
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Efficient Interior Point
Algorithms for Large Scale

Convex Optimization
Problems

Filippo Zanetti

Doctor of Philosophy

University of Edinburgh

2023

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text. This work
has not been submitted for any other degree or professional qualification.

(Filippo Zanetti)

iii

iv

a mia mamma

vi

Acknowledgements

My deepest gratitude goes to my supervisor Professor Jacek Gondzio, who taught
me about optimization and how to do proper research, and whose constant
encouragement has been fundamental in reaching the end of my PhD. I am
grateful to my second supervisor Dr. John Pearson, for many discussions about
research and for the help in various projects. I am deeply thankful to Dr. Julian
Hall, who financed the last months of my PhD and who welcomed me with open
arms into the HiGHS team. A special thank you to Professor Luca Bergamaschi,
for introducing me to numerical linear algebra and for helping me to obtain the
PhD position in Edinburgh.

I would like to thank the School of Mathematics and Professor Gondzio for
funding my PhD scholarship, and the Laura Wisewell Fund and SIAM Student
Travel Fund for providing funding for various conferences.

I would like to thank Professor Kenneth McKinnon and Professor Jordi Castro,
for being the examiners of my viva and for providing helpful comments and
suggestions to improve this thesis.

I would like to thank Professors Samuli Siltanen and Matti Lassas for a fruitful
collaboration and for teaching me about inverse problems; a special thank you goes
to Salla, for the constant interactions and exchanges that made the collaboration
possible.

I would like to thank Stefano, Santolo and Spyros for many discussions, chats
and beers spent talking about research and about many other things. Thank you
also to the many colleagues that I had the pleasure to meet during my time in
Edinburgh: Barbara, Monse, Claire, Nagisa, Malte, Tom, Andres, Cat, Siemen,
Albert.

A special thank you goes to my Italian friends: Enrico, Andrea and Michael,
for all the time spent together laughing and drinking; Nicole and Federica, for so
many happy moments and chats; Sara, for many long chats and laughs that kept
me from going crazy during the long months of lockdown; Davide, because despite
the distance we share so many happy memories; Andrea, for the intriguing bike
tours; Davide and Federico for many discussions (more or less serious) about PhD
life and mathematics.

I would like to thank my father Pier Paolo, my brother Enrico, Daniela and
Gianni for supporting me during all these years. Gianni, I hope to inspire you to
study, because the modern world seems so full of ignorance.

Lastly, I would like to thank Shunee, with whom I shared almost the entirety
of the PhD and to whom I owe all the happy moments of the last three years (and
thanks to Covid for getting us together).

vii

viii

Abstract

Interior point methods (IPMs) are among the most widely used algorithms for
convex optimization problems. They are applicable to a wide range of problems, in-
cluding linear, quadratic, nonlinear, conic and semidefinite programming problems,
requiring a polynomial number of iterations to find an accurate approximation of
the primal-dual solution. The formidable convergence properties of IPMs come
with a fundamental drawback: the numerical linear algebra involved becomes
progressively more and more challenging as the IPM converges towards optimality.
In particular, solving the linear systems to find the Newton directions requires
most of the computational effort of an IPM. Proposed remedies to alleviate
this phenomenon include regularization techniques, predictor-corrector schemes,
purposely developed preconditioners, low-rank update strategies, to mention a
few.

For problems of very large scale, this unpleasant characteristic of IPMs becomes
a more and more problematic feature, since any technique used must be efficient
and scalable in order to maintain acceptable computational requirements. In this
Thesis, we deal with convex linear and quadratic problems of large “dimension”:
we use this term in a broader sense than just a synonym for “size” of the problem.
The instances considered can be either problems with a large number of variables
and/or constraints but with a sparse structure, or problems with a moderate
number of variables and/or constraints but with a dense structure. Both these
type of problems require very efficient strategies to be used during the algorithm,
even though the corresponding difficulties arise for different reasons.

The first application that we consider deals with a moderate size quadratic
problem where the quadratic term is 100% dense; this problem arises from X-ray
tomographic imaging reconstruction, in particular with the goal of separating the
distribution of two materials present in the observed sample. A novel non-convex
regularizer is introduced for this purpose; convexity of the overall problem is
maintained by careful choice of the parameters. We derive a specialized interior
point method for this problem and an appropriate preconditioner for the normal
equations linear system, to be used without ever forming the fully dense matrices
involved.

The next major contribution is related to the issue of efficiently computing
the Newton direction during IPMs. When an iterative method is applied to
solve the linear equation system in IPMs, the attention is usually placed on
accelerating their convergence by designing appropriate preconditioners, but the
linear solver is applied as a black box with a standard termination criterion
which asks for a sufficient reduction of the residual in the linear system. Such an

ix

approach often leads to an unnecessary “over-solving” of linear equations. We
propose new indicators for the early termination of the inner iterations and test
them on a set of large scale quadratic optimization problems. Evidence gathered
from these computational experiments shows that the new technique delivers
significant improvements in terms of inner (linear) iterations and those translate
into significant savings of the IPM solution time.

The last application considered is discrete optimal transport (OT) problems;
these kind of problems give rise to very large linear programs with highly structured
matrices. Solutions of such problems are expected to be sparse, that is only a
small subset of entries in the optimal solution is expected to be nonzero. We derive
an IPM for the standard OT formulation, which exploits a column-generation-like
technique to force all intermediate iterates to be as sparse as possible. We prove
theoretical results about the sparsity pattern of the optimal solution and we
propose to mix iterative and direct linear solvers in an efficient way, to keep
computational time and memory requirement as low as possible. We compare the
proposed method with two state-of-the-art solvers and show that it can compete
with the best network optimization tools in terms of computational time and
memory usage. We perform experiments with problems reaching more than four
billion variables and demonstrate the robustness of the proposed method.

We consider also the optimal transport problem on sparse graphs and present
a primal-dual regularized IPM to solve it. We prove that the introduction of the
regularization allows us to use sparsified versions of the normal equations system
to inexpensively generate inexact IPM directions. The proposed method is shown
to have polynomial complexity and to outperform a very efficient network simplex
implementation, for problems with up to 50 million variables.

x

Lay Summary

Optimization problems are ubiquitous in the modern technological world: finding
the optimal directions to reach a destination given the current traffic congestion,
deciding how to optimally schedule air flights with a given fleet of airplanes,
or simply finding the optimal shape for a tin of beverage are all examples of
optimization problems that affect our life. These problems require a very large
number of decisions to be made: for example there could be thousands of possible
roads and intersections among which to choose how to reach our destination.

With more and more powerful computers becoming available, we are now able
to solve optimization problems with billions of decision variables, in a matter
of minutes. Interior point methods are one of the reasons why this is possible:
these kind of methods are extremely reliable and versatile and can find very
accurate solutions much faster than other alternative methods. In particular,
these methods find a sequence of approximate solutions that get progressively
closer to the required optimum. To move from one approximation to the next, a
direction must be computed: this step is responsible for most of the computing
time of the algorithm and is where researchers put most of the effort to make
these methods more efficient.

One of the main contributions of this Thesis is a strategy to compute these
directions in a cheap way, losing as little time as possible but still guaranteeing
a good progress of the method; this strategy can bring substantial benefit in
particular when the problems are large and challenging.

The second main contribution of this work is the derivation of specific interior
point algorithms for two common practical problems. The first one involves
medical imaging: when an X-ray image is taken, a direct reconstruction is not
possible, due to imperfections in the imaging process; an optimization problem is
used instead to find the best image that fits the measurements and satisfies some
additional properties (for example, we may look for an image with very few edges,
or with a lot of empty pixels). The second problem is called optimal transport
and is strictly related to logistics: this problem requires to find the best possible
way of moving objects from one configuration into another. It could be the case
of ants moving their nest away from a source of danger grain by grain consuming
the least amount of energy, or a harbour crane moving containers onto a ship at
the lowest possible cost. To be useful in real-life applications, both these problems
require solutions to be computed quickly. In this Thesis we exploit the structure
of these problems to obtain efficient algorithms when dealing with instances with
a very large number of decision variables.

xi

xii

Contents

Abstract x

Introduction 1

1 Preliminary notions 5
1.1 Useful results from graph theory 5
1.2 Useful results from linear algebra 9
1.3 Useful results about Krylov methods 11
1.4 Useful results from optimization 15

2 Interior point methods 19
2.1 Fundamentals of interior point methods 19
2.2 Convergence of IPMs . 21
2.3 Linear algebra of IPMs . 23
2.4 Predictor correctors techniques in IPMs 29

3 An interior point method for tomographic imaging 31
3.1 Introduction . 31
3.2 Specialized interior point method 34
3.3 Structure of the normal equations matrix 36
3.4 Preconditioner for the normal equations 39
3.5 Results . 44
3.6 Conclusion . 47

4 Early stopping of the linear solver in interior point methods 51
4.1 Introduction . 51
4.2 Interior Point Method . 53
4.3 Estimating the convergence of the outer iterations 54
4.4 Stopping criterion . 59
4.5 Numerical results . 68
4.6 Conclusion . 77

5 Interior point method for discrete optimal transport 79
5.1 Introduction . 79
5.2 From optimal transport to optimization 81
5.3 Interior-point-inspired algorithm for optimal transport 84
5.4 Solution of the normal equations 90
5.5 Numerical results . 93

xiii

5.6 Conclusion . 101

6 Regularized interior point method for optimal transport on
graphs 105
6.1 Introduction . 105
6.2 Computational Framework . 107
6.3 Properties of the regularized normal equations system 112
6.4 Sparsification of the reduced matrix 114
6.5 Numerical Results . 118
6.6 Conclusion . 124

7 Conclusions 125

xiv

Notation and Abbreviations

Below we summarize the notation used in the Thesis. Individual Chapters may
define and use a slightly different notation.

Ik Identity matrix of size k

ek Vector of all ones of size k

êk k−th column of the identity matrix

Rk
+ Set of k−vectors with non-negative real components

xkj (In an iterative method) Component j of vector x at iteration k

∥ · ∥ Euclidean norm

⊗ Kronecker product

vec(·) Vectorization operator that takes a m× n matrix X and stacks
its columns together, to produce an mn vector x

|S| Cardinality of the set S
AS (For a matrix A and a set of indices S) Submatrix that contains

only the columns with index in S
diag(A) (For a matrix A) Diagonal matrix with the same diagonal as A

diag(a) (For a vector a) Diagonal matrix with a on the diagonal

nnz(A) (For a matrix A) Number of nonzero entries of A

deg(v) (In a graph) Degree of node v, i.e. number of edges incident to v

axpy Generalized scaled vector addition operation αx+ y

CG Conjugate Gradient method

IP Inner Product regularizer

IPCG Interior Point Conjugate Gradient method

IPM Interior Point Method

IPMINRES Interior Point MINRES method

JTV Joint Total Variation

KKT Karush–Kuhn–Tucker conditions

LP Linear Program

xv

MINRES MINimum RESidual method

OT Optimal Transport

PCG Preconditioned Conjugate Gradient method

PDE Partial Differential Equation

QP Quadratic Program

spd Symmetric Positive Definite matrix

xvi

Introduction

Interior Point Methods (IPMs) [63, 131] are among the most successful algorithms
for convex optimization: the main reasons for this are the provable polynomial
worst-case complexity and the formidable performance of practical implementa-
tions.

However, when it comes to large scale problems, with millions or billions of
variables, IPMs suffer greatly with respect to first-order methods. While the
number of iterations that an IPM needs to perform is usually much smaller
than in the case of simplex or first-order methods, each of these iterations can
be computationally very expensive. The Newton direction to be taken at each
step requires the solution of a large and extremely ill-conditioned linear system,
for which it is difficult to find good and efficient preconditioners. Most of the
research on IPMs in recent years has focused on alleviating this difficulty, by
finding appropriate preconditioners (e.g. [18, 19, 23, 42, 64, 114]), by introducing
regularization (e.g. [6, 31, 57, 105, 106]), by employing low-rank strategies (e.g.
[45, 70, 71]) or by deriving dedicated algorithms for specific problems (e.g. [27,
28, 29, 32, 40, 52, 68, 101, 133]).

In this Thesis, we deal with optimization problems of large scale: with this
term, we mean problems which contain a large amount of information to be used,
either in the form of a large number of variables, or in the form of dense matrices.
In the first case, the matrices involved are of large size, but highly sparse and
potentially structured; any factorization-based approach would produce a large
fill-in (i.e. the resulting Cholesky or LDLT factors would be much denser than
the original matrix) and is therefore not applicable in practice. A typical example
of this kind of problems comes from network applications, where the constraint
matrix is often given by a very sparse incidence matrix of the underlying graph.
The second class of large scale problems that we consider instead may have a
moderate number of variables, but very dense constraint or Hessian matrices.
Usually these matrices are not even stored explicitly and can only be accessed
as matrix-free operators; any factorization method is therefore inapplicable and
iterative linear solvers must be used. Typical examples come from applications
that use discretized integral operators, e.g. Fourier or Radon transforms.

In this Thesis, we derive techniques to be used for large scale convex optimiza-
tion problems and we put most of the emphasis on evaluating their performance in
terms of computational time and memory footprint. A lot of attention is also put
on how these methods scale with the dimension of the problem; in particular, we
show multiple times that an efficient interior point method, for sufficiently large
problems, can outperform first-order methods, which often display an exponential

1

growth of the computational time.
The Thesis is structured as follows:

• In Chapter 1 we introduce some preliminary notions related to graph theory,
numerical linear algebra and optimization that are useful for the rest of
the Thesis, and we prove some minor original results about the sparsity
structure of a particular class of matrices.

• In Chapter 2, we derive a standard primal-dual interior point method and
give an overview of its convergence properties. We discuss the linear algebra
difficulties that arise from IPMs and prove a result about clustering of
eigenvalues in IPM-like matrices; this result highlights the already well
known issues of degeneracy of linear programs and how this feature affects
IPMs. Finally, we introduce the most common predictor-corrector techniques
used in practice.

• In Chapter 3 we present the first main contribution of the Thesis: we
propose a novel regularizer for tomographic imaging reconstruction and
derive a specialized interior point method for the quadratic program that
arises. This problem involves a fully dense Hessian matrix that can only
be accessed through matrix-free operators given by the Radon and inverse
Radon transforms. The regularizer proposed is non-convex and needs to be
tuned properly in order to obtain an optimization problem that is convex
overall. The problem includes non-negativity constraints, but no linear
constraints, allowing for a simplified IPM formulation; the quadratic term
has a Kronecker product structure, where the repeated block, which is fully
dense, has a Toeplitz-like structure that arises from the application of the
Radon and inverse Radon operators. All these properties are exploited to
obtain a simple yet effective preconditioner for the Newton system. We
prove that the eigenvalues of the preconditioned normal equations matrix are
bounded independently of the IPM iteration (a very desirable feature that
is usually difficult to achieve in IPMs) and we also observe this phenomenon
experimentally. Numerical tests show that the novel regularizer achieves the
proposed goal and that the specialized IPM solves the problem efficiently
with up to 500, 000 variables.

• In Chapter 4 we present the second novel contribution of this work. Here we
deal with a fundamental issue of IPMs, related to how precisely the Newton
directions have to be computed. In literature, whenever an iterative linear
solver is used within an IPM, the quality of the inexact Newton direction is
measured with the relative residual of the linear system; if this quantity is
small, the approximate direction is considered safe to use from the linear
algebra perspective. However, this approach is not necessarily the best one,
since the direction is only used to progress the optimization method: when
very far from optimality, even a very roughly computed direction can bring
a substantial improvement from the IPM point of view (i.e. it can bring a
substantial reduction to the IPM convergence indicators), even though such
a direction represents a very poor approximation of the exact one from the

2

purely linear algebra point of view. In this Chapter we modify the standard
conjugate gradient and MINRES algorithms to compute new indicators that
allow to stop the linear iterations based on the IPM convergence indicators
rather than just on the residual of the linear system. We provide a rationale
as to why the proposed approach behaves similarly to the frequently studied
inexact variants of IPMs. Moreover, we observe in practice that the proposed
stopping criterion brings a substantial benefit to the quadratic optimization
problems considered, with up to 70% reduction in computational time, and
outperforms other classical termination strategies for linear solvers.

• In Chapter 5 we present an interior point method for discrete Optimal
Transport (OT). This problem is becoming very popular in many applications,
in particular for the computation of the Wasserstein distance; some of these
applications have seen the use of interior point methods, but many other
dedicated methods have been derived. In the simplest formulation, OT
problems require the solution of a linear program with a large number
of variables and a highly structured and sparse constraint matrix. The
optimal solution is expected to be very sparse as well, that is only a small
subset of entries in the optimal solution is expected to be nonzero; to
take full advantage of this feature, we embed a column generation strategy
into the IPM algorithm, to keep all intermediate vectors and matrices
sparse. A standard IPM would need to work with fully dense vectors (as
all components are required to be strictly positive), which produces dense
blocks in the normal equations matrix; this in turn produces a high peak
memory requirement and long computational times. The proposed hybrid
of IPM and column generation overcomes these difficulties and produces
an efficient and scalable method. Extensive numerical experiments show
that the proposed method can solve problems with up to 4 billion variables
and outperforms some state-of-the-art network simplex implementations in
terms of computational time and memory requirement.

• In Chapter 6 we extend the work on optimal transport from the previous
Chapter to problems of transportation over sparse graphs. These problems
share many features with the standard OT formulation, in particular in
relation to the sparsity of the optimal solution. We apply a proximally
stabilized interior point method to this problem and propose to use an inexact
sparsified normal equations matrix to compute Newton directions. We
prove that the inexactness introduced in this way preserves the polynomial
complexity of the method; moreover, we show that the normal equations
matrix takes the form of the Laplacian of a re-weighted graph, which allows
for a fast solution of the linear systems. We show results on graphs with
up to 50 million edges: the proposed approach outperforms a very efficient
first-order method for large problems, for both randomly generated and real
world graphs.

• Finally, we present conclusions and future perspectives in Chapter 7.

The work presented in this Thesis resulted in the following papers:

3

• [68]: Gondzio, Lassas, Latva-Aijo, Siltanen and Zanetti, Material-separating
regularizer for multi-energy x-ray tomography, Inverse Problems, 38 (2022).

• [134]: Zanetti and Gondzio, A new stopping criterion for Krylov solvers
applied in interior point methods, SIAM J Sci Comput, 45 (2023).

• [133]: Zanetti and Gondzio, An interior-point-inspired algorithm for linear
programs arising in discrete optimal transport, INFORMS J Comput, 35
(2023).

• [32]: Cipolla, Gondzio and Zanetti, A regularized interior point method for
sparse optimal transport on graphs, arXiv:2307.05186v1[math.OC] (2023).

Chapter 3 is based on [68]; Chapter 4 is based on [134]; Chapter 5 is based on
[133] and Chapter 6 on [32].

Permission to use the material for this Thesis was granted by all co-authors.

4

Chapter 1

Preliminary notions

In this Chapter, we introduce some basic results about graph theory, linear algebra
and optimization that are useful for the rest of the Thesis. A minor original result
is presented in Section 1.1.3.

1.1 Useful results from graph theory

1.1.1 Graphs

A graph is a pair G = (N , E), where N ⊂ N is the set of nodes of the graph and
E ⊆ N ×N is the set of edges. E includes all pairs of nodes belonging to N that
are connected in G:

E = {(x, y) |x, y ∈ N , x is connected to y}.

A graph is undirected if the edges do not have a direction and directed otherwise;
i.e. in an undirected graph, both edges (u, v) and (v, u) must exist, while in a
directed graph only one of them may be present.

Define the adjacency matrix of graph G as the matrix A ∈ R|N |×|N | such that

Aij =

{
1, if there is an edge from node i to node j

0, otherwise
.

Notice that the adjacency matrix of an undirected graph is symmetric. A known
property of the powers of the adjacency matrix is the following: (An)ij gives the
number of paths of length n from node i to node j.

Define the incidence matrix of an undirected graph G as the matrix E ∈ R|N |×|E|

such that

Eij =

{
1, if node i is the head or tail of edge j

0, otherwise
.

5

For a directed graph instead, E is defined as

Eij =


−1, if node i is the tail of edge j

1, if node i is the head of edge j

0, otherwise

.

1.1.2 Bipartite graphs

A graph is called bipartite if the nodes set N can be divided into two disjoint sets
N0 and N1, such that every edge connects a node in N0 and a node in N1. An
interesting properties of these graphs is that they cannot contain loops of odd
length.

The adjacency matrix of an undirected bipartite graph takes the following
form

A =

 0 B

BT 0

 , (1.1)

where B is called the biadjacency matrix of the bipartite graph. Given any matrix
B, there exists a bipartite graph such that B is its biadjacency matrix.

Figure 1.1 shows an example of bipartite graph. The corresponding biadjacency
and incidence matrices are

B =


1 1 0 0

0 1 0 1

0 0 1 0

1 0 1 0

 , E =



1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

1 0 0 0 0 1 0

0 1 1 0 0 0 0

0 0 0 0 1 0 1

0 0 0 1 0 0 0



Figure 1.1: An example of bipartite graph

1

2

3

4

5

6

7

8

1

2

3

4

6

Consider a complete undirected bipartite graph (i.e. an undirected bipartite
graph where it is not possible to add any edge) with |N0| and |N1| nodes in the
two groups. Then, the incidence matrix of such a graph displays the following
structure

E =



I|N0| I|N0| I|N0| . . .

eT|N0|

eT|N0|

eT|N0|
. . .


=

eT|N1| ⊗ I|N0|

I|N1| ⊗ eT|N0|

 , (1.2)

where ⊗ represents the Kronecker product (see Section 1.2.1).

1.1.3 Chordal graphs

Given a loop in a graph, we call a chord an edge that connects two non-adjacent
nodes in the loop. An undirected graph is called chordal, or triangulated, if any
loop with 4 or more nodes contains at least a chord. A matrix is said to be
chordal if it can be interpreted as the adjacency matrix of a chordal graph (see
Section 1.2.2).

Given a generic matrix M ∈ Rm×n, we can build a bipartite graph for which
M is the biadjacency matrix. We call this graph the primary graph PG(M). Let
us call N0 and N1 the two groups of nodes in the bipartite graph. The adjacency
matrix A of PG(M) has the structure shown in (1.1) and thus A2 has the structure

A2 =

MMT 0

0 MTM

 .
Let us define a secondary graph SG(M) as follows: SG(M) has nodes given by

N0; two nodes are connected by an edge if there is a path of length two between
them in PG(M). Since the nonzero entries of A2 correspond to the nodes that
are connected by paths of length two in the original bipartite graph, notice that
the adjacency matrix of SG(M) has the same sparsity pattern as MMT .

Figure 1.2a shows an example of a primary graph and the corresponding
secondary graph (without self-loops) corresponding to the matrix

M =


1 1 0 0

0 1 0 1

0 0 1 0

1 0 1 0

 .
The following result follows trivially from the definitions of PG(M) and SG(M):

Lemma 1.1. If there exists a subset S ⊆ N0 and a node q̂ ∈ N1 such that the
graph PG(M) contains edges (s, q̂) ∀s ∈ S, then the nodes in S form a complete
subgraph of SG(M).

7

Figure 1.2b shows an example of a subset of nodes ofN0 which are all connected
to the same node q ∈ N1; the graph SG(M) includes a complete subgraph.

Figure 1.2: (a) Primary graph and associated secondary graph. (b) Example of
Lemma 1.1.

(a)

(b)

Theorem 1.1. Given a matrix M ∈ Rm×n, if every cycle of length larger than or
equal to 8 in PG(M) has at least a chord, then MMT has chordal sparsity pattern.

Proof. It is equivalent to show that if every cycle of length at least 8 in PG(M)
has a chord, then SG(M) is chordal.

Let us argue by contradiction: let us try to construct a chordless cycle in
SG(M) of length at least 4 . Let us suppose that the cycle is formed by a subset
of nodes Q ⊆ N0. Due to Lemma 1.1, if there are three or more nodes in Q
connected to the same node in N1 in PG(M), then there exists a chord in the
proposed cycle; thus, let us assume that this does not happen. This means that
we need an auxiliary node in N1 to connect in the primary graph each couple of
subsequent nodes in the cycle. Suppose that the chordless cycle in the secondary
graph is q1 → q2 → · · · → qk → q1, with k ≥ 4. To form the edge between
q1 and q2 in SG(M), we need a path of length two in the primary graph which
involves a node q′1 ∈ N1. To form the edge between q2 and q3 in SG(M), we need
a path of length two in the primary graph which involves a node q′2 ∈ N1, since
we cannot use q′1 again or we would produce a chord. Continuing this reasoning,
to have a chordless cycle we need to use a different auxiliary node q′j ∈ N1 for
each pair of subsequent nodes in the cycle. This implies that any edge in SG(M)
corresponds to two edges in PG(M). To construct the chordless cycle, we would
need k auxiliary nodes in N1 and 2k edges in the primary graph. Since k ≥ 4,
this implies that there must be a cycle of length at least 8 in PG(M); this cycle
must be chordless since the only way to have a chord would be if three nodes in
N0 were all connected to the same node in N1.

We reached a contradiction.

8

Notice that, if we apply the Theorem to matrix MT , it follows that also
MTM has a chordal sparsity pattern. Notice also that the Theorem applies, as
a particular case, to matrices M that correspond to acyclic bipartite graphs (i.e.
bipartite graph where there are no loops).

Notice also that the converse of Theorem 1.1 does not hold in general. Figure 1.3
shows a counterexample, where the bipartite graph has a loop of size 8 without
any chord (shown with solid red lines), but the corresponding secondary graph is
chordal.

Figure 1.3: Counterexample to the converse of Theorem 1.1

1

2

3

4

5

6

7

8

9

1

2

3

4

1.2 Useful results from linear algebra

1.2.1 Kronecker product

Given two matrices A ∈ Rm×n and B ∈ Rp×q, the Kronecker product A ⊗ B ∈
Rmp×nq is defined as

A⊗B =


A11B . . . A1nB

...
. . .

...

Am1B . . . AmnB

 . (1.3)

Let us recall some properties of the Kronecker product.

Property 1.1. The transpose of a Kronecker product can be computed as

(A⊗B)T = AT ⊗BT .

Property 1.2. The application of A⊗B to a vector x ∈ Rnq can be done as

(A⊗B)x = vec(BXAT)

where vec(·) is the vectorization operator and vec(X) = x.

9

Property 1.3. If m = n and p = q, then the eigenvalues of A⊗B are given by

λiµj, i = 1, . . . ,m, j = 1, . . . , p

where λi and µj are generic eigenvalues of matrices A and B, respectively.

These are standard results in linear algebra; a proof of these facts can be
found, for instance, in [76].

1.2.2 Chordal matrices

Given a sparse matrix A, we call sparsity pattern S the matrix build as

Sij =

{
0, if Aij = 0

1, if Aij ̸= 0
.

Any sparsity pattern can be seen as the adjacency matrix of a directed graph, or
undirected if S is symmetric. If the sparsity pattern of a matrix can be interpreted
as the adjacency matrix of a chordal graph, we say that the matrix is chordal.
Chordal matrices satisfy the following Theorem:

Theorem 1.2. A sparsity pattern S is chordal if and only if for every positive
definite matrix with sparsity pattern S there exists a symmetric permutation of its
rows and columns that produces a Cholesky factor with zero fill-in.

Proof. See e.g. [109, 122].

The symmetric permutation that produces zero fill-in in the Cholesky factor
is called the perfect elimination ordering and it can be found using the maximum
cardinality search [119] algorithm. The time taken for this operation isO(|N |+|E|),
where |N | and |E| are respectively the number of nodes and edges of the graph
corresponding to the sparsity pattern S.

However, if a matrix is not chordal, a perfect elimination ordering does not
exist; it is possible to find an ordering that minimizes the fill-in in the Cholesky
factor, but this problem is NP-complete [132]. In practice, some heuristics like
minimum degree or nested dissection are usually applied (see [110, Chapter 3]).

1.2.3 Nonzero entries of the normal equations

Given a sparse matrix A ∈ Rm×n, the number of nonzero entries of the normal
equations matrix AAT can be characterized by the following Lemma.

Lemma 1.2. Consider a matrix A ∈ Rm×n; define as wj the number of nonzero
entries in column j and w = maxj wj. Then, the number of nonzero entries of
AAT satisfies

w2 ≤ nnz(AAT) ≤
n∑
j=1

w2
j .

10

Proof. Notice that the normal equations matrix can be written as

AAT =
n∑
j=1

aja
T
j

where aj is the j−th column of matrix A. The number of nonzeros in aja
T
j is

exactly w2
j . Therefore, the number of nonzeros of AAT can be upper bounded by

summing all the values w2
j . If the sparsity patterns of all columns are mutually

disjoint, then this value represents the exact number of total nonzeros of AAT .

Given a certain column aj and ignoring numerical cancellations, the sparsity
pattern of aja

T
j is contained in the sparsity pattern of AAT ; this holds in particular

for the column with the most nonzeros, explaining the lower bound w2.

This Lemma shows that a sparse matrix A can produce a dense normal
equations matrix AAT if there are dense columns in A. However, dense normal
equations matrix can arise also without dense columns in A.

Notice that
n∑
j=1

w2
j ≤ w · nnz(A)

and define the density of a matrix M as

den(M) =
number of nonzero entries of M

number of total entries of M
.

Then Lemma 1.2 implies that

den(AAT) ≤ w · nnz(A)
m2

= den(A)
n

m
w. (1.4)

Potentially the density of AAT may be much larger than the density of A, either
because there are dense columns (i.e. w is large) or because the aspect ratio of
the matrix (i.e. n/m) is large.

Since this is only an upper bound, the density of AAT can be much smaller
than what is predicted by (1.4). However, the bound can be tight, for example,
when A is the incidence matrix of a very sparse graph with many connected
components. If A is the incidence matrix of a fully connected bipartite graph, as
in (1.2), then the bound is within a factor 2 of the actual density.

1.3 Useful results about Krylov methods

In this Section we give a brief introduction of some Krylov subspace methods, recall
some of their properties and discuss some common preconditioning techniques.

Given a linear system Ax = b, where A ∈ Rn×n, x,b ∈ Rn, a Krylov subspace
method finds a sequence of approximations x1, x2, . . . that converge to the true
solution x̂. In practice, the linear system is transformed to the equivalent one

11

P−1Ax = P−1b, where P is a preconditioner, i.e. an approximation of matrix A
that is easy to compute, invert and apply to a vector.

Depending on the properties of the matrix and on the choice of Krylov sub-
spaces, various methods can arise: in this work, we focus on the Conjugate
Gradient (CG) method [73] and the Minimum Residual (MINRES) method [100].
Many other methods exist, see e.g. [78] or [110].

1.3.1 Conjugate gradient method

The conjugate gradient method can be used for symmetric positive definite
(spd) matrices. Algorithm PCG shows the standard implementation of the
preconditioned CG using an spd preconditioner P .

Notice that, at each CG iteration, the most expensive operations are the
matrix-vector product u = Ap and the preconditioner application z = P−1r. All
the other operations involve vectors or scalars. Notice also that the stopping
criterion is based on the relative reduction of the residual of the preconditioned
linear system.

Algorithm PCG Preconditioned conjugate gradient method
Input: right hand side b, initial approximation x0, matrix A, preconditioner P , tolerance τ ,
max iterations itmax

1: r0 = b−Ax0

2: r = r0
3: z = P−1r
4: p = z
5: ρ = rT z
6: iter = 0
7: while ∥r∥ > τ∥r0∥ and iter < itmax do
8: iter = iter+ 1
9: u = Ap
10: α = ρ/uTp
11: x← x+ αp
12: r← r− αu
13: z = P−1r
14: ρN = rT z
15: β = ρN/ρ
16: p← z+ βp
17: ρ = ρN

18: end while

Let us recall some important properties of this method.

Property 1.4 (Finite termination property). The CG algorithm finds the exact
solution within n iterations (in exact arithmetic).

Notice that, in the presence of numerical inaccuracies this property may not
hold. Notice also that in practice much fewer iterations are needed to find a
sufficiently precise approximation.

12

Property 1.5. The distance of the k−th approximation xk from the true solution
x̂ can be bounded as

∥xk − x̂∥A ≤ ∥x0 − x̂∥A min
p∈Pk

0

max
λ∈σ(A)

|p(λ)|, (1.5)

where ∥ · ∥A represents the norm induced by matrix A, Pk0 represents the set of
polynomials p of degree k such that p(0) = 1, σ(A) represents the spectrum of
eigenvalues of matrix A.

If a preconditioner P is used, then Property 1.5 holds with P−1/2AP−1/2 in
place of A. Notice the meaning of this property: if the preconditioned matrix
has only k distinct eigenvalues, then there exists a polynomial of degree k such
that p(λj) = 0, ∀j = 1, . . . , k and p(0) = 1. Therefore, the right hand side of
(1.5) vanishes and the approximation xk is exact. This fact is summarized in
Property 1.6.

Property 1.6. If the preconditioned matrix P−1A has k distinct eigenvalues, then
the CG algorithm terminates within k iterations.

Property 1.6 is the fundamental tool to build good preconditioners for the CG
method. Indeed, rather than reducing the condition number of A, a preconditioner
should aim at producing narrow clusters of eigenvalues for matrix P−1/2AP−1/2.

1.3.2 Minimum residual method

The MINRES method can be applied to indefinite symmetric linear systems.
Algorithm MINRES shows a simplified implementation; some steps (like the
computation of the residual) have been omitted for simplicity.

Notice that, as in the case of Algorithm PCG, the most expensive operations
at each iteration are the application of the matrix and preconditioner to a vector.
Notice also that, despite being applied to indefinite matrices, the preconditioner
for MINRES has to be positive definite.

The MINRES method possesses similar properties to the CG method and
crucially the same result about clustering of eigenvalues for preconditioning holds.

1.3.3 Preconditioners

A good preconditioner for the CG or MINRES method should be an easy to
compute operator, whose inverse can be quickly applied to a vector, and that can
produce a distribution of eigenvalues of the preconditioned matrix with as few
clusters of eigenvalues as possible. Two of the most common and simple choices
for the preconditioner P are summarized below.

The Jacobi preconditioner captures only the diagonal of A, i.e. P is a diagonal
matrix such that diag(P) = diag(A). This technique works well when the mass
of the matrix is concentrated mostly on the diagonal; in particular, consider a
symmetric diagonally dominant matrix, i.e. an spd matrix for which

|Ajj| ≥
∑
i ̸=j

|Aji|, ∀j = 1, . . . , n. (1.6)

13

Algorithm MINRES Preconditioned Minimum Residual method
Input: right hand side b, matrix A, preconditioner P , tolerance τ , max iterations itmax

1: p = P−1b

2: r1 = b, r2 = r1
3: β =

√
bTp

4: w = 0, w2 = 0

5: cs = −1, sn = 0, φ̄ = β, ϵ = 0

6: x = 0

7: iter = 0

8: while ∥residual∥ > τ∥residual0∥ and iter < itmax do

9: iter = iter+ 1

10: v = p/β

11: p = Av

12: if iter ≥ 2 then p← p− (β/β0)r1 end if

13: α = vTp

14: p← p− (α/β)r2
15: r1 = r2, r2 = p

16: p = P−1r2
17: β0 = β, β =

√
rT2 p

18: ϵ0 = ϵ, δ = csδ̄ + snα, ḡ = snδ̄ − csα, ϵ = snβ, δ̄ = −csβ
19: γ = max(

√
ḡ2 + β2, ϵ)

20: cs = ḡ/γ, sn = β/γ, φ = csφ̄, φ̄ = snφ̄

21: w1 = w2, w2 = w

22: w = (v − ϵ0w1 − δw2)/γ

23: x← x+ φw

24: end while

Define the level of dominance of each row as δj:

δj = 1− 1

|Ajj|
∑
i ̸=j

|Aji|.

