
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Laplacians for Structure
Recovery on Directed and

Higher-order Graphs

Xue Gong

Doctor of Philosophy

University of Edinburgh

2023

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Xue Gong)

ii

Lay Summary

In this thesis, we explore graph analysis using Laplacian matrices. These ma-
trices provide valuable insights into how components are connected and grouped
together. While there has been extensive research on undirected graphs, we iden-
tified a gap when it comes to analyzing more complex graphs when the connection
is directional or when the relationship involves more than two components. To ad-
dress this issue, we investigated mathematical frameworks for analyzing directed
graphs, hypergraphs, and directed simplicial complexes using graph Laplacians.
Specifically, we examined two existing Laplacian matrices for directed graphs
which consider the direction of edges and developed associated generative models.
We then extend this framework to hypergraphs where edges may connect more
than one node. In addition, we defined and analyzed a new Magnetic Hodge
Laplacian, which captures directional flows on triangles. Through case studies
on triangles and tori, we demonstrated its ability to identify flow direction and
discover direction-related patterns.

iii

Abstract

The spectral properties of Laplacian matrices offer valuable insights into the
structure of graphs. One significant application is the embedding of nodes into
a low-dimensional Euclidean space using the eigenvectors of a suitable Laplacian
matrix, enabling the recovery of the underlying connection pattern. Such embed-
ding proves relevant for various subsequent learning tasks, including node reorder-
ing, clustering, and visualization. Despite extensive research on undirected graph
Laplacians, there remains a gap in analyzing more complex graph structures.
This includes situations where relationships are asymmetrical and represented by
directed edges, as well as scenarios involving interactions among more than two
agents, effectively captured using hypergraphs or simplicial complexes.

To address this research gap, we investigate mathematical frameworks utiliz-
ing graph Laplacians for directed networks, hypergraphs, and directed simplicial
complexes. For directed graphs, we examine two existing Laplacian matrices
associated with periodic and linear structures and developed corresponding gen-
erative models. Specifically, we establish and exploit connections between node
reordering techniques, achieved through minimizing an objective function, and
maximizing the likelihood of a random graph model. Leveraging this random
graph framework, we compare the likelihood of each structure. Numerical ex-
periments are conducted using synthetic graphs and graphs from social sciences,
biology, and ecology. Furthermore, we extend this framework to hypergraphs and
demonstrate its efficacy in quantifying structure strength, performing clustering,
and predicting hyperedges on synthetic hypergraphs and social networks. Addi-
tionally, we define and analyze a new first-order Magnetic Hodge Laplacian for
directed simplicial complexes, capturing directional flows on triangles. Through
the analysis of triangle and torus examples, we showcase its ability to discover
direction-related patterns.

iv

Acknowledgements

First, I would like to express my sincere gratitude to my supervisors, Des Higham,
Kostas Zygalakis, and my collaborator, Ginestra Bianconi, for their invaluable
guidance and support. Their patience, inspiration, and thoughtful feedback have
contributed significantly to shaping this work. I am also grateful to the MAC-
MIGS CDT Scholarship under EPSRC grant no. EP/S023291/1 and the Alan
Turing Institute for funding my research and providing a conducive research en-
vironment. I thank Colin Singleton from the CountingLab for suggesting the
Dunnhumby data used in this thesis.

I greatly appreciate my family for their unwavering support. Their love and
belief in me have been a constant source of motivation throughout this journey.
I am especially grateful for the weekly chats with my mom, whose cheerful and
relaxed personality always brings a sense of calm. Having a twin sister, Lynn,
has been a blessing. Her encouragement has been a source of strength for me.

I want to extend my heartfelt gratitude to my friends, whose support has
been invaluable. To Yajing, for being such a good friend and walking together
on this research journey. To Xutong, Yue, Lin, Lily, Penghua, and Yano, for
your friendship and kindness. To all my friends in Edinburgh, you have made
this experience truly memorable. And to Mica, thank you for your advice and
encouragement.

Finally, I would like to especially thank Jason for his love, support, and trust.
He has been the greatest source of motivation throughout the completion of this
thesis. Thank you for your constant encouragement and for standing by my side
during this journey.

v

To Jason

vi

Contents

Lay Summary iii

Abstract iv

Acknowledgements v

Contents viii

1 Introduction and Overview 1
1.1 Introduction . 1
1.2 Notation . 3
1.3 Graph Laplacian . 4

1.3.1 Undirected Graph Laplacian 4
1.3.2 Spectral Properties of Graph Laplacian 4
1.3.3 Spectral Embedding . 7
1.3.4 Directed Graph Laplacian 9

1.4 Higher-order Networks . 10
1.5 Node Embedding . 10
1.6 Generative Graph Models . 11

2 Directed Graph Laplacians 12
2.1 Introduction . 12
2.2 Magnetic and Trophic Laplacians 14

2.2.1 Notation . 14
2.2.2 Spectral Methods for Directed Networks 14
2.2.3 The Magnetic Laplacian 14
2.2.4 Magnetic Laplacian and Connection Laplacian 18
2.2.5 The Trophic Laplacian . 19

2.3 Random Graph Interpretation . 19
2.3.1 The Directed pRDRG Model 19
2.3.2 The Trophic Range-dependent Model 23
2.3.3 Generalised Random Graph Model 24
2.3.4 Model Comparison . 27

2.4 Results on Synthetic Networks . 28
2.4.1 Directed pRDRG Model 28
2.4.2 The Trophic RDRG model 29

2.5 Results on Real Networks . 30

vii

Laplacians for Structure Recovery on Directed and Higher-order Graphs viii

2.5.1 Food Web . 31
2.5.2 Influence Matrix . 31
2.5.3 Yeast Transcriptional Regulation Network 33
2.5.4 C. elegans Frontal Neural Network 36
2.5.5 Other Real Networks . 36

2.6 Conclusion . 37

3 Hypergraph Laplacian 39
3.1 Introduction . 39
3.2 Notation . 41
3.3 Linear hypergraph embedding . 41
3.4 Periodic hypergraph embedding 43
3.5 Generative hypergraph models . 45

3.5.1 The Discrete Constraint 47
3.5.2 Model comparison . 48
3.5.3 Weighted Generative Hypergraph Model 48

3.6 Experiments . 51
3.6.1 Model Comparison . 51
3.6.2 Hyperedge Prediction . 57

3.7 Conclusion . 58

4 Magnetic Hodge Laplacian for Simplicial Complexes 60
4.1 Introduction . 60
4.2 Background . 61

4.2.1 Simplicial Complex . 61
4.2.2 Hodge Laplacian on Simplicial Complex 65
4.2.3 2-Manifolds . 67

4.3 Magnetic Hodge Laplacian . 68
4.3.1 Boundary Operator Formalism 69
4.3.2 Element by Element Formalism 71

4.4 Case Studies on Directed Triangles 76
4.4.1 Case 1 . 78
4.4.2 Case 2 . 81
4.4.3 Case 3 . 82
4.4.4 Case 4 . 84

4.5 Case Study on Triangulated Torus 86
4.5.1 Type 1 Torus . 89
4.5.2 Type 2 Torus . 89

4.6 Conclusion . 91

5 Conclusion and Future Work 94

Bibliography 104

viii

Chapter 1

Introduction and Overview

1.1 Introduction

Graph-typed data sets capture interactions between pairs of nodes, where a node
represents an agent, such as a person, molecule, or website, and an edge rep-
resents the relationship between two agents, such as their friendship, functional
interaction, or hyperlinks. Typical graph-typed data, therefore, captures pairwise
relationships. Hypergraphs and simplicial complexes generalize graphs to higher
orders where interactions can involve more than two nodes. The term “graph” is
commonly used in the fields of mathematics and computer science, while the term
“network” is more widely employed in the domains of data science, biology, and
social sciences. For this thesis, we will be using the terms “graph” and “network”
interchangeably.

Graph-typed data are prevalent in social science and biology when the interac-
tions between components can be directly observed. Examples include political
blog networks [1], transportation networks [34], and gene-regulatory networks
[98]. In such scenarios, important questions arise, such as: “what are the closely
connected clusters?”, “can we predict node labels based on connections?”, and
“can we infer missing links from observed data?” In essence, our goal is to deduce
node-level information from their patterns of interaction.

In other applications, we may only have node-level information, and edges do
not exist in the raw data. In this case, we can construct the edges based on affinity
and similarity between data points. Such constructions allow for the application
of graph-based algorithms to effectively learn from the data. For example, with
point cloud data or image data, one can construct graphs from pairwise distances
or similarities. Then spectral clustering using the graph Laplacian matrix can
help classify and segment image data [99]. Compared with k-means, which returns
clusters that are contained in convex sets, spectral clustering can detect non-
convex boundaries between clusters. The latter case is called non-linear clustering
[108]. In another example in geometric processing, graphs or simplicial complexes
can arise from the discretization of continuous manifolds [8, 97]. By computing
a heat flow involving a graph connection Laplacian, one can efficiently compute
the parallel transport of tangent vectors on the curved surface.

One of the fundamental tasks on this type of data is to embed the nodes into

1

Laplacians for Structure Recovery on Directed and Higher-order Graphs 2

a low-dimensional Euclidean space [90, 96] to facilitate various downstream tasks,
such as node clustering, node reordering, and graph visualization. Node clustering
is an important unsupervised learning task on graphs, which partitions nodes
into disjoint sets, where typically, nodes within the same cluster tend to have
more interactions with each other than with nodes from different clusters. Node
reordering is helpful in revealing a hierarchy between the nodes, such as ranking
sports teams based on their pairwise match results. Graph visualization typically
involves positioning nodes according to their learned embedding to reveal the
underlying structural patterns in the data. However, in real-world datasets, these
patterns may be obscure. Therefore, in addition to visualizing the reordered
network, it is essential to quantify the relative strength of different structures.

Several classes of embedding and clustering algorithms are used for graphs.
One type of algorithm involves analyzing Laplacian matrices that are related to
the graph [17]. Among these algorithms, spectral clustering is one of the most
extensively used [70]. This algorithm embeds vertices using eigenvectors of a
graph Laplacian matrix and applies k-means clustering to the embedded vertices
to partition the nodes into k clusters. Spectral clustering methods have been
extensively used due to their many advantages. One of their benefits is that
they can be implemented efficiently on vast sparse graphs, which are ubiquitous
in real-world applications. Furthermore, they have a robust theoretical founda-
tion, as they are supported by accompanying consistency theory [26, 107] and
performance guarantees [71, 86]. Additionally, they require less parameter tun-
ing and have demonstrated outstanding performance in various applications. In
this thesis, we focus on this category of algorithms, often referred to as spectral
algorithms, to derive node embeddings from eigenvectors of a Laplacian matrix.

Another type of algorithm involves solving maximum likelihood problems that
are associated with random graph models. In this setting, one assumes that the
graph is generated from a random process and then uses maximum likelihood esti-
mation to infer the underlying parameters of the model that best fit the observed
data. The Stochastic Block Model (SBM) [85] is one of the most popular mod-
els used in this context, which assumes that the graph contains several densely
connected subgroups.

In more complex scenarios, machine learning frameworks are utilized to de-
velop more sophisticated algorithms for graph analysis. For instance, the Graph
Convolutional Network (GCN) [46] framework uses a neural network to learn
node embeddings by aggregating information from the local neighborhood.

In this thesis, we take advantage of the concept of associating a spectral
method with a generative random graph model. This approach allows us to com-
pare the outputs of spectral methods based on the likelihood of the associated
random graph. This connection was first proposed in [48], which demonstrated
that the standard spectral method for undirected networks is equivalent to maxi-
mum likelihood optimization assuming a class of range-dependent random graphs
(RDRGs) introduced in [44]. In [45, 86], this idea was further developed, and a
likelihood ratio test was created to determine whether a network with a range-
dependent structure is more linear or periodic.

The thesis is organized as follows. In this chapter, we present background ma-
terial and examine the node embedding problem using the graph Laplacian. Ad-

2

Laplacians for Structure Recovery on Directed and Higher-order Graphs 3

ditionally, we explore how this relates to minimizing distances between neighbors
in the embedded space. Chapter 2 will center on the directed graph Laplacians.
Specifically, we will explore two spectral embedding algorithms for directed graphs
and develop corresponding models for random graphs. These models will then be
utilized to measure the strength of linear and periodic structures. In Chapter 3,
we will extend the models to hypergraphs, which have edges that connect more
than two nodes. Since considering direction in hypergraphs is challenging and
strongly application dependent, we will focus on the undirected case. We will
then examine random hypergraph models for linear and periodic structures and
present empirical results for structure quantification and hyperedge prediction.
Chapter 4 will explore the Hodge Laplacian for directed simplicial complexes. We
will introduce a new 1-Magnetic Hodge Laplacian that incorporates the direction
of triangles. The Laplacian will be analyzed on directed triangles and tori. We
demonstrate that the proposed Magnetic Laplacian can assign phase angles to
edges based on edge and triangle directions. Lastly, we conclude the thesis and
discuss future research directions in Chapter 5.

1.2 Notation

Here we introduce some of the notation used throughout the thesis. Let G =
(V,E) be a graph consisting of a finite set of nodes V := {1, 2, ..., n} and an edge
set E = {{i, j} | i ̸= j ∈ V }. Here we assume an edge is an ordered set containing
two distinct vertices, meaning that self-loops are not allowed. An edge E = {i, j}
can be illustrated as i→ j, where i has a link to j. We can conveniently represent
all the nodes and edges in a graph with an n× n adjacency matrix A, such that

Aij =

{
1 if i, j ∈ E
0 otherwise.

(1.1)

The graph is undirected when A is symmetric, and directed otherwise. In subse-
quent chapters, we will also consider weighted graphs, where each edge i → j is
assigned a non-negative weight wij. In this case, we let Aij = wij. The degree
matrix D is a diagonal matrix with Dii = di, where di =

∑
j Aij is the degree of

the node i. A path on a graph is a sequence of distinct vertices such that each
pair of adjacent vertices are connected by an edge. The graph is connected if
there exists a path between all pairs of vertices; and the graph is disconnected
otherwise. Moreover, we denote i as the square root of −1. xT represents the
transpose of a vector x ∈ Rn, xH represents the conjugate transpose of a complex
vector x ∈ Cn, and ∥x∥ refers to the l2 norm of the vector. Let x ⊥ ν denote
that x is orthogonal to ν. The set of all permutation vectors, which consists of
all vectors in Rn with distinct components given by the integers 1, 2, . . . , n, is
denoted as P . We use 1 to represent an all-ones vector and Id stands for the
d× d identity matrix.

3

Laplacians for Structure Recovery on Directed and Higher-order Graphs 4

1.3 Graph Laplacian

1.3.1 Undirected Graph Laplacian

In this section, we consider graph Laplacians for undirected graphs. The standard
graph Laplacian matrix is widely used for node clustering, and it is defined as

L = D − A. (1.2)

Equivalently, one can write

Lij =


di if i = j

−1 if {i, j} ∈ E
0 otherwise.

Various versions of normalized Laplacian matrix have been widely used in
clustering and reordering tasks. For example, the symmetric normalized Lapla-
cian matrix is defined as

Lnorm = In −D−1/2AD−1/2.

Here, we assume that every node has degree ≥ 1, so that D is invertible. Eigen-
values of this matrix lie between 0 and 2 [17], which makes it easier to compare
graphs of different sizes. The eigenvalues and eigenvectors of the Laplacian carry
rich information about the geometry and connectivity of the graph. The Lapla-
cian L can be interpreted as an operator on the space of real-valued functions
defined on nodes.

Proposition 1.3.1 (Laplacian Operator on Graph). For a real-valued function
defined on nodes g : V → R, we have

Lg(i) =
∑
j∈V

Aij(g(i)− g(j)).

Proof. We have

Lg(i) = dig(i)−
∑
j∈V

Aijg(j) =
∑
j∈V

Aijg(i)−
∑
j∈V

Aijg(j) =
∑
j∈V

Aij(g(i)− g(j)).

In other words, the Laplacian operator calculates the overall difference in the
function values across the nodes that are connected to each other.

1.3.2 Spectral Properties of Graph Laplacian

The Laplacian matrix here is symmetric since both D and A are symmetric in
the undirected case. Therefore it is Hermitian, and we can apply the spectral
decomposition stated below. Note that while the standard graph Laplacian is

4

Laplacians for Structure Recovery on Directed and Higher-order Graphs 5

real, we will need to address the complex graph Laplacian later in the thesis,
especially when considering directed graphs. Consequently, in the following the-
orem, we make the assumption that the matrix is Hermitian to ensure that it can
be generalized to complex cases.

Theorem 1.3.1 (Spectral Decomposition of Hermitian Matrices [69]). Let A ∈
Cm×m be a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λm and associated
orthonormal eigenvectors v1,v2, ...,vm such that Avi = λivi. Then there is a
unitary matrix U , whose columns are v1,v2, ...,vm, and a real diagonal matrix
Λ = diag(λ1, λ2, ..., λm) such that

A = UΛUH =
m∑
i=1

λiviv
H
i .

Furthermore, many interesting properties of the graph Laplacian can be found
by examining the following quadratic form.

Proposition 1.3.2 (Quadratic Form of the Graph Laplacian). For any vector
x = [x1, x2, ..., xn]

T ∈ Rn, we can write

xTLx = 1
2

∑
i,j

Aij(xi − xj)2. (1.3)

We reproduce the proof from [70] below:

Proof. We have

xTLx = xT (D − A)x = xTDx− xTAx =
∑
i∈V

xi
∑
j∈V

Aijxi −
∑
i,j∈V

xiAijxj

= 1
2
(
∑
i,j∈V

x2iAij +
∑
j,i∈V

x2jAji − 2
∑
i,j∈V

xiAijxj)

= 1
2

∑
i,j∈V

Aij(x
2
i + x2j − 2xixj) =

1
2

∑
i,j∈V

Aij(xi − xj)2.

From the quadratic form (1.3), it is straightforward to see that the Laplacian
matrix is positive-semidefinite. It then follows that all of its eigenvalues are non-
negative. It can also be confirmed that 0 is an eigenvalue of L when x is a constant
vector. Combined with Theorem 1.3.1, we can let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be the
eigenvalues of the Laplacian matrix L with associated eigenvectors v1,v2, ...,vn.
Another interesting property is that the multiplicity and eigenspace associated
with the eigenvalue zero can reveal the connected components in the graph.

Proposition 1.3.3 (Number of Connected Components Graph Spectrum). The
multiplicity of the eigenvalue 0 of L equals the number of connected components
in the graph. Additionally, the indicator vectors of those components span the
eigenspace of eigenvalue 0.

5

Laplacians for Structure Recovery on Directed and Higher-order Graphs 6

We omit the proof here and refer the interested reader to [17, 70] for details.
The proposition says that we can find the connected clusters by examining the
zero eigenvalue and its corresponding eigenvector(s). When the graph is con-
nected, so there is only one connected component in the graph, the eigenvector
associated with eigenvalue 0 becomes a constant vector. Furthermore, if the sec-
ond smallest eigenvalue is positive, one can conclude that the graph is connected.
The second smallest eigenvalue is also called the algebraic connectivity or Fiedler
value.

Corollary 1.3.1 (Algebraic Connectivity). Let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be the
eigenvalues of the Laplacian matrix L, then the graph is connected if and only if
λ2 ̸= 0.

This naturally leads to the question of whether we can obtain insights from
non-zero eigenvalues as well. To understand this question, we first give the defi-
nition of the Rayleigh quotient below.

Definition 1.3.1 (Rayleigh quotient). Let A be an n× n Hermitian matrix. Its
Rayleigh quotient for a vector x ∈ Cn is defined as

RA(x) ≡
xHAx
xHx

.

It is easy to show that the Rayleigh quotient for an eigenvector is exactly its
eigenvalue, that is, if Av = λv, then

RA(v) ≡
vHAv
vHv

=
vHλv

vHv
= λ.

The Rayleigh-Ritz theorem [69] states that the eigenvector associated with the
smallest eigenvalue of a Hermitian matrix minimizes the Rayleigh quotient, and
similarly, the eigenvector of the largest eigenvalue maximizes the Rayleigh quo-
tient.

Theorem 1.3.2 (Rayleigh-Ritz Theorem). Let A ∈ Cn×n be a Hermitian matrix,
and λmin, λmax be its smallest and largest eigenvalue, then

λmin = min
∥v∥≠0

RA(v),

and
λmax = max

∥v∥≠0
RA(v).

This implies that the unit vector v̂ associated with the smallest eigenvector
minimizes the quadratic form of the Hermitian matrix v̂HAv̂ since

v̂HAv̂ = RA(v̂) · v̂
Hv = RA(v̂) · 1 = RA(v̂).

Additionally, we can extend the interpretation to other eigenvalues with the
Courant-Fischer Theorem [69] stated below.

6

Laplacians for Structure Recovery on Directed and Higher-order Graphs 7

Theorem 1.3.3 (Courant-Fischer Theorem). Let A ∈ Cm×m be a Hermitian ma-
trix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λm and associated eigenvectors v[1],v[2], ...,v[m]

such that Av[i] = λiv
[i]. Then,

λ1 = min
∥x∦=0

RA(x),

and for 1 < i ≤ n
λi = min

∥x∦=0,x⊥v[j] for j < i
RA(x),

and
λi = max

∥x∦=0,x⊥v[j] for j > i
RA(x).

1.3.3 Spectral Embedding

Spectral methods study the structural properties of a graph through the eigen-
values and eigenvectors of its Laplacian matrices. Such methods have found
applications in many fields, including computer science [99], biology [50], and so-
cial sciences [110]. They offer a powerful tool for understanding the structure and
properties of graphs and are widely used in various applications such as cluster-
ing, ranking, and visualization. In this section, we explore spectral embedding,
which maps nodes into Euclidean space using eigenvectors of a graph Laplacian.

One-dimensional Embedding

Consider an undirected connected graph G = (V,E) with n nodes. Suppose
we would like to plot all nodes in the graph on a real-axis. Therefore the node
position can be denoted as x ∈ Rn. Let us consider the problem of finding x that
minimizes the quadratic form of the graph Laplacian L

xTLx = 1
2

∑
i,j∈V

Aij(xi − xj)2.

The quadratic form measures the total distance between linked nodes in the em-
bedded space. Therefore the minimization problem can be interpreted as plotting
each node on the real axis such that the neighboring nodes are near each other
in the embedded space.

Fiedler Vector The problem above is susceptible to the trivial solution that
all nodes are assigned to zero, or x is a constant vector. Therefore we impose the
constraint that

∥x∥ = 1. (1.4)

Appealing to the Rayleigh-Ritz theorem, the optimal solution is given by the
eigenvector corresponding to the smallest eigenvalue of the Laplacian. When the
graph is connected, according to Proposition 1.3.3, this is just a constant vector
1/
√
n, which is not useful for visualizing the graph. Therefore, we further impose

7

Laplacians for Structure Recovery on Directed and Higher-order Graphs 8

that
x ⊥ 1. (1.5)

From Theorem 1.3.2 and 1.3.3 it is clear that the minimum of the quadratic form
subject to constraints (1.4) and (1.5) is achieved by the eigenvector associated
with the second smallest eigenvalue of the graph Laplacian, also called the Fiedler
vector. We therefore have the following result.

Proposition 1.3.4. Let L be the graph Laplacian of an undirected connected
graph G = (V,E) with n vertices. We also let 0 = λ1 < λ2 ≤ ... ≤ λn be the
eigenvalues of L associated with eigenvectors v[1],v[2], ...,v[m]. Then

λ2 = min
∥x∥≠0,x⊥1

∑
i,j∈V

Aij(xi − xj)2,

and the minimizing vector is v[2].

Other Eigenvectors One can also generate a one-dimensional embedding with
v[3]. In fact, v[3] can be interpreted as the Fiedler vector of a new matrix where
the new adjacency matrix Ã is given by

Ãij = Aij − µv[2]i v
[2]
j ,

for any constant µ > λ3−λ2 [50]. Such modification reduces weight if two neigh-
bors have the same sign in v[2] and increases weight if they are assigned different
signs in v[2]. Therefore, v[3] can be interpreted as the minimizing vector to a new
problem that corrects the tendency of v[2] to partition nodes into two clusters ac-
cording to the sign. Similar arguments can be applied to other eigenvectors [50].

For example, by subtracting v[2]v[2]
T
, v[3]v[3]

T
, ..., v[k−1]v[k−1]T with sufficiently

large multipliers, v[k] will become the Fiedler vector of the modified Laplacian.

Higher-dimensional Embedding

Now, consider the case where nodes are embedded into a d-dimensional Euclidean
space for some d ≥ 2, while minimizing the squared Euclidean distance between
neighboring nodes. Let x[k] = (x

[k]
1 , x

[k]
2 , ..., x

[k]
n)T ∈ Rn represent the location in

the k-th dimension, and let X = [x[1],x[2], ...,x[d]] ∈ Rn×d denote d-dimensional

positions. This implies that each node i is mapped to xi = (x
[1]
i , x

[2]
i , ..., x

[d]
i) ∈

Rd, which corresponds to the i-th row in X. Then the total squared Euclidean
distance between neighbors can be written as∑

i,j∈V

Aij∥xi − xj∥2. (1.6)

The distance above is related to the trace of the matrix XTLX and can be
minimized with the eigenvectors of the the graph Laplacian L.

Theorem 1.3.4 (Optimization of Trace [69]). Let A ∈ Cm×m be a Hermi-
tian matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λm and associated eigenvectors

8

Laplacians for Structure Recovery on Directed and Higher-order Graphs 9

v[1],v[2], ...,v[m] such that Av[i] = λiv
[i]. Then,

λ1 + λ2 + ...+ λd = min
B∈Cm×d , BHB=Id

tr(BHAB),

and a minimizing matrix is B = [v[1],v[2], ...,v[d]];

λm + λm−1 + ...+ λm−d+1 = max
B∈Cm×d , BHB=Id

tr(BHAB),

and a maximizing matrix is B = [v[m],v[m−1], ...,v[m−d+1]].

According to the theorem above, one can use the top smallest eigenvalues to
minimize the trace. From this result we derive the following theorem:

Proposition 1.3.5. Consider an undirected connected graph G = (V,E) with n
vertices. Let 0 = λ1 < λ2 ≤ ... ≤ λn be the eigenvalues of its graph Laplacian L
with associated eigenvectors v[1],v[2], ...,v[m]. Then

λ1 + λ2 + ...+ λd = min
X∈Rn×d , XTX=Id

∑
i,j∈V

Aij∥xi − xj∥2,

where X = [x[1],x[2], ...,x[d]] and a minimizing solution is X = [v[1],v[2], ...,v[d]].

Proof. The trace of XTLX is exactly half of the squared Euclidean distance we
hope to minimize:

tr(XTLX) =
d∑

k=1

(x[k])TLx[k]

= 1
2

d∑
k=1

∑
i,j∈V

Aij(x
[k]
i − x

[k]
j)2

= 1
2

∑
i,j∈V

Aij∥xi − xj∥2.

From here we can complete the proof with Theorem 1.3.4.

Therefore embedding nodes into d-dimensional space with d orthogonal vec-
tors while minimizing the total squared distances between neighbors can be
achieved by mapping each node i into the i-th row of X = [v[1],v[2], ...,v[d]],

that is, letting xi = (v
[1]
i , v

[2]
i , ..., v

[d]
i) ∈ Rd.

