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Abstract
In recent years, the field of privacy-preserving technologies has experienced con-

siderable expansion, with zero-knowledge proofs (ZKPs) playing one of the most

prominent roles. Although ZKPs have been a well-established theoretical construct

for three decades, recent efficiency improvements and novel privacy applications

within decentralized finance have become the main drivers behind the surge of

interest and investment in this area. This momentum has subsequently sparked

unprecedented technical advances. Non-interactive ZKPs (NIZKs) are now reg-

ularly implemented across a variety of domains, encompassing, but not limited

to, privacy-enabling cryptocurrencies, credential systems, voting, mixing, secure

multi-party computation, and other cryptographic protocols.

This thesis, although covering several areas of ZKP technologies and their appli-

cation, focuses on one important aspect of NIZKs, namely their malleability. Mal-

leability is a quality of a proof system that describes the potential for altering an

already generated proof. Different properties may be desired in different appli-

cation contexts. On the one end of the spectrum, non-malleability ensures proof

immutability, an important requirement in scenarios such as prevention of replay at-

tacks in anonymous cryptocurrencies. At the other end, some NIZKs enable proof

updatability, recursively and directly, a feature that is integral for a variety of con-

texts, such as private smart contracts, compact blockchains, ZK rollups, ZK virtual

machines, and MPC protocols generally.

This work starts with a detailed analysis of the malleability and overarching security

of a popular NIZK, known as Groth16. Here we adopt a more definitional approach,

studying certain properties of the proof system, and its setup ceremony, that are

crucial for its precise modelling within bigger systems. Subsequently, the work ex-

plores the malleability of transactions within a private cryptocurrency variant, where

we show that relaxing non-malleability assumptions enables a functionality, specifi-

cally an atomic asset swap, that is useful for cryptocurrency applications. The work

culminates with a study of a less general, algebraic NIZK, and particularly its up-

datability properties, whose applicability we present within the context of ensuring

privacy for regulatory compliance purposes.

iii



Acknowledgements
No one walks the path truly alone. I am grateful to many people who motivated and

supported me on a long journey of which this thesis is a significant milestone.

To my parents and family, treating me with kindness and patience, but at the same

time cultivating and always supporting my curiosity.

To my friends and partners, providing equal amount of friendly peer pressure and

warm support when it was most needed.

To Markulf Kohlweiss, my PhD supervisor, for the valuable advice during the course

of this degree and the growth opportunity that it constitutes.

To my teachers Dmitry Schtukenberg and Jan Malachowski for the character-defining

inspiration during my undergrad years.

iv



Declaration
I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified.

(Mikhail Volkhov )

v



Dedication:

To Π, comparable to Ï in certain ways, but fundamentally superior in most.

vi



Table of Contents

1 Introduction 1

1.1 Decentralization, Privacy, Accountability . . . . . . . . . . . . . . . . 2

1.2 Zero-Knowledge Arguments . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Malleability in Cryptography . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11

2.1 Basic Notions and Notation . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Bilinear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Models and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Non-Interactive Commitments . . . . . . . . . . . . . . . . . . . . . 23

2.6 Zero-Knowledge Arguments . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Updatable and Malleable NIZKs . . . . . . . . . . . . . . . . 29

2.6.2 Simulation-Extractability and Limits of Malleability . . . . . . . 33

2.6.3 SNARKs and Groth16 . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Distributed Ledgers . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Privacy in Ledgers . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 Asset Exchange in Private Ledgers . . . . . . . . . . . . . . 43

2.8 Privacy for Accountability . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Extraction and Malleability in Groth16 49

3.1 Approaching SNARK Soundness Algebraically . . . . . . . . . . . . 52

3.2 White-box Weak SE of Groth16 . . . . . . . . . . . . . . . . . . . . . 54

3.3 Malleability of Groth16 . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Black-box Weak SE of Groth16 . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 BB Weak SE with Internal Encryption . . . . . . . . . . . . . 66

vii



3.4.2 BB Weak SE with External Encryption . . . . . . . . . . . . . 68

3.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Secure Non-Malleable Ceremonies for SNARKs 87

4.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Extended Discrete Logarithm Assumption . . . . . . . . . . . . . . . 94

4.3 Ceremonial SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Update Proofs of Knowledge . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 White-box Simulation-Extraction with Oracles . . . . . . . . . 99

4.4.2 On the Security of BGM Update Proofs . . . . . . . . . . . . 102

4.5 Groth16 is Ceremonial . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Ceremony Overview . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2 Formal Description . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Batched VerifySRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Deferred Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8.1 Lemmas for Groth16 Completeness . . . . . . . . . . . . . . 126

4.8.2 Proofs for Update Knowledge Soundness . . . . . . . . . . . 127

4.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Multi-Asset Swaps from SNARKs 143

5.1 Technical Overview and Related Work . . . . . . . . . . . . . . . . . 146

5.2 Commitments and Open Randomness . . . . . . . . . . . . . . . . . 148

5.3 One-Time-Account Scheme . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Zswap Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4.1 Protocol Definition . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4.2 Atomic Swap: A Workflow Example . . . . . . . . . . . . . . 162

5.4.3 Security Modelling with Support Oracles . . . . . . . . . . . . 163

5.4.4 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 The Zswap Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.6 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6 Exploding Commitments and Applications to AML 201

6.0.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . 205

viii



6.1 Updatable Algebraic Arguments . . . . . . . . . . . . . . . . . . . . 208

6.2 Exploding Commitments . . . . . . . . . . . . . . . . . . . . . . . . 215

6.2.1 Security Properties . . . . . . . . . . . . . . . . . . . . . . . 218

6.3 Efficient Realization of Exploding Commitments . . . . . . . . . . . . 221

6.3.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . 222

6.3.2 Achieving Soundness Using NIZKs . . . . . . . . . . . . . . . 226

6.3.3 Updatability for the Consistency Language . . . . . . . . . . 234

6.4 Security Proofs for ECS Construction . . . . . . . . . . . . . . . . . . 239

6.5 Instantiation and Performance . . . . . . . . . . . . . . . . . . . . . 248

6.6 Extensions and Applications . . . . . . . . . . . . . . . . . . . . . . 252

6.6.1 External Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.6.3 Applications to Accountable Privacy Preserving Blockchains . 254

6.6.4 Traditional AML . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.6.5 Blockchain AML . . . . . . . . . . . . . . . . . . . . . . . . . 257

7 Conclusion 261

Bibliography 265

ix





Chapter 1

Introduction

It becomes increasingly hard to find a space in this world that is free of technology,

yet is meaningfully connected to the comforts, physical and psychological, that the

modern day life is associated with. Even in the corners of our planet that are more

disconnected from the economic and financial hubs it is always present, looming,

and reaching from the outside: through the politics, through the goods, through the

news and hearsay. Technology can be enlightening, but it can be also invasive;

it can be liberating, but at the same it can be brittle and unreliable. In the age of

rapid advancements in machine learning, that rather often come, quite justifiably,

under the label of artificial intelligence, we cannot afford treating technology as

something that is given us for free. It is not, it never was, and it becomes only

more obvious over time. And while we must keep aside the question of developing

a human culture that approaches computers with a proper understanding of the

many caveats that often come without an appropriate warning, the responsibility of

professionals in the field is very much within the scope of this work.

Cryptography as a field is, arguably, more often viewed as an inhibitor of this pro-

cess, making protocols more secure, robust, reliable; more private; more user-

friendly. Often, cryptographic trends tend to be reactions to external challenges.

One recent example is the novel emphasis on the technical area of zero-knowledge

machine learning (ZKML [awe, 2023]), that seeks to make machine learning mod-

els more aligned and user-friendly, trying to counter their tendency to abuse data

and disregard individual or group rights over general performance. Differential

privacy [Desfontaines and Pejó, 2020] is a different, more established approach,

1



2 Chapter 1. Introduction

which is nevertheless also quite similar in its end goal. However, it is also ab-

solutely undeniable that the steady growth of cryptocurrencies and decentralized

finance, that attracted a significant amount of attention and capital to the field, was

rather disruptive for certain markets. This being just one of the prime examples,

the others — such as digital identity schemes, privacy-oriented instant messen-

ger protocols, cloud computations, private machine learning, just to mention a few

— are also changing both the landscape of technology and experience of human

interaction with it.

But, vaguely paraphrasing Anne Morrow Lindbergh [Lindbergh, 2011], one can-

not solve all the beautiful technological problems of the modern world; and I am

convinced that many of them are not computer science problems at all. However

one must focus on just a few, and in this way they will be more impressive, if they

are only few. In this work we will focus on how different malleabilities (think: mov-

ing pieces) of cryptographic primitives, and in particular so-called zero-knowledge

proofs (ZKPs) affect the privacy and security of cryptographic protocols. Undoubt-

edly, ZKPs will become much more central in many user-facing protocols due to the

practical advancements in the field, and their power to control privacy in a much

more granular way than it is often possible otherwise. Although zero-knowledge

proofs find applications in many areas, the problems we are focusing on in this the-

sis are mostly relevant to cryptocurrencies, or more generally decentralized ledger

protocols, which we will therefore cover first.

1.1 Decentralization, Privacy, Accountability

Sparked by the success of cryptocurrencies in the early 2010s, the term Web3

came to be associated with the new generation of web protocols that highlight

decentralization and token-based economics. Surely, decentralized protocols ex-

isted before that; however, the growing popularity of blockchain-based protocols

is indeed more salient than could have been estimated, and this becomes only

more obvious when web3 is contrasted with the concurrent growth of the big IT

companies, and the all-engulfing centralized services and infrastructures that they

provide.

The first half-decade of active cryptocurrency development was perhaps best char-

acterised by research and experiments with the basic protocols, where Bitcoin [Nakamoto,



1.1. Decentralization, Privacy, Accountability 3

2008] undoubtedly was occupying the most visible place. Later, however, the fo-

cus shifted towards diverse financial instruments that can be realized with them.

Decentralized finance (DeFi [Werner et al., 2021]), an umbrella term that covers

such financial instruments in the cryptocurrency community, is one of the raison

d’être of Ethereum [Wood et al., 2014], a cryptocurrency popularized by the wide

applicability of its smart contract toolchain. One of the foundational pieces of DeFi

is the ability (of the distributed ledger) to create user-defined tokens, and trade or

exchange them directly on-chain. Ethereum, by providing Turing complete smart

contracts and the ERC tokens standards (e.g. ERC20 or non-fungible ERC721),

allows building tools such as automated exchanges [Xu et al., 2021], investment

platforms12, bidding platforms, insurance tools, NFT marketplaces, etc. Many more

DeFi platforms [Gilad et al., 2017, Kiayias et al., 2017, Goodman, 2014] and cross-

chain solutions [Wood, 2016, Kwon and Buchman, 2019] exist nowadays, present-

ing different economic and usability trade-offs.

Privacy in cryptocurrencies and DeFi is not merely a niche political or academic

question. Even though human privacy as a basic right is not always a priority in

web3, e.g., most transactions on Bitcoin or Ethereum are done pseudonymously

(which, for most users, is not a concern until it is), privacy also has deep eco-

nomic implications. Another reason for this seeming unpopularity is that combining

privacy with DeFi tools is often technically challenging.

To solve the problem, many privacy-preserving cryptocurrencies, like Monero [Noether

et al., 2016] and Zcash [Hopwood et al., 2022] to mention the most popular ones,

have been developed. These solutions are undoubtedly practical, and ample aca-

demic research in the area is available [Alonso and Joancomartí, 2018, Ben-Sasson

et al., 2014a, Fauzi et al., 2019, Bünz et al., 2020a, Fuchsbauer et al., 2019, Kerber

et al., 2019]. The task they solve is basic and important — a private, yet secure,

exchange of basic tokens. However, this task is also minimal, and most DeFi pro-

tocols that attract market attention cannot be captured by their limited functionality.

Other, often more involved solutions try to tackle this question, such as private

smart contracts [Kosba et al., 2016, Kerber et al., 2021b] and privacy-friendly de-

centralized exchanges [Baum et al., 2021], but often find it hard to balance practical

applicability with the privacy guarantees they provide. Flexibility, so desirable for

1https://compound.finance/markets
2https://polygon.market.xyz/

https://compound.finance/markets
https://polygon.market.xyz/


4 Chapter 1. Introduction

DeFi, is at odds with privacy, since solutions that achieve both generally requires

heavier cryptographic primitives, like general NIZKs, or multi-party computation

(MPC).

For example, one of the active research areas is private exchange of assets [En-

gelmann et al., 2021, Chu et al., 2020, Gao et al., 2019] — quite an important basic

DeFi functionality, which we focus on in Chapter 5. The relative lack of attention

to it is unfortunate, as privacy on the blockchain, such as transaction anonymity or

transfer amount secrecy, is not only interesting per se (for the end user), but also

changes the financial landscape of the ecosystem. This can be advantageous,

for example, if restricting the adversarial view prevents certain harmful behaviour

that results from gaming the market (e.g. frontrunning, Miner Extractable Value).

Consider a miner which observes a buy-order for an asset that is either from a

notorious investor or has an exceptionally large transfer amount. The miner can

buy that asset itself early and cheaply before the order drives up the price of the

asset. Private swaps of assets can mitigate such attacks. In Chapter 5 we suggest

a cryptocurrency mechanism that has both support for owning multiple assets, and

an embedded functionality to perform non-interactive atomic assets swaps (as well

as regular transfers).

Another important aspect of DeFi is its relation to the traditional finance. While

DeFi is only starting to gain traction, most value is still concentrated within the

traditional mechanisms, that run in compliance to the laws imposed by the inter-

national agreements, governments, and centralised financial institutions. At this

point it is, arguably, not clear, how certain aspects of traditional finance can be de-

centralized effectively. Certain concepts, especially trust and real-world, physical

accountability, are quite effectively monetized in traditional finance, while lacking

good analogues in DeFi that tends to be more anonymous and transient. Moreover,

the law itself is complex, convoluted, often vague, and therefor hard to digitalize.

One example of this are anti-money-laundering policies, which are sometimes im-

plemented in the form of huge legacy codebases, run within the bank, that analyse

transactions for suspiciousness based on certain enforced by law, but also privately

developed and obscure algorithms.

This problem of balancing the need for accountability with the decentralized sys-

tem’s tendency towards privacy is definitely not an easy one; this does not mean,

however, that there is necessary a hard limitation. Many technical solutions exist
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and are being developed; some of them are still simplistic in nature, but there is

hope that scaling is not impossible. Approaching from the traditional side, central-

ized cryptocurrencies (CBDC [Danezis and Meiklejohn, 2016, Wüst et al., 2019,

Barki and Gouget, 2020, Lipp et al., 2021, Kiayias et al., 2022]) aim to provide

banks with more cryptocurrency-like protocols for monetary control; thus providing

more transparency and privacy to the end users. On the other side, there exist

blockchain protocols, decentralized in nature, that offer certain kind of accountabil-

ity (transaction limits, or partial disclosure of otherwise anonymous data on inves-

tigation), that are supposed to make these protocols more appealing for traditional

policy makers [Chen et al., 2020, Bogatov et al., 2021, Badertscher et al., 2021].

The protocol that we develop in Chapter 6 finds a direct application in the private

AML case; more precisely, it can be used for a variety of private score tracking,

credit score tracking being one of the examples.

1.2 Zero-Knowledge Arguments

A zero-knowledge proof [Goldwasser et al., 1985] (ZKP) is a cryptographic primi-

tive that allows to prove knowledge of a statement that depends on a secret data,

without disclosing the data itself. More technically, assuming R(x,w) is a certain

public relation (potentially, NP), encoded as a computer program, where x is public

and w is private (called instance and witness correspondingly), a ZKP can prove

that there exists a witness w such that R(x,w) = 1, while keeping w secret. The

primitive’s powerful functionality often comes as surprising to the people outside of

the cryptographic community; and indeed, ZKPs can be used to build novel proto-

cols, such as private cryptocurrencies as we mentioned earlier.

The practicality of ZKPs has not always been a given. The last decade have seen

rapid advancements in the development of the so-called Succinct Non-interactive

Arguments of Knowledge (SNARKs) [Groth, 2010, Lipmaa, 2012, Parno et al.,

2013, Danezis et al., 2014, Groth, 2016] — a type of ZKPs with very attractive real-

world properties, most importantly succinctness, which implies constant-sized (or

logarithmic) proofs. This has enabled the use of zero-knowledge proofs in practical

systems, especially in the context of blockchains [Ben-Sasson et al., 2014a, Kosba

et al., 2016, Steffen et al., 2019, Bowe et al., 2020, Kerber et al., 2021b]. The ready

availability of cryptographic libraries implementing SNARKs has also inspired nu-
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merous other applications [Naveh and Tromer, 2016, Delignat-Lavaud et al., 2016].

But practical ZKPs are not limited by SNARKs only; many other works, notably

based on the so-called Sigma protocols [Bünz et al., 2018, Attema and Cramer,

2020, Lee, 2021, Arun et al., 2022] have found wide practical applications. One

of the important distinguishing factors between the two categories is that often

SNARKs need to rely on a common reference string — a piece of data that must be

generated using an MPC (colloquially called a “ceremony”) before the SNARK can

be used; thus they need a form of a trusted setup. Although Sigma-protocol based

approaches are less efficient, they often do not need this step and are therefore

transparent. Our construction in Chapter 6 crucially depends on a NIZK by Couteau

and Hartmann [Couteau and Hartmann, 2020], that is a variant of a Sigma-protocol

offering novel properties when executed in the so-called bilinear group setting.

One zk-SNARK enjoys a particular focus in this work, namely Groth16 [Groth,

2016]. Due to its exceptional performance, simplicity, and near optimal proof size,

until very recently it was one of the most deployed SNARKs; and even though the

trends in ZK research are changing quite fast, Groth16 is likely to remain an im-

portant milestone in the cryptographic literature, maybe comparable to ElGamal

encryption [ElGamal, 1985] and Schnorr [Schnorr, 1991] or DSA [PUB, 1993] sig-

nature schemes. We analyse different aspects of Groth16 in Chapters 3 and 4; the

latter focuses exactly on the security of the ceremony for Groth16, which is quite

characteristic of this type of NIZKs.

1.3 Malleability in Cryptography

From a practical perspective, cryptography is a set of engineering practices that

are concerned with building secure tools for specialists in other areas, such as

software engineers, protocol designers, and policymakers. But unlike construction

tools, a failure in a cryptographic primitive has widespread, long-lasting and often

devastating consequences. While Ford can recall a series of faulty trucks, the dan-

ger caused is often localised (only a few individuals will suffer; this poses no danger

to international security), gradual (cars will rarely explode; most will get into minor

incidents), and it is comparably easy to fix (albeit expensive). This is why cryptog-

raphy as a field first focused on the primitives that satisfy the basic functionality, and

provably nothing more — such as IND-CCA encryption [Rackoff and Simon, 1992],
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EUF-CMA signatures [Goldwasser et al., 1988], or strongly simulation-extractable

ZKPs [Sahai, 1999] — before the question of anything “moving” within the primitive

became practically relevant.

But things have changed, and in the search for innovative functionalities the field

moved towards accepting more multifunctional and exotic, as traditionally viewed,

primitives: e.g. fully homomorphic encryption [Gentry, 2009, Cheon et al., 2017],

malleable signatures [Chase et al., 2014, Hanser and Slamanig, 2014, Crites and

Lysyanskaya, 2019], reusable MPC [Benhamouda and Lin, 2020], updatable gar-

bled circuits [Ananth et al., 2017], extendable ring signatures [Aranha et al., 2022],

and malleable NIZKs.

Malleable NIZKs are particularly interesting because they are complex enough to

be practically interesting, but also well-understood enough to be feasible for certain

applications. The term malleable in the context of NIZKs means that, most gener-

ally, the NIZK can be transformed into another one. We will say that a malleable

NIZK is updatable to highlight this transformation action as a desired functionality,

especially if this malleability is not trivial, e.g. the new NIZK attests to an updated

instance x′.

There are several different ways to achieve NIZK malleability. The most prominent

nowadays is using recursive techniques that allow reasoning about verifiability re-

lation of the proof system within the proof relation (or circuit) itself [Bitansky et al.,

2013, Ben-Sasson et al., 2014b, Chase et al., 2014, Bünz et al., 2021a, Kotha-

palli et al., 2022]. The approach is sometimes called “proof-of-a-proof”, because

it suggests creating proofs about proofs. This direction of research gives rise to

constant-size blockchain protocols [Bonneau et al., 2020b], efficient proof batch-

ing, PCDs, one-layer recursion for function privacy, and other applications. The

functionality of recursive proofs is powerful, and the scope of application is wide;

this, naturally, comes with certain practical limits on the circuit size.

But recursion is not the only avenue for applied ZKP malleability, and it is not the

one we focus on in this thesis. Some zero-knowledge proofs are not tailored for

circuit satisfiability, and thus it is hard to make them verify their own proofs recur-

sively; and nevertheless these ZKPs can be malleable in critical ways. Often these

ways are subtle; malleable proofs for small algebraic languages can be more practi-

cal for designing malleable signature schemes or delegatable credentials [Belenkiy
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et al., 2009, Crites and Lysyanskaya, 2019]. An example for such application is the

protocol in Chapter 6.

1.4 Thesis Outline

In the following Chapter 2, Background, we review most of the common crypto-

graphic notions necessary for understanding the rest of the thesis. We will include

not only existing results, but also minor common-knowledge results, lemmas, and

a literature overview of the related areas.