The diagonally preconditioned matrix P−1A has as rows the rows of A divided by
the corresponding diagonal entry. Therefore, P−1A is still diagonally dominant
and has ones on the diagonal. Using Gershgorin’s circle Theorem, it is easy to see
that the eigenvalues of P−1A belong to the interval [δ, 2− δ], where δ = min δj.
Therefore, all the eigenvalues of the preconditioned matrix belong to a narrow
cluster around λ = 1, and the more dominant the matrix is, i.e. the closest δ is to
1, the more efficient the preconditioner becomes.

Another common preconditioner is the incomplete Cholesky factorization: as
described in Section 1.2.2, the Cholesky factorization of a generic non-chordal
matrix, even when using the best ordering possible, produces fill-in, i.e. produces
a triangular factor that is denser that the original matrix. For large matrices
this means that a full factorization is intractable. An incomplete factorization
produces an approximate Cholesky factor with a specific sparsity pattern: for
example, the factor could be forced to have the same sparsity pattern as the
original matrix. A popular technique to compute the incomplete factorization
is threshold dropping : given the parameter droptol, elements that are smaller

14

than a local drop tolerance (that depends on droptol and on the norm of the
column considered) are set to zero in the incomplete factorization. This type
of preconditioner works well for matrices that are not too ill-conditioned and is
widely used in PDE applications.

The incomplete factorization process could break down if it encounters a
non-positive pivot and understanding exactly for which matrices an incomplete
factorization exists is extremely complicated (see [60, Chapter 11]). For diagonally
dominant matrices, it is always possible to compute the incomplete Cholesky factor,
in exact arithmetic [86]; a common strategy to overcome the break down of the
process is to lift the diagonal of the matrix by a sufficient amount (potentially until
the matrix is diagonally dominant), however doing so may produce a preconditioner
of poor quality.

1.4 Useful results from optimization

In this Section, we recall some important properties of linear and quadratic
programming problems for convex optimization. The results presented here can
be found, for instance, in [21] or [95].

1.4.1 Linear programming

The primal formulation of a standard Linear Program (LP) takes the form

min
x∈Rn

cTx

s.t. Ax = b (1.7)

x ≥ 0,

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n has full row rank.

The corresponding dual problem is

max
y∈Rm

s∈Rn

bTy

s.t. ATy + s = c (1.8)

s ≥ 0,

where y is the Lagrange multiplier associated with the constraint Ax = b and s
is the dual slack variable.

The first-order optimality conditions or Karush-Kuhn-Tucker conditions (KKT)
for problem (1.7) state that (x,y, s) is a solution of (1.7)-(1.8) if and only if

Ax = b

ATy + s = c (1.9)

xisi = 0, ∀i = 1, . . . , n

x, s ≥ 0

15

Notice that the third block of equations, known as complementarity conditions,
imposes that at least one of xi and si has to be zero, for each i = 1, . . . , n.
Therefore, given an optimal solution (x∗,y∗, s∗), we can consider the following
sets

B = {j |x∗
j ̸= 0} N = {j | s∗j ̸= 0}, (1.10)

that we denote as basic and nonbasic index sets. Their intersection is clearly
empty, in order to not violate the complementarity conditions. Their union instead
satisfies the following result:

Theorem 1.3 (Goldman-Tucker). There exists at least one primal-dual solution
(x∗,y∗, s∗) of (1.7)-(1.8) such that x∗ + s∗ > 0.

A solution that satisfies Theorem 1.3 is called strictly complementary ; the
corresponding basic and nonbasic sets satisfy B ∩N = ∅, B ∪N = {1, . . . , n},
i.e. they partition the set {1, . . . , n}.

1.4.2 Quadratic programming

The primal formulation of a standard convex Quadratic Program (QP) is as follows

min
x∈Rn

cTx+
1

2
xTQx

s.t. Ax = b (1.11)

x ≥ 0,

where Q ∈ Rn×n is a positive semi-definite matrix.

The corresponding dual problem is

max
y∈Rm

s∈Rn

bTy − 1

2
xTQx

s.t. ATy + s−Qx = c (1.12)

s ≥ 0,

The first-order optimality conditions in this case take the form

Ax = b

ATy + s−Qx = c (1.13)

xisi = 0, ∀i = 1, . . . , n

x, s ≥ 0

Notice that the complementarity conditions are still present, however strict com-
plementarity does not hold in general for QPs, i.e. there may not exist an optimal
solution (x∗,y∗, s∗) such that x∗ + s∗ > 0.

16

1.4.3 Central path

The concept of central path is fundamental in the understanding of interior point
methods. Given the optimality conditions (1.9), one can solve the perturbed
system

Ax = b

ATy + s = c (1.14)

xisi = µ, ∀i = 1, . . . , n

x, s ≥ 0

for some positive parameter µ. The set of solutions (xµ,yµ, sµ), for all values
of µ > 0, defines the central path. For LPs, it can be shown that the solution
to (1.14) is unique for each value of µ and thus the central path is well defined,
provided that the relative interior of the feasible region is non-empty (see e.g.
[131]).

In the limit µ→∞, the central path converges to the analytic center of the
feasible region; in the limit µ→ 0, the perturbed system (1.14) approximates (1.9)
better and better and, if there exists a primal-dual optimal solution of (1.7)-(1.8),
the central path converges to it. Therefore, the central path provides a way to
converge to the optimal solution using intermediate approximations that are “well
centered”, i.e. that satisfy xisi ≃ µ,∀i. In practical algorithms that exploit the
central path, it is not possible to move perfectly along it, but rather it is preferred
to produce approximations that are close to it, in the sense that they belong to a
certain neighbourhood of the central path.

1.4.4 Column generation

Problem (1.7) can be rewritten as

min
x∈Rn

n∑
j=1

cjxj

s.t.
n∑
j=1

ajxj = b

xj ≥ 0, j = 1, . . . , n,

where aj is the j−th column of matrix A.
If there are many more variables than constraints, i.e. if matrix A has many

more columns than rows, we can consider a restricted problem of the form

min
x∈Rn

∑
j∈I

cjxj

s.t.
∑
j∈I

ajxj = b

xj ≥ 0, j ∈ I,

17

where I is a subset of {1, . . . , n}. Any feasible solution of the restricted problem
x̂R produces a feasible solution of the original master problem x̂, simply by setting
x̂j = (x̂R)j, for j ∈ I and x̂j = 0 for j /∈ I. Therefore, the optimal objective of
the restricted problem is an upper bound on the optimal objective of the original
problem.

A column generation algorithm chooses a sequence of sets Ik and solves the
sequence of corresponding restricted problems, looking for the solution of the
original master problem. The set Ik is usually obtained from Ik−1 by adding
more indices to the set. A common strategy to do this is to consider the reduced
costs sk−1 = c− ATyk−1: for the current approximation to be dual feasible, the
components of the reduced costs have to be nonnegative; any negative component
of sk−1 should be added to the set Ik−1 to obtain Ik. When all the components of
the reduced costs are nonnegative and the primal and dual restricted objectives
coincide bTy = cTx, then an optimal solution of the master problem has been
found.

See [85, 123, 124] for more details on column generation and [66, 67] for the
use of interior point methods as solver for the restricted problems.

18

Chapter 2

Interior point methods

In this Chapter, we introduce a primal-dual interior point method for linear and
quadratic programming: we derive the formulation of the method, we summarize
the convergence results, we illustrate the difficulties arising from the linear algebra
point of view and present some remedies. At the end, we present several strategies
to improve the behaviour of the algorithm that are used in practice. Some minor
original results are presented in Sections 2.3.1 and 2.3.2.

2.1 Fundamentals of interior point methods

Consider the standard linear program (1.7); the inequality constraints on variable
x can be enforced using a logarithmic barrier function. In particular, using a
positive parameter µ, we can consider the following problem

min
x∈Rn

cTx− µ
n∑
i=1

log xi

s.t. Ax = b. (2.1)

The logarithmic barrier ensures that each component xi is kept in the interior
of the feasible region; when the parameter µ is driven to zero, we can recover a
solution of the original LP.

The Lagrangian function associated with (2.1) has the following form

L(x,y) = cTx+ yT (b− Ax)− µ
n∑
i=1

log xi

and its gradients are

∇xL(x,y) = c− ATy − µX−1en,

∇yL(x,y) = b− Ax,

where X is a diagonal matrix with x on the diagonal. We can introduce a new

19

variable s = µX−1en, so that the first order optimality conditions become

Ax = b

ATy + s = c (2.2)

XSen = µen

x, s ≥ 0.

Notice that this system is identical to the perturbed system used to define the
central path (1.14).

Consider a primal-dual feasible point; the duality gap cTx − bTy can be
rewritten, using the dual constraint c = ATy + s, as

cTx− bTy = sTx+ yTAx− bTy.

Now, using the primal constraint Ax = b, we obtain

cTx− bTy = xT s,

i.e. the duality gap is equal to the complementarity gap. It is easy to see that
the third block of equations in (2.2) imposes that xT s = nµ. Therefore, assuming
primal and dual feasibility, the parameter µ is directly related to the duality gap
and thus controls the distance to optimality.

System (2.2) is mildly nonlinear, due to the equations XSen = µen. Applying
the Newton method to this system yields the following system of linear equations

A 0 0

0 AT In

S 0 X



∆x

∆y

∆s

 =


rP

rD

rµ

 =


b− Ax

c− ATy − s

σµen −XSen

 , (2.3)

where (∆x,∆y,∆s) is the Newton step to be taken at the current iteration. It is
often not possible to take the full Newton step without violating the constraints.

In the third block of equations, the parameter µ refers to the complementarity
measure of the current approximation, while σµ is the complementarity value of
the target point that we are trying to reach. σ is called the centering parameter
and it controls where the Newton step is pointing: a value σ = 0 indicates that
we are solving the original optimality conditions (1.9); this direction is called
the affine scaling direction and usually produces approximations that are poorly
centered (i.e. they are far from the central path), since the term involving µ has
been completely ignored. Instead, choosing a value of σ = 1 indicates that we
are not trying to get closer to optimality (the duality gap of the target point is
the same as that of the current approximation), but we just want to improve the
centrality of the current approximation, i.e. get closer to the central path.

Practical IPM implementations either consider an intermediate value of σ, to
obtain both an improvement towards optimality and a reasonably well centered
approximation, or use a combination of multiple directions, obtained with different
values of σ. The latter approach is usually referred to as predictor-corrector ; many

20

of these strategies exist [33, 61, 87], some of which are introduced in Section 2.4.

After the Newton direction is computed, the step can be taken:

xk+1 = xk + α∆x,

yk+1 = yk + α∆y,

sk+1 = sk + α∆s.

An appropriate stepsize α has to be computed, to guarantee that the next point
belongs to the neighbourhood of the central path considered and that the point
satisfies the inequality constraints strictly (xi, si > 0, ∀i = 1, . . . , n).

The iterations are stopped when a sufficiently accurate solution is found, i.e.
when, given a prescribed tolerance tol, the following holds

∥rP∥
1 + ∥b∥

< tol,
∥rD∥

1 + ∥c∥
< tol, µ =

xT s

n
< tol. (2.4)

Algorithm IPM shows a simplistic interior point method with the features just
described. Notice that the parameter α0 is responsible for keeping the components
of the iterates strictly positive.

Algorithm IPM Interior Point Method

Given σ ∈ (0, 1), α0 = 0.999, (x0,y0, s0)
Compute µ0 = (x0)T s0 and r0P , r

0
D, r0µ

while (2.4) is not satisfied do
Solve (2.3) to find (∆xk,∆yk,∆sk)
Find αk as the largest α such that xk + α∆xk ≥ 0 and sk + α∆sk ≥ 0
Make the step:

xk+1 = xk + α0α
k∆xk

yk+1 = yk + α0α
k∆yk

sk+1 = sk + α0α
k∆sk

Compute µk+1 = (xk+1)T sk+1/n, rk+1
P , rk+1

D , rk+1
µ

end while

Similarly to (2.3), an IPM applied to a standard quadratic program (1.11)
produces a linear system of the kind

A 0 0

−Q AT In

S 0 X



∆x

∆y

∆s

 =


rP

rD

rµ

 =


b− Ax

c− ATy − s+Qx

σµen −XSen

 . (2.5)

2.2 Convergence of IPMs

The speed of convergence of an IPM depends on how the parameter µ is reduced
during the iterations and on which neighbourhood of the central path is used.

21

Define the primal-dual feasible and strictly feasible sets as

F = {(x,y, s)|Ax = b, ATy + s = c, (x, s) ≥ 0}

F0 = {(x,y, s)|Ax = b, ATy + s = c, (x, s) > 0}

In the case of a feasible method (i.e. a method that keeps all intermediate
iterates inside the feasible region), two common choices for the neighbourhood
are the 2−norm neighbourhood

N2(θ) = {(x,y, s) ∈ F0 | ∥XSen − µen∥ ≤ θµ} (2.6)

and the one-sided ∞−norm neighbourhood

N−∞(γ) = {(x,y, s) ∈ F0 |xisi ≥ γµ, ∀i = 1, . . . , n}, (2.7)

where θ, γ ∈ (0, 1).

Feasible IPM algorithms that employ these two neighbourhoods for solving a
linear program can be shown [63, 95, 131] to converge to an ε-accurate solution
in a number of iterations proportional to O(

√
n log 1/ε) for N2 and O(n log 1/ε)

for N−∞. These bounds show that IPMs can solve LPs in a polynomial number
of iterations; moreover, the dependence on the accuracy ε is very weak, so that it
is possible to obtain very accurate solutions with little extra effort.

In the case of an infeasible method (i.e. an IPM where the intermediate
iterations do not need to satisfy the linear constraints), a common neighbourhood
used is the infeasible ∞-norm neighbourhood

N−∞(γ, β) = {(x,y, s) | ∥rP∥ ≤ ∥r0P∥βµ/µ0, ∥rD∥ ≤ ∥r0D∥βµ/µ0,

xisi ≥ γµ, ∀i = 1, . . . , n}, (2.8)

where β ≥ 1. This neighbourhood guarantees that the infeasibilities rP and rD
are reduced at the same rate as µ throughout the iterations.

Infeasible IPMs for linear programming using neighbourhood (2.8) have been
shown to converge (e.g. [80]) and to retain polynomial complexity [131], with a
number of iterations proportional to O(n2 log 1/ε).

Similar results about polynomial complexity in the context of quadratic pro-
gramming exist, see e.g. [130].

Much attention has also been put into the study of inexact IPMs, e.g. [9, 12,
14, 25, 26, 35, 44, 56, 65, 81, 84, 89, 90, 135]: in most practical applications, the
Newton linear system cannot be solved exactly, but only an approximation of its
solution can be found (e.g. due to the use of an iterative Krylov solver). These
inaccuracies have an effect on the convergence of the IPM, but with suitable
assumptions polynomial complexity can still be achieved. A typical assumption,
coming from the theory of inexact Newton methods [41, 78], is that the linear

22

systems (2.3) or (2.5) are solved with a perturbed right-hand side
rP

rD

rµ

+ rerror, with ∥rerror∥ ≤ τinexact

∥∥∥∥∥

rP

rD

rµ


∥∥∥∥∥

with 0 ≤ τinexact < 1 appropriately chosen. Due to the neighbourhood used, this
often implies that the error in the right hand side satisfies ∥rerror∥ = O(µ). In
practice, this is accomplished by setting a variable tolerance on the residual of the
linear system when using a Krylov method; the tolerance should decrease at the
same rate as µ, which means computing more inexact directions in the early stage
of IPM and finding more accurate Newton directions when close to the optimal
solution. Various strategies have been derived to choose a sequence of tolerances
to apply to the CG or MINRES method, in order to reduce the overall number of
Krylov iterations; these techniques however all rely on the residual of the linear
system. In Chapter 4 we show that this is not necessarily a good choice and there
are alternative strategies that can improve substantially the performance of the
linear solver.

2.3 Linear algebra of IPMs

System (2.3) is a non-symmetric and highly sparse linear system. To solve it, it is
usually reduced to the augmented system−Θ−1 AT

A 0

∆x

∆y

 =

rD −X−1rµ

rP

 (2.9)

which is symmetric and indefinite and solved using an indefinite factorization
[24, 125] or the MINRES method presented in 1.3.2. Here, Θ = XS−1 is a diagonal
matrix with entries Θii = xi/si. The system can be reduced further to the normal
equations

AΘAT∆y = rP + AΘ(rD −X−1rµ). (2.10)

which is symmetric and positive definite, and solved using a Cholesky factorization
[60] or the CG method presented in Section 1.3.1.

Recalling the complementarity conditions from (1.9) and the definition of basic
and nonbasic index sets from (1.10), one can see that the entries Θii corresponding
to the index set B tend to ∞ as µ → 0, while the entries corresponding to the
index set N tend to zero. Therefore, the condition number of Θ get progressively
larger during the IPM iterations. In [64], under reasonable assumptions, it is
shown that the condition number may be as large as O(µ−2); if a very accurate
solution is required, with µ of the order of 10−8 or smaller, this means that the
condition number of AΘAT can be as large as 1016. For very large problems,
for which a direct Cholesky factorization of AΘAT is not possible, the conjugate
gradient method has to be used; however, such a large condition number of the

23

system matrix is likely to produce an excessively large number of linear iterations,
or even the stagnation of the Krylov method without the possibility of actually
finding an accurate Newton direction.

In the case of QPs, the normal equations approach is not usually viable, due
to the presence of matrix Q; some exceptions include the case of separable QPs,
where matrix Q is diagonal and thus easy to invert, and problems with only
non-negativity constraints and no linear equality constraints, in which case the
normal equations matrix simply takes the form Q+Θ−1.

A lot of attention has been put in recent years into the study of the spectral
properties of the matrices in (2.3), (2.5), (2.9), (2.10), see e.g. [38, 91, 92]. Recently,
there has been interest in developing IPMs that employ quasi-Newton methods
and low rank updates (see [16] for a survey) for the solution of the Newton linear
system [45, 70, 71].

We now present two remedies to the ill-conditioning of IPM matrices. The first
one is regularization: by slightly perturbing the original optimization problem, it
is possible to find a similar problem, with a similar solution, that is much easier to
compute. In particular, suppose we add primal and dual diagonal regularization
matrices Rp and Rd to the augmented system, to obtain the regularized augmented
system matrix −Θ−1 −Rp AT

A Rd


and the regularized normal equations matrix

A(Θ−1 +Rp)
−1AT +Rd.

It can be shown (see [64]) that the condition number of the regularized matrices
is bounded independently of µ; this means that the condition number of the
IPM matrices is not going to infinity when µ→ 0. However, to achieve accurate
solutions the regularization parameters need to be particularly small, in order to
minimize the perturbation to the original problem; in turn this means that the
bound on the condition number, despite being independent of µ, can still be very
large. Much more work has been done in the field of regularization for IPMs, see
e.g. [6, 31, 57, 105, 106], where various techniques are introduced and analyzed.

The second remedy to the ill conditioning of IPM matrices is preconditioning.
Unfortunately, standard techniques like diagonal scaling or incomplete factoriza-
tions are not sufficient in most cases to deal with IPM matrices. Much attention
has been put into the development of specific preconditioners tailored to the IPM
needs. Some of the techniques commonly used are

• Block preconditioners for the saddle-point matrix (2.9), e.g. inexact con-
straint or triangular preconditioners [17, 18, 19, 42]

• Splitting preconditioners: they try to predict the splitting of the entries of
matrix Θ into basic and nonbasic and exploit this structure to build efficient
preconditioners [23, 30, 59, 69, 97, 98, 114, 126].

24

• Matrix free preconditioner based on partial Cholesky factorization, that
captures the information about the largest eigenvalues of (2.10) [64].

• Generic preconditioners for saddle point systems [15, 42, 43].

• Preconditioners developed for a specific class of problems, e.g. compressed
sensing [52], PDE constraint optimization [101], image reconstruction inverse
problems [68], network optimization [27], and many more.

However, a general purpose strategy applicable to large scale problems (ideally
matrix-free), sufficiently robust to be used as a black-box preconditioner, is still
elusive.

2.3.1 Clustering of eigenvalues in IPM matrices

In this Section, we derive a result about the eigenvalues of a specific class of
matrices, which resemble the structure of the normal equations matrix (2.10) for
an LP. This result shows in a different way the well known fact that degeneracy in
a linear program leads to an extremely ill conditioned normal equations system.

Consider a matrix A ∈ Rm×n, with n > m and of full row rank, and a diagonal
matrix Θ ∈ Rn×n, with strictly positive entries on the diagonal. We suppose the
matrices are partitioned in the following way

A =
[
AB AN

]
, Θ =

ΘB 0

0 ΘN


and we suppose that the following holds

(ΘB)jj = O(µ−1) (ΘN)jj = O(µ)

for some parameter µ and max(∥AB∥, ∥AN∥) ≤ K ∈ R. We assume also that
matrix AB may be rank deficient and define as N the null space of ATB. Notice
that N⊥ = Im(AB).

Proposition 2.1. N ≡ null(ABΘBA
T
B).

Proof. Trivially, if ATBx = 0, then x ∈ null(ABΘBA
T
B).

If instead x ∈ null(ABΘBA
T
B) then

xTABΘBA
T
Bx = 0 ⇒ ATBx = 0

because ΘB is positive definite.

We are interested in the properties of the eigenvalues of matrix

M = AΘAT = ABΘBA
T
B + ANΘNA

T
N

in the limit µ → 0. Notice that M is positive definite and that ABΘBA
T
B is

positive definite over the subspace N⊥.

25

Consider an eigenpair (λ,v) satisfying

(ABΘBA
T
B + ANΘNA

T
N)v = λv,

with ∥v∥ = 1 and λ > 0.

We can define the orthogonal projectors onto N and onto its orthogonal
complement N⊥ as PN and PN⊥ respectively; we can then split the eigenvector
as v = v∥ + v⊥, where v∥ = PNv and v⊥ = PN⊥v. The eigenpair then has to
satisfy

ABΘBA
T
Bv⊥ + ANΘNA

T
Nv = λv (2.11)

and
λ = vT⊥ABΘBA

T
Bv⊥ + vTANΘNA

T
Nv. (2.12)

From (2.12), we obtain

λ ≥ vT⊥ABΘBA
T
Bv⊥ ≥ min(ΘB)jj(v

T
⊥ABA

T
Bv⊥) ≥ min(ΘB)jjσ

2
+,min(AB)∥v⊥∥2

(2.13)
where σ+,min(AB) is the smallest strictly positive singular value of matrix AB.
Notice that, if ∥v⊥∥ ≠ 0, then λ is bounded away from zero.

Projecting (2.11) onto N we obtain

λv∥ = PN (ABΘBA
T
Bv⊥)︸ ︷︷ ︸

=0

+PN (ANΘNA
T
Nv)

because ABΘBA
T
Bv⊥ ∈ N⊥. Considering that the norm of the orthogonal projec-

tion is smaller than or equal to the norm of the original vector, we obtain

λ∥v∥∥ ≤ K2∥ΘN∥. (2.14)

Projecting (2.11) onto N⊥ instead, we obtain

λv⊥ = PN⊥(ABΘBA
T
Bv⊥)︸ ︷︷ ︸

ABΘBA
T
Bv⊥

+PN⊥(ANΘNA
T
Nv).

Similar considerations as before yield

∥ABΘBA
T
Bv⊥∥ ≤ λ∥v⊥∥+K2∥ΘN∥. (2.15)

Define now λ̂ and v̂ such that λ → λ̂ and v → v̂, when µ → 0. Taking the
limit of (2.14)-(2.15), we obtain

λ̂∥v̂∥∥ ≤ 0, ∥ABΘBA
T
Bv̂⊥∥ ≤ λ̂∥v̂⊥∥.

Therefore, at least one of λ̂ = 0 or ∥v̂∥∥ = 0 must hold. If λ̂ = 0, then

∥ABΘBA
T
Bv̂⊥∥ ≤ 0 ⇒ ∥v̂⊥∥ = 0 ⇒ ∥v̂∥∥ = 1.

The first implication follows from Proposition 2.1 and from the fact that v̂⊥ is
orthogonal to the null space of ATB. As a consequence, only one of λ̂ = 0 or

26

∥v̂∥∥ = 0 can hold at the same time. Finally observe that if ∥v̂∥∥ = 0, then

∥v̂⊥∥ = 1 and from (2.13) it follows that λ̂ is infinite.
Given thatN has dimensionm−rank(AB), there existm−rank(AB) orthogonal

eigenvectors v̂ such that ∥v̂∥∥ ≠ 0. We summarize the results of this section in
the following Lemma.

Lemma 2.1. In the limit when µ→ 0, matrix M has m− rank(AB) eigenpairs
that satisfy ∥v∥∥ → 1, ∥v⊥∥ → 0, λ → 0 and rank(AB) eigenpairs that satisfy
∥v∥∥ → 0, ∥v⊥∥ → 1, λ→∞.

Therefore, the condition number of M tends to ∞ as µ→ 0; this fact however
is not caused solely by the clustering of the diagonal entries of Θ, but rather by
the rank deficiency of AB. If N = ∅, then there would not be any eigenvalue
converging to zero.

Making a parallel with the IPM matrices, we showed that the separation of
the entries of Θ and the degeneracy of the problem, produce two separate clusters
of eigenvalues and eigenvectors. However, we also showed that this separation
is not only caused by the behaviour of matrix Θ, but also by the degeneracy
of the basic submatrix AB; moreover, the larger the degree of degeneracy, the
more eigenvalues converging to zero appear, making the situation worse. This
fact suggests that, looking from the numerical linear algebra point of view, many
of the issues that IPM face are actually due to poor modelling of the problem
and could be mitigated by a reformulation of the problem (indeed, many IPM
packages employ a pre-processing phase to try and reduce the degeneracy of the
problem).

2.3.2 Normal equations and deflation

We now show that if the spectrum of a matrix exhibits two separated clusters
of eigenvalues, then the previous solution vectors can be re-used in a deflation
scheme effectively. The assumptions of this section do not necessarily reflect
the properties of the normal equations of an IPM, but we argue that close to
optimality these assumptions are close to be satisfied.

Consider a symmetric positive definite matrix M that satisfies the following

Assumption 2.1. M has two clusters of eigenvalues: N1 > 0 (large) eigenvalues
in the interval I1 = [λ1L, λ1U], with λ1U = λ1L/d; N2 > 0 (small) eigenvalues in the
interval I2 = [λ2L, λ2U], with λ2U = λ2L/t; 0 < d, t < 1 and N1 +N2 = N . Denote
as r the relative separation of the clusters, such that λ1L = λ2U/r, 0 < r < 1.

We can denote the set of orthonormal eigenvectors of M as

Mui = λ1iui, i = 1, . . . , N1, λ1i ∈ I1

Mvi = λ2ivi, i = 1, . . . , N2, λ2i ∈ I2
with N = N1 +N2. Then the respective eigenspaces are

U = span{u1,u2, . . . ,uN1} = V⊥,

27

V = span{v1,v2, . . . ,vN2} = U⊥.

Denote by ξU and ξV the components of a generic vector ξ along the respective
subspaces.

We suppose to drive the separation parameter r to zero in a way that changes
only the eigenvalues but not the eigenvectors ui and vi of matrix M . This
can be achieved, for example, in the following way: consider a sequence of real
numbers (rk)k∈N, such that when k →∞, rk → 0, and a matrix of eigenvectors
W = [u1 . . . uN1 v1 . . . vN2] (which is independent of k); we build a sequence of
diagonal matrices of eigenvalues (Λk)k∈N and a sequence of matrices (Mk)k∈N, with
Mk = WΛkW T , such that Mk satisfies Assumption 2.1 with a relative separation
rk.

Proposition 2.2. Consider the sequence of spd matrices Mk ∈ RN×N described
above, satisfying Assumption 2.1. Given a vector ψ ∈ RN , the sequence of
solutions of the linear systems Mkξk = ψ, when k →∞, satisfy

∥ξkU∥
∥ξkV∥

→ 0

for all right hand sides ψ that have non-zero component along the subspace V.

Proof. Since the orthonormal eigenvectors span RN , the vector ψ can be decom-
posed uniquely as

ψ =

N1∑
i=1

αiui +

N2∑
i=1

βivi.

This decomposition does not depend on k, since the eigenvectors do not depend
on k. The solution ξk can be expressed as

ξk = ξkU + ξkV =

N1∑
i=1

αi
λk1i

ui +

N2∑
i=1

βi
λk2i

vi.

Let us define the constant C =
∑N1

i=1 α
2
i∑N2

i=1 β
2
i

. We can say that

∥ξkU∥2

∥ξkV∥2
=

∑N1

i=1 α
2
i /(λ

k
1i)

2∑N2

i=1 β
2
i /(λ

k
2i)

2
≤
∑N1

i=1 α
2
i /(λ

k
1L)

2∑N2

i=1 β
2
i /(λ

k
2U)

2
= C(rk)2.

If the right hand side ψ is chosen such that
∑N2

i=1 β
2
i ≠ 0, then C is finite; the

vectors ψ such that
∑N2

i=1 β
2
i = 0 are the vectors that belong completely to the

subspace U . Therefore, if ψ has component along the subspace V , C(rk)2 goes to
zero, as k →∞.

Notice that the vectors that belong completely to the subspace U are a set
of Lebesgue measure zero in RN , due to the assumption that N2 > 0. Therefore,
apart from pathological right hand sides, Proposition 2.2 shows that, when the
two clusters of eigenvalues of M tend to be infinitely separated, the solutions

28

to the linear system Mξ = ψ tend to have component only in the eigenspace
corresponding to small eigenvalues. This implies that a set of solutions ξj,
computed with various right hand sides ψj , may be used effectively in a deflation
conjugate gradient method [16, 111], to reduce the negative effect of the cluster
of small eigenvalues.

The normal equations matrix in IPMs, close to optimality, satisfies Lemma 2.1
and thus also Assumption 2.1. However, the normal equations matrix may change
significantly from one iterations to the next during an IPM, due to significant
changes in the entries of matrix Θ. Provided that the basic subset of variables
has stabilized close to optimality, we can expect the subspaces U and V to also
be quite stable and thus we can expect that previous directions can indeed be
recycled in a deflation scheme.

2.4 Predictor correctors techniques in IPMs

The most common technique used to improve the convergence of practical IPM
algorithms is using a predictor-corrector strategy. A first direction, called predictor
or affine-scaling direction is computed, by setting σ = 0 in the right hand side of
(2.3); this direction is poorly centered and cannot be used in an IPM (as explained
in Section 2.1). A second direction, called corrector is computed by solving (2.3)
with the right hand side 

0

0

σµen

 ,
i.e. what was neglected in the predictor direction, and potentially other terms
that take into account the error made with the predictor. In this way, the choice
of σ can be made after the information coming from the predictor is available and,
by carefully selecting a right hand side for the corrector, it is possible to produce
directions that are much more useful than the plain Newton direction used in the
theoretical setting.

A very common technique is due to Mehrotra [87]: after computing the affine-
scaling direction ∆aff = (∆affx,∆affy,∆affs) and the corresponding stepsize α,
the parameter σ is chosen with the following heuristic

σ =

(
(x+ α∆affx)

T (s+ α∆affs)

xT s

)3

and the right hand side for the corrector is set to
0

0

σµen −∆affX∆affSen

 .
The corrector is then added to the affine-scaling direction to obtain the final

29

direction for the current IPM iteration.
Another common corrector choice, that improves upon Mehrotra’s strategy,

is the multiple centrality correctors technique [33, 61]: after computing the same
predictor ∆aff and stepsize α as before, a trial point is constructed with an
increased stepsize α̃ > α

x̃ = x+ α̃∆affx, s̃ = s+ α̃∆affs

This trial point is then projected onto a symmetric neighbourhood

Ns(γ) = {(x,y, s) ∈ F0 | µ
γ
≥ xisi ≥ γµ, ∀i = 1, . . . , n}, (2.16)

by first computing the vector t

tj =


γµ− x̃j s̃j if x̃j s̃j ≤ γµ

µ/γ − x̃j s̃j if x̃j s̃j ≥ µ/γ

0 otherwise.

and then setting the right hand side for the corrector direction to [0,0, t]T . This
technique can be applied multiple times, i.e. more than one corrector can be
computed, iterating the procedure just described on the new direction. The
number of directions to compute depends on how efficiently one can solve mul-
tiple linear systems with the same matrix: if a direct method is used, then the
same factorization can be used to compute all directions, with a small increase
in computational time; if instead an iterative method is used, then the same
preconditioner can be applied, but the Krylov method needs to be run multiple
times, which could produce a substantial increase in the computational time.

A safeguard that is usually used is to check whether the new corrected direction
actually improves with respect to the previous one, in term of the maximum
stepsize that can be taken. If the new direction does not allow to take a large
enough stepsize (based on some predetermined criterion), then the last corrector
direction is rejected and the previously found direction is used for the current
IPM iteration.

30

Chapter 3

An interior point method for
tomographic imaging

This Chapter presents the first main contribution of the Thesis: a specialized
interior point method for tomographic imaging applications. The work presented
here is based on [68]; permission to use the material for this Thesis was granted
by the co-authors.

The problem considered in this Chapter produces a large and dense normal
equations matrix (approximately 500,000 rows and columns with 100% nonzero
entries), which can only be used in a matrix-free way. The main features of the
method proposed are the simple and efficient preconditioning strategy and the
positive effect of the newly proposed regularizer on the final image quality.

3.1 Introduction

The problem presented in this Chapter involves the reconstruction of an image
obtained with a dual-energy x-ray tomography. This is a classical inverse problem
which appears in many practical fields: examples include diagnostic medicine,
non-destructive testing of historical or archaeological artefacts, live monitoring of
industrial processes that happen inside pipes or chambers and many others.

The noise in the measurements and the requirement of using as few angles
of measurement as possible (e.g. to minimize the radiation dose to a patient),
make this kind of problem challenging. The goal is to understand the spatial
distribution of two different materials, for example bone and soft tissue; to do so,
the domain of interest Ω is discretized into N ×N square-shaped pixels. There
are two unknowns: non-negative N × N matrices G(1) and G(2) modelling the
distributions of material 1 and material 2, respectively. In the physical object
being analysed, in each pixel either material 1 or material 2 is present, i.e. there
cannot be both materials at the same time and there is no third material present.
The number G

(ℓ)
i,j ≥ 0 represents the concentration of material ℓ in pixel (i, j) of

the reconstruction, where i is row index and j is column index. Notice that in
the numerical reconstruction, both materials may be present in the same pixel,
because it is impossible to enforce a perfect separation.

In numerical computations we represent the elements of the pair of material

31

Figure 3.1: Image taken from [93] that illustrates the parallel beam geometry used
to obtain the measurements. In this case, the number of angles is P = 5 and the
number of parallel X-ray beams is r0 = 12.

matrices (G(1), G(2)) ∈ (RN×N)2, as a vertical vector

g =

g(1)

g(2)

 ∈ R2N2

.

We consider recording X-ray transmission data with two different energies, low
and high, resulting in two M -dimensional data vectors called mL and mH . The
low-energy measurement is given by

mL = c11A
Lg(1) + c12A

Lg(2),

as both materials attenuate the low-energy X-rays with individual strengths
described by the constants c11 > 0 and c12 > 0. Note that empirical values of
c11 and c12 can be found by measuring pure samples of each of the two known
materials. The M×N2 matrix AL encodes the geometry of the tomographic
measurement in a standard way [93, Section 2.3.4]; it contains the path lengths of
X-rays travelling inside the pixels in Ω. P projection directions are used to image
the object and, for each direction, a set of r0 parallel X-ray beams is sent through
the materials, as shown in Figure 3.1 . The number of rows of matrix AL is then
M = r0P .

