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Abstract
Inference of predicates in natural language is a common task for humans in everyday

scenarios, and thus for natural language processing by machines, such as in question

answering. The question Did Arsenal beat Man United? can be affirmed by a text

Arsenal obliterated Man United on Saturday if an inference is drawn that the text

predicate obliterate entails beat in the question. In a world of vast and varied text

resources, automatic language inference is necessary for bridging this gap between

records and queries.

A promising model of such inference between predicates is an Entailment Graph

(EG), a structure of meaning postulates such as x obliterates y entails x defeats y.

EGs are constructed using unsupervised distributional methods over a large corpus,

learning representations of natural language predicates contained within. Entailment

is directional, and correctly, EGs fail to confirm the opposite, that x defeats y entails x

obliterates y; these distinctions are important for language understanding applications.

In an EG, postulates are typically defined for a predicate argument pair (x, y) over a

fixed vocabulary of such binary valence predicates, which relate two arguments.

However, EG meaning postulates are limited in terms of their predicates in two

ways. First, using the conventional approach, entailments may only be learned for

predicates of the same valence, typically binary to binary entailment, ignoring entail-

ments between valencies and their applications. For example, the binary relation Arse-

nal defeats Man United leads to an inference in humans that Arsenal is the winner, a

unary relation applying to the subject Arsenal. Yet using conventional means, it is not

possible to learn these in EGs.

Second, only a limited vocabulary of predicates may be learned in training. This

is because of the natural Zipfian frequency distribution of predicates in text corpora,

which includes an unbounded long tail of rarely-mentioned predicates like obliterate.

This distribution simultaneously makes it impractical to learn entailments for every

predicate in a language by reading corpora, and also very likely that many of these

unlearned predicates may be involved in real queries.

This thesis explores inference in the open domain of natural language predicates

beyond a fixed vocabulary of binary predicates. First, Entailment Graph valency is

addressed. The distributional learning method is refined to enable learning entailments

between predicates of different valencies. This improves recall in question answering

by leveraging all available predicates in the reference text to answer questions. Second,

the problem of overall predicate sparsity in EGs is explored, in which Language Model
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encoding is applied unsupervised with an EG. This provides a means of approximat-

ing missing premise predicates at test-time, which improves both recall and precision.

However, while approximating missing hypothesis predicates is shown to be possible

in principle, it remains a challenge. Finally, a behavioral study is presented on Large

Language Models (containing one billion parameters or more) which investigates their

ability to perform language inference involving fully open-domain premise and hy-

pothesis predicates. While superficially performant, this class of model is found to

merely approximate language inference, utilizing unsound methods to mimic reason-

ing including memorized training data and proxies learned from corpus distributions,

which have no direct relationship with meaning.
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Lay Summary
In the Information Age, technologies have developed which record, organize, and syn-

thesize data to assist in our daily lives and industries. The field of Natural Language

Processing has emerged in pursuit of an interface between vast data-rich resources and

humans, providing a means for us to manage and act on data using simple natural

language. One of the important pursuits of the field thus far has been the creation of

personal software agents, such as Apple’s Siri or ChatGPT, which in concept make

accessing data as easy as speaking to another human being. Such an agent receives a

natural language request from a human, manipulates it, and acts on it to synthesize a

useful response. For example, one might ask a software agent, Does Facebook own

Instagram? The agent must process the information request and consider available

knowledge resources, such as the news text snippet, Facebook bought Instagram for

$1 Billion, in order to produce an answer, Yes, Facebook owns Instagram.

However, the process of using a software agent and stored knowledge to automat-

ically answer a question like this must account for a major problem: natural language

may express the same information in many different ways, and the stored informa-

tion may answer the query, but not with an exact string match. Yet, humans are able

to make “commonsense” inferences which bridge between expressions, such as that

buying entails owning, enabling seamless person-to-person communication. In fact,

this kind of inference isn’t just helpful, it is a necessity for both humans and software

agents, since it is highly unlikely that an answer to a question can be found in an exact

string match in even a very large knowledge store; the majority of information queries

must be answered using language inference.

This thesis explores the topic of language inference in the open domain of natural

language predicates, such as buy, own, arrive at, and be a candidate for. Command of

such inference capability would enable software agents to perform useful tasks such as

question answering, text summarization, and information retrieval.

This thesis begins by expanding on a theory for learning such inferences for the

construction of an explicit Entailment Graph (EG). An EG is a structure of inference

rules for predicates and their arguments, such as x was elected to y entails x was a can-

didate for y. They are useful because they can capture the variety of human expressions

and are learnable without human annotation, as well as being interpretable by humans

and editable after construction. The expansion in this thesis enables novel learning

of inferences which involve a variable number of arguments, an essential property of

human communication but not possible to learn in previous EGs built in this way. For
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example, the question Is Ted Chiang an author? can be affirmed by the statement Ted

Chiang wrote “Story of Your Life” by considering all statements involving Ted Chi-

ang, which may involve other entities like his written works. This extension to EGs

enables the learning of inferences in a theoretically open domain of natural language

predicates, but a practical limit to their application remains. It is often the case that a

query to an EG requires an inference rule involving a missing predicate, which was not

seen in the original training corpus. This thesis contributes a method of approximating

missing predicates and their rules “on demand” in application, by leveraging proper-

ties in the encoding process of text by Language Models. Following that, this thesis

contributes a behavioral study on the class of Large Language Models alone (without

an EG) for their capabilities on this predicate inference task. Though they present a

promising impression of “understanding” language, it is shown that they provide only

an approximation of language inference, and become unreliable when commonsense

queries happen to be unattested by training data, or go against other simple heuristics.
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Chapter 1

Introduction

1.1 Text, a.k.a. Vast, Unusable Knowledge

The United States Library of Congress, the world’s largest library, recorded in 2021

that it possessed within its collection 118.6 million books, manuscripts, and other writ-

ten works (The Library of Congress, 2023). It takes an impressive operation in order

to maintain this collection and service information requests, costing nearly one billion

dollars per year. Yet, personally searching through the wealth of knowledge in all this

text, even using a system which indexes by volume, still takes dedicated time. Digital

technologies like Google search have been developed to scan and index text for us, in

order to speed up the answering of queries, for example, Who played Captain Jean-

Luc Picard? Google considers all available text on the web in order to search for an

answer in a tiny fraction of the time it would take to search a physical library. And yet,

extremely fast search may still not be enough to actually answer the question.

Text is one of the most plentiful mediums of information we have, yet it confronts

us with a severe problem of our own making: as humans, we’re too good at conveying

information in multiple different ways. In fact, it is very often the case that a question

cannot be answered by scanning for an exact string match in a large corpus of text,

but it can be answered using the same corpus by drawing a simple natural language

inference. For example, if Google is able to find a similar sentence such as Patrick

Stewart performed the role of Captain Jean-Luc Picard, then a human may infer the

answer is Patrick Stewart, by understanding that x performed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role ofperformed the role of y entails that

x playedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayedplayed y. It is this inferential leap which is necessary to bridge the gap between

vast text resources and queries; without such inference by human or machine, text is

startlingly unusable for queries. This is a central concern of this thesis, which focuses

1



2 Chapter 1. Introduction

on the inference of textual predicates. Throughout, a predicate is defined as a descrip-

tive word or phrase which applies to one or more arguments, such as a verb (x left y),

verb phrase (x blow up y), or copula construction assigning a property (x is president).

Unfortunately, using a simple measure like the similarity of two statements to judge

if they are paraphrastic is not enough for a software agent to be able to provide the

answer itself. Unlike paraphrase, directional predicate inference holds in one direc-

tion, but not both, and they are commonly encountered when matching a statement to

a query. Thus, it is risky to match statements using only paraphrase. For example,

consider the following scenario:

TEXT SNIPPET: Rishi Sunak was elected PM of the UK.

QUESTION: Who stood for PM of the UK?

In this case, the answer Rishi Sunak may be inferred from the text snippet. How-

ever, now consider the opposite case where the propositions are reversed:

TEXT SNIPPET: Rishi Sunak stood for PM of the UK.

QUESTION: Who was elected PM of the UK?

In this case, a human reader and an ideal software agent would not infer that Sunak

is the answer (indeed, before his win, Rishi Sunak stood for PM in the July-September

2023 election to replace Boris Johnson, and lost). Though very similar in usage, stand

for Prime Minister does not entail elected Prime Minster. In the context of inference

as in this example, a premise statement (the text snippet) is compared with a query

hypothesis statement (the question), and it is up to a human or machine to determine

if the premise entails the hypothesis.

Further, asymmetry in information content between a premise and hypothesis state-

ment can take another form. Predicate valency refers to the number and types of argu-

ments related by a predicate, such as binary <2> (x greets y) or unary <1> (y dies). The

above Sunak examples consider only binary predicates which relate exactly two argu-

ments. But natural language is more flexible than this, and predicates may relate other

numbers of arguments, for example Sunak speaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaksspeaks <1> and Sunak gavegavegavegavegavegavegavegavegavegavegavegavegavegavegavegavegave Hunt a position

<3>. Human intuition easily extracts facets of information from higher-valency rela-

tions, such as that Sunak was electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas elected PM <2> entails that Sunak was electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas electedwas elected <1> and

also that Sunak wonwonwonwonwonwonwonwonwonwonwonwonwonwonwonwonwon <1>.

Research in the process of learning inferences between natural language predicates

has resulted in the Distributional Inclusion Hypothesis (DIH), which has been demon-

strated in practice to learn directional entailments for a subset of predicates. This
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theory states that for predicates p and q, p is said to entail q if the set of contexts that p

appears in is included in the set of contexts that q appears in. For ease of computation,

“context” has been operationalized to mean “argument pairs,” read in text with binary

(2-argument) predicates as mentioned above; p is said to entail q if all argument pairs

observed with p are also seen with q. For example, a machine may read about many

people standing for a certain office, but only one of those people will be observed win-

ning that same office. After reading about many such contests where one and only one

candidate is observed winning, the machine may learn via the subset relation that x winwinwinwinwinwinwinwinwinwinwinwinwinwinwinwinwin

y entails x stand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand forstand for y, but not vice versa.

Entailment Graphs (EGs) are a family of unsupervised algorithms which typically

implement the DIH for learning the set of rules of this form, using nothing more than a

large text corpus, syntactic parser, and named entity linker. The DIH is useful because

it theoretically enables learning entailments for any predicate mentioned in the training

text, given enough textual mentions. The rules are formulated as graphs, composed of

vertices representing binary natural language predicates like x elected to y. The graph’s

directed edges represent entailment relations between predicates, such x elected to y

entails x stand for y. EGs are demonstrated to learn quality entailments, but they face an

important challenge, which is that they can only practically discover entailments about

a limited subset of predicates within the open domain of natural language. Though

promising, two main obstacles prevent Entailment Graphs from performing inference

in the open domain of natural language predicates:

(1) Entailment Graphs have previously only been learned for predicates of the same

valency using the DIH. Usually, they are learned with binary predicates, containing

edges from one binary (2-argument) predicate to another, though unary-to-unary (1-

argument) predicate inference has also been demonstrated to an extent. But no En-

tailment Graph has been constructed based on the DIH which is learned with edges

between predicates of different valencies, which would enable the use of any available

inference in real tasks, such as the use of a binary predicate relation to answer a unary

predicate question.

(2) Entailment Graphs are learned with a fixed vocabulary of predicate symbols

observed in training, and cannot generalize to novel predicate symbols which may

occur at test-time. This is often a problem since an edge will be unlearnable if either

predicate involved in the inference was not seen in training. Further, it is impractical to

simply scale up the same Entailment Graph learning process on a larger corpus of text

to solve this problem of vertex sparsity, since predicates occur in corpora in a Zipfian
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frequency distribution with an unbounded long tail. There will virtually always be

predicates at test-time which were not observed in training.

1.2 Thesis Statement

This thesis explores inference in the open domain of natural language predicates be-

yond a fixed vocabulary of binary valence predicates. The Entailment Graph learn-

ing method is refined to enable learning entailments between predicates of different

valencies, and general predicate sparsity in EGs is addressed to enable generalizing

inference beyond the predicates seen in training. First, the Multivalent Distributional

Inclusion Hypothesis is presented, which applies to linguistic eventualities, rather than

the typical textual strings relating a fixed number of arguments. This theory enables

the learning of edges in Entailment Graphs between predicates of different valencies by

respecting the roles of arguments across eventualities. Second, the problem of vertex

sparsity in Entailment Graphs is considered, in which a new technique called graph

smoothing is demonstrated using an unsupervised Language Model to approximate

missing predicates. While this provides a means for approximating missing premises,

which improves both recall and precision, the process of approximating missing hy-

potheses is shown to be possible in principle, but remains a challenge. Finally, a

study is presented of the claim that “Large” Language Models (one billion+ param-

eters) are capable of natural language inference involving fully open-domain premises

and hypotheses. In contrast to explicit linguistic reasoning by applying an Entailment

Graph, this class of model presents a useful approximation of linguistic reasoning, but

is demonstrated to use unsound methods to achieve its performance. This includes

the memorization of training data and use of biases learned from corpus distributions,

which have no direct relationship with meaning.

1.3 Thesis Outline and Contributions

This thesis is structured as follows:

Chapter 2 Terminology and background information are presented for the material

discussed throughout this thesis. The background ranges over topics including textual

entailment; datasets for evaluation of entailment; a theory of textual entailment de-

tection preceding methodologies, the Distributional Inclusion Hypothesis; and back-
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ground on relevant past methodologies for entailment such as Entailment Graphs and

Language Models.

Chapter 3 The problem of Entailment Graphs being constructed for a single valency

is studied with an aim to learn entailments between natural language predicates of dif-

ferent valencies, e.g. person x defeats person y entails that person x wins and person

y loses. The Distributional Inclusion Hypothesis is refined to track linguistic even-

tualities rather than textual strings, which enables multivalent entailment learning in

Entailment Graphs by respecting the roles of arguments in eventualities, which may

have varying numbers of arguments.

The lack of general resources for evaluating directional predicate inference is also

addressed, and a novel method is presented for the automatic construction of an eval-

uation task, corpus-based Boolean Question Answering. Models must affirm or deny

automatically generated questions by drawing inferences from a selection of real news

text, which requires fine-grained semantic distinction. The benefit of Multivalent En-

tailment Graphs is shown in their ability to answer more questions than a typical EG by

drawing on textual evidence consisting of predicate relations with multiple valencies,

as well as improved precision over non-directional similarity baselines.

This chapter is based on McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021)McKenna et al. (2021), published in the Conference on

Empirical Methods in Natural Language Processing (EMNLP). This work was com-

pleted with several coauthors: Liane Guillou, Mohammad Javad Hosseini, Sander Bijl

de Vroe, Mark Johnson, and Mark Steedman.

Chapter 4 Next, the further problem of predicate sparsity due to symbolic learning

in Entailment Graphs is explored. First, a theory is presented for smoothing EGs by

approximating missing predicates using existing predicates, while maintaining direc-

tional precision in inference by choosing approximations which construct a transitive

chain. An unsupervised smoothing method is then presented in which predicates are

encoded into vectors with a sub-symbolic Language Model, and these are used in a

nearest-neighbors search for approximations of missing predicates. This method en-

ables inference with an open domain of premise predicates, even if querying out-of-

vocabulary predicates, improving recall while maintaining strong directional precision.

However, premise- and hypothesis-smoothing are shown to be fundamentally different

operations with their own challenges. The same method cannot be applied for missing

hypotheses, but hypothesis-smoothing is shown to be possible in principle following
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the transitive chain theory by using a manually annotated resource such as WordNet,

which is expansive, but still closed-domain.

This chapter is based on McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b)McKenna et al. (2023b), published in the Conference of

the Asia-Pacific Chapter of the Association for Computational Linguistics (AACL),

where it received the “Best Paper Award.” This work was completed with several

coauthors: Tianyi Li, Mark Johnson, and Mark Steedman.

Chapter 5 Due to the limitations of Entailment Graphs and the utility of Language

Models shown in the previous chapter, this chapter turns toward the Large Language

Model as a system of textual entailment in its own right, without using an Entailment

Graph. Language Models induce sub-symbolic encodings of both premises and hy-

potheses, enabling input from a completely open domain of language, and claims have

been made about their capability for natural language inference. This chapter presents

a series of behavioral studies using directional datasets and strong controls to probe this

capability of directional inference in state of the art Large Language Models. Though

superficially promising, they are shown to rely on several biases in inference decisions,

including propositional memories learned in training, which are tied to specific entity

IDs, and frequency effects analogous to those explored in the previous chapter. It is

concluded that although they present a useful approximation of directional inference

of open-domain predicates, Large Language Models use unsound methods which raise

questions about generalization.

This chapter is based on McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a)McKenna et al. (2023a), published in the Findings of

the Conference on Empirical Methods in Natural Language Processing (Findings of

EMNLP). This work was completed with equal contribution from Tianyi Li (co-first

authors), and with several other coauthors: Liang Cheng, Mohammad Javad Hosseini,

Mark Johnson, and Mark Steedman.

Chapter 6 Finally, this thesis concludes with a summary of findings and directions

for future work.



Chapter 2

Background

This chapter introduces material which forms the basis of the contributions in this the-

sis. It begins with terminology and concepts useful for understanding the research area,

and then a brief overview of the historical context is given which describes the develop-

ment of models and evaluations in entailment, motivating the work of this thesis. The

following chapters build on this material by contributing novel theories, experiments,

and conclusions.

2.1 Form-Independent Semantics and Textual Entailment

The phenomenon introduced in Chapter 1, the gap between available text resources and

queries, is a problem due to the lack of a form-independent semantic representation of

natural language. The variability of natural language allows multiple surface forms

to express the same meaning (such as interchanging buy and purchase in the same

sentence), and it is up to the reader (human or machine) to make inferences between

a text and a natural language query using a semantic representation which bridges

between superficial forms.

Semantic parsing of natural language is a relevant technique which normalizes sen-

tential content, including predicates, into a standard logical form suitable for computer

manipulation such as logical deduction. However, it does not fully solve this problem

of semantic representation because it cannot unify lexical relations, such as recogniz-

ing that the parsed logical propositions BUY(John, apple) and PURCHASE(John, apple)

are paraphrases of the same event. Further, directional inferences are a more difficult

challenge, because they require information beyond the mutual closeness of two pred-

icates. For example, inferring that BUY(John, apple) entails OWN(John, apple), but not

7
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in the other direction: OWN(John, apple) does not necessarily entail BUY(John, apple).

Formal evaluation of entailment dates to Tarski (1935), with model-theoretic truth.

In this formalism, a query statement is evaluated in the context of a structure of ax-

iomatic statements (a model). By deduction it is determined if the query is true under

the model, or not. Modern computational approaches to entailment must reckon with

a broad variety of language and possible inferences in real use with human-generated

text and queries, which is made possible using a softer, probabilistic interpretation of

entailment detection. In NLP, the task of Recognizing Textual Entailment (RTE) (Da-

gan et al., 2006), also known as Natural Language Inference (NLI), requires a model

to predict an inferential relationship between a text T and hypothesis H: “T entails H

if, typically, a human reading T would infer that H is most likely true,” and this is

the working definition used throughout this thesis. Though broad, this definition—

grounded in human intuition—has served as a basis for designing evaluation datasets

(Bowman et al., 2015), steering toward a goal of “commonsense” inference capability

similar to that of a human (Pavlick and Kwiatkowski, 2019). Thus in this sense, entail-

ment approaches, but is less well-defined than logical implication, but this can also be

seen as a useful benefit since entailment more broadly captures human commonsense

like conversational implicature.

Throughout this thesis, the symbol ⊨ (read as “entails”) denotes an entailment rela-

tion between two natural language statements or statements parsed into logical formu-

lae: premise ⊨ hypothesis. An entailment relation has an inherent binary truth-value

depending on whether the hypothesis may actually be inferred from the premise, or

not (where an explicit ⊭ may be used). Entailments may carry from many aspects of

sentences, such as the lexical semantics of nouns (“monkey” ⊨ “animal”) and verbs

(“John buys an apple” ⊨ “John owns an apple”); quantification (“all men fish” ⊨ “one

man fishes”); syntactic composition (“John and Mary walk” ⊨ “John walks”); etc.

This thesis is concerned with models for the detection of entailments between nat-

ural language predicates, which includes verbs and other expressions that apply to ar-

guments. These content-bearing words serve as the primitive events and states which

describe things in the world around us (Vendler, 1967), and are thus of great inter-

est in modeling language understanding by humans and machines. The truth-value

of discussed relations will be decidable on the basis of contained predicates and their

attributes, unless otherwise specified.

One of three relational cases may hold between two statements A and B, defined

by entailment truth values:



2.1. Form-Independent Semantics and Textual Entailment 9

1. Paraphrase: In the case that statement A entails B, and also that B mutually en-

tails A, a relationship of paraphrase holds between the two statements. For exam-

ple, “Google bought YouTube” is a paraphrase of “Google acquired YouTube.”

2. No Relation: In the case that neither A entails B, nor B entails A, then the two

statements are unrelated by entailment. For example, “Google advertises on

YouTube” and “Google acquired YouTube,” though sharing named entities and

discussing two business-topical relations, do not entail in either direction, so are

considered unrelated by entailment.

3. Directional Entailment: In the case that either A entails B, or B entails A, but not

both, a directional entailment holds between the two statements. For example,

“Google acquired YouTube” entails that “Google bid for YouTube,” but not vice

versa.

Because paraphrase and unrelatedness are symmetric relations which hold between

two predicates, they may be predicted using a crude measure like the similarity be-

tween the two statements, which can be estimated using many approaches. One such

way is to use corpus distributional statistics, such as collocated context words. In other

words, if distributionally, the statement predicates occur with many of the same con-

text words, they may be considered “similar” to a quantifiable degree (according to

the Distributional Hypothesis; Harris 1954). For instance, the predicates sprint and

dash both usually occur with a person or animal, and some specified destination, and

may be described using similar words like speedy. After calculating the overlap of

co-occurring context words in terms of e.g. a percentage, a pre-set numerical thresh-

old may be compared; sprint and dash should have a high percentage of overlaps,

so they are classed as paraphrases. For predicates which do not meet this threshold,

they may be considered unrelated. If a task requires language inference, but only to

a degree where paraphrase detection is sufficient, then such a simple method can be

very effective. However, if a computer model is only capable of distinguishing sym-

metric relatedness, i.e. paraphrase or no-relation, then on a task requiring directional

inference it may make predictions no better than random chance.

Unfortunately, the capability of directional inference is crucial in language under-

standing in humans. It is often needed in real situations where even a slight information

asymmetry between two statements requires directional reasoning. A simple example

of this is entailment between predicates of different valencies, e.g. STAND.FOR(Rishi

Sunak, Prime Minister) ⊨ BE.CANDIDATE(Rishi Sunak). An entailment holds in this
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direction, but cannot hold in the reverse direction, since BE.CANDIDATE only applies

to Sunak, and it cannot be inferred strictly from this statement which office he is a

candidate for. Dropping down in valency such as in this example is no guarantee of

entailment, however, as is clear from the counterexample STAND.FOR(Rishi Sunak,

Prime Minister) ⊭ BE.WINNER(Rishi Sunak). Further, information asymmetries can

occur between valencies or within-valency, such as between one binary predicate and

another.

Often, detecting a directional entailment between two statements A and B is more

difficult than paraphrase, because it immediately requires a more nuanced represen-

tation of meaning, wherein switching which statement acts as a premise may result

in different valid entailments. Any model demonstrating a capability for directional

entailment is also demonstrating a representation of meaning at least operationally

similar to human intuition.

This thesis addresses broad natural language inference including detection of para-

phrase and unrelatedness, but is focused specifically on directional entailment, the

most challenging relational case to detect between two natural language predicates,

but which is also the most useful, due to the breadth and nuance of natural language

expressions which may be inferred.

2.2 The General Entailment Task

Entailment is a broad class of inferences, and it is most easily understood by catalogu-

ing classes of evaluation methods, which characterize the task, rather than individual

models. Resources and evaluations may be generally grouped as below, which identify

the coverage achieved thus far and the shortcomings in entailment detection.

2.2.1 Linguistic Principles and Shotgun Coverage

The task of language inference began with small, hand-crafted datasets, such as Fra-

CaS (The Fracas Consortium et al., 1996) (340 test samples), a test of widely varied

entailments involving logic and linguistic concepts beyond lexical inference of pred-

icates, such as quantification. The PASCAL Recognizing Textual Entailment (RTE)

series of challenges followed (Dagan et al., 2006), starting with RTE-1 (800 test sam-

ples), which focus on entailment of various lexical items, syntactic patterns, and other

features in naturalistic sentences. The task format is simple, requiring a model to con-
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sider one premise statement (as in RTE, see Table 2.1) or several premises (FraCaS)

plus one additional hypothesis statement, and infer whether the hypothesis is entailed

from the premise(s), with labels True and False.

Label Premise Hypothesis

True Increased storage isn’t all Microsoft will be offering

its Hotmail users — they can also look forward to

free anti-virus protection.

⊨ Microsoft will provide free

anti-virus protection.

False Vodafone’s share of net new subscribers in Japan

has dwindled in recent months.

⊭ There have been many new

subscribers to Vodafone in

Japan in the past few months.

True Comdex — once among the world’s largest trade

shows, the launching pad for new computer and

software products, and a Las Vegas fixture for 20

years — has been canceled for this year.

⊨ Los Vegas hosted the Comdex

trade show for 20 years.

Table 2.1: Dev set examples from the RTE-1 dataset.

