowledge is housed within the neural 

architecture of the semantic system. These results suggest that current models of 

language processing may present an impoverished estimate of the neural systems 

that coordinate to support narrative comprehension, and, by extension, real-world 

language processing. 

 

Keywords 

semantic cognition; narrative comprehension; naturalistic neuroimaging; social 

cognition 
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1 Introduction 

Comprehending narrative language requires rapidly accessing the meanings of 

words and integrating the sequence of words into a holistic situation model – a 

mental representation of the events described (Yarkoni et al., 2008; Zwaan, 2004; 

Zwaan & Radvansky, 1998). The words within the narrative thus serve as the 

conceptual building blocks that collectively construct the complex ideas and events 

from which the gestalt of the narrative emerges. This process relies on semantic 

memory, which stores the meanings of words and provides a knowledge basis for 

interacting with and interpreting the concepts and events in the world around us 

(McRae & Jones, 2013). 

Extensive behavioural, neuroscience, and computational modelling work has 

converged on a hub-and-spoke neurocomputational architecture of the semantic 

system in which the anterior temporal lobe (ATL) serves as a graded hub that 

integrates information from sensorimotor spokes (Lambon Ralph et al., 2010, 2017). 

However, this model was primarily based on data from studies of processing single 

words, sentences, or simple images depicting word-level concepts (Rogers et al., 

2004). It also primarily focuses on concrete object concepts (cf Hoffman, 2016; 

Hoffman et al., 2018). Whether the semantic system displays this cross-modal hub 

architecture when processing more naturalistic language is less clear and has 

motivated recent investigations with natural or narrative language stimuli. 

Prior research has established that narrative speech engages a much broader, 

bilateral network than the largely left-lateralized network observed for processing 

single words or sentences (de Heer et al., 2017; Huth et al., 2016; Saalasti et al., 

2019). Within this broader network are default mode network structures, in particular 

the precuneus, which have longer temporal receptive windows that track information 

as it accumulates over time, within the extended timescale of narratives 

(Jääskeläinen et al., 2021; Lerner et al., 2011). The specific contributions of the 

semantic system in narrative processing are unclear, but the engagement of broad 

networks suggests important deviations from the simple hub-and-spoke model of 

semantic processing. Thus, insights into the semantic system derived from word and 

sentence processing cannot be straightforwardly extrapolated to the level of complex 

narratives. 
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Efforts have been made to characterize the neural processing of semantic 

features in complex narratives. Some of these investigations provide evidence that, 

in a narrative context, individual concepts still engage the semantic system in 

expected ways. For example, activation in left anterior inferior parietal lobule and 

posterior inferior temporal cortex, areas associated with action planning and 

execution, are positively modulated by manipulable nouns presented in written text 

(Desai et al., 2016). However, several attempts to comprehensively characterize the 

neural processing of the semantic features of natural language make claims about 

the organization of the semantic system that ostensibly conflict with the hub-and-

spoke framework. These studies generate a semantic space comprised of the word 

embeddings for the words within the natural speech or narrative stimuli and estimate 

the voxel-wise prediction accuracy for each semantic category. The results suggest 

that partially overlapping, and maybe distinct (Huth et al., 2016), regions within a 

distributed, bilateral semantic network display functional specialization for conceptual 

categories presented in narratives, and this semantic selectivity appears regardless 

of sensory input modality (Deniz et al., 2019; Zhang et al., 2020). These studies 

have led to claims that the cortical response to narratives consists of a mosaic of 

“semantic tiles” that are selective for particular conceptual categories. However, the 

network of regions identified does not map onto the semantic system described by 

the hub-and-spoke framework. The subset of the semantic network that displays 

specialization for concrete categories (i.e., tool, animal), for example, is more left-

lateralized whereas the network specialized for abstract categories (i.e., emotion, 

change) is more right-lateralized (Zhang et al., 2020). Further, within the identified 

distributed semantic networks, there is limited semantic specialization in lateral 

temporal cortex, most notably ATL (Huth et al., 2016). This may be driven, in part, by 

the challenge of detecting reliable signal in this region due to susceptibility artefacts 

in gradient-echo fMRI (Devlin et al., 2000), a limitation which is overcome in the 

current study by using data collected with a multi-echo sequence (Lynch et al., 

2021). 

These descriptions of the semantic system need not be mutually exclusive or 

incompatible (Rogers & Lambon Ralph, 2022): this category specificity may emerge 

as a result of interactions with, and may even require, a deep multimodal hub such 

as the architecture described by the hub-and-spoke framework (Jackson et al., 
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2021). A key challenge in adjudicating between the hub-and-spoke and category-

specific tile frameworks is that they are derived from very different experimental and 

analytical strategies. In particular, they differ on two very different dimensions: (1) 

isolated controlled stimuli vs naturalistic narratives and (2) theoretically derived 

lexical-semantic variables vs word-level representations (i.e., word embeddings). As 

a result, it is unclear how the lexical and semantic variables that directly informed the 

hub-and-spoke model are processed when presented in a naturalistic stimulus. 

Further, there is poor understanding of how more complex dimensions like 

ambiguity, emotion, and socialness are represented. The primary goal of the present 

study is to examine how these complex dimensions – which are typically studied at 

the single-word or sentence-level – are represented within the semantic system 

when embedded in a narrative. By using variables routinely studied in well-controlled 

single-word studies, we can make clear predictions about the behaviour of the 

semantic system, and, by using a naturalistic stimulus, we can compare our results 

with prior investigations of natural speech or narrative processing. 

The second goal of the present study is to better understand the role of the 

semantic system in processing social information in naturalistic contexts. The social 

cognition system broadly supports the decoding and prediction of social behaviours 

such as mental state inference, perspective taking, empathizing, and moral 

reasoning (Adolphs, 2009). Social cognition is often treated as independent from the 

semantic or language processing systems, and there is evidence of dissociation 

between the broader language network and the social cognitive regions that support 

theory of mind reasoning (Paunov et al., 2022). However, there are also key points 

of overlap between the neural systems supporting social and semantic cognition. For 

example, the ATL semantic hub is consistently implicated in mentalising or theory of 

mind tasks in social cognition research, as is the temporo-parietal junction (TPJ) 

region (Frith & Frith, 2006; Monticelli et al., 2021) which overlaps with the inferior 

parietal lobule (IPL) semantic hub that may be specialised for event semantics 

(Mirman et al., 2017; Thye et al., 2021; Xu et al., 2018). 

Recent theoretical and empirical accounts argue that social knowledge is a type 

of conceptual knowledge housed within the broader semantic system (Balgova et al., 

2022; Binney & Ramsey, 2020). In this view, social concepts (as well as more 

abstract social reasoning and prediction) require semantic memory, depend on the 
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same executive control processes to regulate access to their meanings (i.e., 

“semantic control”), and are supported by the same neural architecture. Meta-

analytic and cross-task empirical data suggest that social processing engages the 

ventrolateral ATL hub within the semantic system and anterior IFG within the 

semantic control systems (Balgova et al., 2022; Diveica et al., 2021), but these 

claims have not been tested with naturalistic stimuli. 

A complicating factor is that studies of social cognition and semantic cognition 

typically use very different tasks, such as word (or picture) matching studies for 

semantic cognition and false-belief theory of mind tasks for social cognition. These 

types of paradigms are ideally suited for research questions that assume it is 

possible to isolate a specific cognitive process, and they can provide clear evidence 

that is minimally confounded by other processing. However, these highly simplified 

tasks artificially segment and simplify cognition and thus may inadequately capture 

complex semantic and social processes and underestimate the interdependence 

between social and semantic processing. The present study uses a single 

naturalistic task – narrative comprehension – to examine neural responses when 

input varies simultaneously along social and non-social dimensions. 

Another advantage of using narrative stimuli is that findings are more likely to 

generalise to real-world language processing. When considering generalization of 

inferences, more emphasis has been placed on sampling participants that generalize 

to the population than on sampling tasks and stimuli that generalize to real-world 

cognition (Brunswik, 1949; Yarkoni, 2022). Naturalistic paradigms provide more 

accurate estimates of real-word cognitive processing than carefully controlled 

experimental stimuli (Nastase et al., 2020). Despite the increased complexity, and 

indeed challenge, of extracting signals of interest in naturalistic processing, 

naturalistic paradigms better reflect the multi-dimensional inputs experienced during 

brain development and better preserve the statistical regularities that arise in the 

natural world. They also provide an opportunity to study continuous fluctuations in 

response to varied levels of a stimulus. 

Narrative stimuli also capitalize on the tendency of the human brain and mind to 

process and engage with the world through a “narrative mode” (Bruner, 1986). For 

instance, complex information, such as inferring embedded mental states (i.e., a 

character's beliefs about one or more characters’ thoughts or intentions), is hard to 
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decode when presented in a decontextualized and simplified stimulus, but is readily 

understood in a narrative context (Van Duijn et al., 2015). Narratives provide 

multiple, nested feature layers ranging from the words used to construct the narrative 

to the events that move the story forward (Willems et al., 2020). The neural basis for 

semantic processing of single-word and sentence-level stimuli is fairly well-

established, but it is less clear how the regions that support processing of isolated 

words and phrases are engaged in the context of a larger narrative. Narrative 

comprehension unfolds continuously over minutes, perhaps even hours, which 

impacts the retrieval of relevant representations and may require a fundamentally 

different processing strategy compared to single words or short passages that can 

be processed in seconds and are unrelated to the preceding and subsequent stimuli. 

The primary aims of the present study were to examine how word-level lexical 

and semantic content is processed in the brain when embedded in an auditory story. 

Auditory story comprehension is an ideal naturalistic paradigm to investigate how the 

lexical-level building blocks of conceptual knowledge are integrated to build mental 

models of complex natural situations. New information is constantly provided which 

builds upon the already established context, so, as the narrative unfolds, meaning is 

aggregated over time. Newly presented concepts are retrieved with the bias of 

previously presented information, which is a more ecologically valid test of how the 

semantic, semantic control, and social cognitive systems are (or are not) 

cooperatively engaged during real-world comprehension. 

To test how the lexical-semantic properties of narratives co-vary with activation 

across the brain, we analysed fMRI data collected during story listening. The first, 

exploratory analyses were divided into two complementary aims: (A) to investigate 

the neural processing of general lexical or semantic content during auditory story 

comprehension (Aim 1A) and (B) to investigate the neural processing of specific 

semantic dimensions during auditory story comprehension (Aim 1B). The second, 

hypothesis-driven aim was to examine engagement of the semantic, social, and 

semantic control networks in processing varied semantic concepts (Aim 2). It was 

expected that fluctuations in content words would capture general increases or 

decreases in semantic content, which would co-vary with activation in the semantic 

network; in particular, the semantic hub within the ATL. An increase in narrative 

ambiguity was expected to engage the semantic control network, specifically left 
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inferior frontal gyrus, and portions of the semantic network. Finally, social content 

within the narrative was expected to modulate the social cognition network (right IPL 

and superior frontal gyrus) along with portions of the semantic (ventrolateral ATL and 

left IPL) and semantic control systems (anterior IFG). 

 

2 Methods 

This study uses fMRI data from the Le Petit Prince dataset, in which 48 

participants listened to the same auditory story (Li et al., 2022). Figure 1 shows a 

schematic of the analysis approach. In order to isolate both general lexical-semantic 

content (Aim 1A) and specific semantic dimensions (Aim 1B) within the narrative, 

various lexical-semantic word properties were generated for the critical words and 

entered into a principal component analysis to extract a smaller set of latent 

underlying properties. The factor scores were adjusted for total number of words and 

averaged within 5 s bins, then used in parametric modulation analyses to examine 

how neural activity relates to increases or decreases in each lexical-semantic 

property. To understand network engagement in processing each property (Aim 2), a 

subset of the results were compared with maps of the semantic, social, and semantic 

control networks derived from meta-analyses. The sections below provide additional 

detail regarding how the data were generated and analysed. 
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Figure 1. Schematic of the pipeline used to generate modulator variables. (1) 

Word properties were generated for each open class word (bolded) in the transcript. 

Missing values are indicated with red shading and NA. Closed class words are 

italicized and their word properties are shaded in grey. (2) Missing values were 

imputed for open class words, resulting in 5 complete datasets. PCA was run on 

each dataset separately, and (3) factor scores were averaged together. (4) 

Smoothed factor scores were generated by averaging values within 5 s windows. An 

overview of the sliding window approach is depicted using differently coloured 

windows. The start of each window is indicated with an unfilled circle, and the end of 

a window is indicated with a filled circle. Open class words, which had factor scores, 

are in white boxes and closed class words with no ratings are indicated with grey 

boxes. The number of content words was determined by the number of words with 

ratings (i.e., words in white boxes) within each window. The bottom row shows the 

average scores calculated from the content words in a 5 s window. 

 

2.1 Dataset 

The data were selected from the Le Petit Prince dataset (version 1.0.4, 

https://openneuro.org/datasets/ds003643/versions/1.0.4) (Li et al., 2022). The 

English-speaking participants gave written informed consent prior to participation 

and were paid, in accordance with the IRB guidelines of Cornell University. 

https://openneuro.org/datasets/ds003643/versions/1.0.4
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Participants listened to the 94-minute English version of the audiobook, The Little 

Prince, during MRI scanning. The audiobook was presented to participants across 

nine approximately 10-minute functional runs. After each run, participants answered 

a series of comprehension questions about the excerpt they had just heard. 

The MRI acquisition parameters and pre-processing pipeline are outlined in the 

paper describing the dataset (Li et al., 2022). Briefly, anatomical data were skull-

stripped and spatially normalized to the same stereotaxic space (MNI). Functional 

images were processed through a standard pre-processing pipeline which included 

slice-time correction, despiking, co-registration to the anatomical image, and 

normalization to MNI space. Functional images were acquired using a multi-echo 

EPI sequence and multi-echo independent component analysis was used to remove 

noise and motion artefacts. Although raw data were provided for 49 English-

speaking participants, the pre-processed data were missing for one participant, 

resulting in a final sample of 48 participants (29 female; Mage = 21.33). 

 

2.2 Generation of lexical-semantic properties 

The transcript of the audiobook with the onset time of each word was made 

available with the dataset, and we generated a range of psycholinguistic properties 

for the open class words. Open class words were selected for analysis because they 

carry more semantic information as opposed to closed class words which have a 

fixed meaning and predominately serve grammatical functions. Words that can be 

used as both closed and open class were retained. The following word properties 

were generated using the English Lexicon Project database (Balota et al., 2007): 

number of letters, number of phonemes, number of phonological neighbours, 

number of orthographic neighbours, word frequency, concreteness (Brysbaert & 

New, 2009), semantic neighbourhood density, semantic diversity (Hoffman et al., 

2013), emotional valence (i.e., pleasantness), emotional arousal (i.e., intensity), and 

emotional dominance (i.e., control) (Warriner et al., 2013).  

Socialness values were derived from a prior norming study conducted at the 

University of Alabama at Birmingham. The candidate words came from a study on 

the social-desirability of personality terms and the Glasgow norms (Hampson et al., 

1987; Scott et al., 2018). After filtering to select words with low concreteness and 
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imageability, a random subset of 688 total words were selected and used for 

socialness norming. A total of 68 participants were asked to rate the socialness of 

344 words (half of the total set) on a scale from 1 (not social) to 5 (very social). 

Participants were instructed that a word is social if it describes interpersonal 

behaviours, motivations, intentions, or characteristics. The socialness values of the 

words in The Little Prince were extrapolated by taking a weighted average, using 

cosine similarity, of the 10 closest semantic neighbours within this set of social 

norms. This k-nearest neighbour approach to estimating semantic ratings from word 

associations has been previously used with emotion-based ratings (i.e., valence, 

arousal, dominance), and the mean calculation was similarly restricted to the 10 

nearest neighbours (Meersmans et al., 2020).  

Part of speech tags, generated using the Stanford parser and included with the 

timestamped transcripts, were used to select open class words (i.e., nouns, proper 

nouns, verbs, adjectives, adverbs, numbers) and remove closed class words (i.e., 

pronouns, determiners, auxiliary words, adpositions, particles, conjunctions, 

interjections). The open class word properties were combined with a larger corpus of 

open class words (n=6410) from the movie transcripts of a different publicly available 

neuroimaging dataset (Naturalistic Neuroimaging Database; Aliko et al., 2020). This 

was done to make data imputation and the generation of factor scores more robust 

and less influenced by the relatively small, and possibly idiosyncratic, corpus derived 

from a single audiobook. Missing data were imputed using the multiple imputation by 

chained equations approach (van Buuren & Groothuis-Oudshoorn, 2011).  

The word properties were entered into a principal component analysis (PCA) with 

varimax rotation. The four-factor result accounted for 73% of the variance, with 

factors corresponding to Word Length (e.g., number of letters and phonemes, 

number of phonological and orthographic neighbours), Semantic Flexibility (e.g., 

semantic diversity, semantic neighbourhood density, frequency), Emotional Strength 

(e.g., emotional valence, emotional dominance), and Social Impact (e.g., social 

content, emotional arousal), which accounted for approximately 29%, 17%, 16%, 

and 11% of the variance, respectively (Figure 2). These labels were selected based 

on the word properties that most strongly loaded on each factor. However, it is 

important to note that these labels and properties reflect the single word level, where 

these word properties are defined and often studied, but in the present study these 
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properties may be influenced by the narrative context. The Semantic Flexibility 

factor, for instance, is driven by semantic diversity, frequency, and concreteness, 

which would tend to increase or decrease the ambiguity of isolated words. At the 

narrative level, the ambiguity of semantically diverse words is at least partially 

resolved by the context of the sentence. Similarly, the emotional connotations of a 

word can vary depending on its context. Alternative “narrative level” labels would 

require a priori theorizing about the combinatorial processing required for a given 

word property. Furthermore, although the narrative context can modulate these 

properties, they should remain reliable when considered over the course of an entire 

story. For these reasons, the single word factor labels are retained here to 

investigate how standard lexical and semantic variables are processed when 

embedded in a narrative.  

 

 

Figure 2. Factors derived from PCA on word property values. Positive (blue) and 

negative (red) loadings are shown for each factor. The strength of the loading is 

indicated by the length and colour saturation of each bar. Num., Number. 

 

The Emotional Strength factor scores were such that higher scores indicated 

more positively valenced and dominant words whereas negative scores indicated 

negatively valenced words. To capture valence extremity (i.e., high versus low 

valence rather than positive versus negative valence), the absolute values of the 
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factor scores were used in the analysis. Examples of words with high positive and 

negative scores on each of the factors are provided in Table 1. 

 

Table 1 

Example words and windows with high positive and negative factor scores  

 Word 
Length 

Semantic 
Flexibility 

Emotional 
Strength* 

Social 
Impact 

Words     

Positive 
man 
rat 
say 

other 
many 
again 

die 
dangerous 

tragedy 

excited 
charming 

laugh 

Negative 
misunderstandings 

contradictory 
unfortunately 

lamplighter 
footstool 

geographers 

then 
offer 
seen 

chimney 
sheet 

mushroom 

Windows     

Positive 

…you can see 
yourself this is not 
a sheep it is a ram 

it has… 

…because where 
I am from 

everything is very 
small there will 

certainly be 
enough… 

…it is nice to 
have had a friend 

even if you are 
about to die… 

…very carefully 
then I am happy 
and all the stars 
laugh sweetly… 

Negative 

…on his discovery 
at an international 

astronomy 
conference but… 

…to them of boa 
constrictors nor 

of primeval 
forests nor of the 

stars… 

… I have your 
sheep and I have 

the box for the 
sheep… 

…as a tree falls 
there was not 

even any sound 
because of the 

sand… 

Note. *using absolute value transformed scores. The top part of the table shows 

words with the highest positive (first row) and highest negative (second row) ratings. 

The bottom part of the table provides examples of the words that fell within one of 

the top ten smoothed windows with the highest positive (first row) and highest 

negative (second row) averaged values. 
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2.3 Smoothed language predictors 

Smoothed factor score time courses for the story were generated by averaging 

values within 5 s windows sliding every 1s1. The average was calculated by summing 

the factor scores of the words within the window and dividing by the number of words 

with ratings (as opposed to the total number of words). A 5s window was chosen 

because word boundaries are inconsistent in natural speech, and co-articulation 

combined with the context of the preceding words means that words are often readily 

anticipated. Modelling meaning at the word level would result in an imprecise or 

artificial word boundary. This problem is exacerbated by the variable hemodynamic 

response across brain regions, with estimated time-to peak differences of 1–2.5s 

(Handwerker et al., 2004) which is an average of 2–4 words in this narrative. The 

window approach allows treating words as cues to meaning (Lupyan & Lewis, 2019) 

rather than as mappings to individual concepts. Defining meaning within a larger 

temporal unit allows integrating those cues without creating artificial boundaries 

between the words or committing to isolated word meanings. Similar window 

averaging or down-sampling approaches have been used in prior studies of narrative 

comprehension (Deniz et al., 2019; Wehbe et al., 2014, 2021; Wu et al., 2022; 

Yarkoni et al., 2008). 

Window onset times were referenced to the beginning of each functional run (i.e., 

restarted at 0), and each functional run was processed separately so as not to 

smooth across consecutive runs. This resulted in the final time window within each 

run being slightly less than 5s. Example windows with high positive and negative 

averaged factor scores are provided in Table 1. In addition to smoothing the factor 

scores, the number of words (open and closed class words) and the number of 

content words (open class words) were calculated for each window to provide an 

                                                           
1 At the request of a reviewer, we also ran the factor scores analysis at the subject-
level without the sliding window approach, instead modelling the onset and duration 
of each word. This was done using duration modulated amplitude modulation 
analyses with word duration and the unsmoothed factor scores as inputs into the 
model. The correspondence between the subject-level statistical maps was high (r = 
0.74-0.95) suggesting that the sliding window approach produces approximately 
similar results and circumvents potential concerns with modelling word-level 
variables with sub-second durations (Appendix B: Supplemental Figure 1). 



47 
 

estimate of the amount of general lexical content and semantically-laden content, 

respectively. 

The number of words was variable across the 5s windows, with a range from 4 to 

24 words. The number of words within windows, and in particular the number of 

closed class words without ratings, co-varied with the averaged factor scores in a 

non-uniform manner. This was most pronounced for the Word Length and Semantic 

Flexibility averaged factor scores and was driven by the fact that (1) windows with 

high positive scores on both of these factors tended to include shorter, more frequent 

words, (2) audiobooks present the narrative at a fairly consistent rate so windows 

with several short words tend to have more words overall, and (3) closed class 

words tend to be short and frequent but were not accounted for in the mean 

calculation because they do not have ratings. Windows in which there were more 

words overall were thus likely to both receive higher positive Word Length scores 

(correlation with number of words: r = 0.25) and Semantic Flexibility scores 

(correlation with number of words: r = 0.20) as well as to have more closed class 

words (with no ratings) (correlation with number of words: r = 0.79). This created a 

potential confound where high positive scores for these factors were coming from 

windows that simply had more words rather than isolating the properties of interest 

(i.e., length or flexibility). To account for this, residuals were extracted from 

independent linear models predicting each averaged factor score from number of 

words. These residual scores after controlling for number of words were then used 

for analysis. 

 

2.4 Parametric modulation analyses 

To examine how these smoothed language predictors co-vary with activation 

across the brain, two regression models predicting the hemodynamic time course 

were run in AFNI (Cox, 1996). The first model, capturing the amount of content, 

included the word quantity variables (number of words and content words) as 

parametric modulators. The second model, capturing the type of content, included 

the smoothed residual factor scores as parametric modulators. All variables were 

mean centred prior to analysis. The 9 functional runs were first scaled such that each 

voxel had a mean of 100 and then concatenated to generate a single time course for 
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each participant. The durations of the modulators were modelled as 1-second 

blocks. 

The group-level statistical maps were corrected using equitable thresholding and 

clustering (ETAC; Cox, 2019) implemented for each modulator separately with the 

following parameters: 1-sided t-tests with spatial clustering based on voxel faces 

touching (i.e., NN=1) and 1% false positive rate. The more traditional threshold-

based cluster correction approach is presented in the supplemental materials 

(Appendix B: Supplemental Figure 2). Participant functional data were used as 

inputs to generate a mean, binarized mask within which the permutations were 

conducted. For each modulator, the resulting binary masks indicating which voxels 

survived the multi-thresholding process were applied to the Z-score group-level stats 

map for positive and negative associations separately. 

 

2.5 Network engagement 

Brain network definitions were derived from coordinate-based activation 

likelihood estimation (ALE) analyses of social cognition (Diveica et al., 2021) and 

semantic cognition and semantic control (Jackson, 2021) (see Figure 5). The 

semantic and semantic control network maps were derived from a meta-analysis of 

semantic control that included over 120 contrasts capturing semantic control and 

over 400 contrasts capturing the broader semantic cognition network (Jackson, 

2021). This more inclusive network was intended to capture any semantic 

processing, including effortful or controlled processing, and, as a result, had 

considerable overlap with the semantic control network. The control network was 

subtracted from this broader semantic network to isolate an automatic semantic 

network. These network maps had significant convergence with the maps generated 

in a separate ALE analysis (Diveica et al., 2021). The social cognition network was 

defined by examining the convergence of ALE generated network maps across 

theory of mind, trait inference, empathy for pain or affective states, and moral 

reasoning. To identify a cross-task social cognition network, areas of overlap within 

at least two of these domains were retained in the final network definition.  

To examine how our results mapped onto the social, semantic, and semantic 

control networks, likelihood ratio metrics were calculated that quantified the overlap 
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between each significant cluster in our results and each brain network. The 

numerator of the ratio was the number of voxels in the cluster that fell within a given 

network divided by the total number of voxels in the cluster (i.e., percent of the 

cluster contained within the network). A value of 1 indicates that the entire cluster fell 

within the network, whereas as value of 0 indicates that none of the cluster fell within 

the network. Importantly, this value does not account for the size of the network (or 

brain). To do this, the denominator took the number of network voxels outside the 

cluster divided by the total number of voxels outside the cluster (i.e., percent of 

network non-overlap relative to the rest of the brain). 

 

𝑅𝑎𝑡𝑖𝑜 =  
(𝑅𝑒𝑠𝑢𝑙𝑡 ∩ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘) (𝑅𝑒𝑠𝑢𝑙𝑡)⁄

(𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ∉ 𝑅𝑒𝑠𝑢𝑙𝑡) (𝑉𝑜𝑥𝑒𝑙𝑠⁄ ∉ 𝑅𝑒𝑠𝑢𝑙𝑡)
 

 

This quantified the likelihood of result voxels falling within the network compared 

to voxels outside the result. Values greater than 1 indicate that voxels within the 

result are more likely to belong to the network (compared to voxels outside the 

result), whereas values less than 1 indicate that voxels within the result are less 

likely to belong to the network (and voxels outside the result are more likely to fall 

within the network). The strength of the evidence of network engagement is thus 

captured by the magnitude of this likelihood ratio value. This likelihood ratio has the 

benefit of being more readily interpretable and accounting for both the size of the 

result cluster and the size of the network. This measure was developed to overcome 

limitations of other measures such as percent overlap, which ignores the amount of 

non-overlap, or Dice similarity coefficient, which accounts for the amount of non-

overlap but generates a less transparent metric for cross-network comparisons. In 

the latter case, a coefficient of 0.10 for the social or semantic control networks could 

occur with fewer overlapping voxels than the same coefficient for the semantic 

network (which is over 1.6 times larger than the other networks). The likelihood ratio 

metric calculated here has the advantage of having the same interpretation across 

networks, which facilitates communicating and interpreting the results. All analysis 

code, study materials, and supplementary information are available on Open 

Science Framework (https://osf.io/u54dr/). 

 

https://osf.io/u54dr/
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3 Results 

3.1 General lexical and semantic content 

To investigate the differences between the neural processing of general lexical 

content compared to semantically-laden content, the scores for the Word Length 

factor are presented alongside the effect of the number of words and number of 

content words regressors in Figure 3. The detailed cluster information is presented 

in Table 2. 

 

3.1.1 Word Length 

An increase in words that were shorter, more frequent, and more concrete 

(indicated by positive Word Length scores) was associated with activation in bilateral 

inferior frontal gyri, superior medial gyri, precentral gyrus and supplementary motor 

area, left middle frontal gyrus, a portion of the right anterior superior temporal gyrus 

(including temporal pole), right middle temporal gyrus extending posteriorly into 

supramarginal gyrus, and a small posterior portion of the left inferior temporal gyrus. 

The likelihood ratios were the largest for the semantic control network: the voxels in 

four of the five clusters were over twice as likely to fall within the control network 

compared to voxels outside each cluster (likelihood ratios: 2.54 – 24.31). 

Engagement of the control network was most prominent for the largest cluster with 

the peak voxel in the left inferior frontal gyrus and for the smallest cluster with a peak 

voxel in left inferior temporal gyrus. These clusters also engaged the semantic 

network (likelihood ratios: 3.26 and 8.20, respectively), and, given the lack of overlap 

between these networks, it was the voxels that fell outside the control network that 

engaged the semantic network. The voxels in the right medial temporal pole cluster 

(which included temporal pole and inferior frontal regions) and the right 

supplementary motor area cluster (which included superior medial gyrus) were both 

more than six times as likely to fall within the social network than the voxels outside 

the clusters (likelihood ratios: 6.42 and 6.64, respectively). 

An increase in longer, infrequent, and less concrete words (indicated by negative 

Word Length scores) was associated with increased activation in bilateral auditory 

cortices and surrounding regions including portions of the insular cortex and superior 

temporal gyri, postcentral gyrus, portions of right inferior and superior parietal lobule, 
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posterior cingulate cortex, and precuneus. There was minimal engagement of the 

semantic, social, or semantic control networks (max likelihood ratio: 1.31). 

 

3.1.2 Number of words 

An increase in total number of words was associated with increased activation in 

left anterior inferior and superior temporal lobe extending posteriorly into middle and 

superior temporal gyri and auditory cortex and left angular gyrus, right anterior 

inferior temporal gyrus, right auditory cortex including a portion of superior temporal 

gyrus, a portion of right angular gyrus, middle and superior frontal gyrus, posterior 

cingulate cortex, precuneus, and cerebellum. These results engaged shared and 

distinct regions within the semantic and social networks. The largest cluster included 

left inferior, middle, and superior temporal gyri and angular gyrus, and most 

prominently overlapped with the semantic network (likelihood ratio: 11.85). Additional 

semantic network engagement was seen for the clusters with peak voxels in the left 

superior frontal gyrus and right Heschl's gyrus – voxels in these clusters were 

approximately three times more likely to fall within the semantic network compared to 

voxels outside the clusters. There was considerable engagement of the social 

network for these clusters as well, partly because the semantic and social networks 

overlap in middle temporal and frontal areas. Evidence of additional social network 

involvement outside of overlapping areas was seen in the precuneus/cingulate and 

right angular gyrus clusters (likelihood ratios: 6.10 – 12.75). There was minimal 

activation in the semantic control network (max likelihood ratio: 0.87). 

A decrease in total number of words was associated with widespread activation 

in bilateral inferior frontal regions, insula, anterior to posterior cingulate cortex, a 

bilateral posterior portion of the inferior and middle temporal gyri, portions of bilateral 

inferior parietal lobule, and precuneus. The full result had moderate overlap with the 

semantic control network (likelihood ratio: 2.66), but minimally engaged the semantic 

or social network (likelihood ratios: 0.62 and 0.50, respectively). 

 

3.1.3 Number of content words 

Increased number of content words, capturing general semantic processing 

demand, was associated with increased activation in bilateral auditory cortex, 
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inferior, middle, and superior frontal gyri, inferior, middle, and superior temporal gyri, 

fusiform gyri, portions of inferior parietal lobules, and middle cingulate cortex. The 

clusters with peak voxels in left inferior temporal gyrus and left Heschl's gyrus were 

over 2 to 3 times more likely to fall within the semantic network compared to voxels 

outside the cluster (likelihood ratios: 3.74 and 2.67, respectively). The largest cluster, 

with a peak voxel in right inferior frontal gyrus, overlapped considerably with the 

semantic control network (likelihood ratio: 8.76). There was minimal overlap between 

the remaining clusters and the semantic, social, and semantic control networks. 

Conversely, as the number of content words decreased there was increased 

activation in superior frontal gyrus, the orbitalis portion of the inferior frontal gyri, 

bilateral anterior temporal poles, inferior and middle temporal gyri and fusiform gyri, 

left inferior parietal lobule, precuneus, occipital gyri, and cerebellum. The clusters 

containing bilateral inferior, middle, and superior temporal gyri, bilateral temporal 

poles, supramarginal gyrus, and angular gyrus had considerable overlap with the 

semantic network (likelihood ratios: 4.04 – 9.39) and the social network (likelihood 

ratios: 5.53 – 13.03). The clusters with peak voxels in precuneus and left 

supplementary motor area also engaged the social network (likelihood ratios: 2.39 

and 12.13, respectively). Across the full result, the control network was minimally 

engaged with the only overlap occurring in the cluster with the peak voxel in left 

inferior temporal gyrus (likelihood ratio: 5.63). 
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Figure 3. Word Length, Number of Words, and Number of Content Words 

Results. The Z-score statistical maps are shown for each result with the range of 

values indicated by the associated colour bars. Warm colours (yellow to red) indicate 

regions with a positive correlation with the score, and cold colours (cyan to dark 

blue) indicate regions with a negative correlation with the score.  
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3.2 Varied semantic concepts 

The next exploratory aim was to assess the neural response to diverse kinds of 

semantic information; namely, ambiguous, emotional, and social content. The whole-

brain results for each of the variables are presented in Figure 4 and detailed cluster 

information is presented in Table 2. 

 

3.2.1 Semantic Flexibility 

More frequent, less concrete, and more semantically diverse words (indicated by 

positive Semantic Flexibility scores) were associated with activation in multiple 

demand network regions in the left anterior inferior temporal gyrus, middle cingulate 

cortex, occipital cortex, and left superior frontal gyrus. The cluster with a peak voxel 

in left inferior temporal gyrus overlapped with the semantic and social networks 

(likelihood ratios: 4.40 and 3.36, respectively), but the remaining regions had minimal 

overlap with the networks (max likelihood ratio: 0.38). 

Conversely, increased infrequent, concrete, less semantically diverse language 

(indicated by negative Semantic Flexibility scores) was associated with activation in 

bilateral inferior, middle, and superior frontal gyri, precentral gyrus, inferior, middle, 

and superior temporal gyri, fusiform gyrus, left inferior parietal lobule, and 

cerebellum. Several of the results clusters (4 out of 7) were over twice as likely to fall 

within the control network compared to voxels outside each cluster (likelihood ratios: 

2.01 – 24.16). This overlap occurred in bilateral inferior frontal and posterior inferior 

temporal areas. The largest cluster, which contained left temporal areas, fusiform 

gyrus, and inferior parietal lobule, had considerable overlap with the semantic 

network (likelihood ratio: 9.28). The right inferior frontal gyrus cluster, which included 

middle frontal and precentral gyri, also overlapped with the social network (likelihood 

ratio: 3.64), and this was the only evidence of engagement of the social network by 

Semantic Flexibility. 

 

3.2.2 Emotional Strength 

Increases in Emotional Strength were associated with activation in left superior 

medial and frontal gyri, right inferior temporal and fusiform gyri, and occipital gyri. 
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The superior medial gyrus cluster was over 5 times more likely to fall within the 

semantic network and 12 times more likely to fall within the social network. 