1.3.4 Directed Graph Laplacian

While spectral methods have been widely used in analyzing undirected graphs,
Laplacians for directed graphs are less well-studied. Nonetheless, there have been
several extensions of the standard Laplacian matrix specifically for the directed
case.

One of the spectral methods for directed networks is the Magnetic Lapla-
cian algorithm, which was introduced in [30, 31]. The Magnetic Laplacian is a

9

Laplacians for Structure Recovery on Directed and Higher-order Graphs 10

complex Hermitian matrix that can be derived from the adjacency matrix of a
directed network and is designed to capture periodic flow structures. Another
spectral method for directed networks is the Trophic Laplacian algorithm which
was proposed in [73]. The Trophic Laplacian is a matrix that captures the hi-
erarchical structure of the network, which is the flow of resources from lower
to higher trophic levels. We will discuss these two directed Laplacian in more
detail in Chapter 2. Other frameworks for directed graphs include the Hermi-
tian matrix method, which was introduced in [23]. This method groups nodes
into clusters based on a strong imbalance of flow between clusters. It constructs
a skew-symmetric matrix that emphasizes net flow between pairs of nodes but
ignores reciprocal edges. Another related technique is the spectral clustering al-
gorithm motivated by random walks, which was derived in [84]. This approach
leads to a graph Laplacian for directed networks that was proposed earlier in
[18]. This Laplacian matrix is similar to the standard graph Laplacian used for
undirected networks but with modifications to account for the directed edges in
the network.

1.4 Higher-order Networks

In recent years, there has been a growing interest in understanding higher-order
interactions in complex networks. These higher-order interactions involve mul-
tiple nodes and cannot be captured by traditional pairwise interactions. Re-
searchers have proposed different paradigms to capture such group-level interac-
tions. Two of the most widely studied frameworks are hypergraphs and simplicial
complexes.

In the hypergraph formulation, each hyperedge involves two or more nodes.
Hypergraphs have been extensively studied [3, 4, 103], and have found application
in various real-world problems such as epidemic spread modeling [51], image
classification [115], and the study of biological networks [88]. We will introduce
the definition of hypergraph and related notations in more detail in Section 3.2.

A simplicial complex is a special case of a hypergraph that consists of sim-
plices. Each simplex represents a set of nodes that are mutually connected.
Simplicial complexes have been used to study various network properties such as
clustering, community structure, motif analysis, and topology [2, 7, 83]. Section
4.2 will delve into the theoretical background of simplicial complexes.

1.5 Node Embedding

A fundamental learning task on graph-based data is to embed nodes into a low-
dimensional Euclidean space [90, 96]. The learned embedding can be used in
follow-on tasks such as clustering, classification, and structure recovery. There
are various types of learning algorithms for graphs; some design and analyze
Laplacian matrices related to the graph [70], some solve maximum likelihood
problems associated with random graph models [44, 85], and others involve more
complex machine learning frameworks [46, 47]. In this thesis, we build on the

10

Laplacians for Structure Recovery on Directed and Higher-order Graphs 11

spectral approach outlined in Section 1.3.3, which derives node embeddings from
eigenvectors of a Laplacian matrix. Such spectral algorithms are popular since
they can be implemented efficiently on large sparse graphs, and they are backed
up by accompanying consistency theory [26].

1.6 Generative Graph Models

Another aspect of our work is the connection between spectral methods and
random models. Many graph embedding [54], reordering [44], clustering [16],
and structure recovery [21, 105] techniques solve maximum-likelihood problems
on graphs assuming specific generative models. Besides their application in these
inverse problems, random graph models are useful inference tools for quantifying
structure, predicting new or missing links, and improving the interpretability of
learning algorithms by relating node embeddings to edge probabilities [45]. The
random graph models relevant to this thesis are introduced in Sections 2.3 and
3.5.

Many spectral algorithms are naturally related to optimization problems. This
is the case when the Laplacian matrix is Hermitian so that its eigenvectors are
critical points of a quadratic form [69]. For example, spectral embedding for undi-
rected graphs using the standard combinatorial Laplacian is related to minimizing
the unnormalized cut [52, 70]. Sometimes the objective to be optimized is called
the incoherence or frustration of the graph; for example, the Magnetic Laplacian
for a directed graph minimizes the frustration defined in [31]. In addition, such
optimization formulations may lead to interesting random graph interpretations
of spectral algorithms. When the quadratic form can be expressed as the log-
likelihood of the graph under a suitable model, the optimization problem may
be restated as a node reordering. Such connections have been investigated for
undirected graphs [48], and in Chapters 2 and 3, we extend these ideas to directed
graphs and hypergraphs.

11

Chapter 2

Directed Graph Laplacians

2.1 Introduction

Uncovering structure by clustering or reordering nodes is an important and widely
studied topic in network science [70, 102]. The issue is especially challenging if
we move from undirected to directed networks, because there is a greater variety
of possible structures. For example, even a simple motif of three connected nodes
has 13 distinct forms [5, Figure 1(a)]. Moreover, when spectral methods are
employed, directed edges lead to asymmetric eigenproblems [23, 31, 73, 74]. Our
objective in this chapter1 is to study spectral (Laplacian-based) methods for
directed networks that aim to reveal clustered, directed, hierarchical structure;
that is, groups of nodes that are related because, when visualized appropriately,
one group is seen to have links that are directed towards the next group. This
hierarchy may be periodic or linear, depending on whether there are well-defined
start and end groups. Figures 2.1a and 2.1b illustrate the two cases. Mapping
a network to a linear structure may help us understand the upstreamness and
downstreamness of nodes, which is useful, for example, in the study of cascading
effects such as social or financial contagion [91]. Similarly, periodic hierarchies
have been associated with sustainability and risk management issues in commerce
[15], and also with the existence of echo chambers in online social media [58].

Of course, on real data these structures may not be so pronounced; hence in
addition to visualizing the reordered network, we are interested in quantifying
the relative strength of each type of signal. Laplacian-based methods are often
motivated from the viewpoint of optimizing an objective function. This chapter
focuses on two such methods. Minimizing frustration leads to theMagnetic Lapla-
cian which may be used to reveal periodic hierarchy [30, 31]. Minimizing trophic
incoherence leads to what we call the Trophic Laplacian, which may be used to
reveal linear hierarchy [73]. We will exploit the idea of associating a spectral
method with a generative random graph model. This in turn allows us to com-
pare the outputs from spectral methods based on the likelihood of the associated
random graph. This connection was proposed in [48] to show that the standard
spectral method for undirected networks is equivalent to maximum likelihood
optimization assuming a class of range-dependent random graphs (RDRGs) in-

1The content of this chapter is adapted from [42].

12

Laplacians for Structure Recovery on Directed and Higher-order Graphs 13

(a) (b)

Figure 2.1: Directed networks with (a) periodic hierarchy (edges point from nodes
in one cluster to nodes in the next cluster, counterclockwise) and (b) linear hi-
erarchy (edges point from nodes in one level to nodes in the next highest level).
Node colours indicate the three clusters.

troduced in [44]. The idea was further pursued in [45], where a likelihood ratio
test was developed to determine whether a network with RDRG structure is more
linear or periodic.

The main contributions of this chapter are as follows.

• We propose two new directed random graph models. One model has the
unusual property that the probability of an i → j connection is not inde-
pendent of the probability of the reciprocated j → i connection.

• We establish connections between these random graph models and algo-
rithms from [30] and [73] that use the Magnetic Laplacian and Trophic
Laplacian, respectively, by showing that reordering nodes or mapping them
onto a specific lattice structure using these algorithms is equivalent to maxi-
mizing the likelihood that the network is generated by the models proposed.

• We show that by calibrating a given network to both models, it is possible to
quantify the relative presence of periodic and linear hierarchical structures
using a likelihood ratio.

• We illustrate the approach on synthetic and real networks.

The rest of the chapter is organised as follows. In the next section, we in-
troduce the Magnetic and Trophic Laplacian algorithms. Section 2.3 defines the
new classes of random directed graphs and establishes their connection to these
spectral methods. Illustrative numerical results on synthetic networks are given
in Section 2.4, and in Section 2.5 we show results on real networks from a range
of applications areas. We finish with a brief discussion in Section 2.6.

13

Laplacians for Structure Recovery on Directed and Higher-order Graphs 14

2.2 Magnetic and Trophic Laplacians

2.2.1 Notation

We consider an unweighted directed graph G = (V,E) with node set V and edge
set E, with no self-loops. The adjacency matrix A is defined in Section 1.1.
Since A is asymmetric in general, it is useful to define the symmetrized adjacency
matrix

W (s) =
A+ AT

2
. (2.1)

It is straightforward to see that W (s) = A when the graph is undirected. The
symmetrized degree matrix D is diagonal with Dii = di, where

di =
∑
j

W
(s)
ij

is the average of the in-degree and out-degree of node i.

2.2.2 Spectral Methods for Directed Networks

Spectral methods explore properties of graphs through the eigenvalues and eigen-
vectors of associated matrices [17, 50, 70, 102]. In the undirected case, the stan-
dard graph Laplacian defined in Equation (1.2) is widely-used for clustering and
reordering, along with normalized variants. For instance, in Section 1.3.3, we
demonstrated the utilization of the Laplacian matrix for node embedding.

The directed case has received less attention; however, several extensions of
the standard Laplacian have been proposed [74]. We focus on two spectral meth-
ods for directed networks, which are discussed in the next two subsections: the
Magnetic Laplacian algorithm, which reveals periodic flow structures [30, 31],
and the Trophic Laplacian algorithm, which reveals linear hierarchical structures
[73]. We choose to study these two algorithms because they have an optimization
formulation and, as we show in Section 2.3, may be interpreted in terms of ran-
dom graph models. We mentioned some other Laplacian matrices for analyzing
directed graphs in Section 1.3.4.

2.2.3 The Magnetic Laplacian

Given a network and a vector of angles θ = (θ1, θ2, ..., θn)
T in [0, 2π), we may

define the corresponding frustration

η(θ) =
∑
i,j

W
(s)
ij |eiθi − eiδijeiθj |2, (2.2)

where δij = −2πgαij with g ∈ [0, 1
2
]. Here αij = 0 if the edge between i and j

is reciprocated; αij = 1 if the edge i → j is unreciprocated; and αij = −1 if the
edge j → i is unreciprocated. For convenience we also set αij = 0 if i and j are

14

Laplacians for Structure Recovery on Directed and Higher-order Graphs 15

not connected. This can also be expressed as

αij =


1 if Aij = 1, Aji = 0,

−1 if Aij = 0, Aji = 1,

0 otherwise.

To understand the Definition (2.2), suppose that for a given graph we wish to

choose angles that produce low frustration. Each term W
(s)
ij |eiθi − eiδijeiθj |2 in

(2.2) can make a positive contribution to the frustration if W
(s)
ij ̸= 0; that is, if

i and j are involved in at least one edge. In this case, if there is an edge from i
to j that is not reciprocated, then we can force this term to be zero by choosing
θj = θi + 2πg. If the edge is reciprocated, then we can force the term to be
zero by choosing θj = θi. Hence, intuitively, choosing angles to minimize the
frustration can be viewed as mapping the nodes into directed clusters on the unit
circle in such a way that (a) nodes in the same cluster tend to have reciprocated
connections, and (b) unreciprocated edges tend to point from source nodes in one
cluster to target nodes in the next cluster, periodically. Setting the parameter
g = 1/k for some positive integer k indicates that we are looking for k directed
clusters.

We note that, since δji = −δij, W (s)
ij = W

(s)
ji for i ̸= j, and W

(s)
ii = 0, we may

express η(θ) as a sum over ordered pairs with a factor of 2 appearing:

η(θ) = 2
∑
i<j

W
(s)
ij

∣∣eiθi − eiδijeiθj ∣∣2 . (2.3)

Indeed, in [30] the definition of frustration differs from (2.2) by having a factor

of 2 in the denominator, along with a further normalization by
∑

ij W
(s)
ij . This

rescaling does not affect any of the arguments that we present, and hence we omit
it for simplicity.

On a real network it is unlikely that the frustration (2.2) can be reduced to
zero, but it is of interest to find a set of angles that give a minimum value. This
minimization problem is closely related to the angular synchronization problem
[24, 100], which estimates angles from noisy measurements of their phase differ-
ences θi−θj mod 2π. Moreover, we note that for visualization purposes it makes
sense to reorder the rows and columns of the adjacency matrix based on the set
of angles that minimizes the frustration. We also note that in [30] the expression
in (2.2) for the frustration is normalized through a division by 2

∑
i di. This is

immaterial for our purposes, since that denominator is independent of the choice
of θ.

The frustration (2.2) is connected to the Magnetic Laplacian, which is defined
as follows, where A ◦B denotes the elementwise, or Hadamard, product between
matrices of the same dimension; that is,

(A ◦B)ij = AijBij.

Definition 2.2.1. Given g ∈ [0, 1
2
], the Magnetic Laplacian L(g) [30, 31] is

15

Laplacians for Structure Recovery on Directed and Higher-order Graphs 16

defined as
L(g) = D − T (g) ◦W (s),

where T
(g)
ij = eiδij . Here, the transporter matrix T (g) assigns a rotation to each

edge according to its direction.

From Definition 2.2.1, we can find each element in L(g):

L
(g)
ij =



di, if i = j

−1
2
e−i2πg, if i→ j

−1
2
ei2πg, if j → i

−1, if i↔ j

0, otherwise.

(2.4)

It is straightforward to see from the equation above that L(g) is a Hermitian
matrix. When g = 0 and the graph is undirected, the Magnetic Laplacian reduces
to the standard graph Laplacian. The following result, which is implicit in [30, 31],
shows that the frustration (2.2) may be written as a quadratic form involving the
Magnetic Laplacian.

Theorem 2.2.1. Let ψ ∈ Cn be such that ψj = eiθj , then

ψHL(g)ψ = 1
2

∑
i,j

W
(s)
ij |eiθi − eiδijeiθj |2. (2.5)

Proof. Since W (s) is symmetric, W
(s)
ij = W

(s)
ji . By definition δij = −δji. We will

use the property of complex modulus | a + bi |2= a2 + b2 = (a + bi)(a − bi), or

16

Laplacians for Structure Recovery on Directed and Higher-order Graphs 17

| z |2= z · z, for a complex number z = a+ bi. We can write

ψHL(g)ψ = ψH(D − T (g) ◦W (s))ψ

=
∑
i,j

e−iθi(Dij − eiδijW (s)
ij)eiθj

=
∑
i

e−iθidie
iθi −

∑
i,j

e−iθieiδijW
(s)
ij e

iθj

=
∑
i,j

W
(s)
ij −

∑
i,j

e−iθieiδijW
(s)
ij e

iθj

=
∑
i,j

W
(s)
ij −

1

2
(
∑
i,j

e−iθieiδijW
(s)
ij e

iθj +
∑
j,i

e−iθjeiδjiW
(s)
ji e

iθi)

=
∑
i,j

W
(s)
ij −

1

2
(
∑
i,j

e−iθieiδijW
(s)
ij e

iθj +
∑
i,j

e−iθje−iδijW
(s)
ij e

iθi)

=
1

2

∑
i,j

W
(s)
ij (2− e−iθieiδijeiθj − e−iθje−iδijeiθi)

=
1

2

∑
i,j

W
(s)
ij (e−iθi − e−iδije−iθj)(eiθi − eiδijeiθj)

=
1

2

∑
i,j

W
(s)
ij |eiθi − eiδijeiθj |2

Appealing to the Rayleigh-Ritz theorem [69] the quadratic form on the left
hand side of (2.5) is minimized over all ψ ∈ Cn with ∥ψ∥ = 1 by taking ψ
to be an eigenvector corresponding to the smallest eigenvalue of the Magnetic
Laplacian. Now, such an eigenvector will not generally be proportional to a
vector with components of the form {eiθj}nj=1. However, a useful heuristic is to
force this relationship in a componentwise sense; that is, to assign to each θj the
phase angle of ψj, effectively solving a relaxed version of the desired minimization
problem. This leads to Algorithm 1 below, as used in [30].

Algorithm 1: Magnetic Laplacian algorithm

Result: Phase angles of nodes θ
Input adjacency matrix A;

Symmetrize adjacency matrix W (s) = (A+ AT)/2;

Calculate degree matrix Dii = di =
∑

j W
(s)
ij ;

Construct transporter T
(g)
ij = eiδij ;

Calculate Magnetic Laplacian L(g) = D − T (g) ◦W (s);

Compute eigenvectors {ψ(g)
m }nm=1 = Eigs(L(g)) and associated

eigenvalues;

Calculate phase angles θ = phase(ψ
(g)
1) using eigenvector ψ

(g)
1

associated with the smallest eigenvalue;
Reorder nodes with θi or visualise with (cos(θi), sin(θi))

17

Laplacians for Structure Recovery on Directed and Higher-order Graphs 18

2.2.4 Magnetic Laplacian and Connection Laplacian

A connection graph [19] is a special type of graph G = (V,E) in which each edge
(i, j) ∈ E possesses an assigned weight wij and a d×d rotational matrix Oij that
represents the orthogonal transformation SO(d) between nodes satisfying

OijOji = Id.

Here SO(d) represents the special orthogonal group of dimension d, that is, the
group of all d× d matrices M that are characterized by the properties

M−1 =MT and det(M) = 1.

The adjacency matrix Ac for a connection graph is a nd×nd matrix and is defined
as follows:

Ac =

{
wijOij if (i, j) ∈ E,
0d if (i, j) /∈ E.

Here, 0d is the zero matrix of dimension d× d. The Connection Laplacian Lc is
defined as the difference between a diagonal matrix Dc and the adjacency matrix
Ac, expressed as:

Lc = Dc − Ac,

where Dc is a nd× nd diagonal matrix, the entries of which are given by

[Dc]ii = diId

for i ∈ V , and di =
∑

(i,j)∈E wij. If we assign a vector νi ∈ Rd to node i, and

let ν = (ν1, ..., νn), then the top eigenvector of Lc minimizes the frustration η(ν)
defined as follows:

η(ν) =
νTLcν

νTDcν
=

1

2

∑
i,j∈V Wij∥νi −Oijνj∥2∑

i di∥νi∥2
.

In this case, η(ν) quantifies the level of inconsistency within the connection graph.
A connection Laplacian is called consistent if, for every cycle in the graph, the
total rotation is equivalent to the identity matrix. This property ensures that
one can always rotate back to the same phase after completing any directed cycle
[20]. Moreover, when a connection Laplacian is consistent, there exist exactly d
eigenvalues with a value of 0.

The Magnetic Laplacian is a special case of connection Laplacian for directed
graphs with a U(1) or SO(2) transformation. It utilizes the direction of each edge
to construct the corresponding rotation matrix as follows:

Oij =


e−i2πg if (i, j) ∈ E and (j, i) /∈ E
ei2πg if (j, i) ∈ E and (i, j) /∈ E
0 otherwise .

(2.6)

18

Laplacians for Structure Recovery on Directed and Higher-order Graphs 19

2.2.5 The Trophic Laplacian

The idea of discovering a linear directed hierarchy arises in many contexts where
edges represent dominance or approval, including the ranking of sports teams
[72] and web pages [40]. A particularly well-defined case is the quantification
of trophic levels in food webs, where each directed edge represents a consumer-
resource relationship [60, 66, 79]. We focus here on the approach in [73], where
the aim is to assign a trophic level hi to each node i such that along any directed
edge the trophic level increases by one. This motivates the minimization of the
trophic incoherence

F (h) =

∑
i,j Aij(hj − hi − 1)2∑

i,j Aij

. (2.7)

Denoting the total weight of node i as ωi =
∑

j∈V (Aji + Aij) and the imbalance
as χi =

∑
j∈V (Aji − Aij), the trophic level vector h ∈ Rn that minimizes the

trophic incoherence solves the linear system of equations

Λh = χ, (2.8)

where Λ = diag(ω)−A−AT , and the solution to (2.8) is unique up to a constant
shift [73]. Since it employs a Laplacian-style matrix, Λ, we refer to it as the
Trophic Laplacian algorithm; see Algorithm 2.

Algorithm 2: Trophic Laplacian algorithm

Result: The trophic levels h
Input adjacency matrix A;
Calculate the node weights ωi =

∑
j Aji +

∑
j Aij;

Calculate the node imbalances χi =
∑

j Aji −
∑

j Aij;

Calculate the Trophic Laplacian Λ = diag(ω)− A− AT ;
Solve the linear system (2.8);
Reorder or visualize nodes using h

2.3 Random Graph Interpretation

In this section, we associate two new random graph models with the Magnetic and
Trophic Laplacian algorithms, using a similar approach to the work in [48]. After
establishing these connections, we proceed as in [45] and propose a maximum
likelihood test to compare the two models on a given network.

2.3.1 The Directed pRDRG Model

Given a set of phase angles {θi}ni=1, we will define a model for unweighted, directed
random graphs. The model generates connections between each pair of distinct
nodes i and j with four possible outcomes—a pair of reciprocated edges, an
unreciprocated edge from i to j, an unreciprocated edge from j to i, or no edges—

19

Laplacians for Structure Recovery on Directed and Higher-order Graphs 20

−1 1

−1

1

(a) (b)

Figure 2.2: (a) Points uniformly distributed on the unit circle and (b) a sphere.

as follows

P(Aij = 1, Aji = 1) = f(θi, θj), (2.9)

P(Aij = 1, Aji = 0) = q(θi, θj), (2.10)

P(Aij = 0, Aji = 1) = l(θi, θj), (2.11)

P(Aij = 0, Aji = 0) = 1− f(θi, θj)− q(θi, θj)− l(θi, θj), (2.12)

where f , q and l are functions that define the model, and, of course, they must
be chosen such that all probabilities lie between zero and one. We emphasize
that this model has a feature that distinguishes it from typical random graph
models, including directed Erdős–Rényi and small-world style versions [62]: the
probability of the edge i→ j is not independent of the probability the edge j → i,
in general.

We are interested here in the inverse problem where we are given a graph
and a model (2.9)–(2.12), and we wish to infer the phase angles. This task arises
naturally when the nodes are supplied in some arbitrary order. We will assume
that the phase angles are to be assigned values from a discrete set {νi}ni=1; that
is, we must set θi = νpi , where p is a permutation vector. This setting includes
the cases of (directed) clustering and reordering. For example, with n = 12, we
can specify ν1 = ν2 = ν3 = 0, ν4 = ν5 = ν6 = π/2, ν7 = ν8 = ν9 = π, and
ν10 = ν11 = ν12 = 3π/2, in order to assign the nodes to four directed clusters of
equal size. Alternatively, νi = (i − 1)2π/12 would assign the nodes to equally-
spaced phase angles, as shown in Figure 2.2a, as a means to reorder the graph.
The following theorem shows that solving this type of inverse problem for suitable
f , q and l is equivalent to minimizing the frustration.

Theorem 2.3.1. Suppose θ ∈ Rn is constrained to take values such that θi = νpi,
where p is a permutation vector. Then minimizing the frustration η(θ) in (2.2)
over all such θ is equivalent to maximizing the likelihood that the graph came from

20

Laplacians for Structure Recovery on Directed and Higher-order Graphs 21

a model of the form (2.9)–(2.12) in the case where

f(θi, θj) =
1

Zij

,

q(θi, θj) =
1

Zij

exp[γ(1− 2 cos βij + cos(βij + 2πg))],

l(θi, θj) =
1

Zij

exp[γ(1− 2 cos βij + cos(βij − 2πg))],

with βij = θi − θj and normalization constant

Zij = 1 + eγ(1−2 cosβij+cos(βij+2πg)) + eγ(1−2 cosβij+cos(βij−2πg)) + eγ(2−2 cosβij),

for any positive constant γ.

Proof. We first note that, since δji = −δij, W (s)
ij = W

(s)
ji for i ̸= j, and W

(s)
ii = 0,

we may express η(θ) (2.2) in terms of a sum over ordered pairs:

1
2
η(θ) =

∑
i<j

W
(s)
ij

∣∣eiθi − eiδijeiθj ∣∣2 . (2.13)

Then, distinguishing between the three different ways in which each i and j may
be connected, we have

1
2
η(θ) =

∑
i<j:Aij=1,Aji=1

|eiθi − eiθj |2 +
∑

i<j:Aij=1,Aji=0

1
2
|eiθi − e−i2πgeiθj |2 (2.14)

+
∑

i<j:Aij=0,Aji=1

1
2
|eiθi − ei2πgeiθj |2. (2.15)

The likelihood L of the graph G from a model of the form (2.9)–(2.12) is given
by

L(G) =
∏

i<j:Aij=1,Aji=1

f(θi, θj)
∏

i<j:Aij=1,Aji=0

q(θi, θj)
∏

i<j:Aij=0,Aji=1

l(θi, θj)

×
∏

i<j:Aij=0,Aji=0

(1− f(θi, θj)− q(θi, θj)− l(θi, θj)) ,

21

Laplacians for Structure Recovery on Directed and Higher-order Graphs 22

which we may rewrite as

L(G) =
∏

i<j:Aij=1,Aji=1

f(θi, θj)

1− f(θi, θj)− q(θi, θj)− l(θi, θj)

×
∏

i<j:Aij=1,Aji=0

q(θi, θj)

1− f(θi, θj)− q(θi, θj)− l(θi, θj)

×
∏

i<j:Aij=0,Aji=1

l(θj, θi)

1− f(θi, θj)− q(θi, θj)− l(θi, θj)

×
∏
i<j

(1− f(θi, θj)− q(θi, θj)− l(θi, θj)) .

The final factor on the right hand side, which is the probability of the null graph,
takes the same value for any θ ∈ Rn such that θi = νpi , since each ordered pair
of arguments appears exactly once. We may therefore ignore this factor when
maximizing the likelihood. Then, taking the logarithm and negating, we see that
maximizing the likelihood is equivalent to minimizing the expression∑

i<j:Aij=1,Aji=1

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

f(θi, θj)

]
(2.16)

+
∑

i<j:Aij=1,Aji=0

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

q(θi, θj)

]
(2.17)

+
∑

i<j:Aij=0,Aji=1

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

l(θi, θj)

]
. (2.18)

Comparing terms in (2.16)–(2.18) and (2.14)–(2.15) we see that the two mini-
mization problems are equivalent if

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

f(θi, θj)

]
= γ

∣∣eiθi − eiθj ∣∣2
= γ(2− 2 cos(θi − θj)),

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

q(θi, θj)

]
=
γ

2

∣∣eiθi − e−i2πgeiθj
∣∣2

= γ(1− cos(θi − θj + 2πg)),

ln

[
1− f(θi, θj)− q(θi, θj)− l(θi, θj)

l(θi, θj)

]
=
γ

2

∣∣eiθi − ei2πgeiθj ∣∣2
= γ(1− cos(θi − θj − 2πg)),

where we may choose any positive constant γ since the minimization problems
are scale invariant. Solving for f , q and l as functions of θi and θj we arrive at
the model in the statement of the theorem.

For the model in Theorem 2.3.1, the probability of an edge from node i to
node j depends on the phase difference βij = θi − θj, the decay rate γ, and the

22

Laplacians for Structure Recovery on Directed and Higher-order Graphs 23

parameter g. We see that γ determines how rapidly the edge probability varies
with the phase difference. In the extreme case when γ = 0, we obtain f(θi, θj) =
q(θi, θj) = l(θi, θj) = 1/4, and thus the model reduces to a conditional Erdős–
Rényi form. In addition, as γ increases the graph generally becomes more sparse.
This is because the likelihood of disconnection, exp[2γ(1 − cos(θi − θj))]/Zij, is
greater than or equal to that of the other cases.