The rest of the chapters contain novel results that correspond to individual papers:

• Chapter 3: Extraction and Malleability in Groth16. We start investigating

the notion of NIZK malleability by examining Groth16. Formally, we focus

on the security property called Simulation Extractability (SE), a necessary

security property for a NIZK argument to achieve Universal Composability

(UC), a common requirement for such protocols.

Most of the works that investigate SE focus on its strong variant which im-

plies proof non-malleability. In this chapter we focus on a relaxed weaker

notion, that we call weak-SE. It allows proof randomization, while guarantee-

ing statement non-malleability, which we argue to be more natural a security

property in many practical contexts. The main result of the chapter is that we

show that it is already achievable by Groth16, which was not observed before

(Section 3.2). As an important corollary, we formally analyse randomizability

of Groth16 in Section 3.3. The rest of the chapter deals with the practical ap-

plications of weak-SE: we show that Groth16 can be efficiently transformed

into a black-box weak SE NIZK, the stronger notion that is sufficient for UC

protocols.

• Chapter 4: Secure Non-Malleable Ceremonies for SNARKs. In this chap-

ter we investigate ceremonies for zk-SNARKs, again targeting Groth16. Our

intention is to close the empirical gap that existed between the ceremony

protocol and the NIZK itself, for which we present a holistic security frame-

work. We then revisit the BGM ceremony protocol [Bowe et al., 2017b] for a

variant of Groth16. We show that the original construction can be simplified

and optimized, and then prove its security in our new framework. Importantly,
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our construction avoids the random beacon model used in the original work.

Here, we focus on the (non-)malleability of the CRS, as our intention is to

show that the resulting reference string is valid despite the complicated na-

ture of updates during the ceremony. Even though the resulting NIZK is the

same Groth16 we saw in Chapter 3, this section tackles a hard problem of

modelling updatability algebraically. The techniques we develop and use are

generalizable to other algebraic settings.

• Chapter 5: Multi-Asset Swaps from SNARKs. Here we focus on private

cryptocurrencies that employ SNARKs, and investigate the malleability of

transactions, given SNARKs. By combining insights and security properties

from Zcash and SwapCT ([Engelmann et al., 2021], an atomic swap sys-

tem for Monero), we present a simple zk-SNARK-based transaction scheme,

called Zswap, which is somewhat malleable to allow the merging of transac-

tions, while preserving anonymity and security. Our protocol enables multiple

assets and atomic exchanges by making use of sparse homomorphic com-

mitments with aggregatable open randomness, together with Zcash-friendly

simulation-extractable NIZK proofs. This results in a provably secure privacy-

preserving transaction protocol, with efficient swaps, and overall performance

close to that of existing deployed private cryptocurrencies. Practically, it is

similar to Zcash Sapling and benefits from existing code bases and imple-

mentation expertise.

The investigations in this chapter started initially with examining whether up-

datable signatures, playing central role in SwapCT, can be replaced by up-

datable NIZKs, with, potentially, a functional improvement in the application.

The temporary conclusion was that transaction malleability can be achieved

by simpler means; we show that in this case we merely need a rerandomiz-

able SNARK together with a homomorphic encryption scheme.

• Chapter 6: Exploding Commitments and Applications to AML. This chap-

ter develops and positively answers the question of applicability of malleable

NIZKs asked in the previous chapter. Here we focus on updatability of sim-

pler, algebraic NIZKs, and the applications of such updatability.

First, we examine the NIZK by Couteau and Hartmann [Couteau and Hart-

mann, 2020], which has specific updatability properties, not previously cov-
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ered in the literature. We specify and elaborate on these properties in Sec-

tion 6.1. The main contribution of the chapter is exemplifying the practical

relevance of this strong NIZK malleability.

Therefore in Section 6.3 we introduce the notion of Exploding Commitment

Scheme (ECS) and provide its realization which relies non-trivially on the

NIZK while being concretely optimal and realistically useful. The main func-

tionality of the ECS is to enable a set of users to maintain and homomorphi-

cally update a commitment to a value, while allowing a regulator party to learn

only a pre-agreed predicate on it (whether the aggregated value “explodes”

or not?). In our construction, the commitment maintained by the users hides

the value x, but provides the regulator with a verifiable escrow of the predi-

cate value P (t,x) for a pre-selected regulator secret t. Updatable proofs are

combined with standard additively homomorphic Pedersen commitments to

prove soundness of homomorphic updates; we argue that this application of

updatable proofs is practically optimal, compared to the existing alternatives.

The ECS model can be used for a variety of anti-money laundering applica-

tions in both decentralized and traditional finance, such as maintaining credit

score, enforcing transaction spending limits, or implementing generic rating

mechanisms.



Chapter 2

Background

2.1 Basic Notions and Notation

Following the standard notions of complexity theory, computational cryptographic

definitions are most commonly defined w.r.t. Turing machines (TM) that take 1λ as

an input parameter, explicitly or implicitly. Here, λ ∈ N is the so-called security

parameter, and 1λ is a unary representation of it (i.e. a string of length λ containing

only character 1). Often these algorithms will take elements that already depend

on λ — e.g. for a λ-bit sized group G and g,h ∈ G, A(g,h) takes λ implicitly. Most

algorithms we encounter are either (uniform) deterministic polynomial time (DPT),

or (uniform) probabilistic polynomial-time (PPT), which are defined as TMs that run

in polynomial time in λ.

We say that a function f : N → R is negligible, if for all big enough λ, f(λ) <

1/p(λ) for all polynomials p(λ). For simplicity we write g(λ) = negl(λ) or g(λ) ≤
negl(λ) to denote that g(λ) is some negligible function; similarly g(λ) = poly(λ)

denotes that g(λ) is some polynomial function. The terms overwhelming, as in “with

overwhelming probability” or “w.o.p.”, applied to g(λ) similarly means that 1−g(λ) =
negl(λ).

We write y r← A(x) or y ← A(x; r) when a PPT algorithm A outputs y on input x

and uses random coins r. Often we drop r for simplicity, and just write y $←− A(x).
Similarly, x $←− D denotes random sampling from a distribution D, and when this

notation is used with a finite set S, x $←− S denotes uniform sampling from S.

A view of an algorithm A is a list denoted by viewA which contains the data that

11



12 Chapter 2. Background

fixesA’s execution trace: (private) random coins, its inputs (including ones from the

oracles), and outputs. We refer to the “transcript” implying only the public part of

the view: that is input and output interactions of A with oracles and the challenger.

Any algorithm B running any PPT A within itself will have access to the transcript,

since it is always possible to wrap all external communication channels of A to

record what they return. Access to the view, additionally containing random coins,

usually implies that the algorithm A cannot sample private coins secretly from the

party running it.

All our sets are ordered multisets by default, more resembling data structures than

mathematical sets. The set minus operation A \ B removes as many values in A

as there are in B: if B has more values of the same type than in A, the number

of elements in the resulting set is 0. The function ToSet(S) removes all duplicate

entries in the multiset S and sorts the result according to some predefined ordering,

essentially converting S to a “proper” set.

For two positive integers m < n, we denote discrete intervals of the form {m,m+

1, . . . ,n} as [m,n]; in the special case of m = 1, we write is as [n]. We write |S|
for the cardinality of the set S, |x⃗| for the length of the vector x⃗, thus [|S|] means

{1 . . . |S|}.

When indexing families of values, we commonly use comma to separate subscripts,

e.g. {Gα,j,k}j,k can denote a (j, k) indexed family of α-tagged elements. In this

case α is merely a tag, a label for a collection. Sometimes we use semicolon for

readability, e.g. {Gβx:i}ni=0 is a vector Gβx indexed by i, where βx is a tag. Where

subscripts are indices and where they are tags is not uniform, but in most cases

clear from the context.

We use notation
p
≈, s≈, c≈ to denote perfect, statistical, and computational indistin-

guishability correspondingly. The first one is equality of distributions; for definitions

of the second and the latter one see e.g. [Goldreich, 2001][Sec 3.2.2].

We write vectors in bold and with an arrow on top interchangeably, e.g. a or a⃗. We

write a⃗ · b⃗ for the inner product of two vectors a⃗ and b⃗.

When working with multi-variable polynomials, we generally use upper case letters

for indeterminates as X,Y , ∆,Xγ , and lower case for concrete values x, y, δ, γ.

We use vector notation to denote a list of formal variables, so for X = X1, . . . ,Xn,

we write P (X) ∈ F[X1 . . . Xn] = F[X] for a polynomial in these variables, and for
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a x ∈ Fn, P (x) will denote the polynomial evaluation P (x1, . . . ,xn). Let a⃗ and b⃗ be

vectors of length n. We say that the vector c⃗ of length 2n − 1 is a convolution of a⃗

and b⃗ if

ck =
∑

(i,j)∈[n]×[n]:
i+j=k+1

aibj for k ∈ {1, . . . , 2n− 1}

In particular, multiplying the polynomial
∑n

i=1 aiX
i−1 with

∑n
i=1 biX

i−1 produces∑2n−1
i=1 ciX

i−1.

We will denote languages and relations interchangeably in the following manner:

LR = {x | ∃ w. (x,w) ∈ RL}, where x ∈ X is a (public) instance, w ∈ W is

a (secret) witness, and the relation RL is a subset of X × W . Defining R also

determines LR uniquely; and similarly languages L we work with in most cases

uniquely define RL (most of our L are NP).

Algorithms in this work will be written in a pseudocode with the following conven-

tions. We use pairs like acc/rej or expl/under for readability as aliases for 1/0 or

⊤/⊥. The equality-question-mark combination ?
= denotes the boolean result of an

equality check between the expressions surrounding the symbol, while ̸= denotes

the negation of ?
=. Abort (“abort”) by default means returning ⊥ immediately, and

assertions (“assert P ”) for a boolean value P abort when ¬P . The operator ←
denotes creation of a new value or variable, while := denotes re-assignment of the

existent variable. Whenever we do not explicitly use one output of an algorithm, we

denote the unspecified output place with ·, e.g. “(x, ·)← Alg(y)” binds the first out-

put to variable x and leaves the second output unbound to any variable name. The

symbol @ denotes temporary variable assignment in the pattern-matching cases,

e.g. “(a@(x, y), z) ← Foo(1λ)” means “((x, y), z) ← Foo(1λ); a ← (x, y)”. Parsing

or pattern-matching always implicitly asserts that the returned elements belong to

the correct domain or type: when the result of an assignment cannot be properly

pattern-matched, e.g. (a, b) ← Foo(1λ) where function Foo returns ⊥, non-tuple

value, wrong type of a or b, etc., the execution aborts.

2.2 Bilinear Groups

In this work we will consider Type III asymmetric bilinear groups [Galbraith et al.,

2006], with G1 ̸= G2 and without any efficiently computable isomorphism between

G1 and G2; we will formalise them in the following way. Let BGen(1λ) be a bilinear
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group generator that takes in a security parameter and outputs a bilinear group

description bp = (p,G1,G2,GT , ê,G,H) where G1,G2,GT are groups of prime

order p, G is a generator of G1, H is a generator of G2, and ê : G1×G2 → GT

is a non-degenerate and efficient bilinear map. Sometimes we will denote the

generators G1,G2 instead of G,H, depending on the context. For readability, we

will switch between additive and multiplicative notation where needed; however G1

and G2 will always have same type of notation in the same context. That is,

ê(G,H) is a generator of GT and for any a, b ∈ Zp, we can write ê([a]G, [b]H) =

ê(G,H)ab, where square brackets are used to merely separate field elements in

additive notation.

It will be convenient to additionally use square brackets notation to represent group

elements by specifying their exponents: [a]ι := [a]Gι ∈ Gι, ι ∈ {1, 2,T}. We will

denote the (exponent-level) pairing for the square brackets notation as [a]1 • [b]2 :=

ê([a]G, [b]H) = [ab]T . When a is a vector of values ai ∈ Zp, we will overload the

square brackets notation, and denote a vector of [ai]ι by [a]ι. In the same way

we will overload [{a, b, c, . . .}]ι = {[a]ι, [b]ι, [c]ι, . . .} for sets. When a set or vector

A contains elements from several groups, we will denote it by combining all the

group indices in the subscript, e.g. [A]1,2,T if A contains elements from all the three

groups, e.g. {[A1]1, [A2,A3]2, [A4]T}. In some protocols, especially in Chapter 6,

we will primarily work in G1; thus whenever clear from the context, we will drop the

index and just write G for G1, and G for its generator. The bracket notation also

applies to the non-bilinear, single group scenario, e.g. in Chapter 5; in this case

the ι group index is omitted.

2.3 Models and Assumptions

Cryptographic security statements are often formulated in terms of certain asymp-

totic probabilistic statements involving protocol algorithms. Cryptographic proofs in

our work will be done in the standard game-transition style [Shoup, 2004], where

a probabilistic statement about a certain algorithm, called a game, will be trans-

formed step by step, until we reach a different statement that we can easily reason

about. The transitions between games will be either perfect, statistical, or compu-

tational. In the last, computational case, the proof of a valid transition is by showing

a reduction — generally, such an algorithm R, that if two games are not computa-
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tionally indistinguishable by PPT A,R(A) will break an assumed property called a

cryptographic assumption.

Most important assumptions in this work will be quite standard. For example, we

will commonly employ the discrete logarithm (DL or DLOG) assumption in a fi-

nite group, or variants of the Diffie-Hellman (DH) assumption. The computational

DLOG asumption states that it is computationally hard to compute exponents of

randomly sampled elements in the given group:

Definition 2.3.1 (Computational Discrete Logarithm Assumption). Let G be a cyclic

group with a generator G ∈ G. We say that the computational discrete logarithm

assumption holds in G, if for all PPT A,

AdvDLG,A :=
∣∣∣Pr [H $←− G; c

$←− A(H) : Gc = H
]∣∣∣ = negl(λ)

The decisional DDH assumption claims that even given [x], [y] ∈ GG for uniformly

sampled x, y ∈ Zp, it is hard to distinguish between a uniformly sampled [z] ∈ Zp
and the product [xy] ∈ GG. In the following experiments the bit b switches between

these two cases; remember that xy + z is distributed uniformly, similarly to z itself.

Definition 2.3.2 (Decisional Diffie-Hellman Assumption). Let G be a cyclic group

with a generator G = [1]. We say that the decisional Diffie-Hellman assumption

holds in G, if for all PPT A, AdvDDHG,A := |ε0 − ε1| = negl(λ), where

εb := Pr
[
x, y, z

$←− Z∗p : A([x], [y], [xy + bz]) = 1
]

Both DL and DDH belong to the category of falsifiable assumptions — intuitively,

this means that there is always a way to provably falsify that the assumption does

not hold In the case of DL and DDH that is because they are formulated with

respect to an interactive PPT challenger C. This is somewhat implicit, but the

winning condition is on the probability of the game which interacts with A; this is

exactly the challenger machine. If a falsifiable assumption does not hold, C(A)
is an explicit test proving that the assumption is broken. For more details, see

[Goldwasser and Kalai, 2016][Definition 5].

In this work we will often employ the term standard model. The term is quite over-

loaded and does not always have a well-defined meaning, but within this work it will

say that we are in the standard model, if we are using only these well-understood

falsifiable assumptions. Sometimes, “standard model” is used in a weaker sense
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to imply that no other assumptions are made; that is “under assumption X in the

standard model” means that only X is assumed, and nothing else implicitly.

A non-falsifiable assumption is an assumption that does not match the definition of

falsifiability. A common template example is a statement of the form ∀A.∃E .Pr(· · · ) =
negl(λ), which cannot be falsified. This is because in order to break this assump-

tion we would need to present A for which no extractor E “works”; however it is

hard to prove statements about non-existence of certain algorithms without addi-

tional assumptions. An example of this non-falsifiable template are the so-called

knowledge assumptions [Damgård, 1992] and various group models (AGM and

GGM) that we discuss next.

The order of quantifiers imposes not only limits on falsifiability, but also on the way

machines access each other. We say that a PPT E (extractor) has black-box ac-

cess to a PPT A, if it can only “run A externally” — that is, examine its outputs on

certain data. In terms of quantification, a black-box extractor is introduced before

the program it extracts from: e.g. ∃E .∀A. P (E(A(·), . . .), . . .) = 1 is a statement

that makes E explicitly take A as an input in a black-box way. However, in many

falsifiable assumptions we will often encounter white-box access, which is an um-

brella term for modelling anything beyond black-box access; e.g. white-box access

can model having access to the code of A, or to its private coins or “hardcoded”

secrets, even when E cannot run A directly. This ultimately is a result of ∀A.∃E
quantification order — since E is introduced after A, its existence depends on

all the potential aspects of A. For example, for each adversary A with a “hard-

coded” secret key inside there exists a machine E that returns that secret key;

the opposite black-box analogue (∃E .∀A) is not always true, because it deals with

computational ability of E to understand what the secret key is from A’s behaviour.

The generic group model (GGM), proposed by Shoup [Shoup, 1997], is an en-

compassing way of modelling cryptographic assumptions, that explicitly assumes

a strong property of an adversary — that it can only interact with the group in the

black-box way, in line with its interface. The algebraic group model [Fuchsbauer

et al., 2018] (AGM), which we will use in this work, is an extension and relaxation

of GGM, which also assumes that the adversary has a certain form, but instead

of interacting with the group directly as in GGM, an AGM adversary is assumed

to explain the group elements it returns as linear combinations of the elements it

saw. The AGM is therefore located between the GGM and the standard model. We
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discuss the AGM in the following subsection 2.3.

Lastly, we will make use of the so-called random oracles — a class of special or-

acles that map their inputs to the randomly sampled elements. When used in the

standard model, we refer to the setup as ROM (random oracle model); when used

within AGM, we will explicitly refer to it as “AGM with RO”. Random oracles were

introduced into applied cryptography in [Bellare and Rogaway, 1993], and they are

used to model hash functions, heuristically, mimicking hash function’s behaviour

producing random-looking outputs based on their input, in a deterministic manner.

However it must be said that actual security definitions for hash functions capturing

the aforementioned pseudorandomness are much more complex. Therefore, secu-

rity of the RO in this context is both well-established and questionable, depending

on the application. In most applications RO does lead to more efficient algorithms

that we do not know attacks for; but at the same time there exist examples clearly

illustrating unsoundness of ROM. Different variants of RO exist (read-only, pro-

grammable, etc), depending on how much power does the algorithm or reduction

have over the oracle, or in which context or model it is used (e.g. GGM [Dent,

2002] or universal composability [Canetti et al., 2014]). For more discussion on

ROM security in general, see e.g. [Koblitz and Menezes, 2015]. We elaborate on

how we use RO in this work in subsection 2.3.1.1.

2.3.1 Algebraic Modelling

In Chapter 5 and Chapter 6 we will be working primarily in the standard model,

sometimes with RO. In Chapter 3 and Chapter 4 that deal with Groth16, however,

our proofs will be very AGM-like; however we will use a variant of AGM which we

explain in this section.

Following [Fuchsbauer et al., 2018, Lipmaa, 2019], we say that a PPT algorithm

Aalg is algebraic, if there is a way to represent any group element it returns us-

ing elements it has seen before as a linear combination of these seen elements.

More precisely, when G is a cyclic group of prime order p, and Aalg has so far re-

ceived group elements G1, . . . ,Gn ∈ G and output a group element Gn+1 ∈ Gp,

then it has to also provide a vector of integer coefficients K⃗ = (k1, . . . , kn) ∈ Znp
such that Gn+1 =

∏n
i=1G

ki
i . Security against algebraic adversaries can be formal-

ized either as a white-box knowledge-extraction assumption [Boneh and Venkate-
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san, 1998, Paillier and Vergnaud, 2005, Lipmaa, 2019], or by defining a sepa-

rate cryptograpic model as done in the algebraic group model (AGM) [Fuchsbauer

et al., 2018]. We are following the extraction assumption style from [Lipmaa,

2019], without considering the stronger hashed version that additionally allows

A to sample random elements in G without knowing their exponents. Formally,

the set of algebraic coefficients K⃗ is obtained by calling the algebraic extractor

K⃗ ← Extalg
A (viewA) that is guaranteed to exist for any algebraic adversary A. This

extractor is white-box and requires A’s view to run, not just the transcript — this

includes A’s private coins, and without it the definition is too demanding, since it is

not reasonable to assume that it is possible to definitely extract linear coefficients

from A it its private coins are unknown.

Definition 2.3.3 (Algebraic Algorithm, [Lipmaa, 2019]). A PPT algorithmA is alge-

braic with respect to a cyclic group Gι of prime order p, if there exists a polynomial

time extractor Extalg
A returning a coefficients matrix K, such that for all m and all

efficiently sampleable distributions D over (Z∗p)m,

Pr
[
σ

$←− Dλ; e
$←− A([σ]ι);K ← Extalg

A (viewA) : e ̸= [Kσ]ι

]
= negl(λ).

The definition covers only the case of a single group; however it is easy to see

how it can be extended to asymmetric bilinear groups — Extalg
A should return K

with m1 +m2 rows, and the condition in the probabilistic statement is changed to

(e1 e2)
T =

[
K(σ1 σ2)

T
]
1,2

. Similarly, it is trivially extended to the case when A
obtains elements from an oracle (where viewA captures communication with it) —

we assume that the inputs to the oracle must be similarly “explained” in terms of

linear combinations; and outputs of oracle queries are counted as additional group

elements that A sees.