Decreases in Emotional Strength were associated with largely right lateralized 

activation in inferior, middle, and superior frontal gyri, inferior and middle temporal 

gyrus extending into inferior parietal lobule, and precuneus. One cluster (left inferior 

and superior parietal lobule and angular gyrus) overlapped with the semantic 

network (likelihood ratio: 9.66), but none of the remaining regions had substantial 

overlap with the semantic, social, or semantic control networks. 

 

3.2.3 Social Impact 

An increase in social, emotionally arousing words (indicated with positive Social 

Impact scores) was associated with activation in superior medial and frontal gyri, 

bilateral anterior temporal lobes extending posteriorly into middle and superior 

temporal gyri, bilateral inferior parietal lobule, anterior cingulate cortex, precuneus, 

and cerebellum. The largest cluster (peak voxel in right precuneus) captured portions 

of the semantic and social networks (likelihood ratios: 2.28 and 2.21, respectively). 

This extensive cluster included large portions of both left and right hemisphere 

temporal regions, and had high overlap with the semantic and social networks, but 

the ratios were moderate because this cluster also included many non-network 

voxels. The remaining cluster (superior medial gyrus and anterior cingulate cortex) 

had significant overlap with the social network (likelihood ratio: 9.04). 

An increase in less social or emotionally arousing language (indicated with 

negative Social Impact scores) was associated with activation in inferior, middle, and 

superior frontal gyri, anterior and middle cingulate cortex, bilateral portions of 

superior parietal lobule, bilateral portions of inferior and superior temporal and 

fusiform gyri, and middle occipital gyri. There was minimal evidence of social 

network engagement to process this content (max likelihood ratio: 1.34). Clusters 

with peak voxels in left middle occipital gyrus (containing left inferior and superior 

parietal lobule and angular gyrus) and left inferior temporal gyrus (containing right 

superior parietal lobule and angular gyrus) overlapped with the semantic network 

(likelihood ratios: 3.56 and 8.29, respectively). The latter cluster also indicated 
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engagement of the control network (likelihood ratio: 6.13), which was also seen in 

the largest cluster containing left inferior frontal gyrus (likelihood ratio: 16.90). 
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Figure 4. Semantic Flexibility, Emotional Strength, and Social Impact Results. 

The Z-score statistical maps are shown for each result with the range of values 

indicated by the associated colour bars. Warm colours (yellow to red) indicate 

regions with a positive correlation with the score, and cold colours (cyan to dark 

blue) indicate regions with a negative correlation with the score. 
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Table 2  

Cluster information 

 

Variable 
Cluster 

Size 
Hem Brain Regions % Overlap 

MNI Coordinates Semantic 
Network 

Social 
Network 

Control 
 Network X Y Z 

Word Length 4792 L Inferior Frontal Gyrus 
(Triangularis) 

32.2 -38 30 21 3.26 2.68 24.31 

Positive  L Inferior Frontal Gyrus (Orbitalis) 16.4       
  L Precentral Gyrus 10.8       
  L Inferior Frontal Gyrus 

(Opercularis) 
8.6       

  L Middle Frontal Gyrus 8.2       
  L Temporal Pole 6.2       
 4456 R Medial Temporal Pole 6.1 53 7 -23 1.94 6.42 2.54 
  R Inferior Frontal Gyrus 

(Triangularis) 
26.1       

  R Inferior Frontal Gyrus (Orbitalis) 16.0       
  R Inferior Frontal Gyrus 

(Opercularis) 
13.9       

  R Precentral Gyrus 9.7       
  R Temporal Pole 8.9       
 2821 R Middle Temporal Gyrus 44.3 53 -16 -10 2.40 3.71 - 
  R Superior Temporal Gyrus 35.8       
  R Supramarginal Gyrus 5.7       
 2405 R Supplementary Motor Area 26.5 8 13 68 1.55 6.64 6.28 
  R Superior Medial Gyrus 25.6       
  L Supplementary Motor Area 24.0       
  L Superior Medial Gyrus 14.8       
 560 L Inferior Temporal Gyrus 63.3 -53 -53 -20 8.20 - 14.19 
  L Middle Temporal Gyrus 25.2       

Word Length 10596 R Posterior Cingulate Cortex 2.2 2 -49 28 - 1.09 - 
Negative  R Precuneus 15.2       

  R Superior Parietal Lobule 9.4       
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  R Middle Cingulate Cortex 6.4       
  R Inferior Parietal Lobule 6.2       
  R Angular Gyrus 5.4       
 6773 L Heschls Gyrus 3.0 -40 -23 12 1.31 0.02 - 
  L Superior Temporal Gyrus 17.0       
  L Postcentral Gyrus 16.8       
  L Rolandic Operculum 9.6       
  L Insula Lobe 5.9       
 5265 R Superior Temporal Gyrus 15.3 53 -12 2 0.65 - 0.01 
  R Supramarginal Gyrus 9.5       
  R Rolandic Operculum 9.5       
  R Fusiform Gyrus 9.2       
  R Insula Lobe 8.7       
  R Postcentral Gyrus 5.3       

Number of Words 9483 L Rolandic Operculum 3.1 -40 -27 12 11.85 3.86 0.87 
Positive  L Middle Temporal Gyrus 30.2       

  L Superior Temporal Gyrus 11.7       
  L Angular Gyrus 10.2       
  L Inferior Temporal Gyrus 8.0       
 4870 L Superior Frontal Gyrus 24.4 -10 26 64 2.98 7.42 0.37 
  L Middle Frontal Gyrus 24.6       
  L Superior Medial Gyrus 23.8       
  R Superior Frontal Gyrus 8.4       
  R Superior Medial Gyrus 5.5       
  L Supplementary Motor Area 5.0       
 3551 R Heschls Gyrus 6.1 51 -15 6 3.00 3.55 - 
  R Superior Temporal Gyrus 30.2       
  R Middle Temporal Gyrus 18.5       
  R Inferior Temporal Gyrus 16.1       
  R Medial Temporal Gyrus 11.4       
  R Rolandic Operculum 5.2       
  R Insula Lobe 5.1       
 1775 L Precuneus 45.3 0 -60 36 - 12.75 - 
  R Precuneus 15.9       
  L Posterior Cingulate Cortex 12.0       
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  L Middle Cingulate Cortex 7.5       
  R Posterior Cingulate Cortex 5.9       
 641 R Cerebellum (Crus II) 46.0 20 -79 -40 - 3.53 - 
  R Cerebellum (Crus I) 37.0       
  R Cerebellum (VI) 13.8       
 587 R Angular Gyrus 86.1 51 -61 27 - 6.10 - 
 138 R Cerebellum (IX) 45.3 4 -55 -53 - - - 
  L Cerebellum (IX) 21.3       
   Cerebellar Vermis (IX) 16.6       
  L Cerebellum (VIII) 6.5       
  R Cerebellum (VIII) 6.5       

Number of Words 63769 L Insula Lobe 2.1 -32 25 3 0.62 0.50 2.66 
Negative           

Content Words 14739 R Inferior Frontal Gyrus 
(Triangularis) 

6.4 48 38 26 0.86 0.70 8.76 

Positive  R Middle Frontal Gyrus 18.4       
  L Middle Frontal Gyrus 14.2       
  L Inferior Frontal Gyrus 

(Triangularis) 
9.7       

  R Superior Frontal Gyrus 5.1       
 10422 L Inferior Temporal Gyrus 14.8 -55 -49 -20 3.74 0.21 1.80 
  R Inferior Temporal Gyrus 13.1       
  L Fusiform Gyrus 8.3       
  R Fusiform Gyrus 7.8       
  L Middle Temporal Gyrus 7.7       
  R Middle Temporal Gyrus 6.0       
  R Parahippocampal Gyrus 5.9       
 6243 L Heschls Gyrus 3.3 -40 -23 12 2.67 0.17 - 
  L Inferior Parietal Lobule 24.1       
  L Superior Temporal Gyrus 20.5       
  L Middle Occipital Gyrus 8.8       
  L Rolandic Operculum 6.0       
  L Angular Gyrus 5.7       
 5637 R Heschls Gyrus 3.8 42 -21 8 0.60 0.19 - 
  R Superior Temporal Gyrus 16.8       
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  R Inferior Parietal Lobule 16.0       
  R Angular Gyrus 13.7       
  R Supramarginal Gyrus 10.1       
  R Middle Occipital Gyrus 6.4       
  R Insula Lobe 5.8       
  R Superior Parietal Lobule 5.6       
 1233 L Middle Cingulate Cortex 36.6 -2 -37 42 -  0.03 - 
  R Middle Cingulate Cortex 40.5       
  L Paracentral Lobule 5.9       
 269 L Middle Cingulate Cortex 9.0 -6 -1 30 - - - 
  R Middle Cingulate Cortex 18.1       
  L Anterior Cingulate Cortex 18.0       
  R Anterior Cingulate Cortex 5.6       

Content Words 10101 R Precuneus 6.7 6 -55 32 - 2.39 - 
Negative  R Middle Occipital Gyrus 8.1       

  L Precuneus 7.8       
  R Lingual Gyrus 7.2       
  R Fusiform Gyrus 6.8       
  R Inferior Occipital Gyrus 5.8       
  R Superior Occipital Gyrus 5.8       
 5616 L Cerebellum (Crus II) 5.4 -24 -78 -47 0.24 0.35 0.09 
  L Middle Occipital Gyrus 27.4       
  L Lingual Gyrus 12.5       
  L Inferior Occipital Gyrus 11.9       
  L Fusiform Gyrus 11.0       
  L Cerebellum (Crus I) 6.0       
  L Superior Occipital Gyrus 5.8       
 5208 L Supplementary Motor Area 6.3 -8 19 68 1.97 12.13 0.34 
  L Superior Medial Gyrus 27.1       
  R Superior Medial Gyrus 18.1       
  L Superior Frontal Gyrus 16.8       
  R Superior Frontal Gyrus 7.3       
  R Supplementary Motor Area 6.5       
 4235 L Inferior Temporal Gyrus 13.1 -48 4 -45 8.60 6.93 5.63 
  L Middle Temporal Gyrus 23.1       
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  L Temporal Pole 14.3       
  L Medial Temporal Pole 11.1       
  L Inferior Frontal Gyrus (Orbitalis) 10.8       
 2688 R Medial Temporal Pole 24.9 53 9 -28 4.04 5.53 0.65 
  R Inferior Temporal Gyrus 21.5       
  R Temporal Pole 18.8       
  R Middle Temporal Gyrus 9.5       
  R Inferior Frontal Gyrus (Orbitalis) 10.8       
  R Insula Lobe 5.1       
 1063 R Middle Temporal Gyrus 43.6 48 -26 -11 5.53 7.95 - 
  R Superior Temporal Gyrus 30.6       
 613 L Middle Temporal Gyrus 18.4 -57 -55 23 9.39 13.03 - 
  L Angular Gyrus 38.3       
  L Supramarginal Gyrus 23.3       
  L Superior Temporal Gyrus 9.6       
 253 R Cerebellum (Crus II) 47.1 24 -81 -48 - 7.18 - 
  R Cerebellum (Crus I) 52.0       

Semantic Flexibility 37342 L Middle Occipital Gyrus 3.9 -30 -79 15  0.06 0.38 0.25 
Positive 785 L Inferior Temporal Gyrus 47.3 -55 -2 -43 4.40 3.36 - 

  L Middle Temporal Gyrus 26.3       

Semantic Flexibility 13528 L Fusiform Gyrus 7.6 -46 -53 -22 9.28 0.85 2.01 
Negative  L Middle Temporal Gyrus 15.8       

  L Superior Temporal Gyrus 14.6       
  L Inferior Temporal Gyrus 11.7       
  L Inferior Parietal Lobule 7.5       
 9160 R Heschls Gyrus 2.0 40 -23 7 1.92 0.98 - 
  R Superior Temporal Gyrus 26.1       
  R Middle Temporal Gyrus 20.9       
  R Fusiform Gyrus 10.6       
  R Inferior Temporal Gyrus 10.4       
 4192 L Precentral Gyrus 16.5 -42 7 31 2.48 1.33 24.16 
  L Inferior Frontal Gyrus 

(Triangularis) 
39.5       

  L Inferior Frontal Gyrus 
(Opercularis) 

11.5       
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  L Middle Frontal Gyrus 11.0       
  L Inferior Frontal Gyrus (Orbitalis) 8.8       
 2726 R Inferior Frontal Gyrus 

(Triangularis) 
47.1 51 30 15 - 3.64 3.97 

  R Inferior Frontal Gyrus 
(Opercularis) 

17.6       

  R Middle Frontal Gyrus 12.6       
  R Precentral Gyrus 7.6       
 764 L Middle Frontal Gyrus 64.9 -24 6 57 - - - 
  L Superior Frontal Gyrus 30.8       
 175 L Cerebellum (Crus II) 64.9 -12 -81 -43 - - - 
  L Cerebellum (Crus I) 23.7       
 153 R Inferior Frontal Gyrus 

(Orbitalis) 
77.7 32 34 -15 - - 3.46 

  R Middle Orbital Gyrus 12.8       
  R Superior Orbital Gyrus 6.0       

Emotional Strength 2377 R Inferior Occipital Gyrus 14.9 42 -78 -14 - 0.11 - 
Positive  R Middle Occipital Gyrus 21.9       

  R Superior Occipital Gyrus 11.3       
  R Fusiform Gyrus 10.0       
  R Lingual Gyrus 6.0       
  R Inferior Temporal Gyrus 6.0       
 1626 L Superior Medial Gyrus 27.9 -6 58 34 5.51 12.01 1.72 
  L Supplementary Motor Area 29.8       
  L Superior Frontal Gyrus 24.6       
  L Middle Cingulate Cortex 5.2       

Emotional Strength 7414 R Middle Frontal Gyrus 29.9 36 6 55 0.15 1.35 1.91 
Negative  R Inferior Frontal Gyrus 

(Triangularis) 
15.7       

  R Superior Frontal Gyrus 15.3       
  R Inferior Frontal Gyrus 

(Opercularis) 
10.8       

  R Inferior Frontal Gyrus (Orbitalis) 6.9       
 6895 R Middle Temporal Gyrus 28.4 53 -55 21 0.35 1.39 - 
  R Angular Gyrus 20.0       
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  R Inferior Parietal Lobule 13.2       
  R Inferior Temporal Gyrus 9.8       
  R Supramarginal Gyrus 6.9       
  R Superior Temporal Gyrus 5.2       
 659 R Precuneus 46.3 6 -56 45 - 0.67 - 
  R Middle Cingulate Cortex 25.9       
  L Precuneus 21.2       
  L Middle Cingulate Cortex 5.4       
 402 L Middle Occipital Gyrus 20.1 -40 -76 33 9.66 - - 
  L Inferior Parietal Lobule 36.0       
  L Angular Gyrus 33.8       
  L Superior Parietal Lobule 7.0       
 370 L Middle Frontal Gyrus 82.2 -26 7 61 - - - 
  L Superior Frontal Gyrus 14.8       

Social Impact 48193 R Precuneus 2.0 2 -55 28 2.28 2.21 0.20 
 6986 L Superior Medial Gyrus 20.8 2 57 18 0.75 9.04 - 
  R Superior Medial Gyrus 19.0       
  R Superior Frontal Gyrus 11.6       
  L Anterior Cingulate Cortex 9.4       
  R Anterior Cingulate Cortex 7.2       

Social Impact 8909 L Inferior Frontal Gyrus 
(Triangularis) 

16.4 -38 30 21 1.55 1.34 16.90 

Negative  L Middle Frontal Gyrus 24.9       
  L Precentral Gyrus 8.6       
  L Superior Frontal Gyrus 8.3       
  L Inferior Frontal Gyrus 

(Opercularis) 
6.6       

  L Inferior Frontal Gyrus (Orbitalis) 6.2       
  L Middle Orbital Gyrus 5.1       
 4935 R Inferior Frontal Gyrus 

(Triangularis) 
16.5 46 36 17 - 0.26 1.96 

  R Middle Frontal Gyrus 41.9       
  R Middle Orbital Gyrus 10.4       
  R Inferior Frontal Gyrus (Orbitalis) 10.2       
  R Superior Frontal Gyrus 9.5       
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 3618 L Middle Occipital Gyrus 15.5 -40 -78 33 3.56 0.20 - 
  L Inferior Parietal Lobule 45.9       
  L Angular Gyrus 10.9       
  L Superior Parietal Lobule 6.5       
 3398 L Inferior Temporal Gyrus 39.1 -59 -49 -15 8.29 0.17 6.13 
  L Middle Temporal Gyrus 31.0       
  L Fusiform Gyrus 14.1       
 2500 R Inferior Parietal Lobule 30.9 48 -46 52 - 0.01 - 
  R Angular Gyrus 24.3       
  R Supramarginal Gyrus 14.5       
  R Middle Occipital Gyrus 12.3       
  R Superior Parietal Lobule 6.1       
 1481 R Middle Temporal Gyrus 30.2 63 -49 -8 - - - 
  R Inferior Temporal Gyrus 66.8       
 915 R Middle Cingulate Cortex 32.0 2 -39 41 - - - 
  L Middle Cingulate Cortex 47.1       
  L Paracentral Lobule 7.7       
 390 L Anterior Cingulate Cortex 18.4 -2 -1 30 - - - 
  L Middle Cingulate Cortex 13.8       
  R Middle Cingulate Cortex 12.7       
  R Anterior Cingulate Cortex 5.7       
 291 R Calcarine Gyrus 10.1 14 -54 12 - - - 
  R Precuneus 50.5       
  R Lingual Gyrus 25.2       
   Cerebeller Vermis (IV/V) 5.8       
 271 L Calcarine Gyrus 28.7 -8 -52 4 - - - 
  L Precuneus 46.2       
  L Lingual Gyrus 8.3       
  L Cuneus 6.7       

Note. Hem, Hemisphere; L, Left; R, Right. Cluster size is determined by the number of 2mm3 voxels. % Overlap is the percent 

overlap between each cluster and the atlas defined regions (based on the Eickhoff-Zilles macro labels from the N27 (MNI space) 

atlas). The regions which contained the peak voxels are bolded. MNI coordinates correspond to the voxel with peak activation 

within each cluster. Voxels were defined as neighbours based on faces touching (NN=1). The last three columns report the 
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likelihood ratios for the semantic, social, or semantic control network. Ratios indicating that the voxels within the cluster are 2 or 

more times more likely to belong to the network than voxels outside the cluster are bolded. Percent overlap values are presented in 

a supplementary table on OSF (https://osf.io/u54dr/). 

https://osf.io/u54dr/
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3.3 The roles of the semantic, social, and semantic control networks 

The likelihood ratio was calculated separately for each brain network overlapped 

with the full results of the content words, Semantic Flexibility, and Social Impact 

analyses using the formula described previously. The resulting ratio provides an 

estimate of overlap relative to non-overlap between the full result and each network. 

Those values are presented in Figure 5. 

 

3.3.1 Semantic cognition network 

As expected, the positive content words result indicated engagement of parts of 

the semantic network (likelihood ratio: 2.04). The overlap was predominately in 

portions of left inferior parietal, left inferior frontal, left inferior temporal, and bilateral 

superior temporal regions. The negative content words result, however, also 

indicated engagement of a substantial portion of the semantic network (likelihood 

ratio: 2.67)2. The negative content words result overlapped with the semantic 

network in bilateral anterior temporal, middle and superior temporal, and left 

supramarginal gyri, which was unanticipated given the role of these regions – 

particularly the anterior temporal lobes (Lambon Ralph et al., 2017) – in processing 

semantic content. 

The negative Semantic Flexibility result, capturing increased infrequent, less 

semantically diverse language, substantially overlapped with the semantic network 

(likelihood ratio: 6.16); indeed, this result aligned with the semantic network more 

than any of the other results. The overlap predominately occurred in the left fusiform 

gyrus, bilateral superior temporal and left frontal regions (orbital portion of the inferior 

frontal gyrus and precentral gyrus). The positive Semantic Flexibility result, which 

reflected more frequent, semantically diverse language, tended to fall outside of the 

semantic network (likelihood ratio: 0.14), except for a small portion of left anterior 

inferior temporal lobe. 

                                                           
2 The likelihood ratio was also slightly higher, suggesting that there was more overlap 
between the network and this result than the positive content words result. It is 
important to note that the positive content words result included a larger network of 
regions than the negative content words result, so the reduced ratio indicates that 
the result included more regions outside of the semantic network. 
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Both the positive and negative Social Impact results included large portions of the 

semantic network (likelihood ratios: 2.11 and 2.19, respectively). These results 

suggest that regions within the semantic network - as well as regions outside of the 

network - were modulated by socially and emotionally arousing language. The 

overlap between the semantic network and the positive Social Impact result occurred 

within the bilateral anterior temporal lobe, left inferior parietal lobule, left superior 

medial frontal gyrus, left inferior frontal gyrus, and left hippocampus. The overlap 

between the semantic network and the negative Social Impact result occurred in left 

frontal regions (precentral gyrus, inferior frontal gyrus, superior medial gyrus), 

temporal regions (bilateral superior temporal gyrus, left inferior temporal, left 

fusiform), and in a posterior portion of the left angular gyrus. 

In summary, different regions within the semantic cognition network were 

engaged by increased and decreased semantic or social content. Perhaps most 

notably, ATL subregions showed differential sensitivity to fluctuations in content 

words. As the number of content words increased, so did activation in the ventral 

portion of ventrolateral ATL in anterior inferior temporal gyrus and fusiform gyrus, 

consistent with the role of this region as a transmodal hub of semantic processing 

(Lambon Ralph et al., 2017). As the number of content words decreased, the 

temporal pole and anterior middle and superior temporal portions of ATL were 

engaged, alongside regions within the default mode network. A similar network of 

regions, including these latter ATL subregions, was engaged when there was more 

social content. Presentation of highly frequent, semantically diverse language 

appeared to disengage the semantic network outside of a portion of left ATL. 

 

3.3.2 Social cognition network 

The positive Social Impact result, which identified regions that were modulated by 

more social and emotionally arousing language, captured a large portion of the 

social cognition network. The voxels that were modulated by more social and 

emotionally arousing language were over 4 times more likely to fall within the social 

cognition network than voxels that were not modulated by positive Social Impact. 

The overlap occurred in bilateral anterior temporal and middle temporal 

(predominately right hemisphere) regions, the orbital part of inferior frontal gyrus, 
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and supramarginal gyrus. The social network was not meaningfully engaged when 

there was reduced social and emotionally arousing language (likelihood ratio: 0.51). 

Neither increased Semantic Flexibility nor an increase in content words 

modulated regions within the social network; however, a decrease in content words 

engaged a substantial portion of the social network (likelihood ratio: 9.53). This 

reflects the similarity in the networks captured by reduced content words and 

increased Social Impact. 

 

3.3.3 Semantic control network 

The semantic control network did not appear to be recruited when word-level 

Semantic Flexibility increased, and instead was recruited when Semantic Flexibility 

decreased. The likelihood ratios indicated that voxels within the positive Semantic 

Flexibility result were more likely to fall outside the semantic control network than 

within it (0.25), whereas the negative Semantic Flexibility result voxels were more 

than 5 times more likely to fall within the semantic control network (5.77). The 

negative Semantic Flexibility result captured a large portion of the control network, 

particularly in bilateral inferior frontal gyri (predominately left hemisphere) and 

posterior inferior and middle temporal gyri. Overlap in these regions was also 

observed for the increased content words and, to an even greater extent, the 

decreased Social Impact results (likelihood ratios: 4.13 and 8.68, respectively). 
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 Semantic Network 

10,449 voxels 

Social Network 
6,095 voxels 

Semantic Control Network 
6,364 voxels 

 Content Words 
Positive 2.04 0.34 4.13 
Negative 2.67 9.53 0.86 

 Semantic Flexibility 
Positive 0.14 0.44 0.25 
Negative 6.16 1.19 5.77 

 Social Impact 
Positive 2.11 4.64 0.17 
Negative 2.19 0.51 8.68 

Figure 5. Engagement of the semantic, social, and semantic control networks. The semantic network (green), social network 

(blue), and semantic control network (red) derived from meta-analytic studies are shown at the top of the figure. The likelihood ratio 

is shown for each result. Values greater than 1 indicate an increased likelihood of belonging to the network compared to falling 

outside the network. These values are reported for the increased (positive) and decreased (negative) content words (first row), 

Semantic Flexibility (second row), and Social Impact (third row) results. 
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4 Discussion 

Two accounts make seemingly conflicting claims about the organization of the 

semantic system: semantic processing is said to rely on a multimodal hub 

architecture (hub-and-spoke framework) or said to display voxel-wise category 

specialization across a large, distributed network (semantic tile framework). 

Reconciling these claims is complicated by them being derived from very different 

kinds of data. The hub-and-spoke framework is primarily based on well-controlled 

studies of the lexical and semantic properties of isolated words or sentences, 

whereas the semantic tile framework is based on studies using different 

approximations of word-level representations in natural language or narratives. The 

aim of the present study was to reduce the theoretical and methodological disparities 

between these two approaches by investigating how lexical and semantic variables, 

akin to those that informed the hub-and-spoke model, are processed in a narrative. 

In doing so, we can use prior studies of isolated words to make predictions about 

brain regions that will respond to these semantic variables and compare the 

networks observed with prior naturalistic work, thus moving toward an integrated 

account of semantic cognition. 

Our results suggest that, in contrast to studies of isolated word processing, large 

networks are engaged by and are differentially sensitive to lexical-semantic content 

in narratives. These large networks have considerable overlap with the semantic, 

semantic control, and social cognition networks and often include portions of two or 

more of these known networks, suggesting some degree of shared resources for 

processing different types of lexical-semantic information in more realistic contexts. 

Studies using single words, sentences, or short passages typically identify relatively 

small regions that respond to particular lexical or semantic properties (e.g., Bucur & 

Papagno, 2021; Graves et al., 2010; Hauk et al., 2008); even the “language network” 

recently identified in a large-scale study is substantially narrower than the patterns 

we report here (Malik-Moraleda et al., 2022). Considering that the present study 

used an auditory language comprehension task – and the language was not 

particularly difficult (The Little Prince is considered middle-grade literature, 

appropriate for children ages 11–14) – it is notable that the results were so broadly 

distributed, typically across multiple networks. This aligns with prior research 

examining narrative comprehension, which found overlapping, bilateral networks, 
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rather than isolated regions, to be selective for semantic categories (Zhang et al., 

2020). The sections that follow provide discussion of the whole-brain exploratory 

analyses in comparison to prior single-word studies and, where relevant, the 

corresponding hypothesis-driven analyses of network behaviour. We conclude with a 

discussion of limitations on the inferences that can be made from this study and 

implications for the neural basis of language comprehension and future research. 

 

4.1 General lexical and semantic content 

The first set of analyses examined neural correlates of the general lexical or 

semantic content quantified using three complementary measures: number of words, 

number of content (open class) words, and the Word Length factor. Unsurprisingly, 

the semantic network was engaged when a time window contained more words. The 

particular regions included the superior temporal gyri, which are routinely reported to 

be engaged during narrative comprehension (Alho et al., 2006; Crinion et al., 2003; 

Wilson et al., 2008), and the left angular gyrus, which is in both the semantic and 

social cognition networks and is involved in combinatorial processing during 

narrative comprehension (Baldassano et al., 2017; Lahnakoski et al., 2017; 

Stephens et al., 2013) and in speech comprehension more generally (Crinion et al., 

2003; Wilson et al., 2008). These results also converge with networks observed in 

studies of psycholinguistic properties (including word quantity) in briefer passages of 

speech (50-60 seconds) (Awad et al., 2007; Wu et al., 2022), suggesting some 

stability in network engagement across the duration of narratives. 

Although there was extensive overlap between the networks responsive to 

number of words and number of content words, the activity dissociated in two key 

regions: bilateral anterior temporal lobes and left inferior parietal lobule. Activity in 

ventral ATL, a portion of the transmodal ATL semantic hub, was associated with an 

increase in content words only, and was not engaged by a general increase in 

quantity of words. Activity in the rest of the ATL and the IPL was associated with 

decreases in number of content words and increases in overall quantity of words. 

Decreases in number of words were associated with increased activation in the 

default mode network (DMN) (Raichle, 2015), including frontal, cingulate, and 

posterior temporal and parietal regions, which may reflect self-generated internal 
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processing of the narrative (Andrews-Hanna et al., 2014; Buckner & Carroll, 2007). A 

different network of regions co-varied with a decrease in content words, most notably 

the temporal pole and middle temporal portion of ATL. Prior research has found that 

these ATL subregions and regions within the DMN accrue information over longer 

timescales and for coherent stories (Simony et al., 2016) – a distinctive property of 

narratives. Time windows with fewer words may decrease the demands of 

processing incoming language input, allowing for reflective, integrative processing 

and reasoning about the events in the narrative, which engages these default mode 

regions. Narrative moments with less semantic content may similarly provide the 

reader with an opportunity to reflect on the events and incorporate local information 

with the global context. These moments appear to be supported by a portion of ATL, 

predominately lateral temporal pole, whereas ventral ATL is engaged in processing 

narrative moments with more word-level semantic content. 

Network Behaviour. As expected, the semantic and the semantic control 

systems were engaged as the number of content words increased. Surprisingly, 

approximately equally large areas of the semantic network responded to increases 

and to decreases in number of content words. A portion of the transmodal hub in 

ventrolateral ATL was selective for semantic content: a general increase in words did 

not engage the hub, but an increase in content words did. Interestingly, other ATL 

subregions, including temporal pole and middle and superior temporal gyri, were 

engaged during time windows with fewer content words. 

This counterintuitive recruitment of semantic brain regions when there are fewer 

content words may reflect the complex relationship between overall word quantity, 

content word quantity, and semantic processing demands in a narrative context. 

Importantly, a decrease in the amount of content words does not always indicate that 

fewer total words were being processed: the number of words and the number of 

content words were only moderately correlated (r = 0.45), and the number of content 

words could only ever be equal to or less than the number of words. The constraints 

of audiobooks and story-telling mean a relatively consistent speech rate and 

narrative progress to keep the listener engaged. For example, the excerpt “…I am 

precise and what do you do with these stars what do I do with them…” includes only 

2 content words (precise, stars) but has a total of 17 words. For comparison, 
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consider the excerpt “…we write about eternal things but extinct volcanoes can 

wake…”, in which 7 of the 10 words are content words. 

We speculate that, during narrative comprehension, there is a division of labour 

within the semantic cognition system, in particular within ATL, that facilitates the 

mapping of individual word meanings and combinatorial processing. As the amount 

of semantic content increases, a portion of the transmodal hub in ventral ATL is 

selectively engaged to access content word meanings, consistent with prior accounts 

of the graded contributions of ATL (Lambon Ralph et al., 2017). When the relative 

amount of semantic content is reduced, the temporal pole and middle and superior 

temporal subregions are engaged. During these time windows, narrative information 

is nevertheless being conveyed and listeners may engage in more extensive 

integration of these semantically “light” words with narrative context. A period with 

little new semantic content may also provide an opportunity to reflect on recently-

presented information and integrate this with the existing mental model of the 

narrative, which is consistent with the roles left angular gyrus and ATL play in 

semantic integration (Bonnici et al., 2016; Humphries et al., 2007; Kuhnke et al., 

2022; Lambon Ralph et al., 2017). This interpretation is complemented by our finding 

that increases in number of content words were associated with increased activity in 

a large portion of the control network, specifically left inferior frontal and inferior and 

middle temporal regions. These control regions were not activated by increased 

overall number of words, so it may be that the control system is particularly important 

for integrating new word-level information (i.e., content words) into the situation 

model. 

In summary, we expected activation of the semantic network to positively scale 

with an increase in content words, but word quantity may be an incomplete 

operationalization of semantic demand. Ventral ATL did exhibit the expected positive 

association, but the rest of the ATL, along with other key semantic regions, including 

the IPL hub, exhibited the opposite response pattern. The inverse narrative situation 

– when there are fewer content words – may give readers/listeners the chance to 

integrate the details with the narrative or facilitate a greater depth of processing of 

the concepts presented, which engages these portions of the semantic system. 

Considering that ATL and IPL are “semantic hubs” that are reliably activated during 

lexical-semantic processing (Binder & Desai, 2011; Jefferies et al., 2020), this is one 
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of several results from the present study that suggest caution in generalising the 

neural basis of semantic cognition from single-word to narrative comprehension. 

Despite the considerable insights generated about the neurobiology of the language 

system from single-word studies, these studies provide only a partial understanding 

of how the language system is engaged in real-world settings. A complementary 

approach in which single-word studies generate the hypotheses that subsequently 

constrain and guide naturalistic investigations may be ideally suited to maximize the 

advantages of both. The present study, however, underscores the potential pitfall in 

presuming that the brain regions observed in single-word studies behave in an 

analogous way in response to narrative or other naturalistic stimuli. 

 

4.2 Semantic dimensions 

Analogous whole-brain exploratory analyses were conducted with variables 

capturing different dimensions of semantic content, which were derived from a PCA 

of word-level lexical-semantic properties. 

 

4.2.1 Semantic Flexibility 

The Semantic Flexibility factor was most strongly driven by semantic diversity, 

which measures the contextual variation of words (Hoffman et al., 2013). Words with 

high semantic diversity occur in wide-ranging contexts compared to words with low 

semantic diversity, which occur in a more constrained set of similar contexts. 

Semantically diverse words tend to be more ambiguous, with varied context-

dependant meanings. An increase in semantic diversity (and corresponding increase 

in positive Semantic Flexibility scores) was thus expected to require the same 

cognitive mechanisms and neural systems involved in resolving semantic ambiguity: 

bilateral anterior inferior temporal gyrus, middle temporal gyri, middle frontal regions, 

and, especially, bilateral inferior frontal gyrus (MacGregor et al., 2020; Rodd et al., 

2010, 2012; Vitello & Rodd, 2015). The posterior temporal gyri are also commonly 

reported in studies of semantic ambiguity resolution, although the role of this region 

is less clear. In a study of homonym comprehension, posterior middle temporal gyrus 

was thought to act as an intermediary between the semantic and control systems 

(Hoffman & Tamm, 2020). 
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In the present study, increased activation in these regions was observed as 

Semantic Flexibility scores decreased. Decreased scores reflect more concrete, less 

frequent, and less semantically diverse words, which should produce easier meaning 

selection and are less likely to require the resolution of ambiguity. Superficially, this 

conflicts with the single-word and sentence semantic ambiguity literature. There are 

three potential reasons for this apparent discrepancy. 

First, many studies of semantic ambiguity focus on homonyms (e.g., bark, bank), 

which have multiple specific meanings and - without context - it is unclear which 

meaning is being referenced (Hoffman & Tamm, 2020; Kadem et al., 2020). In the 

current analysis, words with the highest Semantic Flexibility scores were not 

homonyms; they were highly frequent, less concrete, very semantically diverse 

words that have highly context-specific meanings (e.g., so and where). In fact, the 

highly frequent homonyms that were present in the story (n = 58, based on 

frequency estimates from a prior study (Rice et al., 2019)), received much lower 

Semantic Flexibility scores (M = 0.08) compared to non-homonyms (M = 0.39). Thus, 

the Semantic Flexibility factor does not capture the need to select between 

alternative divergent meanings of a word, which is the type of lexical ambiguity that 

prior studies have typically investigated. 