However, these early datasets can be very difficult due to the variety of inference

required to solve them. In RTE-1, besides lexical entailments, these can range from

world knowledge (such as knowing that Berlin is in Germany) to abduction by com-

bining information from multiple clauses and inferring a pragmatic implication (as in

the first example of Table 2.1).

The recent success of data-driven neural network approaches creates a need for

large, supervised datasets. A new class of datasets and evaluations has emerged for

this purpose (Bowman et al., 2015; Williams et al., 2018; Nie et al., 2020). These are

created by crowd-annotating many thousands of samples for a task like image caption-

ing (SNLI). However, constructing datasets for a task can result in biases of one kind

or another, for example, in SNLI this can lead to relatively simple and definite texts

of the form “subject(s) X do task Y” (as might be observed in an image), and do not

contain a variety of linguistic features.

There is great variety of linguistic inference in human communication, and the lack

of focus in many datasets on a defined subset of inferences leaves many gaps in entail-

ment evaluation. For instance, it is possible for a model to do very well on SNLI or

MNLI but have poor competence with negation (Geiger et al., 2020; Luo et al., 2022).

Further, Talman and Chatzikyriakidis (2019) show that many neural network models

which train on one NLI benchmark may perform well on the respective test portion,
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but fail to generalize to other NLI benchmark datasets, even if they have a similar task

definition. This is another indicator of over-reliance on dataset idiosyncracies, indicat-

ing that what is learned may not be true understanding after all. The Glue/SuperGLUE

benchmarks (Wang et al., 2019b,a) aim to alleviate this by aggregating datasets into

one benchmark, where models report scores on all subsets; this may help the devel-

opment of models which generalize to a degree, but the problem of competency gaps

remains clear (Bijl de Vroe, 2023).

In many cases, deeper analysis of model performance indicates overfitting to dataset

artifacts during training of neural models. Poliak et al. (2018) shows that in many NLI

datasets, sample hypotheses can contain cues which are sufficient for predicting correct

labels, without the need for models to consider a premise at all. This reveals a deeper

difficulty in designing supervised models which cannot “game” the dataset by learning

to detect artifacts which are unrelated to entailment, but correlated with correct labels.

In particular, and in relation to this thesis, the above datasets lack focus on lexi-

cal entailment (inferences drawn about individual words), specifically the directional

inference of predicates, which constitute a very important kind of inference needed

across NLP tasks.

2.2.2 Lexical Relation Resources

Human-built resources of lexical relations can be useful for the task of entailment itself,

or even evaluation of models. For instance, WordNet Fellbaum (1998) contains rela-

tions like hypernymy and hyponymy of nouns, and even has analogous troponym rela-

tions for verbs. This is a kind of entailment relation between verbs by adding/removing

manner. For example, stroll is a more specific kind of walk with an added manner of

leisure, and it follows that Mary strolled in the park entails Mary walked in the park.

However, lexical entailment is not limited to troponymy and hypernymy, and WordNet

has extremely poor annotation coverage of general entailment relations between verbs,

such as that inherit entails own. Other similar projects aim to create human-annotated

datasets of lexical relations, such as FrameNet (Baker et al., 1998), in which entries

are contextualized in sentences, highlighting the semantic roles of events and their re-

lations, like causal results. Yet manual annotation is expensive, and the more rich the

resource, the harder it is to complete.

PPDB is an automatically generated database containing similar relations between

lexical items but at a much greater scale (Pavlick et al., 2015). It is constructed using
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bilingual pivoting, involving translating from language L1 to L2 then back to L1, which

produces many near-paraphrase candidates. Despite this it, too, faces the challenge of

sparseness. Because most generated pairs describe the same event paraphrastically, it

lacks most commonsense inferences between two related events, such as that “getting

elected” entails first “being a candidate.”

Further, these resources are removed from any sentential context. This is critical,

because words may take one of many senses in actual use, and the sense of a word

determines its entailments. For example, if person X writes software Y then person

X is a programmer. However a different sense of write leads to different entailments,

like how person X writes book Y entails person X is an author.

2.2.3 Lexical Inference in Context

In summary, the previous approaches address general entailment competence, but in-

clude evaluation gaps of specific capabilities including predicate inference, or they

make it possible to test predicate inference, but are very sparse and removed from

natural context.

Another trend in evaluation design, sometimes called “Lexical Inference in Con-

text” (LIiC) is a relatively recent class of datasets aiming at exactly this niche. The

Levy/Holt dataset (Holt, 2018), discussed later, and similarly constructed SherLlic

dataset (Schmitt and Schütze, 2019) are two commonly used benchmarks for predicate

entailment evaluation. These have been very useful for evaluating models of predicate

entailment (Hosseini, 2021; Schmitt and Schütze, 2021; Chen et al., 2023).

Modeling approaches for these datasets mostly involve Entailment Graphs or fine-

tuning and application of a Language Model. However, similar to the supervised neural

models in § 2.2.1, Li et al. (2022a) shows that the RoBERTa-based model of (Schmitt

and Schütze, 2021) also overfits to hidden artifacts in Levy/Holt, casting some doubt

on the viability of learning entailment, specifically of predicates, from supervised ex-

amples with Language Models, while avoiding artifacts.

While useful, these datasets contain mostly paraphrase/unrelated relations between

predicates, and sometimes contain a specifically directional subset. Directional entail-

ments are the most important to this thesis.

Another gap in these datasets for entailment evaluation is that between predicates of

different valencies. This thesis also contributes a method for the automatic generation

of a question answering task for the evaluation of entailment models. This method
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has the benefit of filling gaps such as multivalent entailment evaluation, while being

configurable in the kinds of questions and supporting texts that are selected.

2.3 The Directional Entailment Task, Its Difficulty, and

Proxies

Several datasets have been created to test model performance on the task of predicate

inference. Two datasets of interest are described here, which are used for evaluating

models in this thesis.

2.3.1 Levy/Holt

Levy and Dagan (2016) present an entailment dataset, which was re-annotated via

crowd-sourcing by Holt (2018), consisting of 18,407 test samples of the form “given

that [premise], is it true that [hypothesis]?” Each sample premise (and hypothesis) is a

simple sentence which expresses a (subject, relation, object) triple in natural language.

This dataset contains a subset of 1,784 samples which hold in only one direction, but

not the reverse, with 892 True samples and their reversals, 892 False samples. Several

dev set examples are shown in Table 2.2.

Label Premise Hypothesis

True Ephedrine, is widely used in, Medicine ⊨ Ephedrine, is used in, Medicine

False Ephedrine, is used in, Medicine ⊭ Ephedrine, is widely used in, Medicine

True Crockett, was killed at, the alamo ⊨ Crockett, died at, the alamo

False Crockett, died at, the alamo ⊭ Crockett, was killed at, the alamo

True Russia, expanded to, the Pacific ⊨ The Pacific, borders, Russia

False The Pacific, borders, Russia ⊭ Russia, expanded to, the Pacific

Table 2.2: Dev set examples from the Levy/Holt directional subset.

The full dataset has been used to compare the progress of many entailment models

(Hosseini, 2021; Guillou et al., 2021; Schmitt and Schütze, 2021; Li et al., 2022b;

Chen et al., 2022), and the directional subset is of particular interest in this thesis due

to its challenging nature.
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2.3.1.1 The Length Artifact

However, as shown in Li et al. (2022a), the Levy/Holt dataset suffers from several

artifacts which are exploitable by models, so training or finetuning on this dataset risks

learning simple (though often effective) heuristics instead of entailment. One is the

“length artifact,” which is the phenomenon that often a sample hypothesis predicate

is simply a shortening of the premise by way of eliding detail (even if rephrased in

different words). One very simple way to measure this is by comparing the relative

lengths of the premise and hypothesis in terms of their number of characters. Indeed,

in cases of elided detail, there is often a measurably lesser number of characters in the

hypothesis than the premise. In these cases the sample label is naturally True, because

a statement entails vaguer generalizations of itself. The label is False in the reverse

case, because a semantically general premise cannot guarantee entailment of a specific

hypothesis. For example, a Levy/Holt dev sample with True label, Ephedrine is widely

used in medicine entails Ephedrine is used in medicine (and in the reverse case, is used

in does not necessarily entail is widely used in).

Due to the distribution of samples in Levy/Holt skewing toward this artifact, by

simply comparing the relative lengths of premise vs. hypothesis predicates a model can

make guesses much better than chance instead of learning or demonstrating capability

for semantic understanding. This is demonstrable. The directional subset contains a

class balance of 50% positive labels and 50% negative, so random-chance guessing

respecting this distribution achieves 50.0% precision. This thesis also contributes a

performance evaluation of the simple heuristics discussed, shown in Table 2.4. No-

tably, predictions made on the basis of the relative number of characters in predicates

alone achieves 71.1% overall precision, which is a vast overestimation of the skill used.

2.3.2 ANT

Guillou and Bijl de Vroe (2023) present a newer dataset, ANT, in the same format as

Levy/Holt, but which attempts to solve the problem of artifacts by construction. ANT

contains several subsets including a directional portion of 2,930 samples (1,465 posi-

tive and their reverses, the 1,465 negative), and was generated by a two step process:

first, expert manual annotation of seed entailment relations, followed by automatic ex-

pansion of predicates into predicate clusters using crafted resources such as WordNet

Fellbaum (1998). This process instantiates many-to-many comparisons from a single

manual labeling. Several examples are shown in Table 2.3.
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Label Premise Hypothesis

True Medicine, subdued, the patient ⊭ Medicine, was given to, the patient

False Medicine, was given to, the patient ⊭ Medicine, subdued, the patient

True The stockbroker, broadened, the fund ⊨ The stockbroker, changed, the fund

False The stockbroker, changed, the fund ⊭ The stockbroker, broadened, the fund

True Singapore, permitted, smoking ⊨ Singapore, ruled on, smoking

False Singapore, ruled on, smoking ⊭ Singapore, permitted, smoking

Table 2.3: Dev set examples from the ANT directional subset.

2.3.2.1 The Relative Frequency Artifact

As shown in Table 2.4, the same length heuristic of predicting “entail” if the premise

is simply longer than the hypothesis applied to ANT achieves 45.5% precision (below

random chance of 50.0%). This makes the dataset actually adversarial to the same

strategy useful on Levy/Holt, meaning that models optimized for this strategy on the

Levy/Holt dataset will fail if directly transferred to ANT. However, a different artifact

is detectable within ANT which may be similarly exploited by models.

Similar to the length heuristic, the relative frequencies between two predicates cor-

relates with differences in specificity, where it is expected that infrequent words will be

very specific, and frequent words will be more general (having more senses or applica-

ble in more contexts) (Caraballo and Charniak, 1999). This has a strong implication for

the direction of entailment between such statements. For example, in the ANT sample

medicine subdued the patient entails medicine was given to the patient, the specific

word subdue is likely to be much less corpus-frequent than a very general word like

give. Once again, a specific statement can entail a semantically general one, but the

reverse direction cannot hold: a general statement cannot entail a specific one. So, by

estimating the relative corpus frequencies of the premise and hypothesis predicates,

a model can make predictions about the direction of entailment better than chance,

without understanding what the predicates mean.

The predicate frequency heuristic in Table 2.4 is calculated using a simple mea-

sure. For a given predicate, the average is taken over the unigram counts of all in-

cluded words, ignoring 127 stopwords from NLTK (Loper and Bird, 2002) such as

“in,” “some,” etc. Ungiram token counts are estimated from the WikiText-103 cor-

pus of popular Wikipedia articles (Merity et al., 2017). The estimated frequency of a

premise is then compared to that of the hypothesis, and True is predicted if the premise
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is less frequent than the hypothesis: it is assumed that in this case, the premise will be

more specific than the hypothesis. Indeed, though the ANT dataset is adversarial to

the length heuristic, the relative frequency heuristic achieves precision of 69.2%, well

above the random baseline of 50.0%.

2.3.3 Artifacts and Heuristics

The artifacts discussed above make Levy/Holt and ANT vulnerable to simple heuris-

tics. These approaches obtain surprising performance above random chance in preci-

sion (on each dataset), and recall (for the length heuristic on Levy/Holt). These results

are summarized in Table 2.4.

Levy/Holt (directional) Precision Recall

Random Choice 50.0 50.0

Length Heuristic 71.1 67.3

Frequency Heuristic 52.2 27.9

ANT (directional) Precision Recall

Random Choice 50.0 50.0

Length Heuristic 45.5 40.2

Frequency Heuristic 69.2 45.9

Table 2.4: Performance of simple heuristics on two directional predicate entailment

datasets. Values significantly above random chance are bolded. While the ANT

dataset fixes the length artifact present in the Levy/Holt dataset, it is vulnerable to a

different heuristic based on estimated unigram frequency in common corpora. This

comparison highlights the difficulty of producing an artifact-free dataset, but also the

potential possibility of doing so. Training on either dataset risks learning the respective

bias instead of entailment itself.

Relative frequency as an artifact and heuristic is explored more in Chapters 4 and

5. It is important to note that these are not exhaustive of the kinds of artifacts present

in these datasets, and it is possible that there are more which are undetected. It is

also possible that there are more kinds of heuristics which may be applied to direc-

tional datasets to obtain better-than-random performance without modeling entailment

itself. The opacity of neural models, and in particular, modern neural Language Mod-

els which contain many billions of parameters, make model introspection much more
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difficult. Thus, it is not always obvious which factors are responsible for model out-

puts, especially in Language Models. In Chapter 5, another heuristic of simple mem-

ory recall is introduced, and several strategies are proposed with which to control for

known artifacts in evaluation.

There is danger in training supervised models on these datasets, which will detect

the simple correlation of artifacts with labels before any possible learning of true en-

tailment. Yet, the prevalence of such artifacts betrays the difficulty of designing an

evaluation of directional predicate inference without accidentally including easier cor-

related tasks. Designing an entailment evaluation may even be described as a task in

itself.

Indeed, the problems discussed in this chapter of (a) the scarcity of resources for

supervised training of lexical inference and (b) the ease with which artifacts may acci-

dentally enter the few evaluation datasets available, which are correlated with correct

labels, bears some significance. Learning entailments may better be accomplished

by unsupervised means, wherein contamination by selection artifacts is impossible by

construction. This entire thesis is focused on such unsupervised methods and their

capability to fully capture predicate inference in the open domain of natural language.

2.4 The Distributional Inclusion Hypothesis

Learning directional entailments in the open domain of natural language is a challenge,

because (a) acquiring a single entailment relation between two expressions requires ei-

ther a sophisticated algorithm or human annotation, and (b) natural language is capable

of limitless recombination, and any method for acquiring single entailments must also

work at this scale.

The Distributional Inclusion Hypothesis (DIH) is an abstract theory for acquiring

directional entailments using unsupervised signals apparent in natural text, given only a

textual resource for a target domain and sufficient computational resources for training.

It has no theoretical scaling limit on the number of learnable entailments, since they

can be learned one at a time, and do not require joint learning. In other words, learning

the first entailment requires the same computational cost as the millionth entailment.

However, practical limitations do exist, which are addressed later, and throughout this

thesis.

The DIH is a refinement of the Distributional Hypothesis (Harris, 1954), and seeks

to infer directional relationships between two target words by comparing the typical
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contexts in which they both occur (Geffet and Dagan, 2005). The DIH states that

for some words p and q, if the contextual features of p are included in those of q,

then p entails q. As an abstract theory, the DIH requires concrete interpretation in

order to implement it. It has been operationalized in previous work for the learning of

predicate entailments by using the observed predicate arguments as these contextual

features (Kartsaklis and Sadrzadeh, 2016; Hosseini, 2021).

For example, collecting predicate argument pairs seen with both the predicates

“elected to” and “candidate for” in some large corpus may yield these observations:

Arguments of “elected to” Arguments of “candidate for”

(Biden, US President) — (Biden, US President)

(Harris, US President)

(Harris, US Vice President) — (Harris, US Vice President)

(Warren, US President)

(Pelosi, US House) — (Pelosi, US House)

(Mehmet Oz, US Senate)

Table 2.5: The argument pairs observed with elected to are included in those seen with

candidate for, implying that elected to entails candidate for.

With these argument pairs provided as the contextual features, it can be inferred

using the DIH that since the features of elected for are a subset of candidate for, then

elected for entails candidate for. Since there are several pairs seen with candidate for

that are not seen with elected for, the reverse entailment likely does not hold. These ob-

servations can be noisy, but the underlying mechanism is not coincidental; in the larger

view of an election cycle, it is intuitive that many persons run in an election, giving

them candidacy status, but only one will win election. So it is the case that getting

elected implies being a candidate, but being a candidate does not guarantee winning

election. The DIH is a powerful signal useful for acquiring directional correlations

between predicates, such as this one.

An election is one kind of “episode,” in which events and states are causally related

in a typical series (Schank, 1975; Tulving, 1972). In an election, a person announces

their run for office, becomes a candidate, and possibly gets elected, after which they

assume their office. By tracking a particular argument tuple as it appears with predi-

cates across a large corpus of text, one such episode may be aggregated. Collections of

similar episodes may be obtained when predicates overlap between them. These col-
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lections of episodes will overlap greatly in their predicates, but necessarily have some

different inclusions, and may also be noisily reported in the text, as well. But collec-

tions of episodes yield a distribution from which a probability can be estimated for the

relation of two particular contained eventualities such as elected to and candidate for,

and whether by forwards entailment or backwards.

2.5 Entailment Graphs

The challenge of representing a set of directional entailments, in which a unique natural

language predicate may entail a variable number of other natural language predicates,

lends itself to a graph structure. Entailment Graphs (EGs) have been developed for

the purpose of learning, representing, and refining directional entailments between

natural language predicates.

In this thesis, a standard Entailment Graph is defined as a directed graph of predi-

cates and their entailments, G = (V,E).

• The vertices V are the set of natural language predicates for which entailments

are learned, and predicate arguments have a type from the set T , containing the

48 FIGER base types (+ 1 type :thing used in failure cases) (Ling and Weld,

2012). For example, FLY.TO(:person, :location) ∈V , and :person, :location ∈ T .

• The directed edges are E = {(v1,v2) | v1,v2 ∈ V if v1 ⊨ v2}, or all learned en-

tailments between vertices in V . For example, FLY.TO(:person, :location) ⊨

ARRIVE.AT(:person, :location)

2.5.1 Unsupervised Construction from Parsed Text

Entailment Graphs may be constructed using unsupervised means. The basic construc-

tion method only requires a syntactic parser for extracting natural language relations

between arguments, and a named entity linker to standardize differently-phrased men-

tions of the same entity reference (otherwise, predicate arguments are unlikely to match

up between predicates, even if they refer to the same entity). This can be applied to

English, or just as easily to another language with these tools available plus a large

enough corpus of text for training (Li et al., 2022b).

The standard construction process begins by applying two steps of data pre-processing

in order to extract the concrete predicate-argument triples used to learn an Entailment
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Graph with typical binary predicates. Following this is the local learning phase, by

applying the DIH to learn initial entailment rules between predicates. This results in

a graph structure, which can be used as-is for explicit lexical semantic reasoning, or

refined further.

2.5.1.1 Entity Recognition, Linking, and Typing

The first step is to pre-process the natural text corpus by identifying named entities.

Past work has used the AIDA-Light system (Nguyen et al., 2014) which links a tex-

tual mention to an ID, the entity’s Wikipedia URL, which is useful for standardizing

different mentions of the same entity, and may also be used to gather more informa-

tion about the entity from other sources, such as a typing. Using this, the entity ID

is mapped to its Freebase entry (Bollacker et al., 2008), which provides the entity’s

FIGER type (Ling and Weld, 2012).

Typing is essential for Entailment Graph learning (Berant et al., 2010; Lewis and

Steedman, 2013; Hosseini et al., 2018). Inducing a type for each entity such as “per-

son,” “location,” etc. is useful for disambiguating word sense, e.g. “running a com-

pany” (:organization type) has different entailments than “running code” (:software

type). This is established in NLP since “One Sense Per Collocation” (Yarowsky, 1993).

Typing of entities also enables the aggregation of predicate mentions of the same types,

in order to estimate the distributional overlaps required for learning robust entailments.

After identifying named entities and their types, the training corpus is ready for

relation extraction.

2.5.1.2 Syntactic Parsing and Relation Extraction

Past work in Entailment Graph construction has made use of Combinatory Categorial

Grammer (CCG) parsing (Steedman, 2000), such as the Lewis and Steedman (2014) or

later Stanojević and Steedman (2019) parsers, which has benefits for this process such

as syntactic analyses, like the graceful handling of conjunctions. The CCG-parsed

sentences are then mined for relations. Hosseini et al. (2018) extract relations using

the words along the CCG syntactic path between two nominals. Further pre-processing

may be done to clean and normalize the relations, such as conversion of passives to

actives, lemmatization of predicates, and stripping of tense, aspect, modality, and other

auxiliaries.

Examples of this process are shown in Table 2.6. The CCG argument positions
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are identified in the predicate, where roughly, 1 is the subject, 2 is the object, and

3 is the indirect object. Finally, the predicate is appended with the mentioned entity

argument types, which enable predicates to be disambiguated and quickly sorted by

typing. The argument tuple of entities is logged as one instance of this relation. There

may be many instances of a particular normalized relation, and the distributions of

entity tuples enable learning of entailments in the next step.

Natural Language Sentence Extracted Typed Relation Argument Tuple

“Obama flew this week to the

Hawaii base.”

(fly.1,fly.to.2)#person#location (Obama, Hawaii)

“Obama landed in Hawaii (land.1,land.in.2)#person#location (Obama, Hawaii)

and met the general.” (meet.1,meet.2)#person#thing (Obama, general)

Table 2.6: First, an entity type is induced for each nominal. Then, the sentences are

CCG parsed. Finally, typed relations are extracted between nominals, with correspond-

ing argument tuples.

2.5.1.3 Learning with the Distributional Inclusion Hypothesis

Research in Entailment Graphs begun by assembling rules learned immediately from

text (Geffet and Dagan, 2005; Szpektor and Dagan, 2008), dubbed “local” learning

because individual or “local” graphs are learned for each type-pairing. For instance,

the (:person, :location) graph is learned separately from the (:person, :organization)

graph, in which entailments are learned between predicates with arguments of these

types.

Typically, local Entailment Graphs are learned by implementing a model of the

Distributional Inclusion Hypothesis. This is done by comparing the distributions of

“context features” for two given predicates, as described in §2.4. The features vary

by implementation, as does the scoring function which estimates the strength of di-

rectional entailment between two predicates based on the overlap of features. In most

implementations, the context features are operationalized as counts of unique tuples of

argument entities, or alternatively the positive pointwise mutual information (PPMI)

between each unique argument tuple and the predicate. The score is chosen to be

Weeds Precision for a purely directional measure (Weeds and Weir, 2003), or BInc for

better performance (Szpektor and Dagan, 2008) by down-weighting infrequent pred-
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icates, which often align with frequent ones by chance, resulting in spurious entail-

ments. An example Entailment Graph is shown in Figure 2.1.

The incidence of such spurious entailments highlights an important fact. Though

the DIH is built upon meaningful intuition, this is an approximate process for learning

linguistic inference of predicates, which increases in precision over larger distributions

in training data, or using other added signals. This process is distinguished from the

later use of a constructed EG for explicit linguistic reasoning on tasks.

Recent work has improved the precision of local learning by adding temporal sig-

nals in the feature set used for DIH calculations (Guillou et al., 2020) and targeting the

use of modalized relations to specific domains (Guillou et al., 2021). Other work has

modernized the typical DIH by using Language Model embeddings as the contextual

features for better predicate disambiguation (Hosseini et al., 2021).

However, due to methodological simplification, only predicates of the same va-

lency have been considered in previous methods, e.g. binary predicates entail binary,

or unary entail unary (Szpektor and Dagan, 2008). This overlooks the learning of

crucial entailments that cross valencies, which are easy for humans and necessary for

open domain inference of natural language predicates. For example, given the state-

ment Biden defeated Trump a human would also understand that Biden won and Trump

lost. This gap is not trivial to fill, however, since lower-valency entailments apply to

a particular subset of arguments in the premise, e.g. a unary predicate applying to the

subject vs. the object of a binary predicate, and a model must learn this additional in-

formation. In Chapter 3 the application of the DIH is refined to learn entailments both

within and across predicate valencies.

Further, Entailment Graphs are constructed from predicate relationships which are

grounded to original observations from real corpora, so they are limited in two crucial

ways, as follows.

2.5.2 The Problem of Edge Sparsity

Edge Sparsity is the phenomenon where EGs capture an imperfect subset of “true”

entailment relations that may exist between a set of predicates. This is a problem be-

cause at test-time, it may be the case that the EG contains both premise and hypothesis

predicates, but has no textual evidence for their entailment, so it predicts a false neg-

ative. This issue is due to the fact that the DIH, as typically operationalized, tracks

occurrences of entity pairs across the training corpus and uses these to connect men-
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Figure 2.1: An example Entailment Graph containing two typed subgraphs: person-

location, and organization-organization. Paraphrases buy and acquire mutually entail

each other, and other entailments are shown which hold in only one direction.

tioned predicates, so edge learning is dependent on observing these predicates with the

same entity pairs, which does not always occur due to natural noisiness in reported

text.

There is a growing body of research into the problem of Edge Sparsity. After lo-

cal EGs are constructed, the graphical structure may be leveraged in a process called

“globalization,” where graph structures may be shared between local graphs, and also

within them (Berant et al., 2010; Hosseini et al., 2018). The transitive property of

entailment (if a ⊨ b, and b ⊨ c, then a ⊨ c) is another signal which has been used to

infer additional edges in already-learned graphs (Berant et al., 2015; Chen et al., 2022).

Further, the complementary nature of Entailment Graphs and Knowledge Graphs con-

structed from the same corpus may be leveraged for iterative joint-improvement of

both EG and KG edges (Hosseini et al., 2019).