The discrete logarithm assumption (Definition 2.3.1) is central to secure groups,

but especially in the AGM case. In proofs with algebraic adversaries, we use the

following variant of the discrete logarithm assumption [Fuchsbauer et al., 2018].

Definition 2.3.4 ((q1, q2)-dlog). Let bp := (p,G1,G2, . . .)
$←− BGen(1λ) be a Type

III bilinear group. We say that (q1, q2)-Discrete Logarithm Assumption holds in bp if

for all PPT A,

Pr
[
x

$←− Z∗p; z
$←− A(bp, [x, . . . ,xq1 ]1, [x, . . . ,xq2 ]2) : x = z

]
= negl(λ).
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The real-world security of q-dlog assumptions is analysed in [Blake and Gare-

falakis, 2004, Cheon, 2006, Kozaki et al., 2007] suggesting an attack taking about

O(
√
p/q +

√
q) evaluations, where p = |G |.

We also state two lemmas that will be useful in our AGM proofs.

Lemma 2.3.1 ([Bauer et al., 2020]). LetQ be a non-zero polynomial in Zp[X1, . . . ,Xn]

of total degree d ≥ 0. Define Q′(Z) := Q(R1Z + S1, . . . ,RnZ + Sn) in the ring

(Zp[R1, . . . ,Rn,S1, . . . ,Sn])[Z]. Then the coefficient of the highest degree mono-

mial in Q′(Z) is a degree d polynomial in Zp[R1, . . . ,Rn].

Proof. See Lemma 2.1 in [Bauer et al., 2020].

Lemma 2.3.2 (Schwartz-Zippel). Let P be a non-zero polynomial in Zp[X1, . . . ,Xn]

of total degree d ≥ 0. Let S ⊂ Zp, then

Pr
[
x1, . . . ,xn

$←− S : P (x1, . . . ,xn) = 0
]
≤ d

|S|

Proof. See e.g. [Moshkovitz, 2010] or [Bünz and Fisch, 2022].

2.3.1.1 Random Oracle for Algebraic Adversaries

Random oracle in this work will me mostly used in Chapter 4 within the AGM con-

text, but also to some degree in Chapter 5 to prove certain property of a commit-

ment scheme. In this section we will focus on the former, more important use case;

the latter one can be seen as a sub-case.

In [Fuchsbauer et al., 2018] it is also shown how to integrate the AGM with the

random oracle model. In particular, we are interested in a RO that outputs group

elements. These elements, as usual, are sampled lazily: when first sampled, they

are added to the “history” set QRO, and on repeated queries they are taken from

QRO instead of sampling a response afresh.

In Chapter 4 however we will need a weakening of the programmable RO that we

refer to as a transparent RO, presented in Fig. 2.1. For convenience we will denote

RO(·) := RO0(·). Actual protocol algorithms and the adversary A in all security

definitions will only have access to the restricted oracle RO0(·). However, now with

RO1(·) the simulator can learn the discrete logarithm r of group elements as long

as it knows the input x. In the programmable RO, to learn the discrete logarithm,
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ROt(x):

% Initially QRO = ∅
if QRO[x] ̸= ⊥ then r ← QRO[x]

else r $←− Zp; QRO[x]← r

return (if t = 1 then r else Gr)

Figure 2.1: The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) :

{0, 1}∗ → Zp. We write RO(x) for the interface RO0(x) provided to protocols.

the simulator S would program the oracle to return Gr where r is chosen by S; with

our transparent RO S can learn the discrete logarithm r by querying RO1(x), and r

is chosen by the oracle itself, thus no programming is needed. Also note that when

one has access to the full ROt(·), it is always possible to pass only the restricted

version RO0(·) of it to the subroutine1, as done w.r.t A in all the relevant security

definitions.

When working with algebraic adversariesAwith RO, one remarkable detail with the

white-box access that is already assumed by the AGM is that viewA (introduced in

Section 2.1) includes the RO transcript (but not RO randomness), since it contains

all requests and replies A exchanges with the oracles it has access to, including

RO. Thus access to viewA is often sufficient for our proofs, even though we do

not otherwise explicitly model any extractor’s access to the RO history besides the

aforementioned post-run view of A.

2.4 Public Key Encryption

Public key encryption is among the most widely known cryptographic primitives,

and it allows a user to encrypt certain data to another party’s public key, which

that party can decrypt with their secret key. We formulate the standard notion of a

public key encryption scheme as follows.

Definition 2.4.1 (Public Key Cryptosystem). A public key cryptosystem PKC is a

triple of efficient algorithms (KeyGen,Enc,Dec) with the following functionality:

KeyGen(1λ)
$−→ (pk, sk): generates a public key pk and a secret key sk.

1Colloquially, A is a subroutine of B if B runs A as part of its own execution. To not be confused
with UC subroutines.
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Enc(pk,m; r)→ C: takes as an input a public key pk, a message m, and random-

ness r, and outputs a ciphertext C.

Dec(sk,C)→ m: takes in the secret key sk together with a ciphertext C, and out-

puts a message m.

In this work, it will be convenient to define PKC more generally for n-vectors of

messages, so assume that the message space is always a vector space. Every

non-vectorised PKC can be trivially converted to the vector PKC by repeating all

the algorithms n times.

The standard completeness property requires that all valid ciphertext decrypt to

the message that was used to create it.

Definition 2.4.2 (PKE Completeness). A PKC = (KeyGen,Enc,Dec) is (perfectly)

complete if for all (pk, sk) $←− KeyGen(1λ), andm, r in the message and randomness

spaces correspondingly, Pr [Dec(sk,Enc(pk,m; r)) = m] = 1.

The standard privacy property for public cryptosystems is INDistinguishability un-

der Chosen Plaintext Attacks which says that an efficient adversary has a negligi-

ble advantage of distinguishing C0
$←− Enc(pk,m(0)) from C1

$←− Enc(pk,m(1)) where

m(0),m(1) are chosen by the adversary:

Definition 2.4.3 (IND-CPA). A PKC = (KeyGen,Enc,Dec) satisfies indistinguisha-

bility under chosen plaintext attacks if for all λ ∈ N, and all stateful PPT A, the

following holds:

Pr



(pk, sk)
$←− KeyGen(1λ)

({m(0)
i }ni=0, {m

(1)
i }ni=0)

$←− A(pk)
b

$←− {0, 1}, r $←− R
C← Enc({m(b)

i }ni=1, r)

b′
$←− A(C)

return b′ = b


≤ 1

2
+ negl(λ)

where R is the randomness space defined implicitly by PKC.

A common variation of the IND-CPA definition where A gets several ciphertexts

instead of just one (still in the left-or-right fashion) is equivalent to IND-CPA.

We will only tangentally use more powerful PKE security notions, such as IND-

CCA and IK-CCA, in Theorem 5.3.6, where we will directly link the necessary defi-

nitions.
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2.4.1 ElGamal Encryption Scheme

We describe a common variant of ElGamal cryptosystem [ElGamal, 1984] that

is used to encrypt a vector of group elements; we will use it in Chapter 3 and

Chapter 6. Let G be a finite group of prime order p, and n ≥ 1 ∈ N; the message

space for the cryptosystem will then be Gn. The vector ElGamal cryptosystem is

defined as follows:

KeyGen(1λ):

1. Sample s1, . . . , sn
$←− Zp

2. return (pk := [s1, . . . , sn], sk := {si}ni=1)

Enc(pk, {Mi}ni=1 ∈ Gn; r):

1. if r = ⊥ then r $←− Zp

2. return c := ([r], r[s1] +M1, . . . , r[sn] +Mn)

Dec(sk, (C0,C1, . . . ,Cn) ∈ Gn+1):

1. for i ∈ [1,n] do Mi ← Ci − si · C0

2. return {Mi}ni=1

Another variant of this scheme, that we will return to as “exponent ElGamal”, works

with Znp as a message space, that is Enc receives {mi}ni=1 ∈ Znp as input and not

{Mi}ni=1 ∈ Gn. The encryption proceeds as before after converting each mi into

[mi] = Mi. But this modification has an inherent limitation: the messages have to

be small enough so that it is efficient to compute the discrete logarithm, since Dec

algorithm will still return [mi] ∈ G and not mi ∈ Zp; thus the decrypting party will

have to invert dlog which is only efficient for poly-sized message space ranges.

Both variants of ElGamal are known to be IND-CPA secure [Kurosawa, 2002] under

the DDH assumption.

Note that ElGamal is homomorphic: if C⃗1, C⃗2 are ciphertexts of M⃗1, M⃗2 correspond-

ingly w.r.t. a fixed pk, then the pairwise group-product C⃗1 · C⃗2 is an encryption

of the message M⃗ ′ where M⃗ ′
i = M⃗1,iM⃗2,i ∈ G, also with respect to the same

pk: In the case of exponent ElGamal, the message is a field-sum of messages

m⃗1,i + m⃗2,i ∈ Zp. We will use ElGamal homomorphism in Chapter 6.
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2.5 Non-Interactive Commitments

Commitment scheme allows a party to convert a message to a receipt (called

a commitment), without revealing the message itself; and to later prove that the

commitment was constructed with exactly this value “inside”. In this paper we will

mostly work with variants of the well-known Pedersen commitment scheme [Ped-

ersen, 1992], which we will formalise in this section as a sparse homomorphic

commitment (SHC) scheme.

An SHC scheme, or just SHC, is additively homomorphic for an exponential num-

ber of possible domains, also called types, however each commitment is sparsely

populated, i.e. few domains have a non-zero value. Between domains, there ex-

ists no homomorphic property. Constructions were proposed by [Poelstra et al.,

2019] and formalized by [Campanelli et al., 2021] which resemble vector Pedersen

commitments with ad-hoc generators.

Definition 2.5.1 (Sparse Homomorphic Commitment). An SHC scheme with mes-

sage space V, type space T, and randomness space R, consists of algorithms

ComSetup and Commit defined as follows:

ComSetup(1λ)→ pp: takes the security parameter λ and outputs the public pa-

rameters pp implicitly provided to Commit.

Commit({(tyi, ai)}ni=1, rc)→ com: takes a set of distinct types tyi ∈ T, corre-

sponding values ai ∈ V, together with the single randomness rc ∈ R, and

outputs a commitment com.

In addition, the SHC scheme must be homomorphic: V must be a group, and there

must exist an efficient operation ⊕, such that for any {tyi}ni=1 ∈ Tn, {(ai, a′i)}ni=1 ∈
(V× V)n and any rc, rc′ ∈ R it must hold that

Commit ({(tyi, ai)}n1 , rc)⊕ Commit ({(tyi, a′i)}n1 , rc′)

= Commit ({(tyi, ai + a′i)}n1 ,ϕ(rc, rc′))

for some function ϕ, where zero values must not affect the input set: Commit((ty, 0),

rc) = Commit(∅, rc).

In other words, homomorphic SHC is additive on the same type, but acts like a

vector commitment on distinct types.
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We write Commit(ty, a, rc) as a shorthand for Commit({(ty, a)}, rc). When we write

Commit(a, rc), we implicitly assume that SHC in scope is defined w.r.t. the singleton

type space T = {ty0}, and that commitment is created for this default type. Unless

specified otherwise “commitment scheme” always refers to this definition.

A secure commitment scheme must satisfy the standard binding and hiding prop-

erties. Binding guarantees that commitment cannot be opened to two distinct mes-

sages.

Definition 2.5.2 (Commitment Binding). An SHC w.r.t. (V,T,R) is binding if for all

(big enough) λ ∈ N and all PPT adversaries A, it holds that:

Pr



pp← ComSetup(1λ){(
{(ty(b)i , a

(b)
i )}nb

i=1, rc
(b)
)}1

b=0

$←− A(pp)

com(0) ← Commit
(
{(ty(0)i , a

(0)
i )}n1

i=1, rc
(0)
)

com(1) ← Commit
(
{(ty(1)i , a

(1)
i )}n2

i=1, rc
(1)
)

return com(0) = com(1) ∧(
{(ty(0)i , a

(0)
i )}n1

i=1, rc
(0)
)
̸=
(
{(ty(1)i , a

(1)
i )}n2

i=1, rc
(1)
)
∧(

∀b. {ty(b)i }
nb
i=1 distinct ∧

(
∀i. a(b)i ̸= 0

))


= negl(λ)

where (n0,n1) is implicitly returned byA and therefore each ni must be poly-sized.

Hiding guarantees that it is impossible to distinguish between two fresh commit-

ments, no matter what their content is.

Definition 2.5.3 (Commitment Hiding). An SHC w.r.t. (V,T,R) is hiding if for all

(big enough) λ ∈ N and all stateful PPT adversaries A, it holds that:

Pr



pp← ComSetup(1λ){(
{ty(j)i , a

(j)
i }

nj

i=0

)}1

j=0

$←− A(pp)

b
$←− {0, 1}, rc $←− R

com← Commit
(
{(ty(b)i , a

(b)
i )}nb

i=1, rc
)

b′ ← A(com)

return b′ = b


≤ 1

2
+ negl(λ)

Both definitions are given here in the computational flavour for illustrative purpose.

Perfect binding would contradict perfect hiding since for latter Commit must be

highly non-injective, so unbounded adversary can always find a collision; so only
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one property can be perfect. In our work we will assume commitment hiding to be

perfect ; in this case it can be formulated as perfect indistinguishability of distribu-

tions of comi (as given to A), for all possible inputs {({ty(j)i , a
(j)
i }ni=0)}1j=0.

2.5.1 Pedersen Commitment Scheme

Pedersen commitment scheme [Pedersen, 1992] is a simple and one of the most

commonly used commitment schemes. With a slight modification to support multi-

ple bases, derived from [Poelstra et al., 2019], it becomes a valid multi-base SHC.

Let G be a finite group of prime order p with a generator G. We present the

Pedersen commitment scheme with two possible instantiations. In static mode

we pre-sample a finite number of generators and use them as bases assuming

T = [1,nmax]. In the dynamic mode each base is chosen as the output of a random

oracle call on the type ty. The difference is only in the way the bases are mapped

to types which we express through the base mapping function bm : T → G; given

bm, the Commit algorithm is the same in both modes.

ComSetupstatic(1
λ,nmax):

1. Sample H1, . . . ,Hnmax

$←− G
2. bm← (i 7→ if i ∈ [1,nmax] then Hi else ⊥)
3. return bm

ComSetupdynamic(1
λ,RO):

1. return bm := (ty 7→ RO(ty))

Commit({(tyi, ai)}ni=1, rc):

1. assert ∀i ∈ [n]. bm(tyi) ̸= ⊥
2. return Grc ·

∏n
i=1 bm(tyi)

ai

In practice, the dynamic mode is instantiated by replacing RO by a cryptographic

hash function H : T → G. Then Commit({(tyi, ai)}, rc) := (
∏
H(tyi)

a)Grc with

ai, rc ∈ Zp. Sometimes we will refer to the dynamic mode Pedersen scheme as

“sparse Pedersen commitment scheme”, highlighting the fact that it supports poly-

nomial number of types without pre-processing.

Assuming DLOG in G, in the static mode Pedersen commitment scheme is secure

in the standard model, and in the dynamic mode it is secure in the ROM.
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2.6 Zero-Knowledge Arguments

Zero-knowledge argument systems enable a prover to convince a verifier of the

validity of a statement, without revealing any additional information beyond the truth

of the statement itself. We introduce the primitive gradually.

An argument of knowledge (AoK) is a two-party protocol, potentially interactive,

that can be formalised as a tuple of algorithms (Setup,Prove,Verify) with the follow-

ing semantics. The σ
$←− Setup(1λ) algorithm is run before any interaction occurs

and it returns a common reference string σ, which is used by Prove(σ, x,w) and

{0, 1} ← Verify(σ, x, π). The interaction is then between the prover party P which

runs Prove, and the verifier party V which runs Verify, where the latter outputs the

decision bit — whether verification passed or failed.

A non-interactive zero-knowledge argument of knowledge NIZK for the relation R
can be seen as a non-interactive AoK that is in addition zero-knowledge [Rackoff

and Simon, 1992]. Non-interactivity merely means that P does not expect any re-

sponse from V, and Prove only produces a single proof object π; and that Verify

similarly only works with its inputs and π obtained from P. Zero-knowledge, in-

formally, means that π does not “leak” any information about w; it is formalized

through the so-called simulator algorithm Sim.

Definition 2.6.1. A NIZK for a relation R is a tuple of algorithms (Setup,Prove,

Verify, Sim) with the following semantics:

Setup(λ)
$−→ (σ, td): generates a common reference string σ and a trapdoor td.

In real-world setups td must be discarded. Sometimes Setup will be taking

relation R as an input: by this we merely highlight that NIZK can work with a

class of relations, but a concrete one needs to be “fixed” in the setup phase.

Prove(σ, x,w)
$−→ π: produces a proof for (x,w) ∈ R;

Verify(σ, π, x)→ 0/1: verifies π w.r.t. the instance x, checking whether x ∈ LR;

Sim(σ, td, x)
$−→ π: using the trapdoor td for σ, creates a simulated proof π for

x ∈ LR without the corresponding witness w. Simulation is only used in

security definitions, since td must not be available in real world deployments.

For conciseness, we will sometimes assume σ is passed to all the algorithms im-

plicitly.
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It is important to note that the common reference string is necessary in the standard

model for achieving non-interactive zero-knowledge [Oren, 1987][Theorems 4,5].

However, CRS is not required for certain interactive protocols proven secure in the

ROM, and converted into non-interactive model using Fiat-Shamir heuristic [Fiat

and Shamir, 1987] that replaces the RO with a hash function. This includes basic

Σ-protocols — three-round public coin proofs of knowledge. We discuss ROM-

based NIZKs in more details later.

One important class of NIZKs that we will be working with are SNARKs, short

for succinct non-interactive arguments of knowledge. A SNARK (or a zk-SNARK,

used in this work interchangeably) is a NIZK that possesses a certain practical

compactness property called succinctness [Kilian, 1992]. Most importantly, the

proof has to beO(polylog(|x|+|w|)) sized for any fixed λ, which means that Prove of

a SNARK is, information-theoretically, quite compressing — in practice the proofs

are often either constant or log-sized. A well-known impossibility result [Gentry

and Wichs, 2011] states that SNARKs cannot be proven secure under falsifiable

assumptions. Sometimes the notion of succinctness is taken more liberally to also

imply some restrictions on the proving and verifying time, such as e.g. O(|x|)
verifier time. The practicality of novel SNARKs was perhaps the main driving force

behind the success of NIZKs in the last decade [Gennaro et al., 2013, Ben-Sasson

et al., 2013, Ben-Sasson et al., 2014c, Groth, 2016, Maller et al., 2019, Bowe et al.,

2019, Gabizon et al., 2019].

The bare minimum security definitions a NIZK must satisfy is the classical triple of

completeness, soundness, and zero-knowledge, which we present next.

Definition 2.6.2 (Completeness). A NIZK for a relation R is perfectly complete, if

for any σ
$←− Setup(1λ), and all (x,w) ∈ R,

Pr
[
Verify(σ,Prove(σ, x,w), x) = 1

]
= 1

where the randomness is over the random coins of Prove.

Definition 2.6.3 (Soundness). A NIZK for a relationR is computationally sound, if

for all x /∈ LR and all PPT A playing a role of a malicious prover,

Pr

[
σ

$←− Setup(1λ)

π
$←− A(σ)

: Verify(σ, π, x) = 1

]
= negl(λ)

where the randomness is over the random coins of Setup and A.
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In many cases, we use a stronger definition, knowledge soundness (KS), that holds

if from every verifying proof we can extract a witness. Knowledge soundness im-

plies soundness, and it implicitly models “knowledge” — not only the witness exists,

but it can be computationally extracted, if given a trapdoor td.

Definition 2.6.4 (Knowledge-Soundness). A NIZK for a relation R is knowledge-

sound (KS) if for any PPT adversary A there exists a polynomial time extractor

ExtA such that

Pr


(σ, td)← Setup(1λ)

(x, π)
$←− A(σ)

w← ExtA(σ, td, x, π)

:
Verify(σ, x, π) = 1 ∧
(x,w) /∈ R

 = negl(λ)

This definition is provided here in a weaker white-box fashion, where Ext is intro-

duced after A; however the black-box variant of extractability is easily achieved by

swapping the order of quantifiers. In this case the extractor does not even neces-

sarily need to depend on td.

Both soundness and knowledge-soundness were given in a computational flavour.

But it is possible to strengthen them by requiring perfect indistinguishability, that

is requiring Pr[. . .] = 0 instead of = negl(λ). In this case the system is called a

proof of knowledge, while computational definitions only give rise to an argument.

In this work, however, we will sometimes use these two terms interchangeably, and

instead focusing on which security definition a NIZK alone achieves.

Note, that as we mentioned before, td must be discarded in the real-world setups,

so the ability to extract the witness by KS does not contradict zero-knowledge,

which states that proofs should not “leak” the witness.

We recall the standard definition of zero-knowledge in two flavours explicitly since

we will use both of them.

Definition 2.6.5 (Computational Zero-Knowledge). A NIZK for a relationR is com-

putationally zero-knowledge, if for any PPT adversaryA, |ε0−ε1| = negl(λ), where

εb = Pr
[
(σ, td)← Setup(1λ) : ASb,σ,td(σ) = 1

]
.