Analogously we get for the high-energy measurement

mH = c21A
Hg(1) + c22A

Hg(2),

where the geometric system matrix AH is possibly different from AL. Again,
c21 > 0 and c22 > 0 can be determined empirically. Notice that in the numerical
experiments presented in this chapter, the geometry of the measurements for high
and low energy are always the same, so that AL = AH .

Now we can combine both measurements in a unified linear system:

m =

mL

mH

 =

c11AL c12A
L

c21A
H c22A

H

g(1)

g(2)

 = Ag.

The core idea in dual-energy X-ray tomography for material decomposition is to
choose the two energies so that the two materials respond to them differently. For
example, one material might be quite indifferent to the energy change while the

32

other could attenuate very differently according to energy.

In [68], the Authors propose a new regularization technique which replaces the
standard Joint Total Variation (JTV) approach and exploits the inner product
⟨g(1),g(2)⟩ to enforce the separation of the two materials. The JTV regularizer
favors reconstructed images with piecewise constant areas, with the shortest
possible separation between these areas. It has been used extensively in imaging
problems and also in dual-energy applications similar to the one presented in this
chapter.

The optimization problem that arises in [68] is the following

argmin
g(j)≥0

{
∥m−Ag∥22 + αR(g) + βS(g)

}
, (3.1)

where α, β > 0 are regularization parameters, g(j) ≥ 0 means that the elements
of the vector are non-negative numbers and the regularizer R can be any of the
standard choices such as the Tikhonov penalty

R(g) = ∥g∥22, (3.2)

while S is the newly introduced regularizer

S(g) = S
(g(1)

g(2)

) := 2⟨g(1),g(2)⟩ = 2
N2∑
i=1

g
(1)
i g

(2)
i . (3.3)

Together with the non-negativity constraint, S promotes the point-wise separation
between the two materials: at each pixel, at least one of the images, G(1) or G(2),
needs to have a zero value to make S minimal. This regularizer is referred to as
IP in the following, due to the presence of the inner product term.

Notice that the use of a more standard L1 regularizer to induce sparsity is not
directly applicable, because it would not guarantee the correct sparsity pattern of
the solution vector (i.e. at least one of the two materials must have a zero value
at each pixel). However, an L1 regularizer could be used in place of the Tikhonov
regularizer, while still employing the inner product term. This however would
complicate the optimization problem due to non-differentiability.

The Tikhonov regularizer is used to balance the effect of the inner product
term, which otherwise would risk to make the problem non-convex. By keeping α
larger then β, we can make sure that the problem is always convex.

The quadratic program resulting from the application of the novel variational
regularization is solved using an interior point method; we develop an efficient
preconditioner for the normal equations which guarantees the spectrum of the
preconditioned matrix to remain independent of the IPM iteration. The numerical
experience indicates that this approach allows us to solve the largest problem
(N=512) in a matter of minutes on a standard laptop.

The Chapter is organized as follows: Section 3.2 shows the details of the
IPM applied to problem (3.1); Section 3.3 describes the structure of the normal
equations matrix; Section 3.4 presents the preconditioner used and derives eigen-
value bounds; Section 3.5 shows the numerical results in terms of quality of the

33

reconstruction with the new regularizer.

3.2 Specialized interior point method

By combining the use of the Tikhonov regularizer (3.2) and the Inner Product
regularizer (3.3), which promotes the point-wise separation of two materials, we
arrive at the constrained quadratic programming task

argmin
g(j)≥0

{
∥m−Ag∥22 + α∥g∥22 + β gTLg

}
, (3.4)

where

L =

 0 IN2

IN2 0

 .
The problem may be written as an explicit quadratic program with inequality

(non-negativity) constraints

argmin
g(j)≥0

−mTAg +
1

2
gT (Q1 +Q2)g (3.5)

where

Q1 =

 c211(A
L)TAL + c221(A

H)TAH c11c12(A
L)TAL + c21c22(A

H)TAH

c11c12(A
L)TAL + c21c22(A

H)TAH c212(A
L)TAL + c222(A

H)TAH

 , (3.6)

Q2 =

αIN2 βIN2

βIN2 αIN2

 . (3.7)

Notice that Q = Q1 +Q2 can be written as

Q =

[
c211 c11c12

c11c12 c212

]
⊗ (AL)TAL +

[
c221 c21c22

c21c22 c222

]
⊗ (AH)TAH +

[
α β

β α

]
⊗ IN2 ,

(3.8)
where ⊗ represents the Kronecker product (1.3).

Lemma 3.1. If α ≥ β, problem (3.5) is convex.

Proof. We just need to show that matrix Q in (3.8) is positive semi-definite. We
know that matrix α β

β α


is positive semi-definite if α ≥ β; the other matrices in the right hand side of (3.8)
are always positive semi-definite. Therefore, using Property 1.3, Q is the sum of
semi-definite matrices and is then positive semi-definite.

34

Therefore, in the following we always assume that α ≥ β.

Notice that another possible strategy to tackle problem (3.4) would be to use
a separable formulation by defining y = m − Ag and including the term yTy
in the objective function. In this way, the quadratic term would be simplified,
with the regularization terms separated from the least squares term. However,
the complication coming from operator A would still arise in the form of linear
constraints. Moreover, as it will be clear later, keeping the quadratic term ATA
together with the regularization terms helps in producing a powerful preconditioner,
because the effect of neglecting elements in ATA is reduced.

3.2.1 Interior point method formulation

We decided to solve problem (3.5) using an interior point method: these methods
are among the most efficient solvers for quadratic programs of large dimensions and
can often outperform the more common first order methods in terms of speed of
convergence and accuracy. For this problem, we aim at reaching large dimensions,
and the FISTA method [13], already for moderate problem sizes (N = 128), was
not able to match the results of the interior point solver; we thus decided to
consider only the latter in this work.

Since the problem (3.4) does not involve any linear equality constraints, we
can obtain a simpler IPM formulation, as mentioned in Section 2.3. To apply an
interior point method to (3.4), we proceed in the usual way and start from adding
a logarithmic barrier to form the Lagrangian:

L(g, µ) =
1

2
gTQg −mTAg − µ

2N2∑
i=1

log gi.

The optimality conditions are
Qg − s = ATm
GSeN2 = µeN2

g, s > 0.

and the Newton step (∆g,∆s) can be found solvingQ −IN2

S G

∆g

∆s

 =

r1
r2

 ,
where r1 = ATm − Qg + s and r2 = σµeN2 − GSeN2 . If we form the normal
equations, we obtain the final linear system that we need to solve:

(Q+G−1S)∆g = r1 +G−1r2. (3.9)

We can then retrieve ∆s as

∆s = G−1(r2 − S∆g). (3.10)

35

To stop the IPM iterations, we check the normalized dual residual and the
complementarity measure:

∥ATm−Qg + s∥
1 + ∥ATm∥

< tol, µ < tol, (3.11)

where tol is the IPM tolerance.

The matrix Q in (3.9) cannot be stored or accessed directly, but it is accessible
only via matrix-vector products performed using the Radon transform. Hence,
to solve the linear system we need to use a matrix free approach; this is done
employing conjugate gradient with an appropriate preconditioner.

3.3 Structure of the normal equations matrix

The normal equations matrix is Q1 +Q2 +G−1S, with Q1 given in (3.6) and Q2

given in (3.7). G−1S is diagonal, Q2 has a 2 × 2 block structure with diagonal
blocks, while the structure of Q1 depends on matrices (AL)TAL and (AH)TAH .

Let us analyze an instance where AL = AH = A. Matrix A applies the
Radon transform to a vector, while AT applies the inverse Radon transform. To
understand the structure of matrix ATA, let us analyse the effect of applying it to
the vectors of the canonical basis of RN2

êi, i.e. to the vectors with all zeros apart
from component i, which is equal to 1. ATAêi corresponds to the i−th column of
matrix ATA, so analysing the structure of these vectors allows us to understand
the structure of the whole matrix.

The vector êi of size N
2 can be reshaped into an N ×N matrix, which looks

as in Figure 3.2a. Applying the Radon transform to this image produces its
sinogram, shown in Figure 3.2b. Applying the inverse Radon transform to the
sinogram attempts to reconstruct the original image, but the reconstruction is
blurred and the original mass, concentrated in a single point, gets spread to the
adjacent pixels, as can be seen in Figure 3.2c.

If the image shown in Figure 3.2c is reshaped as a vector, it represents the i−th
column of matrix ATA; due to the blurring in the reconstruction, the extremely
sparse initial vector êi is turned into a fully dense vector. The magnitude of
the pixels of Figure 3.2c has a pattern given by the distance from the central
pixel considered. This translates into a pattern for the i−th column of ATA:
for example, the four pixels which are the closest to the central pixel, all have
approximately the same magnitude and represent four entries of the i−th column.
Two of these entries will be immediately above and below the central pixel (i.e.
they appear in the first upper diagonal and in the first lower diagonal of ATA),
while the other two have a shift of N (i.e. they appear in the N−th upper and
lower diagonal), due to the fact that we are stacking the columns of Figure 3.2c.

In Figure 3.3 we show this relation between how close the pixels are to the
central pixel and the magnitude of the elements on the diagonals. The plots
on the right show the average magnitude of the elements along any diagonal
of ATA, where 0 is the main diagonal and positive (negative) numbers indicate
upper (lower) diagonals. The highlighted pixels on the left, for the i−th column

36

Figure 3.2: (a) Unit vector êi reshaped as a matrix, in the case N = 16. (b)
Sinogram of (a), obtained with the Matlab runction radon, equivalent to Aêi.
The angles of imaging are on the x-axis, while the shifts are on the y-axis. (c)
Reconstructed image ATAêi.

(a) (b)

(c)

considered, are the ones that produce the entries corresponding to the highlighted
diagonals on the right. The first row of Figure 3.3 shows the central pixel, which
corresponds to the entry along the main diagonal. The second row shows the
four pixels mentioned above, which are closest to the central pixel: of the four
highlighted diagonals on the right, two of them are next to the main diagonal
and two of them are N units from the main diagonal. The next rows show the
subsequent blocks of pixels with roughly the same magnitude, due to their distance
from the central pixel.

Due to the blurring in Figure 3.2c, notice that all the entries in any column
are different from zero. Matrix ATA thus is completely dense. The intensity of
the elements of the whole matrix ATA can be seen in Figure 3.4.

The structure just described suggests that to approximate the matrix ATA
in order to build a preconditioner, we should consider some of these clusters
of diagonals. Considering too many of them is undesirable, since applying the
preconditioner to a vector could become challenging, and because there is no
guarantee that the resulting approximation would be positive definite. The
simplest option is to consider only the main diagonal in the approximation. One
could also use a penta-diagonal approximation of ATA (i.e. consider two upper
and two lower diagonals), or a nona-diagonal approximation, (i.e. consider four
upper and four lower diagonals)

37

Figure 3.3: Connection between the pixels in ATAêi with the same distance from
the central pixel and the diagonals of ATA with similar mean value.

Notice that the magnitude of the elements along any diagonal of ATA depends
only on the distance of the corresponding pixel from the central pixel in Figure 3.2c;
therefore, the values along any diagonal are almost constant, apart from noise
and numerical inaccuracies.

38

Figure 3.4: Magnitude of the elements of matrix ATA.

3.4 Preconditioner for the normal equations

We assume we can approximate matrix ATA with a scaled identity that well
approximates its diagonal. This is similar to what is done in compressed sensing
[52]. Thus, matrix Q1 (3.6) can be approximated using a 2× 2 block matrix with
diagonal blocks; adding matrix Q2 (3.7) and G−1S we get the preconditioner:

P =

(c211 + c221)ρIN2 + αIN2 + (G−1S)1 (c11c12 + c21c22)ρIN2 + βIN2

(c11c12 + c21c22)ρIN2 + βIN2 (c212 + c222)ρIN2 + αIN2 + (G−1S)2

 ,
(3.12)

where we have split the entries of G−1S into two blocks; the scalar ρ is an ap-
proximation of the diagonal elements of ATA, obtained through random sampling
of this matrix. We denote the diagonal blocks as D11, D12 and D22 according to
their position. This preconditioner is easy to invert: when we need to apply it, we
have to solve D11 D12

D12 D22

x1

x2

 =

y1

y2

 .
This system can be solved forming the Schur complement, which is diagonal:

(D22 −D2
12D

−1
11)x2 = y2 −D12D

−1
11 y1

and retrieving x1 from x1 = D−1
11 (y1 −D12x2).

Notice that most of the terms involved in the preconditioner are constant,
while some vary throughout the IPM iterations, but are immediately available
from vectors g and s. This preconditioner is thus very cheap both to compute

39

and apply.

Remark 3.1. Notice that, if AL ̸= AH , the same preconditioner can be used with
a small modification: we just need to approximate both the diagonal of (AL)TAL

and (AH)TAH with two different coefficients ρL and ρH .

In order to use PCG with the proposed preconditioner, we need to show that
matrices Q1 +Q2 +G−1S and P are positive definite.

Lemma 3.2. If α ≥ β, M = Q1 + Q2 + G−1S and P are symmetric positive
definite.

Proof. From Lemma 3.1 we know that if α ≥ β, matrix Q is positive semi-definite.
Matrix G−1S is trivially strictly positive definite, hence M is positive definite.

For P , write it as

P =

 c211 c11c12

c11c12 c212

⊗ρLIN2 +

 c221 c21c22

c21c22 c222

⊗ρHIN2 +

α β

β α

⊗ IN2 +G−1S

and proceed in the same way.

Let us define the matrices

F =

f1 f2

f2 f3

 K =

α β

β α

 (3.13)

where f1 = c211 + c221, f2 = c11c12 + c21c22, f3 = c212 + c222. We can now analyze the
spectrum of the preconditioned matrix:

Lemma 3.3. The eigenvalues of the preconditioned matrix P−1M , where P is
defined in (3.12) and M = Q1 +Q2 +G−1S, when AL = AH = A satisfy

λ ∈

[
α− β

ρΛF + α + β
,
σ2
max(A)ΛF + α + β

ρλF + α− β

]
, (3.14)

where ΛF ≥ λF are the two eigenvalues of matrix F .

Proof. We want to study the generalized eigenvalue problem Mv = λPv, where

M = F ⊗ ATA+K ⊗ IN2 +G−1S,

P = F ⊗ ρIN2 +K ⊗ IN2 +G−1S.

Let us fix ∥v∥ = 1. The eigenvalues can be expressed as

λ =
vTMv

vTPv
=

vT (F ⊗ ATA)v + vT (K ⊗ IN2)v + vT (G−1S)v

vT (F ⊗ ρIN2)v + vT (K ⊗ IN2)v + vT (G−1S)v
.

40

Let us call the eigenvalues of matrix F as ΛF > λF ≥ 0, where the last inequality
follows from noticing that

F = CTC, where C =

c11 c12

c21 c22


The eigenvalues of K are α ± β and under the assumption α ≥ β, we are sure
that this matrix is positive semidefinite.

Using Property 1.3, we can say that:

vT (K ⊗ IN2)v ∈ [α− β, α + β],

vT (F ⊗ ρIN2)v ∈ [ρλF , ρΛF],

vT (F ⊗ ATA)v ∈ [0,ΛFσ
2
max(A)].

Therefore

λ ≤ σ2
max(A)ΛF + α + β + vT (G−1S)v

ρλF + α− β + vT (G−1S)v
,

λ ≥ α− β + vT (G−1S)v

ρΛF + α + β + vT (G−1S)v
.

Recall the following result: if A,B,C > 0 then

A+ C

B + C
≥ A

B
⇔ B ≥ A.

It is clear that ρΛF + α+ β ≥ α− β and that σ2
max(A)ΛF + α+ β ≥ ρλF + α− β,

since ρ is an approximation of the mean eigenvalue of ATA while σ2
max(A) is the

maximum one. Thus

λ ∈

[
α− β

ρΛF + α + β
,
σ2
max(A)ΛF + α + β

ρλF + α− β

]
.

Remark 3.2. Both these bounds do not depend on the IPM iteration. The lower
bound depends only on α, β, the coefficients cij and ρ, which do not depend on N ;
hence the lower bound does not depend on N . The upper bound, instead, grows as
N increases, since the term σ2

max(A) depends on N . Thus, the spectral properties
of the preconditioned matrix and the performance of the PCG may deteriorate as
N grows.

A similar result holds in the case AL ̸= AH :

Lemma 3.4. The eigenvalues of the preconditioned matrix P−1M , with AL ̸= AH ,
satisfy

λ ∈

[
α− β

Λρ + α + β
,
σ2
max(A

L)ΛFL
+ σ2

max(A
H)ΛFH

+ α + β

λρ + α− β

]
,

where λρ, Λρ, ΛFL
and ΛFH

are defined below.

41

Proof. In this case, the eigenvalue satisfies

λ =
vT (FL ⊗ (AL)TAL)v + vT (FH ⊗ (AH)TAH)v + vT (K ⊗ IN2)v + vT (G−1S)v

vT ((ρLFL + ρHFH)⊗ IN2)v + vT (K ⊗ IN2)v + vT (G−1S)v
,

where

FL =

 c211 c11c12

c11c12 c212

 , FH =

 c221 c21c22

c21c22 c222

 .
As before, fix ∥v∥ = 1; we can say that

vT (FL ⊗ (AL)TAL)v ∈ [0,ΛFL
σ2
max(A

L)],

vT (FH ⊗ (AH)TAH)v ∈ [0,ΛFH
σ2
max(A

H)],

vT ((ρLFL + ρHFH)⊗ IN2)v ∈ [λρ,Λρ],

where we have defined

λρ = λmin(ρLFL + ρHFH), Λρ = λmax(ρLFL + ρHFH).

Therefore

λ ≤ σ2
max(A

L)ΛFL
+ σ2

max(A
H)ΛFH

+ α + β + vT (G−1S)v

λρ + α− β + vT (G−1S)v
,

λ ≥ α− β + vT (G−1S)v

Λρ + α + β + vT (G−1S)v
.

In the same way as before, the final bound becomes

λ ∈

[
α− β

Λρ + α + β
,
σ2
max(A

L)ΛFL
+ σ2

max(A
H)ΛFH

+ α + β

λρ + α− β

]
.

Notice that the bound presented in (3.14) suggests that, in order to keep the
spectral interval narrow, we should choose the regularization parameters α and β
such that their difference is large, but their sum is kept small. This is clear also
from the bound on the condition number

κ ≤ σ2
max(A)ΛF + α + β

ρλF + α− β
· ρΛF + α + β

α− β
.

Looking at the definition of the preconditioner (3.12), one can see that the larger
the regularization parameters are, the less important it becomes to approximate
well matrix ATA. In particular, if the regularization parameters are sufficiently
larger than ρ ·maxj=1,2,3 fj, where fj are defined in (3.13), then the off-diagonal
entries that are dropped from ATA to form the preconditioner are negligible
compared to the diagonal terms that are added.

Therefore, α and β should be chosen large enough to dominate the diagonal of

42

ATA and such that α− β is as large as possible. Obviously, this analysis is only
from the linear algebra point of view: in practice, there needs to be a trade off
between the needs of the preconditioner and the requirement to obtain a good
quality of the reconstructed images.

The independence of the spectral interval from the IPM iteration is observed
in practice: in Figure 3.5 we plot the eigenvalues of the unpreconditioned (in
red) and preconditioned (in blue) normal equations matrix, for one instance with
N = 32. The eigenvalues of the original matrix are bounded below, due to the
regularization, but are unbounded above, and become extremely large when the
IPM approaches optimality. The eigenvalues of the preconditioned matrix instead
are always lying in almost exactly the same interval.

Figure 3.5: Eigenvalues of the normal equations with and without preconditioner
for N = 32, α = 500, β = 250

On top of being bounded independently from the IPM iteration, from Fig-
ure 3.6 we can appreciate how the cluster of eigenvalues around the value λ = 1
tends to grow in size when the IPM iterations progress. This is an extremely
desirable feature, due to Property 1.6. This phenomenon can be explained notic-
ing that, when the IPM is close to optimality, some of the entries of G−1S, that
are added to the diagonal of the normal system, become extremely large; this
means that the corresponding non-diagonal terms of ATA (that are ignored when
building the preconditioner) become even more negligible and P becomes a better
approximation of the matrix.

43

Figure 3.6: Magnitude of the eigenvalues of the preconditioned normal equations at
the 1−st, 10−th and 30−th (final) IPM iteration, for N = 32, α = 500, β = 250.

3.5 Results

In this Section, we show the results of applying the proposed regularizer to some
test images, with the goal of trying to separate the distribution of two materials.
The new regularizer is compared to Joint Total Variation [22] and it shows better
results in terms of recognition of the separation of the materials. Results in
terms of computational time of the interior point method are postponed after the
description of the specialized termination criterion for Krylov solvers inside IPMs;
they can be found in Section 4.5.1 of the next Chapter.

For the purpose of numerical testing, all the images have resolution 128× 128
pixels, in order to keep the computational time reasonable. When using simulated
data, it is important to avoid the so-called inverse crime (see [93]), i.e. the use of
the same model to generate the simulated data and to reconstruct the solution
of the inverse problem. This can happen for instance by using the same angles
to produce the synthetic measurement and for the reconstruction, or by ignoring
the noise that would be introduced by a real tomographic imaging process. To
avoid these issues, the simulated data was generated with a slightly different set
of angles than the ones used in the reconstruction process, and random Gaussian
noise was added to the simulated measurement. These perturbations coincide with
the disturbances that a real tomographic process would introduce. The simulated
tomography is produced using 65 angles, equally distributed in the interval 0 to
180 degrees. From each angle, a parallel set of X-ray beams is sent to the image,
as shown in Figure 3.1. The number of lines r0 is automatically chosen by the

44

Matlab function radon, based on the angles and size of the image.

The materials considered are PVC (polyvinyl chloride) and iodine, because they
have different behaviours at different energy levels. The attenuation coefficients
cij can be found in Table 3.1

Table 3.1: Attenuation coefficients of PVC and iodine with low and high energies.

Attenuation coefficient Material Tube voltage

c11 1.491 PVC 30 kV

c12 8.561 Iodine 30 kV

c21 0.456 PVC 50 kV

c22 12.32 Iodine 50 kV

The images used for the experiments are shown in Figure 3.7; the two rows
present the distribution of the first and second material. These four phantoms
contain an increasing level of details; the Egypt and Circuit images represent an
extreme challenge for any reconstruction method, because the two materials are
deeply intertwined and are difficult to separate. Notice that in each pixel either
the first or the second material is present; therefore, the two rows in Figure 3.7
are perfectly complementary.

Figure 3.7: Images used in the numerical experiments. The first row shows the
distribution of PVC and the second row of iodine.

HY Bone Egypt Circuit

Concerning the comparison with JTV, the competitor method is stopped after
400 iterations and is tuned empirically; an off-the-shelf JTV regularizer is used
rather than a specialized one, in order to compare the new method to one of
the standard choices for these kind of problems. The parameters for the new
regularizer α and β are also chosen empirically, in a way that produces satisfactory
reconstructed images (in terms of the quality indicators descrived below), while

45

guaranteeing a good behaviour of the preconditioner; termination of the IPM
happens with a tolerance of 10−8.

In Table 3.2 we report the comparison between the reconstruction obtained
with JTV and with the new regularizer, in terms of L2 error norm, SSIM (structural
similarity index measure), HPSI (Haar wavelet-based perceptual similarity index)
and fraction of misclassified pixels (i.e. the number of pixels that are classified as
the wrong material, out of all the pixels in the image). Notice that for L2 and
misclassification, a smaller number is better, while for SSIM and HPSI a larger
number means better quality. The Table shows a slight advantage of the new
regularizer in terms of standard quality indices (L2, SSIM, HPSI) and a clear
advantage in terms of correctly identified pixels, in particular regarding the first of
the two materials. Given that the goal of the new regularizer is to better separate
the materials present in the image, these results show that this purpose has been
achieved.

Table 3.2: Results in terms of L2 error norm, SSIM, HPSI and fraction of
misclassified pixels for each phantom and for each material. Where there is
a clear winner, it is indicated in bold.

Phantom Material Method L2 SSIM HPSI misclassification

HY 1 JTV 0.30 0.23 0.21 0.05

HY 1 IP 0.27 0.29 0.28 0.02

HY 2 JTV 0.27 0.75 0.56 0.01

HY 2 IP 0.28 0.60 0.53 0.01

Bone 1 JTV 0.55 0.24 0.15 0.14

Bone 1 IP 0.44 0.41 0.36 0.06

Bone 2 JTV 0.32 0.66 0.50 0.04

Bone 2 IP 0.29 0.71 0.50 0.03

Egypt 1 JTV 0.40 0.25 0.30 0.13

Egypt 1 IP 0.38 0.33 0.29 0.08

Egypt 2 JTV 0.62 0.69 0.56 0.06

Egypt 2 IP 0.61 0.69 0.56 0.06

Circuit 1 JTV 0.62 0.17 0.30 0.28

Circuit 1 IP 0.56 0.32 0.28 0.18

Circuit 2 JTV 0.59 0.59 0.50 0.16

Circuit 2 IP 0.59 0.62 0.50 0.16

Figures 3.8a and 3.8b show the reconstruction of the distribution of the two
materials for the last two phantoms, obtained with JTV (left column) and IP
(middle column) regularizer; the right column instead shows the original phantoms.
It is clear how the IP regularizer separates better the materials, especially the

46

first one. It is worth pointing out the bad behaviour of JTV, which reconstructs
the second material much better than the first one: a possible explanation comes
from the fact that the method is not tuned to the specific problem considered;
this could be alleviated by some special tuning of the parameters of the algorithm;
however, for a fair comparison, we preferred to use the plain version of both
methods, without any additional tuning. Notice also that the IP method produces
a much better reconstruction without needing the tuning that JTV would require.

3.5.1 Effect of the regularization

We also show some results that underline the effect of the newly added penalty
term (3.3). We expect this regularizer to create a separation in the vectors g(1)

and g(2), i.e. we expect the scalar product g(1),Tg(2) to be pushed close to zero.
We performed some tests with different values of β and a fixed value α = 500, in
the case N = 64.

Table 3.3 shows the number of elements of the component-wise products of g(1)

and g(2) that are smaller than 10−6, and the average value of the same product, i.e.
(g(1),Tg(2))/N2. We can see that as β is increased, the number of small elements
grows and the average product decreases, confirming the effect that we expected.

Table 3.3: Number of small elements and average product of g(1) and g(2) for
different values of β; α = 500, N = 64.

β small elements (g(1),Tg(2))/N2

50 1056 4.86E3

100 1091 4.07E3

150 1123 3.17E3

200 1161 2.36E3

250 1607 1.54E3

300 2075 1.23E3

350 2210 1.07E3

400 2412 0.93E3

450 2581 0.83E3

3.6 Conclusion

This Chapter presented a specialized interior point method for a tomographic
reconstruction problem; the main challenges were given by the size and density
of the matrices involved and by the requirement of a matrix-free algorithm.
The specific structure of the problem was exploited to obtain a simplified IPM
formulation; the structure of the linear operators involved allowed for a simple
yet efficient matrix-free preconditioning strategy.

47

The results suggest that the IPM provides accurate solutions to the optimiza-
tion problem and the newly proposed regularizer improves the separation of the
materials and maintains the other quality indicators at a similar level as JTV,
without requiring a dedicated tuning process.

Future research should focus on the following points:

• Extending the methodology to three dimensional tomography: the structure
of the problem should not change significantly, but the size of the matrices
involved becomes much larger and the IPM and linear solver need to be
extremely efficient. Notice that the problems that may be solved with a 3D
technique are potentially different: whether to use a 2D slice tomography or
a 3D imaging process is highly dependant on the application (e.g. based on
the amount of radiation that a patient can receive).

• Extending the regularizer to more than two materials: the preconditioner
(3.12) should easily generalize to more than two materials, provided that
the regularizer is defined properly.

• Testing the current formulation of real world tomographic images, rather
than simulated data, since real applications involve extremely noisy and
corrupted data, with imperfections that are difficult to simulate properly.

• Improving the preconditioning strategy by using a better approximation of
matrix ATA; the difficulty comes from the necessity to include more than
one diagonal in the approximation of ATA and still be able to invert the
resulting matrix efficiently.

48

Figure 3.8: Reconstruction results for the Egypt phantom (a) and Circuit phantom
(b). The first row represents material 1 and the second row represents material 2.

(a)

JTV IP Ground truth

(b)

JTV IP Ground truth

49

50

Chapter 4

Early stopping of the linear solver
in interior point methods

This Chapter introduces the second main contribution of the Thesis. The work
presented in this Chapter is based on [134].

When solving large optimization problems, a key issue of IPMs is the iterative
solution of the Newton system (2.9) or (2.10): being able to find an approximate
Newton direction in reasonable time is fundamental for the overall efficiency of the
algorithm. In this Chapter, we show that the level of inexactness in the Newton
direction that can be tolerated by an IPM, without excessively compromising
its convergence properties, is much larger than what the most commonly used
techniques suggest. Impressive gains in computational time can be obtained by
realizing that the Newton direction is only used within the IPM setting and should
therefore be computed accordingly.

4.1 Introduction

Interior point methods represent the state-of-the-art for the solution of convex
optimization problems. Being second-order methods, they usually converge in
merely a few iterations and if the cost of a single iteration is kept small they are
able to outperform the first-order methods, especially when it comes to problems
of very large dimensions. In these instances, the linear system that arises at each
iteration is usually solved with an iterative Krylov subspace method, as presented
in Section 1.3. The common approach is to employ a stopping criterion based on
the reduction of the residual, i.e. the internal solver is stopped as soon as the initial
residual is reduced by a certain predetermined factor. Different strategies have
been developed in order to choose a stopping tolerance that allows the outer IPM
iterations to converge, without requiring too many inner (linear solver) iterations
(e.g. [25, 89, 90]). However, these techniques always rely on a tolerance imposed
on the residual of the linear system, although with a varying relative reduction
requested.

Such approach does not necessarily represent the best choice, since the overall
goal is not obtaining an accurate solution to the sequence of linear systems, but
finding a suitable (though inexact) search direction for the optimization problem;

51

in particular, it may be possible to obtain an inexact Newton direction that would
be considered too rough from a purely linear algebra perspective (i.e. its residual
still would be too high and any standard stopping criterion would reject it) but
that could be good enough to perform the next iteration of IPM successfully (i.e.
the direction guarantees sufficient reductions of infeasibilities and the duality gap).
Deriving a stop criterion that accepts a direction not based on its residual, but
based on a potential improvement it can bring to the outer IPM iterations could
reduce the number of inner iterations required at each outer step, with little or
no disadvantage to the overall convergence properties of the IPM.

Specialized early stopping strategies have been used in other fields: in [75,
96, 118] a CG stop criterion is applied to the Jacobi-Davidson eigensolver, when
finding eigenvalues of large matrices; in [55] a termination criterion is applied to
inverse iterations for solving generalized eigenvalue problems; early stopping is
also used in inverse problems and machine learning as a regularizer, to avoid the
phenomenon known as semiconvergence (see e.g. [58]); in [7, 11, 47, 116] other
stopping criteria are derived for various applications.

In order to obtain an early stopping criterion, specifically designed to be applied
in IPMs, that does not rely entirely on the residual of the linear system, the conver-
gence indicators of IPM (i.e. primal and dual infeasibility and complementarity)
need to be estimated while performing the inner iterations with CG or MINRES.
The main problem is that, to compute the complete primal-dual Newton direction
and to compute the infeasibilities, additional matrix-vector products would be
required at each inner iteration. Since in general only one matrix-vector product
and one preconditioner application per iteration are performed, adding extra
matrix applications would considerably slow down the linear solver. Fortunately,
with some judicious implementation and exploiting the matrix operations that
are already executed, the IPM convergence indicators can be estimated using only
vector operations, resulting in a minimal increase in the cost of a single linear
iteration.

From the theoretical point of view, this Chapter introduces an ideal stopping
criterion that does not rely on the reduction of the residual of the linear system
This is novel with respect to the standard literature on inexact IPMs, that mostly
focuses on choosing the appropriate sequence of tolerances for each IPM iteration.
A sketch of complexity analysis is given together with a rationale as to why
the algorithm is expected to perform similarly to the exact version. The main
assumptions used are boundedness of the iterates and the ability of the chosen
Krylov solver to produce a direction that satisfies the stopping criterion; a rigorous
proof of this fact is difficult, due to the complicated interaction between IPM and
linear solvers, and is left as an item for further research.

The Chapter also introduces new indicators to estimate the optimal stopping
point for the inner linear iterations and analyzes their behaviour in comparison
to the residual of the linear system for the problems considered. The empirical
evidence suggests a new technique to terminate early the inner iterations, which
is mainly based on these new indicators rather than on a sequence of residual
tolerances. Although the theoretical and practical stopping criteria are different
and the complexity analysis does not directly apply to the method used in the
empirical section, the proposed practical termination indicators are strongly

52

influenced by the theoretical results.

The resulting algorithms for the solution of the linear systems are called Interior
Point Conjugate Gradient (IPCG) or Interior Point MINRES (IPMINRES),
depending on the approach chosen: they are specialized for the specific task
which needs to be solved and show significant improvements with respect to the
standard CG or MINRES on the problems that were considered, which include
quadratic programs derived from image processing, compressed sensing and Partial
Differential Equation (PDE) constrained optimization. In particular, the new
strategy is able to avoid unnecessary inner iterations in the early stage of the
IPM, while retaining the good behaviour of the method in its late iterations.

The rest of the Chapter is organized as follows: in Section 4.2 the interior point
method is described; in Section 4.3 the new IPCG and IPMINRES iterations,
that allow the estimation of the convergence of IPM, are introduced; Section 4.4
introduces a theoretical stopping criterion, for which the complexity analysis
is performed, and the new indicators used in practice; in Section 4.5 the test
problems and numerical results are presented.

4.2 Interior Point Method

In this Chapter, we consider an IPM applied to a standard pair of primal-dual
quadratic programming problems (1.11)-(1.12). As shown in Section 2.1, the
Newton direction is found solving the linear system

A 0 0

−Q AT In

S 0 X



∆x

∆y

∆s

 =


rP

rD

rµ

 =


b− Ax

c+Qx− ATy − s

σµen −XSen

 , (4.1)

where σ is the parameter responsible for the reduction in the complementarity
measure µ = (xT s)/n.

System (4.1) is usually reduced to the augmented system−Q−Θ−1 AT

A 0

∆x

∆y

 =

rD −X−1rµ

rP

 (4.2)

where Θ = XS−1, and solved using an indefinite factorization or the MINRES
method, or it is further reduced to the normal equations

A(Q+Θ−1)−1AT∆y = rP + A(Q+Θ−1)−1(rD −X−1rµ) (4.3)

and solved with a Cholesky factorization or using the Conjugate Gradient method.
The direction is then used to compute the stepsize α and to find the next point
(x+ α∆x,y + α∆y, s+ α∆s). The outer iterations are stopped as soon as the

53

approximation satisfies the following IPM stopping criterion, similar to (2.4)

∥b− Ax∥
1 + ∥b∥

≤ τP ,
∥c+Qx− ATy − s∥

1 + ∥c∥
≤ τD, µ ≤ τµ, (4.4)

where τP , τD and τµ are predetermined tolerances.
In this Chapter, we consider the infeasible version of neighbourhood (2.16): at

iteration k, the point (xk,yk, sk) is in the neighbourhood N∞(γ, β) if it satisfies

(xk, sk) > 0, (4.5a)

γµk ≤ xkj s
k
j ≤ µk/γ, ∀j, (4.5b)

∥rkP∥ ≤ ∥r0P∥βµk/µ0, ∥rkD∥ ≤ ∥r0D∥βµk/µ0, (4.5c)

where 0 < γ < 1 and β ≥ 1 are two constants chosen at the beginning of the
IPM algorithm. This Chapter focuses both on the augmented system approach
(4.2), when dealing with generic QPs, and on the normal equations approach (4.3),
when dealing with LPs or special cases of QPs.