We note that having applied the Magnetic Laplacian algorithm to estimate
θ, there are two straightforward approaches to estimating γ. One way is to
maximize the graph likelihood over γ > 0. Another is to choose γ so that the
expected edge density from the random graph model matches the edge density of
the given network. We illustrate these approaches in Section 2.4.

Remark 2.3.1. Since the edge probabilities are functions of the phase differences
and have a periodicity of 2π, this model resembles the periodic Range-Dependent
Random Graph (pRDRG) model in [45], which generates an undirected edge be-
tween i and j with probability f(min{|j−i|, n−|j−i|}) for a given decay function
f . We will therefore use the term directed periodic Range-Dependent Random
Graph model (directed pRDRG) to describe the model in Theorem 2.3.1.

2.3.2 The Trophic Range-dependent Model

Now, given a set of trophic levels {hi}ni=1, we define an unweighted, directed
random graph model where

P(Aij = 1) = f(hi, hj), (2.19)

P(Aij = 0) = 1− f(hi, hj), (2.20)

for some function f . Here, the probability of an edge i→ j is independent of the
probability of the edge j → i.

Following our treatment of the directed pRDRG case, we are now interested
in the inverse problem where we are given a graph and the model (2.19)–(2.20),
and we wish to infer the trophic levels. We will assume that the trophic levels are
to be assigned values from a discrete set {νi}ni=1; that is, we must set hi = νpi ,
where p is a permutation vector. This setting includes the cases of assignment
of nodes to trophic levels of specified size; for example, with n = 12, we can set
ν1 = ν2 = ν3 = 1, ν4 = ν5 = ν6 = 2, ν7 = ν8 = ν9 = 3, and ν10 = ν11 = ν12 = 4, in
order to assign the nodes to four equal levels. Alternatively, νi = i would assign
each node to its own level, which is equivalent to reordering the nodes. The
following theorem shows that solving this type of inverse problem for suitable f
is equivalent to minimizing the trophic incoherence.

Theorem 2.3.2. Suppose h ∈ Rn is constrained to take values such that hi = νpi,
where p is a permutation vector. Then minimizing the trophic incoherence F (h)
in (2.7) over all such h is equivalent to maximizing the likelihood that the graph
came from a model of the form (2.19)–(2.20) in the case where

f(hi, hj) =
1

1 + eγ(hj−hi−1)2

23

Laplacians for Structure Recovery on Directed and Higher-order Graphs 24

for any positive γ.

Proof. Noting that the denominator in (2.7) is independent of the choice of h, this
result is a special case of Theorem 2.3.4 below, with I(hi, hj) = (hj−hi−1)2.

For the model in Theorem 2.3.2, the probability of an edge i→ j is a function
of the shifted, directed, squared difference in levels, (hj − hi − 1)2. The larger
this value, the lower the probability. Within the same level, where hi = hj, the
probability is 1/(1 + eγ). The edge probability takes its maximum value of 1/2
when hj−hi = 1, that is, when the edge starts at one level and finishes at the next
highest level. We also see that the overall expected edge density is always smaller
than 1/2. Across different levels, where hi ̸= hj, the edge i → j and the edge
j → i are not generated with the same probability. If |hj−hi− 1| < |hi−hj− 1|,
the edge i→ j is more likely than j → i. The two edge probabilities are equal if
and only if hi = hj. Therefore, this model can be interpreted as a combination
of an Erdős–Rényi model within the same level and a periodic range-dependent
model across different levels.

The parameter γ controls the decay rate of the likelihood as the shifted,
directed, squared difference in levels increases. When hj−hi = 1, γ plays no role.
If γ = 0, the model reduces to Erdős–Rényi with an edge probability of 1/2. As
γ →∞, the edge probability tends to zero if hj − hi ̸= 1. In this case, the model
will generate a multipartite graph where edges are only possible in one direction
between adjacent levels, and this happens with probability 1/2. As mentioned
previously in Section 2.3.1 and illustrated in Section 2.4, γ can be fitted from a
maximum likelihood estimate or by matching the edge density.

We note that the definition of trophic incoherence in (2.7) and the resulting
Trophic Laplacian algorithm make sense for a non-negatively weighted graph, in
which case we have the following result. Here, to be concrete we assume that
weights lie strictly between zero and one. Similar results can be obtained for
weights from a discrete distribution.

Theorem 2.3.3. Suppose h ∈ Rn is constrained to take values such that hi = νpi,
where p is a permutation vector. Then minimizing the trophic incoherence F (h)
in (2.7) over all such h for a weighted graph with weights in (0, 1) is equivalent
to maximizing the likelihood that the graph came from a model where each edge
weight Aij is independent with density function

fij(x) :=
1

Zijeγx(hj−hi−1)2
for x ∈ (0, 1), and f(x) = 0 otherwise, (2.21)

for any positive γ, where Zij =
1−e−γ(hj−hi−1)2

γ(hj−hi−1)2
is a normalization factor.

Proof. This is a special case of Theorem 2.3.5 below, where I(hi, hj) = (hj−hi−
1)2.

2.3.3 Generalised Random Graph Model

The results in Sections 2.3.1 and 2.3.2 exploit the form of the objective func-
tion: the sum over all edges of a kernel function can be viewed as the sum of

24

Laplacians for Structure Recovery on Directed and Higher-order Graphs 25

log-likelihoods. This shows that the minimization problem is equivalent to maxi-
mizing the likelihood of an associated random graph model, in the setting where
we assign nodes to a discrete set of scalar values. The restriction to discrete
values is used in the proofs to make the probability of the null graph constant.
However, we emphasize that in practice the relaxed versions of the optimization
problems, which are solved by the two algorithms, do not have this restriction.
The Magnetic Laplacian algorithm produces real-valued phase angles and the
Trophic Laplacian algorithm produces real-valued trophic levels.

We may extend the connection in Theorem 2.3.2 to the case of higher di-
mensional node attributes, that is, where we wish to associate each node with a
discrete vector from a set {ν [k]}nk=1, where each ν [k] ∈ Rd for some d ≥ 1. This
setting arises, for example, if we wish to visualize the network in higher dimen-
sion; a natural extension of the ring structure would be to place nodes at regularly
spaced points on the surface of the unit sphere, see Figure 2.2b, which we pro-
duced with the algorithm in [29]. The next result generalizes Theorem 2.3.2 to
this case.

Theorem 2.3.4. Suppose we have an unweighted directed graph with adjacency
matrix A and a kernel function I : Rd×Rd → R+, and suppose that we are free
to assign elements {h[k]}nk=1 to values from the set {ν [k]}nk=1; that is, we allow
h[k] = ν [pk] where p is a permutation vector. Then minimizing∑

i,j

AijI(h
[i],h[j]) (2.22)

over all such {h[k]}nk=1 is equivalent to maximizing the likelihood that the graph
came from a model where the (independent) probability of the edge i→ j is

f(h[i],h[j]) =
1

1 + eγI(h
[i]
,h[j]

)
, (2.23)

for any positive γ.

Proof. Given {h[k]}nk=1, the probability of generating a graph G from the model
stated in the theorem is

L(G) =
∏

i,j:Aij=1

f(h[i],h[j])
∏

i,j:Aij=0

(
1− f(h[i],h[j])

)
=

∏
i,j:Aij=1

f(h[i],h[j])

1− f(h[i],h[j])

∏
i,j

(
1− f(h[i],h[j])

)
.

The second factor on the right hand side, the probability of the null graph, does
not depend on the choice of {h[k]}nk=1. So we may ignore this factor, and after
taking logs and negating we arrive at the equivalent problem of minimizing

∑
i,j:Aij=1

ln

[
1− f(h[i],h[j])

f(h[i],h[j])

]
. (2.24)

25

Laplacians for Structure Recovery on Directed and Higher-order Graphs 26

Comparing (2.24) and (2.22), we see that two minimization problems have the
same solution when

ln

[
1− f(h[i],h[j])

f(h[i],h[j])

]
= γI(h[i],h[j]),

for any positive γ, and the result follows.

For the model in Theorem 2.3.4, given {h[k]}nk=1 the edge i → j appears
according to a Bernoulli distribution with probability f(h[i],h[j]), and hence with
variance

f(h[i],h[j])[1− f(h[i],h[j])] =
eγI(h

[i]
,h[j]

)

[1 + eγI(h
[i]
,h[j]

)]2
.

When I(h[i],h[j]) = 0 the probability is 1/2 and the variance takes its largest
value, 1/4. The edge probability is symmetric about i and j if and only if the
function I is symmetric about its arguments. In the case of squared Euclidean
distance, I(h[i],h[j]) = ∥h[i]−h[j]∥2, and an undirected graph, the relaxed version
of the minimization problem is solved by taking d eigenvectors corresponding to
the smallest eigenvalues of the standard graph Laplacian.

For completeness, we now state and prove a weighted analogue of Theo-
rem 2.3.4 assuming that weights lie strictly between zero and one. Discrete-valued
weights may be dealt with similarly.

Theorem 2.3.5. Suppose {h[k]}nk=1 may take values from the given set {ν [k]}nk=1;
that is, h[k] = ν [pk] ∈ Rd, where p is a permutation vector. Then, given a
weighted graph with weights in (0, 1), minimizing the expression (2.22) over all
such {h[k]}nk=1 is equivalent to maximizing the likelihood that the graph came from
a model where Aij has (independent) density

fij(x) =
1

ZijeγxI(h
[i]
,h[j]

)
, for x ∈ (0, 1), and f(x) = 0 otherwise, (2.25)

for any positive γ, where

Zij =
1− e−γI(h[i]

,h[j]
)

γI(h[i],h[j])

is a normalization factor.

Proof. It is straightforward to check that the normalization factor Zij ensures∫ 1

y=0

fij(y) dy = 1.

Now the product over all pairs
∏

i,j Zij is independent of the choice of permuta-
tion vector p. Hence, under the model defined in the theorem, maximizing the
likelihood of the graph G is equivalent to maximizing

∏
i,j fij(Aij). After tak-

26

Laplacians for Structure Recovery on Directed and Higher-order Graphs 27

ing logarithms and negating, we see that the choice (2.25) allows us to match
(2.22).

Remark 2.3.2. It is natural to ask whether the frustration (2.2) fits into the
form (2.22), and hence has an associated random graph model of the form (2.23).
We see from (2.13) that the frustration may be written

η(θ) =
∑
i,j

Aij|eiθi − eiδijeiθj |2.

However, the factor |eiθi−eiδijeiθj |2 depends (through δij) on Aij, and hence we do
not have expression of the form (2.22). This explains why a new type of model,
with conditional dependence between the i→ j and j → i connections, was needed
for Theorem 2.3.1.

2.3.4 Model Comparison

The random graph models appearing in Section 2.3 capture the characteristics of
linear and periodic directed hierarchies. Hence it may be of interest (a) to analyze
properties of these models and (b) to use these models to evaluate the perfor-
mance of computational algorithms. However, in the remainder of this chapter
we focus on a follow-on topic of more direct practical significance. The Magnetic
Laplacian and Trophic Laplacian algorithms allow us to compute node attributes
θ and h in Rn for a given graph, leading to unsupervised node ordering. The
main computation required in this step is finding dominant eigenvector-eigenvalue
pairs. Assuming that the network is sparse (each node has an O(1) degree) and
that the power method gives the required accuracy in a finite number of itera-
tions, this is an O(n) computation. Motivated by Theorems 2.3.1 and 2.3.2, we
may then compute the likelihood of the graph for this choice of attributes, which
has a complexity of O(n2). By comparing likelihoods we may quantify which
underlying structure is best supported by the data. An extra consideration is
that both random graph models involve a free parameter, γ > 0, which is needed
to evaluate the likelihood. As discussed earlier, one option is to fit γ to the
data, for example by matching the expected edge density from the model with
the edge density of the given graph. However, based on our computational tests,
we found that a more reliable approach was to choose the γ that maximizes the
likelihood, once the node attributes were available; see Sections 2.4 and 2.5 for
examples. Our overall proposed workflow for model comparison is summarized
in Algorithm 3.

27

Laplacians for Structure Recovery on Directed and Higher-order Graphs 28

Algorithm 3: Model Comparison

Result: Comparison of possible graph structures
Input adjacency matrix A;
for Candidate spectral methods do

Compute node attributes (in our case with Magnetic and Trophic
Laplacian algorithms);
Derive the associated random graph model ;
Calculate maximum likelihood over γ > 0;

end
Report or compare maximum likelihoods

2.4 Results on Synthetic Networks

In this section, we demonstrate the model comparison workflow on synthetic
networks. These networks are generated using the directed pRDRG model and
the trophic RDRG model. Hence, we have a “ground truth” concerning whether
a network is more linear or periodic. Note that the Magnetic Laplacian algorithm
and associated random graph model have a parameter g that controls the spacing
between clusters. Therefore, when using the Magnetic Laplacian algorithm our
first step is to select the parameter g based on the maximum likelihood of the
graph.

2.4.1 Directed pRDRG Model

We generate a synthetic network using the directed pRDRG model with K clus-
ters of size m, and hence n = mK nodes. An array of angles θ ∈ Rn is cre-
ated, forming evenly spaced clusters C1, C2, ..., CK . This is achieved by letting
θi =

2π(l−1)
K

+ σ if i ∈ Cl, where σ ∼ unif(−a, a) is added noise. We then con-
struct the adjacency matrix according to the probabilities in Theorem 2.3.1 with
g = 1/K. We choose m = 100, K = 5, γ = 5 and a = 0.2 and the corresponding
adjacency matrix is shown in Figure 2.3a.

The Magnetic Laplacian algorithm is then applied to the adjacency matrix
to estimate phase angles and reorder the nodes. The reordered adjacency matrix
(Figure 2.3b) recovers the original structure. The Trophic Laplacian algorithm
is also applied to estimate the trophic level of each node. Figure 2.3c shows the
adjacency matrix reordered by the estimated trophic levels, which hides the orig-
inal pattern. Intuitively, the Trophic Laplacian algorithm is unable to distinguish
between these nodes since there is no clear “lowest” or “highest” level among the
directed clusters.

Figure 2.3d illustrates how the optimal parameter g is selected. The plots
show the likelihood that the network is generated by a directed pRDRG model for
g = 1

2
, 1
3
, 1
4
, 1
5
, 1
6
, assuming we are interested in structures with at most 6 directed

clusters. We see that g = 1
5
has the highest maximum likelihood, as expected.

Consequently, we choose g = 1/5 for the Magnetic Laplacian algorithm. In
addition for this value of g we plot in Figure 2.3e the phase angles estimated
with the Magnetic Laplacian algorithm against the true phase angles. The linear

28

Laplacians for Structure Recovery on Directed and Higher-order Graphs 29

100 200 300 400 500

100

200

300

400

500

(a) Input adjacency ma-
trix

100 200 300 400 500

100

200

300

400

500

(b) Magnetic Laplacian
reordering

100 200 300 400 500

100

200

300

400

500

(c) Trophic Laplacian re-
ordering

0 5 10
-2.5

-2

-1.5

-1

-0.5

L
o
g
-l
ik

e
lih

o
o
d

10
5

(d) Likelihood of directed
pRDRG

0 2 4 6

True

0

2

4

6

E
s
ti
m

a
te

d

(e) Estimated θ

0 5 10 15
-8

-6

-4

-2

0

L
o
g
-l
ik

e
lih

o
o
d

10
5

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(f) Model comparison

Figure 2.3: Magnetic Laplacian and Trophic Laplacian algorithms applied to a
synthetic directed pRDRG

relationship confirms that the algorithm recovers the 5 clusters in the presence of
noise.

We finally in Figure 2.3f compare the likelihood of a directed pRDRG against
the likelihood of a trophic RDRG. Both likelihoods are calculated using several
test points for γ. The highest points are highlighted with circles and they corre-
spond to the maximum likelihood estimators (MLE) for γ. Not surprisingly, in
this case the Magnetic Laplacian algorithm achieves a higher maximum. Aster-
isks highlight the point estimates arising when the expected number of edges is
matched to the actual number of edges. We see here, and also observed in sim-
ilar experiments, that the maximum likelihood estimate for γ produces a more
accurate result. We also found (numerical experiments not presented here) that
the accuracy of both types of γ estimates improves as n increases when using the
Magnetic Laplacian algorithm.

2.4.2 The Trophic RDRG model

Following on from the previous subsection, we now generate synthetic data by
simulating the trophic RDRG model with levels C1, C2, . . . , CK , where each level
hasm nodes. In particular, we generate an array of trophic indices h ∈ Rn, where
the total number of nodes is n = mK. We let hi = l + σ if i ∈ Cl for 1 ≤ l ≤ K,
where σ ∼ unif(−a, a) is added noise. The edges are then generated according
to the probabilities in Theorem 2.3.2. In the following example we use K = 5,
m = 100, a = 0.2 and γ = 5. This generates a network with 5 clusters forming a
linear directed flow, as shown in Figure 2.4a.

29

Laplacians for Structure Recovery on Directed and Higher-order Graphs 30

100 200 300 400 500

100

200

300

400

500

(a) Input adjacency ma-
trix

100 200 300 400 500

100

200

300

400

500

(b) Magnetic Laplacian
reordering

100 200 300 400 500

100

200

300

400

500

(c) Trophic Laplacian re-
ordering

0 5 10
-2

-1.5

-1

-0.5

L
o
g
-l
ik

e
lih

o
o
d

10
5

(d) Likelihood of directed
pRDRG

0 1 2 3 4

True trophic level

0

1

2

3

4

5

E
s
ti
m

a
te

d
 t
ro

p
h
ic

 l
e
v
e
l

(e) Estimated trophic
level

0 5 10 15
-2

-1.5

-1

-0.5

0

L
o
g
-l
ik

e
lih

o
o
d

10
5

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(f) Model comparison

Figure 2.4: Magnetic Laplacian and Trophic Laplacian algorithms applied to a
synthetic trophic RDRG

We see in Figure 2.4c that the Trophic Laplacian algorithm recovers the un-
derlying pattern. Figure 2.4b shows that the Magnetic Laplacian algorithm also
gives adjacent locations to nodes in the same cluster, and places the clusters in
order, modulo a “wrap-around” effect that arises due to its periodic nature. Fig-
ure 2.4d suggests that the optimal Magnetic Laplacian parameter is g = 1/6. For
this case, it is reasonable that g = 1/K is not identified, since the disconnection
between the first and the last cluster contradicts the structure of the directed
pRDRG model.

The trophic levels estimated using the Trophic Laplacian are consistent with
the true trophic levels, as shown by the linear pattern in Figure 2.4e. As expected,
the Trophic Laplacian produces a higher maximum likelihood for this network
(Figure 2.4f) and a more accurate MLE and point estimate for γ. We observe (in
similar experiments not presented here) that when using the Trophic Laplacian,
the accuracy of both estimates increase using the Trophic Laplacian.

2.5 Results on Real Networks

We now discuss practical use cases for the model comparison tool on a range of
real networks. We emphasize that the tool is not designed to discover whether a
given directed network has linear or directed hierarchical structure; rather it aims
to quantify which of the two structures is best supported by the data in a relative
sense. Since both models under investigation assume no self-loops, we discard
these if they are present in the data. Following common practice, we also prepro-

30

Laplacians for Structure Recovery on Directed and Higher-order Graphs 31

cess by retaining the largest strongly connected component to emphasize directed
cycles. This ensures that any pair of nodes can be connected through a sequence
of directed edges. However, when the strongly connected component contains too
few nodes, we analyze the largest weakly connected component instead.

We give details on four networks, covering examples of the two cases where
linear and periodic structure dominate. For the first two networks, we show
network visualizations to illustrate the results further. In subsection 2.5.5 we
present summary results over 15 networks.

2.5.1 Food Web

In the Florida Bay food web2[65], nodes are components of the system, and un-
weighted directed edges represent carbon transfer from the source nodes to the
target nodes [106], which usually means that the latter feed on the former. Be-
sides organisms, the nodes also contain non-living components, such as carbon
dissolved in the water column. Since we are more interested in the relationship
between organisms, we remove those non-living components from the network.
We analyze the largest strongly connected component of the network, which com-
prises 12 nodes and 28 edges.

We estimate the phase angles of each node using the Magnetic Laplacian algo-
rithm based on the optimal choice g = 1/3 (Figure 2.5a). Figure 2.5b compares
the likelihood of the food web being generated by the directed pRDRG model
with the likelihood of it being generated by the trophic RDRG model, as γ varies.
The directed pRDRG model achieves a higher maximum likelihood, suggesting
that the structure is more periodic than linear. In Figure 2.5c, the heights of the
nodes correspond to their estimated trophic levels on a vertical axis. We see that
22 edges point upwards, these are shown in blue. There are 6 downward edges,
highlighted in red, which violate the trophic structure. The Magnetic Laplacian
mapping in Figure 2.5d arranges 26 edges in a counterclockwise direction, shown
in blue, with 2 edges, shown in red, violating the structure and pointing in the
reverse orientation.

With g = 1/3, the Magnetic Laplacian mapping is encouraging cycles in the
food chain, and these are visible in Figure 2.5d, notably between members of
three categories: (i) flatfish and other demersal fishes; (ii) lizardfish and eels;
and (iii) toadfish and brotalus. Another noticeable distinction is that the Mag-
netic Laplacian mapping positions eels close to lizardfish, and flatfish near other
demersal fishes by accounting for the reciprocal edges, while the Trophic Lapla-
cian mapping places them further apart. In Figures 2.5e and 2.5f we show the
reordered adjacency matrix arising from the two algorithms.

2.5.2 Influence Matrix

The influence matrix we study quantifies the influence of selected system factors
in the Motueka Catchment of New Zealand [22]. The original influence matrix
consists of integer scores between 0 and 5, measuring to what extent the row

2https://snap.stanford.edu/data/Florida-bay.html

31

https://snap.stanford.edu/data/Florida-bay.html

Laplacians for Structure Recovery on Directed and Higher-order Graphs 32

0 5 10

-150

-100

-50
L
o
g
-l
ik

e
lih

o
o
d

(a) Likelihood of directed pRDRG

0 5 10 15
-300

-250

-200

-150

-100

-50

L
o
g
-l
ik

e
lih

o
o
d

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(b) Model comparison

(c) Estimated trophic level (d) Magnetic Eigenmap

2 4 6 8 10 12

2

4

6

8

10

12

(e) Trophic Laplacian reordering

2 4 6 8 10 12

2

4

6

8

10

12

(f) Magnetic Laplacian reordering

Figure 2.5: Results for the Florida Bay food web

32

Laplacians for Structure Recovery on Directed and Higher-order Graphs 33

factors influence the column factors, where a bigger value represents a stronger
impact. The system factors and influence scores were developed by pooling the
views of local residents. To convert to an unweighted network, we binarise the
weights by keeping only the edges between each factor and the factor(s) it influ-
ences most strongly. We then select the largest strongly connected component,
which comprises 14 nodes and 35 edges.

The optimal parameter for the Magnetic Laplacian is g = 1/4 (Figure 2.6a).
The mapping from the Magnetic Laplacian has a higher maximum likelihood
than the Trophic Laplacian mapping, indicating a more periodic structure (Figure
2.6b). The Trophic Laplacian mapping in Figure 2.6c aims to reveal a hierarchical
influence structure. Here, scientific research and economic inputs are assigned
lower trophic levels, suggesting that they are the fundamental influencers. The
labour market is placed at the top, indicating that it tends to be influenced
by other factors. However, there are 8 edges, highlighted in red, that point
downwards, violating the directed linear structure.

On the other hand, the Magnetic Laplacian mapping in Figure 2.6d aims to re-
veal four directed clusters with phase angles of approximately 0, π/2, π, 3π/2. We
highlight the nodes corresponding to ecological factors in red and social-economic
factors in blue. The cluster near π/2 with 6 nodes contains a combination of
ecological and social-economic factors, and includes 6 reciprocal edges between
ecological factors and social-economic factors. Adjacency matrix reorderings are
shown in Figures 2.6e and 2.6f. Overall, the pattern agrees with the concep-
tual schematic model proposed in [22, Figure 5], which we have reproduced in
Figure 2.7. This model posits that ecological factors exert influence on social-
economic factors, which in turn influence on ecological factors, while the ecological
system also influences itself.

2.5.3 Yeast Transcriptional Regulation Network

We now analyze a gene transcriptional regulation network3[65] for a type of yeast
called S. cerevisiae [77], where a node represents an operon made up of a group
of genes in mRNA. An edge from operon i to j indicates that the transcriptional
factor encoded by j regulates i. The original network is directed and signed, with
signs indicating activation and deactivation. Here we ignore the signs and only
consider the connectivity pattern. Since the largest strongly connected compo-
nent has very few nodes, we take the largest weakly connected component, which
comprises 664 nodes and 1078 edges.

This is a very sparse network and consequently the log-likelihood of the di-
rected pRDRG (Figure 2.8a) keeps increasing as a function of the decay rate
parameter γ in the range we tested. We select g = 1/3 as the optimal parameter
for the Magnetic Laplacian, and compare the log-likelihood of two models in Fig-
ure 2.8b. This time the trophic version achieves a higher maximum likelihood,
favouring a linear structure.

3http://snap.stanford.edu/data/S-cerevisiae.html

33

http://snap.stanford.edu/data/S-cerevisiae.html

Laplacians for Structure Recovery on Directed and Higher-order Graphs 34

0 5 10
-300

-250

-200

-150

-100

-50
L
o
g
-l
ik

e
lih

o
o
d

(a) Likelihood of directed pRDRG

0 5 10 15
-400

-300

-200

-100

0

L
o
g
-l
ik

e
lih

o
o
d

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(b) Model comparison

(c) Estimated trophic level (d) Magnetic Eigenmap

2 4 6 8 10 12 14

2

4

6

8

10

12

14

(e) Trophic Laplacian reordering

2 4 6 8 10 12 14

2

4

6

8

10

12

14

(f) Magnetic Laplacian reordering

Figure 2.6: Results for the Motueka Catchment influence matrix

34

Laplacians for Structure Recovery on Directed and Higher-order Graphs 35

Ecological
Systems

Social
Economic
Systems

Influence on

Influence on

Influence on

Figure 2.7: Influence matrix schematic graph, based on [22, Figure 5]

0 5 10
-3.5

-3

-2.5

-2

-1.5

-1

L
o
g
-l
ik

e
lih

o
o
d

10
5

(a) Likelihood of directed pRDRG

0 5 10 15
-3

-2

-1

0
L
o
g
-l
ik

e
lih

o
o
d

10
5

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(b) Model comparison

200 400 600

100

200

300

400

500

600

(c) Trophic Laplacian reordering

200 400 600

100

200

300

400

500

600

(d) Magnetic eigenmap

Figure 2.8: Yeast transcriptional regulation network

35

Laplacians for Structure Recovery on Directed and Higher-order Graphs 36

0 5 10
-10000

-8000

-6000

-4000

L
o
g
-l
ik

e
lih

o
o
d

(a) Likelihood of directed pRDRG

0 5 10 15
-8000

-6000

-4000

-2000

L
o
g
-l
ik

e
lih

o
o
d

Magnetic Laplacian

Trophic Level

Point estimate

MLE

(b) Model comparison

20 40 60 80 100

20

40

60

80

100

(c) Reordered matrix using the trophic
level

20 40 60 80 100

20

40

60

80

100

(d) Reordered matrix using the Magnetic
eigenmap

Figure 2.9: C. elegans frontal neural network

2.5.4 C. elegans Frontal Neural Network

C. elegans is the only organism whose neural network has been fully mapped. The
neural network of C. elegans4[65] is unweighted and directed, representing con-
nections between neurons and synapses [61]. We investigate its largest strongly
connected component with 109 nodes and 637 edges. The optimal value for
the parameter g among the test points is g = 1/5 (Figure 2.9a). The Trophic
Laplacian algorithm achieves a higher maximum likelihood than the Magnetic
Laplacian algorithm using (Figure 2.9b). This preference for a linear directed
structure is consistent with the tube-like shape of the organism [111].