Second, even if the Semantic Flexibility factor did capture ambiguity as defined in 

previous studies, context helps to resolve homonym-type ambiguity by priming the 

correct meaning, as many studies have shown (e.g., Binder & Morris, 1996; Blott et 

al., 2022). This kind of context is always present in narratives, so the priming 

provided by a coherent narrative provides an informed and rapid route to select the 

appropriate word meaning and navigate ambiguities with relative ease. That is, when 

homonyms occur in natural narratives, their meanings are usually not ambiguous 

because of the extensive context. 

Third, research on semantic ambiguity typically compares processing of 

ambiguous words with carefully matched (i.e., equally frequent, concrete, short, etc.) 

non-ambiguous words or sentences. In natural language, these variables are not 

orthogonal, so ambiguous words tend to vary along other dimensions as well. The 

lowest Semantic Flexibility scores, for instance, were given to words that have little 

ambiguity in meaning but also are low in frequency and have few semantic 

neighbours (e.g., footstool and lamplighter). These words are not ambiguous, but do 
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have complex and rarely-accessed meanings, which could place high demands on 

the semantic system. Thus, the neural effects are likely being driven in part by the 

other properties that load on the factor, such as frequency. For the Semantic 

Flexibility and Social Impact results, activation in left fusiform gyrus may be driven by 

an increase in concreteness, which inversely loaded on both of these factors (Bucur 

& Papagno, 2021; Hoffman et al., 2015; Wang et al., 2010). This difference between 

the Semantic Flexibility scores in this study and traditional experimental 

psycholinguistic manipulations reflects a trade-off between experimental control and 

ecological validity: comparing processing of homonyms with matched unambiguous 

words may isolate meaning selection processes, but these may be very different 

processes than ones involved in dealing with semantic ambiguity as it occurs in 

narrative contexts. 

Network Behaviour. Increased Semantic Flexibility did not engage the semantic 

or semantic control systems. Instead, decreased Semantic Flexibility was associated 

with recruitment of large portions of both the semantic and control networks, as well 

as a small portion of the social network. As discussed above, this factor 

approximated semantic ambiguity but the context of a narrative and the use of 

semantic diversity made the words with high, positive scores quite different from 

traditional single-word or sentence-level ambiguity manipulations. The concepts that 

strongly, negatively loaded onto this factor were longer, infrequent words that placed 

additional demands on the semantic control system, which is evident in the high 

degree of control system engagement. Consider the example of a low Semantic 

Flexibility window provided in Table 1, the concepts “constrictors” and “primeval” are 

not ambiguous because they have only one meaning but they are also more difficult 

to process than the more frequent concepts in the high Semantic Flexibility example. 

The present results suggest that, during narrative comprehension, control systems in 

inferior frontal gyrus and posterior middle temporal gyrus are most strongly engaged 

when retrieving the meanings of unusual, low-frequency words (Jackson, 2021; Wu 

et al., 2022). The observed activation in left fusiform gyri and bilateral inferior frontal 

gyri may also be driven by the infrequency of the words (Carreiras et al., 2009; Hauk 

et al., 2008). It is thus likely, although perhaps counterintuitive, that control 

mechanisms were recruited to update situation models based on semantically heavy 
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words with lower Semantic Flexibility scores, rather than to disambiguate individual 

words. 

 

4.2.2 Emotional Strength 

Emotion can be conceptualized as being comprised of at least two 

complementary dimensions: valence and arousal (Citron, 2012). Arousal, which 

loaded on the Social Impact factor, is thought to be more automated and to engage 

perceptual and physiological systems. The Emotional Strength factor most closely 

approximated emotional valence, which is thought to require an evaluative 

judgement that engages higher order cognitive systems and is less automated 

(Citron, 2012; Cunningham et al., 2004). 

An increase in Emotional Strength engaged right inferior and superior occipital 

gyri, portions of right fusiform and inferior temporal gyri, left superior medial gyrus, 

and middle cingulate cortex. These results partially converge with a prior study which 

reported activation in right superior occipital gyrus in response to increased 

emotionality (irrespective of direction) in contrast to neutral words (Citron et al., 

2014). Engagement of superior medial gyrus and middle cingulate is consistent with 

prior investigations of written word processing, although the anterior portion of the 

cingulate cortex is more consistently reported (Citron, 2012). Interestingly, 

decreased Emotional Strength was associated with activation in predominately right-

lateralized regions. Prior research has isolated a similar network of regions that 

respond to the semantic category of emotion (Zhang et al., 2020). In the present 

study, these regions do appear to be modulated by emotion, but not in the expected 

direction. 

Importantly, however, our Emotional Strength factor was transformed such that 

the anchor points on either end did not correspond to negative and positive 

emotional valence, and instead corresponded to the overall emotional extremity of 

the word, agnostic to valence direction. Although similar approaches have been 

taken in other neural investigations of valence (Citron et al., 2014; Cunningham et 

al., 2004), this may be an important deviation from prior research. For instance, there 

may be differences in how negatively and positively valenced words are processed, 

with negative words possibly being processed more deeply and slowly (Kuperman et 



79 
 

al., 2014). This valence asymmetry may alternatively be driven by higher semantic 

similarity for positive compared to negative information, which, in the case of the 

latter, might result in an increased processing cost (Alves et al., 2017; Meersmans et 

al., 2020). Prosodic information such as pitch was also not considered in the current 

analysis. These features are likely to correlate with the emotional features of a 

narrative, so it is possible that the results captured here include regions associated 

with prosodic processing, an essential component of real-world emotion processing, 

and not solely emotion information (although the results differ from an isolated 

analysis of pitch within this narrative (Li et al., 2022)). The pitch information is 

included as part of the dataset and is thus a viable direction for future research. 

 

4.2.3 Social Impact 

Prior studies have consistently identified bilateral superior ATL, ventrolateral ATL, 

and occasionally prefrontal regions and posterior middle temporal regions in 

processing abstract, social concepts (Binney et al., 2016; Pobric et al., 2016; Zahn et 

al., 2007). In our study, the network engaged by increased social and emotionally 

arousing language did include bilateral ATL, but did not include the amygdala, which 

is commonly reported in studies of emotional arousal (Citron, 2012). 

A recent theoretical account argues that social conceptual knowledge is a type of 

semantic memory, nested within the neural architecture of the semantic cognition 

system (Binney & Ramsey, 2020). Building upon this theoretical framework, the 

graded semantic hub hypothesis suggests that the ventrolateral ATL is a domain-

general hub for processing varied semantic representations, including social 

knowledge, with graded shifts in functional specialization occurring proximal to this 

hub (Binney et al., 2016). This account is supported by recent evidence of activation 

in this ventrolateral subregion across three theory of mind tasks (using linguistic and 

non-linguistic stimuli) and a non-verbal semantic association task (Balgova et al., 

2022). This suggests that social knowledge, including mental state inference, which 

theory of mind tasks probe, is at least partially processed within the semantic 

system, and this domain-general hub of the semantic system is centred on the 

ventrolateral aspect of left ATL. The present results are consistent with this account. 

Increases in more flexible or semantically diverse language (i.e., increased Semantic 

Flexibility) and increased Social Impact both engaged a portion of this ventrolateral 
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ATL region. Specialization for social conceptual knowledge appears to be present in 

the dorsolateral ATL, which was not observed for Semantic Flexibility and which 

converges with prior evidence of specialization in this part of ATL for processing 

abstract, social concepts (Zahn et al., 2007). 

Increased Social Impact was associated with activity in a similar network of 

regions as decreased number of content words. These regions, which include 

bilateral ATL, middle temporal gyri, and IPL, are upregulated when the amount of 

semantic content was minimal or when the content was social. Importantly, the 

Social Impact scores were not correlated with the number of content words (r = 

−0.06), so the analyses are not capturing the same underlying semantic information 

despite the similarity in the results. Recruitment of semantic hubs may suggest that 

in both cases the nature of the local passage places additional demands on the 

semantic system – either because there are few concepts presented so they are 

processed more deeply or because when several social concepts are presented 

rapidly they must be holistically integrated. 

Network Behaviour. As expected, increases in social content recruited the 

social and semantic networks, but not the control network. Although the overlap with 

the control network was minimal, a small portion of anterior IFG co-varied with 

increased social content, which aligns with our predictions. The positive Social 

Impact result overlapped with the core hubs within semantic network, which may 

indicate that social, high-arousal words are a special type of semantic concept that 

engage the semantic system. 

The social cognition network as defined here was derived from studies of much 

more abstract social processes, such as trait judgement and empathy for others or 

pain (Diveica et al., 2021). The fact that large portions of this network were also 

identified in the semantic network and were modulated by social concepts was 

predicted as a key piece of converging evidence that semantic memory may include 

aspects of social cognition and that these systems work cooperatively or 

integratively. Social concepts are a type of semantic knowledge and are consistently 

reported to engage superior/dorsolateral ATL (Binney et al., 2016; Pobric et al., 

2016; Zahn et al., 2007), so hypothesizing the role of the semantic system in 

processing these concepts was strongly motivated by prior research. The 

involvement of the task-general social cognition system was less certain (Binney & 
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Ramsey, 2020) and suggests that retrieving the social meaning of words engages 

the broader social cognition network – a network that is defined by activation during 

abstract social tasks that rarely rely on isolated written or spoken language. Complex 

social reasoning is required for narratives, such as the story used here, which often 

involve rich descriptions of human interactions and social behaviours, and perhaps 

even oversample such scenarios for compelling story-telling. 

A majority of the control network was recruited as Social Impact decreased, 

suggesting that social and emotionally arousing language did not require additional 

control mechanisms. Windows that received strongly negative Social Impact scores 

were those with more neutral, factual, or purely informative content. The example 

provided in Table 1 illustrates this well: “…as a tree falls there was not even any 

sound because of the sand…”. The results suggest that the control network is 

recruited when complex information critical to narrative comprehension is presented 

in a short period of time and needs to be integrated quickly into the situation model. 

The same ventrolateral portion of left ATL was engaged by increases in two of 

the dimensions of semantic content investigated here. A more ventral portion of 

ventrolateral ATL was engaged when general semantic content increased (number 

of open class words). This is in contrast to the disengagement of the temporal pole 

when semantic content decreased. This suggests that left ATL may not be uniformly 

engaged by all categories of concept and instead is selectively upregulated for 

processing different types and amounts of semantic information. This is consistent 

with prior work on the graded functioning of ATL (Lambon Ralph et al., 2017). The 

portion of this hub that was engaged by social content, for example, differed slightly 

from the portion engaged by semantic content more generally, possibly driven by 

proximity to the dorsolateral ATL region that may display specialization for social 

concepts (Balgova et al., 2022). Engagement of temporal pole during narrative 

moments with relatively fewer semantic concepts may reflect depth of semantic 

processing, which is also enhanced by an increase in social semantic content (Social 

Impact). These moments allow for deeper semantic integration with the preceding 

narrative context. 
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4.3 Inferential considerations 

There are several considerations worth noting when generating inferences from 

the present study. First, the factor scores were only generated for open class words 

(i.e., content words). A similar approach has been adopted in other work examining 

word-level psycholinguistic properties during narrative comprehension and 

production (Wu et al., 2022). In addition, studies of single word or sentence level 

processing almost exclusively focus on open class words, and the aims of the 

current investigation were to study how those types of words are processed when 

presented in a rapid narrative context. Although closed class words were excluded 

from analysis, they certainly contribute to scaffolding understanding of an unfolding 

narrative. 

Second, it is important to consider the narrative context in which concepts are 

likely to be used and their distribution across narrative contexts. Prior research has 

shown a high degree of correspondence between the emotional properties of the 

lexical units that comprise a sentence or brief narrative and subjective ratings of the 

emotion at the sentence and passage level (Bestgen, 1992; Hsu et al., 2015). This 

suggests that using word properties as a proxy for sentence and passage content is 

a viable starting point, at least for emotion-based concepts, but extending this to the 

narrative and discourse levels requires further validation. Narratives benefit from 

deep context and background, so it is possible for sentences or passages to have 

strong emotional or social impact without containing many intrinsically emotional or 

social words. It may be that emotional and social moments within a narrative do not 

require and maybe do not even heavily rely on emotional or social language. 

Although certainly possible, it is not clear how often this situation occurs outside of 

rare moments or particular literary styles. 

Third, the meta-analytic network definitions were necessarily limited by the 

studies used as input for ALE analyses. These studies relied on contrast-based 

methods with predominately word or sentence stimuli. Defining networks, such as 

the semantic network, in this way is advantageous because it allows for a 

comparison of word-level processing in a narrative context against results from 

single word or sentence level studies. It does not fully capture an inclusive network 

definition that accounts for data from naturalistic paradigms. There is currently no 

standardized way to statistically aggregate the results of analyses (or even standard 
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analysis approaches) used in naturalistic neuroimaging studies. The network maps 

we used are therefore an approximation at best and are themselves generated 

without consideration for naturalistic narrative contexts. 

 

5 Conclusion 

The present study is a step toward extending theories of semantic cognition 

based on isolated stimuli to explaining semantic cognition in narrative contexts. 

Studies of isolated stimuli assume that words have meaning on their own and by 

presenting them individually and in random order, we can identify the regions that 

represent a lexical or semantic property. Further, there is an implicit presumption that 

the neural response will be additive when presented in naturalistic contexts: the 

same region(s) will be recruited to process words with a given property plus the 

regions needed to process the component parts of the naturalistic stimuli. This is not 

what we observed in the current study. Counter to expectations grounded in isolated-

stimuli experiments, we observed that fluctuations in a single lexical or semantic 

property co-varied with activation in large brain networks. Further, a priori networks 

based on meta-analyses did not behave in a straightforward or uniform way: some 

network subregions were engaged more strongly by an increase in semantic content, 

while other subregions were engaged by a decrease. This is an important deviation 

from how the semantic, semantic control, and social networks are currently 

conceptualized. Prior, non-naturalistic studies used more simplified stimuli, which 

may have resulted in more focal results and the impression that small regions 

independently represent a larger, more complex cognitive system. We interpret 

these results as evidence that cognition is not additive in nature and instead 

cognitive systems jointly process complex stimuli. An implication of this view is that 

functional specialisation is a dynamic property and that networks do not have clear 

and consistent boundaries that allow them to act as additive components during 

cognitive processes such as language comprehension (Aguilera & Di Paolo, 2021; 

Behrmann & Plaut, 2013; Friston et al., 2021; Yeo et al., 2015). 

The extent of the networks engaged here align with the distributed architecture of 

the semantic system described by the semantic tile framework. However, the results 

of the present study also provide evidence of a multimodal hub in ventrolateral ATL, 

consistent with the hub-and-spoke framework, and evidence that social processing is 
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subsumed within the semantic system in this hub. These accounts may not be 

mutually exclusive and the category specialization observed in prior naturalistic work 

may emerge as a result of the interactions of modality-specialised regions with a 

deep multimodal hub (Jackson et al., 2021; Rogers & Lambon Ralph, 2022). 

We suggest that, during narrative comprehension, the ATL displays differential 

sensitivity to the type and amount of content being presented, consistent with the 

hub-and-spoke framework. When the amount of content is high, the ventral ATL 

region is engaged, when the content is social the dorsolateral and ventrolateral 

portions are engaged, and when the amount of content is reduced, temporal pole 

regions are active to facilitate semantic integration with the proceeding narrative 

context. Taken together, the results call for a revision of the current theories of 

semantic processing and suggest that, during narrative comprehension, the 

semantic, semantic control, and social systems are engaged in ways that are not 

being captured in single word comprehension studies but are nevertheless critical 

aspects of real-world language processing. 
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Chapter 4 

‘ALL THE STARS WILL BE WELLS WITH A RUSTY PULLEY’: NEURAL PROCESSING 

OF THE SOCIAL AND PRAGMATIC CONTENT IN A NARRATIVE 

 

Abstract 

In the real word, language processing is supported by a rich set of verbal and 

non-verbal contextual constraints. Despite this, the experimental paradigms that 

predominately informed the current neurobiological model of semantic cognition 

have tended to present highly decontextualized stimuli. Recent studies using 

naturalistic stimuli, such as narratives and natural language, report important 

deviations from this model and suggest that the semantic hub in left anterior 

temporal lobe (ATL) may display differential sensitivity to the differing demands of 

narrative comprehension. Specifically, the transmodal hub in ventral ATL may be 

sensitive to semantic content within the narrative whereas the dorsolateral portion of 

ATL may primarily respond instead to the quantity of linguistic input. The 

ventrolateral portion of ATL, centred in the anterior segment of middle temporal 

gyrus (MTG) and aided by functional connections with the default mode network 

(DMN), may be additionally engaged by internal processing demands. This may 

have implications for social processing, which requires access to semantic 

conceptual knowledge and may drive internal processing during narrative 

comprehension. How this model of semantic processing extends to more abstract, 

inferential social processes, such as pragmatic inference, is unclear. The present 

study examined these issues by quantifying several content types, including 

semantic, social, and pragmatic content, for each sentence in a complete narrative, 

The Little Prince. In line with the claim that ATL is composed of functional subregions 

that display differing sensitivity during narrative comprehension, increased activation 

in ventral ATL was only observed for high semantic (i.e., informative) relative to low 

semantic sentences. Activation in the dorsolateral and ventrolateral subregions was 

observed for both high semantic and social conditions relative to the low content 

sentences, but the ventrolateral ATL effects were more extensive in the social 

condition.  There was high correspondence between the social and pragmatic 

content results, in particular in the ventrolateral ATL. We argue that social and 
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pragmatic content drove internal processing that engaged ventrolateral ATL given 

the pervasive and plot-progressing nature of this content in the narrative. Prior 

studies using decontextualized stimuli may have missed this functional division 

within ATL due to minimal internal processing demands. This study provides support 

for the claim that social processing, including pragmatic inference, engages the 

semantic system via ventrolateral ATL. 

 

Keywords 

narrative comprehension, naturalistic neuroimaging, social processing, pragmatics, 

semantic cognition 
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1 Introduction 

The meaning and impact of natural language and narratives extends beyond the 

words used to construct the message. Understanding a highly social moment in a 

narrative, for example, requires integrating the meaning of the words in the current 

sentence with the prior context and decoding the interpersonal dynamics at play by 

simulating the mental states of the character(s) (Mar & Oatley, 2008). The context a 

sentence is embedded within can thus fundamentally change how the meaning is 

constructed (Deniz et al., 2023; Yee & Thompson-Schill, 2016). When Caesar 

mutters “Et tu, Brute?”, the audience understands this to be a highly social and 

emotional moment, the revelation of betrayal, despite the words in the sentence 

having minimal emotional valence or arousal. So too does the audience understand 

that when Marc Antony declares afterwards that Brutus is an honourable man, he 

means the opposite. Sentences such as these are not rare in narratives or natural 

language, and, instead, make stories compelling and engaging (Van Duijn et al., 

2015).  

A key challenge in studying real-world language processing is taking account of 

how context contributes to the construction of meaning (Xu et al., 2005; Yee & 

Thompson-Schill, 2016); this is also a core goal of the field of pragmatics (Levinson, 

1983). Consider again Marc Antony’s declaration about Brutus given above. This 

moment can only be correctly comprehended if a pragmatic inference is made about 

how this character feels and what their intentions are in the wake of Brutus’ actions. 

These types of inferences are pervasive in natural language and narratives, and are 

thought to require mentalizing, and, as a result, engagement of the social cognition 

system (Levinson, 2006). This is supported by neuropragmatics research (Bambini, 

2010; Hagoort & Levinson, 2014) which suggests that pragmatic processing, in 

particular indirect requests, engage medial prefrontal, bilateral temporoparietal (i.e., 

TPJ), inferior frontal, posterior cingulate, and precuneus regions (Bašnáková et al., 

2014; Licea-Haquet et al., 2021; van Ackeren et al., 2012, 2016). There is, however, 

variability in the brain areas that support different speech acts. For instance, motor 

cortex activation is often associated with action-related speech acts due to the 

fulfilment of the directive whereas more socially complex and indirect speech acts 

appear to consistently engage the theory of mind network (Tomasello, 2023). 
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Pragmatic processing is a type of socio-cognitive process that engages the social 

cognition system, but not all social processing requires inferring communicative 

intent. Further, the social cognition network includes bilateral temporal poles, 

bilateral temporoparietal junction (or inferior parietal lobule; IPL), medial prefrontal 

cortex, anterior cingulate, amygdala, and posterior superior temporal sulcus 

(Adolphs, 2001, 2009; Frith & Frith, 2007), but the regional response within this 

network is task-dependent (Breil & Böckler, 2020; Quesque & Rossetti, 2020; 

Warnell & Redcay, 2019). Meta-analytic evidence shows that even when measuring 

the same construct, such as mentalizing, presenting the task in a story format and a 

non-story format elicits different, although partially overlapping, patterns of activation. 

Distinct subregions within left anterior temporal lobe (ATL) and bilateral TPJ, for 

instance, are recruited for story and non-story based theory of mind tasks (Mar, 

2011). A complicating factor is that social processing includes both conceptual 

knowledge, which may rely on semantic processing in ATL, and the abstract, 

inferential applications of that knowledge, which may differentially engage the social, 

or other cognitive, systems. 

A recent theoretical account argues that social knowledge is housed within the 

semantic system, leveraging the neural architecture of the semantic and semantic 

control systems (Binney & Ramsey, 2020; Diveica et al., 2021). Critically, there is 

strong evidence that social concepts engage the ATL, in line with the role of this 

region as a hub for semantic representation (Binney et al., 2016; Rice et al., 2018; 

Zahn et al., 2007). The ATL is  large, however, and displays graded functioning 

driven by variations in connectivity with distal modality-specific spoke regions 

(Binney et al., 2012; Rice et al., 2015). The ventral portion of ATL, centred in left 

anterior fusiform gyrus, is most consistently implicated as the transmodal hub that 

receives equal inputs from the surrounding sensorimotor spokes (Lambon Ralph et 

al., 2017). ATL regions proximal to this hub appear to display varied semantic 

specialization, although their anatomical definitions can vary across studies. The 

anatomical definitions of three key ATL subregions are provided in Figure 1 and can 

be summarized as follows: the dorsolateral portion contains the anterior segment of 

superior temporal gyrus (STG), the ventrolateral (or inferolateral) portion contains the 

anterior segments of middle and inferior temporal gyri (MTG, ITG), and the ventral 

portion contains the anterior segment of fusiform gyrus. Social knowledge, along with 
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many other types of concept, appears to engage the ventrolateral portion of ATL and 

there is some evidence for specialization for social knowledge in the dorsolateral 

ATL (Binney et al., 2010; Olson et al., 2013; Zahn et al., 2007). A cross-task 

investigation of abstract social processing (i.e., theory of mind reasoning), for 

instance, found overlap in the ventrolateral portion of ATL (Balgova et al., 2022). 

This same region, alongside the dorsolateral ATL region, shows increased activation 

in response to social and social-emotional sentences (Mellem et al., 2016).  

 

 

Figure 1. Anatomical definitions of ATL functional subregions. 

 

A slightly different pattern is observed in naturalistic contexts, however. The 

dorsolateral ATL appears to be more robustly engaged than other subregions within 

ATL during natural language or narrative comprehension, and ventral ATL seems 

particularly sensitive to semantic input (Malik-Moraleda et al., 2022; Wu et al., 2022). 

Conversely, the ventrolateral ATL is engaged by social language in narrative and 

movie contexts after controlling for the quantity of words (Thye et al., 2023)(Chapter 

5). These results suggest a functional distinction in which the dorsolateral and 

ventral ATL are particularly sensitive to external linguistic processing, driven by the 

quantity and informativeness of input stimuli, respectively, whereas the ventrolateral 

ATL, through functional connections with the default mode network (DMN) (Lee et 

al., 2020; Raichle, 2015), is sensitive to internally-driven semantic processing, 
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requiring the accumulation and integration of conceptual knowledge about the 

narrative. We refer to this internally-driven processing hereafter as endogenous 

semantic processing. Naturalistic studies of social processing rarely control for 

externally driven semantic demands, which makes it difficult to determine why 

ventrolateral ATL responds preferentially to social content (relative to non-social 

content) but also to non-social semantic content (relative to non-semantic content). 

When external semantic input is controlled, we might then still expect engagement of 

ventrolateral ATL in conditions that require introspection or reflection on the narrative 

events and incorporation of new information into the ongoing situation model, which 

social content might elicit. 

These claims are about the literal content of narratives and do not account for or 

make any predictions about pragmatic processing, which requires inferences beyond 

the literal content. That is, sentences where representation of the concepts in the 

sentence – which models of semantic cognition are concerned with – is not sufficient 

for comprehension. Instead, the lexical-semantic knowledge must be integrated with 

a situation model of the overarching context or narrative (Yarkoni et al., 2008; Zwaan 

& Radvansky, 1998), and an inference must be made that runs counter to the 

conceptual representation. It may be that the semantic system in ATL is for 

processing literal content and pragmatic processing relies on other brain regions. 

Alternatively, social processing and pragmatic inference may both engage 

ventrolateral ATL because both require reflecting on and integrating the local 

information with the global context. This claim builds on prior work arguing that social 

processing is, at least partially, subsumed within the semantic system, but there 

have been limited tests of this specific claim using protracted narrative stimuli and no 

investigations of whether this extends to pragmatic processing. 

Narratives provide an ideal avenue to explore this account. First, they more 

closely approximate everyday language comprehension (Sonkusare et al., 2019). 

Studies using naturalistic stimuli such as narratives suggest that current 

neurobiological models of semantic and, more broadly, language processing are 

impoverished estimates of how these systems are engaged in real-world contexts 

(Deniz et al., 2019; Huth et al., 2012, 2016; Ross et al., 2022). Despite this, studies 

of social cognition have predominately used non-naturalistic stimuli that minimally 

incorporate context to capture social or pragmatic processing (Redcay & 
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Moraczewski, 2019). There is a need to use more ecologically valid stimuli to better 

inform current models of human cognition. Second, narratives have nested, 

contextualized feature layers that facilitate sampling at different levels of meaning 

(Willems et al., 2020). For instance, comprehension can be measured from the word 

and sentence level up to the level of character actions and narrative events. Each 

feature layer incorporates more context, allowing for an empirical test of social and 

pragmatic content. Studies explicitly manipulating context by presenting scrambled 

words, sentences, or paragraphs extracted from a narrative suggest that sentence-

level processing, and possibly social processing in particular (Zhang et al., 2021), 

engages bilateral ATL and left IPL whereas narrative processing engages a similar, 

but more broad network including medial prefrontal regions, right IPL and precuneus 

(Hasson et al., 2008; Lerner et al., 2011; Xu et al., 2005). It is unclear to what extent 

these regions are differentially engaged in response to the social content within the 

narrative and whether context manipulations invariably impact how narrative content 

is processed. 

Despite the critical role of context in pragmatic processing, few, if any, studies 

have investigated pragmatic processing during narrative comprehension. This is 

likely due to the fact that unlike socialness and the other content types investigated 

here, pragmatic content cannot be quantified at the lexical-level because the 

required inference occurs at higher feature layers in the narrative which incorporate 

context (Bambini, 2010; Hagoort & Levinson, 2014). Further, studies have tended to 

use an active task (e.g., classification or recognition judgment) or a baseline 

condition that does not isolate the effect of interest (e.g., manipulation of ambiguity in 

prosodic expressions) (Hellbernd & Sammler, 2018) to study pragmatic processing. 

It has been suggested that a passive task, which narrative comprehension provides, 

may reduce conflation with other higher order cognitive functions involved in 

completing the task (Tomasello, 2023). 

A natural extension of the prior work on social and pragmatic processing is to 

select a feature layer that accommodates some context: sentences. Sampling 

content at the sentence-level is advantageous because sentences are nested within 

the middle of the narrative hierarchy, so the local context is incorporated while 

providing some level of constraint (Willems et al., 2020). There are several 

approaches to representing sentence-level content. Perhaps the most common are 
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through the application of large language model (LLM) embedding models or by 

aggregating features of the words used in the sentence (Anderson et al., 2017). 

These approaches do not take narrative context into account, thus failing to 

capitalize on the full context afforded by measuring sentence-level content 

embedded in a narrative. An alternative approach is to obtain subjective sentence 

ratings on a continuous basis from novice or trained raters. A key benefit of this 

approach is that sentences are not treated as independently sampled from the 

narrative. This allows for preceding context to impact the rating, an important step 

toward capturing narrative comprehension as it actually happened. Further, as 

experts in natural language comprehension, human raters are well-suited to making 

these types of judgments. 

Prior studies using subjective sentence or passage-level ratings have focused on 

either emotional or social content in isolation (Bestgen, 1992; Hsu et al., 2015; 

Zhang et al., 2021). This approach has several limitations. The first is that it is 

agnostic to the relationship between social or emotional content, which are likely to 

be correlated in narratives. Distinguishing – or quantifying the relationships – 

between these and other content types is critical for making strong inferences about 

social or emotional processing, respectively. The second limitation of the approach 

taken in prior studies is that the ratings were made using excerpts or shorter 

passages, which reduces the influence of context on the subjective assessments. 

Using a complete, protracted narrative with sentences rated consecutively (as 

opposed to in a random order) better captures the type and extent of content present 

across the narrative. This is particularly relevant for quantifying social and pragmatic 

content, which are strongly influenced by both the local and global context of the 

narrative: relationships between characters and the reader’s understanding of their 

motives and intentions evolve over the course of the narrative. This information is 

difficult (perhaps impossible) to capture when sentence-level content is quantified 

outside of its full narrative context. 

In the present study, content ratings were obtained for each sentence in a 

complete narrative, The Little Prince. We previously analysed this same narrative 

using the Le Petit Prince publicly available dataset (Li et al., 2022), focusing on the 

neural processing of the lexical-semantic properties of the words that comprise the 

narrative (Thye et al., 2023). We found support for the claim that social language 
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engages the semantic system in ATL – activation in both the dorsolateral and 

ventrolateral portions positively covaried with social content. The ventral ATL hub 

was engaged when semantic content (i.e., number of content words) increased, but 

the rest of the ATL was engaged during narrative moments when fewer content 

words were present. We suggested that these moments provided listeners a chance 

to “catch-up” or integrate the narrative information into their ongoing situation model 

– in other words, to engage in endogenous semantic processing. The present study 

extends this work by examining representation of the narrative in a broader sense, 

moving from word-level representation to sentences, which allow for context to 

influence meaning.  

The primary aims of the present study were (1) to evaluate the hypothesis that 

social processing during narrative comprehension is supported by the semantic 

system and, if it is, clarify which subregion(s) of ATL are engaged by social content, 

and (2) to examine semantic and social network engagement for pragmatic 

processing, a socio-cognitive process that does not rely on explicit access to 

conceptual knowledge. The social and pragmatic content of sentences were thus 

coded separately to make it possible to separate and compare them. 

Subjective sentence content ratings provide moment-by-moment approximations 

of social and pragmatic processing during narrative comprehension. Using these 

ratings, we are able to test competing accounts. The first account, the graded hub 

hypothesis, suggests that social information, like other types of semantic information, 

is processed within a domain-general ATL hub (Balgova et al., 2022; Lambon Ralph 

et al., 2017). This account would predict that, when the amount of semantic input is 

matched, there should be approximately equal activation in high and low social 

conditions. As a result, we would expect minimal effect on ventral ATL activation, 

because the semantic content is balanced across conditions so transmodal hub 

activation should be the same, and instead, anticipate activation in dorsolateral ATL 

given prior research showing sensitivity to socialness in this region in response to 

non-naturalistic stimuli (Olson et al., 2013; Zahn et al., 2007). The alternative, 

endogenous semantic processing extension of the graded hub hypothesis discussed 

above, would instead predict that ventrolateral ATL should respond particularly 

strongly to sentences with highly social content on the presumption that social 

content is salient to the narrative and requires endogenous processing. In contrast, if 
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dorsolateral ATL is primarily sensitive to quantity of semantic input, when the amount 

of external semantic input is matched, engagement of dorsolateral ATL should be 

balanced across conditions and subtracted out. Listening to sentences with highly 

pragmatic content was also expected to engage the social cognition network brain 

regions in right supramarginal and angular gyri (i.e., TPJ), given the role mentalizing 

plays in making pragmatic inferences. A final, exploratory aim of the study was to 

examine the extent to which social and pragmatic content displayed shared 

engagement of the semantic cognition system in left ATL. 

 

1.1 Related content types 

To address the limitations of prior work and comprehensively characterize 

sentence-level content, several related content types were rated alongside social 

and pragmatic content. 

Semantic. Sentence-level semantic content was coded as a baseline measure of 

general narrative comprehension. The definition used in the current study was 

designed to capture engagement of the semantic system in response to highly 

informative sentences. Recent studies of narrative or natural language 

comprehension have called into question the neural basis of semantic cognition. In 

contrast to the hub-and-spoke framework in which information from sensorimotor 

spokes is integrated in a transmodal hub within ATL (Lambon Ralph et al., 2010, 

2017), the semantic tile framework, motivated by naturalistic investigations of the 

semantic system, argues that semantic specialization is tiled throughout the cortex 

and does not display a hub architecture (Huth et al., 2012, 2016). Although these 

accounts may not be mutually exclusive (Rogers & Lambon Ralph, 2022), there is a 

need to investigate how semantic processing occurs in real-world contexts, such as 

narratives. In addition to reconciling these ostensibly opposing neurobiological 

models of semantic cognition, coding both semantic and social sentence-level 

content allows for an empirical test of whether they engage the same transmodal 

hub in ventral ATL.  

Listening to sentences with high semantic content was expected to engage a 

broad language network, consistent with prior studies of narrative comprehension 

(Malik-Moraleda et al., 2022; Thye et al., 2023; Zhang et al., 2020). Engagement of 
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ventral ATL in response to highly semantic content would provide support for the 

graded hub hypothesis, suggesting this region serves as a cross-model hub for 

semantic processing (Balgova et al., 2022; Lambon Ralph et al., 2017). Alternatively, 

because informativeness ratings closely approximate the external semantic input 

and minimally capture endogenous processing demands, engagement of 

dorsolateral ATL (and not ventrolateral ATL) would provide support for an anatomical 

distinction between processing semantic input (dorsolateral ATL) and engagement 

for both semantic input and endogenous semantic processing (ventrolateral ATL).  

Ambiguous. Sentences can be ambiguous when they have multiple or unclear 

meanings, or complex syntax that is difficult to parse. Resolving sentence-level 

ambiguity requires the semantic control system to facilitate selection of the 

appropriate meaning from multiple possible targets (Rodd et al., 2012; Vitello & 

Rodd, 2015). Semantic control is the ability to select appropriate, task-relevant 

conceptual information, inhibit or filter out unrelated or extraneous information, and 

resolve ambiguities in language (Jackson, 2021). In the present study, ambiguity 

was defined as having multiple interpretations, including syntactic and semantic 

ambiguity, which are common manipulations of sentence-level ambiguity that 

engage left IFG (Rodd et al., 2010). The definition also included the use of non-

literal, or figurative, language which, in addition to having multiple possible 

interpretations, engages the semantic control network in left IFG (Hauptman et al., 

2023; Nagels et al., 2013). Importantly, this definition did not include the use of irony 

or sarcasm, which has been shown to require socio-cognitive processing and 

pragmatic inference and recruit regions within the social cognition network (Bohrn et 

al., 2012; Spotorno et al., 2012). Given this, irony and sarcasm were instead coded 

as pragmatic content in the present study. 