4.3 Estimating the convergence of the outer it-

erations

This section provides a description of how to estimate the IPM convergence
indicators throughout the CG or MINRES iterations; these quantities are used to
terminate the linear iterations prematurely, without relying on the residual of the
linear system. The main indicators that are commonly used, as shown in (4.4),
are the primal and dual infeasibilities and the complementarity gap. Algorithms
and stopping criteria are derived both for CG and MINRES, to be used for LPs
and QPs, respectively.

In the case of the normal equations for an LP, the CG is applied to system (4.3)
with Q = 0; this means that at every inner iteration the approximation for ∆y is
considered. In order to estimate the IPM indicators, ∆x and ∆s are also needed,
which are computed as follows

∆x = (S−1rµ −ΘrD) + ΘAT∆y,

∆s = X−1rµ −Θ−1∆x. (4.6)

When using the augmented system instead, ∆x and ∆y are readily available and
just ∆s needs to be computed.

These two formulas contain a first term, which is constant during the inner
iterations, and a second term which varies as the Krylov method progresses. Once
the full direction is known, the step to the boundary can be computed as

αmax
x = min

j : ∆xj<0
− xj
∆xj

, αmax
s = min

j : ∆sj<0
− sj
∆sj

. (4.7)

To determine primal and dual stepsizes, at each iteration a practical IPM algorithm

54

uses a fraction of the maximum step to the boundary. It is computed as in (4.7),
scaled by a certain factor (e.g. 0.995) to guarantee that each point is in the interior
of the feasible region. In this way the stepsizes are

αx = 0.995αmax
x , αs = 0.995αmax

s . (4.8)

4.3.1 IPCG for LP

Consider now the normal equations approach for an LP (i.e. Q = 0). Suppose
the algorithm stops the CG at a certain iteration for which the full direction
(∆x,∆y,∆s) and the stepsizes αx and αs have been computed. Let us indicate
the new point by (x̄, ȳ, s̄), then the infeasibilities can be written as

Ax̄− b = (Ax− b) + αx

(
(AΘAT∆y) + (AS−1rµ − AΘrD)

)
,

AT ȳ + s̄− c = (ATy + s− c) + αs(A
T∆y +∆s).

The problematic terms in these formulas are given by AT∆y and AΘAT∆y:
computing these quantities at each linear iteration would require extra matrix
operations to be performed. Define the vectors v1 = X−1rµ, v2 = S−1rµ −ΘrD,
v3 = AS−1rµ−AΘrD, ξ1 = AT∆y, ξ2 = AΘAT∆y; then, the previous expressions
become

∆x = v2 +Θξ1, ∆s = v1 −Θ−1∆x, (4.9)

Ax̄− b = (Ax− b) + αx(ξ2 + v3), (4.10)

AT ȳ + s̄− c = (ATy + s− c) + αs(ξ1 +∆s). (4.11)

Vectors v1, v2 and v3 remain constant during the CG iterations and can be
computed once at the beginning of the algorithm. Recall from Section 1.3.1 that,
during the CG process, the approximation ∆y is updated as

∆y←∆y + αCGu

where αCG is the CG stepsize and u is the CG direction. Therefore, the quantities
ξ1 and ξ2 can be updated in a similar way:

ξ1 ← ξ1 + αCGATu, ξ2 ← ξ2 + αCGAΘATu.

The quantity AΘATu is already computed during the CG algorithm, because it is
needed to find the stepsize αCG and to update the residual. While computing it,
the quantity ATu can be obtained as a byproduct:

w1 = ATu, w2 = AΘw1.

In this way, it is possible to update the quantities ξ1 and ξ2 at each inner iteration
inexpensively, which in turn allows to compute the IPM convergence indicators at
each CG iteration using only vector operations. Notice that the products with
matrix Θ needed to compute the directions in (4.9), in practice are performed
as vector operations, since Θ is diagonal. Notice also that w1 and w2 need to

55

be computed at the beginning of the CG process, to initialize the residual; thus,
initializing ξ1 and ξ2 does not add operations. However, one single matrix-vector
product with matrix A is added at the beginning of the algorithm, to compute the
constant vector v3. Algorithm IPCG summarizes the process just described: the
main differences with the standard Algorithm PCG are in lines 2, 17, 18, 26, 27,
28. The IPM convergence indicators are estimated only after a number itstart
of iterations. The algorithm does not contain any stopping criterion for now, it
simply computes the primal and dual infeasibilities and the duality gap at each
CG iteration, if the CG process was stopped at that iteration. Other indicators
can also be computed if needed, as will be clear in the next sections. The choice of
the stopping criterion based on these indicators will be discussed in the following
sections.

At each iteration, the standard CG algorithm performs one matrix-vector
product, one preconditioner application, two scalar products and three axpy

operations; what is added in the IPCG algorithm requires, at each iteration, the
equivalent of three scalar products (to compute µ, Θξ1, Θ

−1∆x), approximately
ten axpy operations and the computation of the stepsizes (which are computed
as in (4.7)-(4.8) and thus involve only comparison of vector components and
component-wise divisions). Therefore, we expect the computational cost of the
IPCG iteration to be only slightly larger than that of the standard CG step,
especially if the applications of the matrix or the preconditioner are particularly
expensive.

Remark 4.1. Notice that, when using a predictor-corrector strategy, the algo-
rithm just proposed works only when computing the predictor direction. For
the corrector, equations (4.10)-(4.11) need to be modified. In particular, calling
(∆xP ,∆yP ,∆sP) the predictor computed previously, the terms to add are A∆xP

to the expression for the primal residual (4.10) and AT∆yP + ∆sP to the ex-
pression for the dual residual (4.11); they can be computed at the beginning since
they are constant, but they add matrix operations to be performed at every call
of the algorithm. Alternatively, these can be avoided by saving the final values of
the vectors ξ1 and ξ2 from the previous IPCG call that computed the predictor
direction.

Notice also that sometimes the linear system to be solved at each IPM iteration
has a different structure, for example because the normal equations are further
reduced by an additional elimination step. In such cases, the proposed technique to
estimate IPM-related quantities throughout the CG iterations may still be applicable
in a similar way. However, in certain situations it may not be possible to do so
without requiring additional matrix-vector products to be computed.

4.3.2 IPMINRES for QP

Similarly, in the case of the augmented system for a QP, the infeasibilities can be
written as

Ax̄− b = (Ax− b) + αx(A∆x)

AT ȳ + s̄−Qx̄− c = (ATy + s−Qx− c) + αs(A
T∆y +∆s)− αx(Q∆x).

56

Algorithm IPCG Interior Point Conjugate Gradient method
Input: rhs f , tolerance τinner, max iterations itmax, matrices A,Θ, preconditioner P , initial
approximation ∆y, minimum iterations itstart
Input from IPM: current point (x,y, s), vectors rP , rD, rµ

1: Initialize:
2: v1 = X−1rµ, v2 = Θ(v1 − rD), v3 = Av2

3: ξ1 = AT∆y
4: ξ2 = AΘξ1
5: r0 = f − ξ2
6: r = r0
7: z = P−1r
8: u = z
9: ρ = rT z
10: iter = 0
11: while ∥r∥ > τinner∥r0∥ and iter < itmax do
12: iter = iter+ 1
13: w1 = ATu
14: w2 = AΘw1

15: αCG = ρ/wT
2 u

16: ∆y = ∆y + αCGu
17: ξ1 = ξ1 + αCGw1

18: ξ2 = ξ2 + αCGw2

19: r = r− αCGw2

20: z = P−1r
21: ρN = rT z
22: β = ρN/ρ
23: u = z+ βu
24: ρ = ρN

25: if (iter ≥ itstart) then
26: Compute Newton directions: ∆x = v2 +Θξ1, ∆s = v1 −Θ−1∆x
27: Compute stepsizes αx, αs using x, ∆x, s, ∆s
28: Compute convergence indicators:

pinf = −rP + αx(ξ2 + v3)

dinf = −rD + αs(ξ1 +∆s)

µ = (x+ αx∆x)T (s+ αs∆s)

29: end if
30: end while

Thus, at each inner iteration, the quantities to update are ξx = A∆x, ξy = AT∆y,
ξQ = Q∆x; this can be done at little extra cost by exploiting the matrix-
vector products already present in the MINRES algorithm, similarly to what
was done earlier for the CG. The implementation is slightly more complicated,
since the MINRES updates the approximation using the two previous iterations;
Algorithm IPMINRES shows the standard MINRES method, according to the
implementation in [4], with the additional operations required: the main differences
with the standard Algorithm MINRES are in lines 3, 7, 17, 19, 21, 23, 24, 25.
The estimation of the residual is more complicated than in the CG case and it
is not shown to avoid further over-complicating of the displayed algorithm and
because it is not affected by the new approach. As before, the additional cost is

57

Algorithm IPMINRES Interior Point Minimum Residual method
Input: rhs f , tolerance τinner, max iterations itmax, matrices A,Θ,Q, preconditioner P , mini-
mum iterations itstart
Input from IPM: current point (x,y, s), vectors rP , rD, rµ

1: Initialize:

2: ψ = P−1f , r1 = f , r2 = r1, β =
√
fTψ, w = 0, w2 = 0, cs = −1, sn = 0, φ̄ = β, ϵ = 0,

∆ = 0, iter = 0

3: wv = 0, wv
2 = 0, ξ = 0, ζ = X−1rµ

4: while residual > τinner∥residual0∥ and iter < itmax do

5: iter = iter+ 1

6: v =

v1

v2

 =
1

β
ψ

7: ψ =

−Q−Θ−1 AT

A 0

v1

v2

, with byproduct zv =


Qv1

Av1

ATv2


8: if iter ≥ 2 then ψ = ψ − (β/β0)r1 end if

9: α = vTψ

10: ψ = ψ − (α/β)r2
11: r1 = r2, r2 = ψ

12: ψ = P−1r2
13: β0 = β, β =

√
rT2 ψ

14: ϵ0 = ϵ, δ = csδ̄ + snα, ḡ = snδ̄ − csα, ϵ = snβ, δ̄ = −csβ, r =
√

ḡ2 + δ̄2

15: γ = max(
√

ḡ2 + β2, ϵ)

16: cs = ḡ/γ, sn = β/γ, φ = csφ̄, φ̄ = snφ̄

17: w1 = w2, w2 = w, wv
1 = wv

2 , w
v
2 = wv

18: w = (v − ϵ0w1 − δw2)/γ

19: wv = (zv − ϵ0w
v
1 − δwv

2)/γ

20: ∆ =

∆x

∆y

 = ∆+ φw

21: ξ =


ξQ

ξx

ξy

 = ξ + φwv

22: if (iter ≥ itstart) then

23: Compute Newton direction: ∆s = ζ −Θ−1∆x

24: Compute stepsizes αx, αs using x, ∆x, s, ∆s

25: Compute convergence indicators:

pinf = −rP + αxξx

dinf = −rD + αs(ξy +∆s)− αxξQ

µ = (x+ αx∆x)T (s+ αs∆s)

26: end if

27: end while

given only by vector operations (scalar products, axpy operations and stepsizes

58

computation).

Remark 4.2. The letter α has been used to indicate multiple stepsizes related to
IPM and CG. Since these are the standard notations in both fields, we did not
change them but added subscripts and superscripts to identify them (αx and αs
for the IPM stepsizes, while αCG for the CG stepsize).

4.4 Stopping criterion

The next section provides some arguments for the complexity analysis of the
proposed method. Due to the complex interaction between the IPM and the linear
solvers, a full polynomial complexity proof is not presented; instead, a rationale is
provided which suggests that the proposed inexact algorithm should have only
slightly weaker complexity than the exact method.

4.4.1 Complexity analysis

This section will follow [131, chapter 6], with the difference that here the problem
is a quadratic program. We make some standard assumptions: the relative interior
of problems (1.11)-(1.12) is non-empty; the neighbourhood is defined by (4.5); the
parameter σk is chosen in the interval [σmin, σmax], σmax ≤ 1; a single stepsize αk
is considered instead of two different ones for the primal and dual direction; the
stepsize is chosen such that the next point is inside the central path neighbourhood
and it satisfies the Armijo condition

µk+1 ≤ (1− 0.01αk)µk. (4.12)

It is already known (see e.g. [131]) that, when dealing with an LP and using
an exact method to find the direction, there is a minimum stepsize that can be
taken, αk ≥ ᾱ; this fact, together with the Armijo condition above, guarantees
convergence of the algorithm. It is also known that both the primal and dual
infeasibilities are reduced by a factor (1 − αk). Moreover, the third equation
in (4.1) yields

∆xkj
xkj

+
∆skj
skj

= −1 + σkµk
xkj s

k
j

, ∀j. (4.13)

Notice that the right hand side in the last equation is O(1), due to the symmetric
neighbourhood used (4.5b). Therefore, given these facts, the stopping criterion is
chosen as follows: the direction produced by the inner solver is accepted as soon
as

max
j

∣∣∣∆xkj
xkj

∣∣∣ ≤M, max
j

∣∣∣∆skj
skj

∣∣∣ ≤M (4.14)

for some fixed constant M . Moreover, it should also be required that

∥rk+1
P ∥ ≤ ηk+1∥rkP∥, ∥rk+1

D ∥ ≤ ηk+1∥rkD∥, (4.15)

59

where 1 > ηk+1 ≥ 1− αk, since an inexact direction cannot reasonably perform as
well as the exact one. Thus, suppose that ηk+1 = 1− ωk+1αk, for some ωk+1 ≤ 1;
the choice of ωk+1 will be clarified in the next Lemma. Notice also that the
equation

Sk∆xk +Xk∆sk = σkµken −XkSken (4.16)

continues to hold even if the direction is inexact; this is because ∆s is calculated
from ∆x when employing the normal equations or the augmented system, as
shown in (4.6). Algorithm IPM-I summarizes the choices made here and shows
also some other features that will be clear during the proof of Lemma 4.1.

Remark 4.3. In the algorithm, it may seem like the stepsize αk is used at step 6
but is computed only at step 7. This happens because the stepsize is estimated at
every inner iteration, as shown in Algorithms IPCG and IPMINRES. To avoid
confusion, the estimated stepsize in step 6 is denoted as α̂k.

Algorithm IPM-I Interior Point Method with early stopping of the linear solver
Input: γ ∈ [0, 1], β ≥ 1, 0 < δ < σmin < σmax ≤ 1, M > 0

1: Choose (x0,y0, s0) with (x0, s0) > 0
2: while (4.4) is not satisfied do
3: Choose σk ∈ [σmin, σmax]
4: Choose ωk ∈ [1− σk + δ, 1]
5: Compute µk = (xk)T sk/n
6: Find a direction (∆xk,∆yk,∆sk) such that

max
j

∣∣∣∆xk
j

xk
j

∣∣∣ ≤M, max
j

∣∣∣∆skj
skj

∣∣∣ ≤M,

∥rkP ∥ ≤ (1− ωkα̂k)∥rk−1
P ∥, ∥rkD∥ ≤ (1− ωkα̂k)∥rk−1

D ∥,

Sk∆xk +Xk∆sk = σkµken −XkSken.

7: Choose αk as the largest α ∈ [0, 1] such that

(xk + α∆xk,yk + α∆yk, sk + α∆sk) ∈ N∞(γ, β),

(xk + α∆xk)T (sk + α∆sk) ≤ (1− 0.01α)(xk)T (sk).

8: Set
(xk+1,yk+1, sk+1) = (xk + αk∆xk,yk + αk∆yk, sk + αk∆sk)

9: end while

The Lemma below asserts that, if the direction is chosen using the stopping
criterion defined by (4.14)-(4.15), then there exists a minimum stepsize α̃ such
that a new iterate after a step in the (inexact) Newton direction belongs to the
N∞(γ, β) neighbourhood and delivers a guaranteed reduction of the complemen-
tarity product. In the following, the iteration index k will be omitted, for sake of
clarity.

Let us show some results that are useful to prove the Lemma 4.1. Start by
noticing that (4.14) implies that the positivity constraints x + α∆x > 0 and
s+α∆s > 0 are automatically satisfied for any α ∈ [0, 1

M
[. Moreover, the following

60

bounds hold

|∆xj∆sj| =
∣∣∣∆xj
xj

∣∣∣∣∣∣∆sj
sj

∣∣∣xjsj ≤M2µ

γ
(4.17)

|∆xT∆s| =
∣∣∣ n∑
j=1

∆xj∆sj

∣∣∣ ≤ n∑
j=1

∣∣∣∆xj
xj

∣∣∣∣∣∣∆sj
sj

∣∣∣xjsj ≤M2nµ (4.18)

Lemma 4.1. Consider an IPM algorithm where each direction satisfies conditions
(4.14)-(4.15)-(4.16). Suppose that ω is chosen such that ω ≥ 1 − σ + δ, where
δ < σmin is a constant.

Then, there exists a value α̃ ∈ (0, 1) such that the following conditions are
satisfied for all α ∈ [0, α̃] at each IPM iteration and for all components j:

(xj + α∆xj)(sj + α∆sj) ≥ γ(x+ α∆x)T (s+ α∆s)/n, (4.19a)

(xj + α∆xj)(sj + α∆sj) ≤ (1/γ)(x+ α∆x)T (s+ α∆s)/n, (4.19b)

(x+ α∆x)T (s+ α∆s)/n ≤ (1− 0.01α)µ, (4.19c)

(x+ α∆x)T (s+ α∆s) ≥ ηxT s. (4.19d)

In particular

α̃ = min
(σminγ(1− γ)
M2(1 + γ2)

,
σmin(1− γ)

2M2
,
0.99− σmax

M2
,
δ

M2
, 1
)
. (4.20)

Proof. Using (4.16), one can show that

(xj + α∆xj)(sj + α∆sj) = xjsj(1− α) + ασµ+ α2∆xj∆sj

and

(x+ α∆x)T (s+ α∆s)/n =
1

n

[
xT s(1− α) + ασµn+ α2∆xT∆s

]
.

Using (4.17), (4.18) and (4.5b), the previous equalities become

(xj + α∆xj)(sj + α∆sj) ≥ (1− α)γµ+ ασµ− α2M2µ/γ, (4.21a)

(xj + α∆xj)(sj + α∆sj) ≤ (1− α)µ/γ + ασµ+ α2M2µ/γ, (4.21b)

(x+ α∆x)T (s+ α∆s)/n ≥ (1− α)µ+ ασµ− α2M2µ, (4.21c)

(x+ α∆x)T (s+ α∆s)/n ≤ (1− α)µ+ ασµ+ α2M2µ. (4.21d)

Using (4.21a) and (4.21d), it follows that

(xj + α∆xj)(sj + α∆sj)− γ(x+ α∆x)T (s+ α∆s)/n ≥

≥ (1− α)γµ+ ασµ− α2M2µ

γ
− γ((1− α)µ+ ασµ+ α2M2µ) ≥

≥ ασminµ(1− γ)− α2M2µ(γ + 1/γ)

61

and thus (4.19a) is satisfied if the final expression is non-negative, i.e.

α ≤ σminγ(1− γ)
M2(1 + γ2)

.

Using (4.21b) and (4.21c), we obtain

(1/γ)(x+ α∆x)T (s+ α∆s)/n− (xj + α∆xj)(sj + α∆sj) ≥

≥ (1/γ)((1− α)µ+ ασµ− α2M2µ)− (1− α)µ
γ
− ασµ− α2M2µ

γ
≥

≥ ασminµ(1/γ − 1)− 2α2M2µ/γ

and thus (4.19b) is satisfied if the final expression is non-negative, i.e.

α ≤ σmin(1− γ)
2M2

.

Using (4.21d), we obtain

(1− 0.01α)µ− (x+ α∆x)T (s+ α∆s)/n ≥
≥ (1− 0.01α)µ− (1− α)µ− ασµ− α2M2µ ≥
≥ 0.99αµ− ασmaxµ− α2M2µ

and thus (4.19c) is satisfied if the final expression is non-negative, i.e.

α ≤ 0.99− σmax

M2
.

Using (4.21c) and setting η = 1− ωα, it follows that

(x+ α∆x)T (s+ α∆s)− (1− ωα)xT s ≥
≥ (1− α)xT s+ ασxT s− α2M2xT s− (1− ωα)xT s ≥
≥ α(σ + ω − 1)xT s− α2M2xT s

and thus (4.19d) is satisfied if the final expression is non-negative, i.e.

α ≤ σ + ω − 1

M2
.

This condition makes sense only if ω > 1− σ; therefore, at each IPM iteration,
after choosing σ, ω should be chosen from the interval]1− σ, 1]. Notice what this
means: in the early IPM iterations, σ is closer to 1 and thus ω can be closer to 0,
which makes the stop criterion easier to satisfy. In the later iterations, σ might
get closer to 0 and thus ω is closer to 1, which makes the stop criterion harder to
satisfy. If ω is chosen such that ω ≥ 1− σ + δ, with δ a fixed constant, δ < σmin,
then ω + σ − 1 ≥ δ and it follows that

α ≤ δ

M2
⇒ α ≤ σ + ω − 1

M2
.

62

This explains the choice of ω made in the statement of the Lemma.

Therefore, the minimum stepsize that can be taken at each IPM iteration is
given by

α̃ = min
(σminγ(1− γ)
M2(1 + γ2)

,
σmin(1− γ)

2M2
,
0.99− σmax

M2
,
δ

M2
, 1
)
.

Notice that inequalities (4.19a)-(4.19b) imply that the next IPM iteration
satisfies condition (4.5b); the inequality (4.19c) represents the Armijo condition,
while inequality (4.19d) implies that

∥rkP∥
µk
≤ ηk∥rk−1

P ∥
µk

≤ ∥r
k−1
P ∥
µk−1

≤ β∥r0P∥
µ0

and similarly for the dual residual, which is equivalent to condition (4.5c). There-
fore, the value α̃ represents the minimum stepsize that can be taken at each IPM
iteration; a given iteration may be allowed to use a larger stepsize, but it is always
possible to make a step of length at least α̃.

To obtain a polynomial complexity result, the value of M should be specified
as a function of n. Here, the complexity analysis becomes problematic, since it is
difficult to determine exactly the properties of the IPM directions at intermediate
Krylov iterations. This is the subject of further research, but for now a rationale
is given, based on the properties of the exact directions. To start, recall the results
in [131, Chapter 6] about convergence of LPs (similar results for QPs can be found
in [130]): a minimum stepsize, proportional to n−2 can be found at each iteration,
provided that the starting point is chosen appropriately. In the following, this
result is generalized to a generic starting point, under some mild assumptions.

Lemma 4.2. Suppose that the optimal solution (x∗, s∗) satisfies 0 ≤ x∗
i , s

∗
i ≤ ξ,

for some large constant ξ. Given any starting point (x0,y0, s0) ∈ N∞(γ, β) such
that 0 < x0

i , s
0
i ≤ ξ ∀i and µ0 > ε∗ > 0, the minimum stepsize for an exact IPM

applied to an LP is ᾱ ≥ C3/n
3, for some positive constant C3 independent of n.

Proof. Recall the following constants from [131, Lemma 6.3 and 6.5], used to find
the minimum stepsize for an LP:

C1 =
(
βn+ n+ β

max0

µ0
∥(x∗, s∗)∥1

) 1

min0 ,

C2 = 2
C1

γ1/2
max

(
∥x0 − x∗∥, ∥s0 − s∗∥) + n

γ1/2
,

where (x∗, s∗) is the optimal solution, min0 and max0 are the minimum and
maximum components, respectively, of the vector (x0, s0). Here, (x, s) indicates
the vector obtained stacking vertically the vectors x and s.

From the definition of the neighbourhood (4.5) and the hypothesis used, it

63

follows that, for each component i, x0
i s

0
i ≥ γµ0 > γε∗ and thus

x0
i >

γε∗

s0i
≥ γε∗

ξ
.

Therefore x0
i , s

0
i ∈ [γε∗/ξ, ξ], ∀i. Hence min0 ≥ γε∗/ξ and max0 ≤ ξ. Notice also

that ∥(x∗, s∗)∥1 ≤ 2nξ. Therefore

C1 ≤
(
βn+ n+ 2β

ξ2

ε∗
n
) ξ

γε∗
.

Given that x0
i , s

0
i ,x

∗
i , s

∗
i all belong to the interval [0, ξ], for each component i, it

follows that

∥x0 − x∗∥2 =
n∑
i=1

(x0
i − x∗

i)
2 ≤

n∑
i=1

ξ2 = ξ2n,

and the same holds for ∥s0 − s∗∥. Therefore

C2 ≤ n3/2
(2ξ2

γ3/2ε∗

)(
β + 1 + 2

βξ2

ε∗

)
+

n

γ1/2

which implies C2 ≤ O(n3/2). The minimum stepsize ᾱ that can be taken at each
iteration in the exact IPM is proportional to C−2

2 as shown in [131, Lemma 6.7],
thus ᾱ ≥ C3n

−3.

Therefore, if the starting point is not the optimal one indicated in [131], the
minimum stepsize is proportional to n−3, instead of n−2. Consider the IPM
termination criterion (4.4) and property (4.5c); then, the algorithm converges if

µ ≤ min
(
τµ, τP∥b∥

µ0

β∥r0P∥
, τD∥c∥

µ0

β∥r0D∥

)
=: ε∗.

Therefore, assuming that the iterates of the inexact algorithm are bounded by ξ,
at each iteration two things can happen: if µ ≤ ε∗, then the algorithm converged;
if µ > ε∗, then the current point can be seen as a starting point of an exact IPM
where the minimum stepsize is ᾱ ≥ C3n

−3.
Given that the stepsize must be strictly smaller than the step to the boundary

(4.7), it is immediate to see that, when using an exact direction, the following
holds

−∆xj
xj

≤ n3

C3

∀j s.t. ∆xj < 0,
−∆sj
sj

≤ n3

C3

∀j s.t. ∆sj < 0.

Additionally, using (4.13), one can see that∣∣∣∆xj
xj

∣∣∣ ≤ O(n3),
∣∣∣∆sj
sj

∣∣∣ ≤ O(n3), ∀j,

since the terms
∆xj

xj
and

∆sj
sj

must balance in order to give a sum that is O(1).
Therefore, when using an exact IPM for LPs, with a generic starting point,

64

the computed direction satisfies criterion (4.14) with M = O(n3). This provides
a rationale to expect that inexact steps applied should satisfy conditions like
(4.14) with a constant M of comparable magnitude. Therefore, we infer that it
is possible to use a constant M = O(nq), with q ≥ 3. This is of course only a
rationale: a proper proof would require to understand whether the chosen Krylov
method is able to deliver such a direction; potentially, an exponent q specific to
the linear solver used may be found, but this has been found to be complicated
and is the subject of further research. Notice also that the rationale argument
is given for an LP, but the criterion is used for QPs (similar arguments can be
found for QPs, based on the results in [130]).

Given M = O(nq), [131, Theorem 3.2] and Lemma 4.1 imply that the number
of iterations to achieve a ν−accurate solution would be O(n2q| log ν|). In the best
case where q = 3, this would mean a number of iterations proportional to n6; this
is higher than the O(n2) iterations required by the exact algorithm, as it is to be
expected from the very inexact stopping criterion considered.

Remark 4.4. The analysis presented in this section has used the results from [131,
Chapter 6]; it is worth pointing out that the results presented there are obtained
using a neighbourhood without the upper bound in (4.5b). However, with some
simple calculations, it is possible to see that the final results do not change after
adding the upper bound. A similar conclusion was obtained in [33], where the
upper bound was added in the case of a feasible algorithm.

4.4.2 Indicators for early stopping

In this section, new indicators are derived that can be used to terminate the inner
linear iterations early, before the relative residual has become small enough to
be accepted by a standard residual test. The behaviour is shown for one test
problem, but the same pattern can be observed also for the other test problems.
This specific problem is the QP arising from tomographic imaging described in
Chapter 3.

The indicators that are introduced are based on the complexity argument
given in the previous section; they are related to the following quantities:

• Mx = maxi |∆xi

xi
| and Ms = maxi |∆si

si
|

• infeasibilities: pinf = b− Ax and dinf = c− ATy − s

• complementarity measure: µ = (xT s)/n.

These are computed at each inner Krylov iteration using the IPCG or IPMINRES
algorithms; an index j is used to indicate the value obtained at the inner iteration
j and the IPM iteration index is omitted instead. Therefore, M j

x means the value
of the quantityMx that would be obtained by stopping at the j−th inner iteration,
for a given IPM iteration.

Figure 4.1 displays the behaviour of the dual infeasibility, complementarity,
primal and dual stepsizes and the quantities Mx and Ms at an intermediate IPM
iteration; they are computed at every inner CG iteration, using Algorithm IPCG.

65

Figure 4.1: Infeasibility, complementarity, stepsizes and quantities Mx and Ms

computed at every CG iteration, for an intermediate IPM iteration.

It can be seen that all the quantities represented reach a point where their
variation becomes extremely small, almost impossible to notice from the picture;
this “stagnation” point may arrive very early in the CG iterations, meaning that
a large portion of the inner iterations are used to adjust the IPM direction in a
way that has a small effect on the quality of the new IPM point.

This fact suggests the following early termination indicators:

var
j
P =

1

5

4∑
i=0

∣∣∣∣∣∥pj−iinf ∥ − ∥p
j−i−1
inf ∥

∥pj−i−1
inf ∥

∣∣∣∣∣, var
j
D =

1

5

4∑
i=0

∣∣∣∣∣∥dj−iinf ∥ − ∥d
j−i−1
inf ∥

∥dj−i−1
inf ∥

∣∣∣∣∣
var

j
Mx =

1

5

4∑
i=0

∣∣∣∣∣ |M j−i
x | − |M j−i−1

x |
|M j−i−1

x |

∣∣∣∣∣, var
j
Ms =

1

5

4∑
i=0

∣∣∣∣∣ |M j−i
s | − |M j−i−1

s |
|M j−i−1

s |

∣∣∣∣∣
These are the average relative variations, in the last five inner iterations, of the
quantities pinf, dinf, Mx and Ms. From the previous Figure, one expects these
quantities to decrease during the CG iterations and, since they are related to the
IPM convergence, to be better indicators than the simple relative residual of the
linear system. For some problems it can be useful to consider also the indicator
varµ defined in the same way as before but considering the complementarity
measure µ.

Figure 4.2 shows the proposed indicators compared to the relative residual,
at every CG iteration, during the computation of various IPM directions. Notice
that these are only some of the behaviours that were observed; the purpose of
these images is to show that the indicators can sometimes decrease similarly to
the residual, while on occasions they may display an erratic behaviour, which is
difficult to capture looking only at the residual.

To summarize, the following termination criterion is proposed: the inner

66

Figure 4.2: Various behaviours of the proposed indicators compared to the relative
residual

(a) (b)

(c) (d)

iterations are stopped if(
(varjP < ε) ∧ (varjD < ε) ∧ (varjMx < ε) ∧ (varjMs < ε)

)
∨
(
∥r∥/∥r0∥ < τinner

)
.

The first four conditions check if the new indicators are all smaller than a tolerance
ε; however, if it happens that the residual gets sufficiently small before the new
indicators do, then the stopping criterion is triggered anyway, as with a standard
residual test.

The practical criterion presented here is clearly a different technique than the
theoretical one shown in Algorithm IPM-I; however, it is strongly inspired by the
arguments of the previous Section. The indicators considered involve the same
quantities used in the criterion (4.14)-(4.15) and the condition of small relative
variations ensures that the inexact direction found is likely to produce a point
that gets close to satisfying the theoretical criterion as well. Some safeguards
are required in order to keep the behaviour of the practical criterion close to the
ideal one: in particular, the practical criterion may be triggered by chance in
the very first linear iterations, when the theoretical stopping criterion is not yet
satisfied. For this reason, the parameter itstart is important since it prevents
this phenomenon from happening.

67

Such a difference between theoretical and practical methods is not unusual
in the IPM literature, where often the theoretical properties are proven for the
methods, but to achieve the best performance the practical algorithms slightly
deviate from the rigorous theoretical settings.

Notice also that the quantities Mx and Ms used in the practical stopping
criterion are the same quantities that are bounded by the constant M in the
theoretical setting. However, given the large magnitude ofM , which is chosen such
that M = O(nq), with q ≥ 3, the criterion (4.14) is satisfied almost immediately
during the Krylov iterations. This means that the extremely inexact directions
computed using the theoretical criterion require very few Krylov iterations (if
any) and make only a very small progress in terms of convergence of the IPM.
This is reflected in the increased iteration complexity, from n2 to n6. In practice,
however, this small progress made at each IPM iteration would likely be cancelled
by numerical inaccuracies, yielding an algorithm that is not able to converge to
the optimal solution. Therefore, to obtain a viable practical stopping criterion,
we need to rely on a more complicated strategy like the one proposed above, that
guarantees a substantial progress at each IPM iteration, while requiring a small
number of Krylov iterations.

4.5 Numerical results

In this section, the test problems are introduced and the results obtained with the
standard CG or MINRES and with the novel IPCG or IPMINRES are presented.
This section shows overall results in terms of IPM iterations, inner iterations and
computational time, and then provides also an insight into the individual IPM
iterations to demonstrate where the gains resulting from the new method are the
most significant.

The numerical experiments were performed using MATLAB R2018a and were
run on the University of Edinburgh School of Mathematics computing server,
which is equipped with four 3.3GHz octa-core Intel Gold 6234 processors and
500GB of RAM; the experiments never used more than 4 cores and 20GB of
memory.

The new technique is compared with two options that are usually employed
when dealing with a Krylov method inside an IPM: a fixed tolerance on the
relative residual of the linear system and a variable tolerance proportional to the
complementarity measure µ (see e.g. [25, 65, 90]). In particular, the tolerance for
the second option is chosen at each IPM iteration k as

τ kinner = max
(
tolmin,

µk

µ0
tol0

)
where tol0 is the initial tolerance, tolmin is the minimum tolerance considered,
µk is the value of the complementarity measure at the current iteration and µ0 is
the initial one. In this way, the tolerance decreases at the same rate as µ until
it reaches the value tolmin. In the following, these two options are denoted as
fixtol and vartol respectively.

68

Despite having multiple options available to choose a variable tolerance, we
compared the results with this one, since it is very simple and widespread. There
may be other tolerance sequences, tailored specifically to the problem considered,
that produce better results; however, the new criterion that is introduced does
not need to be redesigned for a specific problem and hence a variable tolerance
was selected in the same simple way for all problems. It is worth pointing out
that other specialized stopping criteria, developed for different problems (e.g.
[7, 11, 55, 58, 96, 116, 118]) cannot be easily generalized and used inside an
IPM, since the quantities used for these criteria may not even have a meaningful
interpretation in this context.

The values of tol0 and tolmin were chosen after a quick tuning process in
order to obtain the best results with the variable tolerance method; the same holds
for the parameters ε and itstart of the new stopping criterion. The specific
values are given below for each problem class.

4.5.1 Tomographic reconstruction

The first test problem has been thoroughly described in Chapter 3. Let us recall
that this problem is a quadratic program without linear equality constraints and
only with non-negativity constraints. An efficient preconditioner can be found for
the normal equations matrix and the Newton direction can thus be found using
the conjugate gradient method. The application of the matrix of the system is
particularly expensive, since it involves the call of the Radon and inverse Radon
transforms; thus, a single CG iteration is relatively expensive and we expect the
IPCG to bring a substantial benefit. Notice that, since there are no linear equality
constraints, only the dual infeasibility can be computed.