The simulation oracle Sb,σ,td is the first variant as defined in Fig. 2.2.

Definition 2.6.6 (Perfect Zero-Knowledge). A NIZK for a relation R is perfectly
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Sb,σ,td(x,w):

1. assert (x,w) ∈ R
2. if b = 0 then π $←− Prove(σ, x,w)

3. else π $←− Sim(σ, td, x)

4. return π

Sσ,td(x):

1. π $←− Sim(σ, td, x)

2. % QS ← ∅ on init

3. QS := QS ∪ {(x, π)}
4. return π

Figure 2.2: Simulation oracles for a NIZK for a relation R. The first variant is

used for zero-knowledge game. The second variant is mostly used for simulation-

extractability variants.

zero-knowledge if for all (x,w) ∈ R{
(σ, π)

∣∣∣ (σ, td)
$←− Setup(1λ)

π
$←− Sim(σ, td, x)

}
p
≈

{
(σ, π)

∣∣∣ (σ, ·) $←− Setup(1λ)

π
$←− Prove(σ, x,w)

}

2.6.1 Updatable and Malleable NIZKs

Malleability of cryptographic primitives can be treated both as a disadvantage and

as functional feature. There exist many malleable cryptographic primitives that

find different real-life applications: many basic primitives like encryption schemes,

commitments, and signatures exhibit homomorphic properties, but also more com-

plicated primitives, such as proof systems, and in particular NIZKs can be made

malleable. Randomisability is commonly treated as a form of weak malleability, and

it is arguably more widespread than elaborate data-involving transformations. We

start by discussing the notion of NIZK malleability from a broader perspective. We

then state the malleability definitions that we will be using in this work.

Groth-Sahai Proofs. One of the first examples of NIZK malleability which was

successfully applied in practice is the Groth-Sahai (GS) proof system [Groth and

Sahai, 2008, Ghadafi et al., 2010]. GS proofs are constructed for a specific (NP-

complete) language of pairing equations (and for two other less powerful sublan-

guages). Their size is linear in the number of instance and witness elements form-

ing this equation. Assuming additive notation for the target group GT in the bilinear

setting, each pairing equation is a zero-sum linear combination of all witness (and

constant) elements, where equation coefficients are defined by an instance ma-

trix. As mentioned before, the malleability of GS proofs has been investigated

and applied practically. The work by Belenkiy et al. [Belenkiy et al., 2009] studies
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malleability and randomizability of GS proofs to construct delegatable anonymous

credentials, [Dodis et al., 2010, Acar and Nguyen, 2011, Fuchsbauer, 2011] in-

vestigate homomorphic properties of GS proofs to build, respectively, continuous-

leakage resilient signature scheme, revocation mechanism for DACs, and commut-

ing signatures. The work of CKLM [Chase et al., 2012] generalises transformations

on GS proofs. More on the application side, GS proofs are also used to construct

signatures of randomizable ciphertexts [Blazy et al., 2011], as well as to build scal-

able mix-nets [Hébant et al., 2020].

The fact that GS proofs are malleable is partially a result of the specificity of the

pairing equations language. There are two types of transformations one can apply

to them. First, both commitments to the values and the proof values are randomiz-

able, in a derivation-private sense – that is, it is hard to distinguish the randomized

proof from a freshly created one. Second, the proof itself can be mauled: one

can change its instance and modify the language description without knowing the

witness that was originally used to construct it. There are six transformations (as

described in [Chase et al., 2012]), that introduce, change or remove variables or

equations, combining the proofs correspondingly.

Recursion vs direct malleability. There exist two distinct paradigms for updating

proofs: changing or composing them directly, or creating a recursive proof-of-a-

proof.

The latter approach is widely used in practice these days. The basic scheme is tak-

ing a proof system with a flexible language, such as what most SNARKs support,

and specializing the NIZK for a recursive circuit: a circuit that can encode verifia-

bility of the proof system itself. This allows creating a so-called “proof-of-a-proof”,

giving rise to other powerful primitives such as incrementally verifiable computa-

tions (IVC [Valiant, 2008]) or proof-carrying data (PCD [Chiesa and Tromer, 2010]).

In practice though, recursive proof systems have to be both generally optimized

and sometimes tailored to the domain. Examples of such systems include [Bi-

tansky et al., 2013, Ben-Sasson et al., 2014b, Chase et al., 2014, Bowe et al.,

2019, Bünz et al., 2020c, Bünz et al., 2020b, Bünz et al., 2021a, Kothapalli et al.,

2021].

The direct approach to malleability is, roughly, everything that is not using the recur-

sion technique. Groth-Sahai proofs fall into this category, since updating the proof
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amounts to direct computation on the proof elements. The malleable proof sys-

tem by Couteau and Hartmann [Couteau and Hartmann, 2020] that we will focus

on in Chapter 6 is, too. To give another interesting example of direct malleability,

Ananth, Deshpande, Kalai and Lysyanskaya [Ananth et al., 2019] present a con-

struction that they call fully-homomorphic NIZK (FH-NIZK), for circuit satisfiability.

The fully homomorphic malleability property of this NIZK is expressed in the trans-

formation T : (π1, . . . , πn) 7→ π′ that allows to combine n proofs {πi}ni=1 attesting

to ∃wi. Pi(xi,wi) = bi where bi ∈ {0, 1}, into one combined proof π′ that attests

to the existence of all combined witnesses, where the resulting circuit is a custom

transformation P of the base circuits: ∃w1 . . . wn. P (P1(x1,w1), . . . ,Pn(xn,wn)).

Moreover, π′ is indistinguishable from a random proof on the combined circuit

P (P1(· , · ), . . . ,Pn(· , · )), that is the transformation is derivation-private.

Advanced malleability. Going a bit further, it is important to mention that some

works that present even more advanced versions of malleability. Ananth, Cohen,

and Jain [Ananth et al., 2017] introduce a cryptographic primitive named updat-

able randomized encoding (URE), that allows to build a generic updatable NIZK

(u-NIZK). URE is a very powerful cryptographic primitive. For bounded polynomial

number of updates it can be built from OWFs, for unbounded updates it can be

built from functional encryption (FE), and assuming LWE, URE implies FE. More-

over, output-compact URE implies exponentially-efficient indistinguishability obfus-

cation. Intuitively, the update mechanics of these more powerful proofs includes

ability of the updater to compute (potentially computationally hiding) functions of

the witness, and use them to create new proofs. This is while in the more basic

notions the updater only sees the witness in a particularly hidden way. The analogy

with functional encryption is clear.

In this work we will mostly study basic, direct, non-recursive malleability.

2.6.1.1 Definitions

Updatability for NIZKs is a general concept within malleability that covers its con-

structive side, like updates and their properties. This does not include limits of

malleability, a concept that we discuss later. In this section we elaborate on the

basic concepts, starting by examining languages and what updatability means for

them.
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Definition 2.6.7 (Updatable Language). A language L is updatable w.r.t. the class

of transformations T if for all T ∈ T , T = (Tx,Tw), and for all (x,w) ∈ RL it holds

that (Tx(x),Tw(w)) ∈ RL. We call such T valid transformations for L.

Note that the functions Tx : X → X,Tw : W → W are defined independently of

any particular instance and witness, i.e. in Tx the symbol “x” is only used as a label.

All the relations and functions we consider can be evaluated in polynomial time in

the security parameter.

In terms of the interface, updatable NIZKs are merely standard NIZKs that addi-

tionally allows transforming a proof for x into a proof for Tx(x) using a routine called

Update:

Definition 2.6.8 (Updatable NIZKs). A NIZK is updatable for a relation R and a

set of transformations T if, additionally to Definition 2.6.1 there exists an algorithm

Update(σ, π, x,T )
$−→ π′, that updates the proof π for x into π′ for Tx(x).

In addition, a secure updatable NIZK must satisfy two properties. First, update

completeness states that the updated proof must verify for the updated instance:

Definition 2.6.9 (Update Completeness). A non-interactive proof system for R
satisfies update completeness w.r.t. a set of transformations T , if given (σ, ·) $←−
Setup(1λ), for all x, π such that Verify(σ, π, x) = 1, and all T = (Tx, ·) ∈ T it holds

that Pr
[
Verify(σ,Update(σ, π, x,T ),Tx(x)) = 1

]
= 1.

Second, derivation privacy, states that updated proofs are distributed similarly to

fresh proofs for the new instance.

Definition 2.6.10 (Derivation Privacy). A non-interactive proof system for R satis-

fies derivation privacy w.r.t. a set of transformations T , if given (σ, ·) $←− Setup(1λ),

for all (x,w) ∈ R, all π such that Verify(σ, π, x) = 1, and all T = (Tx,Tw) ∈ T it

holds that {
Update(σ, π, x,T )

}
p
≈
{
Prove(σ,Tx(x),Tw(w))

}
Because updated proofs are distributed as fresh ones, they can be simulated us-

ing the standard simulator guaranteed by zero-knowledge; therefore transformed

proofs are also ZK. This property is inspired by derivation privacy in [Chase et al.,

2012].

We call a NIZK randomizable, if it can be nontrivially updated w.r.t. identity trans-
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formation Tid with the update being derivation private. Conceptually, this means

that the new π′ is distributed as a fresh proof. We will denote Rand(σ, π, x) :=

Update(σ, π, x,Tid).

Definition 2.6.11 (Proof Rerandomization). A NIZK for R is rerandomizable if it is

updatable w.r.t. the identity transformation Tid, and furthermore for all (x,w) ∈ R,

all σ output by Setup(Rλ) and all π such that Verify(σ, x, π) = 1 it holds that{
Rand(σ, π, x)

}
p
≈
{
Prove(σ, x,w)

}
where the randomness is over the random variables used in Prove and Rand.

Note that this definition is just derivation-privacy for Tid with different semantics for

convenience. The notion of proof rerandomization we use is similar to [Belenkiy

et al., 2009] and the ciphertext rerandomization in [Lee et al., 2019]:

2.6.2 Simulation-Extractability and Limits of Malleability

In Chapter 3, we consider an important perspective on the security analysis of

Groth16, namely the limits of its malleability (and non-malleability). The Groth16

NIZK is only randomizable, therefore only trivially updatable according to the defini-

tions from the previous section (T = Tid). However, these definitions we presented

so far only model which updates are possible, but they do not capture which ones

are impossible. In this section we capture this subtle yet important middle-ground.

Strong Simulation-Extractability. Arguably, the strongest soundness and non-

malleability property for NIZKs is (strong) simulation-extractability (SE) [Sahai, 1999,

De Santis et al., 2001], a security notion that extends knowledge-soundness (KS)

by giving the adversary access to the simulation oracle. One of the important prop-

erties of this notion is that its straight-line extractable, black-box variant seems

necessary to achieve universally composable (UC) security [Canetti, 2001] for

non-interactive zero-knowledge (NIZK) proof systems, as shown by [Canetti et al.,

2002, Groth et al., 2006, Groth, 2006]. This is an important practical concern since

applications employing NIZKs often use the UC framework due to its flexibility and

expressive power [Kosba et al., 2016, Kerber et al., 2019, Kerber et al., 2021b].

Second, SE is needed in game-hopping style proofs [Shoup, 2004] in which one

game hop introduces the simulator and a subsequent game hop relies on extrac-
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tion [Kosba et al., 2016, Camenisch et al., 2017]. Finally, the SE property allows us

to capture non-malleability which is not possible with just knowledge-soundness.

Definition 2.6.12 (Simulation-Extractability). A NIZK forR is (strongly) simulation-

extractable (SE) if for any PPT adversary A there exists a PT extractor ExtA such

that:

Pr


(σ, td)← Setup(1λ)

(x, π)← ASσ,td(σ)

w← ExtA(x, π)

:
Verify(σ, x, π) = 1 ∧
(x,w) /∈ R ∧ (x, π) /∈ QS

 = negl(λ)

where Sσ,td(x) is the second variant in Fig. 2.2, a simulator oracle that calls Sim(σ, td, x)

internally, and also records (x, π) into QS .

Let us examine what exactly does the property mean. First, it is easy to see that

it implies KS, since in SE we only give A more freedom by providing it with oracle

access. The main change is the winning condition: if the proof verifies, then either

the extractor succeeds, or the proof was simulated (in which case extractor can-

not succeed if the language is hard, because simulated proofs do not “contain” a

witness).

Second, SE guarantees that a NIZK is in a certain sense “instance-binding”. As-

sume a certain game produces proofs {πi} for a language with a hard sublan-

guage, e.g. x = (x1, x2) and x1 = f(w1) where f is a one-way function. Assume

further that by zero-knowledge we give the adversary simulated proofs instead of

the real ones. Then, if the NIZK is SE, A can only return either these simulated

proofs for the same instance, or we can extract w from them (in which case the

reduction essentially inverts f ). This means that A cannot change the x2 part in

{πi}; In practice this means that if the honest π hides certain secrets (a key, or

a secret random value; something we do not expect A to obtain), then A cannot

maul π into proofs for a “partially modified” instance.

A NIZK is called a signature of knowledge (SoK) [Chase and Lysyanskaya, 2006,

Groth and Maller, 2017] if the proof possesses this instance-binding property. SE

NIZKs are therefore automatically SoKs. By including m into the statement without

asserting anything about m in the relation, we can turn every NIZK into, simultane-

ously, a signature (of knowledge) on m.

Third, strong SE proofs are non-malleable. Note that even if a proof π is merely

randomisable, A could take a simulated proof π, randomise it into π′, and pass
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it back to the game. In this case, it would (1) still verify, (2) extractor will fail (we

cannot extract from simulated proofs), (3) (x, π′) /∈ QS holds. So A will win the

game; thus randomisable NIZKs are not strong SE.

Simulation-extractability is relevant for both CRS-based and Random-Oracle (RO)

based NIZKs. Faust et al. [Faust et al., 2012] show that NIZKs obtained from Σ-

protocols using the Fiat-Shamir heuristic satisfy (strong) simulation-extractability

in the ROM. This non-malleability result extends to other ROM NIZKs [Kohlweiss

and Zając, 2021, Ganesh et al., 2022a], essentially implying that directly malleable

NIZKs are only available in the standard/CRS model.

Weak Simulation-Extractability. In this work and particularly in Chapter 3, we

focus on the weaker flavor [Kosba et al., 2015], that allows limited malleability of

proofs in the form of randomizability. We achieve this by requiring the adversary

to produce a proof for a statement that differs from any of the statements queried

from the simulator.

Definition 2.6.13 (Weak Simulation-Extractability). A NIZK forR is (weakly) simulation-

extractable (weak SE) if for any PPT adversary A there exists a PT extractor ExtA
such that:

Pr


(σ, td)← Setup(1λ)

(x, π)← ASσ,td(σ)

w← ExtA(x, π)

:
Verify(σ, x, π) = 1 ∧
(x,w) /∈ R ∧ (∄π′. (x, π′) ∈ QS)

 = negl(λ)

where Sσ,td(x) is the second variant in Fig. 2.2.

The only thing we change is the (∄π′. (x, π′) ∈ Q) condition, which we will some-

times write as (x, ·) /∈ QS or even x /∈ QS

Weak SE and strong SE of proof systems can be seen as analogous to chosen

message attack (CMA) and strong CMA unforgeability of signatures. Note that

despite its name, weak SE is still a tremendously useful notion, since it models

simulation-based security (and thus allows the NIZK to be used in the simulation-

setting) without requiring non-malleability. In practice, many NIZKs are naturally

exactly randomizable without allowing more fundamental instance malleability. In

some cases, as we will show in Chapter 5, this randomizability is a desirable fea-

ture. Therefore, one has to require weak SE if one wants to use such NIZKs in the

simulation-based setting.
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We can also have a corresponding notion of weak simulation soundness, used

in Section 3.4, which is implied by white-box and black-box weak simulation ex-

tractability.

Definition 2.6.14 (Weak Simulation-Soundness). A NIZK forR is weakly simulation-

sound if for any PPT adversary A it holds that

Pr

[
(σ, ·)← Setup(1λ)

(x, π)← ASσ,td(σ)
:
Verify(σ, x, π) = 1∧
x /∈ LR ∧ x /∈ QS

]
= negl(λ)

where Sσ,td(x) is the second variant in Fig. 2.2.

Another important parameter of a SE notion especially in the context of SNARKs

is whether it supports white-box (WB) or black-box (BB) extraction. In practice,

the non-falsifiability of the assumptions used for SNARKs comes from their white-

box nature; that is, they imply some knowledge of the adversary’s internals. This

prevents proving black-box extraction (and black-box SE), which requires extracting

from the adversary only using its “input/output” interface. Since precisely this notion

is required for standard UC security, in practice it is necessary to use a compiler

lifting a zk-SNARK to black-box SE [Kosba et al., 2015, Atapoor and Baghery,

2019, Baghery, 2019], and, crucially, efficiency of these compilers can benefit from

a stronger (white-box) property of the input SNARK as we show in Chapter 3.

Note that assuming a global random oracle one can prove a SNARK secure in

UC without losing its succinctness as shown by compiler of Ganesh et al. [Ganesh

et al., 2022b].

Although black-box strong SE is sometimes a desirable property, (black-box) weak

SE is sufficient for many UC applications, for instance in Hawk [Kosba et al., 2016],

as argued in [Kosba et al., 2015]. Hawk uses SE NIZKs directly as a raw primitive

(without employing a functionality), and it suggests to use a non-succinct strong

SE NIZK, since no other candidates were known at that time. Kosba et al. [Kosba

et al., 2015] point out that a weak SE NIZK can be used instead.

The black-box variant of weak SE specifies the existence of a single extractor that

works for all adversaries.

Definition 2.6.15 (Black-box Weak Simulation-Extractability, [Kosba et al., 2015]).

A NIZK for R is black-box weak SE if there is an extractor Ext such that for any
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PPT adversary A and Rλ,

Pr


(σ, (td, tdext))← Setup(Rλ)

(x, π)← ASσ,td(σ)

w← Ext(σ, tdext, x, π)

:
Verify(σ, x, π) = 1∧
(x,w) /∈ Rλ ∧ x /∈ Q

 = negl(λ),

where Sσ,td(x) is a simulator oracle that calls Sim(σ, td, x) internally, and also

records x into Q.

Here we further split the trapdoor into two components, to highlight the fact that

the extractor does not have to use the whole trapdoor. In practice our black-box

compiled NIZKs will have an additional trapdoor, different from the original one;

which tdext exactly models.

We also note that weak SE is sufficient for the SNARKs to signatures of knowledge

(SoK) compiler of [Groth and Maller, 2017] that embeds a hash of the message into

the statement proven. Thus applications employing SoK, such as [Bonneau et al.,

2020a], can also benefit from our work. Note that in weak SE it is the statement

rather than the proof that cannot be mauled. The resulting SoK satisfies CMA

unforgeability.

Finally, it is important to note that the notion of simulation extractability can be

significantly weakened to the case of arbitrary transformations. The two works of

CKLM [Chase et al., 2012, Chase et al., 2013b], first of which was mentioned be-

fore, investigate the question of controlled malleability. This notion, first defined in

[Chase et al., 2012], extends simulation-extractability by assuming the existence of

an extractor that additionally to the witness may return if not the original instance,

but another instance and a transformation that was applied to the proof. In other

words, this definitions is a “controlled” variant of SE that allows the adversary to

maul the proof by applying a transformation from a predefined set. A NIZK satisfy-

ing this condition is called controlled-malleable (cm-NIZK). Chase et al. show that

it is possible to build a cm-NIZK for a set of transformation that are CM-friendly (es-

sentially, that can be expressed using pairing equations), and this is by using GS

malleability to perform the transformations over a specific, augmented variant of

the original language. A recent work by Faonio et al. [Faonio et al., 2023] takes this

approach even further. While investigating malleability of interactive oracle proof

(IOP) based SNARKs and underlying commitments, it defines a generalised no-

tion of Φ-flexible SE that captures malleability up to the predicate Φ, which strictly

generalizes our weak SE notion.
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2.6.3 SNARKs and Groth16

In terms of the interface, SNARKs are regular NIZKs; but in terms of instantiation

and implementation — details that we will be focusing on in the first two main

chapters — they require the introduction of additional background.

First, most SNARKs are general-purpose, and work with any NP languages; since

general programs have many representations, we must talk about which one is

actually used in practice. Within this work, we will focus on Groth16, and its arith-

metisation called quadratic arithmetic program (or QAP for short).

Let R be a relation for an NP language L. When R is implemented as an arith-

metic circuit C, we assume it to be of the following form. The input wires are split

into: l public input wires corresponding to x1, . . . , xl, and lw private input wires, cor-

responding to w1, . . . ,wlw . We denote the total number of wires by m, and thus the

remaining m− l − lw wires are called intermediate — they can be computed from

x and w.