2.5.5 Other Real Networks

A summary of further real-world network comparisons is given in Table 2.1. In the
Data set column, we use (s) and (w) to indicate whether the largest strongly or
weakly connected component is analyzed, respectively. The fourth column speci-
fies the optimal parameter g for the Magnetic Laplacian determined through grid

4http://snap.stanford.edu/data/C-elegans-frontal.html

36

http://snap.stanford.edu/data/C-elegans-frontal.html

Laplacians for Structure Recovery on Directed and Higher-order Graphs 37

Data set Nodes Edges g ln(PpRDRG/PTrophic)
Directed pRDRG (s) 500 49277 1/5 5.99e+04
Food web (s) [106] 12 28 1/3 1.17e+01

Influence matrix (s) [22] 14 35 1/4 1.72e+01
US migration (s)5 51 729 1/6 5.03e+02

US IO (s)6 31 299 1/6 5.67e+01
Trade (s)7 17 85 1/6 2.02e+01

Transportation (s)8 [65, 34] 456 71959 1/6 4.66e+04
Flight (s)9 227 23113 1/6 7.22e+03

Trophic level graph (w) 500 19956 1/6 -1.63e+04
C. elegans (s) [61] 109 637 1/6 -4.74e+02
Yeast (w) [77] 664 1078 1/3 -6.46e+04

Political blog (s)10 [1] 793 15781 1/5 -3.42e+04
Shopping basket (w)11 27 84 1/6 -1.35e+02
Venue reopen (w)[6] 13 19 1/6 -1.82e+01

Word adjacency (w)10[82] 112 425 1/6 -8.21e+02

Table 2.1: Comparison summary statistics. Periodic (linear) directed structure
is found to be preferred for networks in the first 8 (last 7) rows.

search among the test points g = 1/2, 1/3, 1/4, 1/5, 1/6. The decay parameter
γ used for the grid search ranges from 0 to 20 with a step size of 0.5. The last
column shows the logarithm of the ratio between the maximum likelihoods of the
directed pRDRG and trophic models. Hence, periodic/linear structure is seen to
be favoured for the networks in the first 8 rows/last 7 rows.

2.6 Conclusion

Spectral methods can be used to extract structures from directed networks, al-
lowing us to detect clusters, rank nodes, and visualize patterns. This chapter
exploited a natural connection between spectral methods for directed networks
and generative random graph models. We showed that the Magnetic Laplacian
and Tropic Laplacian can each be associated with a range-dependent random
graph. In the Magnetic Laplacian case, the new random graph model has the
interesting property that the probabilities of i→ j and j → i connections are not
independent. Our theoretical analysis provided a workflow for quantifying the
relative strength of periodic versus linear directed hierarchy, using a likelihood
ratio, adding value to the standard approach of visualizing a new graph layout or

5https://www.census.gov/content/census/en/library/publications/2003/dec/

censr-8.html
6https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI4_2018
7http://www.economicswebinstitute.org/worldtrade.htm
8http://snap.stanford.edu/data/reachability.html
9https://www.visualizing.org/global-flights-network/

10 http://www-personal.umich.edu/~mejn/netdata/
11https://www.dunnhumby.com/source-files/

37

https://www.census.gov/content/census/en/library/publications/2003/dec/censr-8.html
https://www.census.gov/content/census/en/library/publications/2003/dec/censr-8.html
https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI4_2018
http://www.economicswebinstitute.org/worldtrade.htm
http://snap.stanford.edu/data/reachability.html
https://www.visualizing.org/global-flights-network/
http://www-personal.umich.edu/~mejn/netdata/
https://www.dunnhumby.com/source-files/

Laplacians for Structure Recovery on Directed and Higher-order Graphs 38

reordering the adjacency matrix. We demonstrated the model comparison work-
flow on synthetic networks, and also showed examples where real networks were
categorized as more linear or periodic. The results illustrate the potential for the
approach to reveal interesting patterns in networks from ecology, biology, social
sciences and other related fields.

38

Chapter 3

Hypergraph Laplacian

3.1 Introduction

A typical graph-based data set captures pairwise interactions between nodes.
There is growing interest in understanding higher-order, group-level, interactions,
with different paradigms being proposed [7, 63]. In this chapter, we represent such
interactions with a hypergraph formulation; here each hyperedge involves two or
more nodes. This framework is discussed in [4, 3, 103] and has found application
in real-world problems such as epidemic spread modeling [51], image classification
[115], and the study of biological networks [88].

A fundamental learning task on graph-based data is to embed nodes into a
low-dimensional Euclidean space [96, 90]. The learned embedding can be used in
follow-on tasks such as clustering, classification, and structure recovery. There
are various types of learning algorithms for graphs; some design and analyze
Laplacian matrices related to the graph [70], some solve maximum likelihood
problems associated with random graph models [44, 85], and others involve more
complex machine learning frameworks [46, 47].

In this chapter1, we explore spectral methods that obtain node embeddings
from the eigenvectors of a Laplacian matrix, as introduced in Section 1.3.3. Two
main approaches have also recently been proposed for spectral clustering on hy-
pergraphs. One approach is to employ higher-order Laplacian tensors [36]. Ten-
sors in general contain richer information, however, their use can require consider-
ably more computational expense than matrix algorithms, and the results can be
difficult to visualize and interpret. A second approach is to “flatten” the higher
order information into a representative node-level matrix. Some matrix-based
approaches analyze the vertex-edge incidence matrix associated with a random
walk interpretation [96], other frameworks utilise motif-based Laplacian matrices
that can be generalized to various motifs and time steps [90, 68]. The methodol-
ogy that we develop here fits into this second category by building a node-based
matrix, using an intermediate step that looks over all hyperedge dimensions in
order to incorporate higher order information.

A second aspect of this chapter is the connection between spectral methods
and random models. Many graph embedding [54], re-ordering [44], clustering [16],

1Material in this chapter is adapted from [43].

39

Laplacians for Structure Recovery on Directed and Higher-order Graphs 40

and structure recovery [21, 105] techniques solve maximum-likelihood problems
on graphs assuming specific generative models. Besides their application in these
inverse problems, random graph models are useful inference tools for quantifying
structure, predicting new or missing links, and improving the interpretability of
learning algorithms by relating node embeddings to edge probabilities [45, 42].
Such connections have been investigated for undirected graphs [48] and directed
graphs [42], and here we extend these ideas to the hypergraph setting. In par-
ticular, we associate customized spectral embedding algorithms with generative
models that belong to a new class of range-dependent random hypergraphs that
encourages short-range connections between nodes, generalizing existing graph
models [44, 49]. These range-dependent random hypergraphs offer flexibility that
is not available in stochastic block models [16] which require block sizes to be
pre-specified or inferred.

We consider a spectral graph embedding algorithms, which is a special case of
[90] when the motif considered are hyperedges. A periodic version, which extends
[45] to hypergraph, is proposed where nodes are embedded into the unit circle. We
allow weights for hyperedges to vary with their cardinality since the importance
may vary in applications. For example, a conversation between two people may
suggest stronger social ties between individuals than a meeting between a group
of people; however, when it comes to model disease spread on social networks, the
large hyperedges may have a higher impact. The rest of the chapter is structured
as follows. Our notation is introduced in Section 3.2. In Sections 3.3 and 3.4
we define the linear and periodic hypergraph embedding algorithms and derive
associated optimization problems. We propose random models associated with
the hypergraph embedding algorithms in Section 3.5, which leads to a model
comparison workflow that quantifies the relative strength of linear versus periodic
structures. Numerical studies on synthetic and real-world hypergraphs using the
proposed models are presented in Section 3.6.

The main contributions of this chapter are as follows.

• We propose new range-dependent generative models for hypergraphs that
generate linear and periodic cluster patterns.

• We establish their connection with linear and periodic spectral embedding
algorithms.

• We demonstrate on synthetic and real data that, after tuning model param-
eters to the data, these models can quantify the relative strength of linear
and periodic structures.

• We perform prediction of triadic hyperedges (triangles) using the proposed
linear model and show that it outperforms the existing average-score based
method [2] on synthetic hypergraphs, and also on high school and primary
school contact data when the amount of training data is limited.

40

Laplacians for Structure Recovery on Directed and Higher-order Graphs 41

3.2 Notation

We consider undirected, unweighted hypergraphs G = (V,E) on the vertex set V
containing n nodes and the hyperedge set E. We let R ∈ R be an unordered set
of nodes, where R denotes the collection of all such sets. We use |R| to denote the
number of nodes in tuple R, that is, its cardinality, and we assume 2 ≤ |R| ≤ T
for all R ∈ E.

Let AR indicate the presence of a hyperedge, so that AR = 1 if R ∈ E
and AR = 0 otherwise. We define the t-th order n by n adjacency matrix W [t]

such that W
[t]
ij counts the number of hyperedges with cardinality t that contain

distinctive nodes i and j; hence,

W
[t]
ij =

{∑
R∈R:|R|=tAR 1 (i ∈ R)1 (j ∈ R) if i ̸= j,

0 otherwise ,

where 1 is the indicator function. Similarly, we define the corresponding t-th
order diagonal degree matrix D[t] such that

D
[t]
ii =

∑
j∈V

W
[t]
ij ,

and the t-th order Laplacian matrix

L[t] = D[t] −W [t].

We will focus on one-dimensional embedding. We let xi ∈ R be the location to
which node i is assigned, and x = (x1, x2, ..., xn)

T ∈ Rn .

3.3 Linear hypergraph embedding

Given a hypergraph, suppose we wish to find node embeddings x ∈ Rn such that
hyperedges tend to contain nodes that are a small distance apart. To formalize
this idea, we can define a linear incoherence function Ilin(x, R) that sums up the
squared Euclidean distance between all nodes pairs in tuple R:

Ilin(x, R) =
∑
i,j∈R

(xi − xj)2. (3.1)

We may then define the total linear incoherence of the hypergraph, ηlin(G,x),
by aggregating the linear incoherence over all node tuples. Furthermore, we
may wish to tune the weights of hyperedges of different cardinalities through a
coefficient c|R| ≥ 0 for node tuple R; that is,

ηlin(G,x) =
∑
R∈R

c|R|ARIlin(x, R). (3.2)

One justification for these tuning parameters c|R| is that they allow us to avoid the
case where high-cardinality hyperedges dominate the expression. For example,

41

Laplacians for Structure Recovery on Directed and Higher-order Graphs 42

we can choose

ct =
1

t(t− 1)

to balance the contributions from hyperedges with different sizes. A suitable
choice of ct may also depend on the relative importance of hyperedges in the
application.

In Proposition 3.3.1 we show that the total linear incoherence maybe be writ-
ten as a quadratic form involving the hypergraph Laplacian matrix

L =
T∑
t=2

ctL
[t]. (3.3)

Proposition 3.3.1. For any x ∈ Rn with L defined in (3.3), and ηlin(G,x)
defined in (3.2) we have

xTLx = 1
2
ηlin(G,x). (3.4)

Proof. It is straightforward to show that

xTL[t]x =
∑
i,j∈V

xi(D
[t]
ij −W

[t]
ij)xj =

1
2

∑
i,j∈V

W
[t]
ij (xi − xj)2.

Therefore,

xTLx =
T∑
t=2

xT ctL
[t]x

= 1
2

T∑
t=2

ct
∑
i,j∈V

W
[t]
ij (xi − xj)2

= 1
2

T∑
t=2

ct
∑
i,j∈V

∑
R∈R:|R|=t

AR 1 (i ∈ R)1 (j ∈ R)(xi − xj)2

= 1
2

∑
R∈R

c|R|AR

∑
i,j∈R

(xi − xj)2 = 1
2
ηlin(G,x).

We note that each Laplacian L[t] is symmetric and positive semi-definite with
smallest eigenvalue 0.

Assumption 3.3.1. We assume that the unweighted, undirected graph associated
with the binarized version of L is connected. It then follows that L has a single
eigenvalue equal to 0 with all other eigenvalues positive. We further assume
that there is a unique smallest positive eigenvalue, λ2. (The eigenvector v[2]

corresponding to λ2 is a generalization of the classic Fiedler vector.)

In minimizing the total linear incoherence (3.2) we must avoid the trivial cases
where (a) all nodes are located arbitrarily close to the origin and (b) all nodes
are assigned to the same location. Hence it is natural to impose the constraints

42

Laplacians for Structure Recovery on Directed and Higher-order Graphs 43

∥x∥ = 1 and xT1 = 1. It then follows from the Rayleigh-Ritz Theorem [55,
Theorem 4.2.2] that the quadratic form in Proposition 3.3.1 is solved by x = v[2].
This leads us to Algorithm 4 below, which can also be considered as a special
case of the algorithm in [36] where the motifs considered are hyperedges.

Algorithm 4: Linear Hypergraph Embedding Algorithm

Result: Node embedding x ∈ Rn

Input hyperedge adjacency matrices W [2],W [3], ...,W [T];

Construct diagonal degree matrices D
[t]
ii =

∑
j∈V W

[t]
ij ;

Construct t-th order Laplacians L[t] = D[t] −W [t];

Construct hypergraph Laplacian L =
∑T

t=2 ctL
[t];

Compute second smallest eigenvalue λ2 and corresponding
eigenvector v[2];

Embed nodes using x = v[2]

Remark 3.3.1. Algorithm 4 can be extended to higher dimensional embeddings
where node i is assigned to x[i] ∈ Rd for d > 1. In this case we can generalize
(3.1) to

Ilin(x, R) =
∑
i,j∈R

∥x[i] − x[j]∥2. (3.5)

If we require the coordinate directions to be orthogonal, then the embedding is
found via the eigenvectors corresponding to the d-smallest non-zero eigenvalues;
see [52] for details in the graph case.

3.4 Periodic hypergraph embedding

In this section, we look at the periodic analogue of linear hypergraph embedding.
Here nodes are embedded into the unit circle rather than along the real line. Such
a periodic structure formed the basis of the classic “small world” model of Watts
and Strogatz [109]. Results in [45] showed that certain real networks are better
represented via this type of “wrap-around” notion of distance. Hence, it is of
interest to develop concepts that apply to the hypergraph case.

We may position nodes on the unit circle by mapping them to phase angles
θ = {θi}ni=1 ∈ [0, 2π). We may then use a periodic incoherence function to
quantify the distance between node pairs in the tuple R:

Iper(θ, R) =
∑
i,j∈R

|eiθi − eiθj |2. (3.6)

Then the total periodic incoherence of the hypergraph becomes

ηper(G,θ) =
∑
R∈R

c|R|ARIper(θ, R). (3.7)

In Proposition 3.4.1 below, we relate the total periodic incoherence to a quadratic
form involving the hypergraph Laplacian matrix (3.3).

43

Laplacians for Structure Recovery on Directed and Higher-order Graphs 44

Proposition 3.4.1. Let ψ ∈ Cn be such that ψj = eiθj . Then

ψHLψ = 1
2
ηper(G,θ). (3.8)

Proof. We have

ψHL[t]ψ = ψHD[t]ψ −ψHW [t]ψ

=
∑
i∈V

e−iθi(
∑
j∈V

W
[t]
ij)e

iθi −
∑
i,j∈V

e−iθiW
[t]
ij e

iθj

=
∑
i,j∈V

W
[t]
ij (1− e−iθieiθj)

= 1
2

∑
i,j∈V

W
[t]
ij (2− e−iθieiθj − e−iθjeiθi)

= 1
2

∑
i,j∈V

W
[t]
ij (e

iθi − eiθj)(e−iθi − e−iθj)

= 1
2

∑
i,j∈V

W
[t]
ij |eiθi − eiθj |2.

Then the proof may be completed in a similar way to the proof of Proposi-
tion 3.3.1.

Appealing again to the Rayleigh–Ritz theorem [55, Theorem 4.2.2], the quadratic
form in (3.8) is minimized over all ψ ∈ Cn with ∥ψ∥ = 1 and ψH1 = 1 by taking
ψ = v[2]. However, this real-valued eigenvector cannot be proportional to a vec-
tor with components of the form eiθj . Hence, following the approach in [45] we
will use the heuristic of setting

θi = angle(v
[2]
i + iv

[3]
i) ∈ [−π, π], (3.9)

defined as
v
[2]
i + iv

[3]
i = |v[2]i + iv

[3]
i | · eiθi ,

where v[3] is an eigenvector corresponding to the next-smallest eigenvalue of L.
Such a heuristic assumption converts two real eigenvectors into a complex vector,
which gives an approximate solution to the minimization problem. The resulting
workflow is summarized in Algorithm 5.

We also note that for simple unweighted, undirected graphs, finding θ that
minimizes ηper(G,θ) is equivalent to the formulation proposed in [45]. This may
be shown by letting ui = cos θi and zi = sin θi and expanding (3.7) as∑

i∈V

∑
j∈V

W
[2]
ij

(
(ui − uj)2 + (zi − zj)2

)
,

which simplifies to

2uT (D[2] −W [2])u+ 2zT (D[2] −W [2])z. (3.10)

This is essentially equation (3.1) in [45], derived from a slightly different perspec-

44

Laplacians for Structure Recovery on Directed and Higher-order Graphs 45

tive.

We then arrive at Algorithm 5 below.

Algorithm 5: Periodic Hypergraph Embedding Algorithm

Result: Node embedding θ = {θi}ni=1 ∈ [0, 2π)
Input adjacency matrices W [2],W [3], ...,W [T];

Construct diagonal degree matrices D
[t]
ii =

∑
j∈V W

[t]
ij ;

Construct t-th order Laplacians L[t] = D[t] −W [t];

Construct hypergraph Laplacian L =
∑T

t=2 ctL
[t];

Compute second and third smallest eigenvalues λ2 and λ3 and
corresponding eigenvectors v[2] and v[3];

Calculate phase angles θi = angle(v
[2]
i + iv

[3]
i);

Embed nodes using θ

3.5 Generative hypergraph models

We now discuss a connection between the minimization of total incoherence and
generative models. Let us consider finding a node embedding x ∈ Rn that mini-
mizes a generic total graph incoherence expression

η(G) =
∑
R∈R

c|R|ARI(x, R), (3.11)

for a non-negative incoherence function I(x, R). We consider the case where the
xi ∈ R must take distinct values from a discrete set {νi}ni=1, where νi ∈ R; that
is, we must have xi = νpi , where p ∈ P is a permutation vector. In the linear
case, this set may be the integers from 1 to n and in the periodic case this set
may be equally spaced angles in [0, 2π).

Now consider a random hypergraph model where each hyperedge involving
node tuple R ∈ R is generated independently with probability

P(AR = 1) = fR(x, R), (3.12)

for a function fR that takes values between 0 and 1. We have the following
connection.

Theorem 3.5.1. Suppose x ∈ Rn is constrained to take values from a discrete
set such that xi = νpi, where p ∈ P is a permutation vector. Then minimizing the
total incoherence (3.11) over all such x is equivalent to maximizing over all such
x the likelihood that the hypergraph is generated by a model of the form (3.12),
where

fR(x, R) =
1

1 + eγc|R|I(x,R)
(3.13)

for any positive γ.

45

Laplacians for Structure Recovery on Directed and Higher-order Graphs 46

Proof. Using (3.12), the likelihood of the whole hypergraph is

L(G) =
∏

R∈R:AR=1

fR(x, R)
∏

R∈R:AR=0

(1− fR(x, R))

=
∏

R∈R:AR=1

fR(x, R)

1− fR(x, R)
∏
R∈R

(1− fR(x, R)) ,

which leads to the log-likelihood

ln(L(G)) =
∑

R∈R:AR=1

ln

(
fR(x, R)

1− fR(x, R)

)
+
∑
R∈R

ln ((1− fR(x, R))) . (3.14)

The second term on the right-hand side, which is the probability of the null
hypergraph, is independent of the permutation. Hence, with (3.13), maximizing
the log-likelihood of the hypergraph is equivalent to minimizing∑

R∈R:AR=1

ln

(
1− fR(x, R)
fR(x, R)

)
=
∑
R∈R

c|R|ARγI(x, R) = γ η(G). (3.15)

Remark 3.5.1. Theorem 3.5.1 can be extended to the case where node i is as-
signed to x[i] ∈ Rd for d > 1, and a higher-dimensional incoherence function
in (3.5) is considered. In this scenario, we constrain x[i] ∈ Rd to take values
from a discrete set {ν [i]}ni=1 where ν [i] ∈ Rd, such that x[i] = ν [pi] for a permu-
tation vector p ∈ P. Then we can follow the same arguments as in Theorem
3.5.1 to derive a model described by (3.12) and (3.13), where x ∈ Rn×d and
I(x, R) =

∑
i,j∈R∥x[i] − x[j]∥22.

For a hypergraph generated by model (3.13) the number of hyperedges con-
necting the node tuple R follows a Bernoulli distribution with probability 1/1 +
eγc|R|I(x,R). The log-odds of the hyperedge decay linearly with the incoherence of
the node tuple since

ln(fR(x, R)/(1− fR(x, R))) = −γc|R|I(x, R),

where the factor γc|R| determines the decay rate. The probability of a hyperedge
is highest when all nodes overlap, i.e., I(x, R) = 0, which gives a 1/2 likelihood.
If we generate hyperedges in repeated trials for the node tuple R, the variance
of the number of hyperedges is ec|R|γI(x,R)/(1 + ec|R|γI(x,R))2. When I(x, R) = 0,
the largest variance of 1/4 is achieved. The expected total number of hyperedges
of the whole hypergraph G can be expressed as∑

R∈R

fR(x, R) =
∑
R∈R

1

1 + eγc|R|I(x,R)
.

We note that Theorem 3.5.1 introduces the extra scaling parameter γ. This
parameter plays no direct role in Algorithms 4 and 5. However, a value for γ is
needed if we wish to compare the likelihoods of the two models having inferred the

46

Laplacians for Structure Recovery on Directed and Higher-order Graphs 47

embeddings. In principle, we may fit the parameter γ to a given hypergraph by
matching the observed number of hyperedges with their expectation. However,
from a computational point of view, this is rather challenging in general, since
the computational complexity of the expectation calculation is O(nT) when the
maximum cardinality of a considered hyperedge is T . Hence, given an embedding,
in practice we prefer to pick γ by maximizing the likelihood, as described in the
following subsection.

3.5.1 The Discrete Constraint

In the model above we have

ln(L(G)) = ln(L(G0))− γη(G,x),

where ln(L(G)) represents the likelihood of the null hypergraph with no hyper-
edges. When maximizing the likelihood L(G), we must constrain x to take dis-
crete values to make it equivalent to minimizing the total incoherence γη(G,x),
as the likelihood of the null hypergraph is dependent on x.

One way to eliminate the discrete restriction can be, rather than focusing on
maximizing the log-likelihood, to consider maximizing the log-odds:

ln

(
L(G)

L(G0)

)
= −γη(G,x).

An alternative method to eliminate the discrete restriction is to consider max-
imizing the posterior probability

P (x|G) = P (G|x)P (x)
P (G)

.

The dependence on x within the posterior probability can be removed by forming
assumptions on the prior probabilities P (x) and P (G).

Given that L(G0) is only dependent on the node location x and is independent
of the graph G, we can conveniently express L(G0) as 1/Ω(x) for a function Ω.

Assume that the prior distribution are

P (x) = Ω(x)/
∑
x

Ω(x),

P (G) =
∑
x
e−γη(G,x)/

∑
x

Ω(x).

For the conditional probability P (G|x) we can simply use

P (G|x) = L(G) = L(G0)e
−γη(G,x).

This gives us:
P (G|x) = e−γη(G,x)/Ω(x),

47

Laplacians for Structure Recovery on Directed and Higher-order Graphs 48

From this, we can express the posterior probability as:

P (x|G) = e−γη(G,x)∑
x e

−γη(G,x)
.

As the denominator does not rely on x, this implies that the most probable x for
a given graph G is the one that yields the minimum incoherence η(G,x)

3.5.2 Model comparison

Under the assumption that a given hypergraph arose from a mechanism that
favours connections between “nearby” nodes (in some latent, unobservable con-
figuration), it is of interest to know whether a linear or periodic distance provides
a better description.We may address this question using a model comparison ap-
proach. As in Sections 3.3 and 3.4, we consider one-dimensional embeddings,
such that both the linear and periodic version have n + 1 parameters given the
Laplacian coefficients: n node embeddings and a decay parameter γ. The node
embeddings will be estimated from Algorithms 4 and 5. For any choice of γ,
we may then calculate the corresponding likelihood for each type of hypergraph,
given the embedding. We may then compare the models by reporting plots of
likelihood versus γ or by reporting the maximum likelihood over all γ. We note
that Theorem 3.5.1 states that node embeddings that minimize the incoherence
also maximize the graph likelihood under the given discrete constraints. We note
that Algorithms 4 and 5 minimize linear and periodic incoherence after relax-
ing the discrete constraints in Theorem 3.5.1 for computational feasibility. Such
heuristics are often used in discrete programming. Therefore instead of the exact
maximum likelihood, we get an estimated maximum likelihood. An overall work-
flow is shown below in Algorithm 6.

Algorithm 6: Model Comparison

Result: Comparison of possible graph structures
Input hypergraph G;
Compute linear embedding using Algorithm 4;
Compute periodic embedding using Algorithm 5;
Calculate maximum likelihood of linear model over γ > 0 using
(3.14), (3.13), and (3.1) ;
Calculate maximum likelihood of periodic model over γ > 0
using (3.14), (3.13), and (3.6) ;
Compare likelihoods or report maxima

3.5.3 Weighted Generative Hypergraph Model

While our previous section and numerical experiments focused on unweighted hy-
pergraphs, we will now present a derivation for a weighted hypergraph generative
model. In this model, we assume that a hyperedge is independently generated for
each unordered node tuple R, and a weight denoted as WR is randomly assigned
to it, with WR ∈ (0, 1). The following theorem establishes the relationship be-
tween minimizing the incoherence in (3.11) and the weighted random hypergraph

48

Laplacians for Structure Recovery on Directed and Higher-order Graphs 49

model.

Theorem 3.5.2. Suppose x ∈ Rn is constrained to take values from a discrete
set such that xi = νpi, where p ∈ P is a permutation vector. Then minimizing
the total incoherence (3.11) over all such x is equivalent to maximizing over all
such x the likelihood that the hypergraph is generated by a model above, where
WR follows a density distribution

fR(u) =
1

ZR(x)eγuI(x)
, for u ∈ [0, 1), and f(u) = 0 otherwise. (3.16)

Here, γ > 0 is a constant, and the normalization factor is given by:

ZR(x) =

∫ 1

y=0

1

eγyI(x)
dy =

1− e−γI(x)

γI(x)
for I(x) > 0, and ZR = 1 for I(x) = 0.