An IPM with centrality correctors was applied to this problem: the IPM
tolerance was set to 10−8, the CG tolerance for the fixtol approach was 10−6

and the parameters for the vartol approach were tolmin = 10−6, tol0 = 10−3.
These parameters were selected because they allow fewer linear iterations, without
compromising too much the quality of the inexact direction and the IPM con-
vergence speed. The new IPCG approach was applied with parameters ε = 0.01
and 0.001, itstart = 5 and τinner = 10−6. Since the problems contain noise that
is randomly initialized at every run, the results shown are the average over 10
runs, for each discretization level. We observed than the mean results over 10
runs are a reliable average: for example, for level = 32, the standard deviation
of computational times over 10 runs was in the range 0.15− 0.35, for all the cases
shown below (fixtol, vartol and IPCG).

Table 4.1 reports the results using the fixtol and vartol approaches. The
parameter level indicates how fine the discretization of the problem is; the size of
the matrix is equal to 2 ·level2, so that the largest instance has 524, 288 variables.

Tables 4.2 and 4.3 instead show the results obtained with IPCG with ε = 0.01
and ε = 0.001 respectively; the last columns show the reduction in linear iterations
and computational time when compared with the previous approaches: this is
computed as the difference between the result with standard termination criterion
and with IPCG, divided by the result with standard criterion. For instance,
the reduction of number of iterations of IPCG compared to fixtol is given by

69

Table 4.1: Results with CG: fixtol and vartol

CG fixtol CG vartol

level IPM It Inner It Time IPM It Inner It Time

32 16.7 3,892.1 9.02 17.1 2,001.5 4.71

64 21.0 6,436.9 27.37 21.4 3,350.0 14.64

128 22.5 9,514.8 104.96 26.0 4,952.6 55.48

256 24.8 14,183.5 511.87 33.0 8,059.3 295.45

512 29.5 21,897.7 3,035.63 44.0 14,413.0 1,954.11

Table 4.2: Results with IPCG (ε = 0.01)

IPCG Reduction fixtol Reduction vartol

level IPM It Inner It Time Inner It % Time % Inner It % Time %

32 16.7 842.2 2.11 78.3 76.6 57.9 55.2

64 20.5 1,329.1 6.67 79.4 75.6 60.3 54.4

128 22.7 1,688.1 22.73 82.2 78.3 65.9 59.0

256 26.8 2,090.2 93.46 85.3 81.7 74.1 68.4

512 34.0 2,849.1 509.11 87.0 83.2 80.2 73.9

(Itfixtol − ItIPCG)/Itfixtol.
It is worth observing that when using IPM with the new stopping criterion,

the number of outer (IPM) iterations is very close to the one obtained with the
original IPM using fixtol; this confirms that the inexact direction is sufficiently
precise so as not to destroy the convergence properties of IPM. In particular, it
can be noticed that using a lower tolerance ε guarantees an IPM iteration count
almost identical to the original one; the vartol approach instead produces a
substantial increase in the IPM iterations, particularly for larger problems.

Observe also that the IPCG with ε = 0.01 produces a similar number of IPM

Table 4.3: Results with IPCG (ε = 0.001)

IPCG Reduction fixtol Reduction vartol

level IPM It Inner It Time Inner It % Time % Inner It % Time %

32 16.5 1,219.6 3.07 68.7 66.0 39.0 34.8

64 20.5 1,870.8 8.77 70.9 68.0 44.1 40.1

128 22.0 2,538.2 33.82 73.3 67.8 48.8 39.0

256 25.5 3,475.7 152.67 75.5 70.2 56.9 48.3

512 30.3 4,950.0 859.22 77.4 71.7 65.7 56.0

70

iterations as the vartol approach, but uses far fewer inner iterations. This means
that the new technique is better at choosing when to stop the linear iterations and
does not compromise the overall IPM convergence more than a standard inexact
IPM would.

The reduction in terms of linear iterations is very high and reaches values of
more than 70% for both choices of ε for the largest instance considered. This
translates into a significant computational time reduction, which confirms that
the operations added inside the IPCG algorithm are inexpensive. Indeed, the
time per CG iteration when level = 512 goes roughly from 140ms in the case of
standard CG to 175ms in the case of IPCG; a small increase which is offset by a
large reduction in the number of inner iterations.

Figure 4.3: Number of inner CG iterations performed at each outer IPM iteration,
for level = 128. Similar behaviours can be observed for other values of level.

Next, it is useful to understand how the gain of IPCG is distributed during
the IPM iterations. To do this, we recorded the number of CG iterations at each
IPM iteration (summing together the inner iterations for predictor and correctors)
in three different situations: using CG with fixtol; using CG with vartol; using
IPCG with ε = 10−3. Figure 4.3 shows the comparison of the iterations for the
problem with level = 128.

Notice that, when using standard CG with fixed tolerance, the number of
iterations decreases at the end, since less correctors are computed; when using
IPCG, this decrease is not observed, since the smaller number of correctors is
balanced by the increased accuracy needed. Indeed, in the late IPM phase, the new
stop criterion is not triggered and IPCG stops with the standard reduction test;
the reader may observe that the graphs overlap in the last iterations. However, in
the initial phase, a significant advantage of IPCG over the standard CG can be
noticed, both for the fixtol and vartol approaches. It is striking how the IPCG

71

Figure 4.4: Final CG relative residual for the three approaches considered

requires almost every time fewer inner iterations than the CG with vartol, but
still manages to converge in a smaller number of IPM iterations. This is because
the number of inner iterations used for the predictor and for the correctors is
distributed differently: the standard CG applies the same tolerance to all the
directions during a certain IPM iteration, while IPCG chooses when to stop the
inner iterations based on the improvement that the direction can bring to the IPM
convergence. In this way, some correctors are computed very roughly, without
spoiling the overall IPM convergence speed.

This is clear from the next analysis that was performed: the final relative
residual at each CG call (for predictors and correctors) was recorded for all the
three approaches; the results are shown in Figure 4.4. Notice that the IPCG
computes directions both more accurately and less accurately than the vartol

approach, depending on how much a certain direction is able to improve the
quality of the IPM point. The extreme oscillations observed for IPCG can be
understood considering that some of the CG calls are made for predictor directions
and some for correctors; while predictors need to be more accurate, since they are
the first direction computed in a given iteration, correctors (especially subsequent
ones) have limited effect on the overall direction, because they are added to the
predictor. The IPCG method can detect the effect of the direction being computed
on the overall IPM algorithm and can stop the computation of correctors much
sooner than for predictors. The surprising variability of the final residual suggests
that there is much to be gained by an approach that does not involve only the
residual tolerance, because otherwise it would not be possible to capture this
behaviour. This graph highlights also that no stopping criterion based only on
a residual tolerance (potentially different from the vartol approach considered
here) could match the performance of the proposed solver, given the variability

72

observed.
The graphs displayed in these two figures undeniably confirm that a high

accuracy in the first IPM iterations is not needed at all, and that the best method
to decide when a direction is sufficiently precise to perform the next IPM iteration
successfully should be based on the IPM indicators and not on the residual of the
linear system.

4.5.2 Compressed sensing

The second test problem arises from compressed sensing [52]: a sparse solution to
an undetermined linear system Ax = b is sought, where sparsity is enforced by
means of a 1-norm regularization. After linearizing the 1-norm by adding extra
variables, the optimization problem that arises is the following

min
z≥0

τeTz+
1

2
∥F Tz− b∥2,

where τ > 0, z =
[
u ; v

]
, u and v being the positive and negative parts of

vector x, and F T =
[
A −A

]
. Rewriting it as a standard quadratic program

and formulating the IPM normal equations, the matrix of the linear system to be
solved becomes

H =

 1 −1
−1 1

⊗ ATA+Θ−1.

Due to the structure of matrix A, which satisfies the restricted isometry property
(see [52] for more details), matrix H can be efficiently preconditioned by the block
diagonal matrix

P =

 1 −1
−1 1

⊗ ηI +Θ−1

for an appropriate constant η. The difference with respect to the previous test
problem is that now the IPM direction is computed using a very low accuracy
for the CG: the residual tolerance is 10−1 or 10−2, depending on the problem,
throughout all the IPM iterations. This low accuracy of CG is motivated by the
properties of problem being solved; in particular, for problems with a higher level
of noise, a lower accuracy is used, while for noiseless problems a better accuracy
is needed. Due to this very rough tolerance, the vartol approach was not able to
bring any substantial improvement. For this class of problems only the fixtol
approach was used.

The test problems are taken from the Sparco collection [121]; of the 18 problems
considered in [52], 5 did not show any improvement when using IPCG instead of
CG (in part because they were easy enough and the CG was already performing
a low number of iterations). In Table 4.4 the results for the remaining 13 that did
show an improvement are presented. The IPM tolerance varies between 10−6 and
10−10 according to the problem being solved and no corrector direction is used.
The default values for IPCG are ε = 0.01 and itstart = 5; for some problems we

73

Table 4.4: Results for Compressed sensing IPM.

CG fixtol IPCG Inner It Time

ID Size IPM Inner It Time IPM Inner It Time red % red %

6 4,096 22 2,128 40.22 23 193 4.11 90.9 89.8

9 256 11 382 0.23 11 147 0.13 61.5 43.5

10 2,048 12 2,210 0.57 16 874 0.34 60.5 40.4

11 †* 2,048 19 663 1.41 21 536 1.14 19.2 19.1

401 114,688 14 160 15.72 12 55 7.03 65.6 55.3

402 † 172,032 14 238 28.14 12 59 9.76 75.2 65.3

403 393,216 19 2,282 201.44 20 205 36.94 91.0 86.6

601 † 8,192 20 2,146 104.20 21 652 28.41 69.6 72.7

602 8,192 22 2,280 124.39 20 453 19.12 80.1 84.6

603 8,192 16 1,085 16.53 13 86 2.13 92.1 87.1

701 † 131,072 12 1,028 38.64 12 236 13.73 77.0 64.5

702 32,768 8 926 15.00 8 181 4.42 80.5 70.5

903 † 2,048 13 1,794 2.52 16 687 0.93 61.7 63.1

†: ε = 0.001 instead of 0.01, *: itstart = 20 instead of 5

used different parameters (indicated at the bottom of the table) to obtain the best
possible results. In particular, for problem 11, setting itstart to 20 is required
to guarantee convergence in a reasonable number of IPM iterations.

All these problems display an impressive reduction in the number of CG
iterations and CPU time, even if the original CG tolerance is very rough. The
added cost of IPCG varies throughout the problems, but on average is roughly
35− 40% of the original iteration cost. Sometimes a reduction in IPM iterations
is also observed; this may be because the inexact method proposed is finding by
chance a direction that is better than the exact one.

4.5.3 PDE constrained optimization

As a last test example, we consider PDE constrained optimization problems (see
e.g. [101]) and use the augmented system approach, in order to test Algorithm
IPMINRES. In this section, v̂ and v will denote respectively the continuous and
discretized version of a variable v. The kind of problems considered involve PDE
as constraints and they take the standard form

min
y,u

1

2
∥ŷ − ŷ0∥2L2 +

β

2
∥û∥2L2

s.t. −∇2ŷ = û+ f̂ , ŷ ∈ Ω

ŷ = ĝ, ŷ ∈ ∂Ω
ûa ≤ û ≤ ûb

74

where Ω is the domain of evolution of the problem, ŷ, û are the state and control
variables, ŷ0 is the desired state function, f̂ , ĝ, ûa, ûb are given functions and
β > 0 is the regularization parameter. The objective of this formulation is to
keep the state ŷ close to the fixed desired state ŷ0 and minimize the control û,
while satisfying the PDE and bound constraints. Problems of this kind arise, for
example, in optimal control theory: practical applications include optimal design
of semiconductors, shape optimization, optimal gas cooling and many others (the
interested reader can find more details in [74]).

A standard IPM is applied to this problem, using the discretize-then-optimize
approach, as described in [101], to obtain the discretized quantities y,u,y0,ua,ub;
we then introduce the variables za and zb defined as (za)j = µ/(u − ua)j and
(zb)j = µ/(ub − u)j. After using a standard Q1 finite elements discretization, the
augmented system has the form

M 0 K

0 βM +Θ −J
K −J 0



∆y

∆u

∆λ

 =


ry

ru

rλ

 , (4.22)

where M ∈ Rn×n is the finite elements mass matrix, J ∈ Rn×n is the same matrix
but with boundary conditions applied, K ∈ Rn×n is the stiffness matrix, λ ∈ Rn is
the vector of Lagrange multipliers; due to the presence of upper and lower bounds
on u, matrix Θ has the following form Θ = Za(U − Ua)−1 + Zb(Ub − U)−1. The
dimension of the matrices n is determined by the grid level nc, as n = (2nc + 1)2

(i.e. each grid has roughly twice the number of subdivisions in each dimension
with respect to the previous grid); the whole augmented system has size 3n.

This linear system can be solved using MINRES, provided that the precon-
ditioner is positive definite; exploiting the ideas in [101] and [102], the following
preconditioner is employed

P =


M̃ 0 0

0 βM̃ +Θ 0

0 0 S̃

 ,
where M̃ contains only the diagonal of M and S̃ is an approximation of the Schur
complement of (4.22) given by

S̃ =

(
K +

1√
β
J

)
M−1

(
K +

1√
β
J

)
.

The Schur complement preconditioner is constant throughout the IPM iterations
and to apply it, it suffices to compute the Cholesky factorization of (K + J/

√
β)

once at the beginning of the algorithm. The finite element matrices were computed
using the IFISS package [2, 48, 49].

An IPM with centrality correctors was applied to this problem. The parameters
used are: IPM tolerance 10−8; for the fixtol approach, MINRES tolerance 10−8;

75

Table 4.5: Results with fixtol and vartol approaches

MINRES fixtol MINRES vartol

β nc IPM Inner It Time IPM Inner It Time

10−4

5 10 747 0.32 10 455 0.19

6 11 812 2.08 11 515 1.34

7 13 919 29.76 13 621 19.93

8 14 930 327.33 14 655 236.58

9 14 839 5,094.79 14 672 3,722.21

10−5

5 11 1,424 0.48 11 782 0.27

6 13 1,711 4.27 13 978 2.48

7 14 1,861 60.08 14 1,036 32.51

8 16 2,037 706.28 16 1,231 437.32

9 16 1,950 11,783.63 16 1,163 6,996.73

10−6

5 14 3,511 1.09 13 1,798 0.57

6 15 3,902 9.66 15 2,217 5.55

7 16 4,216 125.13 16 2,316 72.18

8 17 4,450 1,530.93 17 2,346 814.10

9 20 4,959 29,979.89 19 2,679 16,260.61

for the vartol approach, tolmin = 10−8, tol0 = 10−2; for the IPCG, ε = 10−3

and itstart = 15. Values of nc from 5 to 9 were considered, so that the largest
problem had dimension 789, 507; for β, the values used were 10−4, 10−5 and 10−6.

Table 4.5 shows the results using the fixtol and vartol approaches. Table 4.6
shows the results using the IPMINRES method and the last columns report the
reductions in the number of inner iterations and computational time compared
with the previous approaches. A negative reduction means that the new approach
produces a larger number of iterations or larger computational time: this happens
in some small problems either because the inexact direction produces a large
number of IPM iterations, or because the reduction in inner iterations is not
enough to balance the more expensive CG iteration. This phenomenon however
disappears for larger problems.

The reader can observe that when considering larger problems and smaller
values of β, there is a significant reduction in inner iterations and computational
time, while the IPM iteration count is almost constant in all three approaches.
The improvement that the new method brings is more significant when the linear
system becomes more ill conditioned (larger size and smaller β); this is not
surprising, since it is known that the residual of the linear system can be a
misleading indicator for ill conditioned problems. The proposed new approach
does not suffer from this issue, as these results suggest, because it is related to
the IPM properties rather than to the algebraic properties of the matrix, thus
making it a more suitable termination criterion for ill conditioned matrices.

76

Table 4.6: Results using IPMINRES

IPMINRES Reduction fixtol: Reduction vartol:

β nc IPM Inner It Time Inner It % Time % Inner It % Time %

10−4

5 13 535 0.32 28.4 0.0 -17.6 -68.4

6 16 653 1.85 19.6 11.2 -26.8 -38.9

7 15 594 19.07 35.4 35.9 4.3 4.3

8 16 640 228.36 31.2 30.2 2.3 3.5

9 16 630 3,534.22 24.9 20.9 6.3 5.1

10−5

5 12 734 0.31 48.5 35.4 6.1 -14.8

6 14 821 2.30 52.0 46.1 16.1 7.3

7 16 862 27.36 53.7 54.5 16.8 15.8

8 16 852 299.81 58.2 57.6 30.8 31.4

9 18 834 5,072.63 50.8 49.0 28.3 27.5

10−6

5 24 2,041 0.62 41.9 24.8 -13.5 -8.8

6 22 1,861 5.19 52.3 46.3 16.1 6.5

7 18 1,533 48.04 63.6 61.6 33.8 33.4

8 19 1,583 550.35 64.4 64.1 32.5 32.4

9 18 1,318 8,058.47 73.4 73.1 50.8 50.4

These last results show that also the IPMINRES method works as expected and
can potentially bring a significant improvement. Moreover, they also show that
the new early stopping technique can be applied to different classes of problems,
with similar results.

4.6 Conclusion

This Chapter has shown that it is possible to stop the inner Krylov iterations
during an interior point method earlier than it was previously thought, provided
that the stopping criterion used is based on the IPM convergence indicators and
not only on the reduction of the residual of the linear system. We have given
a rationale to explain the expected effect of the termination criterion and have
proposed two practical algorithms for the normal equations and augmented system
approaches. They exploit new indicators, related to the convergence of the outer
iterations, and are only marginally more computationally expensive then the
original algorithms. A proof of polynomial complexity of such inexact IPM is
still elusive and is the subject of further research, as well as a characterization
of the constant M involved in the criterion, potentially depending on the linear
solver chosen. This could provide a theoretical result on the minimum threshold
of accuracy needed for the convergence of IPMs.

This Chapter provided computational evidence for a wide range of problems,

77

from image processing, compressed sensing and PDE-constrained applications;
they all display a significant reduction in the number of inner Krylov iterations
and computational time. In particular, the largest gain appears in the early IPM
phase, where it is already known that a lower accuracy of Newton directions is
sufficient; however, we have also shown that it is extremely difficult to mimic
the behaviour of the proposed stopping criterion using only a residual test, since
the residual of the optimal stopping point may vary drastically during the IPM
iterations. Indeed, the new technique outperforms also the termination criterion
that uses a variable residual tolerance. Moreover, the new IPCG seems to keep
the IPM iteration count closer to the original one than with a variable tolerance.
This fact strongly supports the initial claim that a good stopping criterion for CG
or MINRES should be based on the IPM convergence indicators.

The analysis of the numerical results suggests that for ill conditioned problems
the performance gain of the new stopping criterion is larger. However, there are
some problems that are so badly conditioned and/or require so much precision
in the IPM direction that the new stopping criterion is not able to perform well;
more research is needed to find a suitable more advanced termination strategy for
these challenging problems.

We strongly believe that many other practical optimization algorithms in which
a Krylov subspace method is used to solve the linear equation systems are likely
to benefit from a specialized stopping criterion developed with an understanding
of the specific needs of the method.

78

Chapter 5

Interior point method for discrete
optimal transport

In this Chapter, based on the work [133], we introduce a specialized hybrid of
interior point method and column generation for linear programs arising from
optimal transport applications. The proposed method is shown to solve effi-
ciently problems with up to 4 billion variables, displaying a linear growth of the
computational time.

5.1 Introduction

As shown in the previous Sections, IPMs possess many interesting features: they are
well suited for the solution of problems with some underlying structure that allows
for a simplified formulation and efficient preconditioning (e.g. [27, 28, 52, 68]);
they have been used in combination with column-generation approaches (see e.g.
[66, 67]) to solve problems with many more variables than constraints; they can
be formulated in a matrix-free way for solving very large problems (e.g. [52, 64])
and they have been used to solve a variety of sparse approximation problems (e.g.
[40]).

Linear programs arising from discrete Optimal Transport (OT) possess many
of these attractive characteristics (see e.g. [103]): they can have an extremely large
number of variables, but relatively few constraints and as a consequence of this,
their optimal solution is extremely sparse; they have a very particular constraint
matrix with a Kronecker structure which leads to a simplified formulation of
the normal equations; they need to be dealt with in a matrix-free way, to avoid
forming the huge, very sparse and highly structured constraint matrix.

Linear programs with many more variables than constraints are well suited
to be solved using a column generation approach, as shown in Section 1.4.4. In
this Chapter, we propose a hybrid method for general purpose discrete optimal
transport problems: the proposed algorithm can be interpreted both as a very
aggressive column generation approach (with just one Newton step applied to
each restricted master problem) and as a very relaxed IPM (which works only
with a subset of variables and ignores the other ones). The method is highly
specialized and exploits the structure of the underlying problem and the known

79

properties of the optimal solution to efficiently mix iterative and direct solvers for
the Newton linear system. It is implemented without ever forming the constraint
matrix, but only accessing it via matrix-vector products, exploiting its Kronecker
structure; the only matrix that is formed is the much smaller Schur complement
of the normal equations. The method uses a specialized sparse linear algebra in
order to tackle problems of very large dimension.

In particular, the normal equations within the IPM are further reduced to the
Schur complement and then solved either with the conjugate gradient method
or with a general sparsity-exploiting Cholesky factorization. This is possible
because the fill-in of the Cholesky factor of the Schur complement gets smaller
and smaller when the method approaches optimality; this is rigorously proven
using the graph interpretation of the OT problem and confirmed by extensive
computational evidence. Moreover, the proposed theoretical result allows some
non-trivial chordal sparsity patterns to be characterized in a new way.

Many methods have been designed for solving OT problems, see e.g. [10, 36,
51, 72, 83, 88, 113] and the comprehensive summary [115]. A similar idea to
the one proposed here, where a sparse version of IPM is used to solve optimal
transport problems, was recently proposed in [129], for a particular subset of OT
problems, and in [94] an IPM was applied to solve optimal transport problems
involving finite volumes discretization.

The strengths of the algorithm proposed in this Chapter, compared to the
previously mentioned approaches, are:

• Very general formulation, able to deal with many types of problems; indeed,
the proposed method is tested on a large and varied collection of problems.

• Adaptability to multiple cost functions, while other methods are often
specialized only to one particular metric.

• A highly specialized strategy to solve linear systems, which allows for lower
and scalable requirements, both for time and memory.

Among other features, the proposed method heavily exploits the network
structure of the constraint matrix in the problem. Several interior point algorithms
have been developed for network optimization problems: in [29], the Authors
derive a specialized IPM for the minimum cost flow problem on bipartite networks;
the structure of the constraint matrix and normal equations is very similar to the
one presented here. In [107], another specialized IPM method is applied to the
same type of networks. In [53], preconditioners for IPMs applied to minimum cost
flow problems are discussed. In the current work however, the IPM is mixed with
a column generation technique and the linear algebra is specialized even further,
in order to exploit the extreme sparsity of the solution of the optimal transport
problem.

The proposed method is compared with the IBM ILOG Cplex [1] network
simplex solver [20, 99], which is a highly optimized commercial software that has
been shown to be very fast and reliable when dealing with OT problems, and
with the LEMON (Library for Efficient Modelling and Optimization in Networks)
network simplex solver [82]. The computational experiments are performed on

80

the DOTmark collection of images [115], considering cost functions given by the
1−norm, 2−norm and∞−norm; they show that the proposed method outperforms
the Cplex solver and matches the performance of LEMON for many of the problems
considered, while requiring less memory than both of them. We performed tests
with extremely large problems, with up to 4.3 billion variables and show that the
proposed method is scalable both in terms of computational time and memory
requirements.

The rest of the Chapter is organized as follows: in Section 5.2 we introduce
the discrete optimal transport problem formulation; in Section 5.3 we present
the hybrid interior point-column generation method; in Section 5.4 we analyze
the structure of the normal equations and introduce the mixed iterative-direct
approach for their solution; in Section 5.5 we present the test problems and show
the computational results.

5.2 From optimal transport to optimization

Below we recall the Kantorovich formulation [77] of the discrete Optimal Transport
problem: given a starting vector a ∈ Rm

+ and a final vector b ∈ Rn
+, such that∑

aj =
∑

bj, find a coupling matrix P inside the set

U(a,b) =
{
P ∈ Rm×n

+ , Pen = a, PTem = b
}

(5.1)

that is optimal with respect to a certain cost matrix C ∈ Rm×n
+ ; i.e. find the

solution of the following optimization problem

min
P∈U(a,b)

∑
i,j

CijPij. (5.2)

We can interpret this OT problem as minimizing the cost of moving some
mass in the configuration a into the configuration b: Cij gives the cost of moving

a unit of mass from ai to bj and the optimal solution P̂ij tell us how much we
should move from ai to bj . The constraints given by the set U(a,b) impose three
conditions: we only move positive quantities of mass; we ensure that from each
bin i of configuration a, we move out exactly a quantity ai overall; we ensure that
for each bin j of configuration b, we move in exactly a quantity bj overall.

In practice, the “mass” of a and b could be anything, from a probability
distribution to actual physical quantities that need to be moved. If the cost matrix
C is given by a distance raised to the power q (e.g. if Cij = Dqij,∀i, j, where D is a
distance over the set of integers 1, . . . , n, when n = m, see [103, Proposition 2.2]),
then the optimal solution of (5.2) defines a distance between a and b, called the
q-Wasserstein distance:

Wq(a,b) =
(∑

i,j

CijP̂ij
)1/q

. (5.3)

81

5.2.1 Kantorovich linear program

We can rewrite the optimization problem (5.2) as a standard linear program (1.7):

min
p∈Rmn

cTp

s.t.

eTn ⊗ Im
In ⊗ eTm

p =

a
b

 =: f (5.4)

p ≥ 0,

where ⊗ denotes the Kronecker product and c ∈ Rmn and p ∈ Rmn are the
vectorized versions of C and P respectively, c = vec(C) and p = vec(P).

The matrix of constraints in (5.4) is the incidence matrix of a complete bipartite
graph, as shown in (1.2); therefore, its structure is

A =

A1

A2

 =

eTn ⊗ Im
In ⊗ eTm

 , (5.5)

where A1 is an operator that computes the sum of the entries of the rows of P,
while A2 computes the sum of the entries of the columns. Notice that in this
chapter the incidence matrix is denoted by A, rather than E as in Section 1.1.1,
since it is the constraint matrix of the optimization problem. Notice also that
matrix A is rank deficient by 1. These operators can be applied in a matrix-free
way. Using Property 1.1 and Property 1.2, we can apply matrices A1, A2, A

T
1 and

AT2 to a vector as follows:

A1x = (eTn ⊗ Im)x = vec(ImXen) = Xen,

A2x = (In ⊗ eTm)x = vec(eTmXIn) = XTem,

AT1 u = (en ⊗ Im)u = vec(Imue
T
n) = vec(ueTn),

AT2w = (In ⊗ em)w = vec(emw
T In) = vec(emw

T),

where x ∈ Rmn, X ∈ Rm×n, u ∈ Rm, w ∈ Rn. Notice that the matrices involved
X, ueTn and emw

T are all of dimension m×n, and thus much smaller than matrix
A.

5.2.2 Graph formulation

We can reformulate the optimal transport problem as a minimum cost flow problem
over a bipartite graph: we have m source nodes, each one with an output ai,
connected to n sink nodes, each requiring an input bj.

A known result about the optimal solution of the optimal transport problem
is the following:

Proposition 5.1. Given a vertex V of the polytope U(a,b) in (5.1), the bipartite
graph corresponding to matrix V , where edges corresponding to zero flow have been
removed, is acyclic.

82

Proof. See [5] or [79] or [103].

In particular, this implies that there exists an optimal solution P̂ with at most
m+ n− 1 nonzero entries.

Figure 5.1 shows a small example of discrete optimal transport and the corre-
sponding bipartite graph formulation: the problem is to move the red configuration
(on the left) onto the blue configuration (on the top), where the cost is given by
the physical distance between the bins of the histogram.

Figure 5.1: A small example of discrete optimal transport and the corresponding
bipartite graph formulation; here the intensity of the colour is proportional to the
quantity of mass to be moved.

Remark 5.1. Notice that the optimal transport linear program can have multiple
solutions, even if the cost matrix represents physical distances. For example,
consider a problem with m = n = 4, where the supply vector is a = [2 3 3 4]T and
the demand vector is b = [1 3 3 5]T . Suppose that the cost matrix is given by the
1-dimensional distance between the positions, i.e.

C =


0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

 .

Then, the following are all optimal solutions with the same total cost of 3:

P =


1 0 0 1

0 3 0 0

0 0 3 0

0 0 0 4

 , P =


1 1 0 0

0 2 1 0

0 0 2 1

0 0 0 4

 ,

83

P =


1 0 1 0

0 3 0 0

0 0 2 1

0 0 0 4

 , P =


1 1 0 0

0 2 0 1

0 0 3 0

0 0 0 4

 .

5.3 Interior-point-inspired algorithm for opti-

mal transport

Problem (5.4) is a standard linear program, that can be solved using an interior
point method. However, the constraint matrix can be extremely large for large
values of m and n: indeed, the number of variables is m · n and the number of
constraints is m + n. A linear program with such a structure of the constraint
matrix is well suited to be solved by a column generation approach. We propose
a method that mixes these two techniques: an interior-point-inspired method that
keeps the iterates sparse at each iteration and updates the list of variables that
are allowed to be non-zero in a similar way to the column generation method. We
use the term support for this list of presumed “basic” variables, to avoid confusion
with the notion of basis in the simplex and IPM communities.

In the next sections, we first introduce the standard IPM formulation and then
the sparsified version, highlighting the relation with standard IPM and column
generation algorithms, and the pros and cons of using such an approach.

5.3.1 Interior point method

Recall from Section 2.1 that at each IPM iteration, one step of the Newton method
is performed and the linear system which needs to be solved is

A 0 0

0 AT Imn

S 0 P



∆p

∆y

∆s

 =


r1

r2

r3

 =


f − Ap

c− ATy − s

σµemn − PSemn

 . (5.6)

When reduced to the normal equations approach, it takes the form

AΘAT∆y = r1 + AΘ(r2 − P−1r3) (5.7)

where Θ = diag(θ) is a diagonal matrix; its entries are θj = pj/sj, s being the
dual slack variable associated with the LP (5.4), P = diag(p) and S = diag(s).

Notice that the linear system (5.7) is of dimension (m + n) and thus much
smaller than (5.6), that is of dimension (m+ n+ 2mn); however, (5.7) contains
blocks that are fully dense. Moreover, the IPM needs to work with many vectors
of size m · n, which requires excessive storage for large values of m and n.

84

5.3.2 Sparse approach

It has been observed (see e.g. [64]) that the entries of matrix Θ can be divided in
two groups: for “basic” indices j ∈ B, for which pj → p̂j > 0 and sj → ŝj = 0,
θj becomes very large as the IPM approaches convergence; for the “nonbasic”
indices j ∈ N , such that pj → p̂j = 0 and sj → ŝj > 0, θj becomes very small.
Concerning the structure of the normal equations matrix (5.7), this separation into
“basic” and “nonbasic” indices implies that the following holds close to optimality

AΘAT =
mn∑
j=1

θjAjA
T
j ≈

∑
j∈B

θjAjA
T
j (5.8)

where Aj represents the j−th column of A.

In the non-degenerate case, the optimal solution p̂ is expected to have only
m+ n− 1 non-zeros, out of m · n entries: in the common scenario where m = n,
this means that the density of the optimal solution decreases as 1/m and that at
optimality most entries of θ are close to zero, and only a small fraction of them
is large. We can exploit these properties to derive a sparsified method, where
each iteration is comprised by two phases: an interior point phase on the reduced
problem, and a column-generation-style update of the support.

Notice that, while the primal variable is expected to be sparse at optimality,
the dual slack s instead is expected to be dense, due to strict complementarity
(see Theorem 1.3); in the proposed approach, only the sparsity pattern of the
primal variable p is considered. Indeed, the entries for which sj → ŝj > 0 generate
corresponding components θj = pj/sj that converge to zero and are therefore
ignored, in order to exploit (5.8).

In the IPM phase, we apply a standard IPM to a reduced form of the problem.
We start from considering the subset of {1, 2, . . . ,mn} that corresponds to the
indices of the primal variables that are allowed to attain nonzero values; this
subset, that we call index, contains the indices of the variables belonging to the
current support. We would like to select the support such that if j ∈ index, then
p̂j > 0, ŝj = 0, and if j /∈ index, then p̂j = 0, ŝj > 0.

Entries pj and sj for j /∈ index are forced to be zero and the same applies
to the components of the Newton direction, since we are not updating them;
we expect sj > 0 for all j /∈ index, but we set them to zero because they are
ignored by the IPM phase. We define as pred and sred the reduced p and s
vectors that contain only the components corresponding to the index subset.
The logarithmic barrier is applied only to the set of variables in the support and
the complementarity measure µ is thus computed as µ = (pTredsred)/ψ, where
ψ = |index|. If we call Ared the submatrix of A obtained considering only the
columns in index, then the linear system to solve becomes

Ared 0 0

0 ATred Iψ

Sred 0 Pred



∆pred

∆y

∆sred

 =


r1

r2red

r3red

 =


f − Aredpred

cred − ATredy − sred

σµeψ − PredSredeψ

 . (5.9)

85

With this approach, the diagonal of Θ is sparsified and thus the normal equations
matrix is much more sparse than AΘ̃AT for any possible diagonal Θ̃ with strictly
positive diagonal entries (as it would be for a standard IPM).

In the update phase, we update the subset index and expand or reduce the
support; this can happen in two ways. The support is enlarged according to the
reduced cost c − ATy; if any component is negative, the indices corresponding
to the most negative reduced costs are added to index. We expect these newly
added variables to satisfy pj → p̂j > 0, sj → ŝj = 0 and thus θj ≫ 1. The new
entries are initialized with (pred)j = (sred)j =

√
µ, in order to maintain the overall

complementarity measure unaltered, at the expense of adding a small infeasibility.
This approach has been used in warm starting IPMs in [62] and since then has
been used with success in numerous applications of IPMs which requires warm
starting with newly introduced variables.

Variables are removed from the support based on the value of pred; if (pred)j
is smaller than a certain threshold when the IPM is near convergence, we assume
that this component should satisfy pj → p̂j = 0, sj → ŝj > 0 and thus θj ≪ 1.
Other techniques could be used to detect which variables should be removed, for
example if θj is very small, if sj is very large, or using some specifically developed
indicators such as in [46].

In order to not perturb too much the IPM algorithm, only m variables are
allowed to enter or leave the support at every iteration. In practice, in the first
iterations of IPM many variables enter the support, while no entry of p is small
enough to leave it; in the late phase of IPM instead many variables leave the
support, while almost no index is added to it.

The stopping criterion involves primal infeasibility, dual infeasibility of the
current restricted problem and the complementarity measure; the method is
stopped when

max
(∥r1∥
1 + ∥f∥

,
∥r2red∥

1 + ∥cred∥
, µ
)
< tol,

where tol is a predetermined tolerance. The method could also check if there are
variables with negative reduced cost that should still be added to the support;
however, in practice this was never the case, since the support would stabilize
(and actually start to drop variables) before the IPM indicators would reach
convergence.

The initial index subset can be chosen in many ways according to heuristics
that try to capture the sparsity pattern of the optimal solution. A simple approach
is to include in the initial support the variables that correspond to a small cost
cj, according to a predetermined threshold, since the optimal solution will try to
allocate as much mass as possible in these low-cost variables. We know that the
optimal support should include only n+m− 1 entries, but at the beginning we
choose the subset index with a larger number of entries, usually between three
and ten times more than the expected number of indices in the index subset
corresponding to the optimal solution.