A quadratic arithmetic program (QAP, [Gennaro et al., 2013]) for the circuit C is de-

scribed by a tuple QAP =
(
Zp, {ui(X), vi(X),wi(X)}mi=0, t(X)

)
, which consists of

the quotient polynomial t(x) of degree n, and three sets of polynomials {ui(X)}mi=0,

{vi(X)}mi=0 and {wi(X)}mi=0 of degree n− 1. A particular QAP assignment {ai}mi=0

contains assignments to the circuit wires, and a0 = 1 is a fixed parameter. We

will refer to the sets {xi} ∪ {wi} and {ai} interchangeably when there is no risk of

confusion, with x0 corresponding to a0. The assignment {ai} satisfies the QAP if

and only if(
m∑
i=0

aiui(X)

)(
m∑
i=0

aivi(X)

)
−

(
m∑
i=0

aiwi(X)

)
= h(X)t(X)

for some h(X) of degree n − 2. That is, t(x) divides the left hand side of the

equation. Summing up, we can define the following satisfiability relation for QAP:

RQAP =


(x,w)

0 x = (a0 = 1, a1, . . . , aℓ) ∈ Z1+ℓ
p ,

w = (aℓ+1, . . . , am) ∈ Zm−ℓp ,

∃h(X) ∈ Zp[X] of degree ≤ n− 2 such that(
m∑
i=0

aiui(X)

)(
m∑
i=0

aivi(X)

)
=

m∑
i=0

aiwi(X) + h(X)t(X)


As QAP relations are defined over a finite field that determines suitable bilinear

groups, they need to be compatible with the desired security level λ. Our asymp-
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totic security notions are all quantified over λ-compatible relations R. In practice

SNARK systems use very specific pre-defined groups for a fixed security level. For

these reasons we elide most of these details in our formal modelling and typically

write R instead of Rλ.

Groth16 [Groth, 2016] is the SNARK with the smallest proof size and fastest veri-

fier in the literature, and it is also competitive in terms of prover time. We present

Groth16 in Fig. 2.3. The QAP arithmeticised relation is an implicit input to Setup,

and CRS is circuit-dependent and linear in the QAP size. Proving is linear in the

size of the QAP, verification is linear in instance size, and proof size is just three

group elements. The intuition behind soundness of Groth16 is quite complex to be

presented here. The proof ultimately relies on the fact that CRS has a concrete

structured form, and certain elements (e.g. cross-products between trapdoor vari-

ables) are not available; this forces proof elements A,B,C to only be in a certain

form, like in the honest proof, and thus to encode parts of the QAP equation. We

refer to the original paper for more details.

Beyond efficiency, Groth16 has several other useful properties. It is rerandom-

izable, as we will elaborate on in Section 3.3, which is a desirable property for

achieving receipt-free voting [Lee et al., 2019]. Simultaneously, it also has a weak

form of simulation extractability which guarantees that even if the adversary has

seen some proofs before, it cannot prove a new statement without knowing the

witness. The prover and verifier use only algebraic operations and thus proofs can

be aggregated [Bünz et al., 2021b]. Furthermore, Groth16 is attractive to practi-

tioners due to the vast quantity of implementation and code auditing it has already

received.

2.7 Distributed Ledgers

In Section 1.1 we gave a general account of distributed ledger technologies, includ-

ing privacy-oriented solutions. In this section we will elaborate further, in particular

highlighting Zcash [Hopwood et al., 2022], which our ideas in Chapter 5 are closely

related to.
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To simplify notation we denote qi(α, β,x) := βui(x) + αvi(x) + wi(x) and

yi(α, β, γ,x) := qi(α, β,x)/γ, and use it as qi(x) and yi(x) omitting other vari-

ables when it is clear from the context.

Setup(1λ):

1. td := x,α, β, γ, δ
$←− Z∗p

2. σ1 ←
[
α, β, δ, {xi}n−1i=0 ,

{
xit(x)
δ

}n−2
i=0

, {yi(x)}li=0,
{
qi(x)
δ

}m
i=l+1

]
1

3. σ2 ←
[
β, γ, δ, {xi}n−1i=0

]
2

4. return (σ = σ1 ∪ σ2, td)

Prove(σ, x = x1 . . . xl,w = w1 . . .wm−l):

1. Let a := x∥w
2. ra, rb

$←− Z∗p
3. [a]1 ←

[
α +

∑m
i=0 aiui(x) + raδ

]
1
; [b]2 ←

[
β +

∑m
i=0 aivi(x) + rbδ

]
2

4. [c]1 ←
[∑m

i=l+1 ai
qi(x)
δ

+ h(x)t(x)
δ

+ arb + bra − rarbδ
]
1

5. return ([a]1, [b]2, [c]1)

Verify(σ, x = x1 . . . xl, π = (a, b, c)):

1. assert ê(a, b) = ê([α]1, [β]2) + ê(
∑l

i=0 xi[yi(x)]1, [γ]2) + ê(c, [δ]2)

Sim(td, x = x1 . . . xl):

1. µ, ν $←− Z∗p; return
(
[µ]1, [ν]2,

[
µν−αβ−

∑l
i=0 xiqi(x)

δ

]
1

)
Rand(σ, π = (a, b, c)):

1. r1, r2
$←− Z∗p; a 7→ (1/r1)a; b 7→ r1b+ r1r2[δ]2; c 7→ c+ r2a

2. return (a, b, c)

Figure 2.3: Groth16 zk-SNARK with simulation and randomization procedures.
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2.7.1 Privacy in Ledgers

Blockchain protocols started off with none or minimal privacy guarantees, often

providing users merely pseudonyms. This pseudonymity is generally illusory and

disappears under scrutiny and targeted analysis [Reid and Harrigan, 2011, Ron

and Shamir, 2013, Androulaki et al., 2013, Meiklejohn et al., 2016, Béres et al.,

2021]. One of the first and, perhaps, most direct approaches to achieve privacy in

otherwise public systems is to involve services called mixers or tumblers [Maxwell,

2013, Ruffing et al., 2014, Bonneau et al., 2014, Heilman et al., 2017, Ruffing

and Moreno-Sanchez, 2017, Meiklejohn and Mercer, 2018, Liang et al., 2022],

that forward funds pseudorandomly between pseudonymous entities, thus making

the transaction graph intangible against correlation analysis. This approach works

quite well in other security areas; the onion routing protocol [Dingledine et al., 2004]

implemented in the Tor network is one of the prime examples.

A private cryptocurrency is a cryptocurrency designed to takes privacy aspects

into consideration on the most foundational layer, instead of trying to graft them

on top of existing solution in an ad-hoc manner. Popularised by the Zcash [Miers

et al., 2013, Hopwood et al., 2022] and Monero [Noether et al., 2016] protocols,

which still exist and are developed to this day as cryptocurrencies, the field has

suggested many improvements and follow-ups [Lai et al., 2019, Fauzi et al., 2019,

Bünz et al., 2020a, Kerber et al., 2019]. The basic idea is quite commonly similar —

instead of having a public ledger with pseudonymous addresses, as in Ethereum

or Bitcoin, the individual banknotes or account balances are published in a private

way, e.g. using cryptographic commitments or ciphertexts. Then, commonly, some

other alternative cryptographic mechanism must be used to prove publicly that a

transaction involving blinded values is correct. In the case of Zcash, a NIZK is used;

in the case of Monero, a so-called ring signature, which hides the real transaction

input among many other fake ones; in other solutions, homomorphic encryption

can be used for this task.

Lastly but perhaps most importantly, recent advancements in efficient NIZKs seem

to bring us closer to the notion of private smart contracts[Kosba et al., 2016, Stef-

fen et al., 2019, Bünz et al., 2020a, Bowe et al., 2020, Kerber et al., 2021b, Steffen

et al., 2022]. These systems, albeit complex to analyse and still challenging to

implement in a practical manner, allow to create smart contracts where privacy

can be programmatically controlled within the smart contract language. This is



42 Chapter 2. Background

undoubtedly a great engineering achievement — while private cryptographic pro-

tocols usually require a lot of expertise to develop, analyse, and implement, private

smart contracts create a convenient abstraction layer that can be approached by

software developers with less cryptographic background. This in turn will definitely

have a similar ripple effect on the market, bringing more expertise generally into

the area.

Zcash. Among these solutions, in this work, however, we will be focusing mostly

on the variant of zcash [Hopwood et al., 2022], which allows only basic private

transfers. Zcash protocol was originally implementing a variant of the Zerocoin [Miers

et al., 2013] paper, but since then the protocol has seen several iterations of im-

provement. In Chapter 5 we will be mostly working with Zcash Sapling, a release

which precedes the current most-recent version Zcash Orchard. Sapling differs

from the Zerocoin paper and earlier Zcash releases in a few important ways, and

it is the variant we will describe here (in a simplified manner). We abstract some

parts of zcash in Section 5.3 that we need in Chapter 5.

In Zcash Sapling, the main data structure carrying information about a coin is called

a note note; it contains the coin value, the public key pk of the owner, randomness,

and other values we omit for simplicity. The ledger maintains two main data struc-

tures: the set of nullifiers Nf and the Merkle tree MT of note commitments C(note).

A nullifier nul is a pseudorandom string. Given a secret key sk, there is only one

unique way to derive a pseudorandom nullifier nul from a given note; it is not possi-

ble to derive nul without sk corresponding to owner’s pk ∈ Note. Each transaction

consumes and creates notes. The nullifier of each consumed note is published into

Nf, and commitments to new notes are appended into MT. Since no note can give

rise to two distinct nullifiers, by asserting that nul /∈ Nf when spending notes we

guarantee that double-spending does not occur.

A transaction consists of input nullifiers nuli, output note commitments C(note),

and transaction consistency proofs. The latter in turn consists of: (1) an input NIZK

for each input nullifier, (2) an output NIZK for each output note commitment, (3) a

value commitment comi for each input and output, (4) a Schnorr-like binding signa-

ture. Each input NIZK proves that there exists the note in the current MT, and its

nullifier is derived correctly. Each output NIZK shows that the commitment contains

a valid note. Each value commitment comin
i and comout

i is a homomorphic Peder-
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sen commitment to the value inside the (input or output) note. In addition each

input and output NIZK shows that the corresponding commitment is well-formed

and contains the claimed value. Finally, the binding signature proves that the ho-

momorphic sum
∑

comin
i /
∑

comout
i is a commitment to the zero value, which it

is only when the transaction is well-balanced (sum of inputs is equal to sum of

outputs).

To construct a transaction, one must generate all the nuli for coins that one wants to

spend; create output notes notei to the public keys that will receive a coin, and com-

mit to them; and finally generate proofs and a signature. It is easy to see that given

that proofs are ZK, nullifiers are pseudorandom, and commitments are hiding, no

information about inputs or outputs is revealed. Showing soundness is harder, but

it ultimately relies on NIZKs and the signature guaranteeing the transaction bal-

ancing property and validity of inputs/outputs, and impossibility of double-spending

due to the nullifier design. To verify a transaction, one must verify all the NIZKs,

check nuli /∈ Nf for each nuli, and check the signature.

The homomorphic check and NIZK per input and output is a Sapling feature that

was not present in the previous releases, and that we will actively use in Chapter 5.

2.7.2 Asset Exchange in Private Ledgers

Surprisingly little academic work directly addresses exchange of multiple assets in

a private ledger. Undoubtedly, such a functionality can be achieved through certain

generic private smart contract solutions [Kosba et al., 2016, Kerber et al., 2021b,

Steffen et al., 2019], but their flexibility comes with a non-negligible performance

overhead, since they often require heavy primitives like SNARKs over big contract

code-dependant (or even universal) circuits. The performance of universal zero-

knowledge based constructions such as ZEXE [Bowe et al., 2020] requires minutes

of proving time for ten times the constraints compared to our one second prover

runtime. This is why we would like to consider systems with such a functionality

embedded directly.

Several solutions take the route of extending the vanilla Zerocash protocol. Ding

et al. [Ding et al., 2019] propose a solution supporting multiple assets, but with no

exchange mechanism, and with public asset types. Gao et al. [Gao et al., 2019]

construct a transaction system specifically for exchanging assets which is based
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on storing debt in sibling notes which are only spendable if the debt is settled. Its

inefficiency results from requiring multiple persisted transactions per swap.

On the other hand, Confidential Assets [Poelstra et al., 2019] use a commitment

construction that hashes an asset type descriptor to the bases of an extended

Pedersen commitment such that the resulting commitments are additively homo-

morphic, which facilitates proving the balancing of amounts. We use this sparse

commitment scheme as part of our construction. A similar solution by Zheng et

al. [Yi et al., 2019] exists for the Mimblewimble private cryptocurrency. Both these

works do not provide sender and receiver anonymity.

Regular homomorphic commitments have the drawback that they can only store

type-amount pairs. A more flexible approach is to use a hash-based commitment

scheme for notes to store a vector of attributes. This is used in Zcash’s multi-

asset ZIP 220, Shielded Assets2, or similarly MASP3. To achieve balancing, these

protocols prove equality between the type-value pair of a note and a sparse homo-

morphic commitment. In Chapter 5 we follow the same approach. Another system

that does not rely on homomorphic commitments is Stellar4, which instead uses

shuffle proofs.

Finally, some works emphasize the exchange and offer matching functionalities.

Manta [Chu et al., 2020] describes a privacy-preserving decentralized exchange

(DEX) based on an automated marked maker (AMM) scheme which works without

a second party but does not hide the types, which is an inherent limitation of the

AMM approach. Another idea is to privately exchange assets between different

systems in cross-chain atomic swaps [Deshpande and Herlihy, 2020].

In contrast to both, in Chapter 5 we propose a more basic mechanism within a

single blockchain, and leave it open to implement the concrete offer matching al-

gorithm on top of Zswap. This allows, and will likely enable more powerful DeFi

applications, since Zswap provides a more flexible interface to the application layer.

2Previously “user-defined assets” (UDA) or UIT, see ZIP 220: https://github.com/zcash/
zcash/issues/830

3https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf
4https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md

https://github.com/zcash/zcash/issues/830
https://github.com/zcash/zcash/issues/830
https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf
https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md
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2.8 Privacy for Accountability

Data protection often demands that the actions and personal information of indi-

vidual users are kept private, but that regulatory organizations can learn about

undesirable events that could be triggered by the combined actions of multiple

users. In such scenarios requiring both privacy and accountability, cryptographic

techniques such as zero knowledge proofs and multiparty computation come to

mind as potential solutions. While such techniques may trivially reconcile the para-

dox of privacy vs. accountability, they often impose performance overheads and

trust assumptions that are incompatible with the original scenario. As a motivating

example, we consider the problem of implementing anti-money laundering (AML)

policies in both traditional and decentralized financial systems.

Privacy and accountability in AML. Money laundering is the process of con-

cealing the origins of money procured through illegitimate or illegal sources, by

changing its origin to one considered legitimate. This is required as most suppliers

of legitimate and expensive goods, such as property or cars, do not accept large

amounts of cash, but rather require the money coming from an account in a le-

gitimate financial institution. Money laundering is highly prevalent globally and is

estimated to constitute 2-3% of the national GDP in the US alone, excluding tax

evasion [Reuter and Truman, 2004, Chap. 2].

The framework of combating money laundering is known as anti-money laundering

and currently the main tool used by banks to counter money laundering is a sus-

piciousness score associated with each account [Baum et al., 2023]. The score

is computed from a base score derived from private meta information about the

account and its owner. The score is then updated based on incoming and outgo-

ing transfers, using as reference a grey list of potentially illegitimate or suspicious

customers and accounts. The grey list is secret, but known by all banks (at least

within the same jurisdiction). At certain time-intervals the updated suspiciousness

scores are checked, and if it is above a certain threshold, the account and its trans-

fers will get manually inspected. Afterwards the suspiciousness score is reset to

its base-score (although it can now be adjusted based on the inspection outcome).

Unfortunately, this currently has a very high false-positive rate. Furthermore, while

banks are legally obliged to perform AML and report accounts they believe are in-

volved in money laundering, they must also be able to explain to the authorities
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why they believe an account is used for illicit activities.

How cryptography can help. Multiparty computation [Goldreich et al., 1987,

Chaum et al., 1988] (MPC) is a natural solution to precisely computing suspicious-

ness scores for transactions among different banks without undermining user pri-

vacy. All banks involved in a sequence of transactions could execute an efficient

MPC protocol (e.g., [Damgård et al., 2012]) to compute a joint suspiciousness

score based on all of their private information on their own clients while only re-

vealing the final score. However, it is unrealistic to require all banks to interact

with each other at once, as opposed to only interacting when receiving or sending

transactions. Moreover, processing the sheer volume of transactions generated in

the traditional financial system via MPC would prove prohibitively expensive.

In the context of decentralized finance (i.e. based on cryptocurrencies), systems

with no privacy guarantees make it easier to perform AML by analyzing public

transaction graphs [Meiklejohn et al., 2016]. On the other hand, privacy preserving

cryptocurrencies (e.g. [Ben-Sasson et al., 2014a, Fauzi et al., 2019]) completely

preclude the use of AML techniques, as they hide all information about transac-

tions. Solutions based on revocable anonymity [Camenisch et al., 1996] have been

proposed for both the permissioned setting [Narula et al., 2018, Androulaki et al.,

2020, Kiayias et al., 2022], where authorities control the cryptocurrency, and for

the permissionless setting [Damgård et al., 2021], where the cryptocurrency is

controlled by independent users. However, in order to perform AML checks via

these schemes, an auditor must learn all information about all transactions sent or

received by a user, severely undermining their privacy.

Our “exploding commitment scheme” solution in Chapter 6 provides a building

block similar to the recent work introducing a “privacy-preserving blueprint scheme” [Kohlweiss

et al., 2023]. The ECS protocol requires quite minimal interaction, compared to

general MPC, and it similar to homomorphic commitments in nature — we allow

parties to perform a certain homomorphic computation, which can be done se-

quentially, so that a chosen regulator party can learn only the result of a chosen

“explosion” predicate on the value. Compared to the DeFi solutions, ECS does not

require a ledger, being an independent cryptographic block on its own. But it can

be integrated into any bulletin board, a functionality that ledgers implement, thus

giving rise to a more complicated protocol allowing more accountability on behalf of
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the parties, without violating their privacy. We explain this use-case in Section 6.6.





Chapter 3

Extraction and Malleability in

Groth16

This chapter is based on the work “Another Look at Extraction and
Randomization of Groth’s zk-SNARK”, published in Financial Cryptog-
raphy 2021, and co-authored by Karim Baghery, Markulf Kohlweiss,
and Janno Siim.

In this chapter we investigate a relaxed weaker notion of simulation-extractability,

that allows proof randomization, while guaranteeing statement non-malleability,

which we argue to be a more natural security property. In Section 2.6.2 we gave

a summary of simulation-extractability together with this randomizable counter-

part, weak SE, and justified why its study and use is desirable, especially in the

simulation-based contexts. Contributions of this section are twofold. First, we show

that it is already achievable by Groth16, arguably the most efficient and widely de-

ployed SNARK nowadays. Second, we show that because of this, Groth16 can be

efficiently transformed into a black-box weakly SE NIZK, which is sufficient for UC

protocols.

Surprisingly, the fact that Groth16, as described in the literature and deployed in

practical applications, is already white-box weak SE, was not known before. Proof

malleability was noted by [Groth and Maller, 2017] as an obstacle for proving the

strong SE property for Groth16, which resulted in them constructing a new non-

malleable SNARK. Allowing proof randomization in the definition resolves the issue

differently by proving a security property for the original system that lies in strength

between knowledge soundness and strong SE. Additionally, we show that only a

49
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specific type of proof malleability is possible and that rerandomized proofs have the

same distribution as fresh proofs of the same statement. We show in the algebraic

group model (that we state as an assumption) that the extractor can either obtain

the witness or point to the unique simulated proof that was randomized to obtain

the proof produced by the adversary. Thus, even if the adversary queries multiple

proofs for the same statement, it cannot combine them into a new proof of the

same statement, which is the main technical challenge in proving white-box weak

SE.

As of our second contribution, we give two optimized constructions for black-box

weak SE: Int-Groth16 and Ext-Groth16. Int-Groth16 is based on the (strong) WB-

to-BB SE compiler of [Baghery, 2019]. It adds a public key of a cryptosystem to

the CRS and a ciphertext of the witness to the proof. It then employs the SNARK

to prove an extended statement to ensure that the witness is correctly encrypted.

We show that this compiler can be used for weak WB-to-BB conversion, and there-

fore instantiated with Groth16.1 We optimize the encryption scheme and employ

a SNARK-friendly variant of ElGamal with randomness reuse [Kurosawa, 2002].

A noteworthy technical detail is that the witness needs to be mapped to SNARK-

friendly elliptic curve points. The downside of this construction is that even state-

of-the-art SNARK-friendly public-key operations incur a substantial overhead in the

circuit size.

Ext-Groth16 uses a verifiable encryption technique of Lee et al. [Lee et al., 2019] to

overcome this limitation. We again encrypt the witness, but with a different encryp-

tion scheme in which resulting ciphertexts enter Groth16 verification equation di-

rectly and thus have almost no effect on the circuit structure. To show Ext-Groth16

secure, we need to directly prove black-box weak simulation-extractability, which

we do by a reduction to white-box weak SE of Groth16. The main technical chal-

lenge is, again, to show which types of malleabilities are available to the adversary.

Additionally, we prove that the zero-knowledge property of Ext-Groth16 can rely on

the standard Decisional Diffie-Hellman assumption rather than the novel assump-

tion stated in [Lee et al., 2019].

To compare the efficiency of these two constructions, we estimate CRS and proof

size, prover time, and verifier time as a function of the encrypted witness size.

Our results show that both constructions have low overhead compared to the com-

1In fact, even weak simulation soundness without extractability is sufficient for the compiler.
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monly used generic transformations. In particular, Ext-Groth16 leads to almost no

increase in CRS size and prover time, while resulting in slightly bigger proofs and

verification time.