Meta-analytic evidence suggests that distinct domains of socio-cognitive 

processing (e.g., empathy, theory of mind) require the semantic control system, in 

particular the anterior inferior frontal gyrus (IFG) (Diveica et al., 2021). This may 

indicate that social processing places increased demands on the semantic control 

system, an inference supported by greater activation within this network in response 

to social relative to matched, non-social concepts (Binney et al., 2016). Alternatively, 

prior studies examining social processing (with verbal or non-verbal stimuli) may not 

have appropriately matched the conditions on semantic control demands, limiting the 
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conclusions that can be made about semantic control system involvement in socio-

cognitive processing. Further, the engagement of the semantic control network has 

been minimally investigated in response to naturalistic social processing. To address 

this limitation, sentence-level ambiguity was coded to allow sentences with high 

versus low social and pragmatic (or other) content to be matched on general 

semantic control demands. 

Highly ambiguous sentences were expected to engage left IFG and posterior 

middle temporal gyrus (MTG), given the role of these regions in resolving sentence-

level ambiguity (Vitello & Rodd, 2015). For high versus low social content sentences, 

matched on ambiguity, any observed inferior frontal activation would indicate that 

socio-cognitive processing places increased demands on the semantic control 

system. 

Emotional. Social and emotional sentence-level content were coded 

independently given the anticipated coupling of these content types in narratives. 

Emotional content is conceptually separate from social content, processed within a 

distinct brain network (Kotz & Paulmann, 2011), and can be elicited by social or non-

social information. However, narratives tend to over-sample emotionally salient 

social information which can make differentiating the content types at the sentence 

level challenging. Capturing sentence-level emotional content has the additional 

advantages of allowing higher level features, such as prosody, to influence content 

ratings and being comparable to prior research that made use of subjective sentence 

and passage-level emotion ratings (Bestgen, 1992; Hsu et al., 2015). 

Highly emotional sentences were expected to engage amygdala, insula, cingulate 

cortex, and prefrontal regions based on prior research (Citron, 2012; Cunningham et 

al., 2004; Vigliocco et al., 2014). 

 

2 Methods 

2.1 Dataset 

The present study used the publicly available Le Petit Prince dataset 

(https://openneuro.org/datasets/ds003643/versions/1.0.4) (Li et al., 2022). This 

dataset is ideally suited for testing hypotheses related to semantic processing given 

the use of a multi-echo functional sequence that enhances signal in ventral aspects 

https://openneuro.org/datasets/ds003643/versions/1.0.4


97 
 

of ATL, the core semantic hub region. The pre-processed data were selected for the 

English-speaking participants who listened to The Little Prince audiobook during MRI 

scanning (n=48; 29 female; Mage=21.33). The audiobook duration was 94 minutes, 

and the book was presented in nine approximately 10-minute functional runs (range: 

8:42 – 12:07 minutes), interspersed with comprehension questions about the 

preceding excerpt. Participants gave written informed consent prior to participation 

and were paid, in accordance with the IRB guidelines of Cornell University.  

 

2.2 Narrative segmentation 

The first author segmented the narrative into sentences using the audio files 

provided with the dataset. This was done using version 3.0.2 of Audacity© (Audacity 

Team, 2021). Where ambiguous, sentence boundaries were confirmed via visual 

inspection of the waveform. Each sentence was saved as a separate audio file to 

ensure that ratings were given in response to the same content, as opposed to 

having raters pause the narrative after each sentence. None of the superfluous audio 

was removed. Where neutral pauses between sentences occurred, the inter-

sentence interval was divided roughly evenly between the prior and subsequent 

sentence. Where pauses for reflection or emphasis occurred (based on the judgment 

of the listener), the pause was preserved in the affected, usually preceding, 

sentence. 

Event segmentation was done jointly with sentence segmentation following the 

principles outlined in prior research (Radvansky & Zacks, 2017; Shin & DuBrow, 

2021). These principles suggest that information within an event is more predictable 

than information between events – any sudden or unexpected shift that made the 

narrative seem discontinuous was an indicator that a new event has begun. This 

shift could be in setting, emotional tone, character involvement, or action sequence, 

but, regardless of the source, the shift was used to define discrete boundaries 

around the meaningful events in the continuous narrative. The segmented narrative 

was comprised of 1,230 sentences and 40 events; each event contained between 8 

and 80 sentences. The same event and sentence segmentation procedure was 

applied, where needed, to three practice narratives: a story from the NyU-BU 

Contextually Controlled Stories Corpus (Lewis et al., 2020) (133 sentences, 20 

events), The Steadfast Tin Soldier (110 sentences, 8 events), and The Town 
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Musicians of Bremen (74 sentences, 6 events). The latter two practice narratives 

were chosen as close approximations of The Little Prince in reading level, genre, 

and narrator (both female). 

 

2.3 Content types 

Sentences were coded on five content types: semantic, social, pragmatic, 

ambiguous, and emotional. A detailed protocol with descriptions of the content types 

with example low, moderate, and high sentences and instructions on how to rate the 

sentences and describe events is shared on the project OSF page 

(https://osf.io/8c6nf/?view_only=b1471ce0572a4c098878bf82202b7b6a). The initial 

version of the protocol was drafted by the first author and refined with the input of 

last author and 4 volunteer raters while coding the three practice narratives. The 

protocol was finalized prior to coding The Little Prince. 

For the present analysis, the content coding was done using a categorical scale 

in which sentences were placed into low, moderate, or high categories for each 

content type. The sentence coding was done by the first author who developed the 

protocol and coded the practice narratives. To validate the coding approach, 

approximately 5% of the sentences (n=70) were semi-randomly selected, 

oversampling high content ratings, for review by the last author. To validate the 

assignment of sentences to categories, the 4 volunteer raters, trained using the 

protocol and the practice narratives, provided numeric ratings for all narrative 

sentences. The correspondence between the numeric and categorical coding 

approaches was high: there was a significant categorical condition difference (i.e., 

high vs low) in the numeric ratings across all content types. The details of this 

validation analysis using numeric ratings is provided on OSF and as supplementary 

information (Appendix C: Supplemental Figure 1). 

Semantic Content. To differentiate sentences with relatively high vs low 

semantic content, we defined semantic content based on how informative the 

sentence was. The amount or importance of the information conveyed was used to 

distinguish sentences. A high semantic sentence would move the story forward in a 

significant way, bring together plot points, or give the reader more information about 

the characters or event. The protocol explicitly stated that longer sentences should 

https://osf.io/8c6nf/?view_only=b1471ce0572a4c098878bf82202b7b6a
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not be given higher scores just because they are longer; although these sentences, 

due to their length, might contain more information on average. Definitions, or 

explanations of the meaning of a word or event, were always coded as at least 

moderately semantic, even if the definition was already known. The familiarity of a 

setting or situation might decrease the score, however. A familiar scene (e.g., 

description of a desert) might receive a lower semantic score than a highly unfamiliar 

scene in which the information cannot be anticipated or understood without 

explanation (e.g., description of the prince’s planet).  This is because no familiar 

image or understanding of the context can be relied upon, so the information must 

be processed more deeply.  

Sentences in which new information is presented were coded as more semantic 

than sentences with information that is already known to the reader. This was done 

because the reader is updating their understanding of the events within the narrative 

as the narrative unfolds, so newly presented semantic content is more impactful or 

significant when first introduced. This information is considered “new” only if it is 

being presented to the reader for the first time. Sentences in which a character 

learns information the reader already knows were not rated as highly semantic. 

Sometimes these sentences are used to increase the drama, emotion, or social 

significance of the event. In cases when re-presented information is used in this way, 

the semantic score may be low to moderate, but the social, emotional, or pragmatic 

score may be moderate to high. 

Social Content. Sentences were considered social if they involved or related to 

the characters in the narrative. In particular, socialness was defined as the way the 

characters interact together, how they understand the thoughts, beliefs, and motives 

of the other characters in their environment, and how the characters themselves 

behave in relation to the others in the environment. This included interactions 

between the reader and the narrator if, for instance, the narrator addresses the 

reader directly. The relative degree of social content depended on the type, duration, 

and significance of the interaction. Deeper interpersonal interactions or interactions 

that were significant because of the specific characters in the sentence were 

considered highly social. Social content was considered independently from 

emotional content, although a sentence may be both highly social and emotional.  



100 
 

We anticipated that capturing social content at the sentence-level may be 

potentially stymied by the presentation of social interactions in an audiobook in which 

one character speaks at a time. As a result, isolated sentences rarely contain 

character interactions. The interaction instead occurs over the course of several 

sentences, possibly capturing a dialogue between characters. Further, when an 

interaction is described by a narrator, social moments may feel impersonal or 

detached. To avoid underestimating social content, sentences in which a character is 

talking to or replying to another character or in which the narrator is describing a 

social interaction were considered at least moderately social. In addition, the 

preceding context was considered in rating all content types, but these properties of 

social interactions in audiobooks was further emphasized in the protocol.  

Pragmatic Content. Pragmatic content was defined as requiring reasoning or 

extrapolation beyond the literal meaning of the words in the sentence. Highly 

pragmatic sentences require an inference based on an understanding of the 

communicative intent of the character, narrator, or author and are context 

dependent; the words of the sentence imply one meaning, but understanding the 

character’s beliefs or attitudes changes the interpretation. As such, highly pragmatic 

sentences are those that would be incorrectly understood if extracted from the 

narrative and presented in isolation.  

To aid in differentiating ambiguous and pragmatic content, we noted that highly 

ambiguous sentences can have multiple possible interpretations, but highly 

pragmatic sentences have one correct interpretation that requires an inference to be 

made. Further, despite requiring a non-literal interpretation of the language used, 

sentences with figurative language were not considered pragmatic unless 

understanding the meaning required additional context about the prior events or 

characters. Given the ubiquity of pragmatic inference in everyday conversation and 

story-telling, it did not matter how easy or automatic the pragmatic inference was. 

Whether a sentence received a moderate or high pragmatic rating depended instead 

on the necessity of the inference to correctly understand the meaning of the 

sentence. 

Ambiguous Content. Sentences were considered ambiguous if they were 

confusing or vague. This definition was further divided into three types of ambiguity. 

The first was whether the sentence had multiple possible interpretations, such as 
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figurative language, in which there is not one correct interpretation. Readers may 

interpret these types of sentences slightly differently, so it is not straightforwardly 

clear what the character, narrator, or author is saying without thinking through the 

possible interpretations. The second type, syntactic ambiguity, was how difficult or 

effortful the meaning of sentence was to work out. These types of sentences may 

have an unusual syntactic construction, possibly with embedded clauses, that make 

it challenging to immediately understand. This ambiguity might be resolvable by re-

listening to the sentence, and the meaning of the sentence may not be ambiguous 

(i.e., what is described is exactly what happened), but the structure of the sentence 

resulted in initial confusion or required effort to comprehend. The third type, narrative 

ambiguity, occurs when it is not clear to the reader what is happening. For instance, 

the sentence may suggest that something unexpected happened (e.g., a loud noise), 

but there is not enough information to work out the details of what occurred. Re-

listening to the sentence would not resolve this type of ambiguity and would instead 

require additional information from subsequent sentences. A sentence containing 

any of these types of ambiguity was rated as moderately to highly ambiguous. 

Emotional Content. Emotional content was defined as how poignant a sentence 

is or the extent to which it relates to or evokes intense feelings. These strong 

feelings could be positive (e.g., joy, affection, excitement) or negative (e.g., 

heartbreak, regret, longing) and be experienced by a character, the narrator, or the 

reader. The relative intensity of the emotion described or felt determined whether the 

sentence was rated as highly emotional. Simple, less poignant sentences that state 

emotion explicitly (e.g., ‘I was mad’) were not given higher emotional content scores 

just because an emotion is named. Conversely, an emotion did not have to be 

explicitly named in the sentence for a sentence to be considered highly emotional. 

Some inference may be required to understand that a character is experiencing an 

emotion. This type of sentence may be considered both moderately pragmatic and 

emotional.  

 

2.4 Content coding 

Sentence content ratings were made using a survey generated in Qualtrics. For 

each sentence, the audio file was presented at the top of the page, and a matrix 

table with rows corresponding to each content type and columns corresponding to 
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the rating was presented below the audio file. Raters were able to listen to the 

sentence multiple times, if desired. This was done to facilitate independent 

reflections of each content type. In other words, the rater could listen to the sentence 

five times, thinking about a different content type after each listen. Limiting the raters 

to only 1 playback would have prioritized the first content type rated. Each sentence 

was presented on a separate page of the survey. Raters could navigate to prior 

sentences but were instructed to not revise ratings based on subsequent sentences. 

The content coding was done for all of the sentences within an event in one sitting 

without breaks to preserve the context as much as possible. After each event, raters 

were prompted to ‘Describe what happened during the event, including things that 

happened that were not explicitly described’. This allowed for a comprehension 

check and a comparison of the salient features of the event, including any pragmatic 

inferences made, across raters. 

 

2.5 Sentence matching 

After the content coding was complete, the high content sentences for each 

content type were selected for analysis. Potential matched low content candidate 

sentences were identified using number of words and sentence duration, calculated 

from the onset of the first word to the offset of the last word in the sentence. A 1:1 

matching approach was then implemented: for each high content sentence, an 

approximately-matched low content sentence was selected from the list of 

candidates. In addition to number of words and duration, the sentences were 

matched, where possible, on the other content types to reduce confounding effects 

(e.g., high and low semantic content sentences were matched on social, pragmatic, 

ambiguous, and emotional content).  

 

2.6 Neuroimaging analysis 

See Figure 2 for the distribution of matched sentences within the narrative, 

example High and Low sentences for each content type, and an overview of the 

analysis. 
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Figure 2. Distribution of sentences in narrative. The elongated horizontal bars 

show the full narrative divided into the nine approximately 10-minute long runs. 

Within each horizontal bar, the darkly coloured vertical lines (green for semantic, 

blue for social, orange for pragmatic, red for ambiguous, purple for emotional) 

correspond to the High content sentences, and the dark grey vertical lines 

correspond to the Low content sentences. The width of the lines is determined by 

sentence duration. Example High and Low content sentences are highlighted for 

each content type with a dotted line indicating their temporal position in the narrative. 

The number underneath the open circle indicates the onset time of the first word in 

the sentence relative to the beginning of the functional run. Sentence duration is 

indicated in italics underneath each highlighted sentence. A schematic of the 

analysis pipeline is provided at the bottom of the figure to illustrate the differences 

between the Semantic content (which included a modulator for number of words) 

and the rest of the content types (Social is shown as an example). 
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The pre-processed data were used for analysis, and the MRI acquisition 

parameters and pre-processing pipeline are outlined in the paper describing the 

dataset (Li et al., 2022). Briefly, anatomical data were skull-stripped and spatially 

normalized to the same stereotaxic space (MNI). Functional images were processed 

through a standard pre-processing pipeline which included slice-time correction, 

despiking, co-registration to the anatomical image, and normalization to MNI space. 

Functional images were acquired using a multi-echo EPI sequence and multi-echo 

independent component analysis was used to remove noise and motion artefacts. 

To examine neural processing across content type, duration modulated event 

related analyses were run in AFNI (Cox, 1996). The 9 functional runs were first 

scaled such that each voxel had a mean of 100 and then concatenated to generate a 

single time course for each participant. For each content type, the onset of the high 

or low sentences with respect to the start of the run and the sentence duration were 

modelled. For the semantic content analysis, the number of words was included as a 

modulating variable to regress out any differences due to sentence length. 

A linear mixed effects model with a fixed effect of content type and random effect 

of subject was run with the subject level activation maps from each content type 

condition as inputs using 3dLMEr (Chen et al., 2013). The simple effects of High > 

Low content was extracted from the model estimates for each content type. 

Permutation based cluster correction was implemented using 3dClustSim (Cox et al., 

2017) based on the spatial smoothness of the residuals file. This yielded a cluster 

size of 168 based on bisided first-nearest neighbour clustering (NN1) and an 

uncorrected voxelwise threshold of p < .05 and a cluster forming threshold of p < 

.011. The resulting cluster size threshold was applied to the group level activation 

maps for each High > Low content contrast. Results figures were generated using 

MRIcroGL (Rorden & Brett, 2000). All analysis code, study materials, and 

supplementary information are available on Open Science Framework: 

https://osf.io/8c6nf/?view_only=b1471ce0572a4c098878bf82202b7b6a. 

                                                           
1 Given that the resulting networks were relatively extensive, we also applied a more 
conservative threshold derived from an uncorrected voxelwise threshold of p <.01. 
These results are highly consistent with those reported in the results sections and 
are shared on OSF and as supplementary information (Appendix C: Supplemental 
Figure 2). 
 

https://osf.io/8c6nf/?view_only=b1471ce0572a4c098878bf82202b7b6a
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3 Results 

3.1 Sentence matching 

The categorical coding approach identified 120 semantic, 212 social, 77 

pragmatic, 46 ambiguous, and 99 emotional sentences with high content ratings. 

Well-matched low content sentences were not available for 19 of the high social and 

5 of the high semantic content sentences, so these were removed from analysis. The 

final analysis consisted of 230 semantic (115 high; 115 low), 386 social (193 high; 

193 low), 154 pragmatic (77 high, 77 low), 92 ambiguous (46 high, 46 low) and 198 

emotional (99 high, 99 low) stimuli. Some sentences were used to capture more than 

one (high or low) content type. 

Sentence matching was checked using two sample t-tests to compare the 

continuous variables (number of words and sentence duration) and Fisher’s Exact 

Test to compare the categorical variables (other content type ratings) in the High 

versus Low conditions. With the exception of semantic sentences, the within content 

type high and low sentences were matched on number of words and sentence 

duration. Unsurprisingly, it was not possible to match high and low semantic 

sentences on these variables: the high semantic sentences, on average, had more 

words and were longer in duration than the low semantic sentences. In matching 

across the other content types, social and emotional ratings were highly correlated 

and could not be manipulated independently. In other words, highly social sentences 

were also frequently moderately to highly emotional, and there were relatively few 

low social sentences that were also moderately to highly emotional for matching. The 

analogous was true for emotional content: there were fewer high social, low emotion 

sentences than there were high social, high emotion sentences. Apart from this, the 

high and low sentences were well-matched across all content types (p > .05). See 

Table 1 for the detailed condition matching information.  
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Table 1 

High and low content sentence matching 

 Num. 
words 

Duration 
Semantic Social Pragmatic Ambiguous Emotional 

 L M H L M H L M H L M H L M H 

Semantic                  

High 24.61 7.93 - - 115 49 49 17 100 9 6 93 17 5 84 23 8 
Low 12.09 3.94 115 - - 49 49 17 100 9 6 93 17 5 86 23 6 

p <.001 <.001 - 1 1 1 0.92 

Social                  

High 13.65 3.99 67 108 18 - - 193 163 18 12 165 24 4 32 111 50 
Low 13.41 4.06 62 105 26 193 - - 164 22 7 164 22 7 135 42 16 

p 0.75 0.81 0.44 - 0.43 0.70 <.001 

Pragmatic                  

High 12.62 3.90 41 30 6 7 42 28 - - 77 75 2 0 45 22 10 
Low 12.84 3.88 38 34 5 7 43 27 77 - - 73 3 1 45 22 10 

p 0.85 0.95 0.82 1 - 0.68 1 

Ambiguous                  

High 15.00 4.74 12 29 5 18 24 4 44 2 0 - - 46 30 15 1 
Low 15.39 4.64 12 29 5 17 25 4 41 4 1 46 - - 35 10 1 

p 0.83 0.86 1 1 0.43 - 0.67 

Emotional                  

High 11.80 3.55 43 48 8 17 26 56 79 10 10 91 7 1 - - 99 
Low 11.88 3.61 45 46 8 18 64 17 81 9 9 93 5 1 99 - - 

p 0.94 0.86 1 <.001 0.93 0.88 - 

Note. Num., Number. L, Low. M, Moderate. H, High. Within condition high and low sentence values are bolded. Red shading 

indicates a lack of matching between the low and high sentences for a given content type.  
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3.2 Neuroimaging analysis 

The coordinate information for all results is provided in Table 2. 

 

3.2.1 Semantic content 

Listening to sentences with high compared to low semantic content was 

associated with activation in a large, bilateral network (Figure 3). This network 

appeared to overlap considerably with, although was more extensive and bilateral 

than, the ‘universal’ language network identified using localizers across a diverse set 

of languages (Malik-Moraleda et al., 2022).  

Specifically, high semantic content was associated with left ventral ATL (fusiform 

gyrus) and lateral temporal and parietal activation extending from a superior portion 

of ATL posteriorly into superior, middle, and posterior inferior temporal gyri, inferior 

parietal lobule and postcentral gyrus. There were comparatively smaller right 

hemisphere clusters of activation in inferior, middle, and superior temporal gyri and 

fusiform and in right inferior parietal lobule and portions of postcentral gyrus. There 

was frontal activation in left inferior, middle, and superior frontal gyri, and smaller 

clusters in analogous right hemisphere frontal regions. Activation in hippocampus, 

middle cingulate cortex, precuneus, and both cerebellar hemispheres was 

additionally observed for high versus low semantic content sentences.  

 

Figure 3. High > Low semantic content results. Thresholded Z-score statistical 

map showing lower (purple) to higher (red) values. 
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3.2.2 Social content 

Listening to sentences with high compared to low social content was associated 

with activation in left superior (i.e., dorsolateral) ATL and bilateral ventrolateral ATL 

as well as left angular gyrus, superior medial gyrus, precuneus, inferior occipital 

gyrus, and the right posterior lobe of the cerebellum (Figure 4).  

 

 

Figure 4. High > Low social and pragmatic content results. Thresholded Z-score 

statistical map showing lower (purple) to higher (red) values. 

 

3.2.3 Pragmatic content 

There was high correspondence between the social content and pragmatic 

content results. Listening to sentences with high compared to low pragmatic content 

was similarly associated with activation in left ventrolateral ATL, a small portion of 

dorsolateral ATL, left angular gyrus, precuneus, and left superior medial gyrus 

(Figure 4). The results were left lateralized, however, with no associated right ATL 

activation. In addition, high versus low pragmatic content was associated with 

activation in left middle frontal gyrus and the orbitalis portion of left inferior frontal 

gyrus. Importantly, the similarly between the left hemisphere regions engaged by 

social and pragmatic content was observed despite the fact that the content types 

were orthogonally manipulated. Social content was matched between the high and 
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low pragmatic sentences, and, inversely, pragmatic content was matched between 

the high and low social sentences. 

There was overlapping and differential engagement of the ATL subregions for 

semantic, social, and pragmatic content (Figure 5). Only semantic content engaged 

ventral ATL, whereas both semantic and social content engaged dorsolateral ATL. 

Only pragmatic and social content engaged the same anterior portion of ventrolateral 

ATL, centred on anterior MTG. A slightly posterior portion of anterior MTG 

(ventrolateral ATL) showed overlapping sensitivity for all three content types: general 

semantic, social, and pragmatic inference. 

 

 

Figure 5. ATL engagement for semantic, social, and pragmatic content. A 

close-up of the lateral (left panel) and inferior (right panel) view of left ATL showing 

the conjunction of the semantic (green), social (blue), and pragmatic (red) results. 

Overlap outside of the window outlined in black has been greyed out. 

 

3.2.4 Ambiguous content 

Listening to sentences with high compared to low ambiguous content was 

associated with activation in lingual and superior occipital gyri, right middle and 

superior frontal gyrus, left middle frontal and precentral gyri, right paracentral gyrus, 

anterior cingulate cortex, bilateral supramarginal gyrus, and bilateral insula (Figure 
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6). The left insular cluster included portions of the inferior frontal gyri: 9.5% of the 

cluster was the triangularis portion of IFG, 7.8% was the opercularis portion, and 

2.2% was the orbitalis portion. 

 

Figure 6. High > Low ambiguous content results. Thresholded Z-score statistical 

map showing lower (purple) to higher (red) values. In order to visualize the left 

insular cluster that includes portions of inferior frontal gyrus, the left lateral render 

(far left) has a cut-out along the X-axis (x = -56). 

 

3.2.5 Emotional content 

Listening to sentences with high compared to low emotional content was 

associated with activation in anterior, middle, and posterior cingulate cortex, 

precuneus, bilateral middle and superior occipital gyri, right hippocampus and 

fusiform gyrus (Figure 7). 

 

Figure 7. High > Low emotional content results. Thresholded Z-score statistical 

map showing lower (purple) to higher (red) values. 
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Table 2 

Coordinate Table 

Contrast 
Cluster 

Size 
Hem 

Brain Region 
Peak Voxel 

Brain Region 
Highest Overlap [%] 

MNI 
Coordinates 

X Y Z 

Semantic High > Semantic Low 23537 L Heschl’s Gyrus Middle Temporal Gyrus [15%] -36 -27 14 
 4220 R Heschl’s Gyrus Superior Temporal Gyrus [28%] 40 -23 7 
 1976 R Angular Gyrus Angular Gyrus [53%] 46 -61 29 
 1539 R Cerebellum (Crus 1) Cerebellum (Crus 2) [50%] 16 -73 -35 
 1426 R Paracentral Lobule Paracentral Lobule [33%] 8 -32 66 
 1180 L Precuneus Precuneus [32%] -4 -54 12 
 1103 L Rectal Gyrus Rectal Gyrus [37%] 2 49 -26 
 756 R Middle Orbital Gyrus Middle Orbital Gyrus [46%] 44 48 -14 
 689 R Fusiform Gyrus Parahippocampal Gyrus [38%] 26 -32 -21 
 492 R Cerebellum (IX) Cerebellum (IX) [65%] 4 -53 -58 
 293 R Middle Frontal Gyrus Inferior Frontal Gyrus (Triangularis) 

[53%] 
46 36 21 

 206 R Precentral Gyrus Postcentral Gyrus [61%] 48 -24 66 
 199 R Postcentral Gyrus Postcentral Gyrus [57%] 63 -11 47 
 176 L Precuneus Hippocampus [32%] -20 -44 4 

Social High > Social Low 2410 L Superior Medial Gyrus Superior Medial Gyrus [47%] -6 56 36 
 1838 L Medial Temporal Pole Middle Temporal Gyrus [38%] -51 12 -35 
 1250 R Inferior Occipital Gyrus Middle Occipital Gyrus [38%] 30 -86 -15 
 1141 L Fusiform Gyrus Middle Occipital Gyrus [44%] -36 -82 -14 
 1060 L Precuneus Precuneus [39%] -4 -55 28 
 982 R Medial Temporal Pole Medial Temporal Pole [39%] 48 12 -42 
 675 L Middle Temporal Gyrus Angular Gyrus [35%] -53 -55 21 
 424 R Middle Temporal Gyrus Middle Temporal Gyrus [40%] 48 -22 -11 
 271 R Cerebellum (Crus 2) Cerebellum (Crus 1) [54%] 26 -81 -48 
 226 R Superior Frontal Gyrus Superior Frontal Gyrus [51%] 14 39 52 
 211 L Rectal Gyrus Middle Orbital Gyrus [42%] -2 61 -16 

Pragmatic High > Pragmatic Low 2437 L Precuneus Precuneus [34%] -6 -55 23 



112 
 

 2245 L Superior Frontal Gyrus Superior Medial Gyrus [33%] -14 49 50 
 1825 L Inferior Temporal Gyrus Middle Temporal Gyrus [64%] -55 -5 -36 
 1575 L Angular Gyrus Angular Gyrus [50%] -53 -62 36 
 431 L Inferior Frontal Gyrus 

(Orbitalis) 
Inferior Frontal Gyrus (Orbitalis) [54%] -48 34 -22 

Ambiguous High > Ambiguous Low 9996 L Superior Occipital Gyrus Lingual Gyrus [11%] -14 -78 44 
 3078 L Middle Cingulate Gyrus Precuneus [17%] -16 -40 50 
 2783 R Superior Frontal Gyrus Anterior Cingulate Cortex [18%] 20 -1 72 
 749 R Insula Lobe Insula Lobe [63%] 34 20 8 
 723 R Supramarginal Gyrus Supramarginal Gyrus [ 57%] 55 -32 29 
 623 L Insula Lobe Insula Lobe [66%] -30 27 4 
 526 L Supramarginal Gyrus Supramarginal Gyrus [62%] -57 -32 29 
 328 R Middle Frontal Gyrus Middle Frontal Gyrus [77%] 32 42 33 
 285 L Precentral Gyrus Precentral Gyrus [38%] -24 -11 56 
 196 L Precentral Gyrus Precentral Gyrus [73%] -40 -14 71 
 174 L Middle Frontal Gyrus Middle Frontal Gyrus [98%] -30 40 33 

Emotional High > Emotional Low 10143 R Middle Cingulate Gyrus Precuneus [6%] 6 -26 29 
 680 R Anterior Cingulate Cortex Anterior Cingulate Cortex [34%] 2 28 25 
 288 R Fusiform Gyrus Hippocampus [27%] 38 -37 -12 

Note. Hem, Hemisphere; L, Left; R, Right. Cluster size is determined by the number of 2mm3 voxels. Highest Overlap [%] is the 

percent overlap between each result cluster and atlas defined regions (based on the Eickhoff-Zilles macro labels from the N27 (MNI 

space) atlas). MNI coordinates correspond to the voxel with peak activation within each cluster. Voxels were defined as neighbours 

based on faces touching (NN=1). 
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4 Discussion 

Studies using natural language and narrative stimuli suggest important deviations 

from the hub-and-spoke neural architecture of the semantic system. Narrative stimuli 

engage a much broader network alongside the transmodal ventral ATL hub (Deniz et 

al., 2019; Huth et al., 2012, 2016) and particularly engage dorsolateral ATL (Malik-

Moraleda et al., 2022). In conjunction with our other recent studies (Chapter 3; 

Chapter 4; Chapter 5), the present results also suggest differences in sensitivity to 

internally-driven (endogenous) semantic processing within the ATL. In this model, 

dorsolateral ATL primarily responds to linguistic input whereas ventrolateral ATL is 

additionally engaged by endogenous semantic processing demands. This claim has 

implications for how conceptual and inferential social content, which may rely on the 

semantic and semantic control systems (Balgova et al., 2022; Diveica et al., 2021), is 

processed during narrative comprehension. The present study quantified several 

content types, focusing on semantic, social, and pragmatic content, to investigate the 

extent to which the semantic and semantic control systems are involved in social 

processing, and whether pragmatic processing, which requires abstract inference 

that runs counter to the stated word-level meaning of the sentence, engages similar 

social or semantic brain regions. Results for each content type are discussed in the 

following sections. 

 

4.1 Semantic content 

Listening to sentences with high semantic content engaged a broad, bilateral 

language network, including the transmodal hub in ventral ATL. These results are 

consistent with prior naturalistic investigations of semantic processing (Deniz et al., 

2019; Huth et al., 2012, 2016; Thye et al., 2023; Wu et al., 2022) and with the 

language comprehension network identified across diverse languages, especially in 

the left hemisphere (Malik-Moraleda et al., 2022). This convergence validates the 

sentence-level coding approach adopted here and provides further insight into the 

naturalistic language processing. The universal language network (Malik-Moraleda et 

al., 2022) was similarly identified using naturalistic stimuli (i.e., stories) but differed 

from the current study by using a non-speech baseline condition (i.e., acoustically 

degraded speech). This isolated regions responsive to language comprehension 

whereas the current study, by using a baseline condition with coherent language, 
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identified the bilateral network of regions sensitive to semantic content. Despite this 

important distinction, both approaches identify approximately the same network, with 

degree of left superior temporal gyrus engagement being the main difference. 

Interestingly, the network identified in the present study included a smaller portion of 

anterior STG (i.e., dorsolateral ATL) than the universal language network. This might 

suggest that portions of STG are sensitive to quantity of linguistic input (which was 

statistically controlled in the high-versus-low semantic contrast) whereas other 

portions are additionally sensitive to semantic input specifically. 

Although the results are broadly consistent with a hub-and-spoke architecture 

and the role of ATL as a graded hub (Lambon Ralph et al., 2017), they suggest that 

naturalistic semantic processing engages a much broader network than was inferred 

from studies using experimental manipulations derived from non-naturalistic stimuli. 

In addition to engagement of the ventral ATL hub in anterior fusiform gyrus, 

dorsolateral and (to a much lesser extent) the anterior portion of MTG in ventrolateral 

ATL were engaged by sentences with high semantic content (Figure 5). This is 

consistent with other recent studies of naturalistic story comprehension (Malik-

Moraleda et al., 2022)(Chapter 5) and with the distinction between processing 

semantic input versus endogenous semantic processing. That is, dorsolateral ATL 

may be particularly sensitive to quantity or informativeness of semantic input, which 

is why it is identified in the universal language network and the present study, 

whereas ventrolateral ATL (i.e., anterior portions of MTG and ITG), which is less 

robustly identified in either network, is also engaged for endogenous semantic 

processing such as updating the situation model of the overall narrative. As a result, 

ventrolateral ATL is active for both high and low semantic input sentences, though it 

is engaged in somewhat different semantic processes: during high semantic input 

sentences it is engaged in processing that input, during low semantic input 

sentences it remains active but is engaged in endogenous semantic processing. The 

engagement of the ventrolateral ATL is then approximately, but not exactly, matched 

between the high and low semantic contrast. When stimuli are presented in a 

random order without a narrative context (i.e., typical lexical semantics experiments), 

this region is consistently more active in the semantic condition because there is no 

endogenous semantic processing to engage it during the low/non-semantic 

condition. 
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4.2 Social content 

Highly social content engaged bilateral ATL, in particular both the ventrolateral 

and dorsolateral portions of left ATL, but not the hub in ventral ATL. The ATL results 

partially overlap with the semantic content results, though, in MTG, the semantic 

content effects were more posterior than the social content effects, and a larger 

portion of dorsolateral ATL was engaged for social compared to semantic content 

(Figure 5). Critically, engagement of ventrolateral ATL was observed despite 

matching the quantity of semantic content in the high and low social conditions. This 

is consistent with the claim that social knowledge, like other types of semantic 

information, is processed within ventrolateral ATL (Balgova et al., 2022; Binney & 

Ramsey, 2020) and provides critical converging evidence in support of this claim by 

observing the same pattern during naturalistic social processing. We did not observe 

engagement of the ventral ATL hub, however, suggesting that there are functional 

differences between the ventral and ventrolateral ATL, consistent with the graded 

hub account (Lambon Ralph et al., 2017).  

Sensitivity within the semantic system for social processing may indicate that a 

social semantic network exists alongside the sensory-motor semantic network (Lin et 

al., 2018; Zhang et al., 2021). In this view, the social semantic network displays two 

key features: (1) sensitivity to social information and (2) sensitivity to the 

accumulation of semantic information which may be particularly relevant for social 

processing. Indeed, activation in both ATL and TPJ increases as the constituent size 

of sentences increases, reflecting semantic accumulation (Pallier et al., 2011), but 

also when the social and emotional content increases (Mellem et al., 2016). 

Critically, the semantic accumulation effect appears most strongly in dorsolateral 

ATL, in line with the claim that this region is sensitive to the external semantic 

processing driven by the quantity of input. In a prior study examining processing of 

words, sentences, and passages that were given subjective social ratings, 

dorsolateral ATL was consistently engaged by high relative to low social content 

across all linguistic hierarchies whereas dorsomedial prefrontal cortex, precuneus, 

and bilateral TPJ were engaged only for highly social sentences and passages 

(Zhang et al., 2021). These results broadly align with the results of the present study, 

but we provide an alternative interpretation. Engagement of ATL, in particular the 

dorsolateral subregion, across linguistic hierarchies and in response to increases in 
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social content ratings is consistent with the graded hub account. Activation in this 

region but also the ventrolateral region is observed in the present study, and social 

concepts relative to matched non-social concepts have been shown to similarly 

engage ventrolateral but not dorsolateral ATL (Binney et al., 2016). Further, unlike 

the current study, Zhang et al. only rated social content and was thus not able to 

match the high and low conditions on semantic, or other, content types. In addition, 

sentences or shorter passages were used instead of a protracted narrative. 