Proof. The likelihood of the graph G is

L(G) =
∏
R∈R

fR(WR) =
∏
R∈R

1

ZR(x)eγWRI(x)
(3.17)

(3.18)

Therefore the log-likelihood is

ln (L(G)) = −
∑
R∈R

ln
(
ZR(x)e

γWRI(x)
)

(3.19)

= −ln

(∏
R∈R

ZR(x)

)
−
∑
R∈R

γWRI(x) (3.20)

= −ln

(∏
R∈R

ZR(x)

)
− η(G,x). (3.21)

Note that the first term is a product over all tuples and it depends on x. However,
since we constrain x to be a permutation of a discrete set, the first term becomes
a constant. Consequently, maximizing the log-likelihood with respect to x is
equivalent to minimizing η(G,x).

Properties of the Weighted Model

Taking the logarithm of the likelihood ratio, assuming I(x) is fixed, yields:

ln(fR(u1)/fR(u0)) = ln(eγI(x)(u0−u1)) = −γI(x)(u1 − u0).

This indicates that the larger the edge weight, the less probable the occurrence of
the hyperedge. Furthermore, the log-likelihood exhibits a linear relationship with
u, with a slope of −γI(x). We can imagine that the distribution can be plotted
as a exponential decay curve, and the area under the curve is always 1. Therefore
when u is held constant, a larger value of I(x) (resulting in faster decay) yields a

49

Laplacians for Structure Recovery on Directed and Higher-order Graphs 50

steeper curve, with a higher probability density near zero weight. Conversely, for
smaller values of I(x), the curve becomes flatter, indicating a higher likelihood
of weights closer to one. Thus, the model can generate graphs where nearby
nodes (smaller I(x)) are more likely to form hyperedges with larger weights. To
demonstrate this property rigorously, we can examine the cumulative distribution
function F (u) below while assuming I(x) > 0 as follows:

F (u) = P (WR ≤ u) =

∫ u

y=0

fR(u)du =
1− e−γuI(x)

ZRγI(x)
=

1− e−γuI(x)

1− e−γI(x)
.

It can be easily shown that dF/dI > 0, that dF/dI > 0 , implying the cumulative
probability decreases as the incoherence I(x) increase.

The expected weight of the hyperedge between tuple R can be calculated as
follows:

E(WR) =

∫ 1

0

ufR(u)du =

∫ 1

0

u

ZR(x)eγuI(x)
du =

1− (1 + γI(x))e−γI(x)

γI(x)(1− e−γI(x))

for I(x) > 0, and ∫ 1

0

udu =
1

2

for I(x) = 0. The expected weight decreases as I(x) increases when I(x) > 0,
and its maximum value is 1/2 when I(x) = 0. The expected total weight of the
whole graph using a simple sum over all tuples of nodes is

E(
∑
R∈R

WR) =
∑
R∈R

(
1− (1 + γI(x))e−γI(x)

γI(x)(1− e−γI(x))
)I(I(x) ̸= 0) +

1

2
I(I(x) = 0))

Once the node location x is known, we can calculate the expected edge weight.
The computational complexity of this calculation depends on the number of tu-
ples R. For instance, if we only consider simple edges, the complexity will be
O(n2). However, if we consider hyperedges with a maximum cardinality of T ,
the complexity will be O(nT). The complexity will increase rapidly as T becomes
larger.

Another notable property is that the weights are always non-zero, as per our
definition, resulting in a dense hypergraph. However, due to the exponential
decay of the probability density, the majority of edges will have small weights.
To get a sparse hypergraph from the model, one option is to apply a weight
threshold to truncate the edges.

50

Laplacians for Structure Recovery on Directed and Higher-order Graphs 51

3.6 Experiments

3.6.1 Model Comparison

Synthetic Hypergraphs

In this section we test the performance of Algorithms 4, 5 and 6 in a controlled set-
ting. To do this, we generate hypergraphs with either linear or periodic clustered
structure using the proposed random model. For simplicity, we only consider
dyadic and triadic edges, although the experiments can be extended to include
higher-order hyperedges.

Linear hypergraph with clustered nodes We first generate hypergraphs
with K planted clusters C1, C2, ..., CK of size m, and n = mK nodes. We embed
the nodes using xi =

2(l−1)
K

+ σ if i ∈ Cl, where σ ∼ unif(−a, a) is an additive
uniform noise. Hyperedges are then drawn randomly according to model (3.13)
with the linear incoherence (3.1).

We note that, in practice, the embedding algorithms must choose values c2
and c3 in order to form the hypergraph Laplacian, and the model comparison
algorithm must choose a value for γ. We are therefore interested in the sensitivity
of the process with respect to c2 and c3, and in the accuracy with which γ can
be estimated. We use c2, c3 and γ0 to denote parameters used by the generative
model to create the synthetic data; we also let c∗2 and c

∗
3 denote the corresponding

parameters used in the spectral embedding algorithms and let γ∗ represent an
inferred value of γ0. We choose c2 = 1 and c3 = 1/3 so that the weight of a
hyperedge is inversely proportional to the number of node pairs involved. We
let m = 50, K = 5, a = 0.05, and vary the decay parameter γ0 from 0 to 10.
Figure 3.1a shows an example of the dyadic adjacency matrix, W [2], with γ0 = 4,
where dots represent non-zeros. A corresponding triadic adjacency matrix, W [3],
is shown in Figure 3.1b. In all our tests we discard hypergraphs that do not
satisfy Assumption 3.3.1.

For each synthetic hypergraph, we estimate the maximum log-likelihood as-
suming a linear or a periodic structure using Algorithm 6. For each input decay
parameter γ0, 40 hypergraphs are generated independently and the average maxi-
mum log-likelihood is plotted in Figure 3.1c. The shaded regions represent the es-
timated 80% confidence interval. In this case, the linear model correctly achieves
a higher average maximum log-likelihood. The tight bound of the confidence
interval suggests that the result is consistent across random trials.

We then perform K-means clustering using the periodic and linear embeddings
assuming 5 clusters and plot the Adjusted Rand Index (ARI) [56, 76, 89] in
Figure 3.1d. Here, a larger ARI indicates a better clustering result. The dotted
line shows the average over 40 independently trials for each γ0 value and the
shaded area is the estimated 80% confidence interval. The plot suggests that the
clustering from the linear embedding outperforms the clustering from the periodic
embedding.

We are interested in the effect of parameters c3 and c
∗
3 that control the weight

of triadic edges in the random graph model and spectral embedding algorithm

51

Laplacians for Structure Recovery on Directed and Higher-order Graphs 52

respectively. To conduct an experiment, we fix the weight of dyadic edges c2 =
1, c∗2 = 1, and decay parameter γ0 = γ∗ = 1, while varying c3 and c∗3. The
maximum log-likelihood of the linear model (Figure 3.1e) and the ARIs using the
linear embedding (Figure 3.1f) are shown as heat-maps over c3 and c∗3. Values
are the average over 40 random trials. Overall, choosing c∗3 = c3, gives the
highest maximum likelihood. Therefore, when the true c3 is not known, it can be
estimated using a maximum likelihood method. In terms of the clustering result
we note that when c3 is large, for example, when c3 > 0.3, using information
from triadic edges by setting c∗3 > 0 achieves a better ARI than using only diadic
edges, i.e., c∗3 = 0. This is because a large c3 encourages more triadic edges to be
formed within clusters, whereas a small c3 leads to more triadic edges between
clusters. In general the larger the c3, the less sensitive the ARI is to the choice
of c∗3

Periodic hypergraph with clustered nodes To generate hypergraphs with
periodic clusters, we use a node embedding based on a vector of angles θ =
(θ1, θ2, ..., θn)

T in [0, 2π), forming K clusters C1, C2, . . . , CK of size m. In partic-
ular, we let

θi =
2π(l − 1)

K
+ σ

if i ∈ Cl for 1 ≤ l ≤ K, where σ ∼ unif(−a, a) is the added noise. The hyperedges
are generated using model (3.13), where the incoherence function is defined in
(3.6). We choose a = 0.05π, c2 = 1, c3 = 1/3 and vary the decay parameter γ0.
Examples of the dyadic and triadic adjacency matrices with γ0 = 1 are shown in
Figure 3.2a and 3.2b.

Using the same approach as in the previous section, we compare the maximum
log-likelihood and ARIs assuming linear and periodic structures in Figure 3.2c
and 3.2d. We see that the periodic model achieves a higher maximum, and on
average the periodic embedding produces higher ARIs.

Heat-maps in Figure 3.2e and 3.2f show results for different combinations of c3
and c∗3 for the periodic embedding algorithm. These results were generated in the
same way as for Figures 3.1c and 3.1d. Higher maximum likelihoods are achieved
near the diagonal where c∗3 = c3, hence the true parameters c3 for the underlying
hypergraph can be estimated using the maximum likelihood method. As in the
previous example, when c3 ≥ 0.3, using the triadic edges (c∗3 > 0) improves the
ARI. When c3 < 0.3, increasing c∗3 leads to an inferior clustering result. However
when c3 ≥ 0.3, ARI becomes less sensitive to the choice of c∗3 as long as it is
positive.

In summary, these tests indicate that the algorithms are able to correctly dis-
tinguish between linear and periodic range-dependency when one such structure
is present in the data. We observed that setting c∗3 > 0 improves the ARI when
the triadic edges have a strong structural pattern; that is, when c3 is large. More-
over, when the true parameter c3 is unknown we recommend choosing c∗3 based
on a maximum likelihood estimation, that is, finding the value c∗3 that returns the
largest maxima in Algorithm 6. Such a choice also achieves reasonable ARIs in
our synthetic examples as shown in the diagonal entries in Figure 3.1f and 3.2f.

52

Laplacians for Structure Recovery on Directed and Higher-order Graphs 53

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250 0

20

40

60

80

(b)

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
3
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
3

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-2.05

-1.76

-1.68

-1.62

-1.58

-1.55

-1.53

-1.51

-1.51

-1.50

-1.49

-2.45

-1.82

-1.66

-1.54

-1.45

-1.39

-1.35

-1.32

-1.30

-1.28

-1.27

-2.80

-1.95

-1.70

-1.52

-1.39

-1.30

-1.24

-1.19

-1.16

-1.13

-1.11

-3.15

-2.12

-1.79

-1.55

-1.38

-1.26

-1.17

-1.11

-1.07

-1.03

-1.01

-3.50

-2.32

-1.92

-1.62

-1.40

-1.25

-1.14

-1.07

-1.01

-0.96

-0.93

-2.54

-2.06

-1.70

-1.44

-1.26

-1.14

-1.04

-0.97

-0.92

-0.88

-2.77

-2.22

-1.80

-1.50

-1.29

-1.14

-1.04

-0.96

-0.89

-0.85

-3.02

-2.39

-1.92

-1.58

-1.34

-1.16

-1.04

-0.95

-0.88

-0.83

-3.28

-2.57

-2.04

-1.66

-1.39

-1.19

-1.06

-0.95

-0.88

-0.82

-3.54

-2.76

-2.17

-1.74

-1.45

-1.23

-1.08

-0.96

-0.88

-0.81

-3.85 -4.21 -4.57 -4.93 -5.29

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

(e) Linear log-likelihood of graph
×10−6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
3
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
3

0.17

0.72

0.01

0.73

0

0.66

0.7

0

0.65

0

0.66

0

0.68

0

0.67

0

0.67

0

0.69

-0

0.69

0.85

0.84

0.85

0.86

0.85

0.86

0.87

0.83

0.84

0.88

0.86

0.75

0.83

0.9

0.85

0.92

0.93

0.96

0.97

0.98

0.81

0.8

0.88

0.91

0.92

0.98

0.95

0.99

0.98

0.78

0.86

0.91

0.93

0.97

0.96

0.97

0.97

0.74

0.82

0.85

0.91

0.94

0.94

0.95

0.96

0.96

0.76

0.8

0.9

0.89

0.92

0.96

0.97

0.96

0.98

0.75

0.8

0.81

0.85

0.95

0.93

0.96

0.97

0.97

0.76

0.83

0.81

0.9

0.91

0.95

0.97

0.99

0.98

0.79

0.8

0.84

0.86

0.96

0.94

0.97

0.97

0.96

0.79

0.84

0.86

0.92

0.94

0.94

0.97

1

0.97

0.76

0.82

0.87

0.91

0.93

0.96

0.96

0.99

0.97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Linear ARI

Figure 3.1: Model comparison experiments on synthetic linear hypergraphs. (a)
Black pixels in the dyadic adjacency matrix (γ0 = 4) represent edges, and they
reveal 5 clusters in the diagonal blocks. (b) In the triadic adjacency matrix,
colors reflect the number of triangles shared between nodes (γ0 = 4). (c) The
linear embedding achieves higher log-likelihoods than the periodic version for
hypergraphs generated with different γ0. (d) Adjusted Rand Indices of K-means
clustering based on the linear and periodic embedding are plotted against γ0.
(e) Values in the heatmap represent the maximum likelihoods of the linear model
×10−6 from Algorithm 6. The maxima are found along the diagonal when c∗3 = c3.
(f) Values represent the Adjusted Rand Indices of K-means clustering based on
the linear embedding for different values of c∗3 and c3.

53

Laplacians for Structure Recovery on Directed and Higher-order Graphs 54

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250 0

20

40

60

80

(b)

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
3
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
3

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.80

-1.92

-1.69

-1.50

-1.37

-1.30

-1.26

-1.23

-1.22

-1.21

-1.20

-1.19

-2.28

-1.78

-1.44

-1.16

-1.01

-0.93

-0.88

-0.85

-0.84

-0.82

-0.81

-2.80

-1.99

-1.50

-1.10

-0.88

-0.76

-0.69

-0.64

-0.62

-0.60

-0.58

-3.41

-2.26

-1.63

-1.13

-0.84

-0.68

-0.58

-0.52

-0.49

-0.47

-0.45

-4.07

-2.57

-1.80

-1.21

-0.86

-0.65

-0.53

-0.46

-0.42

-0.39

-0.37

-4.77

-2.89

-2.00

-1.33

-0.90

-0.66

-0.52

-0.43

-0.38

-0.35

-0.32

-3.23

-2.21

-1.46

-0.97

-0.69

-0.52

-0.42

-0.36

-0.32

-0.29

-3.58

-2.42

-1.61

-1.05

-0.73

-0.54

-0.42

-0.35

-0.31

-0.28

-3.93

-2.64

-1.76

-1.14

-0.77

-0.56

-0.43

-0.35

-0.30

-0.27

-4.28

-2.86

-1.92

-1.23

-0.82

-0.59

-0.44

-0.36

-0.30

-0.26

-5.49 -6.22 -6.95 -7.69

-7

-6

-5

-4

-3

-2

-1

(e) Log-likelihood of periodic
model ×10−6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
3
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
3

0.13

0.51

0.02

0.4

0.01

0.37

0

0.36

0

0.36

0.52

0

0.33

0.54

0

0.33

0.52

0

0.33

0.52

0

0.33

0.51

0

0.33

0.51

0.71

0.71

0.7

0.71

0.69

0.71

0.71

0.71

0.69

0.71

0.72

0.67

0.73

0.74

0.73

0.74

0.74

0.74

0.73

0.74

0.6

0.72

0.73

0.74

0.72

0.73

0.73

0.73

0.73

0.55

0.73

0.73

0.73

0.74

0.74

0.73

0.73

0.73

0.55

0.73

0.73

0.73

0.73

0.74

0.73

0.73

0.73

0.72

0.73

0.73

0.74

0.73

0.73

0.73

0.73

0.71

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.72

0.72

0.73

0.74

0.73

0.73

0.73

0.73

0.71

0.73

0.73

0.74

0.73

0.73

0.73

0.73

0.71

0.73

0.73

0.74

0.73

0.73

0.73

0.73

0.72

0.73

0.74

0.74

0.73

0.73

0.73

0.73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) Periodic ARI

Figure 3.2: Model comparison experiments on synthetic periodic hypergraphs.
(a) The bottom-left and top-right blocks in the dyadic adjacency matrix (γ0 = 1)
reveal a periodic clustered structure. (b) Similar periodic clustered pattern is
shown in the triadic adjacency matrix (γ0 = 1). (c) The periodic embedding
achieves higher log-likelihoods than the linear embedding for different values of
γ0. (d) Adjusted Rand Indices of K-means clustering based on the linear and
periodic embedding are plotted against γ0. (e) Values in the heatmap indicate
the maximum likelihoods of the periodic model ×10−6 from Algorithm 6 and
the maxima lie on the diagonal where c∗3 = c3. (f) Values represent the Adjusted
Rand Indices of K-means clustering based on the periodic embedding for different
values of c∗3 and c3.

54

Laplacians for Structure Recovery on Directed and Higher-order Graphs 55

0 0.5 1 1.5 2

c
3
*

-4

-3

-2

-1

0

M
a
x
im

u
m

 L
n
P

10
6

Linear

Periodic

0 0.5 1 1.5 2

c
3
*

0.2

0.3

0.4

0.5

A
R

I

Linear

Periodic

Figure 3.3: Model comparison experiments on the high school contact data. Left
side shows the maximum log-likelihoods of the linear and periodic embedding for
different values of c∗3 where pentagrams indicate maxima. Right side plots the
Adjusted Rand Indices of K-means clustering based on the linear and periodic
embedding for various c∗3.

Real Hypergraphs

High School Contact Data The high school contact data from [75] records
the frequency of student interaction. Students are represented as nodes, and
contacts between two or three students are registered as dyadic or triadic edges.
We retrieved the hypergraph from [16] containing 327 nodes, and only studied its
dyadic and triadic edges considering the computational complexity. We construct
the hypergraph Laplacian L = c∗2L

[2] + c∗3L
[3] and perform linear and periodic

spectral embedding. For the linear embedding we map nodes into 3-dimensional
Euclidean space using the eigenvectors corresponding to the three smallest eigen-
values that are larger than 0.01. We make this choice because the eigenvector
associated with the smallest non-zero eigenvalue has only a few non-zero entries
and leads to trivial clusters. We fix c∗2 = 1 and vary c∗3 since only the relative
weight c∗3/c

∗
2 matters in node embedding.

The maximum likelihoods and ARIs evaluated using various c∗3 are shown in
the left column in Figure 3.5. The true clusters are defined by the classes the
students came from. Overall the periodic embedding achieves higher likelihoods
and ARIs despite the linear embedding involving more parameters. Since linear
clusters tend to have more marginalized groups that are far from other clusters,
our results may suggest a lack of marginalisation driven by class membership.

We note that setting c∗3 = 0 causes the algorithm to ignore triangles, and
hence it reduces to classical spectral clustering. For the linear algorithm, we
see that incorporating triadic edges by using a positive c∗3 can improve the ARI
by up to around 0.09. We note that in [16], modularity maximization-based
clustering achieved ARI=1 on the same data. However, those methods have
more parameters, which makes the ARI not directly comparable.

55

Laplacians for Structure Recovery on Directed and Higher-order Graphs 56

0 0.5 1 1.5 2

c
3
*

-15

-10

-5

0

M
a
x
im

u
m

 L
n
P

10
5

Linear

Periodic

0 1 2

c
3
*

0.15

0.2

0.25

0.3

0.35

A
R

I

Linear

Periodic

Figure 3.4: Model comparison experiments on the primary school contact data.
Left side shows the maximum log-likelihoods of the linear and periodic embedding
for different values of c∗3 where pentagrams indicate maxima. Right side plots the
Adjusted Rand Indices of K-means clustering based on the linear and periodic
embedding for various c∗3.

Primary School Contact Data The primary school contact hypergraph [16]
is derived from the contact patterns among students in 10 classes, as documented
in [101]. Nodes represent students or teachers, and hyperedges represent their
physical contact. Each node is labelled by the class of the students or as a teacher.
The hypergraph contains 242 nodes and 11 classes of labels. We extracted the
dyadic and triadic edges from the hypergraph and performed likelihood com-
parison and clustering with four eigenvectors associated with the four smallest
eigenvalues that are greater than 0.01. The middle column in Figure 3.5 suggests
the periodic embedding achieves the maximum likelihood at c∗3 = 0.7 and overall
performs better than the linear embedding in the clustering task. These results
may be related to the existence of a teacher group that connects with all student
groups. When we arrange dyadic and triadic adjacency matrices by node classes,
these connections will appear as off-diagonal entries. As we have shown in Figure
3.2a and 3.2b, the periodic model tends to produce more off-diagonal connections
than the linear model.

Senate Bills Data In the senate bills hypergraph [32, 33, 16], nodes are US
Congresspersons and hyperedges are the sponsor and co-sponsors of Senate bills.
There are in total 294 nodes, and each node is labelled as either Democrat or
Republican. We performed likelihood comparison and clustering with only the
dyadic and triadic edges. Since the node degree distribution is highly inhomoge-
neous, we observe many trivial eigenvectors that are close to indicator functions.
To address this issue we trimmed off the top and bottom 2% nodes by node degree,
and use the eigenvector associated with the smallest eigenvalue that is greater
than 0.01. The linear and periodic models have similar maximum likelihoods and
clustering ARIs, as shown in the right column in Figure 3.5. In contrast with
previous examples, there are only two clusters present in this data set. Hence the
difference between the periodic and linear models, which can be reflected in the

56

Laplacians for Structure Recovery on Directed and Higher-order Graphs 57

0 1 2

c
3
*

-2.5

-2

-1.5

-1

-0.5

0

M
a
x
im

u
m

 L
n
P

10
6

Linear

Periodic

0 1 2

c
3
*

0

0.02

0.04

A
R

I

Linear

Periodic

Figure 3.5: Model comparison experiments on the senate bill data. Left side shows
the maximum log-likelihoods of the linear and periodic embedding for different
values of c∗3 where pentagrams indicate maxima. Right side plots the Adjusted
Rand Indices of K-means clustering based on the linear and periodic embedding
for various c∗3.

connection (or disconnection) pattern between the first and the last group, is less
prominent.

3.6.2 Hyperedge Prediction

Once the node embeddings are estimated from the spectral algorithms, the proba-
bility of hyperedges may be computed from the proposed models. The hyperedge
probability can naturally serve as a score for hyperedge prediction. We imple-
ment and test such triadic edge prediction on timestamped high school contact
data [2, 75] , primary school contact data [2, 101], and synthetic linear hyper-
graphs. The results will be compared against approaches based on average-scores
proposed in [2]. Other hyperedge prediction methods include feature-based pre-
diction [114], model-based prediction [95], and machine learning-based prediction
[113].

For high school and primary school contact data, we used three and four eigen-
vectors respectively corresponding to the smallest eigenvalues that are greater
than 0.01 to be consistent with the previous section, and only consider dyadic
and triadic edges. The hyperedges are sorted by time stamps and split into train-
ing and testing data. For example, an 80 : 20 training/testing splitting ratio
means we use the first 80% of the hyperedges to train the model and the last
20% to test the predictions. When the training ratio is low, the subgraph for
training may be disconnected thus violating Assumption 3.3.1. Therefore, we
only consider nodes in the largest connected component of the graph associated
with the binarized version of L of the training subgraph, and test the prediction
on the same set of nodes. Note that in real data, the parameters γ0, c2 and c3 for
the hypergraph model are unknown. We fix c∗2 = 1 and choose c∗3 and γ∗ using a
maximum likelihood estimate through a grid search on the training data.

On the training set, we assign scores to each triplet using five methods: a

57

Laplacians for Structure Recovery on Directed and Higher-order Graphs 58

random score as baseline, hyperedge probability from the linear model, arithmetic
mean, harmonic mean, and geometric mean from [2]. On the test set, we measure
the prediction performance with the area under precision-recall curve (AUC-PR)
[25]. A Precision-Recall (PR) curve traces the Precision = True Positive/ (True
Positive + False Positive) and Recall = True Positive / (True Positive + False
Negative) for different thresholds. The AUC-PR is a measure that balances both
Precision and Recall where 1 means perfect prediction at any threshold. Setting
c∗3 = 0 will assign probability of 0.5 to all triplets, which is equivalent to the
random score approach if we break ties randomly.

On the high-school contact data shown in Table 3.1, the harmonic and geomet-
ric mean attain the highest AUC-PR for large amounts of training data, see, for
example the 80 : 20 data split; while the linear model predictions achieve the best
results for small amounts of training data, as seen in the 20 : 80 data split. This
could be because when training data is insufficient, there are more unobserved
“missing” dyadic and triadic edges. In this case, the node embedding algorithm
can infer node proximity based on common neighbors. In other words, it can
place nodes with common neighbors nearby even if they haven’t been directly
linked before. On the other hand, the geometric and harmonic mean will assign
a score of zero to a triplet if none of the nodes has been connected previously,
and therefore will predict no triadic edges.

We also test the triadic edge prediction on the synthetic linear hypergraphs,
generated in the manner described in subsection 3.6.1, with K = 4, m = 60,
γ = 10, c2 = 1, and c3 = 0.3, such that the clustered pattern resembles the high-
school contact data. We consider three eigenvectors associated with the smallest
eigenvalues that are greater than 0.01 for the synthetic linear model. Since defin-
ing a periodic model with more than one eigenvector is beyond the scope of this
work, we only test the linear hypergraphs. We randomly select a portion of the
hyperedges as the training set, while ensuring the sampled hypergraph is con-
nected, and test the performance on the rest of the hyperedges. The AUC-PR
averaged over 20 random hypergraphs is shown in Table 3.1. We observe that the
linear model outperforms random score and average scores for various training
data sizes.

3.7 Conclusion

In this chapter we have developed new random models and embedding algorithms
for hypergraphs, and investigated their equivalence. In particular, we focused on
two spectral embedding algorithms customized for hypergraphs, which aim to
reveal linear and periodic structures, respectively. We also described random hy-
pergraph models associated with these algorithms, which allow us to quantify the
relative strength of linear and periodic structures based on maximum likelihood.
We demonstrated the model comparison approach on synthetic linear and periodic
hypergraphs, showing that the results are consistent with the generating mecha-
nism. When applied to high school and primary school contact hypergraphs, the
model comparison suggests the periodic structure is more prominent. On this
data set we also showed that the “spectral embedding plus random hypergraph”

58

Laplacians for Structure Recovery on Directed and Higher-order Graphs 59

Data (Train:Test) Random Linear Arith Mean Geo Mean Harm Mean
Highschool (80:20) 5.3e-5 9.3e-4 9.4e-4 6.2e-3 6.0e-3
Highschool (60:40) 1.2e-4 1.2e-3 2.1e-3 1.1e-2 1.1e-2
Highschool (20:80) 2.6e-4 9.8e-3 3.9e-3 7.6e-3 7.4e-3

Primary School (80:20) 3.2e-4 8.4e-3 3.3e-3 1.6e-2 1.7e-2
Primary School (60:40) 1.1e-3 1.2e-2 9.9e-3 2.2e-2 2.2e-2
Primary School (20:80) 1.6e-3 3.0e-2 1.6e-2 2.2e-2 2.1e-2
Linear Model (80:20) 6.4e-3 1.6e-1 4.1e-2 7.8e-2 7.7e-2
Linear Model (60:40) 1.3e-2 2.8e-1 8.5e-2 1.8e-1 1.8e-1
Linear Model (20:80) 3.2e-2 3.0e-1 1.1e-1 1.4e-1 1.3e-1

Table 3.1: AUC-PR for triangle prediction on high-school contact data and syn-
thetic hypergraphs from the linear model. Highest values are indicated in bold.

approach gives a useful strategy for predicting new hyperedges.