Related work on SE. White-box SE SNARKs have been discovered only re-

cently. Groth and Maller [Groth and Maller, 2017] presented the first construction

in 2017, targeting the language of Square Arithmetic Programs (SAPs). They also

proved a lower bound of three group elements for the proof size and two verification

equations for all non-interactive linear proof (NILP) based SNARKs, which covers

many previously known pairing-based SNARKs. Weak SE allows us to go below

this bound with a single verification equation.

Bowe and Gabizon [Bowe and Gabizon, 2018] give a RO-based variant of Groth16

for Quadratic Arithmetic Programs (QAPs) that is simulation-extractable, and has

five group elements and two verification equations. Baghery, Pindado, and Rafols [Bagh-

ery et al., 2020] improve on this approach by substituting RO with a collision-

resistant hash function, while preserving roughly the same efficiency. Lipmaa [Lip-

maa, 2019] presents a different technique that allows to construct SE SNARKs for

QAP and the three other arithmetization techniques from the QAP family (namely,

SAP, SSP, and QSP). Kim, Lee, and Oh [Kim et al., 2019] present a SE SNARK for

QAP with three elements but just a single verification equation, avoiding the lower

bound of Groth and Maller by using a RO in addition to a knowledge extraction

assumptions and a CRS.

As of black-box NIZKs, a generic transformation that makes ordinary NIZKs black-

box SE has been known at least since [De Santis et al., 2001]. Along this direction,

Kosba et al. [Kosba et al., 2015] extend, analyse, and optimize this transforma-

tion technique — they present three transformations; two of which build weak SE

NIZKs, while the third builds a strong SE NIZKs. Atapoor and Baghery [Atapoor

and Baghery, 2019] adapt Kosba et al.’s work directly to Groth16 and evaluate the

efficiency of the resulting strong SE argument. Baghery [Baghery, 2019] analyses

a transformation from white-box SE to black-box SE, and instantiates it with the

strong SE SNARK by Groth and Maller. We show that this technique also works

for lifting white-box weak SE to black-box weak SE. Other generic transformations

take into account CRS subversion and updatability [Abdolmaleki et al., 2020, Bagh-

ery and Sedaghat, 2021].
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3.1 Approaching SNARK Soundness Algebraically

As a warm-up, in this more technical section we start by presenting a lemma that

we will use for proofs in Chapters 3 and 4. Intuitively, it shows that in a typical

security proofs (SNARK soundness proofs) against algebraic adversaries, one can

view the verification equation as a polynomial equality test where trapdoors (cre-

ated during CRS generation) are substituted by indeterminates.

We assume that SNARK CRS generation algorithm can be expressed as a two-

step sampling procedure Sλ = (Dλ, Setupλ), where an effectively sampleable dis-

tribution Dλ defines a set of trapdoors td ∈ (Z∗p)n, and a polynomial time deter-

ministic procedure Setupλ(td) generates elements in G1 and G2 as polynomials of

td. Let T = T1, . . . ,Tn be a set of formal variables corresponding to the trapdoors.

In other words, Setupλ constructs two sets of elements σ1 and σ2, where every

σι,i = Pι,i(td) for some set of polynomials {Pι,i(T )}ι,i.

Lemma 3.1.1 (Algebraic Verification Satisfiability). Let E = (E1,1, . . . ,E1,m1 ,E2,1, . . . ,E2,m2)

be a vector of formal variables in Zp, where Eι,i represents an exponent value of

some [Eι,i]ι ∈ Gι. Let V (E) be a pairing equation, expressed in the GT exponent2.

Then, assuming (d1, d2)-dlog holds, for all algebraic PPT A, and all two-step sam-

pling procedures Sλ with trapdoor variables T :

Pr


td

$←− Dλ; (σ1 σ2)← Setupλ(td);

[e]1,2
$←− A([σ1]1, [σ2]2);

K ← Extalg
A ([σ1]1, [σ2]2, viewA)

:
V (e) = 0 ∧

V
(
K(Setupλ(T ))

)
̸= 0

 = negl(λ)

where dι = maxi(deg(Pι,i(T ))) of Setupλ, and V
(
K(Setupλ(T ))

)
stands for V (e)

interpreted as a polynomial over T . The probability is quantified over Dλ and the

private coins of A.

In other words, the lemma says that A has negligible success in constructing e as

linear combination of CRS elements such that V (e) evaluates to zero, but V ′(T⃗ ) =

V (K· Setupλ(T )) is not identically zero as a polynomial in T .

Proof of Lemma 3.1.1 (Sketch). The intuition for the lemma is that since CRS trap-

doors are chosen uniformly, and are “hidden” in the group exponents (hence the

2That is, V (E) =
∑

i Γit1,it2,i for tι,i being either some Eι,i or a constant from Z∗
p, and Γi ∈ Z∗

p.
This corresponds to the base group elements pairing equation

∏
i ê(z1,i, z2,i)

Γi = 1 with zι,i being
either variable or constant group elements [tι,i]ι.



3.1. Approaching SNARK Soundness Algebraically 53

discrete log assumption), A combines e as if it has no knowledge of the internal

structure of the CRS, and thus this is equivalent to choosing the V ′, and then eval-

uating it on random T (reversed order), which is negligible by S-Z. For the detailed

proof of a similar statement tailored specifically for Groth16 in AGM, see [Fuchs-

bauer et al., 2018]. Here we present a sketch of the proof that is slightly more

general, and can also be applied to other NILP based SNARKs, e.g. to Groth and

Maller SNARK.

The original generic algebraic verification game has the step [e]1,2
$←− A(σ);K ←

Extalg
A (viewA), where K is a matrix of algebraic coefficients. We modify the game,

launching A also on another independently generated CRS and ξ — we can do

that since we know K, essentially “how e was constructed from td”, so we just

replace the trapdoors and emulate the execution of A. If verification passes on

both CRSs, it means that A constructed its proof π = [e]1,2 independently of the

concrete CRS structure, and otherwise he has used it in proof construction.

We split the game in two scenarios according to the result of this test: either (i)

A does not use the concrete CRS and returns coefficients blindly (then we arrive

at the main positive lemma statement), or (ii) it uses the CRS, thus we break the

(d1, d2)-dlog assumption.

The first option is that A succeeded without using the concrete CRS σ — mean-

ing that it guessed cι,i as if it only knew the structure of the CRS (Setupλ and

all Pι,i, but not the concrete σi themselves). Then the probability for A to win

is low and bounded by S-Z lemma, since the unknown td for A is equivalent to

the randomly chosen one — we can generate the concrete CRS after the call to

A. By S-Z we know that Pre←A(...)[V (e) = 0 | V ′(T ) ̸= 0] < negl(λ) where

V ′(T ) = V
(
K(Setupλ(T ))

)
, and we also assume that Pr[V (e) = 0] = p(λ) is

non-negligible, which means that V can be satisfied by a prover. Then:

Pr[V ′(T ) ̸= 0 | V (e) = 0] =
negl(λ) · Pr[V ′(T ) ̸= 0]

p(λ)
= negl(λ)

So in the end we arrive at the conclusion that V ′(T ) = 0 in case V (e) = 0 with

high probability.

The other option is thatA has used the CRS non-trivially, possibly extracting knowl-

edge about the trapdoor, which allowed it to satisfy the verification equation. For-

mally, A constructed e such that V ′(T ) ̸= 0, but V ′(td) = V (e) = 0 for td being a
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concrete trapdoor. Then we can embed (d1, d2)-dlog instance ([z]ι, [z
2]ι, . . . , [z

dι ]ι)

into the CRS before generation (by using the challenge to generate trapdoors)

and solve it. We embed by transforming the challenge into CRS trapdoors

td = {τi}ni=1 in the following way: [τi]ι = [αiz + βi]ι for random (αi, βi), and then

[τ ji ]ι = [(αiz + βi)
j]ι is a polynomial in z will all known coefficients, so it can be

constructed from the q-dlog challenge higher powers. Then, after A returns e that

depends on this particular CRS σ with z embedded inside, and satisfies V (e) = 0,

we factor V ′(T ), reconstructed using K, and reinterpreted as a single variable

polynomial over z (since in fact it is parameterized only by one unknown z, and we

know all of the other coefficient of this equation except for z), and then one of the

roots of this V ′(z) will be a solution to the discrete log challenge.

The lemma is defined with respect to positive powers polynomials, while Groth16

CRS is defined for Laurent polynomials. This obstacle is easy to overcome — as

shown in [Fuchsbauer et al., 2018], it is enough to modify the group generator

by raising it to a certain trapdoor power such that all the negative powers cancel

out. This does not change the main statement of Lemma 3.1.1, although it slightly

increases the required degree of (d1, d2)-dlog3.

It is also not hard to generalize this statement for an adversary A that also obtains

some group elements through queries to oracles, or for multiple equations that A
aims to satisfy.

3.2 White-box Weak SE of Groth16

In this section, we show that Groth16, as defined in Fig. 2.3, is white-box weakly

simulation extractable, which to our knowledge is the first SNARK construction that

is proved to (only) achieve this notion. Additionally, we provide some facts about

randomization of Groth16.

Our proof is in the AGM and relies on the same hardness assumptions ((q1, q2)-

discrete logarithm) as Groth16 knowledge soundness. Additionally we require a

form of linear independence from QAP polynomials — a similar requirement was

used for square arithmetic programs in [Groth and Maller, 2017].

3In case of Groth16, we multiply by γδ, thus [xn−2t(x)/δ]1 becomes [γxn−2t(x)]1 of degree
2n− 1, hence d1 = 2n− 1.
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Theorem 3.2.1. Assume that {ui(x)}li=0 are linearly independent and Span {ui(x)}li=0

∩ Span {ui(x)}mi=l+1 = ∅. Then Groth16 achieves weak white-box SE against al-

gebraic adversaries under the (2n− 1,n− 1)-dlog assumption.

The proof of the theorem splits in two branches — we show that eitherA uses sim-

ulated elements, and in this case it can only use them for a single simulation query

k, or it does not use them at all. In particular, this implies that A cannot combine

several elements from different queries algebraically for the π it submits. We then

argue that the non-simulation case reduces to knowledge soundness, and in the

simulation case we show that A supplies ϕ that is equal to one of the simulated

instances, which proves that A reuses a simulated proof, potentially randomized.

An interesting detail not captured in the weak SE definition is that not only can

we decide whether the proof π′ provided by algebraic A is a modification of the

simulated proof π queried before in the simulation case, but we can pinpoint which

exact simulated proof it was derived from.

Before we start the weak SE proof we present a re-phrased knowledge soundness

proof, on top of which we will build the main theorem proof.

Theorem 3.2.2 ([Fuchsbauer et al., 2018]). Groth16 achieves knowledge sound-

ness against algebraic adversaries under the (2n− 1,n− 1)-dlog assumption.

Proof. We start by assuming a certain number of variables to be unknown to A,

in this particular case these are just the CRS trapdoors td = (α, β, γ, δ,x). We

rely on Lemma 3.1.1. When A presents the proof π = ([a]1, [b]2, [c]1) that satisfies

the verification equation, that is V (π) = 0, we conclude that A could not come

up with π satisfying V unless for V ′ = V (K· Setupλ(T )) we have V ′(T ) = 0 as a

polynomial. Then we, step by step, analyze the coefficients K of the verification

equation, by relying on the property that every monomial coefficient of the equation

is zero (because the polynomial is constant zero). This is the most technical part of

the proof, and we remind the reader that the other part that provides the reduction

to (2n− 1,n− 1)-dlog is deferred generically to Lemma 3.1.1.

The matrix K contains a representation of A,B, and C as linear combination of

public CRS elements (where C follows the same pattern as A):

A = A1α + A2β + A3δ +
n−1∑
i=0

A4,ix
i +

l∑
i=0

A5,i
βui(x) + αvi(x) + wi(x)

γ
+
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m∑
i=l+1

A6,i
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

A7,i
xit(x)

δ

B = B1β +B2γ +B3δ +
n−1∑
i=0

B4,ix
i C = C1α + . . .+

n−2∑
i=0

C7,i
xit(x)

δ

We let C = (A1, . . . ,A7,n−2, . . . ,B4,n−1, . . . ,C7,n−2) denote this set of variables

serving as linear combination coefficients. In the following we will write CRS trap-

doors as concrete values (α, β, . . . ,x), though they can be equally interpreted as

formal variables (Xα,Xβ, . . . ,Xx); we will avoid these former notation for conve-

nience, since the main variables in scope that the system of equation is over are

{Ai}, {Bi}, {Ci}, and we use trapdoor variables only to show how to form the sys-

tem. This is, however, an important distinction: When we write P (α,x) = 0, we

imply P (Xα,Xx) is constant zero, and not just zero at (α,x).

For a polynomial P (X) and a monomial M = Xb1
1 X

b2
2 · · ·Xbn

n , P[M ] will denote the

coefficient of P (X) at M , that is P (X) =
∑

M P[M ]M . For each monomial M ,

we write out the corresponding monomial coefficient V ′[M ] as an equation V ′[M ] =

0, and iteratively simplify the system of equations in C. To simplify the proof,

the ’monomials’ we consider implicitly contain sums of powers of x 4, thus xi will

appear in coefficients. We start with examining the following equations, listed by

monomials they are produced by, and by the terms of the verification equation they

are extracted from:

αβ in AB − αβ : A1B1 = 1 =⇒ A1 ̸= 0,B1 ̸= 0

β2 in AB : A2B1 = 0 =⇒ A2 = 0

αγ : A1B2 = 0 =⇒ B2 = 0

β2/δ :
( m∑
i=l+1

A6,iui(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,iui(x) = 0

βα/δ :
( m∑
i=l+1

A6,ivi(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,ivi(x) = 0

β/δ in AB :
( m∑
i=l+1

A6,iwi(x) +
n−2∑
i=0

A7,ix
it(x)

)
B1+

4For monomial M instead of analysing V ′
[M ] = 0 we set Ṽ ′

[M ] =
∑

i V[Mxi] = 0. This is still a
valid statement, since V ′(T ) = 0 implies V ′

[Mxi] = 0 for each i, so each sum over xi for M not

containing any powers of x is also zero. It is always possible to split Ṽ ′
[M ] further as (Ṽ ′

[M ])[xi],
extracting coefficients of xi from it. We will do so implicitly in the “different spans of x powers”
argument in the proof.
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( m∑
i=l+1

A6,iui(x)
)( n−1∑

i=0

B4,ix
i
)
= 0 ∧

1/δ :
( m∑
i=l+1

A6,iwi(x) +
n−2∑
i=0

A7,ix
it(x)

)( n−1∑
i=0

B4,ix
i
)
= 0

=⇒
n−2∑
i=0

A7,ix
it(x) = 0 ∧

m∑
i=l+1

A6,iwi(x) = 0

If (
∑n−1

i=0 B4,ix
i) = 0 then from β/δ we have

∑m
i=l+1A6,iwi(x) +

∑n−2
i=0 A7,ix

it(x) =

0, and otherwise from 1/δ we have
∑m

i=l+1A6,iwi(x) +
∑n−2

i=0 A7,ix
it(x) = 0. Now,

since the sums have different spans of xi powers,
∑n−2

i=0 A7,ix
it(x) = 0 and

∑m
i=l+1A6,iwi(x) =

0.

β2/γ in AB :
( l∑
i=0

A5,iui(x)
)
B1 = 0 =⇒

l∑
i=0

A5,iui(x) = 0

βα/γ :
( l∑
i=0

A5,ivi(x)
)
B1 = 0 =⇒

l∑
i=0

A5,ivi(x) = 0

β/γ :
( l∑
i=0

A5,iwi(x)
)
B1 +

( l∑
i=0

A5,iui(x)
)( n−1∑

i=0

B4,ix
i
)
= 0 ∧

1/γ :
( l∑
i=0

A5,iwi(x)
)( n−1∑

i=0

B4,ix
i
)
= 0

=⇒
l∑

i=0

A5,iwi(x) = 0 as with β/δ ∧ 1/δ

We now consider the following three monomials (β,α, and 1 that is only x pow-

ers) that we will call critical (and, respectively, the related equations too). Critical

equations contain parts of the QAP, and we will eventually extract the witness from

them. The underlined coefficients are already known to be zero, and thus the re-

lated sums are immediately cancelled:

β in AB − φ(⃗x)γ − Cδ :( n−1∑
i=0

A4,ix
i
)
B1 +

( n−1∑
i=0

B4,ix
i
)
A2 +

( l∑
i=0

A5,iui(x)
)
B2 +

( m∑
i=l+1

A6,iui(x)
)
B3

l∑
i=0

aiui(x) +
m∑

i=l+1

C6,iui(x)

α in AB − φ(⃗x)γ − Cδ :
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( n−1∑
i=0

B4,ix
i
)
A1 +

( l∑
i=0

A5,ivi(x)
)
B2 +

( m∑
i=l+1

A6,ivi(x)
)
B3

=
l∑

i=0

aivi(x) +
m∑

i=l+1

C6,ivi(x)

1 (only x) in AB − φ(⃗x)γ − Cδ :( n−1∑
i=0

A4,ix
i
)( n−1∑

i=0

B4,ix
i
)
+
( l∑
i=0

A5,iwi(x)
)
B2+

( m∑
i=l+1

A6,iwi(x)+
n−2∑
i=0

A7,ix
it(x)

)
B3

=
l∑

i=0

aiwi(x) +
m∑

i=l+1

C6,iwi(x) +
n−2∑
i=0

C7,ix
it(x)

Substituting the first two equations into the left hand side of the third one, given

that A1B1 = 1:( l∑
i=0

aiui(x) +
m∑

i=l+1

C6,iui(x)
)( l∑

i=0

aivi(x) +
m∑

i=l+1

C6,ivi(x)
)
=

l∑
i=0

aiwi(x) +
m∑

i=l+1

C6,iwi(x) +
n−2∑
i=0

C7,ix
it(x)

Because a0 is always 1 and A1 and B1 are nonzero, what we obtain is exactly a

QAP statement with h(x) =
∑n−2

i=0 C7,ix
i, hence {C6,i}mi=l+1 is the assignment of

the witness wires. The extractor can thus simply return these values.

Finally, we give a proof for Theorem 3.2.1 which shows that Groth16 has white-box

weak SE.

Proof of Theorem 3.2.1, Weak SE of Groth16. Let q denote the number of sim-

ulation queries of A, and {ai,j}lj=0 denote the instance for the ith query. We now

add the three proof elements [ãi]1, [b̃i]2, [c̃i]1 revealed in each simulation to the list

of elements that A can use as an algebraic extraction basis: ãi = µi, b̃i = νi, and

c̃i = (µiνi−αβ−
∑l

j=0 ai,j(βuj(x)+αvj(x)+wj(x)))/δ. We write out the represen-

tation of A and B (C follows the same pattern as A) from the verification equation

as the linear combination of the public CRS and new simulated proof elements:

A = · · ·+
q∑
i=1

A8,iµi +

q∑
i=1

A9,i

µiνi − αβ −
∑l

j=0 ai,j(βuj(x) + αvj(x) + wj(x))

δ

B = · · ·+
q∑
i=1

B5,iνi
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Our goal is to reduce the theorem to the knowledge-soundness case by restricting

the coefficients related to the new simulated proofs variables, namely A8,i, A9,i,

B5,i, C8,i, C9,i. We will show that a successful A must either reuse one of the sim-

ulated proofs (potentially randomizing it), or it must not have used any simulation-

related variables, thus allowing for the reuse of the extraction argument from knowl-

edge soundness. We start by inspecting coefficients of the following monomials

(affected by simulated proofs):

αβ in AB − Cδ : A1B1 −
q∑
i=1

A9,iB3 +

q∑
i=1

C9,i = 1 µiβ in AB : A8,iB1 = 0

µiνj(i ̸= j) in AB : A8,iB5,j = 0 µiγ in AB : A8,iB2 = 0

µiνi in AB − Cδ : A9,iB3 + A8,iB5,i − C9,i = 0 µiδ in AB − Cδ : A8,iB3 − C8,i = 0

µiνiνj/δ in AB : A9,iB5,j = 0 νiα in AB : B5,iA1 = 0

µiνiβ/δ in AB : A9,iB1 = 0 νiβ in AB : B5,iA2 = 0

νiδ in AB : B5,iA3 = 0

First, we show that all A9,i = 0. Assume the contrary: A9,k ̸= 0 for some k. Then

from Equation (µkνkνj/δ) for all j: B5,j = 0. From Equation (µiνi) for all i we have

that C9,i = A9,iB3, which, substituted into Equation (αβ) give us A1B1 = 1. Hence

B1 ̸= 0, but from Equation (µkνkβ/δ) we see that A9,kB1 = 0, but neither A9,k

nor B1 is zero, a contradiction. Thus, all A9,i = 0, and furthermore Equation (αβ)

simplifies to A1B1 +
∑q

i=1C9,i = 1 and Equation (µiνi) simplifies to A8,iB5,i = C9,i.

We now show, that if at least one A8,k ̸= 0, then A reuses the kth simulated proof,

and otherwise if all A8,i = 0 it does not use any simulation-related elements.

• Assume, first, that all A8,i = 0: From Equation (µiνi) all C9,i = 0. Then,

A1B1 = 1 by Equation (αβ), so from Equation (νiα) all B5,i = 0 (since A1 ̸=
0), and from Equation (µiδ) all C8,i = 0 because all A8,i = 0. We now

have cancelled all the simulation-related variables, and thus A does not use

simulation queries when constructing its proof, and we can reduce the proof

to the knowledge soundness case.