According to the endogenous semantic processing account, social content provided 

with minimal context may not drive endogenous processing and, thus engage 

ventrolateral ATL, to the same extent as the same information presented in context, 

requiring integration into a much more elaborated situation model. We argue that the 

results suggest that ventrolateral ATL is particularly sensitive to internal or 

endogenous semantic processing during narrative comprehension, and that social 

content is processed with the semantic system.  

There was also evidence of engagement of regions more commonly associated 

with social cognitive processing, such as prefrontal regions and precuneus (Adolphs, 

2001, 2009). Activation in right supramarginal and angular gyri (i.e., TPJ) was 

notably absent. This region may be specifically sensitive to theory of mind 

processing, which was not explicitly manipulated in the present study (Saxe & 

Kanwisher, 2003). However, portions of the social cognition network, in particular 

medial frontal regions, are engaged during narrative comprehension more generally, 

even in the absence of social content (Jacoby & Fedorenko, 2020). Narrative 

processing is also known to engage precuneus, possibly due to the longer temporal 

receptive window of this region (Hasson et al., 2008; Xu et al., 2005). In the current 

study, highly semantic content was associated with activation in precuneus, although 

it was engaged to a greater extent by social and pragmatic content, consistent with 

the role of this region in social processing (Adolphs, 2009). Alternatively, activation in 

precuneus and other default mode network regions (i.e., posterior cingulate, 

dorsomedial prefrontal cortex) may evidence the connections between ventrolateral 

ATL and the DMN that facilitate endogenous semantic processing.  
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4.3 Pragmatic content 

Pragmatic and social content engaged a similar network of regions, which may 

be because pragmatic inference requires social cognition about the narrator’s or 

character’s intentions and mental states (Levinson, 1983). However, the overlap did 

not occur in the core theory of mind region within right TPJ. In addition, processing of 

highly pragmatic narrative content was left lateralized, despite some evidence that 

right hemisphere regions play a greater role in pragmatic processing (Cutica et al., 

2006). Importantly, social and pragmatic content ratings were not merely proxies of 

each other. The ratings did not identify the same set of sentences, although some 

sentences were both highly social and highly pragmatic. Social content was matched 

between the high and low pragmatic sentences, and pragmatic content was matched 

between the high and low social sentences. In other words, the comparison is 

analogous to a 2x2 factorial experiment that independently manipulated social and 

pragmatic content, but these sentences were presented in the context of one 

protracted narrative. 

Interestingly, both social and pragmatic content engaged the ventrolateral ATL. 

Although not a region consistently implicated in pragmatic processing (Tomasello, 

2023), a prior study using passive processing of indirect versus direct statements in 

dialogues similarly reported engagement of the same ventrolateral portion of ATL 

(Bendtz et al., 2022). This may suggest that the semantic system is engaged for 

abstract, inferential socio-cognitive processing, a claim that has been empirically 

supported using non-verbal social cognition tasks (Balgova et al., 2022). In line with 

this account, we observe engagement of this ventrolateral region for highly social 

narrative content, but observing the same engagement for pragmatic content 

provides compelling evidence that the semantic system is encoding both 

representational and inferential social knowledge. In other words, the semantic 

system is not only engaged for processing social concepts, but appears to also be 

engaged when processing abstract social information that is not simply in the words 

comprising the sentence.  

Pragmatic inference requires using narrative context to reach a non-literal 

interpretation of the input, which is a type of endogenous semantic processing. Thus, 

these results provide support for the claim that endogenous semantic processing 

engages ventrolateral ATL, and not dorsolateral ATL which was minimally active 
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here. An alternative explanation is that ventrolateral ATL may be particularly 

sensitive to pragmatic and/or social content, but evidence in support of this claim is 

inconsistent (Binney et al., 2016; Zahn et al., 2007) and runs counter to the empirical 

support for its role in domain-general semantic processing (Balgova et al., 2022; 

Binney et al., 2010; Lambon Ralph et al., 2017). 

Instead, the narrative content may drive endogenous semantic processing 

demands. Social and pragmatic content is particularly important to the narrative used 

here. The interactions between the narrator and the little prince or between the little 

prince and the inhabitants of the planets he visits provide the critical plot-progressing 

information that requires updating situation models. The processing of pragmatic 

inference is also likely to require significant internal semantic processing – the 

listener must reflect on the mental states of the agents in the scene and situate the 

information in context, recalling the relevant preceding information. In line with the 

endogenous semantic processing framework, this may explain why the ventrolateral 

ATL, in particular anterior MTG, is robustly engaged across the social and pragmatic 

results, whereas dorsolateral ATL is minimally engaged by pragmatic content 

(Figure 5). Centering of social content is common in narratives, but not universal; 

narratives that oversample a very different kind of content may drive engagement of 

the ventrolateral region in different ways. Take, for instance, a mystery novel in 

which the factual information and details required to problem solve and anticipate the 

outcome are more critical to the plot and overall understanding of the context. In this 

case, these details, rather than the social content, may drive engagement of 

ventrolateral ATL to a greater extent than the social content which does not enable a 

resolution of the plot tension.  

In reconciling the current results with prior research on neuropragmatics, it is 

important to consider the type of pragmatic inferences captured with subjective 

sentence content ratings. As an example, consider the widely studied case of scalar 

implicatures (Noveck & Reboul, 2008) – whether a word like “some”, which could 

logically include the case of “all”, is taken to include that meaning or not. Such 

underspecified scalar terms do occur in the narrative, for example in “Now there 

were some terrible seeds on the planet of the little prince, there were the seeds of 

baobab trees.” The listener would likely assume (pragmatically infer) that not all of 

the seeds on the little prince’s planet were terrible (nor that all terrible seeds were 
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only on the little prince’s planet). However, this sentence received a low pragmatic 

content rating because the subjective sense of making a pragmatic inference is 

much stronger for conversational implicatures in which a character responds to the 

implied meaning of the speaker (Grice, 1989). An interaction between the king and 

the little prince demonstrates this well:  

"Yes," said the little prince, "but I can judge myself anywhere, I do not have to live 

here.”  

"Hum! Hum!" said the king. "I am fairly certain that somewhere on my planet 

there is an old rat.” 

On the surface, knowledge of a rat inhabitant is not relevant to the exchange unless 

we understand the king’s inference that the little prince is asking for someone to 

judge and the king’s intention to have the prince judge this rat. This sentence 

received a high pragmatic content rating.  

In addition to conversational implicatures, the content ratings identified other 

routinely studied pragmatic phenomena: verbal irony and sarcasm. Ironic utterances 

are those in which the meaning is the opposite of what is said, such as when the 

narrator, having received harsh appraisal for several bad drawings, says, “Thus, I 

abandoned at the age of six a magnificent career as a painter.” Sarcasm is a type of 

verbal irony but is used to criticize or condemn the actions of another, such as when 

the narrator, judging the close-mindedness of the grown-ups, says, “and the 

grownup was glad to know such a sensible man.” Understanding an ironic or 

sarcastic utterance requires inferring the mental state and intention of the speaker 

(Wilson, 2006, 2009). Neither of these examples would be correctly interpreted at 

face value without prior knowledge of the narrator’s experiences and attitudes and, 

as a result, received high pragmatic content ratings. This is an important point of 

intersection between the current naturalistic work and prior studies of pragmatic 

processing that used more simplified stimuli. The subjective pragmatic content 

ratings captured conversational implicatures and non-literal language of the same 

type and form as those manipulated in non-narrative stimuli (Blome-Tillmann, 2013).  

Interestingly, the results overlap with the network observed for processing non-

literal compared to literal language (Bohrn et al., 2012; Hauptman et al., 2023; 

Reyes-Aguilar et al., 2018). Comprehension of non-literal language is not wholly 
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separable from pragmatic processing, although the former does not inherently 

require socio-cognitive processing. Some types of non-literal language, such as irony 

and sarcasm discussed above, do require pragmatic inference and are studied 

independently as pragmatic phenomena (Wilson, 2006, 2009). Activation in left 

superior frontal gyrus, inferior frontal gyrus, inferior parietal lobule, and precuneus is 

consistent with the network of regions that support processing of verbal irony and 

sarcasm (Obert et al., 2016; Spotorno et al., 2012), and aligns with the lack of right 

hemisphere lateralization broadly observed in meta-analyses of non-literal language 

processing (Bohrn et al., 2012; Hauptman et al., 2023; Reyes-Aguilar et al., 2018). 

Recruitment of left IFG for pragmatic inferences as well as for non-literal language 

that is not social (e.g., metaphors) may be driven by the general role of IFG in 

incongruity detection and resolution (Whitney et al., 2012). The present results 

suggest that processing these pragmatic phenomena engages similar brain regions 

to processing other kinds of strongly social interaction content. 

 

4.4 Ambiguous content 

Highly ambiguous sentences engaged only a small portion of left IFG and none of 

pMTG, which suggests only partial engagement of the semantic control system. 

Instead, activation was seen in bilateral insula, anterior cingulate cortex, small frontal 

clusters (right paracentral gyri, middle and superior frontal gyri), bilateral 

supramarginal gyri, and superior occipital gyrus. This result is only partially 

consistent with the predictions derived from an established body of research on 

sentence-level ambiguity resolution. We suggest this may be due to several possible 

factors.  

First, with only 46 highly ambiguous sentences, the analysis may have been 

underpowered. Even so, we might anticipate that the strongest statistical association 

would be present in left IFG due to the role of this region in ambiguity resolution and 

control demands more generally (Jackson, 2021; Rodd et al., 2010, 2010), but the 

peak voxel of the left IFG cluster was in the insula. Second, ambiguity was defined 

coarsely as difficult-to-understand sentences, which included (1) syntactic ambiguity, 

(2) semantic ambiguity, and (3) narrative ambiguity. Manipulating syntactic and 

semantic ambiguity at the sentence level is an established approach for studying 

ambiguity resolution, so the incorporation of these definitions was motivated by this 
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prior work (Rodd et al., 2010). It is unclear, however, how people resolve narrative 

ambiguities, and it is also less straightforward to measure. This definition was 

included after discussions while coding the practice narratives because it became 

evident that narratives frequently present confusing, indefinite information that 

results in a subjective awareness of ambiguity. Incorporation of this third type of 

ambiguity alongside more traditionally studied sources of sentence-level ambiguity is 

consistent with theories of semantic control and ambiguity resolution (Jackson, 2021; 

Lambon Ralph et al., 2017; Vitello & Rodd, 2015). These theories make reference to 

general mechanisms such as inhibition of irrelevant information, selection among 

competing alternatives, and controlled retrieval, all of which are required in the 

narrative ambiguity case. Third, narrative ambiguity was more common than 

syntactic or semantic ambiguity, which is unsurprising given that narratives, 

especially those written for children, would tend to avoid complex or confusing 

language. As a result, the ambiguity contrast minimally captured syntactic and 

semantic ambiguity.  

Consider the following sentence from the narrative: “That is right, and if you are 

good I will give you a rope to tie him up with during the day and a stake.” The word 

“stake” is a homophone because it sounds like the word “steak” but means 

something different. Hearing (and not seeing) that word requires resolving 

competition between the different interpretations; however, in context, the sentence 

was readily understood and rated as low ambiguity. Consider instead this example: 

“It was in this way that on the third day, I came to know of the tragedy of the 

baobabs.” This sentence was given a high ambiguity rating because it is not clear 

why baobabs, a seemingly innocuous tree, were tragic. This sentence was 

presented with minimal preceding information to aid in disambiguating the meaning. 

These narrative moments are what readers find subjectively ambiguous in 

narratives. The subjective awareness of the need to resolve ambiguity in narratives 

is thus capturing something quite different than previous studies of ambiguity 

resolution. 

 

4.5 Emotional content 

There was evidence of engagement of the limbic system (cingulate cortex, right 

hippocampus, thalamus) when listening to highly emotional content in a narrative, 
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which aligns with prior research and is consistent with the role this system plays in 

processing emotion (Barson et al., 2020; Palomero-Gallagher & Amunts, 2022; 

Rolls, 2019). Activation in amygdala was notably absent, however. We also did not 

observe a right hemisphere bias in processing emotional narrative content.  

There are several possible explanations for why our results diverge from 

research on emotion processing in this regard. First, emotion processing may be 

highly dependent on context. Tasks such as reading isolated emotion words or 

seeing static images of (often exaggerated) facial expressions may artificially 

constrain emotional experience compared to naturalistic stimuli that evoke a more 

complex emotional experience. As a result, context-free stereotyped emotion stimuli 

may engage brain networks that differ substantially from those engaged when 

emotions are experienced during narrative comprehension or natural language 

processing (Saarimäki, 2021).  

Second, social and emotional content were confounded: highly emotional 

sentences also tended to be highly social. As a result, social content could not be 

subtracted from the emotion analysis. We suspect that this is a prevalent issue 

outside the present work given that social content is rarely considered in studies of 

emotional content in sentences and passages (e.g., Bestgen, 1992; Hsu et al., 

2015). Narratives may also oversample social content, resulting in relatively few 

emotional moments that occur outside of a social context. Despite this, the emotion 

content results isolated a distinct network from the social content results, suggesting 

that the content types were not merely capturing the same underlying narrative or 

cognitive property. 

Third, our emotion ratings, like all the content ratings, were made one sentence 

at a time, as the rater listened to the narrative. The interruptions to record sentence 

ratings may reduce the emotional impact of the sentences and events by taking the 

rater out of the moment. Highly emotional moments may thus have been coded as 

only moderately emotional and excluded from analysis. The categorical coding 

approach partially provides a buffer against this problem, however. The differences 

between low versus moderate and moderate versus high are easier to distinguish 

than numeric ratings, which are more impacted by idiosyncratic differences in 

perception and experience of the narrative. A related consideration is that emotional 

reactions to narrative content may be more subjective or variable across people than 
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the other content types examined in this study. This highlights the challenge of 

selecting context-free stimuli and tasks that generalize to naturalistic processing 

(Yarkoni, 2022). 

 

5 Conclusion 

The results of the present study suggest that social processing is supported by 

the semantic system, particularly ventrolateral ATL, and that functional subregions 

within ATL support different aspects of narrative comprehension. During natural 

language or narrative processing, ventrolateral ATL is engaged by internally-driven 

semantic processing demands. Sentences with high semantic (i.e., informative) 

content engaged the ventral ATL hub and dorsolateral ATL more than less 

informative sentences did. Highly social and highly pragmatic sentences, matched 

on semantic input demands, engaged ventrolateral ATL and not the ventral ATL hub. 

We argue that this is due to the importance of social and pragmatic content in 

progressing the narrative plot; that is, engagement in endogenous semantic 

processing. Although the present data are consistent with an alternative account that 

ventrolateral ATL is specialized for social processing, this would be inconsistent with 

extensive evidence of the role of ventrolateral ATL in domain-general semantic 

processing. The functional role of ventrolateral ATL may have been missed in prior 

single word or sentence-level studies of semantic cognition because they present 

stimuli in a random order with minimal context, which minimizes endogenous 

semantic processing. Taken together, this study indicates that social processing, 

including abstract pragmatic inference, is supported by ventrolateral ATL in 

naturalistic contexts. 
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Chapter 5 

THE NEURAL BASIS OF NATURALISTIC SEMANTIC AND SOCIAL COGNITION 

 

Abstract 

Decoding social environments and engaging meaningfully with other people are 

critical aspects of human cognition. Multiple cognitive systems, including social and 

semantic cognition, work alongside each other to support these processes. This 

study investigated shared processing between social and semantic systems using 

neuroimaging data collected during movie-viewing, which captures the multimodal 

environment in which social knowledge is exchanged. Semantic and social content 

from movie events (event-level) and movie transcripts (word-level) were used in 

parametric modulation analyses to test (1) the degree to which semantic and social 

information is processed within each respective network and (2) engagement of the 

same cross-network regions or the same domain-general hub located within the 

semantic network during semantic and social processing, which would indicate 

integration between the social and semantic cognitive systems. This reveals the 

neural basis of social and semantic cognition during naturalistic processing. 
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1 Introduction 

Social knowledge is a fundamental aspect of human cognition: it informs our 

moment-by-moment understanding of our social world, and it directly motivates 

human behaviour (Adolphs, 2009). Through our understanding of social concepts 

and behaviours we are able to effectively and accurately communicate complex, 

abstract ideas and participate in meaningful interpersonal interactions.  Many of 

these processes are, at least partially, supported by the social cognition system, 

which is broadly engaged in integrating and updating information about the actions, 

beliefs, motives, and mental states of ourselves and the people in our environment. 

Much of the research on social knowledge has focused on characterizing how 

individuals engage the social cognition system to process information about their 

own and others’ actions and perspectives (Beaudoin & Beauchamp, 2020). 

Decoding and reciprocating interactional dynamics leverages a whole host of other 

cognitive systems, ranging from perceptual and attentional systems to higher-order 

language and executive systems (Adolphs, 2001). Shifting from a strict domain 

specificity approach and adopting models from other domains of cognition may result 

in greater insights in social neuroscience (Ramsey & Ward, 2020; Spunt & Adolphs, 

2017). One key contributor is semantic cognition, which allows us to know and 

communicate about both the linguistic and non-linguistic physical and emotional 

properties of the objects, people, and events we experience, and gives meaning to 

the language we use (Binney & Ramsey, 2020; McRae & Jones, 2013; Rice et al., 

2018; Tulving, 1972). The breadth and complexity of social knowledge requires 

mutual or interacting support from both social and semantic cognition, and the 

present study examines the degree to which social cognitive processing leverages 

the neural architecture of the semantic system.  

A rich history of research on pragmatics shows that social cognition plays an 

important role in communication, where context and non-linguistic features convey 

critical information that is not present in the lexical units or syntactic structures 

themselves. This pragmatic content allows comprehension of the intended meaning 

beyond the surface linguistic content (Bambini, 2010; Hagoort & Levinson, 2014) and 

requires the social cognitive process of mentalizing about the perspectives of the 

other agents in the environment (Levinson, 2006). Retrieval of the relevant social 

knowledge - from the names and behaviours of the people we encounter to the 
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concepts used to label those behaviours - may rely on semantic memory, which is an 

acquired conceptual store of linguistic and non-linguistic information about the 

multimodal world around us, informed by interactions with new objects, events, 

experiences, and people (Binney & Ramsey, 2020; McRae & Jones, 2013; Ross & 

Olson, 2010). Although pragmatics is predominately concerned with how 

communicative intent is inferred in the presence or absence of linguistic input which 

is separate from the goals of the present study, the research in this domain 

emphasizes the importance of the social cognition system in communication, a role 

which is also facilitated by semantic memory.  

One clear point of intersection between semantic and social cognition is the 

representation and processing of social concepts. What makes these concepts 

‘social’ is their use in ascribing meaning to human behaviour, intentions, desires, 

feelings, and interactions (Zahn et al., 2007). This type of social knowledge is often 

(although not universally (Diveica et al., 2023)) described as intangible or abstract, 

not grounded in sensory or perceptual representations (Hoffman, 2016). Current 

neurocomputational theories posit that abstract semantic representations arise 

through statistical regularities in the contexts in which they occur, especially natural 

language contexts. Concepts such as jealousy and ambition co-occur with concrete 

concepts in specific contexts, and knowledge about our own and others’ emotions, 

intentions, and beliefs is encoded along with the environment in which they occurred, 

thus giving rise to abstract social concepts (Barsalou, 2020; Borghi & Binkofski, 

2014; Hoffman et al., 2018). Social concepts, like other types of semantic knowledge 

(Binney et al., 2016; Zahn et al., 2007), are acquired through interactions in social 

environments in which individuals display or communicate about the behaviours 

associated with these concepts. As a result, these concepts are predominately not 

understood through sensory systems, and are instead directly informed by and 

grounded in emotion (Vigliocco et al., 2014), introspection (Shea, 2018), and social 

experiences (Borghi & Binkofski, 2014). The roles of semantic and social cognition in 

acquiring social knowledge are thus inseparable.  

In addition to shared conceptual knowledge, the semantic and social systems are 

supported by an overlapping network of brain regions (Figure 1) (Adolphs, 2001; 

Binney & Ramsey, 2020; Patterson et al., 2007). This overlap predominately occurs 

in the anterior temporal lobes (ATL) and the left inferior parietal lobule, regions which 
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are consistently reported in semantic processing (Lambon Ralph et al., 2017; Xu et 

al., 2018), including representing and retrieving social knowledge (Binney et al., 

2010; Olson et al., 2013; Zahn et al., 2007), and in mentalizing tasks (Frith & Frith, 

2006; Monticelli et al., 2021). Engagement of the same regions for semantic and 

social processing has motivated a theoretical account, the graded semantic hub 

hypothesis, which argues that social cognition requires semantic memory and the 

neural architecture of the semantic cognition and semantic control systems (Balgova 

et al., 2022; Binney et al., 2016; Binney & Ramsey, 2020). The same ventrolateral 

portion of left ATL is engaged by theory of mind processing and non-verbal semantic 

processing (Balgova et al., 2022), and a recent meta-analysis found that both 

cognitive systems rely on a shared cognitive control network (Diveica et al., 2021), 

which provides empirical support for this account.  In addition, the ATL may be 

ideally positioned to serve as a hub for processing both semantic and social 

information given the structural connections of the uncinate fasciculus projecting 

from ATL to emotion processing areas in amygdala and orbitofrontal cortex (Olson et 

al., 2013). Notwithstanding this evidence of overlap, there is also extensive evidence 

that the networks that support language processing and theory of mind processing 

are separable (Fedorenko & Varley, 2016; Paunov et al., 2022). Compelling 

evidence of this dissociation comes from lesion studies in which individuals with 

extensive left hemisphere damage or aphasia have preserved theory of mind 

processing or ability to comprehend communicative intent (Goodwin, 2006; Varley & 

Siegal, 2000). This dissociation is not observed in patients with semantic dementia, 

which is characterized by bilateral ATL damage, who display impairments in both 

semantic and social processing (Duval et al., 2012). This suggests that the location 

of the damage (i.e., whether the damage occurs in a shared ATL processing hub) 

may determine whether only one or both systems are affected. There is thus ample 

evidence that language and social processing can be dissociated, but a focus on 

separability ignores potential insights about interactive processing (Patterson & 

Plaut, 2009; Schwartz & Dell, 2010) and cannot answer whether the regions 

engaged by both systems are responding to both types of content (i.e., semantic and 

social processing) or serving as domain-general hubs that support both processes. 

In this view, specialization, and therefore dissociation, does occur for semantic and 

social processing which separately recruit more specialized regions outside of these 

hubs.  
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Overlapping neural networks may simply indicate that the semantic and social 

systems work alongside each other, with areas of overlap performing separate 

functions within each system (no shared processing) or there may be non-

overlapping specialized subregions for processing semantic or social information 

(graded functioning). Alternatively, domain-general areas may perform the same 

function within each system (shared processing) or a known semantic or social hub 

may integrate information to facilitate processing both semantic and social 

information (shared hub). One reason to expect shared processing or a shared hub 

is that semantic and social cognition have been proposed to consist of analogous 

representation and control processes. Control processes for both systems are 

supported by a shared control network (Diveica et al., 2021), and the hub-and-spoke 

sensorimotor architecture of the semantic representation system lends itself well to 

multimodal social perceptual stimuli (Binney & Ramsey, 2020). Recent research 

provides critical evidence in support of this claim (Balgova et al., 2022), but the 

social and semantic tasks used were highly simplified and thus impoverished 

approximations of real-world cognition. Also, the inferences were drawn from the 

group-level statistical map rather than overlap at the individual participant level. 

Stronger evidence of shared processing or a shared hub would come from using 

naturalistic paradigms and investigating the neural overlap of these systems within 

individuals because idiosyncratic variations in neuroanatomy and functioning are 

ignored when aggregating results at the group-level (Fedorenko & Kanwisher, 2009). 

The latter is especially relevant when studying regions that may have graded 

functioning. Previous research attempting to isolate theory of mind (i.e., false belief) 

and linguistic (non-social stories) processing within the superior temporal sulcus 

(STS) found overlapping voxels in both posterior and anterior portions of STS that 

responded to both types of content within individuals (Deen et al., 2015). These 

results suggest that the neural overlap reported in group studies is capturing 

meaningful overlap that exists within subjects, but did not test broader semantic and 

social systems. The present study investigated whether there is evidence of shared 

processing in domain-general regions or within a shared hub in ATL that support 

both systems at the individual and group level in the same naturalistic context. 

 



129 
 

 

Figure 1. Social, semantic, and semantic control brain networks. A schematic 

showing the critical regions within the social network (blue), semantic network 

(green), and semantic control network (red) is shown in the top panel. The overlap 

between the regions within each network is indicated by circles with mixed colours, 

and the relative extent of overlap is shown by the amount of colour associated with a 

given network in each circle (either approximately equally shared – indicated with ½-

½ shading – or predominately reported for one system with a smaller subset of the 

region reported for the other system – indicated with ¾-¼ shading). The statistical 

maps derived from coordinate-based activation likelihood estimation (ALE) analyses 

of social cognition (Diveica et al., 2021) and semantic cognition and semantic control 

(Jackson, 2021) are shown in the bottom panel. ATL, anterior temporal lobe; IFG, 

inferior frontal gyrus; IPL, inferior parietal lobule; MTG, middle temporal gyrus; PC, 

precuneus; PFC, prefrontal cortex; pMTG, posterior middle temporal gyrus; SFG, 

superior frontal gyrus; SMA, supplementary motor area. 

 

For tractability, researchers tend to fractionate human cognition into modules and 

study these modules as independent, non-overlapping systems (Binney & Ramsey, 

2020). A prevalent, perhaps unintentional, example of this treatment of cognition can 

be seen in standard fMRI contrast analyses in which a cognitive process of interest 

is isolated by measuring an experimental condition (i.e., social communication) and 

subtracting from it a control condition that minimally requires the cognitive process of 
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interest (i.e., non-social communication). Studies utilizing this methodology have 

generated significant insights into many aspects of human cognition, including both 

social and semantic cognition. This methodology assumes an additive relationship 

between the processes such that it can be undone by subtraction (i.e., control 

processes operate in the same way in the control and experimental conditions). 

Although this assumption may be approximately valid in many cases, it explicitly 

does not hold for integrated or interactive systems. Subtracting non-social 

communication from social communication to identify “social cognition” assumes that 

communication works the same way in social and non-social contexts (e.g., no social 

knowledge is nested within the subtracted semantic system, which conflicts with 

existing evidence (Binney & Ramsey, 2020)) and that social cognition works the 

same way in communication and non-communication contexts (i.e., subtracting the 

communication component leaves task-independent social cognition that would 

operate similarly in non-communication contexts). This research strategy has led to 

the impression that all cognitive systems are subtractable and independent in the 

mind and brain, rather than just being separate in the research literature.  

In addition to this general treatment of human cognition, the relationship between 

these two cognitive systems has been obscured by differences in the types of 

paradigms used to study them. Studies have tended to rely on highly simplified 

experiments to investigate both semantic and social processing, but there is greater 

diversity in the content and presentation of paradigms used to study social cognition. 

Semantic tasks often involve single words or pictures, whereas the stimuli used in 

social tasks range from single word and sentence stimuli to face stimuli and social 

animations. As a result, the same social cognitive process (e.g., mentalizing) can be 

elicited by heterogeneous tasks (e.g., false-belief vignettes, comic strips, strategic 

games, animations) which complicates cross-task inferences due to varied task 

demands (Kliemann & Adolphs, 2018; Schaafsma et al., 2015). These 

methodological differences hinder investigations of shared processing between 

semantic and social cognition due to the challenge of identifying stimuli and 

paradigms with matched processing demands that meaningfully capture both 

systems. This would ideally be accomplished by eliciting semantic and social 

processing within the same paradigm.  
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Given the specific barriers that have hindered investigations of the 

interdependence between semantic and social cognition, it is critical to select stimuli 

that adequately capture varied social knowledge, including social semantic 

information (i.e., social concepts) and social interaction information (i.e., social 

events). An ideal avenue to accomplish these complementary goals is through the 

analysis of naturalistic neuroimaging data. Naturalistic neuroimaging provides 

greater ecological validity compared to studies of isolated word processing, which do 

not capture how the brain processes information in the real-world and disregards the 

context that informed the conceptual representation (Redcay & Moraczewski, 2019; 

Sonkusare et al., 2019; Zaki & Ochsner, 2009). Social information occurs in dynamic 

and multimodal contexts in which knowledge accrues over several seconds to 

minutes, which naturalistic paradigms more closely approximate. One type of 

naturalistic paradigm, movie viewing, has been shown to produce stable intrinsic 

connectivity networks that are more reliable than those derived from resting state 

data (Finn et al., 2017; Vanderwal et al., 2017) and which provides the opportunity to 

capture temporal structure that would be lost in a traditional event-averaging fMRI 

analysis (Ben-Yakov et al., 2012). Further, humans segment continuous experiences 

into discrete events (Baldassano et al., 2017) and cortical regions have varied 

temporal receptive windows that are directly impacted by the duration and content of 

these events (Hasson et al., 2008; Lerner et al., 2011). Naturalistic paradigms allow 

for the investigation of both short (i.e., 1000ms) and long temporal processing across 

cortical regions in response to varied content.  

The aim of the present study was to investigate the shared and distinct neural 

organization of social, semantic, and semantic control brain networks by examining 

the response of these networks to semantic and social information in movies, while 

distinguishing between word-level and event-level representations. The study utilized 

the publicly available Naturalistic Neuroimaging Database (NNDb), which includes 

hours of movie viewing fMRI data for a large sample of adults (N=86) (Aliko et al., 

2020). Of note, the data include 10 different movies, which enables tests of 

generalizability of results across stimuli and provides an opportunity to sample varied 

social concepts and events. Independent ratings of semantic and social content from 

manually coded events for each movie were used as continuous event-level 

variables. Lexical and semantic content and smoothed factor scores indexing 
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Semantic Flexibility and Social Impact were used as continuous word-level variables. 

The continuous variables were used to identify regions of the brain that respond to 

semantic and social content and to examine the degree that neural resources are 

shared between the systems at the individual and group level. The primary aims and 

predictions of the current study are divided into two complementary research 

questions (the pre-registered design table is Appendix D: Supplemental Table 1). 

First, during naturalistic movie viewing, is semantic, social, and semantically 

flexible (i.e., having several uses or meanings) content associated with increased 

activation in the semantic, social, and semantic control networks, respectively? It 

was expected that clusters of voxels showing increased activation in response to 

greater semantic, social, and semantically flexible word-level content will fall within 

the semantic (hypothesis 1.1a), social (hypothesis 1.1b), and semantic control 

(hypothesis 1.1c) brain networks, respectively. Further, it was expected that the 

clusters of voxels associated with semantic and social event-level content will fall 

within the semantic (hypothesis 1.2a) and social (hypothesis 1.2b) brain networks, 

respectively. 

Second, to what extent are the semantic and semantic control networks involved 

in processing social concepts and events in individual subjects? If there are clusters 

of voxels that respond to social word-level and event-level content, then it was 

expected that both social concepts and social events will engage areas of overlap 

within the semantic (hypothesis 2.1a) and semantic control (hypothesis 2.1b) brain 

networks defined within individual participants. This would provide evidence of 

shared resources between the social and semantic systems. If that overlap occurs 

within the known semantic hub, ATL, this will provide support for the graded 

semantic hub hypothesis, suggesting that the systems leverage a shared hub. In 

addition to overlap, it was expected that non-overlapping, proximal clusters of voxels 

will differentially respond to semantic and social content (hypothesis 2.2a) and 

semantic control and social content (hypothesis 2.2b), providing evidence of graded 

functioning within network regions.  
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2 Methods 

2.1 Ethics information 

The research complies with all relevant ethical regulations. The project from 

which the data are derived was approved by the ethics committee of University 

College London. Participants provided written informed consent to take part in the 

study and have their anonymised data shared. 

 

2.2 Design 

The research questions were tested via secondary analyses of a publicly 

available dataset called the Naturalistic Neuroimaging Database (NNDb) which is 

accessible on OpenNeuro (https://openneuro.org/datasets/ds002837/versions/2.0.0). 

Version 2.0.0 of the database (released April 20, 2021) was used for all analyses 

and includes the raw and preprocessed data from 86 participants (mean age = 

26.81; 42 females) who watched one of ten movies (length range = 5470 - 8882s) 

while undergoing fMRI. Movie selection was decided by previous exposure, so all 

participants were shown a movie they had not previously watched. At least 6 and up 

to 20 participants watched each movie. 

None of the authors had previously analysed the participant data from any 

version of this dataset nor had any direct knowledge of the data at the time of pre-

registration. All analyses were registered prior to any human observation of the 

neuroimaging data. The movie annotation files were obtained prior to registration 

and coded using protocols designed to (1) segment the movies into discrete events 

and (2) derive a range of continuous variables encoding the presence of word and 

event-level semantic and social information at each point in time (see below). For a 

detailed overview of the experimental procedures, including how the data were 

collected and preprocessed, see the publication describing the dataset (Aliko et al., 

2020).  

 

2.3 Sampling plan 

The current study is a secondary analysis of existing data, and, as such, the 

sample size is fixed. With 86 participants who each watched a full feature-length film, 

https://openneuro.org/datasets/ds002837/versions/2.0.0
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the NNDb is among the largest publicly available databases of naturalistic 

neuroimaging data to date (though see the Narratives dataset (Nastase et al., 

2021)), and currently the largest dataset that uses movie stimuli. Comparable 

databases often have fewer than 30 participants, and many use stimuli that are less 

coherent (i.e., clips of adverts or scenes from films) or shorter in duration (i.e., single 

episodes or short films). Task-based fMRI studies require more than 80 participants 

to detect medium effect sizes (see power analysis below) (Geuter et al., 2018), and 

scan times greater than 90 minutes produce more reliable results (Gordon et al., 

2017). With the large sample size and the longer scan duration, the NNDb provides 

more data per participant than many other naturalistic neuroimaging databases. 

A sensitivity power analysis was conducted using the pwr package in R 

(Champely, 2020) to determine what effect size is detectable given the fixed sample 

size. This type of power analysis is a complement to the more common a priori 

power analysis which assumes an effect size and computes the sample size 

necessary to detect that effect. With the fixed sample size of 86, statistical power of 

.95, and an alpha of 0.05, an omnibus multiple regression analysis with 2 to 3 

predictors would be sensitive to detecting medium effects (f2 = 0.19-0.21). This is a 

conservative estimate of statistical power because it does not take into consideration 

the large number of observations (i.e., time points) within participants which 

substantially increases statistical power, especially when within participant variance 

in the dependent variable is high. Similar effect sizes are detectable in standard 

event-related and blocked design fMRI experiments but require many trials (k > 60) 

or a larger sample (N > 30) (Baker et al., 2021), both of which are far exceeded with 

the NNDb dataset.  