2.5.3 The Problem of Vertex Sparsity

Even after applying scaling techniques such as “global soft constraints” (Hosseini

et al., 2018) which enable optimization and learning much larger EGs than first possi-

ble, the methodology hits another practical limit. EGs are symbolic models, in which

are learned representations for a fixed “vocabulary” of predicate symbols observed in

the training corpus. However, predicates occur in a Zipfian frequency distribution with

an unbounded long tail of rarely-mentioned predicates, so there will virtually always

be predicates which appear at test-time which were not seen in training.
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This thesis is the first to explicitly recognize the problem of Vertex Sparsity. Due

to this phenomenon, even if EGs maximize the predicates learned from the training

corpus and learn a perfect representation of their entailments, this will still only rep-

resent a subset of the possible natural language predicates that will be queried. Thus,

the graphs will still be insufficient for use in the open domain of natural language.

This is a problem because the long tail of the Zipfian frequency distribution makes it

impractical to learn entailments for all possible predicate symbols by reading corpora

by this method, yet very likely that many of these unlearned predicates will occur at

test-time in corpora for use in real tasks, like question answering from text. Further, at

test-time if either the premise or hypothesis predicate is missing from the EG, there is

no way to learn an entailment involving them, and the EG will predict a false negative.

A subsymbolic approach to “smooth” over missing graph predicates by approximating

them on-demand is presented in Chapter 4, which seeks to alleviate the problem of

vertex sparsity.

2.6 Language Models Applied for Entailment

The recent class of neural Language Models (LMs) tackle the problem of limited vo-

cabulary by a process of encoding subword tokens as vectors and then performing vec-

tor space recombination to represent larger word- or sentence-units (Kudo and Richard-

son, 2018), which enables the encoding of words at test-time which may not have been

seen in training. This development solves a problem analogous to vertex sparsity in

Entailment Graphs, and enables the encoding and processing of a truly open domain

of natural language. Caveats must necessarily be stated that an open encoder does not

escape the need for target-domain training data, or the bigger question of whether a

meaningful semantics is learned by such models.

Nevertheless, the opportunities presented by embedding techniques and the promis-

ing performance of progressively-larger Language Models (Brown et al., 2020; Chowd-

hery et al., 2022) demands investigation into the possibilities of applying these modern

NLP methods to predicate entailment.

Neural Language models with Transformer architectures may typically include an

encoder module which produces fixed-dimension vector embeddings corresponding to

tokens in the input sequence. These can be used either as-is in downstream applica-

tions, or by further finetuning the LM with a small neural module appended (e.g. a

multi-layer perceptron) for tasks like classification (Liu et al., 2019). They may also
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include a text-generating, auto-regressive decoder module (Raffel et al., 2020), or con-

sist only of a decoder module (Radford and Wu, 2019; Brown et al., 2020). The exact

architecture is dependent on the target downstream application.

The definition of what is a “small” vs. “large” Language Model has been a moving

target in the past several years, because increases in the model parameter count and pre-

training data size have consistently achieved better and better results on downstream

tasks (Hoffmann et al., 2022), which to many is more appealing than investment in ma-

jor changes to algorithmic design. By the time you (the reader, hello!) read this thesis,

the distinction between small and large may have changed even further. But at the time

of writing, it is generally understood that a small neural Language Model (typically a

transformer-based model) contains fewer than one billion parameters, which may be

arranged in varying stacks of interspersed self-attention and feed-forward layers. A

BERT model, for instance, was once considered to be outrageously large, but is actu-

ally a “mere” 340 million parameters in its largest configuration, and is now considered

to be small (Devlin et al., 2019). A large model is often simply a scaled-up version of

the same architecture with additional layers, exceeding one billion or even one trillion

parameters (Fedus et al., 2022). These large models are empirically more fluent in text

generations than smaller models equipped with decoders, because they have trained on

larger and more diverse natural language corpora. Because of this, larger models are

usually intended to be used as agents which can converse with a user or even complete

tasks if prompted with data formatted as an instruction, as if to another human being

(Chung et al., 2022).

While large models achieve impressive performance on a variety of tasks, they

require massive resources to train, and even so just for running inference, so they

are inaccessible not just to institutions with limited budgets, but also in the kinds of

hardware settings in which they may be deployed. For instance, the largest, most

performant models are too large to run on current mobile phone hardware. However,

small models can train locally on many desktop-class GPUs, and can run inference

in real-time, even models deployed to high-end phones. This is possible while still

providing many benefits of modern techniques like open-domain text encoding into

vectors.

This thesis explores both routes for predicate entailment: the application of small

Language Models to assist Entailment Graphs in processing an open domain of natural

language predicates in the “personal” hardware setting (Chapter 4), and the use of

the most cutting-edge large Language Models as conversational agents, running in the
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server setting, which are tested for their ability to “understand” entailment as queried

in natural language requests (Chapter 5).





Chapter 3

Multivalent Entailment Graphs

This chapter addresses the restriction of single-valency entailment learning in Entail-

ment Graphs, which is a major barrier to learning an open domain of predicate infer-

ences in natural language. It also addresses the lack of evaluation resources for general

predicate entailment models.

First, a theory is presented for distributional learning of entailments between pred-

icates of different valencies, by refining the Distributional Inclusion Hypothesis. This

enables learning entailments such as DEFEAT(Biden, Trump) ⊨ WIN(Biden), which is

natural for humans but impossible to capture in previous Entailment Graphs. Further,

this theory is actualized by learning unsupervised Multivalent Entailment Graphs of

open-domain predicates. Finally, the capabilities of these graphs are demonstrated on

a novel question answering task. Directional entailment is shown to be more helpful

for inference than non-directional similarity on questions of fine-grained semantics. In

addition, drawing on evidence across valencies answers more questions than by using

only the same valency evidence.

3.1 Introduction

Say that we are reading a murder mystery, and a question comes to mind: is Mr. Boddy

dead?1 The passage might say Colonel Mustard killed Mr. Boddy, or Mr. Boddy was

murdered in the kitchen with a candlestick, either of which answers the question, but

only via natural language inference.

An Entailment Graph (EG) is a structure of meaning postulates supporting these

inferences such as “if x murdered y, then x killed y.” Entailment Graphs contain natu-

1The murder mystery board game Clue (also known as Cluedo) lends inspiration to this work.

29
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ral language predicates (represented by vertices) and their entailments (directed edges

connecting the vertices). Previous EGs are learned with predicates of a single valency,

the number of arguments related by the predicate. Commonly, these graphs contain

binary predicates of two arguments, and cannot model single-argument predicates like

the entity states x is dead or x is an author. This means they miss a variety of en-

tailments in text that could be useful for answering questions such as is Mr. Boddy

dead? The Distributional Inclusion Hypothesis (DIH) (Dagan et al., 1999; Kartsak-

lis and Sadrzadeh, 2016) is a theory which has been used effectively in unsupervised

learning of these same-valency entailment graphs, as discussed in Chapter 2 (Geffet

and Dagan, 2005), and forms the basis of this work.

This chapter presents 3 contributions:

1. The Multivalent Distributional Inclusion Hypothesis, a refinement of the DIH, is

presented, which supports learning entailments between predicates of different

valencies such as KILL(Mustard, Boddy) ⊨ DIE(Boddy) by respecting the roles

of arguments in eventualities.

2. A new Multivalent Entailment Graph is developed, where vertices may be predi-

cates of different valencies, which results in new kinds of entailments that answer

a broader range of questions including about the individual (unary) properties of

entities.

3. Further, a true-false question answering task is posed, which is generated auto-

matically from news text. The Multivalent EG draws inferences across propo-

sitions of different valencies to answer more questions than using same-valence

entailment graphs. Several baselines are also compared, including unsupervised

pretrained language models, and it is shown that directional entailment graphs

succeed over non-directional similarity measures in answering questions of fine-

grained semantics.

This research is conducted in English, but as an unsupervised algorithm, EG con-

struction may be applied in other languages given a parser and named entity linker (Li

et al., 2022b).

3.2 Background

The original task of recognizing textual entailment (Dagan et al., 2006) requires models

to predict a relation between a text T and hypothesis H; “T entails H if, typically, a
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human reading T would infer that H is most likely true.” Within RTE, this work is a

specific study on the entailment of predicates, including verbs and phrases that apply

to arguments.

Research in predicate Entailment Graphs started with “local” learning of entailment

rules of the form “if p(x,y), then q(x,y)” for binary predicates p, q, and entities x, y

(Geffet and Dagan, 2005), or “if r(x), then s(x)” for unary predicates r and s (Szpektor

and Dagan, 2008). As discussed in Chapter 2, these methods frequently rely on the

DIH for the local learning step to learn initial predicate entailments. The DIH states

that for some predicates p and q, if the contextual features of p are included in those of

q, then p entails q (Geffet and Dagan, 2005). In previous work predicate arguments are

operationalized as these contextual features, but only predicates of the same valency

are involved in learning an entailment, e.g. binary predicates entail binary; unary entail

unary. However, this leaves out the crucial inferences which cross valencies such as

that x kills y entails y is dead, which are easy for humans. Thus, implementations of

the DIH thus far cannot be said to model entailment in the open domain of natural

language predicates. This work refines the DIH in a way which supports principled

learning of entailments within and across valencies.

Later work on joint learning of “globalized” rules leverages the inherent graph

structure output by local learning to further improve on the problem of edge sparsity

(Berant et al., 2010; Hosseini et al., 2018). These techniques often leverage infor-

mation such as graph transitivity, so they do not necessarily require linguistic features

such as predicates being binary relations, though nearly all work on Entailment Graphs

has focused on these binary predicates.

This work compares the Multivalent Entailment Graph to several baselines, in-

cluding strong pretrained language models in an unsupervised setting using similarity.

BERT (Devlin et al., 2019) generates impressive word representations, even unsuper-

vised (Petroni et al., 2019), which is compared with on a task of predicate inference.

Further, RoBERTa (Liu et al., 2019) is tested to show the impact of robust in-domain

pretraining on the same architecture. These non-directional similarity models provide

a strong baseline for evaluating directional Entailment Graphs.

3.3 Multivalent Distributional Inclusion Hypothesis

The Distributional Inclusion Hypothesis is formalized as two statements in Geffet and

Dagan (2005), for the word senses vi and w j of the words v and w:
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Hypothesis I: If vi ⊨w j then all the characteristic (syntactic-based) features

of vi are expected to appear with w j.

Hypothesis II: If all the characteristic (syntactic-based) features of vi appear

with w j then we expect that vi ⊨ w j.

When applied to learn predicate entailments, a “feature” of a predicate is usually

operationalized as a tuple of concrete entities related by the predicate that is observed

in collocation in a textual corpus (typically, 2-tuples of entites related by binary pred-

icates) (Berant et al., 2010; Hosseini et al., 2018). For example, the tuple (Obama,

Hawaii) is a feature of the parsed predicate ARRIVE.AT(x,y) because it was observed

with it in the training corpus. Aligned with this definition, these implementations are

designed to search for (potential) matches of premise tuples amongst hypothesis tu-

ples. The confidence of directional entailment between premise p and hypothesis h is

estimated based on how many of p’s tuples are found amongst h’s tuples. However,

this theory (and implementations) require that features (tuples) take the same form be-

tween p and h. It does not define entailment if the individual features (tuples) of h are

themselves a systematic subset of features of p (these may be called “subtuples”). For

example, the DIH does not specify how to compare 2-tuples of the (potential) premise x

kills y with 1-tuples of the hypothesis y dies, even though an alignment may be possible

if a transformation is applied between premise and hypothesis features.

A new extension of the DIH is posed within the context of predicate entailment,

the Multivalent DIH, which models the entailment of predicates both within and across

valencies. According to the established DIH, if p entails h, the distribution of p’s

features should form a subset of h’s features. Essential to this work, in addition, the

contextual features of h need only match a systematic transformation on features of p,

if h has lower valence than p.

The intuition comes from observing eventualities (Vendler, 1967) which occur in

the world. Neo-Davidsonian semantics (Davidson, 1967; Maienborn, 2011) explains

that a textual predicate, its arguments, and adjuncts, are all properties of an underlying

eventuality, being an event or state. Entailments about one or more of the arguments

arise from their roles in this eventuality. In the running example, it may be inferred

that Mr. Boddy died due to his role as a direct object in the killing event. No other

information is needed for a human or ideal learning algorithm to draw this inference,

including who murdered Mr. Boddy, where, or with what instrument. Boddy is dead

simply because he was murdered. This insight is key to developing the MDIH.
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As in earlier EG work, a predicate is represented by features which are the argu-

ment tuples it appears with. A tuple is recognized as a proxy for a world event, e.g.

VISIT(Obama, Hawaii) identifies one instance of a real VISIT event. The MDIH ac-

quires entailments by tracking entity tuples across events in the world, recognizing

that a lower-valency argument tuple may reference the same eventuality as a higher-

valency one, if the entities form a subtuple. The MDIH defines an entailment from a

premise p to hypothesis h if, distributionally, subtuples of p are always found amongst

tuples of h. Crucially, h is allowed to drop in valency so that entailments may be

learned about subsets of p’s arguments.

The MDIH is now formalized and then illustrated with an example. The argument

tuple structures for a premise and hypothesis predicate are defined:

P = {(ak,1, . . . ,ak,I) | k ∈ {1, . . . ,M}}

H = {(bk,1, . . . ,bk,J) | k ∈ {1, . . . ,N}}

P is a set of M argument tuples (each of size I) which correspond to instances of a

premise predicate p. H is a set of N argument tuples (each of size J) representing

the same for hypothesis h. J is limited such that J ≤ I. This is because entailments

are learned for realized entities only, so they cannot be learned from lower to higher

valencies (such as a unary entailing a binary). A hypothesis cannot be inferred about

real arguments that are not present in the premise; such inferred hypotheses must nec-

essarily contain existential arguments, which are not observable in text. For example,

it cannot be learned that “Boddy was murdered” entails “Body was murdered with

something” because such kinds of hypothesis statements are virtually never written by

rational authors following the Gricean cooperative principle (Grice, 1975), thus they

are not observable in text. The special case of linguistic analysis of existentials is left

to future work. Finally, for J = I, this theory is equivalent to the DIH.

To select argument subtuples from tuples in P, a vector of indices j is defined with

length J, which selects arguments by position. For example, with j = [2,3], perform

P[:, j]. For each argument tuple in P, select just the 2nd and 3rd arguments, forming a

new set of 2-tuples. The Multivalent Distributional Inclusion Hypothesis is defined:

If P[:, j]⊆ H[:,m(j)], then p ⊨ h

Here, m : NJ → NJ is a simple bijective mapping from argument indices of p to h. For

example, m is needed for argument mapping in “x bought y for z” entails “y sold to x.”

The kill/die example is now illustrated on a hypothetical corpus. It might be found

that KILL(x,y) ⊨ DIE(y) by trying j = [2] and m([2]) = [1]. Starting with P, all 2-tuples
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of killings, and H, all 1-tuples of dyings and apply j and m. It may be found that se-

lecting arg 2 from all tuples in P forms a subset of the selection of arg 1 from tuples

in H. Though dyings may happen in many ways, it may be observed that arg 2 of

a killing often occurs elsewhere in the corpus with a dying, and thus the entailment

between predicates can be inferred. Intuitively this is true for arbitrarily large valen-

cies: MURDER(Mustard, Boddy, kitchen, candlestick) entails KILL(Mustard, Boddy)

and both entail DIE(Boddy).

Though premise arguments may be dropped in the hypothesis, they still influence

entailments. This is because the MDIH tracks the underlying eventualities. “Person

writing a book” is a different kind of event than “person writing software” with a

different distribution of argument tuples, so it may be learned that the former entails

“person is an author” while the latter entails “person is a programmer.”

3.4 Methods: Learning Multivalent Entailment Graphs

The theory is demonstrated by learning Multivalent Entailment Graphs which contain

entailments between predicates of 1- and 2-valency.

An Entailment Graph is defined as a directed graph of predicates and their entail-

ments, G = (V,E). The vertices V are the set of predicates, where each argument has a

type from the set of 49 FIGER base types T , e.g. TRAVEL.TO(:person, :location) ∈V ,

and :person, :location ∈ T . The directed edges are E = {(v1,v2) | v1,v2 ∈V if v1 ⊨ v2},

or all entailments between vertices in V .

In Multivalent Entailment Graphs V is expanded to contain predicates of both 1-

and 2-valency, and E to edges between these vertices, described as follows. Let bi,b j ∈
V be distinct binary predicates and ui,u j ∈ V be distinct unary predicates. Define E
as the set of all entities in the world, and some particular entities x,y ∈ E to illustrate

argument slots. E contains these patterns of entailment:

1. bi(x,y) ⊨ b j(x,y) or bi(x,y) ⊨ b j(y,x)

Binary entails binary (B→B entailments)

2. bi(x,y) ⊨ ui(x) or bi(x,y) ⊨ ui(y)

Binary entails unary of one argument (B→U entailments)

3. ui(x) ⊨ u j(x)

Unary entails unary (U→U entailments)
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Predicates with valence > 2 are sparse in the text, but are also included in the

Multivalent EG by decomposing them into binary relations between pairs of entities.

This is another application of the Multivalent DIH. Argument roles are maintained,

so each binary is a window into its higher-valency predicate, allowing higher-valency

predicates to entail lower binaries and unaries.

To learn these new kinds of connections, a method of local entailment rule learning

is devloped using the MDIH. As in §3.2, in the local step are learned the initial directed

edges of the entailment graph, which are further improved with global learning. This

step learns entailments by machine-reading the NewsSpike corpus (2.3GB in size),

which contains 550K news articles, or over 20M sentences (Zhang and Weld, 2013).

NewsSpike consists of multi-source news articles collected within a fixed timeframe,

and due to these properties the articles frequently discuss the same events but phrased

in different ways, providing appropriate training evidence.

This evening, Mr. Boddy was killed.

⇒ KILL.2(Mr.-Boddy)

Figure 3.1: The MoNTEE system extracts relations. A sentence is CCG parsed, formed

into a dependency graph (shown) using CCG dependencies, and traversed to extract a

unary relation. MoNTEE traverses from a predicate to all connected arguments.
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3.4.1 Extraction of Predicate Relations

A pipeline of steps is used process raw article text into a list of propositions, pred-

icates with associated typed arguments. The MoNTEE system (Bijl de Vroe et al.,

2021) is used for this extraction of natural language relations from raw text 2. This

system first parses sentences using the RotatingCCG parser (Stanojević and Steedman,

2019) (Combinatory Categorial Grammar; Steedman, 2000) and then forms depen-

dency graphs from the parses. Finally, it traverses these graphs to extract the relations,

each consisting of a predicate and its arguments. Figure 3.1 shows an example de-

pendency graph and the relation extracted from it. Arguments may be either named

entities3 or general entities (noun phrases). These entities are annotated with one of

49 FIGER base types (+ 1 default type :thing used in failure cases) (Ling and Weld,

2012). This is done by first linking entities using AIDA-Light (Nguyen et al., 2014) to

their Freebase IDs (Bollacker et al., 2008), and mapping the IDs to the types.

Both binary and unary relations are extracted from the corpus if they contain at least

one named entity, which helps anchor to a real-world event. This poses a challenge as

noted by Szpektor and Dagan (2008). While binary predicates may be extracted from

dependency paths between two entities, unary predicates only have one endpoint, so

linguistic knowledge must be carefully applied to extract meaningful unary relations.

The following neo-Davidsonian event cases are extracted:

• One-argument verbs including intransitives, e.g. “Knowles sang” ⇒ SING.1(Knowles)

and passivized transitives, e.g.

“Bill H.R. 1 was passed” ⇒ PASS.2(Bill-HR1)

• Copular constructions, where copular “be” acts as the main verb, e.g.

“Chiang is an author” ⇒ BE.AUTHOR.1(Chiang)

and where it does not, e.g.

“Phelps seems to be the winner” ⇒ SEEM.TO.BE.WINNER.1(Phelps)

As with binaries in earlier work, unary predicates are lemmatized, and tense, aspect,

modality, and other auxiliaries are stripped. The CCG argument position which corre-

sponds to its case (e.g. 1 for nominative, 2 for accusative), is appended to the predicate.

Passive predicates are mapped to active ones. Modifiers such as negation and predi-

cates like “planned to” as in “Professor Plum planned to attend” are also extracted in

the predicate.
2Modality tagging is disabled in this work.
3Identified by the CoreNLP Named Entitiy Recogniser (Manning et al., 2014; Finkel et al., 2005).
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Special attention is paid to copular constructions, which always introduce stative

predicates, rather than events (Vendler, 1967). These are interesting for modeling the

properties of entities.

3.4.2 Learning Local Graphs

In previous research on binary predicate Entailment Graphs (Hosseini et al., 2018) a

representation vector is computed for each typed predicate in the graph. These are

compared via the DIH to establish entailment edges between predicates. The fea-

tures of each vector are typically based on the argument pairs seen with that predicate.

Specifically, a typed predicate p has typing τ(p) = (t1, t2), with (t1, t2) ∈ T ×T . The

argument tuples observed with p are denoted by P, containing tuples a ∈ Et1 ×Et2 with

Et being the subset of all entities of some type t. For each predicate p and observed

argument tuple a ∈ P, a corresponding score is calculated v(p,a), the pointwise mutual

information (PMI) of p and a.

For example, the predicate p = BUILD(:company, :thing) might have a feature (an

argument tuple) of (Apple, iPhone) ∈ P, where the PMI of “build” with argument pair

(Apple, iPhone) is v(BUILD, (Apple, iPhone)).

A Balanced Inclusion (BInc) score is calculated for the directed entailment from

one predicate to another (Szpektor and Dagan, 2008). BInc is the geometric mean of

two subscores: a directional score, Weeds Precision (Weeds and Weir, 2003), measur-

ing how much one vector’s features “cover” the other’s; and a symmetric score, Lin

Similarity (Lin, 1998), which downweights infrequent predicates that cause spurious

false positives.

These scores are defined for some predicates p and q, with sets of observed argu-

ment tuples P and Q, respectively.

BInc(p,q) =
»

Lin(p,q)∗Weeds(p,q)

Lin(p,q) =
∑

a∈P∩Q

[
v(p,a)+ v(q,a)

]
∑
a∈P

v(p,a)+ ∑
a∈Q

v(q,a)

Weeds(p,q) =
∑

a∈P∩Q
v(p,a)

∑
a∈P

v(p,a)
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In this work local binary graphs are computed following Hosseini et al. (2018),

and the new MDIH is leveraged to compute additional entailments for unaries and

entailments between binary and unary valencies. To do this, feature value subsets

are computed for each argument slot respecting its position in the predicate. Slots

are compared, rather than predicates, to learn these new entailments. For a predicate

p, and slot s ∈ {1,2}, p has features Ps, which are the subtuples formed by selecting

arguments in slot s from all observed argument tuples in P. The function vs(p,as) maps

to the PMI of observing the argument subtuple as in slot s of predicate p. τs(p) = t is

also defined, the type of slot s in predicate p. A representation vector of feature PMI

values is computed for the slot in unary relations and both slots in binaries. Each slot

vector for p has size |Et |, the size of all possible entities with type t.

Continuing the example, two vectors are calculated for BUILD(:company, :thing):

v1 ∈R|E:company| which contains a feature for Apple, and v2 ∈R|E:thing| which contains a

feature for iPhone.

Slot vectors are comparable if they represent the same entity type. Edges are

learned by comparing corresponding slot vectors between predicates, and calculating a

BInc score as in earlier work (Hosseini et al., 2018). For instance, DEFEAT(:person_1,

:person_2) ⊨ BE.WINNER(:person_1) is learned by comparing the slot 1 vector of DE-

FEAT with the slot 1 vector of BE.WINNER. Here, the typed arguments are numbered

for demonstration to show that unary entailments apply to a specific argument, even if

both premise arguments have the same type. If the entities who have defeated some-

one are usually found amongst the entities who are winners then a high BInc score is

obtained, indicating defeat entails that its subject is a winner.

Figure 3.2 illustrates a constructed Multivalent Entailment Graph. This includes

two classes of subgraph: Bivalent Graphs which contain the entailments of binary

predicate premises (B→B and B→U edges), and separate Univalent Graphs which

contain the entailments of unary predicate premises (only U→U edges, since a unary

is not allowed to entail a binary). As in previous research, separate disjoint subgraphs

are learned for each typing, up to |T |2 bivalent and |T | univalent subgraphs (given

enough data, such that predicates are observed with every combination of typings).

For example, the bivalent (:person, :location) graph contains binary predicates such as

FLY.INTO(:person, :location) which may entail unaries like BE.AIRPORT(:location).

Because a unary has only one type ti it may be entailed by binaries in up to

2 ∗ |T | − 1 subgraphs with types {(ti, t j) | j ∈ T }, i.e. all bivalent graphs contain-

ing type ti. For space efficiency, entailments are learned from unary predicate premises



3.4. Methods: Learning Multivalent Entailment Graphs 39

(U→U entailments) in separate 1-type univalent graphs. Thus, one set of entailments

is learned for each unary, just as for each binary, but they may be freely entailed by

higher-valency predicates, e.g. binaries in the higher bivalent graphs.

Following from this, bivalent graphs point transitively into univalent graphs. In

Figure 3.2, DEFEAT(:person_1, :person_2) ⊨ BE.WINNER(:person_1) in the person-

person bivalent graph. Further entailments of BE.WINNER(:person) are learned in the

person univalent graph.

Figure 3.2: Bivalent graphs model entailments from binary predicate premises to equal-

and lower-valency predicates (binary and unary). Univalent graphs model entailments

from unary predicate premises to equal-valency unary predicates.