• Assume, otherwise, that at least one A8,k ̸= 0: Then B1 = B2 = 0 from

Equation (µkβ) and Equation (µkγ). For all j ̸= k from Equation (µkνj)

we have B5,j = 0, and since C9,j = B5,jA8,j , all C9,j = 0 for j ̸= k too.

From Equation (αβ) we obtain C9,k = 1, thus B5,k = 1/A8,k by Equa-

tion (µiνi). Since now B5,k ̸= 0, from the Equations (νkα), (νkβ), (νkδ) we
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have A1 = A2 = A3 = 0. Thus, we are only left with exactly one nonzero

triple (A8,k,B5,k,C9,k), which meansA has used at most one simulated proof

number k, not being able to combine several simulated proofs into one.

We next look at additional coefficients related to monomials that include νk
and µk. From Equations (νiβ/δ), (νiα/δ), (νi/δ) we have

∑m
i=l+1A6,i(βui(x)+

αvi(x) + wi(x))/δ +
∑n−2

i=0 A7,ix
it(x)/δ = 0 (related terms of A are the only

terms matching this νi in B):

νkβ/δ in AB :
( m∑
j=l+1

A6,juj(x)−
q∑
i=1

A9,i

l∑
j=0

uj(x)
)
B5,k = 0

=⇒
m∑

j=l+1

A6,juj(x) = 0

νkα/δ in AB :
( m∑
j=l+1

A6,jvj(x)−
q∑
i=1

A9,i

l∑
j=0

vj(x)
)
B5,k = 0

=⇒
m∑

j=l+1

A6,jvj(x) = 0

νk/δ in AB :
( m∑
j=l+1

A6,jwj(x) +
n−2∑
i=0

A7,ix
it(x)−

q∑
i=1

A9,i

l∑
j=0

wj(x)
)
B5,k = 0

=⇒
m∑

j=l+1

A6,jwj(x) = 0 ∧
n−2∑
i=0

A7,ix
it(x) = 0 (different powers of x)

Similarly, from Equations (νiβ/γ), (νiα/γ), (νi/γ) we have
∑l

i=0A5,i(βui(x)/γ) =∑l
i=0A5,i(αvi(x)/γ) =

∑l
i=0A5,i(wi(x)/γ) = 0 (the coefficients are also ex-

tracted from AB).

νkβ/γ in AB :
( l∑
j=0

A5,juj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,juj(x) = 0

νkα/γ in AB :
( l∑
j=0

A5,jvj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,jvj(x) = 0

νk/γ in AB :
( m∑
j=0

A5,jwj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A5,jwj(x) = 0

Because of Equation (νk) and Equation (µk) we have
∑n−1

i=0 A4,ix
i = 0 and∑n−1

i=0 B4,ix
i = 0 related terms cancelled as well:

νk in AB :
( n−1∑
i=0

A4,ix
i
)
B5,k = 0 =⇒

n−1∑
i=0

A4,ix
i = 0
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µk in AB :
( n−1∑
i=0

B4,ix
i
)
A8,k = 0 =⇒

n−1∑
i=0

B4,ix
i = 0

Which also implies A4,i = B4,i = 0 for all i. We now focus on the first

critical equation, β, which has the same elements as in the KS case, except

for the additional C9,i. Its left side vanishes completely, and on the right we

have exactly one additional simulated instance wires set corresponding to

C9,k = 1:

0 =
l∑

i=0

aiui(x) +
m∑

i=l+1

C6,iui(x)−
l∑

i=0

ak,iui(x)

Because of disjointness5 between ui(x) for witness and instance sets of in-

dices we have both
∑l

i=0(ai − ak,i)ui(x) = 0 and
∑m

i=l+1C6,iui(x) = 0, thus

also ai = ak,i because of the linear independence of the first set. ThenA has

reused the simulated instance xk = {ak,i}li=0, which concludes the proof.

3.3 Malleability of Groth16

Practically, it is known that Groth16 has malleable proofs. It is not hard to extend

this statement to show that Groth16 is rerandomizable, that is its output of Rand is

indistinguishable from honest proofs, even if Rand is applied to maliciously gener-

ated (but verifiable) proofs.

Theorem 3.3.1. Groth16 zk-SNARK is rerandomizable6 with respect to the ran-

domization transformation Rand presented in Fig. 2.3.

Proof. Deferred to the end of this section. In a nutshell, the proof elements a and

b output by Rand are random and independent of each other; and the verification

equation fixes a unique c based on a, b,σ, x.

Together with white-box weak SE forbidding instance malleability, and perfect ZK,

Theorem 3.3.1 implies that randomization is equivalent to any other way to trans-

form the honest (or simulated) proofs. But this does not give an explicit algebraic

characterization of the transformation — we do not know if there is any other way to

5This technique was applied in a similar manner for strong SE in [Groth and Maller, 2017]
6This property has been observed before, for example in [Lee et al., 2019] in a similar context.
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Observation 1.

a = A1α + A3δ + A1

m∑
i=0

aiui(x) b =
1

A1

β +B3δ +
1

A1

m∑
i=0

aivi(x)

c = B3A+ A3B − A3B3δ +
m∑

i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Figure 3.1: The kernel of Groth16 verification equation (a subspace of Z9+5n+2m
p )

structured as a proof generation routine (the most general one). Note the addi-

tional random value A1, that is set to 1 in Prove of Fig. 2.3, but is affected by

randomization.

create an honest proof, or any other way to rerandomize it (that would produce the

same distribution). One of the interesting properties of the proof of Theorem 3.2.1

is that it can be extended to show that Rand is the only algebraic transformation

possible, which we present as an independent result. We also show that the

most-general algebraic form of the honest generation procedure has at most three

random “axes”, any two of which are required for perfect zero-knowledge; Rand,

parametrised by just two random values, changes all three of them. Details are

provided in Appendix 3.3.

Let V (C) = 0 with C = (A1, . . . ,A7,n−2,B1, . . . ,B4,n−1,C1, . . . ,C7,n−2) be the

verification equation of Groth16 expressed in terms of exponent of GT with the

9 + 5n + 2m variables serving as linear coefficients that construct the proof from

CRS elements, then the kernel7 of V (C) is as presented in Fig. 3.1.

Observation 2. The only form of algebraic transformation on Groth16 proofs that

is possible without violating its verification equation is the randomization procedure

Rand(σ, π = (a, b, c); r1, r2), where r1, r2 are chosen by the adversary.

Proof of Theorem 3.3.1. In order to prove the statement, we need to show that

the distribution of honestly generated proofs {π}λ = {(a, b, c)}λ is the same as

the distribution of re-randomized proofs {Rand(π)}λ = {(a′, b′, c′)}λ, where π is

perhaps not honestly generated, but necessarily verifies. In honestly generated

proofs, first two values a, b are independently uniform, and the third element of the

tuple is defined from them.

7That is, X ⊂ Z|C|
p such that ∀c ∈ X.V (c) = 0
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By examining Rand, we immediately see that r1 makes a′ = r1a uniform, and that

b′ = r1b + r1r2[δ]2 is also independent since r1r2δ is uniform because of r2. Thus

we obtain two uniform distributions, and this is true irrespectively of the original

distribution of π. Since Rand is correct, the modified proof also verifies. Hence in

both distributions the first two tuple elements are uniform, and the third depends

on them in the same way, defined by Groth16 verification equation.

Proof of Observation 1. We start by taking the KS version of the proof elements

parametrisation (A,B,C expressed as a linear combination of CRS elements with

coefficients containing Ai, Bi and Ci), and applying the constraints we obtained

in the KS proof. The malleability constraints we will show are the same for both

simulated and real proofs because of indistinguishability of simulated proofs. We

apply the reductions from the KS proof, and immediately cancel A2,B2, A6,i and

A5,i related sums, and the sum with A7,i. We also substitute ai instead of C6,i and

h(x) instead of C7,i. Since A1B1 = 1, we set B1 = 1/A1.

A = A1α + A3δ +
n−1∑
i=0

A4,ix
i B =

1

A1

β +B3δ +
n−1∑
i=0

B4,ix
i

C = C1α + C2β + C3δ +
n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+

+
m∑

i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

In order to restrain C5,i we need to investigate another set of coefficients:

βδ/γ :
( l∑
i=0

A5,iui(x)
)
B3 +

l∑
i=0

C5,iui(x) = 0

αδ/γ :
( l∑
i=0

A5,ivi(x)
)
B3 +

l∑
i=0

C5,ivi(x) = 0

δ/γ :
( l∑
i=0

A5,iwi(x)
)
B3 +

l∑
i=0

C5,iwi(x) = 0

And as sums with A5,i are zero, we conclude that the relevant sums with C5,i are

also zero, so we can exclude them from C. We once again investigate critical
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equations for α and β:

β :
( n−1∑
i=0

A4,ix
i
)
= A1

( l∑
i=0

aiui(x) +
m∑

i=l+1

C6,iui(x)
)

α :
( n−1∑
i=0

B4,ix
i
)
=

1

A1

(
l∑

i=0

aivi(x) +
m∑

i=l+1

C6,ivi(x)
)

We substitute A4,i and B4,i sums into the general form of an honest proof, given

that C6,i = ai. What we get is:

A = A1α + A3δ + A1

m∑
i=0

aiui(x) B =
1

A1

β +B3δ +
1

A1

m∑
i=0

aivi(x)

C = C1α + C2β + C3δ +
n−1∑
i=0

C4,ix
i +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

We now restrain A3,B3 (A2 = 0):

δ2 : A3B3 = C3

βδ : A3B1 + A2B3 = C2

αδ : A1B3 = C1

And express C4,i related sum using A4,i and B4,i:

δ :
( n−1∑
i=0

B4,ix
i
)
A3 +

( n−1∑
i=0

A4,ix
i
)
B3 =

n−1∑
i=0

C4,ix
i

The fully reduced system that we obtain now has three free variables (A1,A3,B3),

and has the following form:

A = A1α + A3δ + A1

m∑
i=0

aiui(x) B =
1

A1

β +B3δ +
1

A1

m∑
i=0

aivi(x)

C = A1B3α +
A3

A1

β + A3B3δ +B3A1

m∑
i=0

aiui(x) +
A3

A1

m∑
i=0

aivi(x) +
m∑

i=l+1

ai
qi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ
= B3A+ A3B − A3B3δ +

m∑
i=l+1

ai
qi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Since this general form of proof generation satisfies the verification equation (this

is easy to verify), no further reductions are possible. Indeed, two out of three

free variables are used in the honest generation procedure, and the third one is

modified in the randomization transformation.
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Proof of Observation 2. Now, in order to obtain the explicit form randomization

transformation, we would need to trasform each proof element so that they still fit

the bounds we have just presented. Although, this is easier to show if we repeat

the process over again, but with the weak SE proof, now assuming that A uses

one simulated query (weak SE has shown that no combination of two proofs can

be a valid proof). This makes things simpler, because simulated variables µi and

νi stand exactly for already-composed proof elements a and b.

Assume that A8,k ̸= 0. In the SE proof we already show almost all the coefficient

reductions (all Ai except for A8,k, all Bi except for B3 and B5,k, C7,i, C9,i for i ̸= k,

and C9,k = 1). This gives us the following set of equations:

A = A8,kµk B = B3δ +B5,kνk

C = C1α + C2β + C3δ +
n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,iyi(x)

+
m∑

i=l+1

C6,i
qi(x)

δ
+

q∑
i=1

C8,iµi +
µkνk − αβ −

∑l
j=0 ak,jqj(x)

δ

Further reductions are also easy to discover. From Equation (µiδ), B3 = C8,k/A8,k,

and all other C8,i = 0. From Equation (δ2), C3 = A3B3 = 0. From Equation (αδ),

C1 = A1B3 = 0. From Equation (βδ), C2 = A3B1 + A2B3 = 0. We also substitute

already obtained B5,k = 1/A8,k from the SE proof:

A = A8,kµk B =
1

A8,k

νk +
C8,k

A8,k

δ

C =
n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,iyi(x) +
m∑

i=l+1

C6,i
qi(x)

δ
+ C8,kµk +

µkνk − αβ −
∑l

j=0 ak,jqj(x)

δ

We now need to remove the C4,i,C5,i,C6,i related sums. Nothing can compensate∑n−1
i=0 C4,ix

i if we take a look at δ, so it cancels out. Same for C5,i related sum,

and monomials βδ/γ, αβ/γ, δ/γ. C6,i also can not be compensated, because of

span disjointness of ui(X) for instance and witness wires, and since the verification

equation only includes the instance-related sum (formally, we view the monomial

β equation; the end of Theorem 3.2.1 proof explains the technique). What we

left with is precisely the well-known randomization Rand, where r1 = 1/A8,k, and
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r2 = C8,k:

A = A8,kµk B =
1

A8,k

νk +
C8,k

A8,k

δ

C = C8,kµk +
µkνk − αβ −

∑l
j=0 ak,j(βuj(x) + αvj(x) + wj(x))

δ

3.4 Black-box Weak SE of Groth16

We study two approaches to achieve black-box weak SE by encrypting the witness.

The first construction Int-Groth16 integrates ciphertexts directly to the relation, and

the second construction Ext-Groth16 proves the correctness of ciphertexts with

external techniques.

3.4.1 BB Weak SE with Internal Encryption

First, we describe a generic transformation for achieving black-box weak SE. We

let the prover encrypt the witness w with a IND-CPA secure PKE and then use a

weak simulation sound NIZK (e.g., Groth16) to prove the relation

R′ := {((x, pk, c), (w, r)) : (x,w) ∈ R ∧ c = Enc(pk,w; r)},

where x is the statement the prover wants to prove and R is the corresponding

relation. Since we make the public key pk a part of the reference string, it will be

possible to black-box extract the witness from the ciphertext. Full details of the

construction can be seen in Fig. 3.2.

This transformation was first analyzed in [Baghery, 2019], where it was shown to

lift a white-box strong SE NIZK to a black-box strong SE. Below we sketch a proof

that it also lifts a weak simulation sound NIZK to a black-box weak SE NIZK.

Theorem 3.4.1. Let NIZK′ = (Setup′,Prove′,Verify′, Sim′) be a complete, weak

simulation sound, and computational zero-knowledge non-interactive proof system

and PKE = (KeyGen,Enc,Dec) an IND-CPA secure encryption scheme. Then the

NIZK construction in Fig. 3.2 is complete, black-box weak SE, and computational

zero-knowledge.
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Setup(Rλ):

1. (pk, sk)
$←− KeyGen(1λ)

2. (σ′, td′)
$←− Setup′(R′)

3. return (σ := σ′ ∪ pk,

4. td := td′, tdext := sk)

Prove(σ = σ′ ∪ pk, x,w):

1. r $←− Z∗p, c← Enc(pk,w; r)

2. π′ ← Prove′(σ, (x, pk, c), (w, r))

3. return (c, π′)

Verify(σ = σ′ ∪ pk, x, π = (c, π′)):

1. assert Verify′(σ, (x, pk, c),π′)

Sim(σ = σ′ ∪ pk, td, x):

1. c← Enc(pk, 0; r) for r $←− Z∗p
2. π′ $←− Sim′(σ′, td, (x, pk, c))

3. return (c, x);

Ext(σ, tdext, x, π = (c, π′)):

1. return Dec(tdext, c)

Figure 3.2: The construction for black-box weak SE NIZK where NIZK′ =

(Setup′,Prove′,Verify′, Sim′) is weakly simulation sound, and (KeyGen,Enc,Dec) is

an IND-CPA secure PKE.

Proof (sketch). Completeness of NIZK follows from the completeness of NIZK′

and correctness of the cryptosystem. Computational zero-knowledge holds since

Enc(pk, 0) is computationally indistinguishable from Enc(pk,w) and since NIZK′ al-

ready has computational zero-knowledge. Finally, suppose that there exists a PPT

adversaryA that can break black-box weak SE of NIZK. We can easily construct a

PPT adversary B that can break weak simulation soundness of NIZK′. B gets σ′ as

an input and generates pk itself. Now B can runA(σ′∪pk) internally and whenever

A makes a simulation query x, B makes a simulation query (x, pk, c = Enc(pk, 0))

and gets back a proof π′ which allows him to send (c, π′) to A. Finally, A outputs

(x∗, (c∗, π∗)) such that x∗ has not been queried and either x∗ is an invalid statement

or c does not encrypt the correct witness. Now B can output ((x∗, c∗), π∗) which

will break weak simulation soundness.

We can obtain good efficiency if we instantiate the above construction by taking

Groth16 as NIZK′ and by using vector ElGamal (see Section 2.4 for details) as

a cryptosystem. We call this instantiation Int-Groth16. In Section 3.5 we discuss

further optimization of this construction.

Corollary 3.4.1.1. Int-Groth16 is a complete, black-box weak SE, and computa-

tional zero-knowledge NIZK argument.
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3.4.2 BB Weak SE with External Encryption

The disadvantage of the previous construction is that one needs to encode the

extended relation as an arithmetic circuit, that is shown, e.g. in Hawk, to result in

a considerably larger public parameters and a slower prover. Thus, we propose

a second construction Ext-Groth16 which is closely based on the SAVER cryp-

tosystem [Lee et al., 2019] which in a sense gives ciphertexts as a public input

to Groth16. Having the encryption outside of the circuit allows us to have smaller

circuit overhead which results in smaller CRS size and higher prover efficiency.

As before, proof size is linear, and is dominated by the size of the encrypted wit-

ness (this is inevitable for black-box constructions, as discussed before [Gentry and

Wichs, 2011]). The formal description is presented on Fig. 3.3. Roughly speaking,

we reinstantiate SAVER, but also prove that the construction is black-box weak sim-

ulation extractable. Additionally we re-prove computational zero-knowledge under

the weaker and more standard DDH assumption.

3.4.2.1 Technical Details

As Ext-Groth16 is based on SAVER, we point out the important ways it is different

from Groth16. First, we extend the CRS with the pk elements, similarly to how it

is done in Int-Groth16 (since pk uses Groth16 trapdoors, it changes the security

proof). Second, Groth16 itself is modified: while constructing the proof, element c

has an additional coefficient, that is needed to balance out ciphertext randomness.

Crucially, Ext-Groth16 cannot achieve black-box strong SE, because it is proof mal-

leable (and rerandomizable). First, the rerandomization of embedded Groth16 still

works, because it does not interfere with the “ciphertext randomness cancelling

term” of c. Second, ciphertexts are also rerandomizable: we can replace r with

r + r′ additively in all ci, in ψ and c (as shown in Fig. 3.3).

Another important distinction is that in order for the decryption to work efficiently

(since it relies on solving discrete logarithm), plaintexts should be small enough.

This is critical to guarantee the extraction — to preventA from creating un-extractable

proofs, we require the circuit itself to make range-checks on plaintext values. We

account for the circuit growth in our efficiency evaluation, but in this section we as-

sume the circuit transformation to be an implicit part of the construction, since this

suffices for our security analysis.
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Setup(R):

1. td1 = x,α, β, γ, δ
$←− Z∗p; td2 = {si}lwi=1, {ti}

lw
i=0

$←− Z∗p
2. σ1 ←

[
α, β, δ, {xi}n−1i=0 ,

{
xit(x)
δ

}n−2
i=0

, {yi(x)}l+lwi=0 ,
{
qi(x)
δ

}m
i=l+lw+1

]
1

3. σ2 ←
[
β, γ, δ, {xi}n−1i=0

]
2

4. pk1 ←
[
{δsi}lwi=1, {yl+i(x)ti}

lw
i=1, δ(t0 +

∑lw
i=1 tisi), γ(1 +

∑lw
i=1 si)

]
1

5. pk2 ←
[
{ti}lwi=0

]
2

6. return (σ = σ1 ∪ σ2 ∪ pk1 ∪ pk2, td = td1 ∪ td2, tdext = {si}lwi=1)

Prove(σ, x = x1 . . . xl,w = w1 . . .wlw . . .wm−l):

1. r, ra, rb
$←− Z∗p

2. c0 ← r[δ]1; ci ← r[δsi]1 + wi[yl+i(x)]1 for i ∈ [1 . . . lw]

3. ψ ← r
[
δ(t0 +

∑lw
j=1 tjsj)

]
1
+
∑lw

i=1 wi[yl+i(x)ti]1

4. [a]1 ←
[
α +

∑m
i=0 aiui(x) + raδ

]
1

5. [b]2 ←
[
β +

∑m
i=0 aivi(x) + rbδ

]
2

6. [c]1 ←
[ m∑
i=l+lw+1

wi−l
qi(x)
δ

+ h(x)t(x)
δ

+arb+bra−rarbδ
]
1
−r
[
γ
(
1+
∑lw

i=1 si
)]

1

7. return (([a]1, [b]2, [c]1), CT = (c0, . . . , clw ,ψ))

Verify(σ, x = x1 . . . xl, π = ((a, b, c), (c0, . . . , clw ,ψ))):

1. assert
∑lw

i=0 ê(ci, [ti]2) = ê(ψ,H)

2. assert ê(a, b) = ê([α]1, [β]2)+ ê(
∑l

i=0 xi[yi(x)]1+
∑lw

i=0 ci, [γ]2)+ ê(c, [δ]2)

Rand(σ, π = ((a, b, c), (c0, c1, . . . , clw , x)):

1. r1, r2, r′
$←− Z∗p

2. c0 7→ c0 + r′[δ]1; ci 7→ ci + r′[δsi]; ψ 7→ ψ + r′[δt0 +
∑lw

j=1 δtjsj]1

3. a 7→ (1/r1)a; b 7→ r1b+ r1r2[δ]2; c 7→ c+ r2a− r′[γ
(
1 +

∑lw
i=1 si

)
]1

4. return ((a, b, c), (c0, c1, . . . , clw , x))

Figure 3.3: Ext-Groth16: the black-box-extractable SAVER-inspired variant of

Groth16. The relation R must assert that inputs on witness input wires l . . . l + lw

are small enough to be efficiently decryptable. qi(x) and yi(x) are as for Groth16,

e.g. in Fig. 2.3.
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Sim(td, x = x1 . . . xl):

1. µ, ν, c0, . . . , clw
$←− Z∗p

2. (a, b, c)←
(
[µ]1, [ν]2,

[
µν−αβ−γ(

∑l
i=0 xiyi(x)+

∑lw
i=1 ci)

δ

]
1

)
3. ψ ←

[∑lw
i=0 tici

]
1

4. return ((a, b, c), CT = ([c0]1, . . . , [clw ]1,ψ))

Ext(σ, tdext = {si}lwi=1, x, π = (·, (c0, c1, . . . , clw , ·)):

1. for i ∈ [1 . . . lw] do

2. [yi(x)wi]1 ← ci − sic0
3. wi ← dlog[yi(x)]1

(
[yi(x)wi]1

)
4. return w1, . . . ,wlw

Figure 3.3: (cont.) Ext-Groth16: the black-box-extractable SAVER-inspired variant

of Groth16.