 

2.4 Analysis plan 

In order to investigate neural processing of social and semantic events and 

concepts, two primary types of scores were extracted from each movie: (1) event-

level scores and (2) word-level scores. The movie event-level scores were generated 

via a manual coding process in which each movie was segmented into discrete 

events and the relative semantic and social content within events were rated 

independently. Movie word-level scores were generated by conducting a principal 

component analysis on 12 critical word property values and smoothing the resulting 
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scores using a sliding window. Both the word-level and event-level scores were used 

in parametric modulation analyses to assess the neural response to varied levels of 

lexical and event-based semantic and social content (RQ1) and the extent to which 

processing lexical and event-based semantic and social information relies on 

overlapping regions within the semantic and social brain networks within subjects 

(RQ2). The sections below provide additional detail on how these data were 

generated and the pre-registered analyses. See Figure 2 for a schematic overview 

of the analyses.  

 

Figure 2. Schematic of planned analyses. Representative events from one of the 

movies (Back to the Future) are shown in red, blue, and yellow shaded tiles. The 

corresponding event number, social and semantic rating, and event description are 

provided below the event screenshot. These events are sampled from the Event-

Level time course (below the tiles) which shows the semantic (green) and social 

(blue) event ratings for the movie. Event 161 (blue tile) is used to illustrate how the 

words within events are processed. First, word properties are generated for all 
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transcript words. Second, missing data are imputed 5 times (ignoring closed class 

words which are shaded grey). Third, PCA is run on each of the imputed datasets, 

and the resulting factor scores from the 5 datasets are averaged. Only the averaged 

Semantic Flexibility and Social Impact factor scores are shown because these are 

the data that will be used for analyses. Fourth, the factor scores and semantic 

content (i.e., number of content words) are smoothed within the event boundaries. 

The summed total factor score or the number of content words is calculated within a 

5s sliding window sliding every second. This window stops at the end of the event, 

and a new sliding window starts at the beginning of each event. When no words fall 

within a window (demonstrated with Event 282), the calculated window value is 0. 

This process results in a Word-Level time course of smoothed scores which is 

shown to the right of the Event-Level time course. Both the Event-Level and Word-

Level time courses were used as parametric modulators by convolving the time 

courses with whole-brain BOLD signal (bottom panel). The semantic network and 

simulated BOLD time series are shown as an example. 

 

2.4.1 Movie events 

To provide data at the event level, each movie was segmented into discrete 

events capturing subtle changes in the content or purpose of consecutive scenes. A 

detailed protocol was developed to provide consistent principles for segmenting. 

Manual subjective ratings of event boundaries have been previously applied to 

naturalistic movie data and have a high degree of correspondence with data-driven 

event segmentation models based on shifts in patterns of brain activity (Baldassano 

et al., 2017). For this study, event transitions were identified by the first author using 

the following criteria: (1) event boundaries are defined by a qualitative shift in the 

tone, setting, characters, or purpose of the scene; (2) a single event is often shot 

continuously with the same characters in the same setting or environment. Any 

sudden shift in the tone or emotional impact should be an indicator that a new event 

has begun; (3) the action sequences that occur within an event are more predictable 

than action sequences that occur between events. The latter criterion was derived 

from previous research on event prediction, which suggests that a good indicator of 

whether a new event has begun is if a sequence feels disconnected, unexpected, 

unrelated, or discontinuous from the previous sequence (Buchsbaum et al., 2015; 
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Zacks et al., 2011). Changes in background music or camera angles alone were not 

sufficient for marking an event boundary. Further, a distinction was made between 

major events, which tend to occur less frequently, have a longer duration (i.e., 

several minutes), and be accompanied by a larger shift in the content or purpose of a 

scene, and minor events, which occur more frequently, have a shorter duration (i.e., 

several seconds), and are signalled by more subtle shifts in content or purpose. 

Excluding opening studio credits and closing credits, the number of events per movie 

ranged from 238 to 429 (Mdn = 384).  

The semantic and social content of each minor event was rated for each movie. 

Both semantic and social content were rated on a scale from 1 to 10 with higher 

scores indicating greater semantic or social content. Semantic content was defined 

as narrative exposition in which movie or scene information is presented linguistically 

through spoken language (by a character or narrator) or in writing (such as text 

about the movie, timescale, or characters or any text presented during an event). 

Although semantic information can be expressed non-linguistically, this type of 

semantic knowledge requires a greater degree of inference which can be variable 

when manually coding events. To avoid conflating linguistic semantic information 

with non-linguistic semantic or pragmatic inferences, only spoken or written 

information was considered semantic content. For the purposes of this study, events 

in which new semantic information was presented were coded as more semantic 

relative to events with semantic content that was already known to the viewer. 

Critically, a distinction was made between novel information and shocking or 

surprising information, the latter of which did not receive a higher semantic score. 

Information was considered new only if it is being presented to the viewer for the first 

time. Events in which a character learns information the audience already knows 

would receive a lower semantic score. Such a scene may receive a higher social 

rating (described below) if the information is personally impactful or requires 

updating a false belief. This criterion was included because events with novel 

information are more informative and require greater semantic processing relative to 

the moments in which the information is consistent or has already been processed 

(because it has already been presented to the viewer). Low semantic events would 

have minimal to no written or spoken exchange of new information, such as an 
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action sequence. See Appendix D: Supplementary Figure 1 for the detailed rubric 

for coding semantic information. 

Social content was defined by the presence of more than one person or 

character, even if inanimate or off-screen. Any event that conveys information about 

the characters in the movie and their relationships with other characters was 

considered social. This could include general conversation or exchange of neutral 

character information, which would receive a low to moderate social rating, or could 

convey character attitudes, thoughts, feelings, or passions, which would receive a 

moderate to high social rating. The relative degree of sociality may depend on the 

type, duration, and significance of the interaction within the event. Events were 

considered more social if (1) the interpersonal connection between or among the 

characters was deeper and intense rather than superficial or brief based on their 

prior interactions throughout the movie and (2) the specific characters in the event 

bring a larger significance to the interaction based on who they are or the pre-

defined relationship between or among the characters. A distinction was made 

between high social and high emotional content. Although an event may be both 

highly social and emotional, an event does not have to be emotionally intense in 

order to be considered social. Similarly, social and semantic content were coded 

independently as an event can be both highly (or weakly) social and semantic. The 

highest ratings (i.e., 9 or 10) were reserved for events in which the primary purpose 

of the scene was to convey semantic or social information. Importantly, a single 

event could not receive a 9 or 10 for both semantic and social content because the 

primary purpose had to be coded as either semantic or social. See Appendix D: 

Supplementary Figure 2 for the detailed rubric for coding social information. 

The first author watched all of the movies and marked the minor event 

boundaries using the established protocol. This was done to provide the event 

boundaries for coding semantic and social content and to ensure that the events of 

primary interest were coded in a consistent way across all 10 movies. At least 1 

other independent coder then marked where the major events occurred within each 

movie using the established timestamps from the minor events. 

After events were delineated, at least two independent coders (the first author 

and at least one independent coder) rated the semantic and social content of each 

minor event in the movie and wrote a brief description of what occurred during the 
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event (see Table 1 for examples). Inter-rater reliability was assessed separately for 

the semantic and social scores for the coders of each movie using Krippendorff’s 

alpha reliability coefficient. When the inter-rater reliability fell below .75, the coder 

who rated all movies identified which events were poorly aligned, rewatched the 

event, and made a revised consensus rating based on the content of the event and 

the notes of the other coder. 
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Table 1 

Example movie event annotations and smoothed word data 

Note. Event Data: representative movie event annotations are taken from Back to 

the Future. Event 282 is used as an example in Figure 2. For the Semantic Score 

and Social Score ratings, the primary coder ratings (R1) are shown as well as ratings 

from a secondary coder (R2) which are shown in parentheses. Event Notes are from 

the primary coder (R1). Event Number refers to the Minor Event Number. Word 

Data: smoothed windows with high positive or negative summed total factor scores 

from Back to the Future. The event number from which each smoothed window is 

taken is indicated in brackets. *using absolute value transformed scores. 

Event Data 

Event 
Number 

Semantic 
Score 

Social 
Score Event Notes 

R1 (R2) 

278 2 (3) 1 (1) Doc waiting for Marty at the clock tower 
279 5 (6) 6 (6) Marty arrives and Doc rushes over 
280 6 (6) 6 (6) Marty explains how things went down with his dad. Doc seems worried 
281 9 (9) 4 (6) Doc explains plan to Marty 
282 4 (5) 9 (10) Marty and Doc say goodbye 
283 7 (7) 6 (4) Doc restates part of the plan + Marty gets in the car 
284 7 (9) 5 (3) Doc discovers letter in his coat + rips it up 
285 3 (4) 4 (5) Tree crashes down. Doc and Marty split up to fix cables 
286 1 (3) 3 (5) Doc runs up clock tower to throw cable over 
287 7 (7) 6 (7) Marty tries to tell Doc about the future again 

Word Data 

 Word Length Semantic Flexibility Emotional Strength* Social Impact 

Positive 

[Event 170]: …felt 
sorry for him cause 

her dad hit him with 
the car he hit me 

with… 

[Event 191]: …know 
what to say say 

anything say 
whatever’s natural 
the first thing that 

comes into your 
mind… 

[Event 23]: …Dr 
Brown is dangerous 
he’s a real nutcase 
hang around with 

him you’ll end up in 
big trouble… 

[Event 221]: …I wish I 
wasn’t so scared 

there’s nothing to be 
scared of all it takes 
is self-confidence… 

Negative 

[Event 281]: …I’ve 
calculated the precise 
distance taking into 

account the 
acceleration… 

[Event 151]: …the 
sink that’s when you 
got the idea for the 

flux capacitor which… 

[Event 81]: …this tells 
you where you’re 

going this where you 
are and this where… 

[Event 38]: …replace 
that clock thirty years 
ago lightning struck 
that clock tower and 

the clock… 
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2.4.2 Movie transcripts 

To provide data at the word level, the transcript annotations made available with 

the public dataset were used and included the words that were spoken as well as 

their onset and duration times. The initial paper describing the NNDb provides 

greater detail on the methods used for generating this information (Aliko et al., 2020). 

The following word properties were obtained, where available, for each word in the 

transcript annotations using the English Lexicon Project database (Balota et al., 

2007): number of letters, number of phonemes, number of phonological neighbours, 

number of orthographic neighbours, word frequency, concreteness (Brysbaert & 

New, 2009), semantic neighbourhood density, semantic diversity (Hoffman et al., 

2013), emotional valence (i.e., pleasantness), emotional arousal (i.e., intensity), and 

emotional dominance (i.e., control) (Warriner et al., 2013), and part of speech. 

To obtain ratings of socialness for each word spoken in the movies, social word 

ratings were generated from a previous norming study conducted with 68 

participants from the University of Alabama at Birmingham. Candidate words were 

derived from the Glasgow norms study, which includes normative psycholinguistic 

ratings for over 5,000 individual words (Scott et al., 2018). This initial list was filtered 

to remove words with high concreteness (> 5) and imageability (> 5) ratings in order 

to identify possible social concepts (which tend to be abstract, although see (Diveica 

et al., 2023)) as norming targets. Additional target words were added from a study 

reporting social desirability ratings on over 500 words (Hampson et al., 1987). A 

randomly selected subset of 688 words were included in the norming study, and 

words with varied parts of speech were intentionally retained. During the norming 

study, participants were instructed that a word is social if it describes inter-personal 

behaviours, motivations, intentions, or characteristics and were asked to rate how 

social each presented word was on a scale from 1 (not social) to 5 (very social). 

Each participant rated half of the words resulting in 34 ratings for each of the 688 

unique words. For words not present in this set of 688 words, social ratings were 

extrapolated by calculating their semantic similarity to each of the words in the 

normed set. Semantic vectors were generated for each of the normed words as well 

as for the unique transcript words using word2vec. The cosine similarity between 

each transcript word and every normed word was calculated resulting in 688 

similarity values for each transcript word. The average social rating was then 
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calculated by taking a weighted average, using the cosine similarity, of the social 

scores from the 10 closest semantic neighbours. 

Prior to subsequent analyses, the unique words from all movies were combined; 

high frequency and closed class words were excluded, as were any words missing 

more than 10 of the 12 critical word properties (excluding part of speech). To avoid 

listwise deletion, missing data for the remaining set of words were imputed. 

Imputation was performed using the multiple imputation by chained equations 

approach implemented with the mice package in R (van Buuren & Groothuis-

Oudshoorn, 2011), and resulted in 5 complete datasets.  To reduce covariance 

between predictors, the 12 word property measures for each unique word were 

entered into a principal component analysis (PCA) with varimax rotation for each 

imputed dataset. The four factor result corresponded to Word Length (e.g., number 

of letters and phonemes, number of phonological and orthographic neighbours), 

Semantic Flexibility (e.g., semantic diversity, semantic neighbourhood density), 

Emotional Strength (e.g., emotional valence, emotional dominance), and Social 

Impact (e.g., socialness, emotional arousal) and accounted for approximately 29%, 

17%, 16%, and 11% of the variance respectively (Figure 3). The Emotional Strength 

factor scores were transformed by taking the absolute value in order to capture 

emotional versus neutral content rather than positively versus negatively valenced 

content. The resulting factors were stable across the imputed datasets and resulted 

in the same factors as a PCA run on a subset of the data with no missing values. 

Due to random variation introduced when imputing data and given the robustness of 

the results, the factor scores derived from the imputed datasets were averaged.  
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Figure 3. Factors derived from PCA on word property values. Positive (blue) and 

negative (red) loadings are shown for each factor. The strength of the loading is 

indicated by the length and colour saturation of each bar. Num., Number. 

 

2.4.3 Aligning annotations and events 

The transcript annotations were temporally aligned with the events using the 

event boundary timestamps and the onset times of each word. Different versions of 

the movie files may have slightly varying playback speeds (+/- 1.5%). To ensure 

correct alignment, the events were marked and aligned using the same movie files 

that were presented to participants in the NNDb study. This was done to identify 

which words were present within each event. To account for hemodynamic lag, a 

smoothed time course of critical word-level factor scores was generated by summing 

values within a 5s window sliding every 1s. A data-driven event segmentation 

approach with comparable movie data found that the median duration of neural 

states across voxels ranged from 5 to 18.5s, and these durations were reliable 

across participants (Geerligs et al., 2022). A 5s window is thus advantageous as it 

would capture the regions with shorter neural state durations (predominately sensory 

processing areas) and provide multiple measurements of the neural state of those 

regions with longer durations (e.g., default mode network). Importantly, the sliding 

windows were constrained to each event’s boundaries so word property scores from 

different events were not averaged together (see Table 1 for examples). Events with 
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excessively short duration (< 3s; 4% of events) were merged with the subsequent 

event by taking the average semantic and social score across the two events. After 

merging short events, the event duration ranged from 4 to 131s (Mdn = 16.00s). If an 

event was shorter than the window size of 5s, the sum was calculated within this 

smaller window. If the final portion of an event was less than 1 second (i.e., 500ms), 

a slightly shorter window was defined, and the sum was calculated within the smaller 

window. For each factor, the residuals were extracted from a model predicting the 

smoothed factor time course from the number of total words within each window. 

This will control for the number of words in an event. If there are no words or no 

words that have ratings within a window or event, a value of 0 will be assigned for 

each factor score. 

General lexical-semantic content was quantified by counting the number of 

content words (i.e., open class words). Open class words with missing word property 

data (n=883) which were excluded from the PCA (and subsequently do not have 

factor scores) were still counted as semantic content by manually tagging part of 

speech. These include character names, dates, or movie-specific words (i.e., 

fictional towns, technology, slang) that were not found in psycholinguistic databases. 

The same sliding window approach was used to generate a smoothed time course of 

lexical-semantic content. This predictor, as well as the factor scores, captures the 

momentary quantity of basic conceptual knowledge within each window, agnostic to 

the preceding events, which likely under approximates the amount of semantic 

processing occurring and is not sensitive to detecting pragmatic inference or non-

linguistic semantic processing. This approach was adopted here because it most 

closely aligns with how prior studies examined semantic processing of isolated 

words or sentences, and one of the goals of the current study was to examine these 

measures in a naturalistic context. The event-level semantic predictor similarly 

indexes only the linguistic information in events, but is informed by prior context and 

may better capture broader context-sensitive semantic processing. 

 

2.4.4 Network definitions 

The networks of interest were defined using statistical maps derived from 

independent coordinate-based activation likelihood estimation (ALE) analyses of 

semantic control, semantic cognition, and social cognition and are shown in Figure 
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1. These network maps were used to aid in the interpretation of the results of the 

whole brain analyses by categorizing results as falling within or outside of the pre-

defined networks. The semantic and social networks in particular are extensive, and 

it is likely to be minimally informative to look at percent overlap or Dice similarity 

coefficient in isolation. For this reason, greater emphasis was placed on where 

overlap between the resulting networks and the pre-defined networks occurs. 

Overlap in core regions within each ALE-generated network, highlighted in the top 

portion of Figure 1, was interpreted as stronger evidence of network involvement. 

Defining networks prior to analysis ensured that results were interpreted in a pre-

specified manner. 

The semantic control network was defined based on an ALE analyses with over 

120 contrasts from 87 studies which identified a large cluster centred around the left 

inferior frontal gyrus as well as posterior middle temporal gyrus, dorsomedial 

prefrontal cortex, and a smaller portion of the right inferior frontal gyrus (Jackson, 

2021). This network has significant convergence with another ALE-generated 

semantic control network (Diveica et al., 2021). The same study also identified a 

general semantic cognition network derived from over 400 contrasts from 257 

studies. In order to isolate the automatic semantic network and partial out the role of 

control in semantic retrieval, the semantic control ALE result was subtracted from the 

general semantic cognition ALE result and small clusters of voxels (< 400 contiguous 

voxels) were removed. This resulted in a map which included left anterior temporal 

lobe, left medial and posterior temporal cortex, left inferior parietal lobule, insula, 

precentral gyrus, and right middle and superior temporal gyrus. 

The social cognition network was defined by examining the convergence of ALE 

generated network maps for four primary domains of social cognition from a previous 

study (Diveica et al., 2021). These domains included theory of mind (derived from 

136 experiments), trait inference (derived from 40 experiments), empathy for pain or 

affective states (derived from 163 experiments), and moral reasoning (derived from 

68 experiments). The ALE results for each domain were overlaid and regions which 

were identified in at least one of the four domains were retained. This resulted in a 

social network which included bilateral inferior frontal gyrus, superior frontal gyrus, 

medial prefrontal cortex, precuneus, bilateral inferior parietal lobule, supplementary 
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motor area, bilateral anterior and superior middle temporal gyrus, bilateral anterior 

temporal poles, and precentral gyrus. 

 

2.5 Statistical analyses 

The pre-processed MRI data were used for all analyses. The pre-processing 

steps are documented in the initial paper describing the NNDb dataset (Aliko et al., 

2020). The functional runs were concatenated into a single timeseries file after 

detrending and censoring TRs with excessive motion. There are no missing data for 

the current set of 86 participants that comprise the NNDb. The only data that are 

missing are word property values, but the approach to dealing with those data are 

outlined in detail above. The NNDb data includes quality assurance metrics indexing 

movement related artefacts and signal to noise. Given that the metrics indicate that 

the data are high quality (mean temporal signal to noise ratio [tSNR] > 60) and the 

scan duration was sufficiently long for detecting activation at that tSNR level (> 1 

hour) (Murphy et al., 2007), none of the participants were excluded from analysis. 

 

2.5.1 Research question 1 

For the word-level analyses, the Semantic Flexibility factor was used in the 

semantic control analysis because semantic diversity (Hoffman et al., 2013) and 

semantic neighbourhood density (Diaz et al., 2022; Mirman & Graziano, 2013) reflect 

increased selection demands which requires additional cognitive control. The Social 

Impact factor was used as a proxy of social content, and the number of content 

words was used as a coarse measure of semantic content. These measures were 

each separately used as parametric modulators in a regression model predicting the 

time series from the full movie. The analyses were conducted at the whole-brain 

level, and results were compared to the predefined networks of interest. The subject-

level activation maps for each content type for all movies were used as inputs for a 

second-level group analysis using linear mixed-effects modelling with a fixed effect 

of content type (i.e., social, semantic, or semantically flexible) and random intercepts 

of subject and movie implemented using 3dLMEr in AFNI (Chen et al., 2013). The 

resulting statistical map were corrected using a cluster-forming threshold of p < 0.01 

and an FWE-corrected threshold of p < 0.05. 
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For the event-level analyses, the semantic and social event ratings for each 

movie were used in a first-level general linear model for each subject as parametric 

modulators predicting the time series from the full movie. To account for the varied 

event durations, a duration modulated model was used in which the onset and 

duration of each event were included in the regression model. Either semantic or 

social content were included as a nuisance regressor. In addition, the ratings were 

randomly scrambled to generate a null distribution which served as a comparison 

condition with no semantic or social content. The analyses were conducted at the 

whole-brain level. The subject-level activation maps across all movies were used as 

inputs for a second-level group analysis using linear mixed-effects modelling with a 

fixed effect of content type (i.e., social or semantic or null) and random intercepts of 

subject and movie implemented using 3dLMEr in AFNI (Chen et al., 2013). The 

resulting statistical map was corrected using corrected using a cluster-forming 

threshold of p < 0.01 and an FWE-corrected threshold of p < 0.05. 

 

2.5.2 Research question 2 

To investigate the extent to which the social system shares neural resources with 

the semantic and semantic control systems within individual subjects, the subject-

level statistical maps generated to test research question 1 were directly compared. 

Specifically, the number of overlapping voxels was calculated between (1) the 

statistical maps for processing semantic and social content (word-level and event-

level results processed independently) and (2) the statistical maps for processing 

semantically flexible words and social words. The presence of voxels that respond to 

both semantic and social concepts or events was taken as evidence of shared neural 

resources between the systems. The strength of the evidence was determined by 

the number of overlapping voxels quantified using Dice coefficient, and fewer than 

10 overlapping voxels was considered functionally the same as 0 voxels. Overlap 

within the semantic hub in ATL will provide support for the graded semantic hub 

hypothesis which suggests that both systems rely on the same domain-general hub. 

Non-overlapping, proximal clusters of voxels that differentially respond to semantic 

(or semantic control) and social content in the absence of any overlapping voxels will 

provide weaker evidence of shared processing between the systems, and instead 

will be interpreted as evidence for graded functioning within a semantic or social 
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network region. To determine the extent to which stable areas of overlap between 

the cognitive systems exist across participants, a second-level random effects 

analysis was run using the overlap images from individual participants. The group-

level overlap maps were compared to the predefined ALE-derived network 

definitions to determine the extent to which the core regions within each network 

(shown in Figure 1) were involved in each process and to isolate any regions which 

fall outside the expected networks. 

 

3 Results 

3.1 Research question 1 

The Words and Events results are shown in the following sections with two 

cluster correction thresholds applied: (1) the pre-registered threshold (cluster-forming 

threshold of p < 0.01 with an FWE-corrected threshold of p < 0.05) and (2) a more 

conservative threshold (cluster-forming threshold of p < 0.01 with an FWE-corrected 

threshold of p < 0.01). The latter threshold was applied in an effort to highlight areas 

with the strongest response to the stimulus alongside the values that fall below that 

threshold (Taylor et al., 2023). The results figures indicate which voxels survived 

each cluster threshold and tables report clusters that survived the pre-registered 

threshold. Results figures were generated using MRIcroGL (Rorden & Brett, 2000). 

 

3.1.1 Words analysis 

The word-level predictor variables were generated as described in the pre-

registered Methods section with one minor deviation. The pre-registration indicated 

that when a window or event contained no words or no words that had ratings, a 

value of 0 would be assigned for each factor score. However, because scores were 

mean-centred, a score of 0 corresponds to words with an average factor score, not 

the absence of a score as initially intended. In addition, given the visual nature of 

movie stimuli, as opposed to narratives, there are many events that do not contain 

words. As a result, many windows containing few, if any, words would have been 

modelled as containing words with average factor scores. This was not justifiable on 

scientific grounds, so windows with no words or no words with ratings were removed 

from analysis instead. This error was realized and corrected prior to running the 
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words analyses. The words analysis results are shown in Figure 4 and the 

coordinate information is provided in Table 3. 

Number of Content Words. It was expected that clusters of voxels showing 

increased activation in response to greater semantic word-level content (i.e., number 

of content words) would fall within the semantic brain network (Hypothesis 1.1a). In 

line with this prediction, an increase in the number of content words was positively 

associated with activation in broad bilateral clusters extending from anterior to 

posterior superior temporal gyri with peak voxels in auditory cortices. The left 

hemisphere cluster was more extensive, including the superior and lateral portions of 

the temporal pole (the lateral portion is sometimes labelled “ventrolateral ATL” 

(Binney et al., 2010; Lambon Ralph et al., 2017), though the present results did not 

extend to the ventral portion of ATL), middle temporal, supramarginal, and angular 

gyri. Frontal activation was observed in smaller clusters in left inferior frontal, middle 

frontal, and superior frontal gyri and supplementary motor area and left precentral 

gyri. Cerebellar activation, predominately in the right posterior lobe of the 

cerebellum, also positively co-varied with the number of content words.  

Social Impact. It was expected that clusters of voxels showing increased 

activation in response to greater social word-level content (i.e., Social Impact scores) 

would fall within the social brain network (Hypothesis 1.1b). In line with this 

prediction, an increase in social and emotionally arousing words (indicated by 

positive Social Impact scores) was associated with activation in precuneus, right 

inferior parietal lobule (i.e., temporo-parietal junction [TPJ]), and frontal activation in 

bilateral inferior frontal gyri, superior medial gyrus, supplementary motor area, right 

precentral and middle frontal gyri, and left postcentral gyri. Activation in bilateral 

anterior middle (i.e., ventrolateral ATL) and superior (i.e., dorsolateral ATL) portions 

of the temporal pole also positively co-varied with Social Impact, as did clusters in 

right inferior temporal gyrus and fusiform and left inferior occipital gyrus. 

Semantic Flexibility. It was expected that clusters of voxels showing increased 

activation in response to semantically flexible word-level content would fall within the 

semantic control brain network (Hypothesis 1.1c). Counter to this prediction, 

activation in left IFG and pMTG did not positively co-vary with Semantic Flexibility. 

Instead an increase in more frequent, semantically diverse words (indicated by 

positive Semantic Flexibility scores) was associated with activation in a large cluster 
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with a peak voxel in right postcentral gyrus that included portions of middle cingulate 

cortex, inferior and superior parietal lobule, and precuneus. Activation in a smaller, 

analogous left hemisphere region positively co-varied with Semantic Flexibility as did 

clusters in anterior cingulate, right middle and superior frontal gyri, left precentral 

gyrus, bilateral insula, left inferior temporal and fusiform gyri, left angular gyrus, and 

bilateral middle occipital gyrus. 
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Figure 4. Words analyses results. Thresholded Z-score statistical maps showing 

the number of content words (top panel), Social Impact (middle panel), and Semantic 

Flexibility (bottom panel) results. All clusters survived the pre-registered cluster 

threshold. The clusters that survived an additional, more conservative threshold are 

indicated in yellow (lower) to red (higher). The clusters that did not survive the more 

conservative threshold are shown in purple (lower) to green (higher). 
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Table 2 

Words results coordinate table 

Variable 
Cluster 

Size 
Hem 

Brain Region 
Peak Voxel 

Brain Region 
Highest Overlap [%] 

MNI Coordinates 

X Y Z 

Content Words 2558 L Superior Temporal Gyrus Middle Temporal Gyrus [30%] -53 -20 7 
 1689 R Heschl’s Gyrus Superior Temporal Gyrus [42%] 50 -14 7 
 418 R Cerebellum (VII) Cerebellum (Crus 2) [32%] 17 -83 -57 
 175 L Supplementary Motor Area Superior Frontal Gyrus [41%] -5 4 77 
 149 L Postcentral Gyrus Precentral Gyrus [29%] -56 -10 57 
 117 L Inferior Frontal Gyrus (Triangularis) Inferior Frontal Gyrus (Triangularis) [76%] -56 16 29 

Semantic Flexibility 2423 R Inferior Parietal Lobule Postcentral Gyrus [17%] 53 -57 51 
 802 L Superior Parietal Lobule Postcentral Gyrus [27%] -17 -64 73 
 471 R Putamen Putamen [32%] 32 4 5 
 375 R Middle Frontal Gyrus Middle Frontal Gyrus [58%] 41 51 8 
 331 L Insula Lobe Insula Lobe [35%] -32 1 5 
 284 R Middle Orbital Gyrus Middle Orbital Gyrus [19%] 8 39 -7 
 259 L Cerebellum (VI) Fusiform Gyrus [39%] -26 -43 -33 
 220 L Inferior Occipital Gyrus Middle Occipital Gyrus [84%] -26 -91 -3 
 169 L Precentral Gyrus Precentral Gyrus [55%] -29 -17 66 
 168 R Middle Occipital Gyrus Middle Occipital Gyrus [53%] 29 -95 10 
 116 R Superior Frontal Gyrus Superior Frontal Gyrus [83%] 26 -11 76 
 110 L Angular Gyrus Angular Gyrus [35%] -53 -66 44 
 99 L Inferior Temporal Gyrus Inferior Temporal Gyrus [67%] -56 -12 -38 
 99 R Middle Temporal Gyrus Middle Temporal Gyrus [91%] 65 -29 -14 

Social Impact 576 L Precuneus Precuneus [30%] -5 -68 31 
 463 L Inferior Frontal Gyrus (Orbitalis) Inferior Frontal Gyrus (Orbitalis) [24%] -32 18 -19 
 383 R Inferior Frontal Gyrus (Orbitalis) Inferior Frontal Gyrus (Orbitalis) [25%] 38 24 -18 
 367 L Postcentral Gyrus Postcentral Gyrus [43%] -71 -15 24 
 341 L Supplementary Motor Area Supplementary Motor Area [44%] -8 20 74 
 335 R Superior Medial Gyrus Superior Medial Gyrus [43%] 5 62 31 
 300 R Postcentral Gyrus Supramarginal Gyrus [40%] 62 -16 40 
 252 R Superior Temporal Gyrus Superior Temporal Gyrus [43%] 44 -29 -7 



153 
 

 222 L Lingual Gyrus Inferior Occipital Gyrus [32%] -17 -103 -15 
 162 R Superior Parietal Lobule Superior Parietal Lobule [58%] 35 -57 57 
 159 R Angular Gyrus Angular Gyrus [64%] 50 -59 28 
 138 R Cerebellum (Crus 1) Inferior Temporal Gyrus [38%] 47 -62 -27 
 115 R Middle Cingulate Cortex Middle Cingulate Cortex [32%] -2 -24 26 
 111 R Precentral Gyrus Precentral Gyrus [79%] 50 -7 57 

Note. This table was generated based on the pre-registered cluster threshold. Cluster size is determined by the number of 2mm3 

voxels. MNI coordinates correspond to the voxel with peak activation within each cluster. Voxels were defined as neighbours based 

on faces touching (NN=1). Atlas labels are based on the Eickhoff-Zilles macro labels from the N27 (MNI space) atlas. Hem, 

Hemisphere; L, Left; R, Right. 
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3.1.2 Events analysis 

Correlations between the event properties, including semantic and social ratings, 

are shown in Figure 5. Predictably, event duration and the number of words within 

an event were moderately to highly correlated (r = 0.55-0.86). Semantic ratings were 

positively correlated with number of words (r = 0.40-0.76), as were social ratings to a 

lesser extent (r = 0.32-0.56). This is unsurprising given that highly semantic events 

were defined as having new or informative verbal content and, to some extent, social 

moments in movies often rely on, or are supplemented by, verbal input. Although 

positively correlated, it was not the case that event ratings were simply proxies for 

duration or word quantity. Further, the semantic and social ratings did not capture 

the same event properties, as evidenced by the low to moderate correlations 

between the ratings (r = 0.01-0.47). 

 

 

Figure 5. Event property correlations. Bivariate correlations between the number 

of words in an event, event duration, semantic rating, and social rating. 

 

The events analysis results are shown in Figure 6 and the coordinate information 

is provided in Table 3. The following sections provide an overview of the results for 

the pre-registered events analyses. 

Semantic Events. It was expected that clusters of voxels showing increased 

activation in response to semantic events (plot-progressing, informative verbal or 
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written scenes) would fall within the semantic brain network (Hypothesis 1.2a). In line 

with this prediction and the number of content words results, there was increased 

activation in the canonical language network as the semantic content in events 

increased. Similar to the content words results, there were large bilateral clusters 

centred around auditory cortices and extending from posterior to anterior superior 

temporal gyrus. The left hemisphere cluster included the middle portion of the 

temporal pole (i.e., lateral ATL) and extended posteriorly into inferior parietal lobule. 

There was also a large left inferior frontal gyrus cluster and a cluster in left 

supplemental motor area. Additional clusters of activation were observed in left 

cuneus and calcarine gyrus and inferior occipital gyrus and the right posterior lobe of 

the cerebellum. Subcortical activation positively co-varied with semantic event 

content in left putamen, thalamus, caudate nucleus, and a portion of the 

hippocampus. 

Social Events. It was expected that clusters of voxels showing increased 

activation in response to social events (scenes depicting on or off-screen interactions 

between/among characters) would fall within the social brain network (Hypothesis 

1.2b). In line with this prediction, as the social content in events increased, there was 

increased activation in bilateral inferior parietal lobule (i.e., TPJ), left fusiform, 

precentral and middle frontal gyri, and supplementary motor area. Smaller clusters of 

activation in left calcarine and superior occipital gyri and a small cluster in the 

posterior lobe of the left cerebellum also positively co-varied with social event 

content. There were also prominent effects in bilateral lateral occipitotemporal 

cortex, which is typically associated with motion processing (V5/MT) and object 

recognition (LOC) rather than social cognition. Unlike the Social Impact words 

analysis results, social event content did not engage the left anterior temporal lobe. 