86

5.3.3 Comments on the method

In a column generation method, it is possible not to solve the restricted master
problems to optimality and still converge to a solution of the master problem (see
e.g. [66, 67]); the approach presented here can be seen as an extreme situation,
where only one IPM iteration is applied to each restricted master problem before
updating the support. In this way, the method does not “waste” too much time
optimizing the early restricted master problems, which have a very inexact support,
while it spends most of the time looking for the correct support and optimizing to
full accuracy the late restricted master problems (when the support has stabilized).

The method is clearly not an interior point method, since the iterates are
sparsified and do not belong to the interior of the feasible region. Such a method
benefits from the sparsity of the vectors and matrices involved, at the expense of
losing some dual information. Indeed, while vectors p and θ are expected to be
extremely sparse close to optimality, the dual variable s is not, due to the strict
complementarity of linear programs. The stopping criterion indeed relies only on
the dual infeasibility of the restricted problem. However, the use of a primal-dual
method allows to obtain fast convergence once the support of the optimal solution
has been established. An interior point method that accurately captures all the
dual information would inevitably need to use fully dense vectors and normal
equations matrices, which reduces substantially its applicability to large problems.
The method presented here instead can be applied to huge problems, but does
not reconstruct accurately the dual information during the iterations; however,
the optimal dual variable ŝ can be computed after the algorithm terminates with
one extra reduced costs computation ŝ = c− AT ŷ, since the Lagrange multiplier
ŷ is reconstructed accurately.

We highlight that the IPM phase uses multiple centrality correctors [33] to
improve the performance; a standard symmetric neighbourhood of the central
path (see e.g. [131]) is used to find the correctors. Each iteration of the method
however relies on a neighbourhood built with a different support. The stepsize of
the method is found simply by computing the step to the boundary and scaling it
down by a constant close to 1 (e.g. 0.995).

Problems for which the support changes heavily between subsequent iterations
(for example because the initial and final configuration a and b have mass concen-
trated on a narrow region and their nonzero patterns have small or no intersection)
can create difficulties for the method, because the next IPM iterations would solve
a restricted problem with potentially a very different support than the current
one. These difficulties will appear for some specific problems in the numerical
results section, where a large number of iterations is required before the support
stabilizes.

5.3.4 Pricing method.

In order to update the support, we need to compute the full reduced cost vector
c− ATy; if m and n are large, this can be very expensive. To reduce the cost of

87

this operation, we propose a heuristic pricing approach. Notice the following

(c− ATy)j = cj − yTaj = cj − yk1j − yk2j ,

where aj is the j−th column of A and k1j and k2j are the source and destination
nodes of edge j, defined as

k1j =

{
(j mod m) if (j mod m) ̸= 0

m if (j mod m) = 0
, k2j =

⌈ j
m

⌉
.

We make the assumption that a large portion of the smallest (most negative)
reduced costs corresponds to small values of cj; the accuracy of this statement
depends on the values attained by the Lagrange multiplier y, but we observed in
practice that it is true in most of the iterations. Therefore, before starting the
algorithm, we can compute a subset of indices J , such that if j ∈ J , cj < Cmax, for
some fixed value Cmax, and the corresponding indices k1j and k2j. Then, during
the update phase, we can quickly compute the subset of the entries of the reduced
cost vector corresponding to the indices in J and use only these to update the
support. Of course, this method misses some of the variables to be added; thus,
after a certain number of IPM iterations where we use this method, we should
compute the full vector of reduced costs. In this way, we keep low the cost of
a single iteration, but we likely increase the number of iterations required. The
number of consecutive iterations in which we use the heuristic needs to be chosen
carefully: we would like it to be large, to reduce the computational cost as much
as possible, but if it is too large we risk performing useless iterations, since the
next update with the full reduced costs might change drastically the support.
Numerical evidence suggests that the reduced costs should be refreshed every 3 or
4 iterations.

5.3.5 Structure of the normal equations matrix

The normal equations matrix in (5.7) takes the form

AΘAT =

M V

V T N

 (5.10)

where V ∈ Rm×n, vec(V) = θ, M ∈ Rm×m and N ∈ Rn×n are diagonal matrices
with

Mii =
n−1∑
t=0

θi+tm, i = 1, . . . ,m, Njj =
m∑
t=1

θ(j−1)m+t, j = 1, . . . , n.

To see this, notice that

AΘAT =

A1ΘA
T
1 A1ΘA

T
2

A2ΘA
T
1 A2ΘA

T
2

 .
88

Let us compute the (1, 1) term.

(A1ΘA
T
1)ij =

mn∑
k=1

(A1)ik(A1)jkθk.

Given the structure of A1 in (5.5), the only nonzero terms in the summation are
obtained if i = j = (k mods m) ; in this case (A1)ik = (A1)jk = 1 and we obtain

(A1ΘA
T
1)ij = δij

n−1∑
t=0

θj+tm,

where δij is the Kronecker delta. Similarly, we can compute the (2, 2) term

(A2ΘA
T
2)ij =

mn∑
k=1

(A2)ik(A2)jkθk.

In this case, the nonzero terms are given by i = j = ⌈k/m⌉. Therefore

(A2ΘA
T
2)ij = δij

m∑
t=1

θ(j−1)m+t.

Let us now compute the terms in the off-diagonal blocks

(A1ΘA
T
2)ij =

mn∑
k=1

(A1)ik(A2)jkθk.

For any combination of i and j, there is only one value of k that produces a
nonzero coefficient in the summation, so

(A1ΘA
T
2)ij = θk(i,j),

where k(i, j) is identified by i = (k mods m) and j = ⌈k/m⌉. With this in mind,
it should be clear that

vec(A1ΘA
T
2) = θ.

As an example, if m = 2 and n = 3, the normal equations matrix would take
the following form

θ1 + θ3 + θ5 0 θ1 θ3 θ5

0 θ2 + θ4 + θ6 θ2 θ4 θ6

θ1 θ2 θ1 + θ2 0 0

θ3 θ4 0 θ3 + θ4 0

θ5 θ6 0 0 θ5 + θ6


.

89

Notice the meaning of matrices M and N :

V en =Mem, V Tem = Nen. (5.11)

i.e. Mkk is the sum of the entries of row k of V , while Nkk is the sum of the entries
of column k of V .

In a standard IPM, matrix V would be completely dense, since the entries θj
are all strictly positive. However, in the proposed hybrid method most entries of
θ are exactly zero, making matrix V extremely sparse.

5.4 Solution of the normal equations

To solve a linear system involving matrix (5.10), we can use the Schur complement
approach: the solution of M V

V T N

α1

α2

 =

β1

β2


is given by either

α1 = S−1
N (β1 − VMTβ2), α2 = N−1(β2 − V Tα1),

or
α2 = S−1

M (β2 − V TM−1β1), α1 =M−1(β1 − Vα2),

where SN =M − V N−1V T and SM = N − V TM−1V are the two Schur comple-
ments. Such an approach is convenient in this case since matrices M and N are
diagonal and thus very easy to invert. Notice that both Schur complements are
rank deficient by 1, but this is not a problem in practice: both iterative methods
and direct solvers can deal with singular matrices by solving the corresponding
least squares problem. A common strategy to avoid this issue is to remove one
of the nodes of the graph; however, doing so would perturb the structure of the
constraint matrix (5.5) and make the matrix-vector operations with A1 and A2

slightly more complicated to implement. Since the rank deficiency is not producing
any particular issue, we preferred not to remove any nodes in this application.

Let us analyze SM : if we sum the rows of matrix V TM−1V we obtain, exploiting
(5.11):

V TM−1V en = V TM−1Mem = V Tem = Nen.

The Schur complement SM is equal to matrix N minus the previous matrix.

90

Therefore

|(SM)kk| −
∑
i ̸=k

|(SM)ki| = |Nkk − (V TM−1V)kk| −
∑
i ̸=k

|(V TM−1V)ki|

= Nkk − (V TM−1V)kk −
∑
i ̸=k

(V TM−1V)ki

= Nkk −
n∑
i=1

(V TM−1V)ki

= Nkk − (V TM−1V en)k = 0. (5.12)

This means that the Schur complement SM is weakly diagonally dominant. If we
consider the other Schur complement SN =M − V N−1V T , then

V N−1V Tem = V N−1Nen = V en =Mem

and we conclude similarly that

|(SN)kk| −
∑
i ̸=k

|(SN)ki| = 0. (5.13)

5.4.1 Sparsity pattern of the Schur complement

We use Theorem 1.1 to analyze the sparsity pattern of the Schur complements
obtained using the optimal solution (p̂, ŷ, ŝ); however, when the algorithm ap-
proaches optimality and the complementarity products get close to zero, the
entries of Θ tend to zero or infinity. For the sake of formalism, define the matrix
V as the sparsity pattern of V ; then during the IPM iterations, V → V̂ , where{

V̂ij = 1 if P̂ij > 0

V̂ij = 0 if P̂ij = 0
,

where vec(P̂) = p̂. At any IPM iteration, the Schur complements have the same
sparsity pattern as V V T or V TV , because they involve only V , V T and diagonal
matrices; therefore, getting close to optimality, the sparsity patterns of the Schur
complements get close to the sparsity pattern V̂V̂T or V̂T V̂ . The next result shows
that these are chordal matrices.

Corollary 5.1. Matrices V̂V̂T and V̂T V̂ corresponding to an optimal solution p̂
that is a vertex of the transportation polytope (5.1) have chordal sparsity patterns.

Proof. Recall the graph formulation presented in Section 5.2.2: P̂ is the biadja-
cency matrix of the bipartite graph corresponding to the optimal solution, which
is known to be acyclic. By construction, V̂ and P̂ have the same sparsity pattern.
Therefore, matrix V̂ satisfies the assumption of Theorem 1.1. Notice that if there
is more than one optimal solution, at least one of them has to correspond to
an acyclic bipartite graph; therefore, the corollary holds at least for this specific
solution p̂.

91

Therefore, the two Schur complements SM and SN tend to become chordal,
which is a very desirable property. In order to choose which of the two Schur
complements to consider, we can use Lemma 1.2: the number of nonzeros of SN
is controlled by the maximum number of nonzeros in any column of matrix V ;
the number of nonzeros of SM instead is determined by the maximum number of
nonzeros in any row of V . We could choose dynamically which Schur complement
to compute and factorize based solely on the number of nonzero entries in the
rows and columns of matrix V .

5.4.2 Mixing direct and iterative solvers

We consider two options for solving system (5.7) with matrix (5.10): direct
approach using Cholesky factorization and iterative one using preconditioned
conjugate gradient.

We can identify two stages of the IPM. In the early iterations, the support is far
from the optimal one, so we expect that if we compute the Cholesky factorization
of the Schur complement, there would be a lot of fill-in; in this phase though, Θ
is well conditioned and we can expect a simple preconditioner like incomplete
Cholesky to work well. In the late iterations instead, we know that the normal
equations matrix becomes extremely ill-conditioned due to the behaviour of matrix
Θ, which makes it difficult to find a good preconditioner for the conjugate gradient
method; however, computing a full Cholesky factorization of the Schur complement
would be extremely cheap, due to Theorem 1.2 and Corollary 5.1, which shows
that both SM and SN get closer and closer to a sparse chordal matrix.

The proposed approach first applies the conjugate gradient with incomplete
Cholesky as preconditioner, with a value of the drop tolerance that is lowered
every time too many linear iterations are performed; then, based on a switching
criterion, when we decide that the Schur complement is “close enough” to the
optimal one, we switch to a direct solution using an exact factorization with
approximate minimum degree ordering.

The Schur complements are weakly diagonally dominant, as shown in (5.12)-
(5.13) and this guarantees that the incomplete factorization never breaks down
in exact arithmetic [86]; however, since the matrices are only weakly diagonally
dominant, we may need to lift their diagonal with a small perturbation, in order to
prevent from numerical inaccuracies making the matrices lose diagonal dominance
property.

When using a full factorization, we employ the LDLT algorithm; since both
Schur complements are singular, we expect one entry of matrix D to be zero. We
deal with this problem adding a small shift to the diagonal of D, since the entry
that should be zero could become negative due to numerical errors, and using
the Matlab backslash operator to apply matrices L and D. Notice that this issue
could also be dealt with using a modified Cholesky factorization that substitutes
small pivots with an infinitely large value in the computation of the factors.

Remark 5.2. Notice that in this work the plain Cholesky factorization from
Matlab was employed; however, to achieve maximum efficiency, it is possible to
update a symbolic factorization, that keeps track of the sparsity pattern of the

92

factors, every time the support is updated.

5.4.3 Switching strategy

In order to switch between the iterative solver and the direct factorization, we
need to be sure that the level of fill-in in the Cholesky factor is not going to be
too large, or otherwise the method may lose efficiency. Matrix V which is used to
build the Schur complement is the biadjacency matrix of a bipartite graph that is
not perfectly acyclic (this happens only at optimality), but gets closer and closer
to being so; we can expect the number of cycles found in the graph to decrease and
correspondingly the fill-in level of the Cholesky factor of the Schur complements
to be reduced when the IPM gets close to optimality. One strategy to switch
between iterative and direct solver can be based on the number of cycles that
are found in the bipartite graph associated with matrix V at any IPM iteration;
however, counting the number of cycles in the graph can be quite expensive. A
simpler approach is to count the number of edges in the bipartite graph to decide
when to switch: intuitively, the more edges there are, the more likely it is to find
cycles; moreover, if the number of edges is decreasing fast, it means that the IPM
is getting close to optimality and thus we can expect the Cholesky factor to be
sufficiently sparse. Notice that each edge corresponds to a variable that is allowed
to be nonzero; the number of edges is thus readily available, since it is the number
of variables in the support. Therefore, we can switch from iterative to direct solver
as soon as we detect that the number of variables in the support is decreasing
fast enough: to do so, we compute how many variables were removed in the last 5
iterations as a fraction of the total number of variables, and switch method as
soon as this number is sufficiently large.

Remark 5.3. Notice that it is possible to employ other switching strategies,
for example based on the value of the IPM parameter µ; however, there is little
difference in the final results and the current strategy, based on the speed of
edge removal, is particularly simple to tune. Notice also that, if the number of
variables in the support happens to increase after the method has switched to the
full factorization, it may be necessary to switch back to an iterative solution of the
linear system. This problem never occurred in the experiments presented here, but
such a strategy may be required for solving other problems.

5.5 Numerical results

5.5.1 Test problems

We tested the proposed algorithm on the DOTmark (Discrete Optimal Transport
benchmark) collection of problems [115]. It includes 10 classes of images, each
containing 10 images; the images come from simulations based on various prob-
ability distributions (class 1-7), geometric shapes (class 8), classic test images
(class 9) and scientific observations using microscopy (class 10). Figure 5.2 shows
two examples from each class.

93

Figure 5.2: Example of images from each class of the DOTmark collection.

Class 1 Class 1 Class 2 Class 2

Class 3 Class 3 Class 4 Class 4

Class 5 Class 5 Class 6 Class 6

Class 7 Class 7 Class 8 Class 8

Class 9 Class 9 Class 10 Class 10

94

Within a certain class, we can solve the OT problem between any couple of
images, giving 45 problems per each class and a total of 450 instances overall.
The images are available at different resolutions: we consider mainly the case
32× 32, 64× 64 and 128× 128 pixels and show partial results also with 256× 256.
The problems that arise for a certain resolution res have a number of constraints
equal to 2 res2 and a number of variables res4; Table 5.1 shows the dimension of
the problems considered.

Table 5.1: Size of the problems considered

res Constraints Variables (×106)

32 2,048 1.0

64 8,192 16.8

128 32,768 268.4

256 131,072 4,295.0

As cost function, we consider the 1−distance, 2−distance and ∞−distance:
the vectors a and b represent the vectorized forms of two images A and B; Cij is
the cost of moving mass from position i to position j; in the images, position i
corresponds to the entry Aαi,βi , while position j corresponds to Bαj ,βj . Then, the
distances used are

C1ij = |αi − αj|+ |βi − βj|,

C2ij =
√
(αi − αj)2 + (βi − βj)2,

C∞ij = max(|αi − αj|, |βi − βj|).

Notice the following: if we consider an image with k pixels per side, the
maximum possible distance between two pixels is approximately 2k,

√
2k or k,

respectively for the 1, 2 and ∞ distance; all of these values grow linearly with k.
Therefore, the parameter Cmax in Section 5.3.4 should also scale linearly with the
size of the image considered: in this way, the pricing heuristics considers always
the same fraction of the total number of variables for each resolution.

5.5.2 Solvers

There are many methods that have been proposed for the solution of the Kan-
torovich linear program (5.4) (see e.g. [10, 36, 51, 72, 83, 88, 113]); a comparison
of them can be found in [115]. We compared the proposed method to two very
efficient implementations of the network simplex algorithm [20, 99], coming from
IBM Cplex [1] and the LEMON (Library for Efficient Modelling and Optimization
in Networks) library [3, 82].

Cplex is a highly optimized commercial software that showed excellent reli-
ability and consistency of computational times throughout all the 10 classes of
the DOTmark collection in [115]. To use it directly from its callable library, the
optimal transport problems are generated in C and the network structure, in terms
of nodes and edges, is passed to a Cplex CPXNET model. Only the network

95

optimizer of Cplex is considered in this work, since the standard dual simplex
and the barrier solver were approximately 10 to 20 times slower, for resolutions
32 and 64 (this fact was also noticed in [115]).

LEMON [82] is a library for network optimization written in C++ that has
shown to outperform Cplex in some applications [29]. Out of the four algorithms
available in LEMON for the minimum cost flow problem (network simplex, cost
scaling, capacity scaling and cycle cancelling), the network simplex was the method
which gave the best results for the problems considered in this Chapter. To use
LEMON, the OT problem is generated directly in C++ in terms of nodes and edges
lists, that are then passed to a LEMON network simplex model. However, since
LEMON only accepts integer input data for a network simplex model, we had
to convert the OT problem data to integer form (multiplying them by a large
constant) before performing the computation. This approach may lead to a loss
of accuracy and potentially to integer overflow if larger problems are considered.
The model was run with the pivot rule parameter set to block-search.

The interior point method instead is implemented in Matlab, in a way that
exploits as much as possible the built-in functions, to reduce the computational
time required. The parameters for the IPM are: feasibility and optimality toler-
ance 10−6; conjugate gradient tolerance for predictors 10−6 and correctors 10−3

(we used a different tolerance for predictors and correctors, as was shown in
Section 4.5.1); maximum number of IPM iterations 200; maximum number of
conjugate gradient iterations (for each call) 1000; maximum number of correctors
3. All the experiments were performed on the University of Edinburgh School of
Mathematics computing server, which is equipped with four 3.3GHz octa-core Intel
Gold 6234 processors and 500GB of RAM. The specific versions of the software
used were as follows: Matlab R2018a, Cplex 20.1, Lemon 1.3.1 and GCC 4.8.5 as
compiler.

Remark 5.4. The Lemon library could not be installed on the computing server,
but we could only use it by compiling the source code directly. The performance
of Lemon relative to the other solvers, when installed on a local machine, may be
slightly better than the one shown here.

5.5.3 Results

We report the results for the whole DOTmark collection, for all three solvers, for
resolutions 32, 64 and 128 pixels.

Remark 5.5. The IPM is an inexact method, while the network simplex finds the
exact solution. The accuracy of the approximate solution can be measured with
the relative Wasserstein error (RWE):

RWE(a,b) =
∣∣∣W IPM

2 (a,b)−W exact
2 (a,b)

W exact
2 (a,b)

∣∣∣
96

where the 2-Wasserstein distance is defined in (5.3). Notice that

RWE(a,b) =
∣∣∣√cT p̂IPM −

√
cT p̂exact√

cT p̂exact

∣∣∣
=
∣∣∣ cT p̂IPM − cT p̂exact

cT p̂exact +
√
cT p̂IPM

√
cT p̂exact

∣∣∣
≤
∣∣∣cT p̂IPM − cT p̂exact

cT p̂exact

∣∣∣.
We expect the last quantity to be of the order of magnitude of the IPM tolerance
and thus the RWE to be even smaller.

In all the experiments performed, the RWE was of the order of 10−6 − 10−8,
which indicates that the IPM solution was very accurate.

Table 5.2 reports the average results for each class, for resolutions 32, 64 and
128 and for each cost function considered, in terms of iterations (iter) and time
(time) of the proposed method, Cplex time (Cplex) and Lemon time (Lemon).
Table 5.3 instead reports the average over all the three cost functions for each class
of the number of CG iterations performed (CG), the maximum fill-in percentage
level of the factorization of the Schur complement (fill) and the number of
iterative (iter) and direct (dir) iterations performed. Figure 5.3 shows the
performance profiles of the computational time, while Figure 5.4 compares the
time taken by the three solvers for each problem at resolution 128.

97

T
ab

le
5.
2:

A
ve
ra
ge

re
su
lt
s
w
it
h
th
e
p
ro
p
os
ed

IP
M

fo
r
ea
ch

cl
as
s
an

d
co
st

fu
n
ct
io
n

3
2
×

3
2

6
4
×

6
4

1
2
8
×

1
2
8

D
is
t

C
la
ss

i
t
e
r

t
i
m
e

C
p
l
e
x

L
e
m
o
n

i
t
e
r

t
i
m
e

C
p
l
e
x

L
e
m
o
n

i
t
e
r

t
i
m
e

C
p
l
e
x

L
e
m
o
n

1

1
1
0
.9

0
.3
0

0
.4
1

0
.1
8

1
3
.6

2
.1
2

1
2
.0
2

7
.8
3

1
9
.1

3
1
.4
3

1
,2
2
0
.2
7

2
1
9
.0
1

2
1
1
.5

0
.3
5

0
.3
6

0
.1
8

1
8
.0

3
.8
4

1
1
.1
7

7
.2
5

3
5
.4

1
0
8
.0
6

1
,1
4
0
.7
2

2
1
6
.2
8

3
1
6
.0

0
.5
8

0
.3
6

0
.1
6

2
6
.9

7
.7
9

1
0
.7
5

6
.6
3

4
4
.4

1
6
1
.2
6

1
,1
0
0
.7
7

1
5
9
.8
5

4
2
0
.3

0
.8
4

0
.3
4

0
.1
7

3
8
.9

1
5
.6
9

1
0
.7
7

6
.4
2

6
8
.0

2
7
9
.0
5

1
,0
9
7
.7
7

1
4
5
.9
1

5
2
5
.1

1
.1
1

0
.3
5

0
.1
6

4
0
.1

1
8
.9
3

1
2
.1
1

7
.0
4

1
3
9
.3

1
,1
0
7
.9
1

1
,2
3
4
.5
7

1
4
3
.9
9

6
1
8
.7

0
.6
0

0
.4
0

0
.1
7

3
6
.0

1
6
.8
8

1
3
.2
5

7
.5
4

5
7
.4

2
2
7
.4
9

1
,3
5
5
.1
4

2
1
7
.0
1

7
3
0
.9

1
.4
2

0
.2
9

0
.2
0

6
8
.2

4
0
.1
4

1
2
.8
6

7
.3
0

8
3
.3

1
,0
7
4
.9
1

1
,3
0
6
.7
0

1
5
4
.3
9

8
1
7
.2

0
.5
8

0
.3
3

0
.1
6

5
0
.2

5
1
.8
9

1
1
.6
6

6
.5
5

7
4
.8

7
2
9
.5
8

1
,1
8
9
.6
8

1
5
5
.4
0

9
1
4
.8

0
.4
5

0
.3
3

0
.1
5

2
4
.4

7
.2
0

1
1
.6
7

7
.1
7

4
9
.8

1
5
5
.1
1

1
,1
9
6
.7
8

1
7
2
.4
4

1
0

2
2
.2

0
.7
9

0
.3
7

0
.1
8

4
1
.2

1
8
.3
0

1
0
.8
0

6
.4
1

6
0
.1

2
4
6
.4
5

1
,1
0
7
.0
3

1
5
6
.4
8

2

1
1
8
.5

0
.6
9

0
.5
1

0
.1
8

2
6
.2

5
.1
6

1
3
.4
8

7
.5
7

3
0
.4

4
5
.0
1

1
,1
3
9
.2
8

1
9
0
.9
4

2
2
9
.7

1
.1
8

0
.5
0

0
.1
9

7
2
.1

1
6
.9
0

1
6
.1
5

9
.0
0

1
1
4
.0

4
8
1
.2
6

1
,3
6
9
.3
1

4
4
6
.4
0

3
4
9
.8

2
.2
2

0
.5
3

0
.1
8

9
0
.6

3
0
.4
7

1
8
.6
6

9
.4
1

1
5
0
.9

8
1
4
.6
4

1
,5
8
3
.7
7

6
0
0
.0
2

4
6
0
.0

2
.9
3

0
.5
4

0
.2
0

9
6
.4

4
0
.4
1

2
0
.1
7

9
.6
6

1
6
6
.8

7
2
0
.8
3

1
,7
1
5
.3
9

6
1
5
.6
4

5
5
6
.2

2
.5
0

0
.5
6

0
.2
0

1
0
8
.6

4
3
.2
4

2
1
.7
7

9
.6
9

1
8
1
.7

2
,6
2
8
.1
6

1
,8
4
6
.6
1

5
0
2
.2
8

6
4
6
.6

2
.1
4

0
.5
6

0
.1
9

8
6
.5

3
2
.0
6

2
1
.5
4

1
0
.2
3

1
5
9
.3

4
,6
1
3
.4
7

1
,8
2
9
.0
4

7
0
5
.8
4

7
6
3
.6

3
.5
5

0
.5
6

0
.2
3

1
0
6
.3

5
6
.1
2

2
1
.3
8

9
.4
0

1
8
3
.1

9
0
2
.3
5

1
,8
1
9
.5
5

3
3
2
.0
4

8
3
4
.4

1
.4
8

0
.4
8

0
.1
7

7
0
.8

2
9
.9
1

1
8
.5
1

8
.7
0

1
2
7
.8

4
2
4
.2
5

1
,5
7
3
.2
7

4
8
8
.3
1

9
4
3
.8

1
.9
4

0
.5
3

0
.1
8

9
9
.7

3
0
.8
5

1
8
.5
7

1
0
.3
3

1
4
5
.5

5
0
1
.3
4

1
,5
7
7
.4
4

6
4
4
.9
7

1
0

5
0
.4

2
.1
7

0
.5
5

0
.2
1

8
7
.1

2
8
.1
7

1
6
.4
9

7
.0
0

1
5
4
.2

1
,4
2
5
.7
4

1
,3
9
4
.5
0

2
7
3
.8
6

∞

1
1
1
.7

0
.4
8

0
.4
6

0
.1
8

1
5
.0

3
.5
7

1
2
.6
7

7
.0
6

1
9
.1

3
6
.5
2

9
4
5
.4
7

1
9
9
.0
9

2
1
2
.2

0
.5
0

0
.4
2

0
.1
7

1
7
.6

6
.0
9

1
2
.2
8

6
.7
4

3
4
.2

1
1
9
.7
8

9
2
3
.9
7

1
5
6
.3
0

3
1
5
.6

0
.7
5

0
.3
6

0
.1
5

2
5
.2

1
0
.3
3

1
2
.3
5

6
.4
0

4
8
.4

2
1
0
.6
8

9
2
8
.2
4

1
3
3
.2
6

4
1
9
.1

0
.9
8

0
.3
7

0
.1
6

3
5
.6

1
6
.1
2

1
2
.6
3

6
.2
1

6
3
.8

2
9
2
.3
4

9
4
8
.8
3

1
3
2
.8
3

5
2
3
.7

1
.3
1

0
.3
8

0
.1
6

3
6
.4

1
6
.5
6

1
2
.6
2

6
.5
2

8
4
.4

4
6
7
.4
1

9
4
9
.5
3

1
2
7
.9
5

6
1
8
.7

0
.9
1

0
.4
3

0
.1
6

3
0
.2

1
3
.8
5

1
4
.4
7

6
.8
6

6
1
.4

3
1
2
.6
9

1
,0
8
7
.2
4

1
6
3
.8
8

7
2
8
.3

1
.6
9

0
.4
0

0
.1
8

5
0
.5

2
5
.3
3

1
3
.0
0

6
.4
1

9
8
.7

1
,6
6
3
.2
6

9
6
6
.9
5

1
2
8
.3
0

8
1
7
.0

0
.9
6

0
.3
8

0
.1
5

3
3
.1

3
6
.0
0

1
1
.0
8

6
.3
1

6
2
.1

6
6
4
.1
8

8
2
9
.0
4

1
5
1
.1
2

9
1
5
.0

0
.6
7

0
.4
2

0
.1
5

2
3
.9

9
.4
6

1
2
.1
1

6
.6
0

4
9
.2

2
1
2
.1
3

9
0
7
.6
2

1
3
9
.9
4

1
0

2
0
.7

1
.0
7

0
.4
2

0
.1
7

3
5
.6

1
9
.2
9

1
1
.6
0

6
.3
4

5
9
.4

2
7
7
.5
0

8
7
2
.0
6

1
2
9
.6
8

98

Table 5.3: Details of the proposed IPM for each class

32× 32 64× 64 128× 128

Class CG fill iter dir CG fill iter dir CG fill iter dir

1 1,354.7 9.6 13.2 0.4 2,697.6 3.9 17.0 1.3 3,916.1 1.5 21.1 1.7

2 1,342.2 11.7 14.9 2.9 3,460.2 4.3 27.9 8.0 10,925.3 1.6 74.3 2.1

3 1,840.6 12.2 23.8 3.3 4,564.0 2.8 43.5 4.1 15,844.7 1.9 104.0 2.6

4 2,144.5 11.7 29.9 3.2 5,130.7 3.0 53.7 3.2 16,666.0 1.5 107.2 5.1

5 1,670.1 12.9 28.9 6.1 4,765.0 3.0 51.1 10.6 20,031.6 2.6 168.8 4.5

6 1,976.5 11.4 25.8 2.3 5,046.1 3.2 48.6 2.3 14,258.0 2.9 95.0 2.9

7 2,498.0 11.7 38.7 2.3 6,230.1 3.3 72.3 2.7 19,147.9 2.4 161.8 6.3

8 1,521.1 10.9 21.7 1.2 6,544.9 3.6 49.4 2.0 13,875.7 1.6 90.2 3.9

9 1,798.9 11.5 22.2 2.4 4,647.1 3.0 43.5 5.9 15,194.9 1.9 94.9 2.6

10 1,728.7 13.3 26.2 4.9 5,211.4 4.7 44.8 9.9 14,045.0 1.8 97.9 17.1

The reported computational time accounts only for the optimization phase.
However, there is some pre-processing time that Cplex and Lemon need to take in
order to prepare the network model. In particular, after generating the problem
(in terms of the vectors a, b and c), some arrays are created which contain the
nodes of the graph and the respective supply, and the edges and the respective
cost. Then, the network model for the respective solver needs to be created and
the graph information needs to be passed to the model. These two phases, which
are not required by the hybrid IP solver, in the larger instance of resolution
128 require overall approximately 5 to 10 seconds. This extra time needed by
both Cplex and LEMON is not included in the table and in the performance
profiles. Moreover, the creation of the full network requires a substantial amount
of memory, that is avoided by the proposed method.

Remark 5.6. The reader should keep in mind that the number of iterations
presented refers to the overall process of adding/removing variables and optimizing;
it is thus not a surprise that there are instances where the iteration count is higher
than what would be expected from a standard IPM. The cost of a single iteration
however is considerably lower, given the high degree of sparsity of the vectors and
matrices involved.

From these results, it is clear that for small problems (32× 32) Lemon out-
performs both Cplex and the proposed method; however, the IPM scales better
and becomes competitive for larger instances. Cplex instead scales badly and is
considerably slower than the other solvers at resolution 128. Given that both
Cplex and Lemon are highly optimized libraries written in a compiled language,
while the method proposed here is implemented in Matlab, we consider these
results very promising.

From Figure 5.4, we can see that the proposed method behaves particularly
well for problems in classes 1, 2, 3, 9 and 10, since the time taken is close to the
one taken by Lemon, and overall the spread of the times for all the problems in
these classes remains narrow. Classes 5, 7 and 8 instead are the ones with the
weaker results: the computational time is considerably larger than the one taken
by Lemon, with a large variability among the instances of these classes. Observing

99

the images in Figure 5.2, it seems that the method performs better when the
mass of the image is distributed evenly everywhere, while it struggles when it is
concentrated in a narrow region. It is also evident that all three solvers struggle
more when using the 2−distance as cost function.

From Table 5.3 we can see that the maximum fill-in level is independent of
the class of the images and gets smaller when the problem becomes larger, since
the density of the optimal solution decreases as 1/res2. We can also see that on
average only the very last IPM iterations employ a direct factorization, which is
what we wanted to achieve with the switching criterion proposed.

5.5.4 Results for large instances

When considering problem with resolution 256 × 256, both Cplex and Lemon
crash: they require more than 400GB of memory, in large part needed to store the
huge network structure. The IPM however does not need to store the network and
thus scales better in terms of memory, requiring at most approximately 120GB of
memory; indeed, the only large data that the IPM stores are the cost vector c, the
reduced costs and the factorization of the Schur complement. Given the huge size
of the problem, we show partial results for classes 1, 2 and 3 and distances 1 and
∞ (due to the long computational time required by the 2−norm cost function at
resolution 256).

Figure 5.5 shows the growth of the average computational time, in a logarithmic
plot, for the three solvers, from resolution 32 to 128 (for Cplex and Lemon) or
256 (for the IPM), for the three classes considered; the dotted line shows a linear
growth for comparison.

This Figure highlights that the computational time of the proposed method
grows linearly with the number of variables, while the other two solvers scale super-
linearly. The growth of the computational time of the IPM appears to be sub-linear
in some cases, for instance for the problems in class 1. A possible explanation is
the following: while the number of variables in the optimization problem grows
by a factor 16 (proportional to m · n) when the resolution doubles, the expected
number of nonzeros in the solution grows only by a factor 4 (proportional to
m+ n); therefore, the number of variables kept in the support only needs to grow
by a factor of 4 to capture the nonzeros of the solution. As a consequence, the
cost of vector operations grows proportionally to the square root of the number of
variables and similarly for the number of nonzeros in the Schur complement and
Cholesky factor (indeed, the Cholesky decomposition becomes relatively sparser,
as shown in Table 5.3, under the columns fill). However, some operations require
the use of the large vector c, like the computation of the full reduced costs; it is
not surprising then that, if the number of IPM and conjugate gradient iterations
does not grow excessively when changing resolution (as in the case of class 1), the
computational time growth is sub-linear.

The numerical results have shown that the method proposed scales better both
in terms of computational time and memory requirements, despite being still a
prototype code written in Matlab. The scalable results presented for problems
with up to 4 billion variables prove the efficacy of the proposed column-generation-
inspired IPM for optimal transport problems and potentially for other optimization

100

problems with a large network structure.

5.6 Conclusion

In this Chapter, a hybrid method that mixes interior point and column generation
algorithms was introduced for solving linear programs arising from discrete optimal
transport. A careful analysis of the matrices involved allows for an efficient way
of solving the Newton linear systems that arise within the interior point phase.
Experimental results show that the proposed approach is able to outperform the
network simplex solver of Cplex and compete with the highly efficient library
LEMON, in particular in terms of memory required. Results with huge scale
problems, with up to four billion variables, confirm the robustness of the method.

Further research can potentially improve the performance even more, in par-
ticular in relation to:

• The choice of the starting subset of nonzero variables, which could be
obtained by some more sophisticated heuristics, based on the initial and
final distribution of mass; a better starting point could allow for a smaller
size of the support, which would lead to faster computations.

• The switching strategy from iterative method to direct factorization, which
could reduce even further the maximum fill-in level of the Cholesky factor
and/or the number of overall conjugate gradient iterations.

• The pricing algorithm.