59

Chapter 4

Magnetic Hodge Laplacian for
Simplicial Complexes

4.1 Introduction

A simplicial complex is an extension of a graph that captures interactions between
any number of nodes. It comprises simplexes of various dimensions, which can be
seen as a generalization of edges to any dimensions. A simplicial complex can also
be viewed as a hypergraph with downward face closure properties. This concept
will be discussed in further depth in the upcoming section.

Originally developed in the field of algebraic topology, simplicial complexes
provide a powerful toolkit for analyzing the topology of data [80]. Recently,
simplicial complexes have received growing interest due to increased availability
of complex structured data and improved computation power, and have found
applications in fields such as neuroscience [39, 87], biology [11, 13, 81, 112], signal
processing [92, 94], sensor networks [27, 37], computer graphics [9, 116] and social
contagion [57].

Similar to hypergraphs, simplicial complexes are capable of encoding rela-
tions between more than two components, a feature not readily achievable with
graphs due to their limitation to pairwise relationships. A primary benefit of
choosing simplicial complexes over hypergraphs is the possibility of applying ex-
isting theories and computational methodologies, drawn from algebraic topology
to real-world data sets [12, 14, 83]. A popular metric in this domain is the ho-
mology group, which, in simple terms, measures the number of loops, holes, and
cavities within the data. The homology group can be computed using the Hodge
Laplacian on simplicial complexes [35], an extension of the graph Laplacian to
any dimension. Beyond providing insights into the shape of the data, the Hodge
Laplacian can also be linked with higher-order random walks and used to examine
the dynamical process on simplicial complexes [93].

Despite the rapid progress in the research of simplicial complexes, the major-
ity of the existing methods consider undirected simplexes. Note that although
simplexes are oriented, such orientations are induced by an arbitrary choice of
node order, which does not influence the computational results. Therefore, Hodge
Laplacian with oriented simplexes can not capture the directional information.

60

Laplacians for Structure Recovery on Directed and Higher-order Graphs 61

So far theories on directed simplicial complexes are still less explored, partly due
to their intricate combinatorial nature. In Chapter 2, we introduced the Mag-
netic Laplacian on directed graphs defined in terms of the adjacency matrix and
a phase angle associated with edge directions. Such a Hermitian operator can
be useful for node embedding with directed graphs [30], identification of directed
clusters [31], and synchronization of connected sensors [100]. In this chapter, our
goal is to define and analyze a new first-order Magnetic Hodge Laplacian that ex-
tends the Magnetic Laplacian to simplicial complexes respecting the direction of
flows on both edges and triangles. This chapter is exploratory in nature, aiming
to lay the groundwork for future investigations and research.

The main contributions of this chapter are as follows.

• We introduce the first-order Magnetic Hodge Laplacian which can represent
directional flow on both edges and triangles.

• We analyze the quadratic form and spectrum of the newly introduced first-
order Magnetic Hodge Laplacian across four distinct cases of directed tri-
angles.

• We demonstrate the tool by applying it to two different types of triangu-
lated tori, where the eigenvectors of the Magnetic Hodge Laplacian recover
directional information.

The rest of the chapter is structured as follows. In the subsequent section, we
provide the theoretical background for simplicial complexes. Following that, in
Section 4.3, we introduce the new concept of the Magnetic Hodge Laplacian.
Basic notations used throughout this chapter are presented in Section 4.3. We
then proceed to define a new boundary operator to construct the Magnetic Hodge
Laplacian in Section 4.3.1. Although this construction is consistent with the zero-
order Magnetic Laplacian, it fails to distinguish certain configurations involving
the direction of triangles. Therefore, in Section 4.3.2, we shift gears and utilize an
element-by-element formalism to construct the first-order Magnetic Laplacian. In
Section 4.4 and 4.5, we present case studies focused on directed triangles and tori.
In these case studies, we demonstrate the application of the first-order Magnetic
Hodge Laplacian and analyze its spectral properties. Finally, we conclude the
chapter with a summary and discussion in Section 4.6.

4.2 Background

4.2.1 Simplicial Complex

In this thesis, we will use the notion of abstract simplicial complexes without
reference to their realization in Euclidean space. However, here we will omit the
word “abstract” in the majority of the thesis for readability. We will first define an
abstract simplex, which serves as the fundamental building block of a simplicial
complex. Most definitions are based on textbooks on algebraic topology such as
[10, 27, 38, 80].

61

Laplacians for Structure Recovery on Directed and Higher-order Graphs 62

Definition 4.2.1 ((Abstract) Simplex). Let V = {v0, v1, ..., vn} be a finite set of
vertices. A k-simplex σk is a subset of V with k + 1 distinct elements.

We refer to k as the dimension of σk. Simplexes with dimensions 0, 1, 2,
and 3 are commonly referred to as vertices, edges, triangles, and tetrahedra,
respectively.

Definition 4.2.2 (Face and Co-face). A face of σk is a (k−1)-simplex comprised
of a subset of vertices of σk. Similarly, σk is called a co-face of σk−1 when σk
contains σk−1 as one of its faces. We use degU(σ) to represent the number of
(k + 1)-simplices in which σk is a face.

Definition 4.2.3 (Upper and Lower Adjacent). Two distinct k-simplices are
upper adjacent if they share a common co-face. Two distinct k-simplices are
lower adjacent if they share a common face.

Now we define a simplicial complex, which is constructed from a set of sim-
plexes following certain rules.

Definition 4.2.4 ((Abstract) Simplicial Complex). A simplicial complex S is a
collection of finite simplexes such that (1) if A ∈ S, every nonempty face of A is
also an element of S and (2) the intersection of any two simplexes is a face of
both of those simplexes.

The dimension of S is the maximum dimension of its elements. The vertex
set V of S is the union of the elements of S with dimension 0.

Corollary 4.2.1. Let σ1
k, σ

2
k be two distinct k-simplexes for an integer k > 0 in

a simplicial complex S, then the following statements hold:

1. If σ1
k and σ2

k are upper-adjacent, they must be lower adjacent.

2. If σ1
k and σ2

k are lower-adjacent, their common face is unique.

3. If σ1
k and σ2

k are upper adjacent, their common co-face is unique.

Proof. The first statement is a direct consequence of property (1) in Definition
4.2.4. The second statement can be verified using property (2) in Definition 4.2.4.
We can prove the third statement by noting that two faces uniquely determine a
simplex.

For numerical computation, it is convenient to associate each simplex with an
orientation. This is analogous to assigning a label to each node for graphs. This
leads to the following definition for an oriented simplex.

Definition 4.2.5 (Oriented Simplex). Let σk be a k-simplex, an orientation for
σk is an ordering for its vertices. Two orderings are equivalent if they differ by
an even permutation. An oriented k-simplex is a k-simplex σk together with its
orientation.

62

Laplacians for Structure Recovery on Directed and Higher-order Graphs 63

In this thesis, we write σk = [v0, ..., vk] to denote that σk is an oriented k-
simplex with vertices {v0, ..., vk} and orientation given by the shown ordering
and all even permutations of it. When k > 0, we denote −σk as the oriented
simplex consisting of the same set of nodes as σk subject to an odd permutation
of the nodes, that is,

[v0, ..., vk] = −[vπ(0), ..., vπ(k)] for an odd permutation π,

therefore −(−σk) = σk by definition. Similarly, an oriented simplicial com-
plex is a simplicial complex where each simplex has an assigned orientation.

Definition 4.2.6 (Chain Group). [38] Let S be an oriented simplicial complex,
with k-simplexes σ1

k, ..., σ
n
k . The k-th chain group Ck(S) is the free abelian group

on the set {σ1
k, ..., σ

n
k}. An element ck of Ck(S), called called a k-chain, can be

written as a linear combination of k-simplexes in S

ck = λ1σ
1
k + ...+ λnσ

n
k ,

for some integers λ1, ..., λn. Furthermore, we define the sum of two k-chains
ck =

∑n
j=1 λjσ

j
k and c′k =

∑n
j=1 λ

′
jσ

j
k as

ck + c′k =
n∑

j=1

(λj + λ′j)σ
j
k,

When writing down a k-chain, we often drop the simplexes with coefficient 0
and denote a k-chain in which all coefficients are zero as 0. More details on the
free abelian groups can be found in, for example, the Appendix of [38].

Definition 4.2.7 (Boundary Map). Given the spaces of chains Ck, we define the
k-boundary map δk : Ck → Ck−1 as follows:

δk([v0, ..., vk]) =
k∑

j=0

(−1)j[v0, ..., vj−1, vj+1, ..., vk], (4.1)

for k ≥ 1. For k = 0, δk is defined to be zero.

Definition 4.2.8. Let σ1
k, σ

2
k be two distinct upper-adjacent k-simplexes. If the

signs of the coefficients of these two simplices in δk+1(σ
3
k+1) are the same, we say

that σ1
k and σ2

k are similarly oriented with respect to σ3
k+1, denoted as σ1

k ∼U σ2
k;

if the signs of the coefficients are different, we say the simplices are dissimilarly
oriented with respect to σ3

k+1, denoted as σ1
k ̸∼U σ

2
k.

Definition 4.2.9. Let σ1
k, σ

2
k be two distinct lower-adjacent k-simplexes. If the

signs of the coefficients of σ3
k−1 in δk(σ

1
k) and δk(σ

2
k) are the same, we say that

σ1
k and σ2

k are similarly oriented with respect to σ3
k−1, denoted as σ1

k ∼L σ2
k; if

the signs of the coefficients are different, we say the simplices are dissimilarly
oriented with respect to σ3

k−1, denoted as σ1
k ̸∼L σ

2
k.

63

Laplacians for Structure Recovery on Directed and Higher-order Graphs 64

Lemma 4.2.1. Let us consider two upper adjacent simplexes. They are similarly
oriented with respect to their common co-face if and only if they are dissimilarly
oriented with respect to their common face, and vice versa.

The boundary map exhibits the property of a homomorphism; that is, the
boundary map commutes with the group operation:

δk(ck + c′k) = δkck + δkc
′
k.

Therefore the boundary map is also called the boundary homomorphism. For
each boundary map, there exists a coboundary map δ∗k : Ck−1 → Ck, which is the
adjoint of the boundary map. From (4.1) we can verify that

δkδk+1 = 0, (4.2)

Thus we say the boundary of a boundary is zero. Equation (4.2) is sometimes
referred to as the fundamental theorem of topology. Consequently, the image of
δk+1 is a subspace of the kernel of δk, or

im(δk+1) ⊆ ker(δk).

Here im(·) denotes the image of an operator, and we call im(δk+1) the space of
k-boundaries. im(·) represents the kernel of an operator. It is straightforward to
verify that ck ∈ Ck is a cyclic chain whose first and last vertices are identical, if
and only if δkck = 0. Therefore, ker(δk) is the space of k-cycles. This leads to
the definition of the k-th homology group as those elements in the null space of
δk which are not in the image of δk+1.

Definition 4.2.10 (Homology Group). The k-th homology group of the chain
complex C is defined as the quotient vector space

Hk(C) = ker(δk)/im(δk+1),

and its elements are called homology classes.

Note that ker(δk)/im(δk+1) has the structure of an abelian group under addi-
tion, hence the word “group”. Loosely speaking, the group Hk(C) measures the
number of independent k-dimensional holes in C.

As we have shown earlier, a boundary map δk is a linear map between the space
of k-chains to the space of (k−1)-chains. If we choose the right basis vectors, the
boundary map can be represented as matrices, simplifying computations. Each
row of such matrix is indexed by a (k− 1)-simplex, while each column is indexed
by a k-simplex. The matrix entries are the coefficients in Equation (4.1).

Definition 4.2.11 (Matrix Representation of Boundary Operator). Let nk and
nk−1 be the number of k-simplexes and (k−1)-simplexes in the simplicial complex
S. The matrix representation of δk, denoted as Bk ∈ Rnk−1×nk , is given by

[Bk]ij =


1, if σi

k−1 ∼ σj
k

−1, if σi
k−1 ≁ σj

k

0, otherwise,

64

Laplacians for Structure Recovery on Directed and Higher-order Graphs 65

where σi
k−1 ∼ σj

k denotes the (k − 1)-simplex σi
k−1 is a face of k-simplex σj

k with

the same orientation induced by δk, and σ
i
k−1 ≁ σj

k denotes σi
k−1 is a face of σj

k

with the opposite orientation induced by δk.

Consequently, the matrix representation of δ∗k, the Hermitian adjoint operator
for δk, is B

T
k .

4.2.2 Hodge Laplacian on Simplicial Complex

The Hodge Laplacian on simplicial complexes [28, 67] generalizes the graph Lapla-
cian to higher orders. It is also a discrete counterpart of the Laplace-de Rham
operator in differential geometry [53].

Definition 4.2.12. The Hodge k-Laplacian is defined as

∆k = δ∗kδk + δk+1δ
∗
k+1.

In a matrix representation, this can be written as

Lk = Bk+1B
T
k+1 +BT

k Bk.

Definition 4.2.13. For convenience, we define the k-up Hodge Laplacian as

Lup
k = Bk+1B

T
k+1

and the k-down Hodge Laplacian as

Ldown
k = BT

k Bk,

such that
Lk = Lup

k + Ldown
k .

Proposition 4.2.1. Consider a finite oriented simplicial complex S, let k ≥
0 be an integer, and {σ1

k, σ
2
k, ..., σ

n
k} be the k-dimensional simplexes of S. For

i, j ∈ {1, 2, ..., n}, the corresponding entry in the Hodge Laplacian matrix can be
expressed as follows:

Lup
k =


degU(σ

i
k), if i = j

1, if σi
k ∼U σ

i
k

−1, if σi
k ̸∼U σ

i
k

0, otherwise;

Ldown
k =


k + 1, if i = j

1, if σi
k ∼L σ

i
k

−1, if σi
k ̸∼L σ

i
k

0, otherwise.

65

Laplacians for Structure Recovery on Directed and Higher-order Graphs 66

2 3

1 4

Figure 4.1: Examples of 2-dimensional simplicial complex

For k > 0 we have

Lk =


degU(σ

i
k) + k + 1, if i = j

1, if σi
k ∼L σ

i
k and they are not upper adjacent

−1, if σi
k ̸∼L σ

i
k and they are not upper adjacent

0, otherwise.

Proof. We can compute Lup
k and Ldow

k directly using the boundary operators.
Combined with Lemma 4.2.1 we can calculate Lk. We leave out the detailed
proof here and refer the interested reader to [41].

Example 4.2.1. Let us consider an oriented simplicial complex shown in Fig-
ure 4.1 consists of node [1], [2], [3], [4], edges [1, 2], [1, 3], [3, 4], [1, 4], and triangle
[1, 2, 3]. The boundary operators and Hodge Laplacians are given below.

B1 =


[1, 2] [1, 3] [2, 3] [1, 4]

[1] −1 −1 0 −1
[2] 1 0 −1 0
[3] 0 1 1 0
[3] 0 0 0 1

,
and

B2 =


[1, 2, 3]

[1, 2] 1
[1, 3] −1
[2, 3] 1
[1, 4] 0

.

Therefore

Lup
1 = B2B

T
2 =


1
−1
1
0

(1 −1 1 0
)
=


1 −1 1 0
−1 1 −1 0
1 −1 1 0
0 0 0 0

 ,

66

Laplacians for Structure Recovery on Directed and Higher-order Graphs 67

and

Ldown
1 = BT

1 B1 =


−1 1 0 0
−1 0 1 0
0 −1 1 0
−1 0 0 1



−1 −1 0 −1
1 0 −1 0
0 1 1 0
0 0 0 1

 =


2 1 −1 1
1 2 1 1
−1 1 2 0
1 1 0 2

 ,

which sum up to

L1 = Lup
1 + Ldown

1 =


3 0 0 1
0 3 0 1
0 0 3 0
1 1 0 2

 .

The Hodge decomposition theorem is a central result in the study of differen-
tial forms on smooth manifolds [78], and it has been adapted to discrete settings
as below [59, 67].

Theorem 4.2.1 (Hodge Decomposition). The space of k-simplex signals can be
decomposed into three orthogonal subspaces as

Rnk = im(BT
k)⊕ ker(Lk)⊕ im(Bk+1).

This implies that, every x ∈ Rnk can be decomposed uniquely as

x = Bk+1v + xH +BT
k w,

such that
⟨Bk+1w, xH⟩ = ⟨xH , BT

k v⟩ = ⟨Bk+1w,B
T
k v⟩ = 0,

for some v ∈ Rnk+1 and w ∈ Rnk−1 .

4.2.3 2-Manifolds

This thesis will consider examples of simplicial complexes abstracted from 2-
dimensional manifolds, or 2-manifolds, which are some of the most common
2-dimensional spaces. Usually, we visualize them by embedding them into 3-
dimensional spaces.

Definition 4.2.14 (Open Disk). Any subset of a topological space that is home-
omorphic to

D = {x ∈ R2 |∥x∥ < 1} (4.3)

is called an open disk.

This leads to the definition of the 2-manifold below.

Definition 4.2.15 (2-Manifold). A topological space M whose points all lie in
open disks is a 2-manifold without boundary. By removing open disks from
2-manifolds without boundary, one can get 2-manifolds with boundary.

67

Laplacians for Structure Recovery on Directed and Higher-order Graphs 68

(a) Torus (b) Möbius strip

Figure 4.2: Examples of 2-manifolds

The definition above means that a 2-manifold looks like a plane locally. Ex-
amples of 2-manifolds without boundary are the sphere, S2 and the torus (Figure
4.2a), T2; examples of 2-manifolds with boundary are the disk, the cylinder and
the Möbius strip (Figure 4.2b).

Among the examples above, the Möbius strip has the intriguing property
that it seems to have two sides locally but only one side globally. Such property
can be demonstrated by considering a small, oriented circle inside the strip. If
we move the small circle once around the strip, its orientation will be reversed.
This path is therefore called a orientation-reversing closed curve. If we move
the circle twice around the strip, the orientation will be preserved – such path
is orientation-preserving. A 2-manifold is orientable if all closed curves in it are
orientation-preserving; otherwise, it is called non-orientable.

For computation, we can triangulate a 2-manifold. The boundary circle of each
disk is cut at three points and converted into triangular regions. All triangular
regions can be represented as geometric triangles, which are arranged in a way
that they share vertices and edges the same way as the triangular regions in the
2-manifold. Such representation is called a triangulation if it is homeomorphic to
the 2-manifold. We also require that any two triangles are either disjoint, sharing
an edge, or sharing one vertex. It is not allowed to have identical vertices in one
triangle.

Once we get a triangulation of a 2-manifold M, we can orient the triangles.
If two triangles sharing an edge induce opposite orientations on the shared edge,
they are consistently oriented. There is a way to arrange triangles such that all
adjacent pairs are consistently oriented if and only if M is orientable.

4.3 Magnetic Hodge Laplacian

As described in Chapter 2, the Magnetic Laplacian is a Hermitian operator that
incorporates phase angles to encode the direction of links, allowing for the visual-
ization of directed flows on graphs. In the rest of the section, we aim to extend the
Magnetic Laplacian to the first-order Magnetic Hodge Laplacian. The zero-order

68

Laplacians for Structure Recovery on Directed and Higher-order Graphs 69

Magnetic Hodge Laplacian should align with the Magnetic Laplacian of directed
graphs formed solely by the nodes and directed links of the simplicial complex.

Notation

Let us consider an unweighted directed 2-dimensional simplicial complex S com-
prised of n nodes, links, and triangles. Let V = {1, ..., n} be a finite set of
vertices and E ⊆

(
V
2

)
is the set of edges, or 2-simplexes. Additionally, the set of

triangles, or 2-simplexes, T ⊆
(
V
3

)
. Furthermore, edges and triangles also have

directions concordant or discordant with their orientation. Let wσ > 0 indicate
the weight associated with the direction aligned with the orientation of a simplex
σ while w−σ > 0 indicates the weight associated to the direction opposite to the
orientation of σ. Then let

ϕσ = wσ − w−σ

represent the net weight of the flow aligned with the orientation. If simplexes are
unweighted, wσ and w−σ take value of either 0 or 1. Therefore,

ϕσ =


1, if the direction of σ aligns with its orientation

−1, if the direction of σ is opposite to its orientation

0, if both directions exist.

Furthermore, we let
Wσ = (wσ + w−σ)/2

be the symmetrized edge weight.

4.3.1 Boundary Operator Formalism

First-order Magnetic Boundary Operator

Let us start by defining the zero-order Magnetic Hodge Laplacian LM
0 of a 2-

dimensional simplicial complex in terms of the first-order Magnetic Boundary
Operator BM

1 whose rows are indexed by nodes and columns indexed by edges.
Similar to the Boundary Operator for the Hodge Laplacian, the signs of the matrix
elements depend on the relative orientations between the nodes and edges. In
addition, we would like to incorporate the direction of edges using a phase angle.
We use ℓ = [v1, v2] ∈ E to denote an edge whose positive orientation is given by
the node ordering [v1, v2], and define the first-order Magnetic Boundary Operator
as

[BM
1]iℓ =


−eiϕℓ/2, if ∃j ∈ V/i : ℓ = [i, j] ∈ E
e−iϕℓ/2, if ∃j ∈ V/i : ℓ = [j, i] ∈ E
0, otherwise.

Then the zero-order Magnetic Hodge Laplacian is defined as

LM
0 = BM

1 (BM
1)†.

Example 4.3.1. Let us consider a network consisting of a single edge [1, 2]. The

69

Laplacians for Structure Recovery on Directed and Higher-order Graphs 70

weight w[1,2] is associated with the direction 1 → 2, while the weight w[2,1] is
associated with the weight 2→ 1. We then have

BM
1 =

([1, 2]

[1] −ei(w[1,2]−w[2,1])

[2] e−i(w[1,2]−w[2,1])

)
,

and the zero-order Magnetic Laplacian is then given by

LM
0 = BM

1 (BM
1)† =

(
−ei(w[1,2]−w[2,1])

e−i(w[1,2]−α[2,1])

)(
−e−i(w[1,2]−w[2,1]) ei(w[1,2]−w[2,1])

)
=

(
1 −e2i(w[1,2]−w[2,1])

−e−2i(w[1,2]−w[2,1]) 1

)
.

Consistency with the Magnetic Laplacian

The zero-order Magnetic Hodge Laplacian defined above is consistent with the
Magnetic Laplacian defined in [30] shown in 2.2.1 up to some scaling factors. For
example, let us consider the unweighted case where edge weights wℓ and w−ℓ are
either 0 or one. The node degree can be calculated as

di =
∑

ℓ∈E:i∈ℓ

Wℓ.

Then if we modify the coefficient and phase angle in Equation (4.3.1) as

[BM
1]iℓ =


−
√
Wℓe

iϕℓπg, if ∃j ∈ V/i : ℓ = [j, i] ∈ E√
Wℓe

−iϕℓπg, if ∃j ∈ V/i : ℓ = [i, j] ∈ E
0, otherwise,

we will get the same Laplacian as Equation (2.4). This can be shown by writing
out each term in LM

0

[LM
0]ij = [BM

1 (BM
1)†]ij =



−di, if i = j

−1
2
e−2iπg, if i→ j

−1
2
e2iπg, if j → i

−1, if i↔ j

0, otherwise.

Higher-order Magnetic Boundary Operator

Now we extend the Magnetic boundary operator above to higher order. Let σp
k−1

and σq
k be a (k − 1) and k-simplex respectively. If we extend Equation (4.3.1) to

70

Laplacians for Structure Recovery on Directed and Higher-order Graphs 71

higher order, we get

[BM
k]pq =


−eiϕq/2, if σp

k−1 ̸∼U σ
q
k

e−iϕq/2, if σp
k−1 ∼U σ

q
k

0, otherwise.

Then we can define the n-order Magnetic Laplacian as

LM
k = BM

k+1(B
M
k+1)

† + (BM
k)†Bk.

We refer to the first part BM
k+1(B

M
k+1)

† as the k-up Magnetic Hodge Laplacian,
which can be written as

[BM
k+1(B

M
k+1)

†]ij =



∑
σq
k+1:σ

i
k⊂σq

k+1
1, if i = j

−eiϕq , if σi
k ̸∼U σ

q
k+1, σ

j
k ∼U σ

q
k+1

−e−iϕq , if σi
k ∼U σ

q
k+1, σ

j
k ̸∼U σ

q
k+1

1 if σi
k,∼U σ

q
k+1, σ

j
k ∼U σ

q
k+1 or σi

k ̸∼U σ
q
k+1, σ

j
k ̸∼U σ

q
k+1

0, otherwise.

(4.4)
Similarly, we define the k-down Magnetic Hodge Laplacian as follows:

[(BM
k)†BM

k]ij =



∑
σq
k−1:σ

q
k−1⊂σi

k
1, if i = j

−e−2i(ϕi+ϕj), if σq
k−1 ̸∼L σ

i
k, σ

q
k−1 ∼L σ

j
k

−e2i(ϕi+ϕj), if σq
k−1 ∼L σ

i
k, σ

q
k−1 ̸∼L σ

j
k

1, if σq
k−1 ∼L σ

i
k, σ

q
k−1 ∼L σ

j
k or σq

k−1 ̸∼L σ
i
k, σ

q
k−1 ̸∼L σ

j
k

0, otherwise.

(4.5)
By examining Equation (4.4) and (4.5), it becomes apparent that both the

up and down Magnetic Hodge Laplacians, defined using the boundary operator,
have a limitation. Specifically, they are unable to differentiate between situations
where two simplexes both share the same (or opposite) orientations with their
shared face (or co-face). In order to overcome this limitation, we present a novel
framework in the following section that is independent of the boundary operator.

4.3.2 Element by Element Formalism

In a directed graph, nodes possess a trivial direction; hence, we only need to
consider the directions of the links. For instance, two possible edge directions
exist between nodes i and j: i → j or i ← j. It is also worth noting that we
allow these two directions to occur concurrently, that is, i↔ j.

When dealing with a 2-dimensional simplicial complex, the number of possible
scenarios increases. It is no longer solely about the directions of the edges; the
directions of the 2-simplices, or triangles, also come into play. In the case of
i, j, k ∈ V , where [i, j, k] or any of its permutations form a 2-simplex, we represent
its orientation as ∆ijk = 1 (Case 1, 3, 5, and 7 in Table 4.1), if, when we curl
the fingers of our right hand along the flow, our thumb points outward from the

71

Laplacians for Structure Recovery on Directed and Higher-order Graphs 72

j k

i

j k

i

j k

i

j k

i

(1) (2) (3) (4)

j k

i

j k

i

j k

i

j k

i

(5) (6) (7) (8)

Table 4.1: 8 scenarios for LM,up
1

paper. Conversely, if the thumb points inward, we assign ∆ijk = −1 (Case 2,
4, 6, and 8 in Table 4.1). By considering all combinations of edge and triangle
orientations, we encounter a total of eight potential configurations, illustrated in
Table 4.1.