3.4.3 Learning Global Graphs

Entailment Graphs constructed from local learning suffer from edge sparsity, as dis-

cussed in Chapter 2. This can be improved by further applying “global” graph learning

techniques. This work uses the soft constraint method of Hosseini et al. (2018) which

has two optimizations. The paraphrase resolution constraint encourages predicates

within the same-typed graphs that entail each other to have similar entailment patterns.

For example, BUY(:person, :thing) mutually entails PURCHASE(:person, :thing), so en-

tailments of BUY(:person, :thing) can be copied as entailments of PURCHASE(:person,

:thing). The cross-graph constraint additionally encourages similar predicates across

different typed graphs to share entailment patterns.

Global soft-constraint learning is applied to bivalent graphs and separately to uni-

valent graphs. Globalization is valency-agnostic, using just the graphical structures

between predicates, so bivalent graphs are optimized using both B→B edges (as in
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Hosseini et al. (2018)) and the new B→U edges to optimize binary predicate entail-

ments. The final graph size statistics are in Table 3.1.

Valency Vertices Edges

Bivalent 938K Binary 94M B→B / 30M B→U

Univalent 36K Unary 3.6M U→U

Table 3.1: 546 typed bivalent subgraphs are learned, which contain entailments of bi-

nary predicate premises (B→B and B→U); and 37 typed univalent subgraphs which

contain entailments of unary predicates (U→U).

3.5 Methods: Constructing a Natural Multivalent QA Task

An automatically generated QA task is posed to evaluate the multivalent model ex-

plicitly for directional inference between binary and unary predicates, as there are no

known standard datasets for this problem. The task is to answer true-false questions

about real events that are discussed in the news, for example, “Was Biden elected?”

These types of questions are surprisingly difficult and frequently require inference to

answer (Clark et al., 2019). For this, entailment is especially useful: a model must de-

cide if the question (hypothesis) is true given a list of propositions from limited news

text (premises), which are all likely to be phrased differently.

This task is designed independently of the Multivalent Entailment Graph as a chal-

lenge in information retrieval. Positive questions made from binary and unary pred-

icates are selected directly from the news text using special criteria, and are then re-

moved. From these positives are automatically generated false events to use as nega-

tives, which are designed to mimic real, newsworthy events. The remaining news text

is used to answer the questions. This design attempts to make every question answer-

able, but since questions are generated automatically there is no guarantee. However,

the task is fair as all models are given the same information. The additive effects of

multivalent entailment should be demonstrated: by using more kinds of entailment,

the Multivalent Entailment Graph should find more textual support and answer more

questions.

The task is presented on a text sample from NewsCrawl, a multi-source corpus

of news articles (Barrault et al., 2019). A test set is extracted which contains 700K
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sentences from articles over a period of several months, and also a development set

from a further 500K sentences. Generated questions are balanced to a ratio of 50%

binary questions / 50% unary; and within each 50% positive / 50% negative. Table 3.2

shows a sample from the dev set. 34,394 questions are generated for the test set: 17,256

unary questions and 17,138 binary.

3.5.1 Question Generation

For realism, questions should be both interesting and answerable using the corpus. A

multi-step process extracts questions from the news text itself.

1. Partitioning First, the articles are grouped by publication date such that each

partition covers a timespan of up to 3 consecutive days of news (49 partitions in the

test set). True-false questions are asked about events drawn from the partition, and

the news text within this 3-day window is used as evidence to affirm or deny them.

The questions are asked as if happening presently in this time window to control for

the variable of time, so that ambiguous questions may be asked like “Did the Patriots

win the Superbowl?” which may be “true” or not depending on the date and times-

pan. The small 3-day window size was chosen so that multiple news stories about an

event appear together, increasing the chances of finding question answers. Within each

partition, the extraction of predicate-argument relations is done in a process mirroring

§3.4.1.

2. Selecting Positives A selection process is adapted from Poon and Domingos

(2009) to choose questions which are both interesting to a human and answerable from

the partition text. First, the most repeated entities are identified in the partition; it is

assumed that questions involving these entities will be interesting to a human, since

they star in the events of the articles. Additionally, the frequency of mentions for these

entities yields ample textual evidence for answering questions about them. In each

partition the mentions are counted of each entity pair (from binary propositions) and

single entities (from unary and binary ones). The most frequent entities and entity

pairs mentioned more than 5 times in the partition are selected. After this, a pool of

predicates is selected from those mentioned across the entire news corpus more than

10 times; it is assumed these are popular to report in news and thus are interesting to

a human questioner. Finally, propositions are randomly selected from those featuring

both a star entity and predicate to use as questions, and are removed from the partition.



42 Chapter 3. Multivalent Entailment Graphs

3. Generating Negatives A simple strategy for producing negatives might seem to

be substituting random predicates into the positive questions. However, this is unsatis-

factory because modern techniques in NLP excel at detecting unrelated words. For ex-

ample, a neural model will easily distinguish a random negative like DETONATE(Google,

YouTube) from a news text discussing Google’s acquisition of YouTube, classifying it

as a false event on grounds of dissimilarity alone.

To be a meaningful test of inference this task requires that negatives be difficult to

discriminate from positives: they should be semantically related but should not logi-

cally follow from what is stated in the text. To this end negative questions are derived

from the selected positives using linguistic relations in WordNet (Fellbaum, 1998). It

is assumed that news text follows the Gricean cooperative principle of communication

(Davis, 2019), such that it will report what facts are known and nothing more. To this

end, noun hyponyms and their verbal equivalent, troponyms, are mined from the first

sense of each positive in WordNet. For example, “burn” is extracted as a troponym

of “hurt” and the phrase “inherit from” as a troponym of “receive from.” Therefore it

is expected that these specific relations will be untrue of the argument tuple in ques-

tion and may be used as negatives. Antonyms and other WordNet relations were also

considered, but these have low coverage and are much sparser in English.

For fairness, generated negatives which actually occur in the current partition are

screened out (0.1% of proposed negatives), as well as negatives which never occur in

the entire corpus (76.8% of proposed negatives). Only challenging negatives are left,

with predicates that actually do occur in real news text. See Table 3.2 for a sample of

questions. In the error analysis it is found that these negatives are of good quality: they

are uncommonly inferrable from the text, accounting for a small percentage of false

positives.

3.5.2 Question Answering Models

In each partition, models receive factual propositions extracted from 3 days of news

text to use as evidence for answering true-false questions. A model scores how strongly

it can infer the question proposition from each evidence proposition, and the maximum

score is taken as the model confidence of a “true” answer.

Exact-Match The text is multi-source news articles, so world events are often dis-

cussed multiple times in the data, even with the same phrasing. An “exact-match”
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Positive Negative

Did the Ohio State Buckeyes play? Did the Ohio State Buckeyes fumble?

Was Mitt Romney a candidate? Was Mitt Romney a write-in?

Did voters reject Mike Huckabee? Did voters discredit Mike Huckabee?

Did Roger Clemens receive from Brian

McNamee?

Did Roger Clemens inherit from Brian

McNamee?

Table 3.2: A sample of generated questions from the dev set. Positives are taken from

the text and reworded as questions. Negatives are created from sampled positives by

generating a more specific hyponym/troponym from the bolded predicate.

baseline is computed which shows how many questions can be answered from an ex-

act string match in the text; the rest require inference.

Binary Entailment Graph The B→B model is roughly equivalent to the state of the

art binary-to-binary entailment graph (Hosseini et al., 2018), so it serves as a baseline

for the overall model. 4

All graph models look for directed entailments from evidence propositions to the

question proposition. For example, “Was YouTube sold to Google?” can be answered

affirmatively by reading “Google bought YouTube” using the graph edge BUY(x,y) ⊨

SELL.TO(y,x). BInc scores range from 0 to 1; if no entailments are found it is assumed

that it is false (score of 0).

Multivalent Entailment Graph The Multivalent Graph is made of 3 component mod-

els: (1) the B→B model which uses binary evidence to answer binary questions; (2)

the U→U model which uses unary evidence to answer unary questions; and (3) the

B→U model which uses binary evidence to answer unary questions. The Multivalent

EG is able to answer questions using evidence across valencies, e.g. “Is J.K. Rowling

an author?” is affirmed by reading “J.K. Rowling wrote The Sorcerer’s Stone” using

the graph edge WRITE(x,y) ⊨ BE.AUTHOR(x). Individually, each model answers only

binary or unary qustions, not both. By combining them, all kinds of questions can be

answered using all available evidence. At each precision level if any component model

4The Multivalent Graph is tested on the Levy/Holt dataset of 18,407 questions for B→B entailment

(Levy and Dagan, 2016; Holt, 2018), and it achieves similar results to Hosseini et al. (2018).
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predicts true, the overall model does too.

In some test instances the entity typer may make an error, resulting in a failure to

find the question predicate in the typed subgraph. Similarly to Hosseini et al. (2018), in

these cases the method defaults to backing off, querying all subgraphs for the untyped

predicate and averaging the entailment scores found. 5% more unary questions are

found and 18% more binaries by backing off.

Similarity Models BERT and RoBERTa predicate embeddings (Devlin et al., 2019;

Liu et al., 2019) are used in an unsupervised manner to answer questions based on

similarity to the evidence. The question is encoded into a representation vector, and

so is each evidence proposition with the same arguments. The cosine similarity is

computed between the question and each evidence vector, adjusted to a scale of 0 to 1:

sim(p,q) = (cos(p,q)+1)/2.

To compute each vector encoding, a simple natural language sentence is con-

structed from the proposition using its predicate and arguments and encoded with the

language model. A representation includes only the encoding for the predicate in the

context of its arguments, but not the arguments themselves to make this a true test of

predicate similarity. To do this, an average is taken over all final hidden-state vectors

from the model corresponding to the predicate, excluding those of the arguments. The

base BERT model and RoBERTa model are tested, which has robustly pretrained on

160GB of text (76GB news).

PPDB Though supervised, PPDB 2.0 (The largest XXXL version is used) (Pavlick

et al., 2015) is a useful comparison as it is a large, well-understood resource for phrasal

entailment. PPDB relations are extracted from bilingual pivoting and are categorized

using text-based features, which is very different from our argument-tracking method.

PPDB may be viewed as a kind of Entailment Graph with 9M predicate phrases (ver-

tices) and 33M combined “Equivalence” and “ForwardEntailment” edges. As with the

other models, evidence and question propositions are converted into a natural text for-

mat and a PPDB relation score is extracted from each pairing of the question with an

evidence phrase.
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3.6 Experiment 1: All Questions from Text

For each partition, models are presented with all corresponding sampled questions and

the relevant supporting propositions, which are pre-identified to contain the same query

entities. Models must compare each supporting statement to the query and make a

judgement as to whether an entailment holds. Models affirm the hypothesis question if

any premise entails it (taking the maximum score if there are multiple entailments), or

deny the hypothesis if no entailment holds from any supporting premise. The models

produce a gradation of judgement scores between 0 (false) and 1 (true).

3.6.1 Results

As in earlier work, a classification threshold slides over the score range to produce a

precision-recall curve for each model. Results are in Figure 3.3 (left).

Multivalent graph performance is shown incrementally. The B→B model can an-

swer a portion of binary questions; the U→U model can answer more unary ques-

tions; adding the B→U model can answer still more unary questions using binary

evidence. Successful inference of the kill/die example is observed and others. “Obama

was elected to office” affirms the question “Was Obama a candidate?” and “Zach Ran-

dolph returned” affirms “Did Zach Randolph arrive?”

This test set is from multiple sources over the same time period. The exact-match

baseline shows the limitations of answering questions simply by collecting more data;

most questions require inference to answer. The complete Multivalent EG achieves

~3x this recall by drawing inferences.

The Multivalent Entailment Graph achieves higher precision than BERT and RoBERTa

similarity models in the low recall range. The similarity models perform well, achiev-

ing full recall by generalizing for rarer predicates. Notably, RoBERTa bests BERT

likely due to its extensive in-domain pretraining.

Notably, the B→B entailment type appears to struggle in terms of recall, relative

to the other entailment types within the multivalent graph. In fact 90.5% of unary

questions have a vertex in the graph, but only 64.1% of binaries do. The B→B model

frequently cannot answer questions because the question predicate wasn’t seen in train-

ing. This difference is because binary predicates are more varied, so suffer more from

sparsity: they are often multi-word expressions and have a second, typed argument.

Indeed, most binary predicate research (in symbolic methods) focuses on only the top

50% of recall in several datasets (Berant et al., 2010, 2015; Levy and Dagan, 2016;
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Figure 3.3: (Left) Overall performance on the QA task (Experiment 1). (Right) perfor-

mance on the filtered task (Experiment 2). Note that B→B, U→U, and B→U models

may individually reach a max recall of 50% because they answer only binary or unary

questions.

Hosseini et al., 2018). This problem of vertex sparsity in Entailment Graphs is ex-

plored deeply in Chapter 4.

3.7 Experiment 2: Questions Within-Distribution

For an even comparison, a filtered question set is created to compare the models when

both the Entailment Graphs and the similarity models have a chance to answer all the

questions. From the question set in Experiment 1, all questions without a vertex in

the Entailment Graph are removed, then the remaining questions are balanced as in

§3.5, resulting in 20,519 questions (10,273 unary and 10,246 binary). The removed

questions either come from outside the training distribution, or the long tail of it, with

so few mentions that entailments cannot be learned.

Questions are constrained to exactly the EG training distribution, but this should

also approximate RoBERTa’s training distribution, which consists of many similar

news texts, so this test is fair between models. This comparison aims to show that

when questions in-domain of training are identified, EG performance surpasses other

baselines.

3.7.1 Results

The results are shown in Figure 3.3 (right), showing a very different outcome than

Experiment 1. Head-to-head, the Multivalent Entailment Graph offers substantially

better precision across all recall levels. At 50% recall, the EG has 76% precision while

RoBERTa has 65%.
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Unary Questions Binary Questions

Model @1451 @2000 @802 @2000

BERT 91.4% 76.9% 92.0% 82.9%

RoBERTa 92.5% 78.6% 91.5% 85.1%

PPDB 92.3% — 81.8% —

Multivalent EG

U→U 96.5% 87.0% — —

B→U 97.6% 90.4% — —

B→B — — 100.0% 88.8%

1245 Exact-Match 597 Exact-Match

Table 3.3: The filtered test. Models rank question/answer pairs by confidence. Accuracy

is shown for the K most confident predictions, at two points. PPDB doesn’t answer

enough questions to reach the @2000 cutoff, so the smaller PPDB maximum is also

compared.

Notably, on both tests, more unary questions are answered using both unary and

binary predicate evidence than just using unary evidence alone. On the filtered test, the

B→U model increases max recall from 54% to 70%.

Finally, PPDB appears to have poor performance (highest recall shown), only 1%

higher recall than the exact-match baseline despite having entries for 88% of ques-

tions. Though PPDB features many directional entailments, it suffers from edge spar-

sity worse than Entailment Graphs. This may be because the technique of bilingual

pivoting used in PPDB’s construction excels at detecting near-paraphrases, not rela-

tions between distinct eventualities, e.g. it can’t learn “getting elected” entails “being

a candidate.” Advantageously, the Entailment Graph learning method acquires this

open-domain knowledge by tracking entities across all the events they participate in.

The results of the filtered test results are shown in detail in Table 3.3. Models

don’t answer all the questions, so following Lewis and Steedman (2013) who design

a similar QA task, models are evaluated on the accuracy of their K most confident

predictions.

In agreement with the precision-recall curves, the most confident predictions by

Multivalent Entailment Graphs are shown to be more accurate than those of similarity

models or PPDB. In particular, the B→U predictions which answer unary questions
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with binary predicate evidence achieve 90.4% accuracy at the @2000 cutoff, com-

pared to 78.6% accuracy for RoBERTa using either valence of evidence. Using binary

evidence for unary questions (B→U) is even 3.4% more accurate at the same cutoff

than using unary evidence (U→U), likely due to the extra disambiguating information

provided by the additional argument in the binary relation.

3.8 Error Analysis

300 false positives are sampled (100 for each model) and the results of a manual pro-

cess of categorizing by error type is reported in Table 3.4. In all models, spurious

entailments are the largest issue, and may occur due to normalization of predicates

during learning, or incidental correlations in the data. The U→U and B→U models

also suffer during relation extraction (parsing). In cases of failure to parse a second

argument for a predicate it is assumed that it only has one and so a malformed unary is

extracted, which can interfere with question answering (e.g. reporting verbs “explain,”

“announce,” etc. which fail to parse with a long quote). Relatively few poorly gen-

erated negatives are found, which are actually true given the text. In these cases the

model finds an entailment which the authors judge to be correct.

3.9 Conclusion

The MDIH is shown as an effective theory of unsupervised, open-domain predicate en-

tailment, which learns entailments within and across valencies by respecting argument

roles.

The Multivalent Entailment Graph’s performance has been demonstrated on a ques-

tion answering task requiring fine-grained semantic understanding. The multivalent

EG is able to answer a broader variety of questions than earlier entailment graphs,

aided by drawing on evidence across valencies. Several baseline models are also

outperformed, including a strong similarity measure using unsupervised BERT and

RoBERTa models, while using far less training data. This shows that directional en-

tailment is more helpful for inference on such a task than non-directional similarity,

even with robust, in-domain pretraining.

This work indicates a potential complementarity between unsupervised methods.

The symbolic Entailment Graph method achieves high precision for learned predi-

cates, while sub-symbolic neural models achieve high recall by generalizing to unseen



3.9. Conclusion 49

Error Source False Positive Example

Unary to Unary (U→U) Judgements

Spurious Entailment (57%) The United States advances ⊨ The United States

falls

Parsing (26%) Reuters reports ⊨ Reuters notes

Poor Negative (actually true) (17%) Productivity increases ⊨ Productivity grows

Binary to Unary (B→U) Judgements

Spurious Entailment (65%) New York Mets create through camerawork ⊨ New

York Mets benefit

Parsing (26%) John McCain spent part of 5 years ⊨ John McCain

drew

Poor Negative (actually true) (9%) The Yankees overwhelm the Mariners ⊨ the

Yankees prevail

Binary to Binary (B→B) Judgements

Spurious Entailment (53%) A soldier was killed in Iraq ⊨ A soldier was mur-

dered in Iraq

Poor Negative (actually true) (32%) Profits fall in the first quarter ⊨ Profits decline in

the first quarter

Parsing (17%) medal than United States ⊨ United States take the

medal

Table 3.4: False positive analysis. Models predict entailments from the text (premise)

to generated negatives (hypothesis).

predicates. Chapter 4 presents research leveraging the benefits of both models in an

unsupervised way, while maintaining directional precision.

3.9.1 Limitations

This work introduces new development in the automatic learning of predicate infer-

ences, with the addition of detecting entailments between predicates of different va-

lencies. Entailment Graphs specialize on predicates, and do not model entailment for

other sentential content, such as the entailment of nouns. Recent work has integrated

other factors such as modality and temporal signals into EG construction (Bijl de Vroe,

2023), but EGs still lack coverage of other features of language such as control verbs
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which scope over other verbs, like x failed to p(y). Critically, while EGs can learn

entailments for any simple predicate in the open domain of natural language, they face

an important problem in their inability to handle out-of-vocabulary predicates. This

makes EGs operating alone unable to complete a task, such as answering a question, if

either the premise or hypothesis does not have a vertex in the graph.

This work also introduces a new evaluation method for Entailment Graphs, automatically-

generated Boolean Question Answering from news text. While useful for evaluating

models at a large scale of generated questions, the quality of questions themselves is

not guaranteed to be as good as if manually created. Heuristics for question gener-

ation were carefully thought out such that in aggregate, the corpus of questions is a

meaningful evaluation, but it is possible that individual questions may be imperfect.

A generated question could be too obviously answerable (either positively or nega-

tively), or be malformed through a fault in any of the relation-extraction steps, or even

be uninteresting to actual humans.

3.9.2 Ethical Considerations

As unsupervised models, the learned entailments are dependent entirely on the qual-

ity of the training corpus, which risks learning social biases implicit in the data. For

example, it is possible to learn an association BE.MALE(x) ⊨ BE.MANAGER(x). How-

ever, the learning of entailments via the (M)DIH and a score like BInc is a process

designed to upweight correlations which are both: (1) strongly overlapping in their

context-based representations, and (2) corroborated often, by multiple sources. There-

fore, it is important to train on text which has gone under editorial review, such as news

articles from reputable sources, which minimizes the risk of learning implicit biases.

Increasing the size of the training dataset may also help distinguish majority vs. minor-

ity associations, and in general it is unlikely that a small number of incidental overlaps

will lead to strong entailment scores. EGs are also explicit structures, and it is easy to

edit or delete learned entailments after construction.



Chapter 4

Smoothing Entailment Graphs

with Language Models

This chapter addresses the problem of general vertex sparsity in Entailment Graphs.

Though the Multivalent Distributional Inclusion Hypothesis may be theoretically ca-

pable of learning predicate entailments in an open domain of natural language, a funda-

mental problem prevents this in practice. The diversity and Zipfian frequency distribu-

tion of natural language predicates in training corpora leads to inevitable vertex spar-

sity in Entailment Graphs (EGs) built by Open Relation Extraction (ORE). As sym-

bolic models for natural language inference, Entailment Graphs fail if a novel premise

or hypothesis predicate is missing at test-time.

First, to overcome general vertex sparsity, a theory is introduced to optimally

“smooth” an Entailment Graph by finding suitable replacement predicates for missing

entries. This is done by constructing transitive chains in order to preserve directional

inference capability while extending beyond an EG’s predicate vocabulary. Next, an

efficient, open-domain smoothing method is demonstrated using a simple off-the-shelf

Language Model, which finds approximations of missing premise predicates, improv-

ing recall by 25.1 and 16.3 percentage points on two difficult directional entailment

datasets while raising average precision. Further, in a similar boolean QA task as de-

signed in Chapter 3, it is shown that EG smoothing of premises is most useful for

answering questions with lesser supporting text, where missing predicates are more

costly. Finally, in controlled experiments with WordNet it is shown that hypothesis

smoothing is difficult, but also possible in principle.

51
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4.1 Introduction

An Entailment Graph (EG) is a learned structure for making natural language infer-

ences of the form [premise] entails [hypothesis], such as If Arsenal defeated Man

United, then Arsenal played Man United. An EG consists of a set of vertices (typed

natural language predicates), and a set of directed edges constituting entailments be-

tween predicates. They are typically constructed in an unsupervised manner using the

Distributional Inclusion Hypothesis (Geffet and Dagan, 2005): a representation is gen-

erated for each predicate based on its distribution with arguments in a training corpus,

and representation subsumption is used for learning directional entailments between

predicates. A directional inference is stricter than paraphrase or similarity, in that it

is true only in one direction, but not both, e.g. DEFEAT ⊨ PLAY but PLAY ⊭ DEFEAT

(where ⊨ means “entails”). Directional inferences are difficult to learn, but crucial to

language understanding.

EGs are useful in tasks like Knowledge Graph link prediction (Hosseini et al., 2019,

2021) and question answering from text (Lewis and Steedman, 2013; McKenna et al.,

2021). EG learning is unsupervised: building them only requires a parser and entity

linker for a new language domain (Li et al., 2022b). EGs are relatively very data- and

compute-efficient, requiring less than two days to train on 2GB of unlabeled text using

a single GPU (Hosseini et al., 2021). Further, EGs are editable and also explainable,

because decisions can be traced back to distinct sentences on a task.

However, EGs suffer from two kinds of sparsity. One is edge sparsity, when two

predicates are not observed with co-occurring entities, so can’t be connected together.

Recent work improves on EG connectivity (Berant et al., 2015; Hosseini, 2021; Chen

et al., 2022) but this work is the first to formally acknowledge vertex sparsity, arising

when a predicate is not seen at all in training. EGs are structures of symbols, so they

cannot handle missing queries: in an inference task, if either the premise or hypothesis

predicate is not seen in training, no entailment edge can be learned. In fact, many EG

demonstrations achieve just 50% of task recall. Predicates occur in a Zipfian frequency

distribution with an unbounded tail of rare predicates, so it’s impractical to scale up

learning predicate symbols from corpora.

Modern Language Models combine representations of subword tokens to solve

a similar issue (Peters et al., 2018; Devlin et al., 2019), and recent scaling of LMs

has lead to breakthrough performance on many tasks (Hoffmann et al., 2022; Wei

et al., 2022a), offering relief to sparsity problems via techniques like in-context learn-
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ing (Brown et al., 2020). However, as LMs scale in size and compute they bring new

problems: they require ballooning GPU resources to train or run; or are costly to query

via API; and centralizing models under private companies opens challenges of data

privacy. Thus it remains important to research lower-compute and more data-efficient

methods which run on the scale of a single GPU.

This work is the first to define vertex sparsity and approach the problem by apply-

ing a small, pretrained LM to improve an existing EG using the benefits of modern

embeddings. Four contributions are offered in this chapter:

1. A theory is presented for optimal smoothing of EG vertices by constructing tran-

sitive chains, accounting for a distinction between premise and hypothesis.

2. A low-compute method is demonstrated for unsupervised smoothing of EG ver-

tices using LM embeddings to find approximations of missing predicates (see

Figure 4.1). Applied to premises, recall is improved by 16.3 and 25.1 percent-

age points on Levy/Holt and ANT entailment datasets while raising precision.

3. On a QA task, it is shown that LM premise smoothing is most helpful when there

is less supporting context and missing a predicate is more costly.

4. Finally, in controlled experiments with WordNet relations, the behavior of the

LM for premise smoothing is confirmed, and it is shown that hypothesis smooth-

ing is possible, but more difficult.