Moreover, the entropic regularized OT problem can be trivially dealt with
using an interior point method, just by adding regularization to matrix Θ; however,
the structure of the optimal solution changes and the considerations about the
linear solver made in this Chapter need to be reconsidered for that specific case. A
regularized IPM for optimal transport on graphs is presented in the next Chapter.

Further research is also needed to deal with the convergence properties of the
proposed method. Indeed, the combination with column generation prevents the
method from keeping the known polynomial complexity of IPMs and the inexact
solution of the restricted master problems, which are terminated after merely one
IPM iteration, makes it difficult to apply standard results about convergence of
column generation techniques. Theoretical results on convergence may also give
an explanation to the relatively poorer behaviour of the method when the mass
of the initial and final distribution is highly concentrated.

It is also worth mentioning the fact that the proposed IPM has been tested
in the case m = n, i.e. with the same number of nodes in both groups of the
bipartite graph. This is typical in optimal transport applications, but it is not
in generic minimum cost flow problems. In particular, when m = n, for a given
number of variables, the number of constraints is minimized. Other solvers, like
the one developed in [29], are able to solve problems with an unbalanced number
of nodes (e.g. n≫ m), but struggle in the case m = n. Future efforts should aim
at evaluating the performance of the proposed solver in the case in which the
initial and final images have a different number of pixels.

101

Figure 5.3: Performance profiles of the computational time for the whole DOTmark
collection, for the three cost functions, at different resolution.

Resolution 32× 32

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-1

IPM
Lemon
Cplex

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-2

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-Inf

Resolution 64× 64

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-1

IPM
Lemon
Cplex

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-2

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-Inf

Resolution 128× 128

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-1

IPM
Lemon
Cplex

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-2

1 2 3 4 5
Performance ratio (time)

0

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

dist-Inf

102

Figure 5.4: Computational time taken by the three solvers for each problem in
the DOTmark collection, grouped by class and distance, for resolution 128.

Dist 1

Dist 2

Dist ∞

103

Figure 5.5: Logarithmic plot of the average computational time against the number
of variables for classes 1, 2 and 3 and cost functions 1 and ∞.

(a) 1−distance

(b) ∞−distance

104

Chapter 6

Regularized interior point method
for optimal transport on graphs

This Chapter presents the last main contribution of the Thesis and is based on the
work [32]. Similarly to the previous Chapter, an interior point method is derived
for optimal transport problems; in this case however, the transportation plan
is sought over a sparse graph and regularization is introduced to ease the IPM
difficulties. The numerical tests, performed on large graphs with up to 50 million
edges, show that the proposed IPM outperforms an efficient implementation of
the network simplex algorithm.

6.1 Introduction

An interesting formulation of the OT problem presented in the previous Chapter
is the optimal transport over sparse graphs: in this case, the transport of mass is
only possible among a specific subset of connections, which is noticeably smaller
than the full list of edges of a fully connected bipartite graph, as it would happen
in the standard discrete OT formulation (5.4). The specific formulation of the
problem is the following: suppose that G = (V , E) is a connected graph with
directed edges E ⊂ V × V and weights (which correspond to the costs of the OT

problem) c ∈ R|E|
+ . Define the signed incidence matrix A ∈ {−1, 0, 1}|V|×|E| as

Ave =


−1, if e = (v, w) for some w ∈ V
1, if e = (w, v) for some w ∈ V
0, otherwise.

Notice that in this Chapter the incidence matrix is denoted by A, rather than E
as in Section 1.1.1, since it is the constraint matrix of the optimization problem.

We consider the optimal transport problem in the Beckmann form [50]

W1(ρ0,ρ1) =


minx∈R|E|

∑
e∈E cexe

s.t. Ax = ρ1 − ρ0

x ≥ 0

, (6.1)

105

where ρ0,ρ1 ∈ {ρ ∈ R|V| : eT|V|ρ = 1 and ρ ≥ 0}. In the following we define

|E| = n and |V| = m. OT on graphs has been recently studied in [50, 51] and, in
this formulation, it is similar to the more general minimum cost flow problem on
networks (or single-commodity network flow) [5], which has also seen extensive
use of IPMs, e.g. [29, 53, 104, 107]. Notice however that in these more general
problems, there may be a maximum amount of mass that can be moved along
any given edge, called the capacity.

Sparse graphs have on average very few edges per node, which can lead to
nearly disconnected regions and seriously limit the possible paths where mass
can be moved. As a result, finding a solution to the optimal transport problem
on a sparse graph requires more sophisticated algorithms and may be more
computationally challenging compared to solving the same problem on a denser
graph. In particular, first order methods like the network simplex may struggle
and move slowly towards optimality, due to the limited number of edges available,
while an interior point method manages to identify quickly the subset of basic
variables (i.e. the subset of edges with non-zero flow) and converges faster.

In this work we address the efficient solution of the optimal transport problem
(6.1) considering the Proximal-Stabilized Interior Point framework (PS-IPM for
short), recently introduced and analysed in [31].

As originally observed in [104], when IPMs are used to solve the minimum
cost flow problem on networks, the normal form of the related Newton systems is
structured as a Laplacian matrix of the graph and the iterates of IPM determine
the associate weights of this matrix. In [37], this observation was exploited to
solve such Laplacian linear systems (which are, in turn, particular instances of
symmetric M-matrices) through the fast specialized solution of O(logm) linear
systems involving symmetric diagonally dominant matrices [117]. We refer the
interested reader to [128] for a survey on fast Laplacian solvers and to [54] for
information concerning the distribution of Laplacian’s singular values.

6.1.1 Contribution and organization

This Chapter focuses on the efficient solution of large scale OT problems on
sparse graphs using a bespoke IPM algorithm able to suitably exploit primal-dual
regularization in order to enforce scalability. The organization of the work and its
main contributions can be summarized as follows:

• In Section 6.2 we briefly recall the proximal stabilized framework responsible
for the primal-dual regularization of the IPMs here considered.

• In Section 6.3, we prove that the normal form of the related Newton system is
naturally structured as a shifted Laplacian matrix, characterized by a strict
diagonal dominance. Such feature consistently simplifies the factorization of
the normal equations and allows the use of standard libraries for the solution
of the corresponding linear systems. On the other hand, such factorizations
could incur a significant fill-in even when the original graph is sparse, hence
limiting the applicability of the proposed approach for the solution of large
scale problems.

106

• In Section 6.4, aiming at overcoming potential scalability issues related to
the fill-in mentioned above, we propose to generate IPM search directions
using sparsified versions of the IPM normal equations which have a natural
interpretation in terms of detected optimal transportation plan. Indeed, in
the approach here presented, the IPM Newton directions are generated using
a perturbed normal matrix obtained by taking into account only the variables
recognized as “basic” by the IPM procedure. The resulting sparsified linear
systems are solved either using a Cholesky factorization (if that displays
only negligible fill-in) or using the conjugate gradient method and employing
a simple and inexpensive incomplete Cholesky preconditioner. In both these
cases either the complete or the incomplete Cholesky factorization remains
very sparse, and this translates into a remarkable efficiency of the proposed
method. Moreover, always leveraging on the primal-dual regularization
here considered, we are able to interpret the Newton directions generated
using sparsified Newton matrices as inexact Newton directions. And indeed,
relying on the convergence theory developed in [32], we are able to prove that
under suitable choice of the sparsification parameters, the above described
approach gives rise to polynomially convergent inexact, infeasible, primal-
dual regularized interior point method.

• In Section 6.5 we present experimental results which demonstrate the ef-
ficiency and robustness of the proposed approach. Extensive numerical
experiments, involving very large and sparse graphs coming from public
domain random generators as well as from real world applications, show
that, for sufficiently large problems, the approach presented in this work con-
sistently outperforms, in terms of computational time, the Lemon network
simplex implementation [82], one of the state-of-the-art solvers available for
network problems.

This Chapter uses a slightly different notation than the rest of the Thesis: we
indicated with xjk the vector x at iteration k of the (outer) proximal scheme and
iteration j of the (inner) interior point algorithm. Individual components of a
vector x are indicated with non-bold characters xj.

6.2 Computational Framework

6.2.1 Proximal-Stabilized Interior Point Methods

Let us consider the standard primal-dual formulation of an LP:

min
x∈Rn

cTx

s.t. Ax = b

x ≥ 0

max
s∈Rn, y∈Rm

bTy

s.t. c− ATy − s = 0

s ≥ 0

(6.2)

where A ∈ Rm×n with m ≤ n is not required to have full rank. Notice that
problem (6.1) is indeed formulated in this way.

107

We solve this problem using PS-IPM [31], which is a proximal-stabilized version
of classic interior point method. Broadly speaking, PS-IPM resorts to the Proximal
Point Method (PPM) [108] to produce primal-dual regularized forms of problem
(6.2). Indeed, given an approximation (xk,yk) of the solution of such problem,
PS-IPM uses interior point methods to produce the next PPM step (xk+1,yk+1),
which, in turn, represents a better approximation of the solution of problem (6.2).

The problem that needs to be solved at every PPM step takes the form

min
x∈Rn,y∈Rm

cTx+
ρ

2
∥x− xk∥2 +

δ

2
∥y∥2

s.t. Ax+ δ(y − yk) = b

x ≥ 0,

max
x, s∈Rn, y∈Rm

yTb−ρ
2
∥x∥2 − δ

2
∥y − yk∥2

s.t. (c− ρxk)− ATy − s = 0

s ≥ 0.

(6.3)

It may look as if the solution of problem (6.3) does not converge to the original
one (6.2), unless ρ and δ converge to zero. However, unlike an IPM, which
generates a sequence of problems that converge to the original one, a PPM works
with a sequence of problems that do not have to converge to the original problem,
but the corresponding sequence of solutions generated by the algorithm does
converge to the optimal solution of the original problem.

Definition 6.1. Solution of problem (6.3)
Using standard duality theory, we say that (x∗

k,y
∗
k, s

∗
k) is a solution of problem

(6.3) if the following identities hold

Ax∗
k + δ(y∗

k − yk)− b = 0

ρ(x∗
k − xk)− ATy∗

k − s∗k + c = 0 (6.4)

(x∗
k)
T s∗k = 0 and (x∗

k, s
∗
k) ≥ 0

More in particular, the PS-IPM here considered uses two nested cycles to
solve problem (6.2). The outer loop uses an inexact proximal point method, as
shown in Algorithm PPM: the current approximate solution (xk,yk) is used to
regularize the LP problem, which is then solved approximately using an IPM to
find the next approximate solution (xk+1,yk+1) ≈ (x∗

k,y
∗
k). And indeed, at the

inner loop level, an inexact infeasible interior point method is used to solve the
PPM sub-problems, see Algorithm RI-IPM.

Regularization in interior point methods was originally introduced in [112]
and extensively used in [6], as a tool to stabilize and improve the linear algebra
routines needed for their efficient implementation. In this work and in [31], the
regularization is achieved by the application of the PPM at the outer cycle level.
To summarize, in the following we use three acronyms: PPM refers to the outer
cycle; IPM refers to the inner cycle; PS-IPM refers to the overall procedure,
combining PPM and IPM.

Concerning the stopping criteria, we highlight that Algorithm PPM is stopped
based on the criterion (6.22). Algorithm RI-IPM instead, is stopped according
to the accuracy that is required for the solution of current sub-problem, which is
measured using the following natural residual of problem (6.3)

108

Definition 6.2 (Natural Residual).

resk(x,y) =

x
y

− ΠRn
≥0×Rm

(x
y

−
ρ(x− xk) + c− ATy
Ax− b+ δ(y − yk)

),
where Π is the projection operator onto the given set.

Algorithm PPM Outer loop of PS-IPM

Input: tol > 0, σr ∈ (0, 1), τ1 > 0.
Initialization: Iteration counter k = 0; initial point (x0,y0)

1: while Stopping Criterion (6.22) False do
2: Use Algorithm RI-IPM with starting point (x0

k,y
0
k) = (xk,yk) to find

(xk+1,yk+1) s.t.

∥resk(xk+1,yk+1)∥ <
σkr
τ1

min{1, ∥(xk+1,yk+1)− (xk,yk)∥} (6.5)

3:

4: Update the iteration counter: k = k + 1.
5: end while

6.2.2 Interior point method

We now focus on the inner cycle and give a brief description of the IPM used to
solve problem (6.3). To this aim, we introduce a particular Lagrangian function
which uses a logarithmic barrier to take into account the inequality constraints

Lk(x,y) =
1

2
[xT ,yT]

ρIn 0

0 δIm

x
y

+ [cT − ρxTk , 0]

x
y


− yT (Ax+ δ(y − yk)− b)− µ

n∑
i=1

log(xi).

We write the corresponding KKT conditions

∇xLk(x,y) = ρx− ATy + c− ρxk −


µ
x1
...

µ
xn

 = 0;

−∇yLk(x,y) = (Ax+ δ(y − yk)− b) = 0.

Setting si =
µ
xi

for i ∈ {1, . . . , n}, we consider the following function

109

Algorithm RI-IPM Regularized Inexact IPM, inner loop of PS-IPM

Input: 0 < σ, σ̄ < 1 barrier reduction parameters s.t. σ < σ̄;
Cinexact ∈ (0, 1) inexactness parameter s.t. γpCinexact < σ;
Initialization: Iteration counter j = 0;
Primal–dual point (x0

k,y
0
k, s

0
k) ∈ Nk(γ̄, γ, γp, γd)

Compute µ0
k = x0

k
T
s0k/n, ξ

0
d,k, and ξ

0
p,k.

1: while Stopping criterion (6.5) false do
2: Solve the KKT system (6.16) using [ξjp,k, ξ

j
d,k, ξ

j

µjk,σ
]T with ∥rjk∥ ≤

Cinexact(x
j
k)
T sk to find [∆xjk, ∆yjk, ∆sjk]

T

3: Find αjk as the maximum for α ∈ [0, 1] s.t.

(xjk(α),y
j
k(α), s

j
k(α)) ∈ Nk(γ̄, γ, γp, γd) and

xjk(α)
T sjk(α) ≤ (1− (1− σ̄)α)xjk

T
sjk

4: Set


xj+1
k

yj+1
k

sj+1
k

 =


xjk

yjk

sjk

+


αjk∆xjk

αjk∆yjk

αjk∆sjk


5: Compute the infeasibilities ξj+1

d,k , ξ
j+1
p,k and barrier parameter µj+1

k =

(xj+1
k)T sj+1

k /n
6: Update the iteration counter: j = j + 1.
7: end while

F µ,σ
k (x,y, s) =


ρ(x− xk)− ATy − s+ c

Ax+ δ(y − yk)− b

SXen − σµen

 , (6.6)

where σ ∈ (0, 1) is the barrier reduction parameter, S = diag(s) and X = diag(x).
A primal–dual interior-point method applied to problem (6.3) relies on the use of
Newton iterations to solve a nonlinear problem of the form

F µ,σ
k (x,y, s) = 0, x, s > 0.

A Newton step for (6.6) from the current iterate (x,y, s) is obtained by solving
the system 

ρIn −AT −In
A δIm 0

S 0 X



∆x

∆y

∆s

 = −F µ,σ
k (x,y, s) =


ξd

ξp

ξµ,σ

 , (6.7)

110

i.e. the following relations hold

ρ∆x− AT∆y −∆s = ξd (6.8)

A∆x+ δ∆y = ξp (6.9)

S∆x+X∆s = ξµ,σ. (6.10)

The solution of (6.7) is delivered by the following computational procedure

(
A(Θ−1 + ρIn)

−1AT + δIm
)
∆y = ξp − A(Θ−1 + ρIn)

−1(X−1ξµ,σ + ξd) (6.11)

(Θ−1 + ρIn)∆x = AT∆y + ξd +X−1ξµ,σ (6.12)

X∆s = (ξµ,σ − S∆x), (6.13)

where Θ = XS−1. Before continuing let us give basic definitions used in the
remainder of this work:

Definition 6.3. Normal System:

Mρ,δ = (A(Θ−1 + ρIn)
−1AT + δIm). (6.14)

Neighbourhood of the infeasible central path:

Nk(γ̄, γ, γp, γd) ={(x,y, s) ∈ Rn
>0 × Rm × Rn

>0 :

γ̄xT s/n ≥ xisi ≥ γxT s/n for i = 1, . . . , n;

xT s ≥ γp∥Ax+ δ(y − yk)− b∥;
xT s ≥ γd∥ρ(x− xk)− ATy − s+ c∥},

where γ̄ > 1 > γ > 0 and (γp, γd) > 0.

Moreover, we consider an inexact solution of the linear system (6.11):

Assumption 6.1.

Mρ,δ∆y = ξ̄p + r with ∥r∥ ≤ Cinexact x
T s, (6.15)

where Cinexact ∈ (0, 1) and we defined

ξ̄p = ξp − A(Θ−1 + ρIn)
−1(X−1ξµ,σ + ξd).

It is important to note that the above Assumption 6.1 is a non-standard
requirement in the inexact Newton method [41, 78]. Its particular form is motivated
by the use of IPM and the needs of the complexity analysis performed in [32]. It
is chosen in agreement with the definition of the infeasible neighbourhood of the
central path. Notice also that r corresponds to the residual of the linear system
for a given approximation of the solution ∆y. This means that condition (6.15)
can be enforced, for instance, by choosing an appropriate residual tolerance for
the Krylov method used.

Using (6.12) and (6.15) in (6.9), we have

111

∥A∆x+ δ∆y − ξp∥ = ∥Mρ,δ∆y − ξ̄p∥ = ∥r∥,

whereas equations (6.8) and (6.10) are satisfied exactly. Therefore the inexact
Newton direction which originates from (6.15) results in a direction [∆x, ∆y, ∆s]T

satisfying a Newton equation of the form:
ρIn −AT −In
A δIm 0

S 0 X



∆x

∆y

∆s

 =


ξd

ξp

ξµ,σ

+


0

r

0

 . (6.16)

Define 
xjk(α)

yjk(α)

sjk(α)

 =


xjk

yjk

sjk

+


α∆xjk

α∆yjk

α∆sjk

 . (6.17)

We report in Algorithm RI-IPM a prototype IPM scheme for the solution of
problem (6.3). The fundamental steps involved in the algorithm are: computing the
Newton direction by solving (6.16) with a level of inexactness that satisfies (6.15);
finding the largest stepsize that guarantees to remain inside the neighbourhood
and to sufficiently reduce the complementarity products; preparing the quantities
to be used in the next iteration.

In [32], inspired by the proofs in [14, 34, 57, 80, 81] and exploiting the results in
[8], the following result about polynomial complexity of the proposed regularized
inexact IPM algorithm is proven

Theorem 6.1. Under Assumption 6.1, Algorithm RI-IPM has polynomial com-
plexity, i.e. given ε > 0 there exists K ∈ O

(
n2 log(1

ε
)
)
s.t. µj ≤ ε for all

j ≥ K.

Proof. See [32]

6.3 Properties of the regularized normal equa-

tions system

In this section we show some properties of matrix Mρ,δ, that are useful for the
analysis performed in the next section.

For the original graph G(V , E), we define the adjacency matrix A ∈ R|V|×|V|

by setting Aij = 1 if there exists an edge between nodes i and j and Aij = 0
otherwise. Notice that for an undirected graph A is symmetric; we assume that
there are no self-loops, so that the diagonal of A is made of zeros. Let us define
the degree matrix of a graph D ∈ R|V|×|V| such that D is diagonal and Djj is the
degree of node j. Notice that Djj = (Ae)j.

Let us define also the Laplacian matrix of a graph as L ∈ R|V|×|V| by L = D−A.
An important relation between the Laplacian L and the node-arc incidence matrix
A is that L = AAT .

112

Given a diagonal matrix Θ and a parameter ρ, we define the re-weighted graph
GΘ as the graph with the same connectivity of G, in which the weight of every

edge j is scaled by a factor
√

Θjj

1+ρΘjj
. The adjacency matrix of the new graph

AΘ has the same sparsity pattern of A, but takes into account the new weight of
the edges. The same happens for the degree matrix DΘ. The incidence matrix
therefore becomes AΘ = A(Θ−1 + ρI)−1/2.

The new Laplacian matrix thus reads LΘ = DΘ −AΘ and can be written as

LΘ = AΘA
T
Θ = A(Θ−1 + ρI)−1AT .

We have just shown that the normal equations matrix can be interpreted as the
Laplacian matrix of the original graph, where the edges are weighted according to
the diagonal entries of matrix Θ. This result is important because solving linear
systems that involve Laplacian matrices is much easier than solving general linear
systems. We summarize this result in the following Lemma.

Lemma 6.1. The matrix A(Θ−1 + ρI)−1AT is the Laplacian of a weighted undi-
rected graph and hence, for every Θ ∈ Rn×n

+

A(Θ−1 + ρI)−1AT = DΘ −AΘ, (6.18)

where DΘ and AΘ are the degree and adjacency matrices of the weighted graph.

The next result shows that the normal matrix is strictly diagonally dominant,
due to the presence of dual regularization. This property is significant because
it assures that the incomplete Cholesky factorization of the normal equations
matrix Mρ,δ can always be computed without the algorithm breaking down (in
exact arithmetic), see e.g. [86].

Lemma 6.2. If δ > 0 the matrix Mρ,δ is strictly diagonally dominant.

Proof. From Lemma 6.1, we have that A(Θ−1 + ρIn)
−1AT = DΘ −AΘ and hence∑

j ̸=i

|(Mρ,δ)ij| =
∑
j ̸=i

| − (AΘ)ij| =
∑
j ̸=i

(AΘ)ij < (DΘ)ii + δ = (Mρ,δ)ii.

The next two technical results are related to the distribution of eigenvalues of
the normal matrix. They are used later to show that the inexactness introduced
when sparsifying the normal matrix remains bounded.

Lemma 6.3. λmax(AA
T) ≤ 2maxv∈V deg(v).

Proof. The matrix AAT is the Laplacian matrix of the original graph, hence we
can write it as

AAT = D −A,

where A is the adjacency matrix and D is the diagonal degree matrix.

113

From Gershgorin’s circle theorem, we know that the spectrum of eigenvalues
of AAT satisfies

λ(AAT) ∈
m⋃
j=1

B
(
(AAT)jj,

∑
i ̸=j

|AAT |ji
)
,

where B(c, r) is the ball centered at c with radius r. In particular, this means
that a generic eigenvalue λ satisfies

λ ≤ max
j=1,...,m

(
(AAT)jj +

∑
i ̸=j

|AAT |ji
)

≤ max
j=1,...,m

(
Djj +

∑
i ̸=j

Aji
)

≤ max
v∈V

2deg(v).

Lemma 6.4. The eigenvalues λ of matrix Mρ,δ satisfy

δ ≤ λ < δ +
2

ρ
max
v∈V

deg(v).

Proof. Using the Rayleigh quotient for some vector u and v = ATu, the eigenvalues
can be written as

λ =
vT (Θ−1 + ρIn)

−1v

vTv

uTAATu

uTu
+ δ.

The lower bound λ ≥ δ is trivial; the upper bound follows from Lemma 6.3 and
observing that

(ρIn +Θ−1)−1
ii =

Θii

ρΘii + 1
=

ρΘii

ρΘii + 1

1

ρ
<

1

ρ
.

6.4 Sparsification of the reduced matrix

We now propose a technique to reduce the number of nonzeros in the normal
equations Mρ,δ, based on the weights of the edges in the re-weighted graph
(according to Lemma 6.1). We then show that this sparsification strategy is
sound and produces a polynomially convergent interior point algorithm. The
results of this section strongly depend on the fact that the intermediate iterates
of the proposed IPM belong to the neighbourhood of the central path given in
Definition 6.3.

In this section we omit the IPM iteration counter j and we consider all the
IPM-related quantities as a function of µ→ 0. As the IPM progresses towards
optimality, we expect the following partition of the diagonal matrix Θ contributed

114

by the barrier term (similarly to (1.10))

B = {i = 1, . . . , n s.t. xi → x∗i > 0, si → s∗i = 0}
N = {i = 1, . . . , n s.t. xi → x∗i = 0, si → s∗i > 0}.

where the optimal solution (x∗, y∗, s∗) was defined in (6.4).

Given the neighbourhood of the central path in Definition 6.3, notice that the
following asymptotic estimates hold (as shown in [64]):

si ∈ O(µ) and xi ∈ O(1) for i ∈ B
xi ∈ O(µ) and si ∈ O(1) for i ∈ N .

(6.19)

Then, since x−1
i si ≈ µx−2

i when an IPM iterate is sufficiently close to the central
path, using (6.19) we obtain

Θ−1
ii = x−1

i si = O(µ) for i ∈ B and Θ−1
ii = x−1

i si = O(
1

µ
) for i ∈ N .

As a consequence, we consider the following asymptotic estimates of (Θ−1 +
ρIn)

−1

(Θ−1 + ρIn)
−1
ii =

{
O(1

ρ+µ
) if i ∈ B

O(µ
1+ρµ

) if i ∈ N .

The diagonal entries of Θ give a specific weight to each column of matrix A
(or equivalently, give a weight to each edge of the original sparse graph, as shown
in Lemma 6.1). The columns for which the corresponding Θii is O(µ) have a very
small impact on the normal matrix, but still contribute to its sparsity pattern. In
order to save time and memory when forming (complete or incomplete) Cholesky
factorizations, we propose the following sparsification strategy: we introduce a
suitable threshold Ct ∈ R+ and define

Θ̂†
ii =

{
(Θ−1 + ρIn)

−1
ii if (Θ−1 + ρIn)

−1
ii ≥

Ctµ
1+ρµ

0 if (Θ−1 + ρIn)
−1
ii < Ctµ

1+ρµ
.

(6.20)

We define the following µ-sparsified version M̂ρ,δ of Mρ,δ as

M̂ρ,δ = AΘ̂†AT + δIm. (6.21)

Notice that this matrix completely ignores some of the columns of A (and
some of the edges of the graph). The dual regularization δI guarantees that the
resulting matrix is non-singular, irrespective of the level of sparsification chosen.
In this Chapter, we consider using inexact Newton directions produced by solving
linear systems with matrix M̂ρ,δ, rather than Mρ,δ.

Remark 6.1. It is important to note that, in general, the sparsity pattern of the
matrix M̂ρ,δ depends on the choice of the parameter Ct and on the partitioning
(B,N). Indeed, when µ is sufficiently small, we expect that

115

∣∣∣{i ∈ {1, . . . , n} s.t. (Θ−1 + ρIn)
−1
ii ≥

Ctµ

1 + ρµ

}∣∣∣ = |B|.
We highlight the fact that a similar idea was proposed in [107], where the

Authors build a maximum-weight spanning tree of the original graph, with weights
given by the values in Θ, and use it as a preconditioner for CG in the final
iterations of an IPM. The preconditioner can be applied very efficiently, exploiting
its tree structure. In [53], this idea was extended by considering a subgraph larger
than a spanning tree, while still guaranteeing a small fill-in in the corresponding
Cholesky factor.

However, notice that these approaches rely on the ability to identify accurately
the basic components of the solution; being able to do so is notoriously difficult,
especially in the early stage of an IPM, and may spoil the performance of the
overall approach. The method proposed in (6.20)-(6.21) considers potentially
many more than m variables, especially when far from optimality, and does not
depend on the identification of a good basis for the current iteration. Notice also
that the method proposed in this chapter employs an inexact direction, while
[53]-[107] use their idea to produce a preconditioner.

Let us now show how the algorithm is affected by the use of the proposed
sparsified normal matrix. Notice that the results presented below depend strongly
on two facts: the optimization problem evolves on a graph and thus the normal
matrix is a Laplacian, with very desirable properties; the interior point method
employs primal-dual regularization. We start by showing how much the normal
matrix deviates from its sparsified counterpart.

Theorem 6.2. The sparsification strategy in (6.20) produces a matrix that satisfies

∥Mρ,δ − M̂ρ,δ∥ = O
(Ctµ

1 + ρµ

)
.

Proof. We have that Mρ,δ − M̂ρ,δ = AEµAT where Eµ is the diagonal matrix
defined as

Eµ
ii = (Θ−1 + ρIn)

−1
ii − Θ̂†

ii =

{
0 if (Θ−1 + ρIn)

−1
ii ≥

Ctµ
1+ρµ

(Θ−1 + ρIn)
−1
ii if (Θ−1 + ρIn)

−1
ii < Ctµ

1+ρµ

.

Hence we have λmax(E
µ) ≤ Ctµ

1+ρµ
. the thesis follows using Lemma 6.3 and observing

that
vT (Mρ,δ − M̂ρ,δ)v

vTv
=

vT (AEµAT)v

vTv
≤ λmax(E

µ)λmax(AA
T).

We now show that the solution of the sparsified linear system is “close” to the
solution of the original one, and the bound depends on µ. This result depends on
the spectral distribution that was shown in the previous section.

116

Theorem 6.3. For all v ∈ Rm we have that

M̂−1
ρ,δ v =M−1

ρ,δ v +ψ

where ∥ψ∥ ∈ O(Ctµ
δ2(1+ρµ)

∥v∥).

Proof. We can compute explicitly

(M−1
ρ,δ − M̂

−1
ρ,δ)v =M−1

ρ,δ M̂
−1
ρ,δ (M̂ρ,δv −Mρ,δv)

and therefore
∥ψ∥ ≤ ∥M−1

ρ,δ ∥∥M̂
−1
ρ,δ ∥∥M̂ρ,δ −Mρ,δ∥∥v∥.

Using Lemma 6.4 and Theorem 6.2, we have that

∥ψ∥ ≤ 1

δ

1

δ
O
(Ctµ

1 + ρµ

)
∥v∥ = O

(Ctµ

δ2(1 + ρµ)
∥v∥

)
.

The next technical result is useful for the proof of Corollary 6.1.

Lemma 6.5. ∥ξ̄jp∥ is uniformly bounded, i.e. there exists a constant Cp > 0 such
that for all j ∈ N

∥ξ̄jp∥ ≤ Cp

Proof. For the sake of clarity of notation, we do not include the index j in the
proof.

To bound ∥ξ̄p∥, consider the following estimate

∥ξ̄p∥ ≤ ∥ξp∥+ ∥A∥
(
∥(Θ−1 + ρI)−1X−1ξµ,σ∥+ ∥(Θ−1 + ρI)−1∥∥ξd∥

)
.

We already know the following estimates

∥ξp∥ ≤
µn

γp
≤ µ0n

γp
, ∥ξd∥ ≤

µn

γd
≤ µ0n

γd
, ∥(Θ−1 + ρI)−1∥ ≤ 1

ρ
.

To estimate ∥(Θ−1 + ρI)−1X−1ξµ,σ∥, we proceed as follows

∥(Θ−1 + ρI)−1X−1ξµ,σ∥ = ∥(Θ−1 + ρI)−1(Se− σµX−1e)∥ ≤
≤ ∥(Θ−1 + ρI)−1/2∥∥(Θ−1 + ρI)−1/2X−1/2S1/2∥

(
∥X1/2S1/2e∥+ σµ∥X−1/2S−1/2e∥

)
.

It is straightforward to prove that

∥(Θ−1 + ρI)−1/2∥ ≤ 1

ρ1/2
, ∥(Θ−1 + ρI)−1/2X−1/2S1/2∥ ≤ 1.

The remaining terms can be bounded using the properties of the neighbourhood

∥X1/2S1/2e∥ ≤
√
µγ̄n, σµ∥X−1/2S−1/2e∥ ≤ σ

√
µn

γ
.

117

Since µ ≤ µ0, we deduce that ∥ξ̄p∥ ≤ Cp, for some positive constant Cp.

We have shown in Theorem 6.3 that sparsifying Mρ,δ can be interpreted as
having an inexact solution of the normal equations system. The following result
shows that this inexactness satisfies Assumption 6.1, if the constant Ct is chosen
appropriately. Therefore, Theorem 6.1 applies.

Corollary 6.1. If in Algorithm RI-IPM we generate the search directions using
M̂−1

ρ,δ with Ct sufficiently small, i.e. if we compute the search directions using

(6.11), (6.12) and (6.13) where M̂ρ,δ substitutes Mρ,δ, then Algorithm RI-IPM is
convergent and has polynomial complexity.

Proof. Using Theorem 6.3, we have

M̂−1
ρ,δ ξ̄p =M−1

ρ,δ ξ̄p +ψ

where ∥ψ∥ ≤ Ce
Ctµ

δ2(1+ρµ)
∥ξ̄p∥ for some constant Ce > 0. Hence, recalling (6.15),

we have
Mρ,δ M̂

−1
ρ,δ ξ̄p︸ ︷︷ ︸
=∆y

= ξ̄p +Mρ,δψ︸ ︷︷ ︸
=r

.

Observe that, using the previous results, we obtain

∥r∥ = ∥Mρ,δψ∥ ≤ ∥Mρ,δ∥Ce
Ctµ

δ2(1 + ρµ)
∥ξ̄p∥ ≤ ∥Mρ,δ∥CeCp

Ctµ

δ2(1 + ρµ)
.

Using Lemma 6.4, we can say that

∥r∥ ≤
(
δ +

2

ρ
max
v∈V

deg(v)
)
CeCp

Ctµ

δ2(1 + ρµ)
.

In order to satisfy ∥r∥ ≤ Cinexactx
T s, we impose that

Ct ≤
δ2(1 + ρµ)nCinexact

CeCp(δ + 2maxv∈V deg(v)/ρ)
.

With such a value of Ct, Assumption 6.1 is satisfied and thus Theorem 6.1
applies.

6.5 Numerical Results

The proposed method is compared with Lemon [82], which has been already
described in Section 5.5.2.

All the computational tests discussed in this section are performed using a
Dell PowerEdge R740 running Scientific Linux 7 with 4× Intel Gold 6234 3.3G,
8C/16T, 10.4GT/s, 24.75M Cache, Turbo, HT (130W) DDR4-2933, with 500GB
of memory. The PS-IPM implementation closely follows the one from [31] and is
written in Matlab. The software versions used for the numerical experiments are
as follows: Matlab R2022a, Lemon 1.3.1 and GCC 4.8.5 as the C++ compiler.

118

We stop Algorithm PPM, when

∥g − ATy − s∥∞ ≤ R · tol ∧ ∥b− Ax∥1 ≤ R · tol ∧ Cx,s ≤ tol, (6.22)

where
tol = 10−10, R = max{∥A∥∞, ∥b∥1, ∥c∥1},

and
Cx,s = max

i
{min{|xisi|, |xi|, |si|}}.

Concerning the choice of the parameters in Algorithm PPM, we set σr = 0.7.
Moreover, to prevent wasting time on finding excessively accurate solutions in the
early PPM sub-problems, we set τ1 = 10−4, i.e. we use as inexactness criterion for
the PPM method

∥resk(xk+1,yk+1))∥ < 104σkr min{1, ∥(xk+1,yk+1)− (xk,yk)∥.

Indeed, in our computational experience, we have found that driving the IPM
solver to a high accuracy in the initial PPM iterations is unnecessary and, usually,
leads to a significant deterioration of the overall performance.

Concerning Algorithm RI-IPM, we set as regularization parameters ρ = 10−4

and δ = 10−6. Moreover, in order to find the search direction, we employ a widely
used predictor-corrector method.

Finally, concerning the test problems, in all the following experiments we
generate the load vector ρ1 − ρ0 in (6.1) randomly and such that the sum of its
entries is zero (to guarantee feasibility of the optimization problem), with only
10% of them being nonzeros. Moreover, we fix the weight of each edge at 1.

6.5.1 Analysis of the sparsification strategy

In this section, we compare three possible solution strategies inside the PS-
IPM: Cholesky factorization (using Matlab’s chol function) applied to the full
normal equations matrix (6.14); Cholesky factorization (always using Matlab’s
chol function) applied to the sparsified matrix (6.21); PCG (using Matlab’s
pcg function) applied to the sparsified matrix (6.21) with incomplete Cholesky
preconditioner (computed using Matlab’s ichol function). More in particular, as
sparsification parameter in (6.20) we use Ct = 0.4, ‘droptol’ = 10−3 in ichol

and ‘tol’ = 10−1µ in pcg.