To distinguish these configurations, we employ the phase of complex numbers
combined with the “higher-order rotation” induced by the Pauli matrices. This
significantly enhances the complexity of our definition of the first-order Magnetic
Hodge Laplacian. If we aim to construct a k-order Magnetic Hodge Laplacian of
an order d > 1, the number of configurations will still be eight regardless of d.

1-up Magnetic Hodge Laplacian Consider a simplicial complex S with di-
mension d ≥ 2. Let {σ1

1, σ
2
1, ..., σ

n
1 } be its 1-simplexes. To construct the 1-up

Hodge Magnetic Laplacian, we first define the 1-up degree matrix Dup
1 ∈ Rn×n

where
[Dup

1]ii = 2degU(σ
i
1).

The value of [Dup
1]ii represents the number of edges that are upper-adjacent

to edge i. The coefficient 2 arises from the fact that degU(σ
i
1) corresponds to the

number of triangles that contain the edge σi
1. In each of these triangles, there

are two other edges that are upper-adjacent to σi
1. There is no double counting

because, as stated in Corollary 4.2.1, two upper-adjacent edges share a unique
common triangle. Next, we isolate the off-diagonal entries of the Hodge Laplacian
Lup

1 to capture the orientations of edges. This is achieved by constructing the 1-up
adjacency matrix

Aup
1 = Dup

1 − L
up
1 .

From Proposition 4.2.1 we have

[Aup
1]lm =


0, if l = m

−1, if σl
1 ∼U σ

m
1

1, if σl
1 ̸∼U σ

m
1

0, otherwise.

72

Laplacians for Structure Recovery on Directed and Higher-order Graphs 73

Definition 4.3.1 (1-up Hodge Magnetic Laplacian). We define the 1-up Hodge
Magnetic Laplacian as LM,up

1 as

LM,up
1 = Dup

1 ⊗ I2 − T [1],up ◦ (Aup
1 ⊗ 12),

where 12 is the 2 × 2 matrix having all elements equal to one, and the rotation
matrix T [1],up is defined as

T
[1],up
(ij),(jk) =



e−iδI2, if i→ j, j → k,∆ijk = 1 (1)

eiδI2, if j → i, k → j,∆ijk = −1 (2)

e−iδσx, if j → i, k → j,∆ijk = 1 (3)

eiδσx, if i→ j, j → k,∆ijk = −1 (4)

e−iδσy, if j → i, j → k,∆ijk = 1 (5)

eiδσy, if j → i, j → k,∆ijk = −1 (6)

e−iδσz, if i→ j, k → j,∆ijk = 1 (7)

eiδσz, if i→ j, k → j,∆ijk = −1 (8)

I2, otherwise,

for a constant δ ∈ [0, 2π). Here, σ are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Theorem 4.3.1. If we assign a complex vector νl ∈ C2 to edge index by l, or σl
1,

and let ν = {ν1, ..., νn} , then we have:

νHLM,up
1 ν =

1

2

 ∑
σl
1 ̸∼Uσm

1

∥νl − T [1],up
lm νm∥2 +

∑
σl
1∼Uσm

1

∥νl + T
[1],up
lm νm∥2

 .

Proof. This can be proven using a similar approach as outlined in Theorem 2.2.1
while taking into account the symmetric nature of Aup

1 and the Hermitian property
of T [1],up.

Remark 4.3.1. Based on the theorem above, it becomes apparent that LM,up
1 is

semi-definite positive. We can immediately see that νHLM,up
1 ν = 0 when

νl = T
[1],up
lm νm, for all l,m ∈ {1, ..., n} such that σl

1 ̸∼U σ
m
1 , (4.6)

and
νl = −T [1],up

lm νm, for all l,m ∈ {1, ..., n} such that σl
1 ∼U σ

m
1 . (4.7)

Let us assign νp = (eiθp , eiϕp)T ∈ C2 to edge σp
1. Now, consider two edges l = [i, j],

m = [j, k] such that σl
1 ̸∼U σ

m
1 . We use a ≡ b to denote a = b+ 2πq where q can

be any integer. Under these circumstances, the first condition (4.6) implies that

1. θl ≡ θm − δ, ϕl ≡ ϕm − δ when i→ j, j → k, and ∆ijk = 1;

73

Laplacians for Structure Recovery on Directed and Higher-order Graphs 74

j k

i

j k

i

j k

i

j k

i

(1) (2) (3) (4)

Table 4.2: 4 scenarios for LM,down
1

2. θl ≡ θm + δ, ϕl ≡ ϕm + δ when j → i, k → j, and ∆ijk = −1;

3. θl ≡ ϕm − δ, ϕl ≡ θm − δ when j → i, k → j, and ∆ijk = 1;

4. θl ≡ ϕm + δ, ϕl ≡ θm + δ when i→ j, j → k, and ∆ijk = −1;

5. θl ≡ ϕm − π
2
− δ, ϕl ≡ θm + π

2
− δ when j → i, j → k, and ∆ijk = 1;

6. θl ≡ ϕm − π
2
+ δ, ϕl ≡ θm + π

2
+ δ when j → i, j → k, and ∆ijk = −1;

7. θl ≡ θm − δ, ϕl ≡ ϕm + π − δ when i→ j, k → j, and ∆ijk = 1;

8. θl ≡ θm + δ, ϕl ≡ ϕm + π + δ when i→ j, k → j, and ∆ijk = −1.

Similar results can be obtained for the case when σl
1 ∼U σm

1 , simply by adding π
to the right-hand side.

1-down Magnetic Hodge Laplacian Now, let us define a 1-down Magnetic
Hodge Laplacian following a similar procedure considering 4 cases visualized in
Table 4.2. First we extract the off-diagonal entries of Ldown

1 by defining the 1-down
adjacency matrix

Adown
1 = Ddown

1 − Ldown
1 ,

where the 1-down degree matrix Ddown
1 ∈ Rn×n is a diagonal matrix with entries

[Ddown
1]ll =

n∑
m=1

|[Adown
1]lm|.

From Proposition 4.2.1 we have

[Adown
1]lm =


−1, if σl

1 ∼L σ
l
1

1, if σl
1 ̸∼L σ

m
1

0, otherwise.

Finally, the 1-down Magnetic Hodge Laplacian is defined by incorporating both
the edge orientations with Adown

1 and the edge directions using a rotation matrix
T [1],down.

74

Laplacians for Structure Recovery on Directed and Higher-order Graphs 75

Definition 4.3.2. The 1-down Magnetic Hodge Laplacian denoted as LM,down
1 is

defined as follows:

LM,down
1 = Ddown

1 ⊗ I2 − T [1],down ◦ (Adown
1 ⊗ 12),

where the 1-down rotation matrix T [1],down is given by

T
[1],down
(ij),(jk) =



eiδI2, if i→ j, j → k (1)

e−iδI2, if j → i, k → j (2)

σy, if j → i, j → k (3)

σz, if i→ j, k → j (4)

I2, otherwise,

for a constant δ ∈ [0, 2π).

The Hermitian property of LM,down1 can be easily shown since Ddown
1 and

Adown
1 are real and symmetric; and T [1],down is Hermitian.

Theorem 4.3.2. If we assign a complex vector νl ∈ C2 to edge l, and let ν =
{ν1, ..., νn} , then we have:

νHLM,down
1 ν =

1

2

 ∑
σl
1 ̸∼Lσ

m
1

∥νl − T [1],down
lm νm∥2 +

∑
σl
1∼Lσ

m
1

∥νl + T
[1],down
lm νm∥2

 .

Proof. This statement can be proven in a similar manner as Theorem 2.2.1 con-
sidering the fact that Adown

1 is symmetric and T [1],down is Hermitian.

Remark 4.3.2. According to the theorem mentioned earlier, we can conclude
that LM,down

1 is positive semi-definite. The quadratic form νHLM,down
1 ν = 0 when

the following condition holds

νl = T
[1],down
lm νm, for all l,m ∈ {1, ..., n} such that σl

1 ̸∼U σ
m
1 , (4.8)

and

νl = −T [1],down
lm νm, for all l,m ∈ {1, ..., n} such that σl

1 ∼U σ
m
1 . (4.9)

Let us assign νp = (eiθp , eiϕp)T ∈ C2 to edge σp
1 and consider two edges l = [i, j],

m = [j, k] such that σl
1 ̸∼L σ

m
1 . In this scenario, the condition (4.8) leads to

1. θl ≡ θm + δ, ϕl ≡ ϕm + δ when i→ j , j → k;

2. θl ≡ θm − δ, ϕl ≡ ϕm − δ when j → i , k → j;

3. θl ≡ ϕm − π
2
, ϕl ≡ θm − δ when j → i , j → k;

4. θl ≡ θm, ϕl ≡ ϕm + π when i→ j , k → j.

We can derive similar results for the situation when σl
1 ∼L σ

m
1 by adding π to the

right-hand side.

75

Laplacians for Structure Recovery on Directed and Higher-order Graphs 76

2 3

1

Figure 4.3

Figure 4.4: Undirected 2-simplex

4.4 Case Studies on Directed Triangles

Let us now explore some examples of directed triangles. We start by studying
an undirected 2-dimensional simplicial complex as depicted in Figure 4.3, which
consists of three nodes [1], [2], [3], three edges [1, 2], [1, 3], [2, 3], and one triangle
[1, 2, 3]. Subsequently, we can compute the boundary operators and Hodge Lapla-
cians as illustrated below, where each row and column corresponds to a positively
oriented simplex.

B1 =


[1, 2] [1, 3] [2, 3]

[1] −1 −1 0
[2] 1 0 −1
[3] 0 1 1

,
and

B2 =


[1, 2, 3]

[1, 2] 1
[1, 3] −1
[2, 3] 1

.

Therefore

Lup
1 = B2B

T
2 =

 1 −1 1
−1 1 −1
1 −1 1

 ,

and

Ldown
1 = BT

1 B1 =

 2 1 −1
1 2 1
−1 1 2

 ,

which sum up to

L1 = Lup
1 + Ldown

1 =

3 0 0
0 3 0
0 0 3

 .

The 1-up degree matrix Dup
1 and adjacency matrix Aup

1 are

Dup
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2 0 0
[1, 3] 0 2 0
[2, 3] 0 0 2

,
76

Laplacians for Structure Recovery on Directed and Higher-order Graphs 77

2 3

1

2 3

1

2 3

1

2 3

1

Case 1 Case 2 Case 3 Case 4

Table 4.3: 4 examples for directed triangles

and

Aup
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 0 −1 1
[1, 3] −1 0 −1
[2, 3] 1 −1 0

.
The diagonal entries in Dup

1 are twos since each edge shares the same triangle with
two other edges. The elements of Aup

1 are non-zero iff the two links are incident to
the same triangle. Similarly, using the 1-down Hodge Laplacian Ldown

1 in Example
4.2.1 we have:

Ddown
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2 0 0
[1, 3] 0 2 0
[2, 3] 0 0 2

,
and

Adown
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 0 1 −1
[1, 3] 1 0 1
[2, 3] −1 1 0

.
The diagonal entries in Ddown

1 are twos because each edge shares a node with
exactly two other edges. The elements of Adown

1 are non-zero if and only if the
two links are incident to the same node.

We have yet to take into account the directions of edges and triangles. In
the subsequent section, we will build the first-order Magnetic Hodge Laplacian
defined in Section 4.3.2 for the four potential scenarios in which direction becomes
relevant, as illustrated in Table 4.3. We will plot their eigenvalues for various
values of δ and analyze the commutator

[LM,up
1 ,LM,down

1] = LM,up
1 LM,down

1 − LM,down
1 LM,up

1 .

We are also interested in examining the quadratic form of the Magnetic Hodge
Laplacian and determining the conditions under which it can be minimized to
zero. To compute the quadratic form, we assign ν = (ν1, ν2, ν3)

T ∈ C6 to the
three edges [1, 2], [1, 3], and [2, 3]. Here, νp = (rpe

iθp , spe
iϕp)T ∈ C2 corresponds to

the p-th edge, with rp, sp being non-negative real numbers, and θp, ϕp ∈ [0, 2π).

Laplacian matrices frequently appear in diffusion [64]. We will now examine

77

Laplacians for Structure Recovery on Directed and Higher-order Graphs 78

Figure 4.5: Eigenvalues of LM,up
1 (top-left), LM,down

1 (top-right), and LM
1 (bottom-

left), and commutator [LM,up
1 ,LM,down

1] (bottom-right) in Case 1

the dynamics of the diffusion governed by the following equations:

dν(t)

dt
= −LM,up

1 ν(t),

dν(t)

dt
= −LM,down

1 ν(t),

and
dν(t)

dt
= −(LM,up

1 + LM,down
1)ν(t).

We will plot the evolution of some initial states to study the diffusion process.

4.4.1 Case 1

Let us first consider the directed 2-simplicial complex displayed in the first column
of Table 4.3, with edge directions given by 1→ 2, 2→ 3, and 3→ 1; and triangle
direction ∆123 = 1. This represents the scenario where all edge directions conform
to the direction of the triangle. Hence, if we traverse from one edge to another,
we either align with both the directions of the edge and the triangle, as shown in
the first row of Table 4.3.1, or we go against both the edge and triangle directions,
corresponding to the second row in Table 4.3.1. For the 1-up Magnetic Hodge

78

Laplacians for Structure Recovery on Directed and Higher-order Graphs 79

Laplacian, we obtain the following:

LM,up
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 −I2eiδ I2e
−iδ

[1, 3] −I2e−iδ 2I2 −I2eiδ
[2, 3] I2e

iδ −I2e−iδ 2I2

.
In the top left panel of Figure 4.5, we display the eigenvalues of LM,up

1 in relation
to δ. The corresponding eigenvalues are:

{2 + 2 cos(δ), 2− 2 cos(δ − π/3), 2 + 2 cos(δ − 2π/3)}.

Moreover, its quadratic form can be computed as

νHLM,up
1 ν = ∥ν1 − I2eiδν2∥2 + ∥ν1 + I2e

−iδν3∥2 + ∥ν2 − I2eiδν3∥2.

The quadratic form above equals zero when r1 = r2 = r3, s1 = s2 = s3, and

θ1 ≡ θ2 + δ, ϕ1 ≡ ϕ2 + δ,

θ1 ≡ θ3 − δ + π, ϕ1 ≡ ϕ3 − δ + π,

θ2 ≡ θ3 + δ, ϕ2 ≡ ϕ3 + δ.

The solution exists only when δ = π/3, π, or 5π/3, as depicted in the top-left panel
of Figure 4.5. When δ assumes the aforementioned values, ν, which satisfy the
above conditions, becomes an eigenvector of LM,up

1 associated with an eigenvalue
of zero, according to the Rayleigh-Ritz Theorem. For the 1-down Magnetic Hodge
Laplacian, we have

LM,down
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 I2e
−iδ −I2eiδ

[1, 3] I2e
iδ 2I2 I2e

−iδ

[2, 3] −I2e−iδ I2e
iδ 2I2

.
Eigenvalues of LM,down

1 , as shown in the top-right plot in Figure 4.5, are

{2− 2 cos(δ + π/3), 2− 2 cos(δ), 2− 2 cos(δ − π/3)}.

The corresponding quadratic form is

νHLM,down
1 ν = ∥ν1 + I2e

−iδν2∥2 + ∥ν1 − I2eiδν3∥2 + ∥ν2 + I2e
−iδν3∥2.

It becomes zero when r1 = r2 = r3, s1 = s2 = s3, and

θ1 ≡ θ2 − δ + π, ϕ1 ≡ ϕ2 − δ + π,

θ1 ≡ θ2 − δ + π, ϕ1 ≡ ϕ3 + δ,

θ1 ≡ θ2 − δ + π, ϕ2 ≡ ϕ3 − δ + π.

79

Laplacians for Structure Recovery on Directed and Higher-order Graphs 80

t

x(
t)

t t

(a) δ = π/3

t

x(
t)

t t

(b) δ = 2π/3

Figure 4.6: Diffusion on triangle in Case 1

The solution exists only when δ = 0, 2π/3, or 4π/3, as shown in the top-right
panel in Figure 4.5. Upon combining the 1-up and 1-down Magnetic Hodge
Laplacians, we obtain the eigenvalues of their sum, as shown in the bottom-left
panel of Figure 4.5. The corresponding eigenvalues are

{3, 3 + 2
√
3 sin(δ), 3− 2

√
3 sin(δ)}.

LM,up
1 and LM,down

1 commute since the commutator is zero (bottom-right panel
in Figure 4.5). Furthermore, it can be shown that Ldown

1 Lup
1 ̸= 0, which implies

that the Hodge decomposition does not hold. Figure 4.6 plots two examples
when the dynamics are described by LM,up

1 (left), LM,down
1 (middle), and their

sum (right) for various value of δ. For visualization purposes, we only display
the phase angles. Setting δ = π/3 (Figure 4.6a) and examining the plot for
LM,up

1 , we notice that it converges towards an eigenvector of LM,up
1 associated

with an eigenvalue of zero, which satisfies the condition we previously discussed.
Both LM,down

1 and Lup
1 +LM,down

1 only possess positive eigenvalues when δ = π/3,
therefore the vectors converge into their slow eigenmodes, associated with the
smallest eigenvalue. We observe similar results when δ = 2π/3 (Figure 4.6b),

80

Laplacians for Structure Recovery on Directed and Higher-order Graphs 81

where the final state in the middle plot lies in the null space of LM,down
1 .

4.4.2 Case 2

Now, let us consider Case 2 in Table 4.3, where the edge directions are as follows:
1→ 2, 2→ 3, and 3→ 1; and the triangle direction is ∆123 = −1. This scenario
represents a situation where all edge directions are opposite to the direction of
the triangle. Consequently, when traversing from one edge to another, we either
move against the edge direction while aligning with the triangle direction, as
shown in the third row of Table 4.3.1, or align with the edge direction while
moving against the triangle direction, as depicted in the fourth row of Table
4.3.1. The corresponding 1-up Magnetic Laplacian is

LM,up
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 −σxe
−iδ σxe

iδ

[1, 3] −σxe
iδ 2I2 −σxe

−iδ

[2, 3] σxe
−iδ −σxe

iδ 2I2

.
Then the quadratic form νHLM,up

1 ν can be calculated as

νHLM,up
1 ν = ∥ν1 − σxe

−iδν2∥2 + ∥ν1 + σxe
iδν3∥2 + ∥ν2 − σxe

−iδν3∥2.

We plot its eigenvalues against δ in the top left panel of Figure 4.5. The corre-
sponding eigenvalues are:

{2 + 2 cos(δ), 2 + 2 cos(δ − π

3
), 2 + 2 cos(δ − 2π

3
), 2 + 2 cos(δ − π),

2 + 2 cos(δ − 4π

3
), 2 + 2 cos(δ − 5π

3
)}.

It may be shown that νHLM,up
1 ν = 0 when r1 = r2 = r3 = s1 = s2 = s3, and

θ1 ≡ ϕ2 − δ, ϕ1 ≡ θ2 − δ,
θ1 ≡ ϕ3 + δ + π, ϕ1 ≡ θ3 + δ + π,

θ2 ≡ ϕ3 − δ, ϕ2 ≡ θ3 − δ.

The equations above have a solution only when δ ∈ {0, π/3, 2π/3, π, 4π/3, 5π/3},
as can be seen in the plot. In Case 2, Ldown

1 remains the same as in Case 1
since the edge directions are identical to the previous case. The eigenvalues of
Lup

1 + Ldown
1 are

{4 + 4 cos(δ − π/3), 4 + 4 cos(δ − π), 4 + 4 cos(δ − 5π/3), 4}.

The commutator [Ldown
1 ,Lup

1] is 0 as shown in the bottom-right in Figure 4.7.
Hodge decomposition does not hold since it can be checked that Ldown

1 Lup
1 ̸= 0

for all values of δ. Figure 4.8 displays two examples of vector diffusion when
δ = π/3 and 2π/3. When δ = 1π/3, the vectors on the left converge towards
an eigenvector of Lup

1 related to eigenvalue zero. When δ = 2π/3, the vectors

81

Laplacians for Structure Recovery on Directed and Higher-order Graphs 82

Spectrum of L
[1]
M, up Spectrum of L

[1]
M, down

Spectrum of L
[1]
M

Commutator

Figure 4.7: Eigenvalues of LM,up
1 (top-left), LM,down

1 (top-right), and LM,up
1

(bottom-left), and commutator [LM,up
1 ,LM,down

1] (bottom-right) in Case 2

converge towards some eigenvectors for both Lup
1 (on the left) and Ldown

1 (in the
middle), each of which is linked to a zero eigenvalue.

4.4.3 Case 3

Now, let us look at the case of a 2-simplicial complex with triangle and link
direction given by ∆123 = 1 and 1 → 2, 2 → 3 and 1 → 3, which is illustrated
in the third column of Table 4.3. First, we can write down the 1-up and 1-down
Magnetic Hodge Laplacian as

LM,up
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 −σye
iδ I2e

−iδ

[1, 3] −σye
−iδ 2I2 −σze

iδ

[2, 3] I2e
iδ −σze

−iδ 2I2

.
Its quadratic form is

νHLM,up
1 ν = ∥ν1 − σye

iδν2∥2 + ∥ν1 + I2e
−iδν3∥2 + ∥ν2 − σze

iδν3∥2,

82

Laplacians for Structure Recovery on Directed and Higher-order Graphs 83

t

x(
t)

t t

(a) δ = π/3

t

x(
t)

t t

(b) δ = 2π/3

Figure 4.8: Diffusion on triangle in Case 2

and it becomes zero when r1 = r2 = r3 = s1 = s2 = s3 and

θ1 ≡ ϕ2 + δ − π

2
, ϕ1 ≡ θ2 + δ +

π

2
,

θ1 ≡ θ3 − δ + π, ϕ1 ≡ ϕ3 − δ + π,

θ2 ≡ ϕ3 + δ, ϕ2 ≡ ϕ3 + δ + π.

The above equation system has a solution iff δ ∈ {0, π/3, 2π/3, π, 4π/3, 5π/3}.
This can be confirmed by the eigenvalue top-left plot in Figure 4.9. Furthermore,
from the plot, we see that eigenvalues are given by

{2 + 2 cos(δ − π

6
), 2 + 2 cos(δ − π

2
), 2 + 2 cos(δ − 5π

6
), 2 + 2 cos(δ − 7π

6
),

2 + 2 cos(δ − 3π

2
), 2 + 2 cos(δ − 11π

6
)}.

For the 1-down Magnetic Laplacian, we have

LM,down
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 σy −I2eiδ
[1, 3] σy 2I2 σz

[2, 3] −I2e−iδ σz 2I2

,
83

Laplacians for Structure Recovery on Directed and Higher-order Graphs 84

and

νHLM,down
1 ν = ∥ν1 + σyν2∥2 + ∥ν1 − I2eiδν3∥2 + ∥ν2 + σzν3∥2.

The quadratic form is zero when r1 = r2 = r3 = s1 = s2 = s3 and

θ1 ≡ ϕ2 +
π

2
, ϕ1 ≡ θ2 −

π

2
,

θ1 ≡ θ3 + δ, ϕ1 ≡ ϕ3 + δ,

θ2 ≡ θ3 + π, ϕ2 ≡ ϕ3.

The equation above can be solved iff δ ∈ {π/2, 3π/2} as shown in the top-right
plot in Figure 4.9. Based on the plot, we can deduce that the eigenvalues are

{2 + 2 cos(
δ

3
− π

6
), 2− 2 cos(

δ

3
− π

6
), 2 + 2 cos(

δ

3
− π

2
), 2− 2 cos(

δ

3
− π

2
),

2 + 2 cos(
δ

3
− 5π

6
), 2− 2 cos(

δ

3
− 5π

6
)}.

LM,up
1 and LM,up

1 do not commute except for the special case when δ = 0 as
shown in the bottom-right panel in Figure 4.9. Two examples of vector diffusion
are displayed in Figure 4.10 for δ = π/2 and 3π/2. In the plots for LM,up

1 and
LM,up

1 , the vectors approach some eigenvectors that correspond to eigenvalue zero.

4.4.4 Case 4

Finally, we examine the directed 2-simplicial complex with triangle and link di-
rection given by ∆123 = −1 and 1 → 2, 2 → 3 and 1 → 3 as shown in the last
column in Figure 4.11. As the edge directions are precisely the same as in Case
3, LM,down

1 in this scenario is identical to the previous case. Therefore, we only
need to discuss LM,up

1 , which can be computed as follows:

LM,up
1 =


[1, 2] [1, 3] [2, 3]

[1, 2] 2I2 −σye
−iδ σxe

iδ

[1, 3] −σye
iδ 2I2 −σze

−iδ

[2, 3] σxe
−iδ −σze

iδ 2I2

.
This leads to

νHLM,up
1 ν = ∥ν1 − σye

−iδν2∥2 + ∥ν1 + σxe
iδν3∥2 + ∥ν2 − σze

−iδν3∥2.

84

Laplacians for Structure Recovery on Directed and Higher-order Graphs 85

Figure 4.9: Eigenvalues of LM,up
1 (top-left), LM,down

1 (top-right), and LM,up
1

(bottom-left), and commutator [LM,up
1 ,LM,down

1](bottom-right) in Case 3

85

Laplacians for Structure Recovery on Directed and Higher-order Graphs 86

t t t

(a) δ = π/2

t t t

(b) δ = 3π/2

Figure 4.10: Diffusion on triangle in Case 3

We can further prove that νHLM,up
1 ν = 0 when r1 = s2 = s3, s1 = r2 = s3, and

θ1 ≡ ϕ2 − δ −
π

2
, ϕ1 ≡ θ2 − δ +

π

2
,

θ1 ≡ ϕ3 + δ + π, ϕ1 ≡ θ3 + δ + π,

θ2 ≡ ϕ3 − δ, ϕ2 ≡ ϕ3 − δ + π.

The solution to the equations exists iff δ ∈ {π/2, 7π/6, 11π/6} as shown in the
top-left plot in Figure 4.11. The eigenvalues shown in the top-left subplot are

{2 + 2 cos(δ +
π

2
), 2 + 2 cos(δ − 5π

6
), 2 + 2 cos(δ − π

6
)}.

Furthermore, we observe that LM,up
1 and LM,down

1 only commute when δ = 0 or
π. In Figure 4.12, we illustrate two vector diffusion processes where δ = π and
3π/2.

4.5 Case Study on Triangulated Torus

In the previous examples, we only considered simplicial complexes with a single
triangle. Now, we will examine examples where the simplicial complexes contain

86

Laplacians for Structure Recovery on Directed and Higher-order Graphs 87

Figure 4.11: Eigenvalues of LM,up
1 (top-left), LM,down

1 (top-right), and LM,up
1

(bottom-left), and commutator [LM,up
1 ,LM,down

1](bottom-right) in Case 4

87

Laplacians for Structure Recovery on Directed and Higher-order Graphs 88

t

x(
t)

t t

(a) δ = π/2

t

x(
t)

t t

(b) δ = 3π/2

Figure 4.12: Diffusion on triangle in Case 4

88

Laplacians for Structure Recovery on Directed and Higher-order Graphs 89

multiple triangles and edges. Specifically, we will focus on the triangulated torus
as our example. The torus, as depicted in Figure 4.2a, is a 2-manifold without
boundary. To perform computations, we triangulate the torus into a simplicial
complex and consider two cases that differ only in the direction of the triangles.
For each case, we will investigate the spectrum and eigenvectors of the 1-up and
1-down Laplacian.