Scrambled Events. Scrambled semantic and social ratings were used as a 

negative control condition for comparison with the critical predictions. There were no 

surviving clusters of activation positively associated with the scrambled ratings at 

either cluster correction threshold. 
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Figure 6. Events analyses results. Thresholded Z-score statistical maps showing 

the Semantic Events (top panel) and Social Events (bottom panel) results. All 

clusters survived the pre-registered cluster threshold. The clusters the survived an 

additional, more conservative threshold are indicated in yellow (lower) to red 

(higher). The clusters that did not survive the more conservative threshold are shown 

in purple (lower) to green (higher).  
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Table 3 

Events results coordinate table 

Variable Cluster Size Hem 
Brain Region 
Peak Voxel 

Brain Region 
Highest Overlap [%] 

MNI Coordinates 

X Y Z 

Semantic Events 3690 L Middle Temporal Gyrus Middle Temporal Gyrus [25%] -56 -33 -0 
 1916 R Superior Temporal Gyrus Superior Temporal Gyrus [34%] 65 -1 -2 
 807 R Precuneus Putamen [8%] 23 -46 16 
 745 R Cerebellum (Crus 2) Cerebellum (VIII) [26%] 20 -86 -50 
 354 L Calcarine Gyrus Cuneus [35%] -2 -83 14 
 232 L Supplementary Motor Area Supplementary Motor Area [87%] -5 1 74 
 172 L Lingual Gyrus Inferior Occipital Gyrus [31%] -26 -100 -18 

Social Events 2545 R Inferior Occipital Gyrus Superior Temporal Gyrus [25%] 50 -79 -6 
 1576 L Middle Occipital Gyrus Middle Temporal Gyrus [31%] -53 -79 7 
 1035 R Superior Parietal Lobule Superior Parietal Lobule [21%] 35 -57 64 
 601 L Superior Occipital Gyrus Calcarine Gyrus [19%] -5 -101 6 
 243 R Middle Frontal Gyrus Precentral Gyrus [65%] 50 2 54 
 218 L Cerebellum (VIIb) Cerebellum (VII) [30%] -14 -76 -60 
 178 L Superior Frontal Gyrus Precentral Gyrus [53%] -20 -2 77 
 159 R Supplementary Motor Area Supplementary Motor Area [59%] 8 10 77 

Note. This table was generated based on the pre-registered cluster threshold. Cluster size is determined by the number of 2mm3 

voxels. MNI coordinates correspond to the voxel with peak activation within each cluster. Voxels were defined as neighbours based 

on faces touching (NN=1). Atlas labels are based on the Eickhoff-Zilles macro labels from the N27 (MNI space) atlas. Hem, 

Hemisphere; L, Left; R, Right. 
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3.2 Research question 2 

3.2.1 Subject-level cognitive system overlap 

There was considerable variability in the cognitive system overlap at the subject-

level. The Dice similarity coefficients and the number of overlapping voxels between 

the thresholded subject-level statistical maps are presented in Figure 7A. There was 

modest overlap for Social Impact ∩ Semantic Flexibility: median Dice coefficient = 

0.05 (range: 0-0.30), median overlapping voxels = 146 (range: 0-2481). Somewhat 

more overlap was observed for Social Impact ∩ Content Words: median Dice 

coefficient = 0.08 (range: 0-0.32), median overlapping voxels = 417 (range: 0-3879). 

Overlap for Social Events ∩ Semantic Events was particularly variable: median Dice 

coefficient = 0.07 (range: 0-0.54), median overlapping voxels = 191 (range: 0-6829). 

In each case, the distributions were strongly skewed such that many participants 

showed relatively little overlap and a small subset of participants showed moderate 

cognitive system overlap.  

 

3.2.2 Cross-subject cognitive system overlap 

The pre-registered group-level analysis was intended to determine the extent to 

which stable areas of overlap existed across participants, but it was not able to 

answer this research question. Instead of identifying consistent areas of overlap, the 

analysis produced an aggregate map of any overlap observed at the subject-level. 

This result is misleading as it would give the impression of much greater cross-

subject overlap which would result in making the wrong inferences about the 

cognitive systems being investigated. 

Overlap maps showing the number of participants with subject-level overlap of 

cognitive systems at each voxel are presented in Figure 7B. The maps have been 

thresholded to only include areas of subject-level overlap that were observed in at 

least 2 participants. As evident from the figure, the amount of cross-subject overlap 

was minimal, especially for the Social Impact ∩ Semantic Flexibility (max overlap = 7 

participants). Where cross-subject system overlap occurred, the most consistent 

location of overlap between the cognitive systems was in bilateral superior temporal 

gyri and auditory cortices, likely driven by the amount of verbal input (i.e., number of 

words) which was correlated with the event ratings and inherent to the factor scores. 
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This region included the point of highest overlap (Social Events ∩ Semantic Events), 

but it was only 28 of 86 participants (32.6% of the sample), which does not suggest 

strong consistency.  

 

 

Figure 7. Overlap analysis results. The subject-level cognitive system overlap, 

measured with Dice Coefficient and Number of voxels, is shown for the Social 

Impact ∩ Semantic Flexibility (red), Social Impact ∩ Content Words (orange) and 

Social Events ∩ Semantic Events (blue) results in panel A. The cross-subject 

cognitive system overlap is shown in panel B. The overlap maps correspond to the 

Social Impact ∩ Semantic Flexibility (red), Social Impact ∩ Content Words (orange) 

and Social Events ∩ Semantic Events (blue) cross-subject overlap. Each voxel 

represents the number of participants that had overlap at that voxel. All maps were 

thresholded to include only those areas where the subject-level overlap was at least 

2. 
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4 Discussion 

4.1 Overview 

The present study investigated the neural basis of semantic and social 

processing during movie-viewing, which provides a rich estimation of the multimodal 

environment in which language use and social interactions take place (Jääskeläinen 

et al., 2021). Current neurobiological models of the semantic and social cognition 

systems were derived from experimentally controlled stimuli presented in random 

order without larger-scale context. Naturalistic stimuli are less constrained and tend 

to elicit activation in areas that show minimal response in minimalist experiments and 

to evoke highly stable patterns of brain activation, allowing for different insights into 

fundamental aspects of human cognition (Hasson et al., 2010). In order to 

comprehensively capture semantic and social content within the movies, word and 

event-level predictors were generated and used for analyses. The goals of the study 

were twofold. The first aim was to test the degree to which semantic and social 

content was processed within each network. The second, complementary aim was to 

test the degree to which the semantic and social systems evidence shared 

processing in the same regions or domain-general hub, given the conceptual and 

neural overlap between these systems.  

In line with our predictions, word and event-level semantic content isolated a 

highly convergent, largely fronto-temporo-parietal network, despite measuring 

semantic content in different ways. Frequent, semantically diverse language 

(estimated by positive Semantic Flexibility scores) did not co-vary with activation in 

semantic control regions, counter to our expectations. An increase in both word and 

event-level social content engaged portions of the social, semantic, and semantic 

control networks, providing partial support for our hypotheses. Further, there were no 

positive associations with the scrambled ratings, increasing confidence that we 

report meaningful associations with the semantic and social event ratings. We did 

not observe stable, cross-subject overlap between semantic and social processing. 

All analyses and interpretations given to results were pre-registered prior to 

conducting the study. The following sections provide an overview of each content 

type, indicating, where relevant, when an interpretation that was not pre-registered is 

provided. 
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4.2 Semantic content 

Activation in semantic and semantic control network regions positively co-varied 

with an increase in both word and event-level semantic content in complex movie 

stimuli. This network included the core regions highlighted in the meta-analytic map 

shown in Figure 1: bilateral ATL, bilateral middle temporal gyrus, left supplementary 

motor area, left IPL, semantic control regions in left inferior frontal gyrus and 

posterior middle temporal gyrus, and minimally included activation outside these 

networks. We made no specific predictions about the recruitment of the semantic 

control system in response to content words or highly semantic events because we 

had no corresponding measure of how cognitively demanding the words or events 

were (with the exception of Semantic Flexibility, discussed below). However, 

engagement of the semantic control system is routinely found in studies of semantic 

cognition and – unless they are explicitly removed – these control regions are found 

in meta-analyses of semantic cognition (Binder et al., 2009; Jackson, 2021). For the 

present study, semantic control regions were subtracted from the semantic system in 

order to distinguish automatic semantic processing regions from those regions which 

are involved in more effortful or controlled semantic processing. This suggests that 

control processes are an integral part of how the semantic system operates in 

naturalistic comprehension. 

The fronto-temporo-parietal network observed here has considerable overlap with 

the ‘universal language network’ that has been identified across diverse languages 

(Malik-Moraleda et al., 2022). Convergence with the topography of this network is 

notable because it was derived with a different naturalistic paradigm - stories - using 

a contrast with acoustically degraded audio (or unfamiliar language) to identify the 

network of regions sensitive to language. The present study used continuous 

measures of high versus low semantic content to isolate regions that are particularly 

sensitive to an increase in semantic content. This focus on semantic content may 

explain why we observed more activation in the lateral portion of the ventrolateral 

ATL, which was only present in some of the language networks (including English) 

reported by Malik-Moraleda et al. 

Correspondence with the universal language network suggests that there is a 

robust language comprehension network that is engaged across naturalistic 

contexts, including narratives and movies. Indeed, this network is well positioned to 
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serve this purpose with structural connections between orbitofrontal cortex and 

temporal pole (uncinate fasciculus), inferior frontal cortex to posterior superior 

temporal cortex (arcuate fasciculus) and inferior parietal lobule (extreme capsule) 

(Shekari & Nozari, 2023). Although not part of the semantic or language network, 

activation in right posterior cerebellar lobe may be similarly driven by the structural 

connections projecting into perisylvian language areas, suggesting a possible role in 

general language processing (Vias & Dick, 2017). A similar network topography has 

been reported in other studies that used naturalistic stimuli, predominately narratives 

and natural language (Wu et al., 2022; Zhang et al., 2020). Individual studies using 

minimalist stimuli tend to report highly focal results, however, aggregation of study-

level data via meta-analysis reveals a network with similar topography to that 

observed here (Binder et al., 2009; Jackson, 2021), although naturalistic stimuli tend 

to evoke a more bilateral network. 

The semantic content in complex movie stimuli was quantified using a word-level 

and an event-level definition, and, although both measures were used as proxies of 

semantic processing, it is nonetheless striking that they isolated a highly convergent 

fronto-temporo-parietal network given the conceptual differences between the 

measures. The word-level measure (content word quantity) was agnostic to the 

context of the event or larger narrative, but that information directly informed the 

event-level measure (subjective ratings). The latter was sensitive to both the local 

context, in that ratings were given to events segmented based on the progression of 

the narrative, and the global context, in that ratings were given consecutively 

allowing for prior information to impact perception of the event. It is thus notable that 

the word and event semantic content predictors engage a highly similar network 

given the impact of context on conceptual representations (Yee & Thompson-Schill, 

2016). Conceptually and practically, both measures were strongly impacted by the 

total number of words, which was evidenced by the moderate-to-high correlations 

between number of words and semantic event ratings across movies. In naturalistic 

communication, especially in scripted narratives, semantic content is inherently 

related to verbal input (though they are not identical: semantic ratings also captured 

narrative moments with non-spoken information or moments in which highly 

important information is conveyed using few words). Statistically removing that 

association would create minimally interpretable event ratings; a different approach 
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is needed for studying naturalistic semantic processing independent of verbal 

processing. For the present study, a more useful approach is to consider the word-

level and event-level results together, noting their similarities and differences. 

There were minor differences in the topography of the word-level and event-level 

semantic content networks. The semantic event network engaged a larger cluster in 

left inferior frontal gyrus and supplementary motor area, as well precuneus, middle 

cingulate cortex and surrounding subcortical structures (putamen, thalamus, caudate 

nucleus), and left inferior and middle occipital gyrus. This may reflect differences in 

word versus event processing. For instance, the occipital activation observed for 

highly semantic events is consistent with the fact that linguistic content could be 

presented via spoken or written language. In addition, differences in temporal 

receptive windows drive regional recruitment in response to word, sentence, or 

paragraph presentation (Lerner et al., 2011). The latter two contexts engage a large 

left inferior frontal region as well as posterior cingulate and precuneus, which we 

similarly observe in the network that co-varies with highly semantic event content. 

Processing movie events, which incorporate context in much the same way as 

sentences or paragraphs, could then drive engagement of regions which allow 

preceding context to have a greater influence on the integration of information. In 

addition or alternatively, event content ratings may have been influenced by other 

types of information (e.g., emotional information), so the resulting network of regions 

may reflect sensitivity to both semantic and correlated information.  

In a recent study using similar word-level predictors but with an audiobook 

stimulus, engagement of the same lateral portion of ATL was not observed in 

response to an increase in the quantity of content words (Thye et al., 2023). Instead, 

the temporal pole, including ventrolateral ATL, was active when there was a 

decrease in content words. This was thought to be driven by the fact that the speech 

rate, and therefore approximate quantity of words, tends to be fairly consistent 

throughout an audiobook. The ventrolateral ATL then is still engaged in semantic 

processing and may use the relative decrease in new, plot-progressing information 

to integrate the current information with the prior knowledge of the narrative. This is 

not the case for movies, which can have periods that are primarily (or entirely) visual, 

when minimal verbal information is presented. Both studies used a parametric 

modulation approach, but in the audiobook context, the ‘low semantic’ condition still 
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contained words (predominately closed class words) whereas the same condition in 

the present study likely contained no words at all (scenes with only visual 

information). In measuring regional covariation in response to high relative to low 

semantic content, it appears that ATL activation does not selectively co-vary with an 

increase in content words in the audiobook case where the speech rate is consistent 

even for the low semantic periods. Conversely, in the movie case where ‘low 

semantic’ means limited to no verbal input, we see ATL activation co-vary with an 

increase in semantic content. This may indicate important differences in how 

unimodal (e.g., audiobook) and multimodal (e.g., movie) narratives engage the same 

cognitive system, which needs to be considered when defining research questions or 

adapting paradigms. Anticipating this difference between audiobooks and movies, for 

instance, the present study used summed factor scores instead of mean factor 

scores to better capture the total amount of each content type. Using means instead 

of sums appears to better approximate the relative amount of these properties when 

the speech rate is consistent, as in the audiobook case. 

We speculate that ventrolateral ATL, in particular the anterior middle temporal 

gyrus, is engaged by internal, or endogenous, semantic processing required for 

updating and processing the ongoing narrative. With a longer temporal receptive 

window for accumulating and integrating information (Hasson et al., 2008; Lerner et 

al., 2011) and with functional connections to the broader default mode network 

(DMN) (Lee et al., 2020; Raichle, 2015), this region is well-suited to serving this role. 

The DMN, which is active in the presence and absence of external input, facilitates 

the construction of a continuous coherent internal narrative by relying on episodic 

and semantic memory (Menon, 2023). This is observed across naturalistic 

comprehension contexts. Intact story comprehension elicits robust, cross-subject 

stimulus-induced changes in connectivity between the posterior cingulate cortex, a 

core DMN region, and anterior MTG (Simony et al., 2016), and activation in the DMN 

covaries with high-level perception of narrative features during movie-viewing (Betti 

et al., 2013; Brandman et al., 2021). We suggest that functional connections 

between the default mode network and ventrolateral ATL drive narrative integration 

and support endogenous semantic processing of the narrative content. The 

endogenous processing demands placed on this region are poorly approximated by 

the relative amount of semantic input. Instead, the dorsolateral ATL appears to be 
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particularly sensitive to the quantity and informativeness of the input as evidenced by 

greater activation in this region in both word and event results of the present study 

and in the universal language network. 

 

4.3 Semantic Flexibility 

Counter to our pre-registered hypothesis, there was no evidence of increased 

engagement of semantic control network regions as semantically flexible word-level 

content increased. This suggests that processing words with positive Semantic 

Flexibility scores, which are associated with more frequent, less concrete, and more 

semantically diverse language, does not require more semantic control. We 

expected words with high semantic diversity to place additional demands on the 

control system due to the need to select from one of several possible meanings that 

best fit the context (Hoffman et al., 2013). This prediction was based on prior studies, 

which tended to use highly decontextualized stimuli in which meaning selection did 

not benefit from the context provided in a narrative. During naturalistic language 

comprehension, highly semantically diverse language appears to be disambiguated 

by the preceding context without requiring engagement of the semantic control 

system. These results suggest important deviations from single-word and sentence 

level investigations of semantic diversity and ambiguity resolution more generally. 

Similar to the present study, an increase in bilateral parietal and occipital activation 

was observed in a previous study as positive Semantic Flexibility scores increased 

(Thye et al., 2023). 

 

4.4 Social content 

Recent evidence suggests that social knowledge is subsumed within the 

semantic system and, like other types of semantic information, is processed in the 

ventrolateral ATL (Balgova et al., 2022; Binney & Ramsey, 2020). In this view, all 

kinds of social knowledge are processed within the semantic system, ranging from 

social concepts, which have consistently been shown to recruit portions of left ATL 

(Binney et al., 2016; Olson et al., 2013; Zahn et al., 2007), to more abstract social 

processes such as mentalizing, which have not been as thoroughly investigated (but 

see Balgova et al., 2022). The present study enabled a direct test of this claim using 
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naturalistic movie stimuli, which better approximate real-world socio-cognitive 

processing, across two social contexts: (1) social words, estimated using Social 

Impact factor scores, and (2) social events, using subjective event-level ratings. We 

hypothesized that the social network shown in Figure 1 would be engaged by both 

content types, in particular within the core regions highlighted in the figure. The 

results provide partial support for this claim.  

An increase in highly social and emotionally arousing words engaged much of the 

social cognition network: dorsomedial prefrontal cortex, bilateral IFG, superior frontal 

gyrus, supramarginal gyrus, precuneus, bilateral ATL, and left IPL, with minimal 

engagement of bilateral MTG. These results broadly align with the pre-registered 

predictions, and are similar to the regions identified in separate meta-analyses of 

social compared to non-social concepts (Arioli et al., 2020; Zhang et al., 2021). 

Unexpectedly, however, activation in left IPL did not co-vary with an increase in 

Social Impact. In addition to the core social cognition regions, an increase in word-

level social content co-varied with activation in precentral and postcentral gyri, 

middle cingulate cortex, and left inferior occipital gyrus. Activation in ventrolateral 

ATL co-varied with an increase in social and emotional language. This provides 

critical support for the claim that social processing is supported by the semantic 

system (Binney & Ramsey, 2020), but it is important to consider the nature of the 

contrast. The predictor in this analysis was the socialness of the words, with the 

quantity of semantic content statistically controlled by using residual scores, so the 

analysis should not identify regions that are responsive to general semantic or 

language comprehension. That is, if activation of ventrolateral ATL is primarily driven 

by the amount of semantic content, then it should not co-vary with Social Impact 

after controlling for semantic content.  

If ventrolateral ATL activation during periods of high Social Impact cannot be 

attributed to an increase in general semantic content, what is driving this effect? 

Engagement of this region for processing social relative to non-social word-level 

content may suggest an increased sensitivity to social information, at least in 

naturalistic contexts. Alternatively, and building upon our claim about ventrolateral 

ATL, word-level social processing may drive greater engagement of ventrolateral 

ATL due to a greater need for endogenous semantic processing. This may be a 

consequence of the general role of the DMN in social processing (Li et al., 2014) or 
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may be due to the nature of movies in which social information is particularly salient 

and important to the narrative.  

Although the word-level analysis used orthogonalized factor scores, a ‘pure’ 

social factor did not emerge from the PCA. Instead the Social Impact factor was 

driven by socialness and emotional arousal, making it hard to disentangle the social 

versus emotional effects. In complex, naturalistic stimuli, however, social and 

emotional content are likely to be at least moderately correlated. Highly social 

moments are often emotional, and, inversely, emotional moments may frequently be 

played out between characters, given the likely oversampling of social content in 

compelling storytelling. Further, conceptual representations are not static (Yee & 

Thompson-Schill, 2016), but the word-level predictor treated the words as 

independently sampled from the narrative, a limitation that the event-level predictor 

directly addressed.  

In accounting for the impact of context on conceptual representations, the event-

level analysis may have better captured the kind of socio-cognitive processing 

typically isolated in studies of social cognition. Although social event ratings were 

moderately correlated with word quantity, the social event predictor also captured 

non-linguistic content, as intended. Highly interpersonal moments in a movie may 

contain few, if any, words, and are separate from the linguistic content present in the 

event. Conceptually, the word and event predictors could capture different properties 

of the underlying stimulus, although prior work looking at the correspondence 

between word-level and passage level emotion ratings suggests otherwise (Bestgen, 

1992).  

Highly social events engaged a network that only partially overlapped with the 

word-level social content network and included different core social cognition 

regions. Activation along bilateral superior temporal gyrus extending posteriorly into 

bilateral lateral occipitotemporal cortex and left angular gyrus co-varied with the 

social content in events. Processing dynamic social events appears to engage 

motion processing areas in middle temporal visual motion area (MT), face and object 

recognition areas in the lateral occipital cortex, and superior temporal sulcus, which 

may aid in face and body perception (Born & Bradley, 2005; Grill-Spector et al., 

2001; Nagy et al., 2012; Pitcher & Ungerleider, 2021). The ATL was not recruited 

during social event processing, providing counterevidence against the claim that 
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general social processing recruits the domain-general semantic hub (Balgova et al., 

2022). However, it may be that ventrolateral ATL was equally engaged by highly and 

weakly social events, and, unlike the word-level results, did not evidence increased 

sensitivity to social events.  

The overlap between the social and semantic control system has been 

interpreted to suggest that socio-cognitive processing places increased demands on 

the semantic control system (Binney et al., 2016; Diveica et al., 2021). Support for 

this claim in the present study is mixed. Words that were more social and 

emotionally arousing (i.e., higher Social Impact) engaged the semantic control 

network in bilateral inferior frontal gyri, but this was not observed for highly social 

events. An important consideration in weighing the evidence is the degree to which 

the word and event-level predictors may have had different control demands that are 

hard to quantify in naturalistic stimuli. Alternatively, social event-level information 

may be more readily understood than word-level information. This inference is not 

without precedent. Many social phenomena studied out of context have been shown 

to increase general control demands. Processing embedded mental states (e.g., 

Marty understands that Doc believes that reading the letter would change the future), 

for instance, is effortful in a sentence or passage context (Lewis et al., 2017; Stiller & 

Dunbar, 2007), but is readily understood, and even enjoyable, in the narrative 

context (Van Duijn et al., 2015). Humans process information well when presented in 

narrative format (Bruner, 1986), which movies provide. Socio-cognitive processing 

may engage the semantic control system in experimental paradigms that present de-

contextualised stimuli in a random order, but not in a rich narrative context or during 

naturalistic social processing. Taken together, we do not find strong support for the 

claim that socio-cognitive processing increases semantic control demands. Prior 

studies isolating specific social processes that found support for this claim are 

challenged by the ease with which humans engage in these processes in naturalistic 

contexts. 

 

4.5 Shared processing 

One of our study aims was to investigate the consistency of subject-level 

engagement of semantic and semantic control networks in processing social 

concepts. The distribution of subject-level overlap, quantified using number of voxels 
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and Dice Similarity Coefficient (Figure 7), suggested that cross-system overlap 

exists, but its location was highly variable across subjects and the median values 

tended to be modest. Taken together, these results provide minimal support for a 

consistent locus of overlap between these cognitive systems. 

 

5 Conclusion 

Naturalistic neuroimaging data provide an exciting and rich basis for studying the 

neural basis of human cognition. However, this richness also makes them 

particularly vulnerable to adjusting analysis strategies and constructing post hoc 

explanations, which is common in whole-brain neuroimaging. The analyses and 

hypotheses described in the present study were based on well-defined theories of 

semantic and social cognition (and how they might interact) and pre-registered to 

maximize transparency about the analysis plan (and any deviations) and distinguish 

a priori hypotheses from post hoc speculations based on the results.  

The results suggest that during naturalistic movie viewing, increases in semantic 

content are associated with increased activation in the semantic and semantic 

control networks, displaying a fronto-temporo-parietal topography highly similar to 

the universal language network (Malik-Moraleda et al., 2022). There is evidence of a 

hub architecture, consistent with the graded hub hypothesis (Lambon Ralph et al., 

2017), but the ATL subregions appear to serve different functions during naturalistic 

comprehension. We suggest that the dorsolateral ATL is sensitive to the quantity and 

informativeness of the input, as evidenced by robust activation during language 

comprehension, whereas the lateral portion of ventrolateral ATL may be also 

important for endogenous semantic processing – updating and processing the 

ongoing narrative – leveraging this region’s functional connections with the default 

mode network. Word, but not event-level, social content engaged the ventrolateral 

ATL, perhaps because social content is particularly important for movie narratives 

and consistent with the role of this region in endogenous semantic processing. 

Social events engaged a network topographically more similar to the social cognition 

network, with activation in bilateral TPJ. Although portions of the semantic network 

(ATL, right IPL) were engaged by social content and these regions overlapped at the 

group level, the subject-level overlap analyses suggest limited cross-subject overlap. 

These results are a step toward integrating theories of word-level semantic cognition 
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with theories of narrative comprehension and understanding the relationships 

between social and semantic cognition. 
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Chapter 6 

GENERAL DISCUSSION 

 

1 Overview 

Semantic memory provides a conceptual store that is critical for language 

comprehension – we use this knowledge to flexibly communicate complex ideas and 

convey rich, nuanced information through natural language and narratives (McRae & 

Jones, 2013). In most cases, the process of rapidly accessing and integrating the 

meaning of individual concepts into a holistic representation is done with ease, 

despite the multifaceted cognitive demands required for successful comprehension. 

These demands have been underestimated by the prevailing hub-and-spoke model 

of semantic cognition, which was developed using highly constrained stimuli that 

poorly approximate real-world language processing. Further, there is evidence that 

the semantic system facilitates social processing (Balgova et al., 2022; Binney & 

Ramsey, 2020), but this claim has not been tested using naturalistic stimuli that 

sample varied social knowledge, including abstract social concepts, pragmatic 

inferences, and interpersonal interactions. 

The aims of this thesis were broadly two-fold: (1) to examine the neural 

processing of semantic information across comprehension contexts, and (2) to 

investigate comprehension of social information in narratives, particularly the 

engagement of semantic and social systems. These aims were tested by examining 

the neural processing of different kinds of relations between concrete concepts (i.e., 

taxonomic and thematic relations – Chapter 2), abstract lexical and semantic 

properties of single words presented in context in an audiobook (Chapter 3), social 

and pragmatic sentence content in the same audiobook (Chapter 4), and social and 

semantic word and event level ratings in multimodal movies (Chapter 5). This forms 

the basis for extending the hub-and-spoke model of semantic cognition to narrative 

comprehension contexts and for a better understanding of how social information is 

processed within the neural architecture of the semantic system. 
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2 Cross-cutting implications 

Across the studies described here, we observed important deviations from the 

hub-and-spoke model. Prior studies that used natural language or narratives to 

probe the neural basis of the semantic system foreshadowed differences in the 

neurobiology of language processing (Deniz et al., 2019; Huth et al., 2012, 2016), 

but our results suggest that the neural architecture described by the hub-and-spoke 

model may not sufficiently capture the temporal processing of concrete semantic 

relations. Chapter 2 provided evidence of a dual-hub structure, with specialization for 

taxonomic, or feature-based relations, in ATL and for thematic, or event-based 

relations, in IPL. This specialization was time sensitive and likely too transient for 

fMRI studies to capture given the relatively sluggish BOLD response. 

Chapters 3 and 4 investigated a complete narrative, The Little Prince, using two 

complementary levels of analysis: word properties of the sort that informed the hub-

and-spoke model and sentence ratings that explicitly integrated narrative context. 

Chapter 5 described an application of an analogous word-level approach to movie 

stimuli and extended the prior work by incorporating more context via event ratings. 

Across these three studies, we observed engagement of large, bilateral networks, 

particularly for processing word quantity and semantic content. Social language, 

including pragmatic inference, engaged the semantic system in ATL, but this was not 

observed for social events. Consistent with the hub-and-spoke model, there was 

evidence of a hub architecture, but we identified three subregions within the ATL that 

appear to be differentially functionally engaged by the varying demands of narrative 

comprehension (Table 1). Several cross-cutting inferences can be made in light of 

these results, outlined in the sections below. 
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Table 1 

ATL functional subregions 

Subregion Label 
Anatomical Boundaries 

Proposed Sensitivity Evidence 

Dorsolateral ATL 
anterior STG 

quantity of verbal / semantic input 

Ch 3: audiobook words 

• activity correlates with number of words* 
Ch 4: audiobook sentences 

• activity correlates with semantic content ratings 
Ch 5: movie words & events 

• activity correlates with number of content words & semantic event ratings 
Universal language network (Malik-Moraleda et al., 2022) 

Ventrolateral ATL 
anterior MTG & ITG 

(1) social words and sentences 
and sentences requiring 

pragmatic inference 
 

(2) narrative moments with 
minimal verbal / semantic input 

Ch 3: audiobook words 

• activity correlates with Social Impact scores* 
Ch 3: audiobook words 

• activity negatively correlates with number of content words* 
Ch 4: audiobook sentences 

• activity correlates with social* and pragmatic content ratings 
Ch 5: movie words 

• activity correlates with Social Impact scores 

Ventral ATL 
anterior fusiform 

general semantic content 

Ch 3: audiobook words 

• activity correlates with number of content words 
Ch 4: audiobook sentences 

• activity correlates with semantic content ratings 
Role as transmodal semantic hub (Lambon Ralph et al., 2017) 

Note. ATL, anterior temporal lobe; STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus. The 

subregions are shown in Figure 1. *activation in dorsolateral and ventrolateral ATL 
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2.1 Endogenous semantic processing framework 

The studies presented here provide the basis for a model of narrative 

comprehension that integrates the perisylvian language comprehension network, the 

hub-and-spoke semantic cognition system, and the default mode network (DMN). In 

this model, unimodal or multimodal narrative language input is processed within the 

language and semantic networks, including dorsolateral ATL (anterior STG) and the 

semantic hub in ventral ATL (anterior fusiform). Internal processing or reflection on 

the narrative and updating of the situation model or narrative schema is supported by 

the DMN and also requires semantic cognition – we refer to this as “endogenous 

semantic processing” to indicate semantic cognition that is driven by internal factors 

rather than external input. We suggest the ventrolateral ATL plays a critical role in 

endogenous semantic processing and mediates between the DMN and the semantic 

and language networks. The proposed model is depicted in Figure 1, and the key 

features of the model are described below. 
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Figure 1. Proposed model for the neural basis of narrative comprehension. The 

default mode network (purple), the language network (red), dorsolateral ATL 

(orange), ventrolateral ATL (yellow), and ventral ATL (green) are shown on the left 

lateral, inferior, and medial surface of the brain. The top panel outlined in red 

provides example unimodal (auditory or visual) and multimodal narrative input. 

Outlined red lines connect this input panel to the language network including 

dorsolateral ATL, demonstrating the proposed network engaged by external input 

during narrative comprehension. The bottom panel outlined in yellow shows a 

schematic of the evolving situation model in response to the narrative input. Within 

this panel, purple lines indicate information that was known prior to the scene, grey 

lines indicate information that is unknown, and the red dashed line indicates the new 

connection formed after the input is processed. An outlined yellow line connects this 

bottom panel to the ventrolateral ATL, demonstrating the proposed endogenous 

processing this region supports. Dashed purple lines flow between the ventrolateral 

ATL and regions within the default mode network, demonstrating the proposed 

functional connections that facilitate the endogenous processing. White arrows 

overlaid on the language network and dorsolateral ATL show the flow of input 

processing accessing semantic memory in the dorsolateral ATL. Bidirectional white 



176 
 

arrows connect dorsolateral and ventrolateral ATL and ventrolateral and ventral ATL 

demonstrating that the functional boundaries between these regions is not rigid. 

Multimodal narrative input is likely to engage regions not depicted in the figure. For 

instance, visual input may feed into and facilitate endogenous semantic processing. 

To simplify the presentation of the proposed model, however, we have highlighted 

only the regions the framework makes specific claims about. 

 

There is a robust language comprehension network that includes dorsolateral ATL 

There is a robust fronto-temporo-parietal language comprehension network that 

includes left inferior frontal gyrus, middle frontal gyrus, and superior temporal gyrus 

extending anteriorly into dorsolateral ATL. This network topography is highly 

convergent with the universal language network, as discussed in Chapters 4 and 5. 

Activation in ventrolateral ATL was notably inconsistent – only about a third of the 

language network maps in the Malik-Moraleda et al (2022) study appeared to include 

ventrolateral ATL whereas all of the network maps included dorsolateral ATL. The 

topography of this network may be particularly driven by auditory input and, given its 

proximity to auditory cortices, dorsolateral ATL may be ideally positioned to support 

auditory language comprehension. In the present studies, semantic word and event-

level content consistently engaged dorsolateral ATL and, less consistently, extended 

into a portion of ventrolateral ATL. Ventral ATL may be particularly sensitive to an 

increase in semantic word and sentence level content, but it was not engaged during 

multimodal word or event content.  

We suggest that, within ATL, the dorsolateral subregion, alongside this broader 

language comprehension network, is particularly engaged by linguistic input. This 

claim runs counter to what some studies of the semantic system suggest, indicating 

instead that dorsolateral ATL is sensitive to social processing (Olson et al., 2013; 

Zahn et al., 2007). In studies where the contrast was between a story (Alice in 

Wonderland) and acoustically degraded audio or unfamiliar language (e.g., Malik-

Moraleda et al., 2022), both language and social content were present in the story 

condition and absent in the control condition. The present studies, however, explicitly 

controlled for social content at the word, sentence, and event levels and still 

observed a highly convergent comprehension network that included dorsolateral 

ATL. Further, activation within these language network regions, including 
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dorsolateral ATL, parametrically increases with the length of sentences (Pallier et al., 

2011), and the same network is engaged for minimally social, descriptive texts. In 

the latter case, non-social narrative input is processed indiscriminately within this 

network regardless of coherency: the network is equally engaged by coherent 

narratives and an equal number of unconnected sentences (Jacoby & Fedorenko, 

2020). Importantly, this network topography is not observed for unintelligible 

language or scrambled words and only starts to emerge when the coherent input is 

on the sentence timescale (Lerner et al., 2011). This demonstrates two key points. 

First, the integration timescale of these regions appears to approximately plateau at 

the sentence-level, restricting how much meaning is accumulated and integrated. 

Second, this underscores the preferential role this network plays in processing 

linguistic input and suggests that integration of the meaningful discourse-level 

information, which is only possible in the coherent narrative condition, happens at 

least partially outwith this language comprehension network. 

It is likely that studies using simple isolated stimuli would not be sensitive to 

detecting this effect. In these studies, by design, the linguistic input is constrained by 

the simplicity of the stimuli. In addition, the linguistic input is likely to be 

approximately balanced between conditions – for example, a contrast between 

single words or word-pairs that differ on a single dimension but are matched on other 

relevant psycholinguistic properties. Where narrative stimuli present linguistic 

information in context, accruing meaning over time, paradigms that restrict this 

information by presenting unconnected words or sentences in random order, limit the 

amount of information that requires integration. These paradigms have been, and will 

continue to be, critical for answering questions about the neurobiology of human 

cognition, but they necessarily miss some of the real-world demands placed on the 

cognitive system. This property of the dorsolateral ATL may have been missed in 

prior research for this reason: the stimuli placed minimal (and matched) input 

demands on the semantic system. 

 

Narratives place internal processing demands on the semantic system 

Comprehending words in a narrative requires both retrieving the word-level 

meanings and integrating them with the preceding content. The comprehender must 

continually update their situation model of the ongoing events (Yarkoni et al., 2008; 
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Zwaan, 2004; Zwaan & Radvansky, 1998). Rapidly retrieving incoming conceptual 

representations and holding a mental representation of an extended, coherent 

narrative or conversation places different demands on the semantic system than 

individual concepts presented in isolation, devoid of any context.  

The process of updating situation models is thought to be primarily supported by 

the default mode network (DMN) (Tylén et al., 2015; Yeshurun et al., 2021), and the 

properties of this network suggest that it is ideally situated to interface with semantic 

(and other) cognitive systems to enable online comprehension. The seven functional 

connectivity networks of the brain (Yeo et al., 2011) can be organized along a 

principal gradient, with the DMN existing at one extreme and sensory and motor 

networks at the other (Margulies et al., 2016). This topographical organization 

indicates that DMN serves as transmodal cortex, situated at a confluence of 

sensorimotor and memory input streams, playing an active role in context-dependent 

processing of rich, naturalistic stimuli. This is particularly true of context arising from 

semantic information or associations in comparison to other types of information (i.e., 

letter symbols) (Smith et al., 2021). Indeed, functional connections between posterior 

DMN regions (e.g., posterior cingulate and precuneus) and lateral ATL, particularly 

the ventrolateral region, and posterior middle temporal gyrus, may facilitate this 

process. Through these connections, the DMN can interface with semantic memory, 

updating a cumulative situation model by integrating semantic representations into 

coherent context (Smallwood et al., 2016). This is observed in the preferential 

sensitivity of DMN regions to semantic content over quantity of input alone. 