4.2 Background

Research on unsupervised Entailment Graph induction has mainly oriented toward

edges: overcoming edge sparsity using graph properties like transitivity (Berant et al.,

2015; Hosseini et al., 2018; Chen et al., 2022), incorporating contextual or extralin-

guistic information to improve edge precision (Hosseini et al., 2021; Guillou et al.,

2020), and research into the underlying theory of the Distributional Inclusion Hypoth-

esis (Kartsaklis and Sadrzadeh, 2016; McKenna et al., 2021). However, none of these

address vertex sparsity.

The most direct comparison for this work is with Schmitt and Schütze (2021)

who apply contemporary prompting techniques with the computationally tractable

RoBERTa (Liu et al., 2019) to learn open-domain predicate entailment. They finetune
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Figure 4.1: The question “Did Arsenal play Man United?” cannot be answered be-

cause the predicate “obliterate” in the text isn’t in the Entailment Graph. An LM embeds

“obliterate” so a nearest neighbor in the EG can be found, completing the directional

inference.

on premise-hypothesis pairs and labels from the development split of the Levy/Holt

NLI dataset (Holt, 2018), used in the experiments of this work. They use templates

like “[hypothesis], because [premise]” which are encoded by the LM, then classified

True/False. They report high scores on datasets, but Li et al. (2022a) have shown

that despite excelling at paraphrase detection, rather than learning directional infer-

ence (e.g. BUY ⊨ OWN and OWN ⊭ BUY), this technique picks up dataset artifacts

spuriously correlated with the labels in datasets such as Levy/Holt. In contrast, the

approach in this chapter combines the strengths of each: open-domain encoding using

a computationally tractable LM with the directional capability of an EG.

In this work sub-symbolic encoding by an LM is achieved leveraging WordPiece

tokenization (Devlin et al., 2019) as a means of generalizing beyond a fixed vocabulary

of predicates.

Briefly, WordPiece is an algorithm which translates the vocabulary learned from a

fixed list of words into a fixed list of subword units, which may be combined to repre-

sent an infinite number of full words. The algorithm is trained on a corpus similarly to

the BPE tokenization algorithm (Sennrich et al., 2016) to compute an optimal vocab-

ulary, and thereafter the vocabulary may be applied to a text to tokenize it for model

training or evaluation.

Initially, the tokenizer training corpus is broken into characters, then an iterative

algorithm proceeds to build up a vocabulary. Characters which are not first in their
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respective word have “##” prepended to identify them as part of a larger word. The

iterative process of merging tokens occurs until the desired vocabulary size is met.

Consecutive pairs of tokens are scored based on how often they each occur, and occur

together, and are merged into a larger token and added to the vocabulary if they have

the highest score. An example is shown:

“corpus words” → “c” “##o” “##r” “##p” “##u” “##s” “w” “##o” “##r” “##d” “##s”

V8 : {c, ##o, ##r, ##p, ##u, ##s, w, ##d}

V9 : {c, ##o, ##r, ##p, ##u, ##s, w, ##d, ##or}

VN : ...

In this example, the pair “or” appears twice (the most often in this two-word cor-

pus), so it is merged into a new token and the vocabulary size increases from 8 to 9.

This process is iterated until the desired vocabulary size N is obtained. This yields a

vocabulary of subword units which is optimal both for representing the training corpus

using a minimal number of tokens, and for minimizing the number of tokens required

to build out-of-domain words that are similar to the training domain. This vocabulary

can be applied for language modeling, or other tasks. Sennrich et al. (2016) show

that subword tokenization schemes are extremely effective for representing rare words

which may occur at test time, but not in training, yet nonetheless may be composed of

subword units which do occur often in training.

4.3 Theory of Smoothing

First, a theory for optimal smoothing of an EG is presented, which overcomes the

problem of vertex sparsity. The name “smoothing” is chosen in reference to earlier

work smoothing n-gram Language Models, where information for missing vocabulary

words is approximated using existing vocabulary words (Chen and Goodman, 1996).

Afterward, the theoretical intuition behind applying an LM as an open-domain

smoother is discussed. Importantly, this work distinguishes ways to P-smooth premises

and H-smooth hypotheses.

4.3.1 Directionality by Transitive Chaining

It is most important when modifying EG predictions by smoothing to maintain the

EG’s strong directional inference capability. A theory is now presented for optimal
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vertex smoothing of a symbolic inference model such as an EG, which maintains direc-

tionality by constructing transitive chains and distinguishing the role of the proposition

as premise or hypothesis.

To begin, a query entailment relation is defined: Q : p ⇒ h. For queries, the symbol

⇒ is used instead of ⊨ to denote that the query truth value is unknown, and must

be verified by a model. In this situation, the model at hand is missingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissing entries for

at least p or h (denoted by a dashed underline). Smoothing is now defined as the

process of generating a new query relation Qs suitable for the model by identifying a

replacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacement predicate p′ and/or h′ within the model’s vocabulary (replacement denoted

by a solid underline), such that the model can now verify if there is a relationship

between premise and hypothesis or not. To maintain directional precision, this must

be done by identifying a p′ (or h′) with a specific relation to p (or h). Doing so allows

the creation of a transitive chain connecting Q and Qs; thus, confirmation of Qs by the

model may then be leveraged to confirm Q. There are three approaches to smooth Q

depending on whether p is missing from the model, h is missing, or both.

• Generalize missing p. If missing p, identify a more general premise p′ in the EG

such that p ⊨ p′. This yields a smoothed query Qs : p′ ⇒ h. Now, if the EG confirms

p′ ⊨ h, then p ⊨ p′ ⊨ h, and p ⊨ h (Q) is confirmed by transitivity.

p h

(Q) “a obliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliterated b” ⇒ “a played b”

⊨

(Qs) “a beatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeat b” ⇒ “a played b”

p’ h

• Specialize missing h. If missing h, identify a more specialized hypothesis h′ in the

EG such that h′ ⊨ h. This yields a smoothed query Qs : p ⇒ h′. Now, if the EG

confirms p ⊨ h′, then p ⊨ h′ ⊨ h, and p ⊨ h (Q) is confirmed by transitivity.

p h

(Q) “a bought b” ⇒ “a shopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped for b”

⊨

(Qs) “a bought b” ⇒ “a paid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid for b”

p h’
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• Generalize missing p and specialize missing h. If missing both p and h, do a

combination of the above approaches: identify new p′ and h′ as above, yielding a

new Qs : p′ ⇒ h′. Now, if a model confirms p′ ⊨ h′, then p ⊨ p′ ⊨ h′ ⊨ h, and p ⊨ h

(Q) is confirmed by transitivity.

Of course, the success of this smoothing depends on being able to find p′ such that

p ⊨ p′, and h′ such that h′ ⊨ h. However, when an additional inference is found, it is

likely to be correct, aiding model precision. By definition the EG cannot be used for

this, but a Language Model may be used to identify replacement predicates.

4.3.2 LM Embeddings and Specificity

It is assumed that p′ and h′ are respectively among the nearest neighbors of p and h

in the embedding space of the LM, and this work proposes a method to leverage LM

embeddings in an unsupervised way to find them. As defined later in §4.4, both the

target query predicate and EG predicates are embedded, then the embedding space is

searched for the K nearest neighbors to the target. It is predicted that doing so for a

premise predicate will build a transitive chain satisfying the conditions of §4.3.1. Two

factors are now identified which, combined, lead to predictions that are likely more

semantically general than the target, which enables P-smoothing, but not H-smoothing.

Factor A: The LM training objective Li et al. (2020) show that the masked lan-

guage modeling objective in BERT induces a particular structure in its latent embed-

ding space: on average, corpus-frequent words are embedded near the origin and in-

frequent ones further out. This is because of statistical learning, which biases LMs

toward high frequency words since they are trained on a corpus to predict the most

probable tokens. This objective leads LSTM-based LMs to produce a beneficially Zip-

fian frequency distribution of words (Takahashi and Tanaka-Ishii, 2017), and similar

biases are evident in Transformers for generation like GPT-2 and XLNet (Shwartz and

Choi, 2020).

Factor B: The natural anti-correlation of word frequency with specificity in text

Probabilistically, the more frequent a word is in text, the lower its “semantic con-

tent” (in other words, the less specific it is) Caraballo and Charniak (1999) show

this for nouns, and this assumption is even used in the “IDF” component of TF-IDF

(Spärck Jones, 1972).
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These factors imply that embedding a vocabulary of EG predicates using an LM will

result in a space densely populated toward the origin by corpus-frequent predicates.

KNN-search starting from a target predicate embedding will likely return neighbors

toward this dense origin, thus selecting more corpus-frequent, semantically general

words. This is illustrated further in §4.3.3.

This effect has even been studied elsewhere, such as in translation. Translated text

by humans is often dubbed “Translationese,” and by algorithms, “Machine Transla-

tionese,” due to its typical use of a core subdomain of the target language, which re-

sults in translations with a non-specific tone (Gellerstam, 1986; Rabinovich and Wint-

ner, 2015). In Machine Translation, Vanmassenhove et al. (2021) establish that bias in

models toward generating tokens with high frequency in a training corpus accounts for

this phenomenon, resulting in a quantified semantic generalizing effect from transla-

tion input to output.

4.3.3 The Specificity Taxonomy

To relate frequency and generality for this work, a hierarchical taxonomy of predicates

ordered by specificity is illustrated, following from the theories of natural categories

and prototype instances (Rosch and Mervis, 1975; Rosch et al., 1976). Very general

predicate categories are placed at the top of this taxonomy such as “act” and “move,”

with concrete subcategories beneath, and highly specific ones at the bottom, like “in-

noculate” and “perambulate.” Rosch et al define their middle “basic level categories”

for nouns, containing everyday concepts like “dog” and “table,” which are learned

early by humans and are used most commonly among all categories, even by adults

(Mervis et al., 1976). An analogous basic level is assumed in a predicate taxonomy,

too, in Figure 4.2.

There are few general categories at the top and many specific ones at the bottom

(e.g., consider the many ways to “move,” e.g. “walk,” “sprint,” “lunge”). However,

since basic level categories are the most frequently used, moving either up or down

in the taxonomy accompanies a decrease in usage frequency. Above the basic level,

predicates are fewer and more abstract, and can be infelicitous in daily use (e.g. calling

a cat a “mammal” in Rosch’s case or predicates like “actuate” in ours). Below, predi-

cates are highly specialized for specific contexts, so there are more of them, and they

are lower-frequency (e.g. “elongate,” “defenestrate”).

This asymmetry encourages P-smoothing using an LM (and foreshadows the fail-
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Figure 4.2: The specificity taxonomy. The basic level contains “everyday” predicates.

Above this level predicates become more general, and below they become more con-

crete and specific. Usage frequency decreases away from the basic level.

ure of H-smoothing with an LM). A predicate z is likely to be missing from an EG if it

is corpus-infrequent, thus likely specific. Randomly sampling another EG predicate z′

neighboring z in embedding space, but sampled proportional to observed frequencies,

is likely to return a predicate of higher frequency, toward the basic level, which is usu-

ally higher in the specificity taxonomy. Thus given z, a frequency-proportional sample

z′ is likely to be more general than z, usable for P-smoothing to construct a transitive

chain.

4.4 Methods: Approximating Missing EG Predicates

As this work presents methods of smoothing existing Entailment Graphs, the focus

is on previous, high-performing EGs of typed binary predicates. An EG is defined

as G = (V,E), consisting of a set of vertices V of natural language predicates (with

argument types in the set T ), and directed edges E indicating entailments.

Binary predicates in V have two argument slots labeled with their types. For exam-

ple, the predicate TRAVEL.TO(:person, :location) ∈V , and the types :person, :location

∈ T . An example entailment is TRAVEL.TO(:person, :location) ⊨ ARRIVE.AT(:person,

:location) ∈ E.

The smoothing method in this work may be applied to any existing EG. The ben-

efits of vertex-smoothing are shown to be complementary with existing methods in

improving edge sparsity by comparing two related baseline models, described in §4.5.

These EGs are learned from the same set of vertices, but are constructed differently, so
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they have different edges. The FIGER type system is used for these experiments (Ling

and Weld, 2012), where |T | = 49, and these models typically have up to |T |2 = 492

typed subgraphs g ∈ G . Typing disambiguates senses of the same predicate, which

improves precision of inferences. For example, KILL(:medicine, :disease) learned

in the typed subgraph g(medicine-disease) has a different meaning and entailments than

KILL(:person, :person).

4.4.1 Nearest Neighbors Search

The K-nearest neighbors method of this work assumes that existing Entailment Graphs

contain enough predicates already present in them to enable discovery of suitable re-

placements for an unseen target predicate, using a Language Model. For example, in

the sports domain, the EG may be missing a rare predicate OBLITERATE but contain

similar predicates BEAT and DEFEAT which can be found as close neighbors in Lan-

guage Model embedding space. These nearby predicates are expected to have similar

semantics (and entailments) to the unseen target predicate, and will thus be suitable

replacements. See Figure 4.1 for an illustration.

The smoothed retrieval function S replaces the typical method for retrieving a target

predicate vertex x from a typed subgraph g(t) = (V (t),E(t)), with typing t ∈ T ×T .

Ahead of test-time, for each typed subgraph g(t), the EG predicate vertices V (t) are

encoded as a matrix V(t). For each predicate v(t)i ∈ V (t), a row vector v(t)i ∈ V(t) is

encoded via v(t)i = L(v(t)i ).

At test-time a corresponding vector is encoded for the target predicate x, x = L(x).

Then S retrieves the K-nearest neighbors of x in g(t):

S(x,g(t),K) = {v(t)i | v(t)i ∈V (t), if v(t)i ∈ KNN(x,V(t),K)}

L(·) is a function which encodes a typed natural language predicate using a pre-

trained LM. First, a short sentence is constructed from the predicate using the types

as generic arguments, and then the sentence is encoded by the LM (see Table 4.1 for

examples). In this work, the representations of WordPieces corresponding to the pred-

icate are extracted, and averaged into the resulting predicate vector. RoBERTa (Liu

et al., 2019) is used in experiments for encoding, which is a well-tested, off-the-shelf

Language Model of tractable size for running on a single GPU, which has pretrained

on 160GB of unlabeled text.

For the KNN search metric, Euclidean Distance (L2 norm) is calculated from the

target vector x to vectors in V(t). A BallTree is precomputed using scikit-learn (Pe-
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x : (join.1,join.2)#person#organization

⇒ “person join organization”

x : (give.2,give.to.2)#medicine#person

⇒ “give medicine to person”

x : (export.1,export.to.2)#location_1#location_2

⇒ “location_1 export to location_2”

Table 4.1: A typed predicate x is converted to a sentence (shown), then encoded with

an LM using L(x), which outputs the average over predicate WordPiece vectors.

dregosa et al., 2011) which spatially organizes the EG vectors in order to speed up the

search for a closest neighbor to the target. The runtime bounds of search is improved

from linear in the number of vertices |V (t)| to log |V (t)|.

4.4.2 Datasets

This smoothing method is demonstrated on two explicitly directional datasets, which

test both directions of predicate inference, creating a 50% positive/50% negative class

balance.

Levy/Holt The Levy/Holt dataset (Holt, 2018; Levy and Dagan, 2016) has been ex-

plored thoroughly in previous work on predicate entailment (Hosseini, 2021; Guillou

et al., 2021; Li et al., 2022b; Chen et al., 2022). Importantly, it includes inverses for all

queries, allowing systematic investigation of directionality, although it contains a high

proportion of paraphrases and selection bias artifacts that can be picked up by fine-

tuning in supervised models (Li et al., 2022a). This work tests on the 1,784 questions

forming the purely directional subset, which is more challenging.

ANT The newer ANT dataset presents a quality improvement on the Levy/Holt for-

mat, and also tests predicate entailment in the general domain (Guillou and Bijl de

Vroe, 2023). It was created by a multi-step process. First, experts annotated en-

tailment relations between predicate pairs, then each predicate in the pairings was

expanded into a cluster of predicate paraphrases automatically using WordNet and

other dictionary resources. The human annotations apply between clusters, creating

many-to-many comparisons between predicates. Like Levy/Holt, test questions take
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“The audience applauded the comedian” ⊨ “The audience observed the comedian”

“The audience observed the comedian” ⊭ “The audience applauded the comedian”

“The laptop satisfied the criteria” ⊨ “The laptop was assessed against the criteria”

“The laptop was assessed against the criteria” ⊭ “The laptop satisfied the criteria”

Table 4.2: Example queries, ANT (dev) directional subset.

the format “given [premise], is [hypothesis] true?” This work again tests using the

directional-only subset of 2,930 questions.

See Table 4.2 for dataset examples. Each comes preprocessed with argument types

from CoreNLP (Manning et al., 2014; Finkel et al., 2005), roughly aligning with EG

FIGER types. The MoNTEE system (Bijl de Vroe et al., 2021) is used to extract CCG-

parsed and typed predicate relations (x) shown in Table 4.1, which are used as queries

to Entailment Graphs.

4.4.3 Models

This work demonstrates smoothing on two recent Entailment Graphs, which previously

scored highly amongst unsupervised models on the full Levy/Holt dataset. Importantly,

they are constructed from the same set of predicate vertices but have different edges,

so it can be clearly observed how vertex- and edge-improvements combine.

GBL The EG of Hosseini et al. (2018), which introduces a “globalizing” graph-based

method to improve the edges after “local” EG learning.

CTX The state-of-the-art contextualized EG of Hosseini et al. (2021), which im-

proves over GBL edges by augmenting local learning with a contextual link-prediction

objective, before globalizing.

GBL-P / GBL-H and CTX-P / CTX-H An LM is applied separately for both P- and H-

smoothing on GBL and CTX. As described earlier, the RoBERTa-base LM (Liu et al.,

2019) is used to produce embeddings for smoothing the EG.

S&S The finetuned RoBERTa model of Schmitt and Schütze (2021) (discussed in

§4.2). As done in their work, this work follows a process of inserting each premise/hypothesis
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pair into 5 prompt templates, taking the maximum entailment score as the model pre-

diction for the pair. Li et al. (2022a) find that this model has overfit to artifacts present

in Levy/Holt during finetuning on the dataset, so a fairer comparison with it is done

instead on a different question answering task in §4.6.

These models are scored using the computed area under the precision-recall curve,

or AUC. Li et al. (2022a) introduce AUCnorm (AUCn), a fair way to compare models

which may achieve different maximum recalls. It computes only the area under the

precision-recall curve above the random-classifier baseline for the dataset, so a perfect

classifier would score AUCn = 100%, while a random classifier would score 0%. Thus,

AUCn is highly discerning compared to AUC, which can inflate performance when

there is a high random baseline. In this work, the high 50% random classifier baseline

means that AUCn scores are systematically much lower than the original AUC they are

derived from.

4.5 Experiment 1: Entailment Detection

Two parallel investigations are run, reproduced on both Levy/Holt and ANT. (1) The

unsupervised smoothing method of finding the K-Nearest Neighbors using LM em-

beddings is applied to augment the Premise of each test entailment, generating K new

target premise predicates. Separately, (2) The Hypothesis of each test entailment is

smoothed using the same method.

4.5.1 Results

A comparison of the performances of P- vs. H-smoothing of the CTX EG is shown

in Figure 4.3, using the optimal Kprem = 4 and Khyp = 2. Further, a comparison of

P-smoothing performance with both the CTX and GBL EGs are shown in Figure 4.4.

For both investigations, different values of the hyperparameter K were tried, for K ∈
{2, 3, 4}. Kprem = 4 and Khyp = 2 are shown due to having the highest AUC values for

P- and H-smoothing, respectively.

A few trends about hyperparameters are noticable. (1) higher Kprem appears better

(most notably, Kprem = 4 yields slightly better recall than Kprem = 2), though it has

diminishing returns. (2) lower Khyp is better, because H-smoothing using an LM is

actively harmful (Khyp = 0, an unsmoothed EG, would “perform” better in practice!).
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Figure 4.3: LM smoothing of EGs on the ANT dataset. Comparing P- and H-smoothing

of the CTX model. Different values of K are tried in the choices {2,3,4}, and shown

here are the best Kprem = 4 and Khyp = 2. P-smoothing with an LM is shown to improve

the CTX graph, while H-smoothing with an LM deteriorates performance.

In Figure 4.4 P-smoothing is shown in particular on the CTX graph vs. the GBL

graph. For all models (best K selected) on both datasets, summary statistics are shown

in Table 4.3, including normalized area under the precision-recall curve (AUCn) and

average precision (AP) across the recall range. A sample of model outputs is shown in

Table 4.4.

As predicted, the method of selecting nearest-neighbors of a target predicate in an

EG using their LM embedding distance has different behavior for P-smoothing than H-

smoothing. Notably, P-smoothing with an LM is very beneficial to both the recall and

precision of both Entailment Graphs it is applied to, with a slight advantage in AUCn

to higher values of K. When applied to the SOTA model CTX on the ANT dataset,

this smoothing method increases maximum recall by 25.1 absolute percentage points

to 74.3% while increasing average precision from 65.66% to 67.47%. On Levy/Holt

the maximum recall is increased by 16.3 absolute percentage points to 62.7% while

slightly raising average precision. However, H-smoothing with the LM is highly detri-

mental: despite improving recall, average precision on ANT is cut to 58.52%, and the

lowest confidence predictions are at random chance (50% precision).

Also notable is that P-smoothing greatly improves recall and precision when ap-

plied to both GBL and CTX graphs. This shows the complementary nature of improv-

ing vertex sparsity with improving edge sparsity in EGs: these techniques improve
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Figure 4.4: LM smoothing of EGs on the ANT dataset. Comparing optimal P-smoothing

of the CTX model with that of the older GBL model. CTX and GBL contain the same

vertices, but CTX improves on the edges in GBL, so this comparison shows that: (1)

P-smoothing is an effective addition which can be applied across existing EGs, and (2)

improvements to vertex sparsity are complementary to improvements in edge sparsity.

different aspects, which can be applied together.

4.6 Experiment 2: Boolean Question Answering

LM smoothing is now demonstrated in application on an applied task. A modified

version of the Boolean Question Answering task from Chapter 3 is used to demon-

strate, in which models answer true/false questions about entities mentioned in news

articles from multiple sources. These questions are chosen to be adversarial to simple

similarity baselines, and EGs have proven useful by using directional reasoning.

4.6.1 Boolean Open QA Dataset

The Boolean Open QA (BoOQA) dataset of Li et al. (2022a) used in this chapter is

derived from the Multivalent QA task in McKenna et al. (2021), the work presented

in chapter 3. This dataset is constructed using a similar process: BoOQA is a task

over open domain news articles, with questions formed by extracting triples of (entity,

relation, entity), in the format “is it true that <triple>?” Context statements are other

triples sourced from the articles concerning the same question entities, and the task is

to compare each context statement with the question itself. If any context statement
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ANT Levy/Holt

Model AUCn AP AUCn AP

GBL 3.79 58.36 3.01 55.82

GBL-PK=4 13.91 64.71 9.95 60.70
GBL-HK=2 1.41 52.57 1.09 52.05

CTX 15.44 65.66 9.40 60.19

CTX-PK=4 25.86 67.47 13.45 60.80
CTX-HK=2 9.94 58.52 8.33 57.97

Table 4.3: P- and H-smoothing, compared to unsmoothed models. P-Smoothing with

an LM is shown to improve AUCn and AP in both CTX and GBL models.

Predicate Missing from EG Nearest Neighbors by Embedding Distance

DISCREDIT(:person, :thing) PROBE, ACCUSE

CRACK.UP.AT(:person, :written_work) MAKE.JOKE.AT, YELL.AT

MINIMIZE(:organization, :thing) SOFTEN, EVADE

REBUKE(:person, :person) OPPOSE, REMIND

Table 4.4: Sample of CTX outputs on ANT. A target PREDICATE(:type1, :type2) missing

from CTX yields K=2 closest CTX predicates in LM embedding space.

entails the question by means of its relation, the question can be labeled True, other-

wise False. As before, BoOQA also contains false questions derived from true ones

using hyponyms from WordNet, so models must decide carefully what is supported by

evidence and what isn’t.

The task version introduced by Li et al. (2022a) makes improvements over that

defined in Chapter 3 in several ways in order to strengthen the difficulty of the dataset.

4.6.1.1 Improvements over the Multivalent QA Dataset

First, the quality of generated negatives is improved. These negatives are now resolved

to their most likely sense in WordNet (Fellbaum, 1998) using an introduced step of

contextual word sense disambiguation, instead of simply using the most common word

sense. This means that generated negatives will be more topically consistent with their

respective contexts, making them harder to discriminate from positives on the basis of
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similarity. Further, not only is the generated hyponym negative required to be absent

from the current context window, but all of its WordNet synset siblings must be, as

well, improving the confidence that generated negatives will not accidentally be true

given the context.

Second, the robustness of the dataset is improved overall by making negatives less

easily distinguishable from selected positives. To do this, the minimum corpus oc-

currence frequency of negatives is required to be similar to that of its corresponding

positive.

Li et al. (2022a) measure these improvements using a hypothesis-only model, a

modified version of Schmitt and Schütze (2021), which trains on a held-out portion of

the same dataset. In theory, this model should not be able to perform this task, since

it is not shown any premise statements and is asked to classify only the hypothesis

as True or False. Thus, it would ideally achieve 0% AUCnorm on the test portion of

the dataset. Training and testing this model on separate splits of the McKenna et al.

(2021) dataset presented in Chapter 3 yields an AUCnorm of 78.3%, and doing so on

the BoOQA dataset of Li et al. (2022a) yields an improved AUCnorm of 51.0%. This

indicates that although it is more robust, some artifacts remain in the dataset after the

improvement is made.