4.5.1 Type 1 Torus

The first type of torus we are examining is illustrated in Figure 4.13. In this
example, all edge directions align with the triangle directions. Therefore the
small triangles fall under Case 1 of directed triangles depicted in Figure 4.3.
We visualize the eigenvalues of LM,up

1 , LM,down
1 , and their sum for δ = π/3 in

Figure 4.14. In Figures 4.19 and 4.20, the edges are colored based on the phase
angle of the eigenvector corresponding to the smallest eigenvalue for δ = π/3 and
δ = 2π/3.

As we have previously discussed in Section 4.4.1, when δ = π/3, LM,up
1 pos-

sesses a zero eigenvalue. In the top two subplots of Figure 4.19, associated with
LM,up

1 , the edges are differentiated by three distinct colors. If we traverse a single
step following the path of the edges and triangles, we notice that the phase angle
always increments by 2π/3. The same pattern can be observed for LM,up

1 when
δ = 2π/3, as illustrated in Figure 4.20. This can be explained by the presence
of the zero eigenvalues and its associated eigenvector, as we have analyzed in
Section 4.4.1.

1 2 3

4 5 6

7 8 9

1 2 3

10

11

12

13

14

15

16

17

18

10

11

12

19 20 21

22 23 24

25 26 27

Figure 4.13: Triangulated Torus type 1

4.5.2 Type 2 Torus

In the second torus example, we alter the flow direction for all the upper triangles
above the diagonal edges, compared with the previous scenario. As a result, these
upper triangles align with Case 2 of directed triangles while the lower triangles

89

Laplacians for Structure Recovery on Directed and Higher-order Graphs 90

Figure 4.14: Spectrum of Type 1 torus

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

Figure 4.15: Eigenvectors of Type 1 torus, δ = π/3

90

Laplacians for Structure Recovery on Directed and Higher-order Graphs 91

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

Figure 4.16: Eigenvectors of type 1 Torus, δ = 2π/3

correspond to Case 1 illustrated in Figure 4.3. We observe that at δ = π/3, a
condition where LM,up

1 has a zero eigenvalue for both Case 1 and Case 2, the phase
angles of the corresponding eigenvector are allocated such that they increase by
2π/3 with each step taken along the direction of the triangles. Next, let us look at
the eigenvectors when δ is set to 2π/3, in which scenario the smallest eigenvalue
of LM,down

1 is zero for Case 1 and 2. In this situation, the phase angles for LM,down
1

increase by π/6 with each step along the edge direction.

4.6 Conclusion

In this chapter, we have investigated the extension of Hodge Laplacians to di-
rected simplicial complexes. The primary contribution lies in the introduction
and mathematical analysis of the first-order Magnetic Hodge Laplacian. This
tool offers a mathematical framework that accounts for directional flows within
higher-dimensional simplexes, extending the Hodge Laplacian to directed sim-
plicial complexes. Through our case studies on directed triangles and tori, we
demonstrated that the Magnetic Laplacian can account for the direction of flow
in higher-dimensional simplexes. We also showed that, on different types of tori,
the eigenvectors of the 1-up and 1-down Magnetic Hodge Laplacian can help
reveal interesting direction-related patterns.

91

Laplacians for Structure Recovery on Directed and Higher-order Graphs 92

1 2 3

4 5 6

7 8 9

1 2 3

10

11

12

13

14

15

16

17

18

10

11

12

19 20 21

22 23 24

25 26 27

Figure 4.17: Triangulated Torus type 2

Figure 4.18: Spectrum of Type 2 torus

92

Laplacians for Structure Recovery on Directed and Higher-order Graphs 93

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

Figure 4.19: Eigenvectors of Type 2 torus, δ = π/3

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

-

- /2

0

/2

Figure 4.20: Eigenvectors of type 2 Torus, δ = 2π/3

93

Chapter 5

Conclusion and Future Work

Laplacian matrices provide invaluable insights into the connectivity and clustering
patterns of underlying graphs. While the standard undirected Laplacian has been
extensively examined and widely applied in various learning tasks on graphs, there
remains a research gap when it comes to more complex graphs. In this thesis, we
explored mathematical frameworks for analyzing directed networks, hypergraphs,
and directed simplicial complexes using graph Laplacians.

In Chapter 2, we examined two existing frameworks for directed graphs,
namely the Magnetic Laplacian and the Trophic Laplacian, both of which fac-
tor in the direction of edges. The Magnetic Laplacian is devised to identify
periodic clusters when the edges form directed cycles. On the other hand, the
Trophic Laplacian focuses on recovering hierarchical patterns, which is particu-
larly applicable when the graph is acyclic. We analyzed these two Laplacians by
formulating their corresponding random graph models, which generate directed
edges grounded on node embeddings. These models also provide an inference
framework for comparing the prominence of periodic and linear structures. We
demonstrated the application of this framework on diverse datasets from social
science, biology, and ecology.

Chapter 3 focuses on hypergraph embedding, introducing customized embed-
ding algorithms and new random models for hypergraphs. We define a hyper-
graph Laplacian that can adjust the significance of edges of different sizes. The
corresponding spectral algorithms for generating periodic and linear embeddings
are then analyzed. Furthermore, we establish related random hypergraph models
and propose an inference workflow to quantify the relative strength of two types
of structures using maximum likelihood. This proposed approach proves helpful
in predicting new hyperedges on real hypergraphs, especially when dealing with
a small training size.

There are several promising directions for future work related to Chapters 2
and 3. It would be of interest to use the likelihood ratios to compare this network
feature across a well-defined category to address questions such as “are results
between top chess players more or less periodic than results between top tennis
players?” and “does an organism that is more advanced in an evolutionary sense
have more periodic connectivity in the brain?” An extension of the compari-
son tool to weighted networks should also be possible; here, there are notable,
and perhaps application-specific, issues about how to generalize and interpret the

94

Laplacians for Structure Recovery on Directed and Higher-order Graphs 95

Magnetic Laplacian. Also, the comparison can be extended to include other types
of structure, including stochastic block and core-periphery versions [104]. This
introduces further challenges of (a) accounting for different numbers of model
parameters, and (b) dealing with nonlinear spectral methods. Further, by intro-
ducing an appropriate null model, it may be possible to quantify the presence of
linear or periodic hierarchies in absolute rather than relative terms.

Chapter 4 extends Hodge Laplacians to directed simplicial complexes. We
introduce a new Laplacian, the first-order Magnetic Hodge Laplacian, which
accounts for directional flows within 2-dimensional simplicial complexes. Case
studies on directed triangles and tori demonstrate its ability to capture flow di-
rection, while spectral analysis reveals direction-related patterns. These findings
may open up opportunities for potential applications in various fields that deal
with directed higher-order simplexes from areas such as sensor networks, compu-
tational biology, and neuroscience. We note that the current work is exploratory
in nature and carries some limitations: for instance, the Hodge decomposition
does not hold for the Magnetic Hodge Laplacian. Additionally, we have not ex-
amined certain directional patterns on a torus, such as the triangles in Case 3
and Case 4. There is also further work to be done in analyzing other types of
triangulated 2-manifolds, such as tetrahedra. The theoretical groundwork we
laid in this chapter can be further refined and tested in various synthetic exam-
ples and real-world applications to refine the methodology and develop efficient
algorithms.

95

Bibliography

[1] Lada A. Adamic and Natalie Glance. The political blogosphere and the
2004 US election: divided they blog. In Proceedings of the 3rd International
Workshop on Link Discovery, pages 36–43, 2005.

[2] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and
Jon Kleinberg. Simplicial closure and higher-order link prediction. Proceed-
ings of the National Academy of Sciences, 115(48):E11221–E11230, 2018.

[3] Austin R. Benson, David F. Gleich, and Desmond J. Higham. Higher-order
network analysis takes off, fueled by classical ideas and new data. SIAM
News, 2021.

[4] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order orga-
nization of complex networks. Science, 353(6295):163–166, 2016.

[5] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order orga-
nization of complex networks. Science, pages 163–166, 2016.

[6] Seth G. Benzell, Avinash Collis, and Christos Nicolaides. Rationing so-
cial contact during the COVID-19 pandemic: Transmission risk and social
benefits of US locations. Proceedings of the National Academy of Sciences,
117(26):14642–14644, 2020.

[7] Ginestra Bianconi. Higher order networks : An introduction to simplicial
complexes. Cambridge University Press, 2021.

[8] Iwan Boksebeld and Amir Vaxman. High-order directional fields. ACM
Transactions on Graphics, 41(6):1–17, 2022.

[9] Iwan Boksebeld and Amir Vaxman. High-order directional fields. ACM
Transactions on Graphics, 41(6), nov 2022.

[10] Glen E Bredon. Topology and geometry, volume 139. Springer Science and
Business Media, 2013.

[11] Zixuan Cang, Lin Mu, Kedi Wu, Kristopher Opron, Kelin Xia, and Guo-
Wei Wei. A topological approach for protein classification. Computational
and Mathematical Biophysics, 3(1), 2015.

[12] Gunnar Carlsson. Topology and data. Bulletin of the American Mathemat-
ical Society, 46(2):255–308, 2009.

96

Laplacians for Structure Recovery on Directed and Higher-order Graphs 97

[13] Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topol-
ogy of viral evolution. Proceedings of the National Academy of Sciences,
110(46):18566–18571, 2013.

[14] Frédéric Chazal and Bertrand Michel. An introduction to topological data
analysis: fundamental and practical aspects for data scientists. Frontiers
in Artificial Intelligence, 4:667963, 2021.

[15] Madhukar Chhimwal, Saurabh Agrawal, and Girish Kumar. Measuring
circular supply chain risk: A Bayesian network methodology. Sustainability,
13:8448, 2021.

[16] Philip S. Chodrow, Nate Veldt, and Austin R. Benson. Generative hy-
pergraph clustering: From blockmodels to modularity. Science Advances,
7(28):eabh1303, 2021.

[17] Fan Chung. Spectral Graph Theory. Regional conference series in mathe-
matics; no. 92. American Mathematical Society, Providence, R.I., 1997.

[18] Fan Chung. Laplacians and the cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1):1–19, 2005.

[19] Fan Chung and Mark Kempton. A local clustering algorithm for connec-
tion graphs. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
8305:26–43, 2013.

[20] Fan Chung and Wenbo Zhao. Ranking and sparsifying a connection graph.
In Algorithms and Models for the Web Graph, volume 7323 of Lecture Notes
in Computer Science, pages 66–77. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2012.

[21] Giulio Cimini, Rossana Mastrandrea, and Tiziano Squartini. Reconstructing
networks. Cambridge University Press, 2021.

[22] Anthony Cole. The influence matrix methodology: A technical report.
Landcare Research Contract Report: LC0506/175, 2006.

[23] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices
for clustering directed graphs: insights and applications. In International
Conference on Artificial Intelligence and Statistics, pages 983–992. PMLR,
2020.

[24] Mihai Cucuringu and Hemant Tyagi. An extension of the angular syn-
chronization problem to the heterogeneous setting. Foundations of Data
Science, 4(1):71–122, 2020.

[25] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd International Conference on
Machine Learning, pages 233–240, 2006.

97

Laplacians for Structure Recovery on Directed and Higher-order Graphs 98

[26] Henry-Louis De Kergorlay and Desmond J. Higham. Consistency of anchor-
based spectral clustering. Information and Inference: A Journal of the
IMA, 11:801—822, 2022.

[27] Vin De Silva and Robert Ghrist. Coverage in sensor networks via persistent
homology. Algebraic and Geometric Topology, 7(1):339–358, 2007.

[28] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differential forms
for computational modeling. In ACM SIGGRAPH 2006 Courses, pages
39–54. 2006.

[29] Markus Deserno. How to generate equidistributed points on the surface of
a sphere, 2004. Accessed on Month Day, Year.

[30] Michaël Fanuel, Carlos M Alaiz, Angela Fernandez, and Johan A.K
Suykens. Magnetic eigenmaps for the visualization of directed networks.
Applied and Computational Harmonic Analysis, 44(1):189–199, 2018.

[31] Michaël Fanuel, Carlos M Aláız, and Johan A. K. Suykens. Magnetic eigen-
maps for community detection in directed networks. Physical Review E,
95(2):022302–022302, 2017.

[32] James H. Fowler. Connecting the congress: A study of cosponsorship net-
works. Political Analysis, 14(04):456–487, 2006.

[33] James H. Fowler. Legislative cosponsorship networks in the US house and
senate. Social Networks, 28(4):454–465, oct 2006.

[34] Brendan J. Frey and Delbert Dueck. Clustering by passing messages be-
tween data points. Science, 315(5814):972–976, 2007.

[35] Joel Friedman. Computing betti numbers via combinatorial laplacians.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing, pages 386–391, 1996.

[36] Francesco Galuppi, Raffaella Mulas, and Lorenzo Venturello. Spectral the-
ory of weighted hypergraphs via tensors. Linear and Multilinear Algebra,
0(0):1–31, 2022.

[37] Robert Ghrist and Abubakr Muhammad. Coverage and hole-detection in
sensor networks via homology. In IPSN 2005. Fourth International Sympo-
sium on Information Processing in Sensor Networks, 2005., pages 254–260.
IEEE, 2005.

[38] Peter Giblin. Graphs, surfaces and homology: an introduction to algebraic
topology. Springer Science & Business Media, 2013.

[39] Chad Giusti, Robert Ghrist, and Danielle S Bassett. Two’s company, three
(or more) is a simplex: Algebraic-topological tools for understanding higher-
order structure in neural data. Journal of Computational Neuroscience,
41:1–14, 2016.

98

Laplacians for Structure Recovery on Directed and Higher-order Graphs 99

[40] David F. Gleich. PageRank beyond the web. SIAM Review, 57(3):321–363,
2015.

[41] Timothy E. Goldberg. Combinatorial laplacians of simplicial complexes.
Senior Thesis, Bard College, 6, 2002.

[42] Xue Gong, Desmond J. Higham, and Konstantinos Zygalakis. Directed
network laplacians and random graph models. Royal Society Open Science,
8(10):211144, 2021.

[43] Xue Gong, Desmond J. Higham, and Konstantinos Zygalakis. Generative
hypergraph models and spectral embedding. Scientific Reports, 13(1):540,
2023.

[44] Peter Grindrod. Range-dependent random graphs and their application
to modeling large small-world proteome datasets. Physical Review E,
66(6):066702/7–066702, 2002.

[45] Peter Grindrod, Desmond J. Higham, and Gabriela Kalna. Periodic re-
ordering. IMA Journal of Numerical Analysis, 30(1):195–207, 2010.

[46] William L. Hamilton. Graph representation learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 14(3):1–159, 2020.

[47] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning
on graphs: Methods and applications. IEEE Data Engineering Bulletin,
2017.

[48] Desmond J. Higham. Unravelling small world networks. Journal of Com-
putational and Applied Mathematics, 158(1):61–74, 2003.

[49] Desmond J. Higham. Spectral reordering of a range-dependent weighted
random graph. IMA Journal of Numerical Analysis, 25(3):443–457, 2005.

[50] Desmond J. Higham. Spectral clustering and its use in bioinformatics.
Journal of Computational and Applied Mathematics, 204:25–37, 2007.

[51] Desmond J. Higham and Henry-Louis De Kergorlay. Epidemics on hyper-
graphs: Spectral thresholds for extinction. Proceedings of the Royal Society
A, 477(2252):20210232, 2021.

[52] Desmond J. Higham, Gabriela Kalna, and Milla J. Kibble. Spectral clus-
tering and its use in bioinformatics. Journal of Computational and Applied
Mathematics, 204:25–37, 2007.

[53] Anil Nirmal Hirani. Discrete exterior calculus. California Institute of Tech-
nology, 2003.

[54] Peter D. Hoff, Adrian E Raftery, and Mark S Handcock. Latent space
approaches to social network analysis. Journal of the American Statistical
Association, 97(460):1090–1098, 2002.

99

Laplacians for Structure Recovery on Directed and Higher-order Graphs 100

[55] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Uni-
versity Press, Cambridge, 1985.

[56] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
Classification, 2(1):193–218, 1985.

[57] Iacopo Iacopini, Giovanni Petri, Alain Barrat, and Vito Latora. Simplicial
models of social contagion. Nature Communications, 10(1):2485, 2019.

[58] Lorien Jasny and Dana R Fisher. Echo chambers in climate science. Envi-
ronmental Research Communications, 1(10):101003, 2019.

[59] Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. Statistical ranking
and combinatorial hodge theory. Mathematical Programming, 127(1):203–
244, 2011.

[60] Samuel Johnson. Digraphs are different: Why directionality matters in
complex systems. Journal of Physics: Complexity, 1:015003, 2020.

[61] Marcus Kaiser and Claus C. Hilgetag. Nonoptimal component placement,
but short processing paths, due to long-distance projections in neural sys-
tems. PLOS Computational Biology, 2(7):e95, 2006.

[62] Jon Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

[63] Renaud Lambiotte, Martin Rosvall, and Ingo Scholtes. From networks
to optimal higher-order models of complex systems. Nature Physics,
15(4):313–320, 2019.

[64] Renaud Lambiotte and Michael T. Schaub. Modularity and Dynamics on
Complex Networks. Elements in the Structure and Dynamics of Complex
Networks. Cambridge University Press, 2022.

[65] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[66] Stephen Levine. Several measures of trophic structure applicable to complex
food webs. Journal of Theoretical Biology, 83:195–207, 1980.

[67] Lek-Heng Lim. Hodge laplacians on graphs. SIAM Review, 62(3):685–715,
2020.

[68] Maxime Lucas, Giulia Cencetti, and Federico Battiston. Multiorder lapla-
cian for synchronization in higher-order networks. Physical Review Re-
search, 2:033410, Sep 2020.

[69] Helmut Lütkepohl. Handbook of Matrices. Wiley, Chichester, 1996.

[70] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

100

http://snap.stanford.edu/data

Laplacians for Structure Recovery on Directed and Higher-order Graphs 101

[71] Peter Macgregor and He Sun. A tighter analysis of spectral clustering, and
beyond. In International Conference on Machine Learning, pages 14717–
14742. PMLR, 2022.

[72] Robert S. MacKay. Incomplete pairwise comparison. Mathematics Today,
132, 2020.

[73] Robert S. Mackay, Samuel Johnson, and Benedict Sansom. How directed
is a directed network? Royal Society Open Science, 7(9):201138–201138,
2020.

[74] Fragkiskos D. Malliaros and Michalis Vazirgiannis. Clustering and commu-
nity detection in directed networks: A survey. Physics Reports, 533(4):95–
142, 2013.

[75] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in
a high school: a comparison between data collected using wearable sensors,
contact diaries and friendship surveys. PLOS One, 10(9):e0136497, 2015.

[76] Chris McComb. Adjusted rand index. GitHub, 2022. Retrieved June 29,
2022.

[77] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: Simple building blocks of com-
plex networks. Science, 298(5594):824–827, 2002.

[78] Shigeyuki Morita. Geometry of differential forms. Number 201. American
Mathematical Soc., 2001.

[79] Giannis Moutsinas, Choudhry Shuaib, Weisi Guo, and Stephen Jarvis.
Graph hierarchy: A novel approach to understanding hierarchical struc-
tures in complex networks. Scientific Reports, 11:13943, 2019.

[80] James R. Munkres. Elements of algebraic topology. CRC press, 2018.

[81] Vidit Nanda and Radmila Sazdanović. Simplicial models and topological
inference in biological systems. In Discrete and topological models in molec-
ular biology, pages 109–141. Springer, 2013.

[82] Mark E.J Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical Review E, 74(3):036104–036104, 2006.

[83] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and
Heather A Harrington. A roadmap for the computation of persistent ho-
mology. EPJ Data Science, 6:1–38, 2017.

[84] William R Palmer and Tian Zheng. Spectral clustering for directed net-
works. In International Conference on Complex Networks and Their Ap-
plications, pages 87–99. Springer, 2020.

[85] Tiago P. Peixoto. Ordered community detection in directed networks. Phys-
ical Review E, 106:024305, Aug 2022.

101

Laplacians for Structure Recovery on Directed and Higher-order Graphs 102

[86] Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered
graphs: Spectral clustering works! SIAM Journal on Computing,
46(2):710–743, 2017.

[87] Giovanni Petri, Paul Expert, Federico Turkheimer, Robin Carhart-Harris,
David Nutt, Peter J Hellyer, and Francesco Vaccarino. Homological scaf-
folds of brain functional networks. Journal of The Royal Society Interface,
11(101):20140873, 2014.

[88] Emad Ramadan, Arijit Tarafdar, and Alex Pothen. A hypergraph model
for the yeast protein complex network. In 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., pages 189–, 2004.

[89] William M. Rand. Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association, 66(336):846 – 850,
1971.

[90] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup
Rao, and Yasin Abbasi-Yadkori. A structural graph representation learning
framework. In Proceedings of the 13th International Conference on Web
Search and Data Mining, WSDM 2020, page 483–491, New York, NY, USA,
2020. Association for Computing Machinery.

[91] Benedict Sansom, Samuel Johnson, and Robert S. MacKay. Trophic in-
coherence drives systemic risk in financial exposure networks. Technical
Report Working Paper Number 39, National Institute of Economic and
Social Research, Westminster, London, 2021.

[92] Stefania Sardellitti, Sergio Barbarossa, and Lucia Testa. Topological sig-
nal processing over cell complexes. In 2021 55th Asilomar Conference on
Signals, Systems, and Computers, pages 1558–1562. IEEE, 2021.

[93] Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, and
Ali Jadbabaie. Random walks on simplicial complexes and the normalized
hodge 1-laplacian. SIAM Review, 62(2):353–391, 2020.

[94] Michael T. Schaub and Santiago Segarra. Flow smoothing and denoising:
Graph signal processing in the edge-space. In 2018 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 735–739. IEEE,
2018.

[95] Ingo Scholtes. When is a network a network? multi-order graphical model
selection in pathways and temporal networks. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1037–1046, 2017.

[96] Bernhard Schölkopf, John Platt, and Thomas Hofmann. Learning with
hypergraphs: Clustering, classification, and embedding. In Advances in
Neural Information Processing Systems 19: Proceedings of the 2006 Con-
ference, pages 1601–1608, 2007.

102

Laplacians for Structure Recovery on Directed and Higher-order Graphs 103

[97] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. The vector heat
method. ACM Transactions on Graphics, 38(3):1–19, 2019.

[98] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network
motifs in the transcriptional regulation network of escherichia coli. Nature
Genetics, 31(1):64–68, 2002.

[99] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[100] Amit Singer. Angular synchronization by eigenvectors and semidefinite
programming. Applied and Computational Harmonic Analysis, 30(1):20–
36, 2011.

[101] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella,
Jean-François Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne
Régis, Bruno Lina, and Philippe Vanhems. High-resolution measure-
ments of face-to-face contact patterns in a primary school. PLOS One,
6(8):e23176, 2011.

[102] Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-
Cambridge Press, 2019.

[103] Leo Torres, Ann S. Blevins, Danielle S. Bassett, and Tina Eliassi-Rad. The
why, how, and when of representations for complex systems. SIAM Review,
63:435–485, 2021.

[104] Francesco Tudisco and Desmond J. Higham. A nonlinear spectral method
for core-periphery detection in networks. SIAM Journal on Mathematics of
Data Science, 1:269–292, 2019.

[105] Francesco Tudisco and Desmond J. Higham. Core-periphery detection in
hypergraphs. SIAM Journal on Mathematics of Data Science, 5(1):1–21,
2023.

[106] Robert E. Ulanowicz and Donald L. DeAngelis. Network analysis of trophic
dynamics in South Florida ecosystems. US Geological Survey Program on
the South Florida Ecosystem, 114:45, 2005.

[107] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of
spectral clustering. The Annals of Statistics, pages 555–586, 2008.

[108] Chang-Dong Wang and Jian-Huang Lai. Nonlinear Clustering: Methods
and Applications, pages 253–302. Springer International Publishing, Cham,
2016.

[109] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, 393(6684):440–442, 1998.

103

Laplacians for Structure Recovery on Directed and Higher-order Graphs 104

[110] Scott White and Padhraic Smyth. A spectral clustering approach to finding
communities in graphs. In Proceedings of the 2005 SIAM international
conference on data mining, pages 274–285. SIAM, 2005.

[111] William B. Wood, editor. The nematode Caenorhabditis Elegans. Cold
Spring Harbor monograph series; 17, 1988.

[112] Kelin Xia and Guo-Wei Wei. Persistent homology analysis of protein struc-
ture, flexibility, and folding. International Journal for Numerical Methods
in Biomedical Engineering, 30(8):814–844, 2014.

[113] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav,
Anand Louis, and Partha Talukdar. Nhp: Neural hypergraph link pre-
diction. In Proceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, pages 1705–1714, 2020.

[114] Seeun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and
when do we need higher-order information in hypergraphs? a case study on
hyperedge prediction. In Proceedings of The Web Conference 2020, pages
2627–2633, 2020.

[115] Jun Yu, Dacheng Tao, and Meng Wang. Adaptive hypergraph learning
and its application in image classification. IEEE Transactions on Image
Processing, 21(7):3262–3272, 2012.

[116] Rundong Zhao, Mathieu Desbrun, Guo-Wei Wei, and Yiying Tong. 3d
hodge decompositions of edge- and face-based vector fields. ACM Transac-
tions on Graphics, 38(6), nov 2019.

104

	Lay Summary
	Abstract
	Acknowledgements
	Contents
	Introduction and Overview
	Introduction
	Notation
	Graph Laplacian
	Undirected Graph Laplacian
	Spectral Properties of Graph Laplacian
	Spectral Embedding
	Directed Graph Laplacian

	Higher-order Networks
	Node Embedding
	Generative Graph Models

	Directed Graph Laplacians
	Introduction
	Magnetic and Trophic Laplacians
	Notation
	Spectral Methods for Directed Networks
	The Magnetic Laplacian
	Magnetic Laplacian and Connection Laplacian
	The Trophic Laplacian

	Random Graph Interpretation
	The Directed pRDRG Model
	The Trophic Range-dependent Model
	Generalised Random Graph Model
	Model Comparison

	Results on Synthetic Networks
	Directed pRDRG Model
	The Trophic RDRG model

	Results on Real Networks
	Food Web
	Influence Matrix
	Yeast Transcriptional Regulation Network
	C. elegans Frontal Neural Network
	Other Real Networks

	Conclusion

	Hypergraph Laplacian
	Introduction
	Notation
	Linear hypergraph embedding
	Periodic hypergraph embedding
	Generative hypergraph models
	The Discrete Constraint
	Model comparison
	Weighted Generative Hypergraph Model

	Experiments
	Model Comparison
	Hyperedge Prediction

	Conclusion

	Magnetic Hodge Laplacian for Simplicial Complexes
	Introduction
	Background
	Simplicial Complex
	Hodge Laplacian on Simplicial Complex
	2-Manifolds

	Magnetic Hodge Laplacian
	Boundary Operator Formalism
	Element by Element Formalism

	Case Studies on Directed Triangles
	Case 1
	Case 2
	Case 3
	Case 4

	Case Study on Triangulated Torus
	Type 1 Torus
	Type 2 Torus

	Conclusion

	Conclusion and Future Work
	Bibliography