Coherent, semantically rich narratives drive intersubject synchronization in 

connectivity in DMN regions, and narratives activate DMN regions, a pattern not 

observed for less semantically complex scrambled input (Lee et al., 2020; Lerner et 

al., 2011). In integrating this prior research with the results of empirical chapters 

presented in this thesis, we suggest that the semantic system interfaces with the 

default mode network to internally process the conceptual information in the 

narrative. 
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Ventrolateral ATL supports endogenous semantic processing 

In a narrative, new words and sentences are not just semantic blocks to be 

added to a growing pile of information. New information deepens and changes the 

understanding of preceding information (as illustrated in Figure 1), a process that 

also requires semantic cognition independent of comprehending the most recently 

presented word or phrase. Updating, restructuring, and reflecting on the situation 

model is what we call “endogenous semantic processing”, and our results indicate 

that ventrolateral ATL supports these processes during narrative comprehension.   

This interpretation is based on integrating evidence from the present studies of 

narrative comprehension with prior work on processing single concepts. 

Ventrolateral ATL is consistently found to be more responsive to semantic than non-

semantic demands, i.e., it is part of the semantic hub (Lambon Ralph et al., 2017). In 

the present studies, we find that dorsolateral and ventral ATL are consistently 

parametrically more responsive to quantity of semantic input (i.e., stronger response 

when there is more semantic input), but ventrolateral ATL does not show this 

pattern. In single-concept studies, by design, there is an isolated semantic-vs-non-

semantic contrast and ventrolateral ATL is sensitive to this contrast because it is part 

of the semantic hub. However, in a narrative context, there are always endogenous 

semantic processing demands, which drive ventrolateral ATL activation even when 

semantic input is low (unlike dorsolateral and ventral ATL, which are specifically 

sensitive to quantity of semantic input). This is most evident in the results of Chapter 

3 in which activation in the DMN and the ATL positively co-varied with a decrease in 

semantic content. Although these results include both the dorsolateral and 

ventrolateral ATL subregions (but not the ventral portion) making the functional 

differences indistinguishable, they can be explained by engagement in endogenous 

semantic processing. During moments when the semantic input is light – narrative 

moments comprised of predominately closed class words – the input demands are 

minimized (but not absent which might explain engagement of dorsolateral ATL, but 

not the rest of the language comprehension network). The listener, having a moment 

of relative lull in a fast-paced narrative, is then able to engage in endogenous 

semantic processing via activation of the default mode network and lateral ATL. In 

the absence of endogenous semantic processing demands (e.g., single-concept 

studies), ventrolateral ATL is sensitive to semantic input; but in a narrative context, 
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relatively constant endogenous semantic processing demands produce relatively 

constant engagement of ventrolateral ATL, so it is not sensitive to differences in 

semantic input. 

The functional role of ventrolateral ATL during narrative comprehension emerges 

when the present studies are considered in tandem. As discussed above, 

dorsolateral and ventrolateral subregions were both engaged during narrative 

moments with reduced semantic input in Chapter 3. Both regions were also engaged 

alongside the posterior extent of superior temporal gyrus during narrative moments 

with increased linguistic input (i.e., number of words). The sensitivity of these 

subregions becomes clearer when the results of Chapter 4 and Chapter 5 are 

considered. In Chapter 4, by contrasting high semantic sentences with low semantic 

sentences in the same narrative, we observe an extensive comprehension network 

that includes dorsolateral ATL and some of ventrolateral ATL, but not the anterior 

segment. When the same predictor (number of content words) is considered in 

movies, we similarly observe robust activation in dorsolateral ATL and only a small 

portion of ventrolateral ATL. The comprehension context matters here: in the 

audiobook case, words – largely semantically light words – are still consistently 

presented during “low semantic” narrative moments. In the movie case, the linguistic 

input is likely minimal if not absent in the “low semantic” narrative moments because 

movies can rely on other modalities to engage the viewer. The balance of input and 

internal processing demands is then not equally matched for the same predictors 

estimated for audiobooks (or unimodal narratives) and movies (or multimodal 

narratives). When the input demands are better approximated by the predictor – 

semantic sentence content in Chapter 4 and semantic word and event content in 

Chapter 5 – the analysis isolates the functional subregion within ATL that 

preferentially responds to linguistic and semantic input: the dorsolateral ATL. When 

the input demands are approximately matched between conditions and what differs 

is content that is a particularly strong driver of internal semantic processing – social 

and pragmatic sentences in Chapter 4 and social words in movies in Chapter 5 – the 

analysis instead isolates the subregion that is preferentially sensitive to endogenous 

processing: ventrolateral ATL.  

In summary, ATL subregions appear to have complementary roles during 

narrative comprehension: dorsolateral and ventral ATL are sensitive to the amount of 
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linguistic or semantic input, respectively, whereas ventrolateral ATL is sensitive to 

content that drives internal processing and integration with the ongoing situation 

model. 

 

2.2 Evidence of social processing in the semantic system 

Social language (words and sentences) consistently engaged the semantic 

system in left ATL, predominately in ventrolateral ATL. This was true both for literal 

social language and for language that required social reasoning beyond the literal 

concepts in the sentence – pragmatic inference. These results are consistent with 

the claim that social processing leverages semantic memory and its neural 

architecture (Binney & Ramsey, 2020). However, the claim that social processing 

leverages semantic cognition systems does not explain why ventrolateral ATL was 

engaged more by social compared to non-social language.  

Evidence of sensitivity to social information in ventrolateral ATL has been 

inconsistent. Some prior studies have found that dorsolateral ATL is particularly 

sensitive to social information (Olson et al., 2013; Zahn et al., 2007), whereas others 

predominately observe activation in ventrolateral ATL (Balgova et al., 2022; Binney 

et al., 2016). Engagement of both subregions was similarly observed in a subset of 

the present studies. An increase in social words and sentences in Chapter 3 and 4, 

respectively, was associated with activation in both regions. The ventrolateral ATL 

was the most consistently engaged region across the studies presented here, 

however, and the results were more localized to ventrolateral ATL (and not 

dorsolateral ATL) when highly pragmatic sentences and social words in movies 

(Chapter 5) were considered. In these analyses, quantity of semantic input was 

controlled (statistically in parametric analyses in Chapters 3 and 5, and by matching 

sentences in Chapter 4), so this is again inconsistent with ventrolateral ATL being 

purely sensitive to semantic input processing demands. This is perhaps easiest to 

see in the condition contrasts in Chapter 4 (Table 2): there was an approximately 

equal distribution of high, moderate, and low semantic sentences in the high and low 

social and pragmatic conditions. Therefore, the semantic input demands of high and 

low social and pragmatic content sentences were matched and should be subtracted 

out in the contrasts. In line with this, we did not observe activation in the ventral ATL 

hub and activation in the dorsolateral region was minimal, especially in the pragmatic 
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case. This is consistent with the results of a prior study in which theory of mind 

paradigms, including those with minimal semantic input demands, primarily engage 

the ventrolateral ATL and not the dorsolateral or ventral ATL subregions (Balgova et 

al., 2022). A simple explanation is that the ventrolateral ATL is domain-specific and 

specialized for social information processing. However, there is a preponderance of 

evidence from neuropsychological, computational, and neuroimaging studies that 

support the role of ventrolateral ATL in general, non-social semantic processing 

(Binney et al., 2010; Chen et al., 2017; Lambon Ralph et al., 2010, 2012, 2017). 

Therefore, the domain-specific explanation can be rejected.  

 

Table 2 

Example contrast predictions and results 

Condition Semantic Social Dorsolateral Ventrolateral Ventral 

Social High 
matched 

✓ 
X X  

Social Low X 

Pragmatic High 
matched 

✓ 
 X  

Pragmatic Low X 

Semantic High ✓ 
matched X  X 

Semantic Low X 

Note. This table refers to the contrasts (High > Low) used in Chapter 4. The stimuli 

were sentences extracted from a coherent narrative that differed in content type – 

social, pragmatic, and semantic content are used in this example. 

 

The endogenous semantic processing framework provides an alternative 

explanation: social information, especially pragmatic inference, drives endogenous 

semantic processing particularly strongly. That is, new social information prompts 

more reflection and updating of the situation model than non-social information does. 

As a result, ventrolateral ATL response to social information reflects greater 

engagement of endogenous semantic processing rather than intrinsic sensitivity to 

processing social information in particular. Similarly, pragmatic inference requires 

using narrative context to interpret sentences in a non-literal way – another form of 

endogenous semantic processing. In other words, social and pragmatic content in 

narratives requires semantic input processing like any other kind of semantic input, 

and particularly strongly drives internal processing, at least when comprehending 
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highly social narratives (such as the audiobook and movies used here). The example 

narrative provided in Figure 1 demonstrates this point. Audiobooks and movies 

generally introduce a host of characters who interact with each other and the 

protagonist (in this case, Luke) in nuanced and evolving ways. The event depicted in 

the figure is an exchange between only two of the characters, but – in addition to 

comprehending the individual words of dialogue – the information conveyed in the 

exchange has an immediate, downstream impact on the viewer’s entire situation 

model, requiring a re-mapping of several character relations. That this particular 

example is highly social and also requires extensive endogenous semantic 

processing is a feature, not a bug, of many narratives. We argue that it is not the 

case that ventrolateral ATL is particularly sensitive to social content; instead, this 

region is engaged in endogenous semantic processing, which social content tends to 

elicit in many naturalistic language contexts. 

Social events were an exception to this pattern, eliciting no ATL activation. It is 

possible that semantic and social event ratings included the endogenous processing 

demands more than the word or sentence-level variables did. The event coding 

protocol, for example, instructed raters to give a high semantic rating to events in 

which new and plot progressing information is presented to the audience for the first 

time. This definition may implicitly capture many of those events in which 

endogenous semantic processing is required – dramatic reveals, plot twists, delivery 

of critical background information, etc. The event depicted in Figure 1 would have 

received a high semantic rating for this reason. At the same time, this event 

establishes a critical familial relation, which has implications for the identity of the 

protagonist and encourages reflection of the mental states of the characters in and 

out of the event, resulting in a high social rating as well. If social content is an 

oversampled source of endogenous processing in narratives like the ones used 

here, then the semantic and social ratings are both capturing aspects of that 

processing. Thus, lack of sensitivity in ventrolateral ATL during social events may 

have resulted from an analysis strategy that involved controlling for semantic event 

content. 
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2.3 Domain-general role of IPL in context integration 

Engagement of left inferior parietal lobule (IPL) was observed across the results 

of the studies presented here. This was a key focus of Chapter 2 which reported 

specialization in this region for processing thematic relations, or relations that rely on 

shared context. During narrative comprehension, activation in left IPL co-varied with 

other lexical and semantic content. In Chapter 3, left IPL was engaged by increases 

in general linguistic content (i.e., number of words) and social language and a 

decrease in semantically-laden content (i.e., content words) – providing listeners with 

a chance to integrate narrative information. A similar pattern emerged in Chapter 4: 

highly semantic, social, and pragmatic content engaged overlapping portions of left 

IPL. In Chapter 5, word and event-level semantic content in multimodal narratives 

engaged IPL, but activation in the region did not co-vary with social content. These 

results, when considered alongside prior research, indicate that IPL is not domain-

specific and instead suggests a possible role in context integration. 

A domain-general role for left IPL is noncontroversial, and support for this claim 

stems from several domains of cognitive neuroscience. The IPL is consistently 

activated across wide-ranging tasks and is topographically situated at the 

convergence of several large networks, well-positioned to serve as a cross-modal 

hub (Igelström & Graziano, 2017; Numssen et al., 2021; Seghier, 2013). Prior 

evidence of domain specificity may have been driven by a failure to examine 

evidence across fields. The role of IPL in episodic memory retrieval (Wagner et al., 

2005), for instance, is not incompatible with its role in social cognition (Bzdok et al., 

2016), action knowledge (Lambon Ralph et al., 2017), and sensorimotor integration 

(Sereno & Huang, 2014). IPL is a large region, comprised of the supramarginal and 

angular gyri, and as such is closely functionally connected to the default mode 

network. In addition, IPL has a long temporal receptive window (Lerner et al., 2011), 

which facilitates integration of multisensory inputs over a longer timescale.  

In line with this evidence, we propose that IPL plays a domain-general role in 

context integration and memory retrieval of relevant contextual information. This 

includes thematic relations, which require consideration of shared context, as well as 

general semantic content and social information, the latter of which aligns with the 

prior research reporting activation in this region in response to social paradigms. 

This interpretation is consistent with the endogenous semantic processing 
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framework outlined above. IPL is proximal to (and part of) the DMN, so it is well-

positioned to support not only retrieval of context-relevant semantic and social 

information, but also its integration into the evolving understanding of the narrative. 

This further underscores the interdependence between the semantic and default 

mode networks. 

 

2.4 Limitations of Naturalistic Neuroimaging 

The advantages of using narratives, and other naturalistic stimuli more generally, 

to study cognition have been described throughout this thesis in order to motivate 

why these paradigms were well-suited to addressing the overall aims of the thesis, 

but there are several limitations of these approaches that should be noted alongside 

the inferences drawn from them. Perhaps the most common critique of naturalistic 

stimuli is the relative loss of experimental control compared to traditional constrained 

paradigms. The experimental control afforded by traditional approaches allows for 

orthogonalization between conditions, enabling a strong manipulation of the effect of 

interest. This is a considerably more challenging task in a narrative stimulus, 

especially if the condition of interest occurs infrequently. This is exemplified in 

Chapter 4 by the identification of relatively few syntactically ambiguous sentences 

within the narrative. The condition effects may also be impacted by the other 

properties of the stimulus that tend to be oversampled, such as social information 

(Vanderwal et al., 2019). The extent to which the other properties of the multimodal 

stimulus might correlate with the property or condition of interest is not always clear 

or quantifiable, making it hard to disentangle potentially confounded effects. One 

way to circumvent this problem might be to construct narratives that sample the 

conditions of interest and provide some experimental control, but this approach was 

not taken here.  

Narrative story-telling is an ancient and ubiquitous part of the human experience, 

but it is different from interpersonal communication or natural language (Parkinson & 

Manstead, 1993). This is especially true of passive viewing paradigms which require 

comprehension, but not active engagement in, the unfolding events and provide 

limited extrasensory information (e.g., smell, touch) that are likely to impact how 

social and emotional experiences are processed in everyday life. The narrative 

events unfold over an artificially rapid timeline relative to events experienced over 
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the course of a day, year, or lifespan. In addition, comprehending a narrative while 

undergoing fMRI scanning may better capture language processing compared to the 

presentation of decontextualized word or sentence stimuli, but it is far from how 

people engage in language comprehension in everyday life.  

An intersecting issue is that, at present, there are no standardized approaches to 

annotating or analysing naturalistic data. This has ramifications for each stage of the 

research process. In addition to being time consuming, stimulus annotations can be 

overfit to the aims and theoretical background of the researcher, and, as such, may 

be prone to being highly idiosyncratic or difficult to generalize across research fields. 

A social cognition researcher, for instance, may be attuned to the mentalizing events 

within the narrative, whereas a semantic cognition researcher might focus on the 

number of social concepts within an event. This analytic flexibility can be heralded as 

a strength (Vanderwal et al., 2019), but can also result in parallel analysis streams 

that ask and answer related questions in highly variable ways, resulting, potentially, 

in challenges in building towards converging evidence. 

Given the unconstrained nature of the stimuli, it is challenging to develop models 

of cognition from naturalistic paradigms alone (Rust & Movshon, 2005; Saarimäki, 

2021). Instead, these paradigms are ideally suited for testing well or partially 

established models of cognition in more ecologically valid circumstances or in 

response to situations or processes that are more likely to be influenced by context, 

such as those investigated in the present thesis. These paradigms offer a promising 

complement to, rather than a replacement for, the constrained experimental 

paradigms already employed to great effect in the study of human cognition. Indeed, 

proponents of naturalistic paradigms openly recognize the value that constrained 

paradigms have and will continue to provide (Rust & Movshon, 2005; Saarimäki, 

2021). The work undertaken in this thesis was designed to strike this balance by 

testing hypotheses informed by a well-established model of semantic cognition in 

naturalistic contexts. In doing so, the results can be interpreted with respect to 

current prevailing theories, enabling cross-cutting inferences of the kind made here. 

 



187 
 

3 Conclusion 

This thesis investigated semantic comprehension across contexts, from word-

pairs to multimodal narratives, and across levels of analysis, from single words to 

sentences and events. The results provide a basis for extending the current 

neurobiological model of semantic cognition so that it accounts for comprehension in 

narrative contexts. The model further elaborates on how and why social language 

engages this system. In doing so, the studies undertaken shed light on how we 

comprehend the rich language we use in everyday life to communicate complex 

ideas, explain personal experiences, describe our own and others’ emotions and 

behaviour, and, ultimately, share our human experience with others around us. They 

further highlight the value and need for naturalistic investigations of the cognitive 

systems that drive the human experience as it happens once we leave the 

laboratory.  
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Appendices 

APPENDIX A: CHAPTER 2 SUPPLEMENTAL MATERIALS 

 

Supplemental Table 1 

Participant Electrode Coverage 

Participant ATL IPL IFG pMTG Total 

01 9 4 6 4 23 
02 0 0 8 0 8 
03 0 0 11 3 14 
04 0 0 11 7 18 
05 0 8 6 2 16 
06 0 0 7 4 11 
07 5 0 4 9 18 
08 0 3 12 1 16 
09 0 0 4 6 10 
10 4 6 0 11 21 
11 5 3 3 3 14 
12 9 0 5 0 14 
13 7 1 10 5 23 
14 0 0 2 0 2 
15 7 0 12 1 20 
16 10 0 9 4 23 
17 0 0 6 2 8 

Note. Total refers to the number of electrode channels within one of the regions of 

interest for each participant. ATL, anterior temporal lobe; IPL, inferior parietal lobule; 

IFG, inferior frontal gyrus; pMTG, posterior middle temporal gyrus. 
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Supplemental Table 2 

Task Stimuli 

Taxonomic Pairs 
(n=16) 

Thematic Pairs 
(n=16) 

Unrelated Pairs  
(n=64) 

ale – cola blade – armour alien – scorpion dune – queen mountain – chip spinach – gun 
bucket – vase drizzle – cloud arrow – tooth earing – gravy note – bull steel – medicine 
chicken – owl forest – trail balloon – mustard envelope – lime pasta – ink sword – napkin 

dentist – surgeon gown – corsage block – pilot foundation – towel patio – knight tail – tire 
dinner – breakfast ketchup – burger bread – chain gas – magazine pin – kitty thorn – fan 

jug – urn light – star bulb – dog glove – pretzel planet – container thunder – folder 
juice – lager map – route cable – ocean grill – pyramid plantation – pan toilet – pendant 
lamb – cow monkey – banana candy – pebble hair – spatula plate – basketball torch – potato 

lunch – snack navy – anchor canoe – jester hoop – resume plug – hat tricycle – river 
otter – rat padlock – diary case – web island – shoe purse – lobster viper – stylus 
pail – pot palm – coconut cave – basket jackal – sink reef – building vulture – page 

president – monarch shovel – sandbox cheetah – candle kayak – cheese rod – mayonnaise wallet – plant 
seal – beaver soysauce – sushi computer – radish lid – crab rubber – turtle whiskey – pillow 
skunk – rabbit sugar – tea cougar – bridge lightning – cane salsa – air wife – football 
taxi – airplane trench – bayonet cup – weapon lion – glass shampoo – cord wine – grass 

yarn – floss tv – couch dirt – cake moth – base skeleton – flower yogurt – sail 

Note. The full task included both strongly (n=32) and weakly (n=32) related taxonomic and thematic word pairs and an equal 

number of unrelated, filler pairs (n=64). Only the strongly related taxonomic and thematic pairs are shown here. The weakly related 

pairs are available on the project OSF page, but were not analysed in the present manuscript. All unrelated, filler pairs are listed 

and shown shaded in grey. 
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Supplemental Table 3 

Model Results 

 Trial Type s(Time) s(Time):Them s(Time):Tax fs(Time, Electrode) re(subj_word) 
 Est(SD); t-value edf(rdf); F-value edf(rdf); F-value edf(rdf); F-value edf(rdf); F-value edf(rdf); F-value 

Theta       

ATL -0.17(0.10); -1.76† 0.01(0.01); 0.03 6.69(7.49); 2.84** 8.25(8.63); 9.03*** 371.66(560); 3.33*** 151.40(187); 5.80*** 
IPL 0.19(0.10); 1.84† 0.00(0.00); 0.00 6.62(7.42); 2.14* 8.61(8.83); 16.42*** 154.03(249); 5.12*** 108.28(148); 3.80*** 
IFG 0.09(0.06); 1.64 3.43(3.82); 0.35 6.99(7.75); 3.69** 3.21(3.63); 1.18 808.68(1159); 3.20*** 295.29(400); 3.64*** 

pMTG -0.01(0.08); -0.08  3.09(3.63); 0.33 1.00(1.01); 2.69 7.50(8.44); 7.16*** 461.23(618); 3.82*** 254.77(347); 3.64*** 

Alpha       

ATL -0.12(0.09); -1.31 2.45(2.57); 0.02 6.02 (6.61); 1.39 7.51(7.97); 3.94*** 407.60(559); 4.55*** 152.00(187); 6.03*** 
IPL 0.10(0.10); 0.95 6.54(6.67); 2.57* 5.30(5.60); 0.37 5.94(6.27); 1.53 169.31(248); 4.31*** 112.50(148); 5.26*** 
IFG 0.01(0.05); 0.22 1.06(1.06); 0.00 8.34(8.62); 9.21*** 7.98(8.38); 6.49*** 814.16(1160); 3.32*** 311.17(399); 4.70*** 

pMTG 0.04(0.07); 0.51 5.47(6.01); 2.04† 7.11(8.25); 5.18*** 1.01(1.01); 18.45*** 446.03(618); 4.85*** 262.84(348); 4.15*** 

Gamma       

ATL 0.02(0.04); 0.45 1.01(1.01); 0.00 8.52(8.95); 15.25*** 8.44(8.93); 10.41*** 62.84(558); 0.42*** 165.71(186); 8.83*** 
IPL 0.04(0.03); 1.21 1.00(1.00); 0.00 7.17(8.36); 3.48*** 8.33(8.90); 5.02*** 23.98(248); 0.33*** 112.34(148); 4.53*** 
IFG -0.03(0.02); -1.72† 7.47(7.75); 13.46*** 3.29(4.02); 0.21 3.19(3.89); 0.14 131.41(1159); 0.34*** 326.64(400); 5.21*** 

pMTG -0.01(0.03); -0.30 3.36(3.95); 0.54 6.05(7.03); 2.71** 4.61(5.46); 1.69 29.95(619); 0.15*** 274.84(349); 4.69*** 

Note. Parameter estimates for each model (rows). The random effects are shaded in grey. edf, estimated degrees of freedom 

(values close to 1 indicate a linear relationship); rdf, reference degrees of freedom; fs, factor smooth; re, random effect (intercept); 

ATL, anterior temporal lobe; IPL, inferior parietal lobule; IFG, inferior frontal gyrus; pMTG, posterior middle temporal gyrus. Model 

specification: bam(log(signal) ~ Trial_Type + s(Time) + s(Time, by=Trial_Type) + s(Time, Electrode, bs="fs") + s(subj_word, 

bs="re"). †p < .09, *p < .05, **p < .01, ***p < .001. 
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Supplemental Figure 1. Model diagnostic plots. The initial diagnostic plots (first 3 rows) indicated that the distribution of 

residuals was heavy tailed in the gamma models. To address this, these models were re-run using the scaled t family in the model 

specification. Those diagnostic plots are shown in the last row. 

 



226 
 

Supplemental Figure 2. Time-frequency plots. Frequency bands are indicated with dashed horizontal lines and the windows of 

significant condition differences within the theta and alpha band are indicated with vertical green or red lines. Taxonomic (top row), 

thematic (middle row), and the condition difference plot (bottom row) are presented for ATL, IPL, IFG, and pMTG separately. For 

the condition difference figures, red indicates greater power for taxonomic trials and blue indicates greater power for thematic trials. 
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APPENDIX B: CHAPTER 3 SUPPLEMENTAL MATERIALS 

 

 

Supplemental Figure 1. Smoothed versus unsmoothed scores. There was a high 

degree of correspondence between the smoothed vs unsmoothed factor score 

analyses at the subject-level (r = 0.74-0.95). The subject-level correlations are 

visualized for each factor: (from right to left) Word Length (red), Semantic Flexibility 

(green), Emotional Strength (blue), Social Impact (purple). 
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Supplemental Figure 2. ClustSim Results. The critical cluster size threshold was 

determined with Monte Carlo simulations implemented by AFNI’s 3dClustSim 

program. These statistical maps are thresholded at a cluster-forming threshold of p < 

.01 (91-108 voxels) and a family-wise error rate of p < .001. The results for the 

general lexical and semantic variables are shown in the left panel, and the results for 

the semantic concepts are shown in the right panel. 
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APPENDIX C: CHAPTER 4 SUPPLEMENTAL MATERIALS 

 

Sentence content coding was initially done using a numeric scale from 0 to 10 (as 

described in the Narrative Coding Protocol on OSF: https://osf.io/mndvt), with higher 

scores indicating more of a given content type. As the narrative coding progressed, it 

became apparent that the full range of ratings was not being used. As a result, two 

coding approaches were adopted in parallel. The first, numeric approach, was to 

continue applying the same, modified scale to ensure consistency in the application 

of ratings across the narrative. This is in contrast to emphasizing the use of more 

extreme scores partway through the narrative. The second, categorical approach, 

was to adopt a truncated, more readily separable scale by placing sentences in low, 

moderate, or high categories (used for analysis in the present study). 

The numeric approach was done by 4 raters trained using the protocol and 

practice narratives. Regular meetings were held with the 4 raters to maintain 

consistent coding across the narrative and avoid any drift in how the coding was 

implemented. The categorical approach was done by the first author who developed 

the protocol and coded the practice narratives.  

For the matched high and low sentences, correspondence between the two 

coding approaches was checked using a linear mixed effects model predicting the 

numeric ratings with a fixed effect of categorical rating and random effects of 

sentence and rater (n=4). The correspondence between the numeric and categorical 

coding approaches was high: there was a significant categorical condition difference 

(i.e., high vs low) in the numeric ratings across all content types (see figure below). 

https://osf.io/mndvt
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Supplemental Figure 1. Correspondence between categorical and numeric 

content coding approaches. Regression coefficient estimates and standard error 

based on the numeric ratings for the matched sentences identified via categorical 

coding (i.e., HIGH and LOW). 
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Supplemental Figure 2. Results thresholded using a more conservative 

threshold. Thresholded Z-score statistical map showing lower (purple) to higher 

(red) values. 
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APPENDIX D: CHAPTER 5 SUPPLEMENTAL MATERIALS 

 

Supplemental Table 1 

Stage 1 Design Table 

Question Hypothesis Analysis Plan Interpretation given to different outcomes 

1. During naturalistic 
movie viewing, is 
semantic, social, and 
semantically flexible 
content associated with 
increased activation in 
the semantic, social, 
and semantic control 
networks, respectively?   

1.1a (semantic words) 
Clusters of voxels 
showing increased 
activation in response to 
greater semantic word-
level content will fall 
within the semantic 
brain network. 

The word-level analyses will be 
the same for semantic, social, 
and semantically flexible 
content. The following steps will 
be taken for each measure 
independently: 
 
(1) Extract smoothed time series 
of scores (either residual factor 
scores which account for 
number of words or number of 
content words) using a sliding 
window within event boundaries. 
(2) Whole-brain parametric 
modulation analysis. 
(3) The subject-level activation 
maps for a given content type 
will be used as inputs for a 
second-level group analysis 
using linear mixed-effects 
modelling with a fixed effect of 
content type and random 
intercepts of subject and movie. 

Null: Fewer than 20 voxels will be associated with 
increased semantic information. 
 
Alternatives: The clusters of voxels associated 
with increased semantic information will (1) 
include portions of the semantic network as well 
as regions outside the ALE-defined semantic 
network (partial support) or (2) fall entirely outside 
the ALE-defined semantic network (no support). 

1.1b (social words)  
Clusters of voxels 
showing increased 
activation in response to 
greater social word-level 
content will fall within 
the social brain network. 

Null: Fewer than 20 voxels will be associated with 
increased social information. 
 
Alternatives: The clusters of voxels associated 
with increased social information will (1) include 
portions of the social network as well as regions 
outside the ALE-defined social network (partial 
support) or (2) fall entirely outside the ALE-
defined social network (no support). 

1.1c (control words)  
Clusters of voxels 
showing increased 
activation in response to 
semantically flexible 

Null: Fewer than 20 voxels will be associated with 
increased semantically flexible content. 
 
Alternatives: The clusters of voxels associated 
with increased semantic flexibility will (1) include 
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word-level content will 
fall within the semantic 
control brain network. 

(4) The statistical map will be 
corrected using a cluster-
forming threshold of p < 0.01 
and an FWE-corrected threshold 
of p < 0.05 
(5) Results will be compared to 
the ALE-defined networks of 
interest, focusing on the core 
regions within each network, 
highlighted in the top panel of 
Figure 1. 

portions of the semantic control network as well 
as regions outside the ALE-defined semantic 
control network (partial support) or (2) fall entirely 
outside the ALE-defined semantic control network 
(no support). 

1.2a (semantic events) 
Clusters of voxels 
showing increased 
activation in response to 
semantic events (plot-
progressing, informative 
verbal or written scenes) 
will fall within the 
semantic brain network. 

The event-level analyses will be 
the same for semantic, social, 
and scrambled content. The 
following steps will be taken for 
each measure independently: 
 
(1) Whole-brain duration 
modulated parametric analysis. 
(2) The subject-level activation 
maps for a given content type 
will be used as inputs for a 
second-level group analysis 
using linear mixed-effects 
modelling with a fixed effect of 
content type and random 
intercepts of subject and movie. 
(3) The statistical map will be 
corrected using a cluster-
forming threshold of p < 0.01 
and an FWE-corrected threshold 
of p < 0.05 

Null: Fewer than 20 voxels will be associated with 
semantic events. 
 
Alternatives: The clusters of voxels associated 
with increased semantic information within events 
will (1) include portions of the semantic network 
as well as regions outside the ALE-defined 
semantic network (partial support), (2) fall entirely 
outside the ALE-defined semantic network (no 
support), or (3) produce the same clusters as the 
scrambled ratings (no support). 

1.2b (social events)  
Clusters of voxels 
showing increased 
activation in response to 
social events (scenes 
depicting on or off 
screen interactions 
between/among 
characters) will fall 

Null: Fewer than 20 voxels will be associated with 
social events. 
 
Alternatives: The clusters of voxels associated 
with increased social information within events 
will (1) include portions of the social network as 
well as regions outside the ALE-defined social 
network (partial support), (2) fall entirely outside 
the ALE-defined social network (no support), or 
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within the social brain 
network. 

(3) produce the same clusters as the scrambled 
ratings (no support). 

2. To what extent are 
the semantic and 
semantic control 
networks involved in 
processing social 
concepts and events in 
individual subjects? 

2.1a (semantic overlap)  
If there are clusters of 
voxels that respond to 
social word and event-
level content, then it is 
expected that both 
social concepts and 
social events will 
engage areas of overlap 
within the semantic 
brain network defined 
within individual 
participants. 

The hypotheses of RQ2 will be 
tested using the following 
procedure: 
 
 
(1) The number of overlapping 
voxels will be calculated 
between the subject-level 
statistical maps for processing 
semantic and social content 
(word-level and event-level 
results processed 
independently)  
(2) The number of overlapping 
voxels will be calculated 
between the subject-level 
statistical maps for processing 
semantically flexible words and 
social content (word-level and 
event-level results processed 
independently). 
(3) A second-level random 
effects analysis will be run using 
the overlap images from 
individual participants to 
determine whether stable areas 
of overlap exist across 
participants. 

Null: At the individual subject level, fewer than 10 
voxels show increased activation in response to 
both semantic content and social content (either 
concepts or events). 
 
Alternatives: (1) clusters of voxels will show 
increased activation in response to semantic 
content and social concepts, but not social events 
(partial support) or (2) clusters of voxels will show 
increased activation in response to semantic 
content and social events, but not social concepts 
(partial support). 

2.1b (control overlap) 
If there are clusters of 
voxels that respond to 
social word and event-
level content, then it is 
expected that both 
social concepts and 
social events will 
engage areas of overlap 
within the semantic 
control brain network 
defined within individual 
participants. 

Null: At the individual subject level, fewer than 10 
voxels show increased activation in response to 
both semantically flexible content and social 
content (either concepts or events). 
 
Alternatives: (1) clusters of voxels will show 
increased activation in response to semantically 
flexible content and social concepts, but not 
social events (partial support) or (2) clusters of 
voxels will show increased activation in response 
to semantically flexible and social events, but not 
social concepts (partial support). 

2.2a (semantic non-
overlap) If there are 
clusters of voxels that 
respond to social word 

Null: At the individual subject level, the voxels 
which respond to social content will not be 
proximal to the voxels which respond to semantic 
content (i.e., the clusters of voxels will not be 
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and event-level content, 
then it is expected that 
non-overlapping, 
proximal clusters of 
voxels will differentially 
respond to semantic 
and social content. 

subregions within a single atlas-defined 
anatomical region). 
 
Alternatives: (1) the voxels associated with 
processing social concepts, but not social events, 
will be proximal (i.e., subregions within a single 
anatomical region) to the voxels associated with 
processing semantic content (partial support) or 
(2) the voxels associated with processing social 
events, but not social concepts, will be proximal 
to the voxels associated with processing semantic 
content (partial support). 

2.2b (control non-
overlap)  
If there are clusters of 
voxels that respond to 
social word and event-
level content, it is 
expected that non-
overlapping, proximal 
clusters of voxels will 
differentially respond to 
semantic control and 
social content. 

Null: At the individual subject level, the voxels 
which respond to social content will not be 
proximal to the voxels which respond to 
semantically flexible content (i.e., the clusters of 
voxels will not be subregions within a single 
anatomical region). 
 
Alternatives: (1) the voxels associated with 
processing social concepts, but not social events, 
will be proximal (i.e., subregions within a single 
anatomical region) to the voxels associated with 
processing semantically flexible content (partial 
support) or (2) the voxels associated with 
processing social events, but not social concepts, 
will be proximal to the voxels associated with 
processing semantically flexible content (partial 
support). 
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Note. The sampling plan is the same for all tested predictions. A sensitivity power analysis was conducted using using the pwr 

package in R. With the fixed sample size of 86, statistical power of .95, and an alpha of 0.05, an omnibus multiple regression 

analysis with 2 to 3 predictors would be sensitive to detecting medium effects (f2 = 0.19-0.21). 
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Supplementary Figure 1. Rubric for how semantic content was rated for each 

minor event. The rubric defines four broad categories (right) that are described 

(middle) and associated with a range of possible ratings to assign to a given event 

(left). 
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Supplementary Figure 2. Rubric for how social content were rated for each 

minor event. The rubric defines four broad categories (right) that are described 

(middle) and associated with a range of possible ratings to assign to a given event 

(left). 
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