However, it must be stressed that this comparison is useful for estimating the qual-

ity of the dataset for training purposes, and does not indicate that the datasets are unfit

for all use cases. The high AUCnorm scores are obtained by finetuning on only the hy-

potheses in a held-out portion of the data, so the model specifically attempts to learn

any contained artifacts. Thus, using these datasets purely for evaluation and not for

training does not risk learning these artifacts.

4.6.2 QA in the Natural Distribution of Contexts

This work aims to address vertex sparsity in a realistic setting, so the original entity

restriction of Li et al. (2022a) and McKenna et al. (2021) which avoids the problem of

vertex sparsity in models, is relaxed in order to achieve a more natural task. Previously,

questions are sampled only for frequently-mentioned entities, which always have many

context statements to decide from, and thus vertex sparsity is minimized as a problem

since models can afford to miss a few context statements if there are many others

available to try. In this work, the challenge is increased by sampling from corpus

entities regardless of popularity. This creates a more natural distribution of questions
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Context Size Samples CTX CTX-P CTX-H S&S

[2,5) 56,390 20.05 20.66 19.07 17.00

[5,10) 56,425 29.13 29.17 29.01 23.05

[10,15) 54,778 32.32 32.31 32.25 24.98

15+ 54,926 36.58 36.57 36.51 26.13

All Questions 56,494 21.26 21.74 20.64 16.99

Table 4.5: Effect of P- and H-smoothing vs. baseline CTX and S&S across context

sizes. AUCn is reported.

in which some questions have many context statements to decide from, and others have

much fewer. In these sparse situations, the cost of missing a predicate is much higher.

4.6.3 Results

Results on the natural distribution corroborate the earlier tests: P-smoothing improves

AUCn from 21.26% to 21.74% in “All Questions” sampled from the natural distri-

bution, while H-smoothing worsens to 20.64% (as in §4.4, AUCn is systematically

lower than AUC). Smoothed EGs also outperform Schmitt and Schütze (2021), the

most direct competition which uses a tractable-size LM. Despite facility to encode any

predicate, it lacks directional precision useful for this task.

To demonstrate when smoothing an EG is helpful, the effect on different context

size bands is further analyzed. For each question, the number of context sentences

available to answer it are counted; in dataset generation, questions are bucketed into

count bands of [2,5), [5,10), [10,15), 15+. Approximately 55,000 questions are sam-

pled for each context size. Within these bands an unsmoothed model is compared with

both P-smoothing and H-smoothing, reported in Table 4.5.

The benefit of P-smoothing is greatest in the lowest band f < 5, and diminishes in

higher bands. This is because in the lower bands there are fewer context statements

which may be used to answer the question, increasing difficulty. Here the EGs are

more prone to sparsity, because missing even a few context predicates devastates its

chance to answer the question. In fact, the proportion of questions for which all context

relations are missing from the EG is 1.5% for f ≥ 15, but 32.7% for f < 5.
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4.7 Experiment 3: Controlled Smoothing of P and H

with WordNet Relations

Language Model P-smoothing is shown to work well in the previous experiments, but

not H-smoothing. Controlled experiments are now shown using WordNet relations

(Fellbaum, 1998) to confirm that this is due to semantic generalization (in line with

the theory in §4.3.1). It is shown by constructing a transitive chain using WordNet

hyponyms that Hypothesis smoothing is possible in principle, without a claim that it

provides a practical alternative to a Language Model.

4.7.1 Controlled Search with WordNet

Experiment 1 is re-run by smoothing the CTX and GBL models on the ANT dataset.

However, the target premise or hypothesis is now approximated without the LM. In-

stead, replacements are generated using two WordNet relations. Of note, WordNet was

partly used in ANT’s construction, so this result explains the Language Model effect,

rather than offering a practical model or claim to any dataset high score.

In this test, specific WordNet lexical relations are chosen as instances of entail-

ment, then used to generate smoothing predictions from the WordNet database. In this

work, hyponymy is used for specialization and hypernymy for generalization, and

both relations are compared for use with both P- and H-smoothing. To illustrate, if

smoothing by generalizing, given a predicate elect, WordNet hypernyms are retrieved

such as choose.

This is done by querying WordNet for relations of the predicate head word. Re-

sults are used from the first word sense, replacing the query word. E.g., from the

predicate (receive.2,receive.from.2) which is missing from the EG, the WN

query hyponym(“receive”) ⇒ “inherit” is used to generate a smoothed query predi-

cate (inherit.2,inherit.from.2).

4.7.2 Results

Results are shown in Figure 4.5. Importantly, from these plots a switch in performance

is observed between the application of hypernyms and hyponyms when used for P-

and H-smoothing on CTX, and the same effect is shown with GBL. It is clear that

generalizing the premise using hypernyms is highly effective in terms of recall and

precision, but specializing with hyponyms is extremely damaging to precision. For
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Figure 4.5: Comparison of WordNet relations used in smoothing the Premise, Hypoth-

esis, and Premise+Hypothesis. Smoothing is applied to both GBL and CTX graphs

on the ANT dataset. Hypernyms are shown to be consistently useful for P-smoothing

on both GBL and CTX graphs, and hyponyms less so for H-smoothing, where they are

beneficial to the weaker GBL graph, but not apparently useful for CTX. The combination

of “optimal” smoothers does show improvement in both graphs in the low-recall end.

the hypothesis, the reverse is true: generalizing with hypernyms worsens performance,

but specializing with hyponyms can lead to some performance gains: it improves the

weaker GBL graph when applied by itself, and shows some small improvement on

CTX when applied along with P-smoothing (discussed more later). Performance on

Levy/Holt was also tested, on which a similar trend is observed.

These results nearly replicate the behavior of the LM-smoother in §4.4, verifying

that nearest neighbor search in LM embedding space has a semantically generalizing

effect suitable for P-smoothing. Table 4.4 shows examples of generalized predictions.

Finally, Figure 4.6 shows a comparison of P-smoothing between the LM (CTX-

PLM achieves AUCn = 25.86) and WordNet (CTX-Phyper achieves AUCn = 27.39) on
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the ANT dataset. Although WordNet performs within about 1.5% of the LM smoother

in this “laboratory” experiment, the LM-smoother is preferable in real use, because it

is fully automatic to learn and apply, and because it encodes an open domain of pred-

icates, which may include out-of-vocabulary words, misspellings, etc. that WordNet

cannot handle.

Figure 4.6: Comparison of P-smoothing methods on ANT: LM-based smoother and

WordNet hypernym relations on the Entailment Graph CTX.

4.7.3 Discussion

Two phenomena of interest are observed. (1) For both CTX and GBL, precision is

boosted in the low-recall range when using both optimal smoothers (Phyper +Hhypo),

higher than using either smoother individually. (2) Additionally, Hhypo is the better H

smoother tested, though it appears unreliable on its own without P smoothing: Hhypo

is useful for the weaker graph GBL, but is not very useful for smoothing CTX.

Both of these phenomena are likely related to data frequency. Generalized hyper-

nyms such as beat and use are quite common in training data, and therefore have

more learned edges in the EG with high quality edge weights. However, special-

ized hyponyms like elongate can be extremely sparse in training data, leading to

poorer learned representations and fewer edges. Phenomenon (1) shows that using

a frequently-occurring smoothed premise of high quality yields better odds of find-

ing an edge to a smoothed hypothesis, leading to some performance gains over either

smoother individually. Phenomenon (2) suggests that H-smoothing may be naturally

more difficult than P-smoothing, and less stable due to sparsity of hyponyms (special-
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izations) in corpora. If the hypothesis predicate h is missing from the EG (meaning

it wasn’t seen in training) then a derived candidate h′ specialized from h will also

be unlikely to occur in training. Thus, even if found in the EG h′ may have few or

poorly learned edges. Though it can be beneficial to precision, data sparsity makes

H-smoothing fundamentally harder than P-smoothing.

4.8 Related Work

Following from this work, Chen et al. (2023) later approach the problem of vertex spar-

sity by a different means of constructing Entailment Graphs. These EGs are targeted to

a specified domain, and rely on the mining of a Language Model for predicates within

that domain to achieve better coverage. This method makes a step forward in increas-

ing predicate coverage and entailment recall. On the complete Levy/Holt dataset, by

generating an Entailment Graph from the Levy/Holt dev set, the method achieves 65%

recall compared to 43% by the base CTX graph used in this work (Hosseini et al.,

2021), a previously SOTA EG which was trained using corpora separate from the test

domain. However, the method improves coverage through brute force expansion of the

EG, and does not solve the fundamental problem of what to do when missing predicates

at test time. Indeed, the method suffers reduced performance when switching between

different test sets, showing the downsides of focusing on a specific target domain.

Another relevant area of research is in the “hubness” phenomenon in high dimen-

sional vector spaces, especially for word vectors. It is empirically the case that under

many distance metrics, some subset of the vectors in a word embedding space will tend

to act as centralized hubs, featuring as a nearest neighbor for a disproportionate amount

of other vectors. Radovanović et al. (2010) state that “the hubness phenomenon is an

inherent property of data distributions in high-dimensional space under widely used

assumptions, and not an artefact of a finite sample or specific properties of a particu-

lar data set.” The experiments conducted in this chapter do not screen for this effect

specifically, and it is possible that hubs may play a role in the performance of the

method described in §4.4.1. Though other work aims to reduce this hubness effect to

improve performance in downstream applications (Feldbauer et al., 2018), this may

not improve performance in these experiments. The embeddings-based approach pre-

sented in this chapter relies heavily on the skewed distribution of word vectors which

naturally has the properties described in §4.3.2. The behavior of K-Nearest Neighbor

search under these properties is what produces transitive chains for missing premise
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predicates, and these chains are crucial to maintaining directional precision in applica-

tion. In an extreme case where EG predicate vectors are completely “de-skewed” by

transforming the embeddings into a uniform distribution, then the selection of nearest

neighbor approximations for a missing target predicate might include predicates with

no guarantee or even likelihood of constructing a transitive chain. This could be highly

detrimental to method precision.

4.9 Conclusion

This work introduces a theory for optimal smoothing of an Entailment Graph by con-

struction of transitive chains. Further, an unsupervised, open-domain method for P-

smoothing an EG using Language Model embeddings is shown, which improves both

recall and precision on two difficult directional entailment datasets. This method is

also tested on a QA task, where it shows the most benefit in difficult scenarios where

limited context information is available, improving over baselines. This method is low-

compute, combining an existing Entailment Graph with a pretrained Language Model

of tractable size for a single GPU, and it improves over two low-compute baselines: a

SOTA EG and a finetuned RoBERTa-based prompting model.

This work also demonstrates the theory of optimal smoothing by directing the

search for smoothing predictions using controlled WordNet relations. These experi-

ments replicate the behavior of the LM-based smoother, offering an explanation for

why LM embeddings are useful for P-smoothing, but not H-smoothing, in terms of the

semantic generalizing effect when searching a neighborhood in embedding space.

4.9.1 Limitations

This work presents a simple graph smoothing method which leverages the natural

structure in LM embedding space to find approximations of predicates missing from

the EG, a major source of error. Nearest neighbors search within LM embedding space

is biased toward returning predicates that are more semantically general, which is help-

ful for P-smoothing.

However, generalizing is detrimental to H-smoothing, which requires specializa-

tion. While empirical evidence of the benefit of specialization is shown using Word-

Net, solving H-smoothing in an open domain using an unsupervised model such as

a Language Model is left open in this work. It is likely that H-smoothing is a more
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difficult task than P-smoothing due to natural data sparsity as discussed. If a hypoth-

esis is missing from the EG, it is already likely to be a corpus-infrequent predicate,

and specializing it will yield other predicates of low frequency, yielding poor odds of

recovery.

Further, while the use of a sub-symbolic LM encoder theoretically enables infer-

ence using any premise predicate, it is still restricted to choosing approximations from

the pre-set predicate vocabulary learned by the EG. It is assumed in this work that the

vocabulary is sufficient, but if it is not suitable e.g. for a new target genre/domain,

Hosseini et al. (2021) show that EG learning may be scaled up easily, which may pro-

vide a sufficiently scoped vocabulary for any application, but exploring this is left for

future work.

Finally, this work is demonstrated only on the English language. However, there

is no immediate indication that this method should fail for other widely spoken lan-

guages. Li et al. (2022b) demonstrate that learning Entailment Graphs for other lan-

guages (Chinese demonstrated) can be done using the same process as English, and

the smoothing technique leverages a simple fundamental structure of Language Mod-

els which is characteristic of pretraining, as well as the natural Zipfian distribution of

predicates in corpora, which is present across languages.

4.9.2 Ethical Considerations

This work is designed to extend the capabilities of Entailment Graphs, which are

general-purpose structures of meaning postulates. These can be applied most read-

ily to question answering applications, but they can also be used for other NLU or

NLI tasks. As an unsupervised, corpus-based learning algorithm, EGs could be sus-

ceptible to learning biases in human beliefs present in corpora, but this algorithm is

most sensitive to widely repeated statements, which may be easier to detect in data

cleaning than uncommon statements. There is no immediate risk in their application in

basic question answering as shown in this work, since the EGs used here were trained

on published news articles (Hosseini et al., 2021) which are professionally edited to a

standard. However, a malicious user could deploy any tool for language understanding

such as an EG for other unethical purposes such as surveillance at scale, etc.



Chapter 5

Large Language Models and

Open-Domain Predicate Inference

Though Entailment Graphs theoretically represent inferences spanning the open do-

main of natural language predicates, they are prevented from doing so in practice by the

challenge of vertex sparsity, arising from sparsity in training data. However, Language

Models are shown to be effective as a means for smoothing EGs while maintaining

directional precision, demonstrating a directional signal of their own.

Large Language Models (LLMs) are recently claimed to be capable of Natural

Language Inference (NLI), necessary for applied tasks like question answering and

summarization. This chapter investigates the capability of LLMs to facilitate a fully

open domain of predicate inference on their own, without using an Entailment Graph.

A series of behavioral studies is presented on several LLM families (LLaMA, GPT-3.5,

and PaLM) which probe their behavior using controlled experiments on NLI datasets.

In contrast to the explicit reasoning in application of an EG, this chapter demonstrates

that LLMs constitute an approximation of generalizing language inference. Despite

promising superficial performance, two biases are established, originating from pre-

training, which predict much of their behavior and represent major sources of halluci-

nation in generative LLMs. Several LLMs are shown to perform significantly worse

on NLI test samples which do not conform to these biases than those which do, and

these are offered as valuable controls for future LLM evaluation.

75
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5.1 Introduction

Large Language Models (LLMs) such as LLaMA, GPT-3/4, PaLM, and more (Touvron

et al., 2023; Brown et al., 2020; Chowdhery et al., 2022), have been trusted by many to

perform language understanding in downstream tasks such as summarization, question

answering, and fact verification, among others (Zhang et al., 2023). However, due to

the large-scale nature of LLM training on vast, often proprietary data, and the inherent

opacity of LLM parameters, it is difficult to explain their behavior when answering

user queries and the corresponding risks in terms of bias and robustness. In particular,

one LLM behavior poses a significant challenge: “hallucination,” the phenomenon in

which LLMs provide information which is incorrect or inappropriate, presented as fact.

This work investigates false positive hallucination through the mechanisms used

by LLMs on the task of natural language inference. This is also called textual entail-

ment, a basic component of language understanding which is critical in real language

tasks which require more than mere approximation of memorized training data. For

example, in retrieval-aided question-answering from documents that entail but do not

state a direct answer to the question; or multi-document summarization, where models

must detect redundancy of statements in one document that are entailed by others.

In this work, the broader context of NLI is examined, but focus remains on direc-

tional entailments, which hold in one direction, but not both. For example, Arsenal de-

feats Man United entails Arsenal plays Man United but the reverse is not true: Arsenal

plays Man United does not entail Arsenal defeats Man United. Inferring directional

entailment is more difficult than detecting symmetric paraphrase, so it more deeply

probes understanding. In this setting, false positive judgements of Entail by a model

may be understood as hallucinations.

The approach used is a behavioral study of prompted LLM decision-making across

several LLM families (LLaMA, GPT-3.5, and PaLM). Existing NLI datasets are altered

in targeted ways while the changes in model predictions are measured. Two sources of

LLM performance on the NLI task are demonstrated, which are offered as explanations

of general false positive hallucination: (1) LLM bias toward affirming entailment when

the hypothesis may be attested in the training text, including reliance on named entity

identifiers; and (2) a corpus-frequency bias, affirming entailments with premises less

frequent than hypotheses.

Earlier chapters evaluate models on an extrinsic, question-answering task which

demonstrates directional reasoning, however this chapter focuses on evaluation of
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simpler NLI datasets. This is intentional, to constrain the LLMs to minimal sce-

narios which are easily controlled. Li et al. (2022a) demonstrate that extrinsic tasks

like question-answering may easily (though accidentally) introduce artifacts correlated

with sample entailment labels, which LLMs may take advantage of without learn-

ing the task of entailment. To minimize this risk, experiments are conducted with no

dataset fine-tuning (so no additional artifacts can be learned), and on these simpler

NLI datasets which, through controlled modification, are solvable only with linguistic

reasoning. The simplicity and directness of this test is ideal for exploring the claims.

This study establishes that the two found biases originate from the LLM pretraining

objective, in which statistical modeling of the natural distribution of human-generated

text leads to (at the level of sentences) memorizing individual statements, and (at the

level of corpora) learning typical patterns of usage. Though superficially performant,

these experiments show that even powerful LLMs still use unsatisfactory tools instead

of robust reasoning.

Three contributions are presented in this chapter: the demonstrations of both fac-

tors and an analysis of their impact.

1. In a prompting scenario, LLMs respond to entailment samples according to an

attestation bias, affirming entailments more readily if the hypothesis is attested

by the pretraining text. LLaMA-65B, GPT-3.5, and PaLM are respectively found

to be 1.9, 2.2, and 2.0 times more likely to wrongly predict Entail when the

model already asserts the hypothesis is attested, compared to when not. Fur-

ther, LLMs recall from their propositional memory using named entities as iden-

tifying “indices,” even though they are irrelevant to the logic of the predicate

inference task.

2. LLMs also rely on a simple corpus-statistic bias using relative term-frequencies,

especially when propositional memory is not available. The three LLMs are 1.6,

1.8 and 2.0 times more likely to wrongly affirm entailments if the premise has

lower term frequency than the hypothesis, than when not.

3. For the NLI test subsets consistent with these factors, LLM scores are mislead-

ingly high; for NLI subsets adversarial to them, LLM performance degrades

severely. It is shown that when labels go against the attestation bias, LLMs can

be poor or even near-random classifiers; for the relative frequency bias, a similar

substantial performance decrease is shown across all LLMs.



78 Chapter 5. Large Language Models and Open-Domain Predicate Inference

5.2 Background

Addressing task robustness, Poliak et al. (2018) found a range of NLI datasets to con-

tain artifacts which are learnable by supervised models trained on only the hypothesis.

In this work, a similar hypothesis-only test is used with LLMs, however it is used to

probe model memory without any training involved. The attestation bias demonstrates

inherent model bias, versus the dataset bias exposed by Poliak et al.

For supervised neural models on the NLI task, Talman and Chatzikyriakidis (2019)

observed generalization failure when models are transferred between NLI datasets,

even when they are formatted in the same way. On smaller Language Models such

as RoBERTa (Liu et al., 2019; 355M parameters), Li et al. (2022a) also observed a

reliance on dataset artifacts when finetuned specifically for directional predicate infer-

ence. This work now studies the behavior of much larger LMs, which have demon-

strated more robust performance across NLP tasks.

Recent work has also explored LLM memorization and generalization. Carlini

et al. (2023) establish that LLMs are able to memorize more data than small LMs,

whereas Tirumala et al. (2022) further demonstrate that LLMs pay special attention

early in training to numbers and nouns, which act as unique identifiers for individual

training sentences. Memories are also shown to be used in language inference, relating

to specific named entities. While Weller et al. (2023) and Kandpal et al. (2023) find

that entity frequency in training data is correlated with performance in factual recall

about them, this work finds that entity frequency is anti-correlated with hypothetical

generalization performance (§5.6).

5.3 Experimental Design

Behavioral experiments on LLMs are designed by modifying NLI datasets with rigor-

ous controls, changing targeted informational aspects of these datasets. These changes

illicit behavioral differences in major LLMs due to propositional-memory effects in

§5.5 and §5.6, and corpus frequency in §5.7. Finally, the impact on real performance

is shown in §5.8.

5.3.1 Two Biases in Inference Predictions

The major claim of this work is that the pretraining objective to fit the distribution of

natural text leads to biases in LLM generations. Two such biases are explored, in the
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narrow scope of individual sentences and at the wider scope of corpora.

5.3.1.1 The Attestation Bias

The over-reliance of an LLM on its propositional memory about a query statement is

dubbed attestation bias. It is claimed that when a statement is likely to be attested

in some way by an LLM’s training data, the model is more likely to affirm it as a

conclusion in NLI tasks, regardless of any premise it is presented with. In this work,

the attestation of a sample is measured by prompting the LLM, asking simply if the

hypothesis in question is true, false, or unknown.1 Model predictions of attestation are

denoted with Λ.

A model with such attestation bias will appear to perform well on dataset samples

with entailment labels that happen to align with the bias. For example, the pair of

samples below from the Levy/Holt dev set are consistent with the bias, as reported by

an LLM itself (ΛLLM), because the sample labels may be predicted using hypothesis

attestation alone, without considering the premise.

Sample 1
PREMISE: Geysers are common to New Zealand

HYPOTHESIS: Geysers are found in New Zealand

LABEL: Entail

ΛLLM : hypothesis Attested

Sample 2
PREMISE: Geysers are found in New Zealand

HYPOTHESIS: Geysers are common to New Zealand

LABEL: No-Entail

ΛLLM : hypothesis Not-Attested

As discussed in §5.2, inspiration is drawn from the hypothesis-only baseline of

Poliak et al. (2018), but this work instead probes model memory without any training,

exploring inherent model bias. Prompt generation is described in detail in §5.4.2, with

an example in Table 5.3.

Dasgupta et al. (2022) show a similar effect in LLMs on abstract reasoning tests,

related to sentential content, and remark that human tendencies are similar. In contrast,
1Alternatively, LLM perplexity for a statement could be used to identify statements that are not attested

by the training text; however, perplexity scores are not always available, e.g. with GPT-3.
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this work examines the risks of propositional memory on more realistic inference tasks.

5.3.1.2 The Relative Frequency Bias

The relative frequency bias is the use of a simple rule for deciding entailment, cal-

culable from corpus statistics. Entailment is affirmed if, ignoring named entities, the

eventuality in premise P is less frequent in training than that in hypothesis H.

This bias is reflected in natural text: it is known that nouns follow a trend of be-

coming more specific as corpus-frequency decreases (Rosch et al., 1976; Caraballo

and Charniak, 1999) and the same is observed for predicates (McKenna et al., 2023b).

Very infrequent predicates tend to be very specific (e.g. perambulate, hike) compared

to very frequent predicates which tend to be more semantically general (e.g. walk,

move). A specific predicate may entail a general one (e.g. hike entails walk) but the

reverse is not possible (walk does not entail hike). Thus, relative frequency can often

indicate the direction of entailment; Language Models are known to be sensitive to

frequency, so it follows that this bias may inherently be used in predictions. However,

the relative frequency effect is an artifact of natural text, so the use of it as a signal of

entailment is merely a bias with no direct relationship to meaning.

Test samples are labeled for agreement with this bias separately from models. Since

LLM pre-train corpora are impractically large and/or proprietary, Google N-grams2 is

used instead as a proxy of the natural distribution of text, and thus the distributions of

these corpora. Predicate frequencies are estimated by an average between the years

1950-2019, and compared between P and H. For robust comparison, generic eventu-

alities are extracted from test sentences by masking any extracted entities and lemma-

tizing phrases; further, the problems of distributional noise and sparsity are addressed

by requiring a wide margin of difference between P and H frequency estimates. Fre-

quency decisions are denoted by Φ.

A model with such relative frequency bias will appear to perform well on dataset

samples with entailment labels that happen to align with the bias. For example, the pair

of samples below from the Levy/Holt dev set are consistent with the bias, as reported by

the frequency estimate (Φ), because the sample labels may be predicted using relative

frequency alone, without deeper consideration of entailment.

2https://books.google.com/ngrams

https://books.google.com/ngrams
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Sample 3
PREMISE: Whiskey consists chiefly of alcohol

HYPOTHESIS: Whiskey contains alcohol

LABEL: Entail

Φ: Yes: freq(consists chiefly of ) < freq(contains)

Sample 4
PREMISE: Whiskey contains alcohol

HYPOTHESIS: Whiskey consists chiefly of alcohol

LABEL: No-Entail

Φ: No: freq(contains) > freq(consists chiefly of )

5.3.2 Datasets

Levy/Holt As described in Chapter 2, this dataset consists of premise-hypothesis

pairs, with a task formatted: “Given [premise P], is it true that [hypothesis H]?” (Levy

and Dagan, 2016; Holt, 2018). Each P- and H-statement has the property of contain-

ing one predicate with two entity arguments, (where the same entities appear in both

P and H) as shown in Table 5.1. This targeted dataset is ideal for precisely measuring

model understanding of predicates, because entailment between statements is decid-

able purely on the basis of the predicates and their attributes.

This work studies the challenging directional subset, where entailments hold in one

direction but not both. The directional portion of the Levy/Holt dataset contains 630

entries in the dev set, and 1784 entries in the test set. Both have a 50%/50% class

distribution between Entail and No-Entail labels, since all samples are directional

and tested in both directions (a ⊨ b and the reverse, b ⊭ a).