We test the above mentioned solution strategies on various instances generated
with the CONTEST generator [120]; in particular, we considered the graphs pref,
kleinberg, smallw and erdrey, with a fixed number of 100, 000 nodes and
different densities (i.e. average number of edges per node). Therefore, for these
instances, m = |V| = 100, 000 and n = |E| = m · density.

In the upper panels of Figures 6.1 and 6.2 we report the computational time
of the three approaches for various values of densities (chosen in relation to the
properties of the graph), whereas in the lower panels we report the total number
of IPM iterations. From the presented numerical results, it is clear that the
sparsification strategy, in conjunction with the iterative solution of the linear

119

systems, provides a clear advantage over the use of a direct factorization and, as
can be expected, the iterative method and the sparsification strategy become more
advantageous when the size of the problem (number of edges) increases. On the
other hand, it is important to note that the use of the sparsified Newton equations
in conjunction with the full Cholesky factorization presents only limited advantages
in terms of computational time when compared to the Cholesky factorization of
the full Newton normal equation. This is the case because the resulting inexact
IPM requires, generally, more iterations to converge (see lower panels of Figures 6.1
and 6.2). Advantages of the proposed approach become clearer when the graphs
are denser.

Notice that the computational time for the kleinberg graphs depends much
less on the approach used than the other three problems. This fact is still
not properly understood, but we believe that it is related to the density of the
adjacency matrix of the graph and of the corresponding Cholesky factor. The
average connectivity of the nodes (i.e. how well a given node is connected to any
other node) may also play an important role in determining which approach is
the most competitive.

Figure 6.1: Comparison of sparsified and full normal equations approach, using full
Cholesky factorization or incomplete Cholesky as preconditioner for PCG, in terms
of IPM iterations and computational time for problems pref and Kleinberg.

20 40 60 80 100 120 140

10
2

10
3

10
4

100 200 300 400 500

10
2

20 40 60 80 100 120 140

18

20

22

24

26

28

100 200 300 400 500

25

30

35

6.5.2 Results on randomly generated graphs

In this section, we compare the PS-IPM algorithm, using the sparsified normal
equations matrix and the PCG with the network simplex solver of Lemon. For
PS-IPM we use the same parameters as proposed in Section 6.5.1. The graphs
used in this section come from the generator developed in [127] and already used
for OT on graphs in [50]. This generator produces random connected graphs with

120

Figure 6.2: Comparison of sparsified and full normal equations approach, using
full Cholesky factorization or incomplete Cholesky as preconditioner for PCG, in
terms of IPM iterations and computational time for problems erdrey and smallw.

50 100 150 200 250

10
2

10
3

10
4

4.5 5 5.5

10
2

50 100 150 200 250

16

18

20

22

24

4.5 5 5.5
20

25

30

a number of nodes varying from 5, 000 to 10, 000, 000 and degrees of each node in
the range [1, 10], with an average of 5 edges per node. For each size, 10 graphs
and load vectors are generated and tested. These parameters closely resemble the
ones used in [50].

Figure 6.3 shows the comparison of the computational time between PS-IPM
and Lemon: for each size of the problem (indicated by the total number of edges),
we report the summary statistics of the execution times using Matlab’s boxplot.

For small size problems, Lemon is the clear winner, by two orders of magnitude;
however, as the size increases, the performance difference between the two methods
reduces and for the largest instance considered, Lemon becomes one order of
magnitude slower than PS-IPM. It is also worth observing that the spread of the
measured execution times for each size is smaller in the case of PS-IPM than for
Lemon, indicating that the method is more robust and less dependent on the
specific problem being solved. This is a very desirable property.

Figure 6.4 shows the average computational time against the number of edges
(from 5, 000 to 50M) in a logarithmic scale, the corresponding regression lines and
their slopes. From the computational results presented, we can estimate the prac-
tical time complexity of both methods. Recall that, in a log-log plot, polynomials
of the type xm appear as straight lines with slope m. Using linear regression, we
can estimate that the time taken by Lemon grows with exponent approximately
2.06, while the time taken by PS-IPM grows with exponent approximately 1.28,
providing a considerable advantage for large sizes.

121

Figure 6.3: Box Plots of the computational times of PS-IPM and Lemon, for
randomly generated graphs. The red and black intervals show the spread of the
measured computational times (red, on the left, is PS-IPM; black, on the right, is
Lemon).

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

PS-IP
M

Lemon

10
-2

10
0

10
2

10
3

10
4

10
5

PS-IPM vs Lemon: solve time

E
d

g
e

s
:

5
K

E
d

g
e

s
:

2
5

K

E
d

g
e

s
:

5
0

K

E
d

g
e

s
:

2
5

0
K

E
d

g
e

s
:

5
0

0
K

E
d

g
e

s
:

2
.5

M

E
d

g
e

s
:

5
M

E
d

g
e

s
:

2
5

M

E
d

g
e

s
:

5
0

M

6.5.3 Results on SuiteSparse graphs

Results on randomly generated problems do not necessarily represent the ability
of an optimization method to tackle problems coming from real world applications.
Therefore, in this section, we show the results of applying PS-IPM and Lemon to
some sparse graphs from the SuiteSparse matrix collection [39]. The characteristics
of the considered graphs are shown in Table 6.1 in terms of number of nodes,
edges and average number of edges per node. All the graphs are undirected and
connected. Due to the fact that the considered graphs are particularly sparse,
in the numerical results presented in this section, we solve the sparsified normal
equations using the full Cholesky factorization.

Table 6.1: Details of the graphs from the SuiteSparse matrix collection, ordered
by increasing number of edges.

Name Nodes Edges Density

nc2010 288,987 1,416,620 4.9

NACA0015 1,039,183 6,229,636 6.0

great-britain-osm 7,733,822 16,313,034 2.1

hugetric-00010 6,592,765 19,771,708 3.0

hugetric-00020 7,122,792 21,361,554 3.0

hugetrace-00010 12,057,441 36,164,358 3.0

hugetrace-00020 16,002,413 47,997,626 3.0

delaunay-n23 8,388,608 50,331,568 6.0

122

Figure 6.4: Logarithmic plot of the computational time for randomly generated
graphs. The time taken by Lemon (red circles) grows as (number of edges)2.06;
the time taken by PS-IPM (blue triangles) grows as (number of edges)1.28.

Figure 6.5 shows the computational times for the eight problems considered,
using PS-IPM and Lemon. Apart from the problem nc2010, which represents
a relatively small instance in our dataset, on all the other problems PS-IPM
consistently outperforms Lemon in terms of required computational time. In par-
ticular, for the problems hugetric-00010, hugetric-00020, hugetrace-00010
and hugetrace-00020, which reach up to 16 million nodes and 48 million edges,
PS-IPM is one order of magnitude faster than Lemon.

Looking at the regression lines and their slopes, we notice that the time taken
by Lemon grows with exponent approximately 2.07 while the time taken by PS-
IPM grows with exponent approximately 1.40. These values are very close to
the ones found previously for randomly generated graphs. The data of Figure
6.5 however has a more erratic behaviour than the times shown in Figure 6.3,
because the properties of each graph considered are different and because we are
not averaging over 10 different instances of each problem.

Let us highlight also that the time taken by Lemon seems to be more problem
dependent, while PS-IPM looks more consistent and robust.

123

Figure 6.5: Logarithmic plot of the computational time for the SuiteSparse
problems. The time taken by Lemon (red circles) grows as (number of edges)2.07;
the time taken by PS-IPM (blue triangles) grows as (number of edges)1.40.

6.6 Conclusion

An efficient computational framework for the solution of Optimal Transport
problems on graphs has been presented in this Chapter. Such framework relies
on Proximal-Stabilized Interior Point Method and clever sparsification of the
normal equations matrix to compute the inexact search directions. The proposed
technique is sound and polynomial convergence guarantee has been established
for the inner inexact IPM. Extensive numerical experiments show that for large
scale problems, a simple prototype Matlab implementation is able to outperform
consistently a highly specialized and very efficient C++ implementation of the
network simplex method.

124

Chapter 7

Conclusions

In this Thesis, we developed efficient interior point solvers for convex linear and
quadratic programming problems of large scale. We showed that for sufficiently
large problems, second-order methods outperform first-order methods, in terms of
computational time and memory requirements, provided that enough attention
is put into the numerical linear algebra involved in the solution of the Newton
linear systems.

We showed that a strong technique to improve the efficiency of IPMs is the
early stopping of the inner Krylov linear solver: this can be done in a standard
way, by imposing a variable tolerance on the residual of the linear system, or using
some carefully designed indicators that are linked to the convergence indicators of
the outer IPM iterations. In the early stage of the IPM, and in particular for the
computations of corrector directions, the proposed indicators bring a substantial
benefit, reducing the number of Krylov iterations needed and the computational
time by up to 70%, with only a small increase in the number of IPM iterations.

We showed that another way of significantly improving the efficiency of IPMs is
designing appropriate preconditioners that can keep the spectral interval bounded.
To do this, a deep understanding of the operators involved and a careful analysis
of the matrices that arise is needed, to take full advantage of the properties of
the problem considered. In particular, matrices with Kronecker structure, which
appear in many practical applications, can simplify the task of designing proper
preconditioners by analysing the repeated smaller blocks, rather than the complete
matrix.

As a last major idea to devise efficient solution techniques, we proposed to
embed sparsification strategies into the interior point solvers, either by sparsifying
the vectors considered (in a column-generation-like style), or by dropping entries
in the Newton system (producing an inexact search direction). These techniques
are particularly attractive for network optimization problems, where the solution
is expected to be sparse but the operators involved can potentially produce dense
matrices and/or factorizations.

All these techniques improve the performance of interior point methods signifi-
cantly. We notice that performance may not always be the most important feature
for these algorithms, since many implementations favour robustness, reliability
and easiness of use. However, the problems considered in this work often involve
time constraints and therefore require the development of efficient specialized

125

solvers: in tomographic imaging, performance is fundamental to deliver a diagnosis
earlier or to free the imaging device quickly; in optimal transport, performance
is important because often this problem is solved within another optimization
problem (for example because the Wasserstein distance is used as a metric to
solve other problems) and therefore there may be many OT instances to be solved
in succession.

Future developments

We briefly summarize some possible ideas to improve and extend each of the
techniques proposed in this Thesis.

• The proposed early stopping of Krylov solvers is not sufficiently robust to
tackle any possible linear or quadratic program; more sophisticated indicators
may be needed, as well as some safeguards to avoid the use of directions
that are too inexact. This technique can be extended to other optimization
problems, including conic, nonlinear and semidefinite programming problems.
Given the high computational cost of the linear algebra involved in these type
of problems, a dedicated stopping criterion may bring substantial benefit.
Moreover, many other optimization algorithms where Krylov solvers are
applied could benefit from a similar technique. Theoretical bounds on the
maximum inexactness that an IPM can tolerate without losing its favourable
convergence properties are also needed to properly justify the use of such
techniques.

• Concerning tomographic imaging, extending the proposed regularizer to
more than two spatial dimensions and to more than two materials are the
obvious next steps. It is unclear whether the current preconditioner can
easily generalize to these situations and a more sophisticated preconditioning
strategy might be required. Despite there being many ways to approximate
the action of the Radon and inverse Radon transforms, it is not clear how
they can be used in combination with the diagonal IPM contribution, that
changes at each iteration, to produce efficient preconditioners. An accurate
analysis of results coming from real world imaging is also needed, to test
whether the proposed IPM and preconditioner produce satisfactory results
also in the presence of noisy and corrupted measurements.

• Concerning the IPM for discrete optimal transport, for some classes of
problems the performance of the proposed approach is not yet satisfactory;
in particular, this is the case when the initial and/or final distributions of
mass are concentrated in a narrow region. Further research is needed to
analyse the impact of such configurations on the linear algebra side and on
the proposed column generation technique. Safeguard on the way in which
variables are added or removed may be needed, to guarantee good properties
of the resulting matrices.

• The proposed sparsified approach for optimal transport on sparse graphs
should be compared with the tree preconditioner of [107]. Moreover, rather

126

than using the sparsified matrix directly to generate inexact directions, the
possibility of using it as a preconditioner for the full normal equations matrix
should be explored.

• Both approaches developed for OT problems should be extended and tested
for single and multi commodity network problems. Given the similar struc-
ture of the matrices involved, we expect that good results can be achieved;
naturally, a proper technique to deal with the linking constraints in the case
of multi commodities has to be employed.

More in general, any linear program with many more variables than con-
straints (either in the primal or dual formulation), could potentially benefit
significantly from the use of column generation embedded into the IPM.
Some preliminary results confirm this fact, but more research is needed to
obtain a general purpose approach able to tackle multiple type of problems.

• Finally, when solving a family of related linear programs, many existing
algorithms (e.g. active set methods) can exploit the solutions of the previous
instances to gain an advantage. It is interesting to understand how much
the proposed column generation approach can benefit from reusing the
set of columns from a previously solved LP to speed up the initial phase.
Potentially, if the set of basic variables does not change substantially, such
an approach could significantly improve the performance for subsequent
problems.

127

128

Bibliography

[1] CPLEX. https://www.ibm.com/analytics/cplex-optimizer.

[2] IFISS. https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/.

[3] LEMON. https://lemon.cs.elte.hu/trac/lemon.

[4] MINRES. https://web.stanford.edu/group/SOL/software/minres/.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[6] A. Altman and J. Gondzio, Regularized symmetric indefinite systems
in interior point methods for linear and quadratic optimization, Optim.
Methods Softw., 11-12 (1999), pp. 275–302.

[7] M. Arioli, A stopping criterion for the conjugate gradient algorithm in a
finite element method framework, Numer. Math., 97 (2004), pp. 1–24.

[8] P. Armand and J. Benoist, Uniform boundedness of the inverse of a Ja-
cobian matrix arising in regularized interior-point methods, Math. Program.,
137 (2013), pp. 587–592.

[9] P. Armand, J. Benoist, and J.-P. Dussault, Local path-following
property of inexact interior methods in nonlinear programming, Comput.
Optim. Appl., 52 (2012), pp. 209–238.

[10] F. Aurenhammer, F. Hoffmann, and B. Aronov, Minkowski-type
theorems and least-squares clustering, Algorithmica, 20 (1998), pp. 61–76.

[11] O. Axelsson and I. Kaporin, Error norm estimation and stopping cri-
teria in preconditioned conjugate gradient iterations, Numer. Linear Algebra
Appl., 8 (2001), pp. 265–286.

[12] V. Baryamureeba and T. Steihaug, On the convergence of an inexact
primal-dual interior point method for linear programming, in Large-Scale
Scientific Computing, 2006.

[13] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–
202.

129

[14] S. Bellavia, Inexact interior-point method, J. Optim. Theory Appl., 96
(1998), pp. 109–121.

[15] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point
problems, Acta Numer., (2005), pp. 1–137.

[16] L. Bergamaschi, A survey of low-rank updates of preconditioners for
sequences of symmetric linear systems, Algorithms, 13 (2020).

[17] L. Bergamaschi, J. Gondzio, A. Mart́ınez, J. W. Pearson, and
S. Pougkakiotis, A new preconditioning approach for an interior point-
proximal method of multipliers for linear and convex quadratic programming,
Numer. Linear Algebra Appl., (2021), p. e2361.

[18] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, Inexact
constraint preconditioners for linear systems arising in interior point methods,
Comput. Optim. Appl., 36 (2007), pp. 137–147.

[19] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite
systems in interior point methods for optimization, Comput. Optim. Appl.,
28 (2004), pp. 149–171.

[20] D. Bertsekas, Network optimization: continuous and discrete models,
Athena Scientific, Belmont, USA, 1998.

[21] D. Bertsimas and J. Tsitsiklis, Introduction to linear optimization,
Athena Scientific, New Hampshire, USA, 1997.

[22] P. Blomgren and T. Chan, Color TV: total variation methods for
restoration of vector-valued images, IEEE Trans. Image Process., 7 (1998),
pp. 304–309.

[23] S. Bocanegra, F. Campos, and A. Oliveira, Using a hybrid precon-
ditioner for solving large-scale linear systems arising from interior point
methods, Comput. Optim. Appl., 36 (2007), pp. 149–164.

[24] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric
indefinite systems of linear equations, SIAM J. Numer. Anal., 8 (1971),
pp. 639–655.

[25] S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino,
Stopping criteria for inner iterations in inexact potential reduction methods:
a computational study, Comput. Optim. Appl., 36 (2007), pp. 165–193.

[26] S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino, and
G. Toraldo, Convergence analysis of an inexact potential reduction method
for convex quadratic programming, J. Optim. Theory Appl., 135 (2007),
pp. 355–366.

[27] J. Castro, A specialized interior-point algorithm for multicommodity net-
work flows, SIAM J. Optim., 10 (2000), pp. 852–877.

130

[28] J. Castro and J. Cuesta, Quadratic regularizations in an interior point
method for primal block-angular problems, Math. Program., 130 (2011),
pp. 415–445.

[29] J. Castro and S. Nasini, A specialized interior-point algorithm for huge
minimum convex cost flows in bipartite networks, European J. Oper. Res.,
290 (2021), pp. 857–869.

[30] J.-S. Chai and K.-C. Toh, Preconditioning and iterative solution of
symmetric indefinite linear systems arising from interior point methods for
linear programming, Comput. Optim. Appl., 36 (2007), pp. 221–247.

[31] S. Cipolla and J. Gondzio, Proximal stabilized interior point methods
and low-frequency-update preconditioning techniques, J. Optim. Theory Appl.,
197 (2023), pp. 1061–1103.

[32] S. Cipolla, J. Gondzio, and F. Zanetti, A regularized in-
terior point method for sparse optimal transport on graphs, 2023.
arXiv:2307.05186v1[math.OC].

[33] M. Colombo and J. Gondzio, Further development of multiple centrality
correctors for interior point methods, Comput. Optim. Appl., 41 (2008),
pp. 277–305.

[34] J. Cornelis and W. Vanroose, Convergence analysis of a regular-
ized inexact interior-point method for linear programming problems, 2021.
arxiv.2105.01333[math.OC].

[35] Y. Cui, K. Morikuni, T. Tsuchiya, and K. Hayami, Implementation
of interior-point methods for LP based on Krylov subspace iterative solvers
with inner-iteration preconditioning, Comput. Optim. Appl., 74 (2019),
pp. 143–176.

[36] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal trans-
port, in Advances in Neural Information Processing Systems, C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds., vol. 26,
Curran Associates, Inc., 2013.

[37] S. I. Daitch and D. A. Spielman, Faster approximate lossy generalized
flow via interior point algorithms, in Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, New York, NY, USA, 2008,
Association for Computing Machinery, p. 451–460.

[38] M. D’Apuzzo, V. De Simone, and D. di Serafino, On mutual impact
of numerical linear algebra and large-scale optimization with focus on interior
point methods, Comput. Optim. Appl., 45 (2010), pp. 283–310.

[39] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection,
ACM Trans. Math. Software, 38 (2011), pp. 1–25.

131

[40] V. De Simone, D. Di Serafino, J. Gondzio, S. Pougkakiotis, and
M. Viola, Sparse approximations with interior point methods, SIAM Rev.,
64 (2022), pp. 954–988.

[41] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton
methods, SIAM J. Numer. Anal., 19 (1982), pp. 400–408.

[42] D. di Serafino and D. Orban, Constraint-preconditioned Krylov solvers
for regularized saddle-point systems, SIAM J. Sci. Comput., 43 (2021),
pp. A1001–A1026.

[43] H. S. Dollar, N. Gould, W. Schilders, and A. Wathen, Implicit-
factorization preconditioning and iterative solvers for regularized saddle-point
systems, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 170–189.

[44] D. Ek and A. Forsgren, Approximate solution of system of equations
arising in interior-point methods for bound-constrained optimization, Com-
put. Optim. Appl., 79 (2021), pp. 155–191.

[45] , A structured modified Newton approach for solving systems of nonlin-
ear equations arising in interior-point methods for quadratic programming,
Comput. Optim. Appl., (2023).

[46] A. S. El-Bakry, R. A. Tapia, and Y. Zhang, A study of indicators for
identifying zero variables in interior-point methods, SIAM Rev., 36 (1994),
pp. 45–72.

[47] L. Elden and V. Simoncini, A numerical solution of a Cauchy problem
for an elliptic equation by Krylov subspaces, Inverse Problems, 25 (2009),
p. 065002.

[48] H. C. Elman, A. Ramage, and D. J. Silvester, IFISS: a Matlab
toolbox for modelling incompressible flow, ACM Trans. Math. Software, 33
(2007), pp. 14–es.

[49] , IFISS: a computational laboratory for investigating incompressible
flow problems, SIAM Rev., 56 (2014), pp. 261–273.

[50] M. Essid and J. Solomon, Quadratically regularized optimal transport
on graphs, SIAM J. Sci. Comput., 40 (2018), pp. A1961–A1986.

[51] E. Facca and M. Benzi, Fast iterative solution of the optimal transport
problem on graphs, SIAM J. Sci. Comput., 43 (2021), pp. A2295–A2319.

[52] K. Fountoulakis, J. Gondzio, and P. Zhlobich, Matrix-free interior
point method for compressed sensing problems, Math. Program. Comput., 6
(2014), pp. 1–31.

[53] A. Frangioni and C. Gentile, New preconditioners for KKT systems
of network flow problems, SIAM J. Optim., 14 (2004), pp. 894–913.

132

[54] A. Frangioni and S. Serra Capizzano, Spectral analysis of (sequences
of) graph matrices, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 339–348.

[55] M. A. Freitag and A. Spence, Convergence of inexact inverse iter-
ation with application to preconditioned iterative solves, BIT Numerical
Mathematics, 47 (2007), pp. 27–44.

[56] R. Freund, F. Jarre, and S. Mizuno, Convergence of a class of inexact
interior point algorithms for linear programs, Math. Oper. Res., 24 (1999),
pp. 50–71.

[57] M. P. Friedlander and D. Orban, A primal-dual regularized interior-
point method for convex quadratic programs, Math. Program. Comput., 4
(2012), pp. 71–107.

[58] S. Gazzola and M. Sabaté Landman, Krylov methods for inverse
problems: surveying classical, and introducing new, algorithmic approaches,
GAMM-Mitt., 43, p. e202000017.

[59] C. T. L. S. Ghidini, A. R. L. Oliveira, J. Silva, and M. I. Velazco,
Combining a hybrid preconditioner and a optimal adjustment algorithm to
accelerate the convergence of interior point methods, Linear Algebra Appl.,
436 (2012), pp. 1267–1284.

[60] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns
Hopkins University Press, Baltimore, USA, 1996.

[61] J. Gondzio, Multiple centrality corrections in a primal-dual method for
linear programming, Comput. Optim. Appl., 6 (1996), pp. 137–156.

[62] , Warm start of the primal-dual method applied in the cutting plane
scheme, Math. Program., 83 (1998), pp. 125–143.

[63] , Interior point methods 25 years later, European J. Oper. Res., 218
(2012), pp. 587–601.

[64] , Matrix-free interior point method, Comput. Optim. Appl., 51 (2012),
pp. 457–480.

[65] , Convergence analysis of an inexact feasile interior point method for
convex quadratic programming, SIAM J. Optim., 23 (2013), pp. 1510–1527.

[66] J. Gondzio, P. Gonzalez-Brevis, and P. Munari, New developments
in the primal-dual column generation technique, European J. Oper. Res.,
224 (2013), pp. 41–51.

[67] , Large-scale optimization with the primal-dual column generation
method, Math. Program. Comput., 8 (2016), pp. 47–82.

[68] J. Gondzio, M. Lassas, S.-M. Latva-Aijo, S. Siltanen, and
F. Zanetti, Material-separating regularizer for multi-energy x-ray tomog-
raphy, Inverse Problems, 38 (2022), p. 025013.

133

[69] J. Gondzio, S. Pougkakiotis, and J. W. Pearson, General-purpose
preconditioning for regularized interior point methods, Comput. Optim.
Appl., 83 (2022), pp. 727–757.

[70] J. Gondzio and F. N. C. Sobral, Quasi-Newton approaches to interior
point methods for quadratic problems, Comput. Optim. Appl., 74 (2019),
pp. 93–120.

[71] , Polynomial worst-case iteration complexity of quasi-Newton
primal-dual interior point algorithms for linear programming, 2022.
arXiv:2208.08771[math.OC].

[72] C. Gottschlich and D. Schuhmacher, The shortlist method for fast
computation of the Earth mover’s distance and finding optimal solutions to
transportation problems, PLoS ONE, 9 (2014), p. e110214.

[73] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, Journal of Research of NIST, 49 (1952), pp. 409–436.

[74] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization
with PDE constraints, in Mathematical modelling: theory and applications,
Springer, 2009.

[75] M. E. Hochstanbach and Y. Notay, Controlling inner iterations in the
Jacobi-Davidson method, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 460–
477.

[76] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press,
New York, USA, 1990.

[77] L. Kantorovich, On the translocation of masses, Manag. Sci., 5 (1958),
pp. 1–4.

[78] C. T. Kelly, Iterative methods for linear and nonlinear equations, SIAM,
Philadelphia, USA, 1995.

[79] J. L. Kennington and R. V. Helgason, Algorithms for network pro-
gramming, John Wiley and Sons, New York, 1980.

[80] M. Kojima, N. Megiddo, and S. Mizuno, A primal—dual infeasible-
interior-point algorithm for linear programming, Math. Program., 61 (1993),
pp. 263–280.

[81] J. Korzak, Convergence analysis of inexact infeasible-interior-point algo-
rithms for solving linear programming problems, SIAM J. Optim., 11 (2000),
pp. 133–148.

[82] P. Kovacs, Minimum-cost flow algorithms: an experimental evaluation,
Optim. Methods Softw., 30 (2015), pp. 94–127.

134

[83] H. Ling and K. Okada, An efficient Earth mover’s distance algorithm
for robust histogram comparison, IEEE Trans. Pattern Anal. Mach. Intell.,
29 (2007), pp. 840–853.

[84] Z. Lu, R. Monteiro, and J. W. O’Neal, An iterative solver-based infea-
sible primal-dual path-following algorithm for convex quadratic programming,
SIAM J. Optim., 17 (2006), pp. 287–310.

[85] M. E. Lubbecke and J. Desrosiers, Selected topics in column generation,
Oper. Res., 53 (2005), pp. 1007–1023.

[86] T. A. Manteuffel, An incomplete factorization technique for positive
definite linear systems, Math. Comp., 34 (1980), pp. 473–497.

[87] S. Mehrotra, On the implementation of a primal-dual interior point
method, SIAM J. Optim., 2 (1992), pp. 575–601.

[88] Q. Merigot, A multiscale approach to optimal transport, Computer Graph-
ics Forum, 30 (2011), pp. 1583–1592.

[89] S. Mizuno and F. Jarre, Global and polynomial-time convergence of an
infeasible-interior-point algorithm using inexact computation, Math. Pro-
gram., 84 (1999), pp. 105–122.

[90] B. Morini and V. Simoncini, Stability and accuracy of inexact interior
point methods for convex quadratic programming, J. Optim. Theory Appl.,
175 (2017), pp. 450–477.

[91] B. Morini, V. Simoncini, and M. Tani, Spectral estimates for unreduced
symmetric KKT systems arising from interior point methods, Numer. Linear
Algebra Appl., 23 (2016), pp. 776–800.

[92] , A comparison of reduced and unreduced KKT systems arising from
interior point method, Comput. Optim. Appl., 68 (2017), pp. 1–27.

[93] J. L. Mueller and S. Siltanen, Linear and nonlinear inverse problems
with practical applications, SIAM, 2012.

[94] A. Natale and G. Todeschi, Computation of optimal transport with
finite volumes, ESAIM: M2AN, 55 (2021), pp. 1847–1871.

[95] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New
York, 1999.

[96] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for
the partial symmetric eigenproblem, Numer. Linear Algebra Appl., 9 (2002),
pp. 21–44.

[97] A. R. L. Oliveira, A new class of preconditioners for large-scale linear
systems from interior point methods for linear programming, PhD thesis,
Department of Computational and Applied Mathematics, Rice University,
Houston, TX 77005, 1997.

135

[98] A. R. L. Oliveira and D. C. Sorensen, A new class of precondition-
ers for large-scale linear systems from interior point methods for linear
programming, Linear Algebra Appl., 394 (2005), pp. 1–24.

[99] J. B. Orlin, A polynomial time primal network simplex algorithm for
minimum cost flows, Math. Program., 78 (1997), pp. 109–129.

[100] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems
of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[101] J. W. Pearson and J. Gondzio, Fast interior point solution of quadratic
programming problems arising from PDE-constrained optimization, Numer.
Math., 137 (2017), pp. 959–999.

[102] J. W. Pearson and A. J. Wathen, A new approximation of the Schur
complement in preconditioners for PDE-constrained optimization, Numer.
Linear Algebra Appl., 19 (2011), pp. 816–829.

[103] G. Peyre and M. Cuturi, Computational optimal transport: with ap-
plications to data science, Found.Trends in Machine Learning, 11 (2019),
pp. 355–607.

[104] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Júdice,
A truncated primal-infeasible dual-feasible network interior point method,
Networks, 35 (2000), pp. 91–108.

[105] S. Pougkakiotis and J. Gondzio, Dynamic non-diagonal regularization
in interior point methods for linear and convex quadratic programming, J.
Optim. Theory Appl., 181 (2019), pp. 905–945.

[106] , An interior point-proximal method of multipliers for convex quadratic
programming, Comput. Optim. Appl., 78 (2021), pp. 307–351.

[107] M. G. Resende and G. Veiga, An implementation of the dual affine
scaling algorithm for minimum-cost flow on bipartite uncapacitated networks,
SIAM J. Optim., 3 (1993), pp. 516–537.

[108] R. T. Rockafellar, Monotone operators associated with saddle-functions
and minimax problems, in Nonlinear Functional Analysis (Proc. Sympos.
Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 241–250.

[109] D. J. Rose, A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations, in Graph Theory and Computing,
Academic Press, 1972, pp. 183–217.

[110] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia,
USA, 2003.

[111] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’H, A deflated
version of the conjugate gradient algorithm, SIAM J. Sci. Comput., 21
(2000), pp. 1909–1926.

136

[112] M. Saunders and J. A. Tomlin, Solving regularized linear programs using
barrier methods and KKT systems, Technical Report SOL 96-4, Systems
Optimization Laboratory, Dept. of Operations Research, Stanford University,
(1996).

[113] B. Schmitzer, A sparse multiscale algorithm for dense optimal transport,
J. Math. Imaging Vision, 56 (2016), pp. 238–259.

[114] L. Schork and J. Gondzio, Implementation of an interior point method
with basis preconditioning, Math. Prog. Comp., 12 (2020), pp. 603–635.

[115] J. Schrieber, D. Schuhmacher, and C. Gottschlich, DOTmark - a
benchmark for discrete optimal transport, IEEE Access, 5 (2017), pp. 271–
282.

[116] D. Silvester and V. Simoncini, An optimal iterative solver for symmetric
indefinite systems stemming from mixed approximation, ACM Trans. Math.
Software, 37 (2011), pp. 1–22.

[117] D. A. Spielman and S.-H. Teng, Nearly linear time algorithms for
preconditioning and solving symmetric, diagonally dominant linear systems,
SIAM J. Matrix Anal. Appl., 35 (2014), pp. 835–885.

[118] A. Stathopoulos, Nearly optimal preconditioned methods for Hermitian
eigenproblems under limited memory. Part I: seeking one eigenvalue, SIAM
J. Sci. Comput., 29 (2007), pp. 481–514.

[119] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to
test chordality of graphs, test cyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs, SIAM J. Comput., 13 (1984).

[120] A. Taylor and D. J. Higham, CONTEST: A controllable test matrix
toolbox for Matlab, ACM Trans. Math. Softw., 35 (2009).

[121] E. Van Den Berg, M. P. Friedlander, G. Hennenfent, F. J.
Herrman, R. Saab, and O. Yilmaz, Sparco: a testing framework for
sparse reconstruction, ACM Trans. Math. Softw., 35 (2009), pp. 1–16.

[122] L. Vandenberghe and M. Andersen, Chordal graphs and semidefinite
optimization, Found.Trends Optimization, 1 (2014), pp. 241–433.

[123] F. Vanderbeck, Implementing mixed integer column generation, in Column
Generation, J. Desaulniers, J. Desrosiers, and M. M. Solomon, eds., Springer,
US, 2005, pp. 331–358.

[124] F. Vanderbeck and L. A. Wolsey, Reformulation and decomposition of
integer programs, in 50 Years of Integer Programming 1958-2008, M. Junger,
T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. A. Wolsey, eds., Springer, Berlin Heidelberg, 2010,
pp. 431–502.

137

[125] R. J. Vanderbei, Symmetric quasidefinite matrices, SIAM J. Optim., 5
(1995), pp. 100–113.

[126] M. I. Velazco, A. R. L. Oliveira, and F. F. Campos, A note on
hybrid preconditioners for large-scale normal equations arising from interior-
point methods, Optim. Methods Softw., 25 (2010), pp. 321–332.

[127] F. Viger and M. Latapy, Efficient and simple generation of random
simple connected graphs with prescribed degree sequence, in International
Computing and Combinatorics Conference, Springer, 2005, pp. 440–449.

[128] N. K. Vishnoi, Lx = b Laplacian solvers and their algorithmic applications,
Found. Trends Theor. Comput. Sci., 8 (2012).

[129] J. Wijesinghe and P. Chen, Matrix-free interior point methods for point
set matching problems, 2022. arXiv:2202.09763[math.OC].

[130] S. J. Wright, A path-following interior-point algorithm for linear and
quadratic problems, Ann. Oper. Res., 62 (1996), pp. 103–130.

[131] , Primal-dual interior-point methods, SIAM, Philadelphia, USA, 1997.

[132] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM
Journal on Algebraic Discrete Methods, 2 (1981).

[133] F. Zanetti and J. Gondzio, An interior-point-inspired algorithm for
linear programs arising in discrete optimal transport, INFORMS J. Comput.,
35 (2023), pp. 1061–1078.

[134] , A new stopping criterion for Krylov solvers applied in interior point
methods, SIAM J. Sci. Comput., 45 (2023), pp. A703–A728.

[135] G. Zhou and K.-C. Toh, Polynomiality of an inexact infeasible interior
point algorithm for semidefinite programming, Math. Program., 99 (2004),
pp. 261–282.

138

	Abstract
	Introduction
	Preliminary notions
	Useful results from graph theory
	Useful results from linear algebra
	Useful results about Krylov methods
	Useful results from optimization

	Interior point methods
	Fundamentals of interior point methods
	Convergence of IPMs
	Linear algebra of IPMs
	Predictor correctors techniques in IPMs

	An interior point method for tomographic imaging
	Introduction
	Specialized interior point method
	Structure of the normal equations matrix
	Preconditioner for the normal equations
	Results
	Conclusion

	Early stopping of the linear solver in interior point methods
	Introduction
	Interior Point Method
	Estimating the convergence of the outer iterations
	Stopping criterion
	Numerical results
	Conclusion

	Interior point method for discrete optimal transport
	Introduction
	From optimal transport to optimization
	 Interior-point-inspired algorithm for optimal transport
	Solution of the normal equations
	Numerical results
	Conclusion

	Regularized interior point method for optimal transport on graphs
	Introduction
	Computational Framework
	Properties of the regularized normal equations system
	Sparsification of the reduced matrix
	Numerical Results
	Conclusion

	Conclusions