RTE-1 This dataset is one of the original and most difficult tests of NLI (Dagan et al.,

2006). It is not purely directional on the basis of predicates or consistently structured

like Levy/Holt, so it is left out of the behavioral experiments. However, RTE-1 is a

widely understood dataset, and in this work it is used to demonstrate the impact of the

two biases in general NLI situations, in §5.8.

The original RTE-1 dataset contains 567 entries in the dev set, and 800 entries in

the test set. It has a 50%/50% class distribution between Entail and No-Entail labels

(for RTE-1 dev set, the numbers of entries in the two label classes differ by 1).
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Exclusions NLI datasets are excluded if they intentionally test knowledge of the

world, since the aim is to test LLMs on their capability to reason purely about the se-

mantics of natural language predicates without relying on memorized facts. Datasets

such as MMLU (Hendrycks et al., 2021), Natural Questions (Kwiatkowski et al.,

2019), OpenBookQA (Mihaylov et al., 2018) etc. are specifically avoided.

5.3.3 Dataset Transformations

Throughout this work, the standard inference task denoted I refers to the original

NLI datasets, in which entailment is determinable by using general language inference

on sentences. In Levy/Holt, it is determinable just by predicates.

Three dataset transformations are defined for use in this study; the change in model

responses is observed as targeted information is altered in each transformation. These

transformations include randomized premise predicates IRandPrem, and two argument-

transformations: generic arguments IGenArg, and type-constrained randomized argu-

ments IRandArg.

Transformations involve first identifying the types of entities in statements, in order

to constrain entity or predicate replacements. The process is similar to that in the

previous two chapters. Initially, an entity linker is used (Nguyen et al., 2014) which

identifies the Freebase ID (Bollacker et al., 2008) of each sentence entity. From the

Freebase entry is obtained the entity type, classified as one of the 48 FIGER types

(Ling and Weld, 2012), such as “person,” “location,” etc. An additional default type

“thing” is assigned in failure cases.

5.3.3.1 The Random Premise Task IRandPrem

IRandPrem is a test of model reliance on propositional memory: dataset alterations pre-

vent all true entailments without modifying hypotheses. Thus, a good model of entail-

ment should recognize that the premise does not entail the hypothesis, and respond by

predicting No-Entail, even if the hypothesis is attested by training data.

This task replaces the original premise predicate with a random predicate, while

maintaining the same entity arguments. This manipulation produces a dataset in which

all samples are labeled No-Entail, since two randomly paired predicates are very

unlikely to be related by entailment. Hence, any positive decision by the model is a

false positive hallucination.

To maintain naturalness and grammaticality, a new predicate is constrained to have
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Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I Entail George Bush was Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor ofwas Governor of Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas

IRandPrem No-Entail George Bush resided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided in Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas

Table 5.1: From the original dataset task (I) is derived the Random Premise task

(IRandPrem), respecting type-constraints. A random premise predicate is highly unlikely

to entail the hypothesis, so all labels are No-Entail.

argument slots of the same types as the original premise. For example, “[medicine]

is indicated for patients with [disease]” is swapped for “[medicine] does not cure

[disease]”. Candidates are sourced from dev set premises satisfying the target type-

constraints, and sampled uniform randomly. The original entities are mapped to their

respective slots in the new premise. Examples are shown in Table 5.1.

5.3.3.2 The Generic Argument Task IGenArg

This task replaces original entities with unique FIGER-typed identifiers, e.g. “location

X” and “food Y”. In using these generic identifiers to mask the identities of entities,

this test is designed to remove extraneous information while maintaining the same

entailment label, as a baseline control setting. Unique identifiers are appended (e.g.

“X”, “Y”) to allow tracking of entity slots across the premise and the hypothesis. A

good model of entailment should not significantly change its predictions between I and

IGenArg, since predicates and their semantics remain unchanged, and can still be clearly

disambiguated using entity types. Examples are shown in Table 5.2.

5.3.3.3 The Random Argument Task IRandArg

This task replaces original entities with other real, random entities of the same FIGER-

type. Like IGenArg, this test is designed to create novel strings by modifying statements

without changing entailment labels. But this is a test of model sensitivity to added

extraneous information. Examples are shown in Table 5.2.

As with IGenArg, entity type constraints are used to ensure polysemous predicates

maintain the same sense. For example, a different sense of run is used in “[person]

runs [organization]” vs. “[person] runs [software]”, but between different entities of

the same type, the same sense is maintained, so the exact entity IDs do not affect

entailment labels. New entities are sourced from NewsCrawl (Barrault et al., 2019),

a decade-long span of multi-source news text, in which entities are typed as above.
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Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I (Entail) IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports tons of ricericericericericericericericericericericericericericericericerice ⇒ IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports ricericericericericericericericericericericericericericericericerice

IGenArg (Entail) location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports tons of food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y ⇒ location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y

IRandArg↓ (Entail) SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports tons of oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies ⇒ SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies

IRandArg↑ (Entail) HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports tons of Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith ⇒ HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith

Table 5.2: An original dev sample (I) is transformed by insertion of entity types (IGenArg);

by real entities sampled from the 5% least frequent in NewsCrawl (IRandArg↓); and also

from the 5% most frequent (IRandArg↑).

The new entities are drawn uniform randomly from the 5% least common entities in

NewsCrawl (IRandArg↓), and the 5% most common (IRandArg↑).

5.4 Methods: Querying Models with Prompts

The methodology for model selection, prompt development, and model scoring are

now described.

5.4.1 Model Selection

LLaMA A recent LLM model family which rivals or surpasses GPT-3 performance

while being open to scientific study. LLaMA provides a range of model sizes, and this

work tests the largest LLaMA-65B model. LLaMA is not fine-tuned; while there have

been fine-tuned variants (Taori et al., 2023; Chiang et al., 2023), they were not found

to be more competent than LLaMA-65B on the task, so they are left out.

GPT-3 Series Though closed to deep scientific review, these are a widely-used com-

parison due to their performance, and have been reasonably well studied (Brown et al.,

2020). This work evaluates on text-davinci-003 (GPT-3.5), as it is the largest, and has

undergone instruction- and RLHF-finetuning, enabling interesting comparisons.

PaLM One of the largest available LLM families, this work tests with the largest

540 billion parameter model, which often claims state-of-the-art on evaluation datasets

(Chowdhery et al., 2022). As it is only pretrained, this model serves as a further com-

parison point to LLaMA.
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Later GPT models (like text-davinci-003 in this work) have been pre-trained and

fine-tuned, while base LLaMA and PaLM have only undergone pre-training, so their

contrast indicates what stage of training is responsible for the phenomena studied. The

aim of this work is not to judge which LLM is superior, but to evaluate this class of

models’ capability for NLI, and show the common sources of hallucination they share.

Current open models are also omitted if they are superseded in performance by

LLaMA (e.g. OPT, GPT-J, etc.), as well as products that are closed to scientific review

(e.g. GPT-4, Bard, etc.).

5.4.2 Prompt Design

5.4.2.1 Formatting

Each test sample is formatted for the model by insertion of the premise and hypothesis

into a prompt template, which is used to query the model in natural language. Fol-

lowing this, a three-way answer choice is appended to the sample: “A) Entailment, B)

Neutral, C) Contradiction”, following the typical format in NLI (Bowman et al., 2015).

Models generate a textual response conditioned on this input, and general patterns in

model responses are analyzed between test conditions.

5.4.2.2 Template Features

Besides the test sample premise and hypothesis, in prompt-based interactions with the

LLMs, several kinds of context information may be added to aid models in producing

accurate and robust predictions. Three design choices in particular are examined in

the prompt engineering phase of this work: varying the language of prompt templates,

adding in-context examples, and chain-of-thought reasoning.

Template Candidates A prompt template is a natural language string containing

slots, into which information from a dataset sample is inserted, creating a uniformly-

formatted string query for an LLM. These are known to have a direct and sometimes

decisive impact on LLM behavior due to their sensitivity to wording. As such, a range

of clear and concise templates are carefully selected as promising candidates. Each

template is ranked according to AUC score by evaluating with the dev portion of each

dataset. The final template is selected which achieves the best score, which is then

used on the test portion. The set of candidate templates includes 3 novel templates:
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1. If [PREMISE], then [HYPOTHESIS].

2. [PREMISE], so [HYPOTHESIS].

3. [PREMISE] entails [HYPOTHESIS].

Also considered are the 5 prompt templates used in entailment work with small

LMs (Schmitt and Schütze, 2021) and later in larger LMs (Webson and Pavlick, 2022):

4. [PREMISE], which means that [HYPOTHESIS].

5. [HYPOTHESIS], because [PREMISE].

6. It is not the case that [HYPOTHESIS], let alone that [PREMISE].

7. [HYPOTHESIS]NEG, which means that [PREMISE]NEG.

8. [PREMISE]NEG, because [HYPOTHESIS]NEG.

In preliminary experiments with GPT-3.5, it is observed that the model is not re-

sponsive to the 3 contrapositive prompts from Schmitt and Schütze (2021) (colored

gray), performing at random. Prompt number 5 also consistently underperforms the

other 4 templates, so this work uses the remaining 4 templates (numbers 1, 2, 3, 4) as

the final candidate set.

In-Context Examples Brown et al. (2020) demonstrated that it is useful to insert task

examples annotated by the modeler into the prompt. This can significantly improve the

accuracy of LLM generations for a task. Use of such examples is called “in-context

learning” because the model conditions its response on the actual task as well as the

additional demonstrative examples. However, the term “learning” is used differently

here since no parameter weights are updated using this technique; thus, any in-context

examples must be prepended to every input given to the LLM.

On the other hand, Ouyang et al. (2022) has suggested that instruction-tuned LLMs

are also capable of performing tasks in zero-shot, without exposure to any in-context

examples. Zero-shot settings (no in-context learning by example) are compared with

few-shot settings (several in-context examples provided with the query sample) for

this study, in preliminary experiments with LLaMA and GPT-3.5 on the Levy/Holt

directional dev set. Following Touvron et al. (2023), for zero-shot, a textual description

of the task is prepended to each test sample; for few-shot, a minimal 4 examples with
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explanations is prepended. Instantiated prompts in the two settings are demonstrated

in Table 5.3 and Table 5.4.

For the two pretrained-only LLMs, LLaMA and PaLM, it is found that zero-shot

performance on the Levy/Holt directional dev set is near-random, at 56.6% and 61.5%

AUC respectively (random is 50%); with 4 in-context examples, the models begin to

exhibit non-trivial behavior, with 65.0% and 80.2% AUC, respectively. This is not sur-

prising, since pre-trained LLMs without instruction fine-tuning should not be expected

to perform complex tasks zero-shot. For GPT-3.5, the performance is still much lower

in zero-shot, at 64.5%, compared to 74.6% in few-shot.

Ideally LLMs will have zero-shot natural language inference ability readily avail-

able for downstream tasks. However, in order to evoke a positive response from the

models using a minimal stimulus, the primary experiments are conducted in the few-

shot setting throughout, in order to better explore the abilities of these LLMs.

Chain-of-Thought Reasoning Further, Wei et al. (2022b) has demonstrated that

including chain-of-thought explanation, namely step-by-step explanations, in the in-

context examples, helps LLMs perform reasoning tasks. The NLI task is not a multi-

step reasoning task (it is only a single step of inferring one predicate given another),

but a brief explanation is written into the prompt for each hand-annotated example of

why the entailment does or does not hold.
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Entailment Prompt: Zero-shot (No Examples)

Please check the entailments between the following statements.

If kanamycin kills infections, then kanamycin is useful in infections.

A) Entailment

B) Neutral

C) Contradiction

Answer:

Entailment Prompt: Few-shot (With Annotated examples)

If Google bought Youtube, then Google owns Youtube.

A) Entailment

B) Neutral

C) Contradiction

Answer: A) Entailment. Owning is a consequence of buying.

If Google owns Youtube, then Google bought Youtube.

A) Entailment

B) Neutral

C) Contradiction

Answer: B) Neutral. Owning does not imply buying, the ownership may come from

other means.

If John went to the mall, then John drove to the mall.

A) Entailment

B) Neutral

C) Contradiction

Answer: B) Neutral. John may have gone to the mall by other means.

If John drove to the mall, then John went to the mall.

A) Entailment

B) Neutral

C) Contradiction

Answer: A) Entailment. Driving is a means of going to the mall.

If ephedrine is widely used in medicine, then ephedrine is used in medicine.

A) Entailment

B) Neutral

C) Contradiction

Answer:

Table 5.3: Example instantiated prompts in Zero-shot / Few-shot settings, for the test

entry “PREMISE: [ephedrine is widely used in medicine], HYPOTHESIS: [ephedrine is

used in medicine]”. The few-shot prompts in part B are used throughout the main

experiments in this work.
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Attestation Prompt: Few-shot (With Annotated examples)

Google bought Youtube.

A) True

B) Unknown

C) False

Answer: A) True.

Yoshua Bengio likes oak trees.

A) True

B) Unknown

C) False

Answer: B) Unknown.

The sun rises from the west.

A) True

B) Unknown

C) False

Answer: C) False.

ephedrine is used in medicine.

A) True

B) Unknown

C) False

Answer:

Table 5.4: Example instantiated prompt querying for the attestedness of the test entry

“HYPOTHESIS: [ephedrine is used in medicine]”. The hypothesis-only test Λ measures

the model’s prior exposure to a sample hypothesis as described in §5.3.1.

5.4.2.3 Tuning and Selecting Templates

For evaluation on the test datasets, a prompt template is selected from the 4 candidate

templates which scores the highest AUC on each respective dev set: for testing on

Levy/Holt, performance on the Levy/Holt dev set is used for ranking templates, and

for testing on RTE-1, performance on the RTE-1 dev set is used.

As discussed, each LLM was initially tested in zero-shot, but they exhibited severely

degraded, even near-random performance. The main experiments are thus formatted

with few-shot examples, with four hand-annotate examples in the style of the tem-

plate, also with added explanations about why the given answer is correct for each
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example. These examples are prepended before the query. The goal of this work is

to study model behavior as conditions change, not to maximize the score on any par-

ticular dataset. Therefore, the minimal four-example setup is used, which is found to

evoke positive responses from all three LLMs on each dev set, across most templates.

This work examines the behavior and performance of three major LLM families

on two NLI datasets: Levy/Holt and RTE-1. In Table 5.5, dev set performances are

reported on the best prompt template used for each model on each dataset. Note that

no training is involved in this work, and prompt template selection is the only hyper-

parameter tuned on the dev sets.3

Levy/Holt RTE-1

Model Task Best Tplt. ID Dev Set AUCnorm Best Tplt. ID Dev Set AUCnorm

LLaMA

I #4 30.0 #3 62.5

IGenArg #1 34.6 #3 52.3

IRandArg↓ #1 31.8 #1 51.3

IRandArg↑ #1 26.3 #3 43.8

GPT-3.5

I #1 49.2 #3 74.8

IGenArg #1 39.8 #3 64.8

IRandArg↓ #1 43.4 #3 63.6

IRandArg↑ #1 34.2 #3 66.0

PaLM

I #1 60.9 #4 84.5

IGenArg #1 48.1 #4 79.4

IRandArg↓ #1 43.6 #3 79.8

IRandArg↑ #1 35.3 #3 78.3

Table 5.5: LLM dev set performance on the two datasets, measured with AUCnorm (0%

= random chance performance). AUC is calculated using estimated model scores as in

§5.4.2 and then normalized into AUCnorm. The highest scoring template is selected on

each dev task (shown in this table) and this template is used in the corresponding test

set evaluation in later sections.

3For Random-Premise experiments, AUC values cannot be meaningfully calculated because gold labels

are always No-Entail. For these experiments, the most frequently-selected prompt template in the

other settings is used on each dataset, namely template #1 for Levy/Holt dataset, and template #3 for

RTE-1 dataset.
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5.4.3 Scoring Model Output

Model textual generations are used for scoring in two ways.

For behavioral experiments in §5.5, §5.6, and §5.7, the model is scored solely based

on its textual response. In these experiments, choice A is converted into Entail and

both B and C choices are collapsed into No-Entail, in order to align with Levy/Holt

and RTE-1 annotation. In initial tests, models choose one of A/B/C on all dev ques-

tions, showing compatibility with the QA format.

For the analysis in §5.8, which measures model performance allowing for a tunable

confidence threshold, the letter choice is converted to a score with the mapping:

Sent = 0.5+0.5∗ I[tok = A]∗Stok

−0.5∗ I[tok ∈ {B,C}]∗Stok

Where I is the indicator function, and Sent estimates the likelihood of Entail from a

textual output (0 ≤ Sent ≤ 1) with token probability Stok using a linear transformation,

preserving the ordering of model confidences, which is sufficient for calculating a

precision-recall curve. The token probability Stok is simply retrieved from the model’s

distribution over possible outputs.

5.5 Experiment 1: Attestation Bias

First, an assessment of LLMs’ reliance on propositional memory of training text by

conditioning each model’s entailment task predictions I on its own predictions of at-

testation Λ. This is done by comparing the estimated probability of predicting Entail

conditioned on whether the hypothesis is predicted Attested or not.

Further, a control setting is tested which accounts for the possibility that original

Levy/Holt entailments may coincidentally refer to attested facts, which could lead to

spurious correlation between inference and attestation scores without clearly demon-

strating use of memory versus true entailment. This controlled setting is the random

premise task IRandPrem, which converts entailments into non-entailments without alter-

ing the hypothesis. An ideal model capable of drawing inferences from information

in context should detect that in the IRandPrem task it is no longer possible to infer the

hypothesis based on the premise (even if the hypothesis is itself attested in training),

and never predict Entail. Thus, in IRandPrem, all Entail predictions are assumed to be

false positive hallucinations.
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Figure 5.1: Estimated probability of predicting Entail for original entries in Levy/Holt,

conditioned on LLMs’ attestation of hypotheses (Λ). This setting is intuitive but may be

subject to spurious correlations, thus is included but colored darker.

5.5.1 Results

With I, IRandPrem and Λ predictions acquired as described in §5.3.1, the conditional

probabilities are presented in Figure 5.1 and Figure 5.2. It is clear that a model’s

memory about the hypothesis plays a part in its predictions of the hypothesis given a

premise, either related or random.

For I, a significantly higher probability of predicting Entail is observed when

the hypothesis is attested. In the random premise task IRandPrem, this trend continues.

LLaMA, GPT-3.5, and PaLM, respectively, show a 1.9x, 2.2x, and 2.0x higher chance

of falsely predicting that a random premise Entails the hypothesis if it already pre-

dicts the hypothesis is attested. The impact of such hallucination on NLI performance

is further investigated in §5.8.

This behavior is observed across model families (LLaMA, GPT, and PaLM), es-

tablishing that it is due to pretraining rather than instruction-finetuning or RLHF, since

LLaMA and PaLM have only undergone pretraining. This is undesirable, because

model predictions on NLI tasks should be based solely on general language under-

standing, not prior propositional knowledge. It may be concluded that memory of

training data is a significant contributor in LLM inference, and may be an important

source of hallucination.
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Figure 5.2: Estimated probability of predicting Entail for Random-Premise entries in

Levy/Holt, conditioned on LLMs’ attestation of hypotheses (Λ). In this setting, predicting

Entail is false positive hallucination (lower is better). Models are sensitive to hypothe-

sis attestation, and hallucinate more when the hypotheses are attested.

5.5.2 Implications for Real Applications

Using prior knowledge as part of language inference has bad implications for the use

of LLMs in real applications. An example scenario is now illustrated of a question-

answering task where user questions are answered from a Knowledge Base (KB). In

typical formulations of this task, if a statement in the KB (premise) entails a user query

(hypothesis), the premise may be formulated into an answer. Consider a KB such as a

legal document or HR rulebook. Assume that the text is prepended to the user query

and presented to the LLM, as in other works (Srinivasan et al., 2022). Given the find-

ings of this work, the LLM may hallucinate answers to questions using information

which is not present within the KB text, but may have been read by the LLM in text

from other sources during pretraining. These answers could be illogical, contradic-

tory, and could misrepresent the views of the KB, or other harms. Such poor use

of in-context learning has already been observed in specific domains like medicine

(Jimenez Gutierrez et al., 2022).

In general, this is a risk for LLMs which (a) are deployed for tasks like QA by

feeding novel text (e.g. a legal document) in-context as part of the user query, and (b)

are trained on datasets which are private or otherwise infeasibly large to read manually,

containing many facts and human opinions unknowable to both the user and modeler.
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5.6 Experiment 2: Entities are Indices to Memory

In §5.5, it is established that propositional memory explains a significant portion of

false positives in LLM inference predictions. This section further explores the impor-

tance of named entities in the process of LLMs’ memory recall.

As described in §5.3.3, the entities are manipulated in the IGenArg generic argument

replacement setting, and in the two random entity replacements: one with infrequent-

entities IRandArg↓ and one with frequent-entities IRandArg↑ (examples in Table 5.2).

By replacing arguments constrained by type, entailment labels are maintained;

however, these new samples should contain novel strings which are not attested in

pre-train corpora. It is expected that an ideal, generalizing model would maintain its

predictions across all conditions; a flawed model utilizing the attestation bias would

predict fewer Entail than on an original dataset, since entities can no longer identify

sample statements from training.

5.6.1 Results on Levy/Holt

Results are reported across conditions for the Levy/Holt directional subset in Table 5.6.

Two phenomena are observed across all three models, aligning with the above conjec-

ture of “flaws.”

First, all models’ behavior significantly changes in the same way when original

entities are replaced by either entity types or random real entities. Despite similar

(or marginally increasing) precision across conditions, recall degrades sharply from

original entities (I) (GPT-3.5 @92.3) to random frequent entities (IRandArg↑) (GPT-3.5

@55.3). Generic-argument IGenArg performance also degrades in this way, showing

that this is not a matter of poorly selected real entities, but rather a loss of information

from the original dataset which models were using to answer questions.

Second, across the 3 models, recall is significantly different between the two real

entity conditions IRandArg↓ and IRandArg↑, which are both composed of unattested state-

ments, but involve entities that differ in typical corpus frequency. Infrequent entities

(IRandArg↓) yield better generalization and a higher recall (GPT-3.5 @66.5) than fre-

quent entities (IRandArg↑) (GPT-3.5 @55.3).

These findings corroborate those from §5.5, that LLMs draw from memorized

statements when queried to perform language inference. Additionally, it is shown that

these memories are recalled using named entities acting as indices. These experiments

demonstrate that too much prior exposure to an entity may impede model generaliza-
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Levy/Holt (Directional)

Model Task Precision Recall ∆-Recall

LLaMA

I 67.0 68.4 0

IGenArg 69.0 66.9 -1.5

IRandArg↓ 64.0 63.8 -4.6

IRandArg↑ 67.2 53.7 -14.7

GPT-3.5

I 62.4 92.3 0

IGenArg 65.1 75.7 -16.6

IRandArg↓ 65.5 66.5 -25.8

IRandArg↑ 68.8 55.3 -37.0

PaLM

I 72.8 76.2 0

IGenArg 79.8 50.8 -25.4

IRandArg↓ 69.5 58.7 -17.5

IRandArg↑ 70.8 52.4 -23.8

Table 5.6: Results for models across different argument-replacement tasks on

Levy/Holt. The highest and lowest recall scores are indicated across replacement

settings for a given model. Notably, recall decreases sharply across settings in all mod-

els.

tion when that entity is discussed in novel inferences: the more a model has read about

an entity during pretraining, the less capable it is of drawing novel natural language

inferences involving it, even though those inferences do not require detailed knowl-

edge of the entity. Like §5.5, the effect is consistent across models, indicating LLM

pretraining is responsible.

5.6.2 Results on RTE-1

The RTE-1 dataset contains complex natural language statements with varied linguis-

tic features, so predictions about entailment are not decidable only on the basis of

contained predicates. However, RTE-1 is a difficult challenge set for models, and in-

teresting to compare to in the broader domain of NLI. Though the sentences are much

more complex, an analogous experiment is conducted by first identifying spans of

named entities and their respective entity types, then replacing the entities with new

ones. Results are shown in Table 5.7.
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RTE-1

Model Task Precision Recall ∆-Recall

LLaMA

I 74.5 52.5 0

IGenArg 70.9 57.3 +4.8

IRandArg↓ 66.9 60.5 +8.0

IRandArg↑ 70.6 51.5 -1.0

GPT-3.5

I 80.6 96.5 0

IGenArg 79.7 91.3 -5.2

IRandArg↓ 80.1 82.5 -14.0

IRandArg↑ 81.9 80.5 -16.0

PaLM

I 90.3 84.0 0

IGenArg 92.3 71.5 -12.5

IRandArg↓ 87.8 82.5 -1.5

IRandArg↑ 88.2 82.0 -2.0

Table 5.7: Results for models across different argument-replacement tasks on RTE-1.

The highest and lowest recall score are indicated across replacement settings, per-

model.

Similar trends are observed to those reported on Levy/Holt. GPT-3.5 performs very

consistently between Levy/Holt and RTE-1 in terms of degrading recall when infor-

mation is changed in each sample. Model performance is significantly worse than the

original dataset when using generic arguments, and worse still using type-constrained

random arguments. Further, across all three LLMs across both datasets, models consis-

tently achieve worse recall using high-frequency entities than low-frequency entities,

supporting the claim that increasing the frequency of entity occurrence in training data

impedes generalization.

Different from in Levy/Holt, some noisiness in LLaMA’s predictions are observed

on RTE-1; the recall on the original task is actually lower than the generic argument

condition and the low-frequency entity condition. It is important to note that overall,

LLaMA is the weakest LLM tested in this experiment on both Levy/Holt and RTE-1,

and that its performance on RTE-1 is particularly low. It may be that the increased dif-

ficulty of RTE-1 over Levy/Holt (due to having much more linguistic variation) is sim-

ply too complex for LLaMA, which is neither the largest LLM tested, nor instruction-
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Task GPT-3.5 Instructed to Ignore Attestedness Not Instructed

I P(Entail | Attested) 74.3 77.6

I P(Entail | ¬Attested) 57.8 63.6

IRandPrem P(Entail | Attested) 39.0 41.3

IRandPrem P(Entail | ¬Attested) 17.6 18.8

Table 5.8: The probability of positive predictions in I and IRandPrem tasks are estimated

given that the hypothesis is predicted attested, Λ = Attested. Not instructed results

are copied from Figure 5.2 and listed here for ease of comparison; also note that all

IRandPrem = Entail predictions are false positives. Very little change is observed be-

tween instruction settings.

finetuned.

A smaller gap is also observed between PaLM’s recall rates across dataset con-

ditions, though the gaps are consistent with the claims of this work. And while the

model appears able to generalize to conditions in which random real arguments are

inserted, recall on the generic argument condition is significantly degraded. Failure on

this control condition indicates that the model may not be generalizing as well as the

other conditions would imply.

5.6.3 Instructing LLMs to Ignore Attestation

In §5.5 and §5.6, it is shown that entailment predictions from LLMs are strongly bi-

ased by their predictions on the attestation of hypotheses. It is possible that there are

intuitive prompt engineering techniques to steer LLM behavior away from utilizing

attestation.

Towards this goal, a further investigation was conducted by prepending a brief task

description to the few-shot prompts (illustrated in Table 5.3, bottom) explicitly in-

structing the models to ignore the attestedness of individual statements: “Please check

the entailments between the following hypothetical statements. Ignore the veracity of

these statements.”

The experiments in §5.5 and §5.6 are re-done using the new template and GPT-3.5,

since GPT-3.5 is an instruction-finetuned model trained to be responsive to prompts,

where the other two LLM families are only pre-trained. Despite having been instruction-

finetuned, the results with GPT-3.5 show marginal improvement in model behavior.
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Levy/Holt (Directional)

GPT-3.5 Condition Task Precision Recall ∆-Recall

Few-shot, instructed to ignore attestedness.

I 64.9 90.8 0

IGenArg 73.5 69.3 -21.5

IRandArg↓ 64.6 68.4 -22.4

IRandArg↑ 67.5 58.1 -32.7

Few-shot, no instructions.

I 62.4 92.3 0

IGenArg 65.1 75.7 -16.6

IRandArg↓ 65.5 66.5 -25.8

IRandArg↑ 68.8 55.3 -37.0

Table 5.9: GPT-3.5 predictions when models are explicitly instructed to avoid taking the

attestedness of individual statements into account. In the upper half are the instructed

behavior, and in the lower half are the previous few-shot results reproduced from Table

5.6. Differences in recalls remain at a similar scale, with precision again stable, and the

benefit from the explicit instruction is marginal.

In Table 5.8, it is shown that instructing GPT-3.5 to ignore attestation does not help

narrow the gap between Λ = Attested and Λ = ¬Attested; instead, probabilities of

predicting Entail went down by similar amounts, indicating that the model becomes

slightly more conservative in predicting positives when instructed to ignore attestation,

but not in a useful manner.

Further, as shown in Table 5.9, despite the explicit instruction, recall still drops

at similar scales when arguments are randomly replaced with the same sets of fre-

quent/infrequent replacement entities as before. Since GPT-3.5 has been instruction-

finetuned to respond to prompts, its failure means eradicating such biases from model

outputs is a difficult task, one that needs further research attention.

5.7 Experiment 3: Relative Frequency Bias

The conditioning experiments from §5.5 are continued, now exploring the relative fre-

quency bias. Sample labels for this bias are denoted by the model-agnostic Φ as de-

scribed in §5.3.1. Φ labels the conformance of sample predicates to the bias: Φ<

means P is less corpus-frequent than H by a margin (positive class), Φ> means P more
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Figure 5.3: Estimated probability of predicting Entail for random-premise Levy/Holt

conditioned on relative frequencies (Φ), with original (IRandPrem) or generic (IGenArg
RandPrem)

entities. Predicting Entail is false positive hallucination (lower is better). Models hallu-

cinate more often when test samples conform to the relative frequency bias (Φ<) than

when not (Φ>).

frequent than H by the margin (negative class). To control for differences between

datasets, the margin is set so that 1/3 of samples are classed as “roughly equal” (Φ≈),

which are then discarded.

Following the observations in §5.6, a generic-argument transformation is further

applied to control for attestation, yielding IGenArg
RandPrem. With the entities masked, mod-

els cannot recall propositional memory for this task: by re-calculating the Λ measure

with generic arguments, only 2 hypotheses are still predicted as Attested by GPT-3.5,

whereas for LLaMA and PaLM, the numbers are also only 6.2% and 3.9%. Addition-

ally, as with IRandPrem, here the entailment label of each sample remains No-Entail,

so any Entail prediction is false positive hallucination.

5.7.1 Results

The probabilities of models predicting Entail are estimated conditioned on the Fre-

quency label Φ, between IRandPrem and IGenArg
RandPrem settings. The results are presented

in Figure 5.3. A clear and consistent rise of hallucination is observed when samples

conform to the bias. Namely, in case of Φ<, models are more likely to predict Entail,

even though no semantic relation exists between P and H.
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Number of Entries Levy/Holt RTE-1

LLaMA GPT-3.5 PaLM LLaMA GPT-3.5 PaLM

ΛCONSISTENT 955 947 999 479 447 480

ΛADVERSARIAL 829 837 785 321 353 320

ΦCONSISTENT 972 286

ΦADVERSARIAL 220 247

Table 5.10: Subsets defined by the consistency between entailment label L and ei-

ther Λ (hypothesis attestation prediction from each LLM) or Φ (model-agnostic relative

frequency bias). CONSISTENT subsets are where L agrees with Λ/Φ. ADVERSARIAL

subsets are where L disagrees with Λ/Φ.

In IRandPrem, when entities are available, this effect is moderate. On the other hand,

with IGenArg
RandPrem when entity-based memory is blocked, a decrease is observed in the

overall level of hallucination, but the separation between Φ< and Φ> becomes more

drastic, to 1.6x, 1.8x and 2.0x for LLaMA, GPT-3.5 and PaLM respectively. This indi-

cates a tension between Λ and Φ: propositional memory may be used when available,

and if not, the predicate pairing may be attended to more closely. Again, the Φ ef-

fect is observed across the three model families, revealing its root in the large-scale

pretraining process, rather than model peculiarities or fine-tuning.

5.8 Impact of Bias on Performance

Two sources of hallucination by LLMs have been demonstrated on inference tasks.

Now, their impact on model performance is assessed.

LLMs’ performance is compared between NLI subsets that are consistent or adver-

sarial to each factor. A sample P ⊨ H? is consistent with a factor when the prediction

by the factor agrees with the gold entailment label; conversely, it is adversarial to a

factor when the prediction with the factor disagrees with the label.

For example, “Google bought YouTube ⊨ Google owns YouTube” is consistent

with the attestation bias of every model, because the conclusion Google owns YouTube

is attested in every LLM’s training data, and the sample label is Entail; “Apple owns

Samsung ⊭ Apple bought Samsung” is also consistent, because its conclusion is not

attested and the sample label is No-Entail. The reverses of these two samples are
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Levy/Holt

Attestation (Λ) Rel. Frequency (Φ)

Model Task cons. adv. diff. cons. adv. diff.

LLaMA I 65.5 8.1 -57.4 42.1 32.3 -9.8

GPT-3.5 I 85.0 10.8 -74.2 53.5 43.2 -10.3

PaLM I 79.1 31.5 -47.6 63.3 53.0 -10.3

LLaMA IGenArg 52.1 34.4 -17.7 55.3 34.9 -20.4

GPT-3.5 IGenArg 67.1 18.8 -48.3 50.4 35.0 -15.4

PaLM IGenArg 58.1 46.6 -11.5 59.9 47.3 -12.6

Table 5.11: LLM performance on subsets where Λ/Φ is consistent /adversarial to entail-

ment labels, measured with AUCnorm (0% = random chance performance). Decrease

from cons to adv subsets are shown in the diff. columns.

adversarial, since their respective attestedness (unchanged) does not agree with the

entailment labels (now flipped). For each subset, there is substantial representation in

both Levy/Holt and RTE-1 (see Table 5.10).

While earlier experiments inspected model textual responses to characterize be-

havior change, area under the precision-recall curve (AUC) is used here to summarize

model performance over a tunable confidence threshold (scoring described in §5.4.2),

which is better for measuring practical discriminative power when a modeler is able

to tune a threshold for the desired application. Following Li et al. (2022a), AUC val-

ues are re-scaled to normalize over the label distribution, yielding AUCnorm values that

assign random classifiers 0% and perfect classifiers 100%.

5.8.1 Results

Results are reported in Table 5.11 and Table 5.12. On the standard inference task I,

the performance drop from ΛCONSISTENT to ΛADVERSARIAL is severe for all 3 LLMs: they

deteriorate from very good classifiers to poor or even near-random ones. This fragility

from the attestation bias can be alleviated by masking entities with type-identifiers

(condition IGenArg), which reduces the performance drop.

On the other hand, with the generic arguments in IGenArg, LLMs are forced to

focus on the predicates in each proposition. As a result, the impact of the relative

frequency bias is intensified. From the standard inference task I to IGenArg, the average
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RTE-1

Attestation (Λ) Relative Frequency (Φ)

Model Task cons. adv. diff. cons. adv. diff.

LLaMA I 62.1 37.4 -24.7 55.5 51.7 -3.8

GPT-3.5 I 84.6 47.5 -37.1 77.6 43.4 -34.2

PaLM I 87.1 83.4 -3.7 87.5 81.0 -6.5

LLaMA IGenArg 59.2 30.4 -28.8 51.7 39.4 -12.3

GPT-3.5 IGenArg 80.1 56.4 -23.7 79.6 49.1 -30.5

PaLM IGenArg 78.1 84.4 +6.3 85.4 78.7 -6.7

Table 5.12: LLM performance on subsets where Λ/Φ is consistent /adversarial to entail-

ment labels, measured with AUCnorm (0% = random chance performance). Decrease

from cons to adv subsets are shown in the diff. columns.

performance drop from the cons. to adv. subsets with respect to Φ is widened from

10.1% to 16.1% for Levy/Holt and from 14.8% to 16.5% for RTE-1. The differences

for Φ-consistency subsets are generally narrower than Λ-consistency subsets, possibly

because the relative frequencies require generalizing from instances, and may be more

difficult to capture, and potentially because frequency measures with Google N-gram

are a crude estimate of the actual frequencies in LLM pretraining corpora.

5.9 Conclusion

Despite promising performance on original datasets, across several major LLM fami-

lies and experimental settings, two important biases in the performance of LLMs are

demonstrated on natural language inference tasks, which may also manifest in applied

tasks as hallucination. Contrary to claims of LLM general reasoning capabilities, this

work shows that much of this performance is achieved by (1) recall of relevant mem-

orizations and (2) corpus-based biases like term frequency. Since these factors are

reproduced in all models, it is established that they originate in LLM pre-training, the

common training phase, and that they are not corrected during GPT-3.5 fine-tuning.

In conclusion, LLMs, though powerful, use unsatisfactory tools for the basic tasks

of language understanding and inference. This work proposes several approaches to

control for these biases in evaluation, and ultimately recommends that further research
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is done to alleviate these biases before LLMs may be trusted to reason robustly about

language, especially in domains in which precision is crucial.

5.9.1 Limitations

This work discusses two prominent sources of hallucination for LLMs in natural lan-

guage inference tasks. It is important to acknowledge that this is not an exhaustive

search of all the sources, and further exploration should be done in future work.

Of note, after controlling for the factors discussed, there remains residual, unex-

plained performance on NLI tasks. This residual might be due to other undiscovered

biases or even generalising inference capability. Further exploration of this residual is

left to future work.

As discussed in §5.4.2.2, a range of popular LLM prompting techniques are com-

pared, and the most promising approaches are selected. There could also be other

novel prompting techniques which help the LLMs resist the biases discussed in this

work. This is an open question and indicated for future research.

5.9.2 Ethical Considerations

This work discusses two major sources of hallucination in LLM output when asked

to perform natural language inference, which is a capability required of many down-

stream tasks such as summarization, question answering, etc. This work shows that

users of LLMs may be subjected to faulty judgements if the content of their request

overlaps with data in pretraining. However, it is difficult to ascertain for both a user or

modeler exactly what is contained in pretraining data, or how this will interact with a

user’s query. The proposed attestation query of this work shows promise in detecting

potential overlaps, but model responses in applications of these cases are not explored.

Further, the relative frequency bias demonstrates a much more subtle problem of cor-

pus distribution that is naturally inherent to model pretraining on human generated

text.

In light of these, the potential harms of LLM use for drawing natural language

inferences may include: offering inaccurate or irrelevant information to a user’s query

or contradiction of information provided in-context with a user’s query.





Chapter 6

Conclusion

This thesis addresses the problem of directional inference over predicates in the broad

and open domain of natural language. Sometimes called “commonsense” inference

or “entailment,” it is a capability that is foundational to humans and models alike for

many downstream tasks such as question answering, summarization, and more. And

while simple non-directional methods such as similarity between terms are widely

used, only directional entailment enables high precision language inference, a central

aspect of this thesis.

6.1 Summary of Findings

Several key contributions are made to the problem of directional predicate inference

in the open domain. This thesis begins by considering Entailment Graphs, which are

constructed by machine reading of text and the application of a learning algorithm, the

Distributional Inclusion Hypothesis. They contain vertices representing natural lan-

guage predicates encountered in training corpora and edges representing their explicit

directional entailments. However, they are restricted in terms of the predicates learned

in these graphs. First, EGs learned using the DIH are restricted in their inability to rep-

resent entailments between predicates of different valencies. Second, EGs learned by

machine reading of corpora face a significant practical restriction in learning predicate

symbols for the totality of natural language predicates, which are unbounded.

This thesis expands on the underlying learning theory of Entailment Graphs, the

DIH, demonstrating novel learning of entailments across valencies in a fully open do-

main of natural language. However, this thesis recognizes that an EG, especially one

built using machine reading of corpora, faces a practical limitation. Due to the distri-
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bution of predicates in natural corpora, it is impractical to learn entailments for every

predicate in a language by machine reading, yet simultaneously very likely that many

of these unlearned predicates may be involved in real queries. The number of natu-

ral language predicates is unbounded, so this problem likely affects any extant EG.

Thus, this thesis turns to sub-symbolic encoding of predicates using Language Models

to explore the possibility of smoothing EGs at test-time to handle unseen predicates.

Language Model embeddings are shown to benefit in detecting directional entailment

coupled with an Entailment Graph, but only for smoothing premise predicates. The

smoothing of hypothesis predicates is shown to be possible in principle, but remains a

challenge. Finally, following from this, this thesis explores the use of Large Language

Models on their own for directional entailment detection. While they show superficial

performance, LLMs are demonstrated to be only an approximation of linguistic rea-

soning, exploiting memorized world knowledge and other corpus-related artifacts in

their predictions.

6.1.1 Multivalent Entailment Graphs

Chapter 3 presents an extension to the Distributional Inclusion Hypothesis in the con-

text of predicate entailment learning. This thesis presents the Multivalent Distribu-

tional Inclusion Hypothesis, which offers a more flexible interpretation which accounts

for the roles of arguments in eventualities in text. This allows for the learning of Entail-

ment Graphs which contain entailments within and between predicate valencies. Now,

entailments may be learned such as “x kills y” entails “y is dead.” The MDIH describes

that, provided enough training text, entailments may be learned from a predicate relat-

ing any number of arguments to predicates relating any subset of its arguments. This

is demonstrated by learning entailments from a binary predicate relating arguments x

and y to a unary predicate applying to just x or y. These binary-to-unary entailments

are learned in addition to binary-to-binary and unary-to-unary entailments.

Additionally, a new automatic boolean question answering task is developed, which

can be tailored to generate test questions for models, which verify if hypotheses are

true or false, conditioned on a span of news text. This new evaluation is the first to test

for multivalent entailment of predicates, and the novel Multivalent Entailment Graphs

show a clear advantage over baselines. They draw from both binary and unary an-

tecedents to answer more questions than using a single valency alone. Further, on these

questions of fine-grained semantics, the utility of directional inference is demonstrated
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to surpass non-directional similarity measures implemented using computationally-

comparable, unsupervised Language Models like RoBERTa. Yet, the limitation of

extant EGs is also shown; like binary-only EGs, Multivalent EGs also suffer from

vertex sparsity, showing limited recall compared to Language Models due to missing

predicates in the graph at test-time.

6.1.2 Combining Entailment Graphs and Language Models

Following from these findings, Chapter 4 explores a means of combining the bene-

fits of Entailment Graphs with Language Models, while maintaining an unsupervised

approach with high directional precision. First, a theory is developed for the smooth-

ing of symbolic inference models such as Entailment Graphs to overcome sparsity of

predicate symbols by introducing a related, replacement predicate which completes a

transitive chain from the original premise to the original hypothesis. Such chains are

guaranteed to maintain directional precision, if they can be constructed.

A method of EG smoothing is presented in which a Language Model encodes a

query predicate into a vector embedding so that a nearest neighbor approximation can

be found amongst the learned predicates in the EG, and the EG is then able to complete

the directional inference. Due to the naturally arising frequency/generality gradient in

Language Model embedding space, it is predicted that this method should produce

more semantically general approximations for a target predicate, and will thus com-

plete a transitive chain when used for premise-smoothing. As predicted, this method

is demonstrated for premise-smoothing to positive effect, improving recall and pre-

cision on several test datasets. Premise-smoothing even shows a benefit in boolean

question answering, on a dataset similar to that of Chapter 3. In particular, it is use-

ful for questions which have sparse supporting evididence, when missing a possible

premise is most harmful. Further, this smoothing method is shown to be detrimental to

hypothesis smoothing, which requires semantic specialization, not generalization.

A controlled experiment using WordNet relations to produce generalized or spe-

cialized approximations corroborates these findings. It is concluded that hypothesis-

smoothing is intrinsically more difficult due to the increasing sparsity of highly-specialized

predicates in text and Entailment Graphs.
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6.1.3 Entailment by Large Language Models Alone

The effective leveraging of Language Model embedding space for directional entail-

ment, as well as contemporaneous advances in Language Model research, naturally

lead to the research question investigated in Chapter 5. This chapter investigates the

best available Language Models for their ability to perform predicate inference on

their own, unsupervised and in the open-domain of natural language, by processing

free text without an Entailment Graph. A series of behavioral experiments are con-

ducted on several Large Language Models (LLaMA-65B, GPT-3.5, and PaLM-540B)

to test their capability for directional predicate inference. High performance on ba-

sic directional entailment datasets would indicate this capability is available for other

useful tasks like question answering or summarization, important use-cases for these

interactive models. Indeed, on several datasets including one used in earlier tests with

EGs, LLMs appear to perform excellently. But by altering targeted aspects of test

statements and observing model behavior change, two unsatisfactory sources of model

performance are identified.

Across all three model families and various prompting techniques, LLMs are shown

to use two biases in inference decisions, and their origin is established in the pretrain-

ing phase, the step common to all models. The objective of pretraining, which is the

statistical modeling of the natural distribution of human-generated text, leads to (at

the level of sentences) memorizing individual statements, and (at the level of corpora)

learning typical patterns of usage. LLMs are shown to use factual recall when an-

swering predicate inference questions, affirming entailments more readily when the

hypothesis is attested by training data, regardless of the premise or actual entailment

label. Further, LLMs are similarly shown to use a corpus-based heuristic, the relative

frequency of predicates in training data (the same phenomenon leveraged in Chapter 4)

to affirm hypotheses regardless of entailment label. In data subsets designed to be ad-

versarial to these biases, LLM performance degrades significantly, sometimes even to

near-random levels. Though there may be other unknown biases, there is still unex-

plained performance, and LLMs may be capable of generalizing language inference to

a degree. However, it is clear that LLMs present only an approximation of linguistic

reasoning for predicate inference, which may be useful in tasks where false positives

can be tolerated, but not in tasks where precision is critical.
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6.2 Directions for Future Work

The work presented in this thesis points toward several directions for future research.

6.2.1 Discovering Metarelations in Entailment Graphs

Entailment Graphs present many benefits, such as being explainable and editable, as

well being theoretically-founded in construction using the Distributional Inclusion Hy-

pothesis. Further refinement to their construction may yield interesting and useful re-

sults, similar to the work presented here in multivalent learning, or the work in Bijl de

Vroe (2023) that adds temporal disambiguation of individual predicate occurrences

which are used for learning general typed predicate entailments.

One such avenue is metarelations which can be derived to describe entailment re-

lations in a more fine-grained manner. Currently, all EGs coarsely define entailment

between two predicates, such as x buys y entails x owns y but do not elaborate on the

nature of this entailment. In this case, buys is a direct cause of owns, a sufficient, but

not necessary, causal factor, since there may be other sufficient causes which lead to

ownership, such as inheritance. But entailment may not always signal causation. For

example, x gets elected to y entails x is a candidate for y, but gets elected does not

cause is a candidate. This is instead an example of precondition: is a candidate is a

necessary but not sufficient causal factor for gets elected, so given a predicate such as

gets elected to it must necessarily also be true that there was is a candidate leading up

to it.

Knowledge of causal factors goes beyond the capability of directional inference

and would be very useful for robust models of reasoning, to answer “why” and “how”

questions such as how did x come to own y? It may be that all entailment relations also

possess an underlying causal metarelation, or there may be other kinds of entailments

as well. Investigating such a classification scheme and deriving metarelations is open

for future work.

6.2.2 Improvement in Entailment Graph Coverage

The problem of vertex sparsity remains a challenge for Entailment Graphs. This thesis

contributes its discovery, an explanation of the problem, and a first attempt at solving

it using unsupervised means. But there may be better ways of overcoming this issue.

First, though more difficult than premise-smoothing, it may still be possible to
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provide hypothesis-smoothing by leverage Language Model embeddings to discover

specializations of missing predicates which are present in the EG. Controlled experi-

ments with WordNet indicate that specializations are indeed present in the Entailment

Graph of Hosseini et al. (2018), which are useful in smoothing. Recovering these using

a more robust method such as embedding search is an open direction.

Second, it may be possible to use the Entailment Graph learning signal (machine

reading using the DIH) to train a different kind of model which solely represents predi-

cates in a subsymbolic way, without construction of an extant EG. For example, a neu-

ral network which processes subsymbolic word embeddings. The RoBERTa-finetuned

model in Schmitt and Schütze (2021) is an example of this, and is shown to be very

performant on datasets, though it overfits to artifacts during training, leaving an open

question if such a model is capable of learning directional entailment in the open do-

main, using generalizing linguistic reasoning by attending to different features in the

input. Training a model using confident Entailment Graph edges may be a promising

direction.

6.2.3 Improvement in LLM Training Objectives

Large Language Models are being continuously improved, and it may be advantageous

to improve model pretraining in a way which induces better generalizing language

inference. For example, it may be that including synthetic data which demonstrates the

usage of a predicate with a more comprehensive variety of arguments may help LLMs

learn predicate representations which are not tied as strongly to particular entities. Of

course, the objective of next-word prediction characteristic of LLM pretraining is not

actually tied to triples at all, and this fact could (speculatively) be leading to leakage

and blending of facts, another source of hallucination. It may ultimately be required to

rethink the training objective in order to prevent LLMs from hallucinating new facts,

though this may not solve the problem of LLMs using attestation in lieu of genuine

language inference.
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nearest neighbors in high-dimensional data. Journal of Machine Learning Research,

11(86):2487–2531.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,

W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified

text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Rosch, E. and Mervis, C. B. (1975). Family resemblances: Studies in the internal

structure of categories. Cognitive Psychology, 7(4):573–605.



Bibliography 121

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., and Boyes-Braem, P. (1976).

Basic objects in natural categories. Cognitive Psychology, 8(3):382–439.

Schank, R. (1975). The structure of episodes in memory. In Bobrow, D. and Collins,

A., editors, Representation and Understanding, pages 237–272. Academic Press,

New York.

Schmitt, M. and Schütze, H. (2019). SherLIiC: A typed event-focused lexical infer-

ence benchmark for evaluating natural language inference. In Proceedings of the

57th Conference of the Association for Computational Linguistics, pages 902–914,

Florence, Italy. Association for Computational Linguistics.

Schmitt, M. and Schütze, H. (2021). Language models for lexical inference in context.

In Proceedings of the 16th Conference of the European Chapter of the Association

for Computational Linguistics: Main Volume, pages 1267–1280, Online. Associa-

tion for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare

words with subword units. In Proceedings of the 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725,

Berlin, Germany. Association for Computational Linguistics.

Shwartz, V. and Choi, Y. (2020). Do neural language models overcome reporting bias?

In Proceedings of the 28th International Conference on Computational Linguistics,

pages 6863–6870, Barcelona, Spain (Online). International Committee on Compu-

tational Linguistics.

Spärck Jones, K. (1972). A statistical interpretation of term specificity and its applica-

tion in retrieval. Journal of documentation.

Srinivasan, K., Raman, K., Samanta, A., Liao, L., Bertelli, L., and Bendersky, M.

(2022). QUILL: Query intent with large language models using retrieval augmenta-

tion and multi-stage distillation. In Proceedings of the 2022 Conference on Empiri-

cal Methods in Natural Language Processing: Industry Track, pages 492–501, Abu

Dhabi, UAE. Association for Computational Linguistics.
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