Finally, we estimate the resulting performance parameters of Ext-Groth16. Con-

struction CRS size (omitting constants) is (m + 2n + 2lw) G1, and (n + lw) G2.

Proof size is (lw+4) G1 and 1 G2, so lw+2 times more G1 than in Groth16. Prover

time is (omitting constants) (m + 3n − l + 2lw) E1 and n E2. Verifier time is l E1

and (lw + 5) P , so lw + 2 pairings more than in Groth16.

3.4.2.2 Security

We give a direct proof for the security of Ext-Groth16, as opposed to relying on

the security of a transformation as for Int-Groth16. We prove computational zero-

knowledge under the standard DDH assumption, as compared to a decisional poly-

nomial assumption introduced and used in SAVER. The weak SE proof is struc-

turally similar to the proof of Theorem 3.2.1: that is, we show that either A reuses

a simulated proof (potentially randomizing it), or it does not use simulated data at

all, and in that case we can extract the witness. The crucial difference now is that

extractor Ext is black-box and operates by decrypting the ciphertext.

Theorem 3.4.2. The Ext-Groth16 NIZK argument in Fig. 3.3 achieves perfect com-

pleteness; computational zero-knowledge under the DDH assumption; and black-

box weak SE against algebraic adversaries under linear independence of U =

{ui(X)}l+lwi=0 , and span independence between U and rest of ui(X).
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S ′0,σ,td(x = x1 . . . xl,w = w1 . . .wm−l):

1. if (x,w) ̸∈ R then return ⊥

2. µ, ν, r $←− Z∗p; c0 ← r[δ]1

3. ci ← r[δsi]1 + wi[yl+i(x)]1 for i ∈ [1 . . . lw]

4. (a, b, c)←
(
[µ]1, [ν]2,

[
µν−αβ−γ

∑l
i=0 xiyi(x)

δ

]
1
+
∑lw

i=1(
ci
δ
)
)

*

5. ψ ←
∑lw

i=0 tici *

6. return ((a, b, c), CT ← (c0, . . . , clw ,ψ))

Figure 3.4: Simulation oracle S ′0,σ,td in G1

Theorem 3.4.2, Perfect Completeness. The validity of the statement is ensured

by straightforward verification of the simulated ciphertext satisfying both verification

equations.

Theorem 3.4.2, Computational Zero-Knowledge. LetA be an arbitrary PPT ad-

versary that makes q queries to the simulation oracle in the ZK game. We consider

a sequence of games and prove that in each game adversary’s advantage changes

at most by a negligible amount. Let us denote the probability that A outputs 1 in

Gx by εx and let εDDH denote the maximum distinguishing advantage in the DDH

game.

G0: This is the original game in Definition 2.6.5 when b = 0. That is, A can query

the oracle S0,σ,td with inputs (x,w) ∈ R and gets back proofs π = Prove(σ, x,w).

G1: In this game, we change the oracle S0,σ,td to S ′0,σ,td in Fig. 3.4 that uses the

trapdoor td to simulate a, b, c, and ψ. Highlighted and marked with a “∗” elements

in the figure are changed compared to S0,σ,td.

Let us argue that the probability that A outputs 1 in the G0 is the same as in the G1,
i.e., ε0 = ε1. Firstly, c0, . . . , clw are computed the same way in both games. Since

ψ =
∑lw

i=0 tici = t0[rδ]1 +
∑lw

i=1 ti([rδsi + wiyl+i(x)]1) = r[δ(t0 +
∑lw

i=1 tisi)]1 +∑lw
i=1 wi[yl+iti]1, then in both games ψ is uniqely determined by c0, . . . , clw . Finally,

a, b are uniformly random in both games and c is the unique value determined by

c0, . . . , clw , a and b. It is easy to verify that c in Fig. 3.4 does indeed satisfy the

verification equation. Hence, output of S ′0,σ,td has the same distribution as the

output of S0,σ,td. From this it follows that ε0 = ε1.

G2:(1,1): For convenience, let us denote the ciphertext elements of different queries



72 Chapter 3. Extraction and Malleability in Groth16

by ci,j where i ∈ [0, lw] and j ∈ [1, q]. We change the oracle in the previous game

such that c1,1 is sampled randomly.

We show that |ε1 − ε2| is bounded by the probability of breaking the DDH as-

sumption. Let us construct an adversary B that uses A to distinguish DDH tu-

ples. The adversary B gets as an input [zx, zy, z]1 where zx, zy
$←− Zp and either

z = zxzy or z $←− Zp. Next, B samples σ and td except that [s1]1 = [zx]1 and

thus that element of td is unknown. The adversary B continues by running A
on the input σ while simulating the query oracle. The query oracle behavies like

S ′0,σ,td except on the first query it outputs c0,1 = δ[zx]1, c1,1 = δ[z]1 + w1[yl+1(x)]1,

c1,2 = (δs2)[zx]1+w2[yl+2(x)]1, . . . , c1,lw = (δslw)[zx]1+wlw [yl+lw(x)]1. Note that if z

is uniformly random then c1,1 is uniformly random as in G2:(1,1), but when z = zxzy,

then c1,1 is a valid ciphetext element as in G1, where zx takes the role of r, and zy
of s1. Therefore, |ε1 − ε2:(1,1)| ≤ εDDH .

G2:(i,j) for i ∈ [2 . . . lw], j ∈ [1 . . . q]: We continue with a similar strategy as in G2:(1,1).
Namely, we change the oracle of the previous game by sampling ci,j uniformly

randomly. We use the same reduction idea as in G2:(1,1) and show that |ε2:(i−1,j) −
ε2:(i,j)| ≤ εDDH (or |ε2:(lw,j−1) − ε2:(1,j)| ≤ εDDH).

Finally, G2:(lw,q) is the original ZK game whereA has an oracle access to the simula-

tor presented in Fig. 3.3, which produces all ci,j uniformly random; this is equivalent

to honest encryption of a random message. It follows that the advantage that A
breaks ZK is bounded by lw · q · εDDH .

Theorem 3.4.2, Weak BB SE. The knowledge soundness (KS) theorem of [Lee

et al., 2019] shows how to reduce KS of the SAVER scheme (with two verification

equations) to the KS of Groth16. This theorem is also structured as a reduction,

but to a weak white-box SE of Groth16 that we have proved in Section 3.2.

Additionally to the set of elements A sees in the proof of Theorem 3.2.1, we have

two more: (1) the CRS is extended with one embedded public key, hence we have

elements that depend on the ti and si trapdoors; (2) simulation queries now also

produce random ciphertexts ci,j (also, simulated C depends on these ciphertexts,

which changes C9,i element).

We write out the representation of A and B (C, Ψ, Ci follow the same pattern as

A) from the verification equation as the linear combination of the public CRS and
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new simulated proof elements:

A = A1α + A2β + A3δ

+
n−1∑
i=0

A4,ix
i +

l+lw∑
i=0

A5,iyi(x) +
m∑

l+lw+1

A6,i
qi(x)

δ
+

n−2∑
i=0

A7,i
xit(x)

δ
+

+

q∑
i=1

(
A8,iµi + A9,i

(µiνi − αβ − γ(∑l
j=0 xi,jyj(x) +

∑lw
j=r ci,j)

δ

))

+
lw∑
i=1

A10,iδsi +
lw∑
i=1

A11,itiyl+i(x) + A12δ(t0 +
lw∑
i=1

tisi) + A13γ(1 +
lw∑
i=1

si)+

+

q∑
i=1

( lw∑
j=0

A14,i,jci,j + A15,i

lw∑
j=0

tjci,j)

)

B = B1β +B2γ +B3δ +
n−1∑
i=0

B4,ix
i +

q∑
i=1

B5,iνi +
lw∑
i=0

B6,iti

We will refer to the terms A1 . . . A9,i and B1 . . . B5,i as “first category” (since they

are used in the SE proof), and the other terms are, correspondingly, “second cat-

egory”. We use the same indexing for the first category coefficients as in the SE

proof for compatibility; the only difference is that there are fewer A6,i coefficients,

and A5,i ranges to l + lw and not l. Technically, this change is merely syntactical:

we could assume secret inputs are part of the (hidden) instance, which would leave

the coefficients as they were before (by setting l = l + lw).

We will show that it is possible to extract the witness from the coefficients an alge-

braic A returns for the ciphertexts. At the same time, Ext in Fig. 3.3 is black-box.

The security proof will use the white-box extracted coefficients, but they are equal

to those returned by Ext because of correctness of the encryption scheme.

We now analyse the first verification equation of Ext-Groth16:

lw∏
i=0

[Ci]1[ti]2 = [Ψ]1[1]2 or, in exponent form: C0t0 + . . .+ Clwtlw = Ψ

It is immediately clear that Ψ can only be composed of elements that contain ti,

since they are in the immutable part of the left hand side:

lw∏
i=0

Citi =
lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +
lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(
lw∑
j=0

tjci,j)
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Now, we derive the restrictions on the ciphertext coefficients Ci. Going through the

other elements of the equation, to balance properly, each Ci must consist of either:

(1) some strictly other tj (clearly we cannot have t2i in the equation; in particular,

Ci,12 = Ci,15,j = 0 for all j ∈ [1 . . . l] because of that); or (2) yl+i(x) for i > 0; or (3)

δ for i = 0 and siδ for i > 0; or (4) simulated ciphertexts {cj,i}qj=1. Substituting it

into the equation:

(
C0,3δ +

lw∑
i=1

C0,11,itiyl+i(x) +

q∑
i=1

lw∑
j=0

C0,14,i,jci,j

)
t0

+
lw∑
j=1

(
Cj,10,jsjδ + Cj,5,jyl+j(x) +

lw∑
i=1,i ̸=j

Cj,11,itiyl+i(x) +

q∑
i=1

lw∑
k=0

Cj,14,i,kci,k

)
tj

=
lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +
lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(
lw∑
j=0

tjci,j)

From δt0 we obtain C0,3 = Ψ12, and for i > 0 from δtjsj we get Ψ12 = Cj,10,j . Now,

looking at tjyl+j(x) (in fact, on tjx/γ,αtjx/γ, βtjx/γ), we also get Cj,5,j = Ψ11,j .

From each t0ci,j we derive that C0,14,i,0 = Ψ15,i, and all other C0,14,i,j = 0; simi-

larly only Cj,14,i,j = Ψ15,i. Finally, notice that tjt0 for j > 0 cannot be balanced by

anything from Cj (Cj,11,i start from i = 1) or Ψ, so all C0,11,i = 0. Applying these

changes, we derive:

(
Ψ12δ+

q∑
i=1

Ψ15,ici,0

)
t0+

lw∑
j=1

(
Ψ12sjδ+Ψ11,jyl+j(x)+

lw∑
i=1,i ̸=j

Cj,11,itiyl+i(x)+

q∑
i=1

Ψ15,ici,j

)
tj

=
lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +
lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(
lw∑
j=0

tjci,j)

The coefficients of the resulting equation represent the following logic: (1) original

honest ciphertexts (Ψ11,j are encrypted witness wires, and Ψ12 is randomness), (2)

homomorphically added simulation ciphertexts (Ψ15,i for i = 1 . . . q), and (3) linear

combination on the left hand side (nonzero Cj,11,i).

We now argue that all Cj,11,i = 0, and thus no nontrivial linear combination is possi-

ble. Assuming the contrary, and analysing monomial tk1tk2 for some pair of positive

indices k1 ̸= k2 (both ∈ [1 . . . lw]), we have Ck1,11,k2yl+k2(x) + Ck2,11,k1yl+k1(x) = 0.

This, in turn, implies, simultaneously, Ck1,11,k2fl+k2(x) + Ck2,11,k1fl+k1(x) = 0, for

fi(X) = vi(X),ui(X),wi(X) (viewing αx, βx,x). But we assumed {ui(X)}lwi=l+1

to be linearly independent, and therefore all Cj,11,i = 0.
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The resulting view on the equation is now:

(
Ψ12δ +

q∑
i=1

Ψ15,ici,0

)
t0 +

lw∑
j=1

(
Ψ12sjδ +Ψ11,jyl+j(x) +

q∑
i=1

Ψ15,ici,j

)
tj

=
lw∑
i=1

Ψ11,itiyl+i(x) + Ψ12δ(t0 +
lw∑
i=1

tisi) +

q∑
i=1

Ψ15,i(
lw∑
j=0

tjci,j)

As we can see, it deviates from the proof of SAVER KS in exactly one aspect: A
can combine its message encryption with the simulated zero-ciphertexts homomor-

phically. This does not give A any real power: we will show that this combination

cannot satisfy the second verification equation, because A cannot produce the

“ciphertext randomness cancelling value” for C.

After showing how exactly Ci are restricted, our next step is substituting their gen-

eral form into the second equation which corresponds to the verification equation

of Groth16:

AB − αβ −
( l∑

i=0

xiyi(x) +
(
Ψ12δ +

q∑
i=1

Ψ15,ici,0

)
+

lw∑
j=1

(
Ψ12sjδ +Ψ11,jyl+j(x) +

q∑
i=1

Ψ15,ici,j

))
γ − Cδ = 0

We now follow the SE proof reduction: the block of 11 equations from which it starts

remains the same. The equation extracted from αβ is not affected by the change

of terms since no additional αβ terms are created either by second category coeffi-

cients, or by the ciphertext terms. The other 10 equations depend either on µi or νi
(µiνj,µi, νi, . . . , νiδ), and they are exactly the same in our case too, since (1) they

do not contain A5,i and A6,i, (2) the second category monomials do not contain

µi or νi, and (3) the ciphertext coefficients do not either. Hence, in both cases all

A9,i = 0, and we follow the branching of the SE proof:

• Non-simulation case. All the simulation elements are zero: A9,i = A8,i =

B5,i = C8,i = C9,i = 0, and thus we have as before A1B1 = 1. From β2 and

αδ, we get A2 = B2 = 0.

From Equation (ci,0γ): A9,iB4,0 + A14,i,0B2 − Ψ15,i − C9,i = 0, so Ψ15,i = 0

— this means A cannot add simulated ciphertexts into a non-simulated one.

Indeed, to balance out simulated ci,j A would need to add the cancelling

coefficient to C, but it cannot do that since it is part of C9,i which is zero.
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We easily cancel all the second category terms from A,B. From Equa-

tion (βδsi) we haveA10,i = 0, from monomials βtixi we get
∑lw

i=1A11,itiyl+i(x) =

0 (coefficients may be nonzero since forming a linear combination may be

possible). From Equation (δβt0), A12B1 = 0, so A12 = 0. From Equa-

tion (γβ): A2B2 + A13B1 = 0, so A13 = 0. At the same time, from Equa-

tion (βci,j): A14,i,jB1 = 0, and from Equation (βci,0t0): A15,iB1 = 0, so

all A14,i,j = A15,i = 0. Considering Equation (αti) we get A1B6,i = 0, so

B6,i = 0.

To characterise Ψ12 we must look at Equation (δγ): A3B2 + A13B3 − Ψ12 −
C13 = 0. SinceB2 = A13 = 0, we deriveC13 = −Ψ12 — that is, the cancelling

coefficient in C must be balanced out by the ciphertext randomness, which

is in line with honest proof generation logic.

Other second category terms in C also cancel: C10,i = 0 because of δ2si;

C11,i = 0 from δtix
i; C12,i = 0 because of δ2t0; and C14,ij with C15,i are zero

from δci,j and δci,jtj correspondingly.

Now the verification equation looks like as if A uses a single honestly con-

structed ciphertext:

AB − αβ −
( l∑

i=0

xiyi(x) +Ψ12δ +
lw∑
j=1

(
Ψ12sjδ +Ψ11,jyl+j(x)

))
γ +Cδ = 0

Moreover, as we showed, Ψ12 (ciphertext cancelling term coefficient) is can-

celled out by C13 — the only nonzero from the second category coefficients.

So from here we can reduce to the basic Groth16, with the only difference

that now A5,i has more wires and A6,i has less. We show that this minor

change does not significantly affect the proof of Groth16 KS.

For all the equations in the KS proof until we get to critical equations (that is,

(β2/δ, βα/δ, β/δ, 1/δ, β2/γ, βα/γ, β/γ, 1/γ)) the only change that happens

is that whenever a sum with A5,i appears it now spans to l + lw not to l, and

whenever a sum with A6,i appears, it goes from l + lw + 1 to m, not from

l + 1. This is easy to verify, since the only new monomials that we have are

δγ (with Ψ12 and with C13; is not part of the monomials listed), δγsi (similarly),

and Ψ11,jyl+j(x)γ only affect critical equations. And other second category

elements are zero.

Looking at the third critical coefficient (corresponding to powers of x only) we
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see almost the same equation as in the KS proof, except now Ψ11,i are in-

stead of first lw wires of C6,i. No other new terms are added, and coefficients

with B2, A6,i and A7,i are cancelled as before, which gives:

( n−1∑
i=0

A4,ix
i
)( n−1∑

i=0

B4,ix
i
)
=

l∑
i=0

xiwi(x)

+
l+lw∑
i=l+1

Ψ11,i−lwi(x) +
m∑

i=l+lw+1

C6,iwi(x) +
n−2∑
i=0

C7,ix
it(x)

To argue that A4,i and B4,i form ui(x) and vi(x) sets, we, as in the KS proof,

look at α and β:

β :
( n−1∑
i=0

A4,ix
i
)
B1 =

l∑
i=0

xiui(x) +
l+lw∑
i=l+1

Ψ11,i−lui(x) +
m∑

i=l+lw

C6,iui(x)

α :
( n−1∑
i=0

B4,ix
i
)
A1 =

l∑
i=0

xivi(x) +
l+lw∑
i=l+1

Ψ11,i−lvi(x) +
m∑

i=l+lw

C6,ivi(x)

Therefore we trivially conclude, substituting the last two equations into the

previous one, and extracting from Ψ11,j , as we extracted from C6,j instead in

the KS case.

• Simulation Case. This branch is characterised by A reusing the simulated

proof number k with C9,k = 1; as we showed in Groth16 weak SE proof, all

other A8,i,B5,i and C9,i are zero. From the very same block of 11 equations

we derive, as before: A1 = A2 = A3 = B1 = B2 = 0.

Since simulation “ciphertext cancelling” terms are embedded with simulated

C, and only C9,k is nonzero, A cannot use any other set of ciphertexts

than {ck,i}i. Formally, we show it by looking at Equation (γci,0): A9,iB4,0 +

A14,i,0B2 − Ψ15,i + C9,i = 0, so we conclude that Ψ16,i = 0 for i ̸= k, and for

i = k since all A9,i = 0 we get Ψ15,k = A9,kB4,0 + C9,k = 0 + 1 = 1. That is,

A uses exactly one simulated ciphertext vector, unmodified.

We now cancel all the second category terms for A and B, looking at com-

binations of coefficients in A with nonzero B5,k(νk) and the coefficients of

B with A8,k(µk); all they are extracted from AB only. From Equation (δsiνk):

A10,iB5,k = 0, soA10,i = 0. Looking at monomials νktiαx, νktiβx, νktix simul-

taneously: A11,itiyl+i(x)B5,kνk = 0, hence A11,i = 0. From Equation (δt0νk),
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A12B5,k = 0, so A12 = 0. From Equation (γνk): A13B5,k = 0, so A13 = 0.

Monomials with ci,jνk do only appear in A14,i,j,A15,i since A9,i = 0, so from

Equations ci,jνk, ci,jtjνk all these coefficients are zero in a similar manner.

Finally, we cancel B6,i by looking at tiµk which gives us A8,kB6,i = 0.

Regarding Ψ12, as in the non-simulation case, we look at Equation (δγ):

A13B3 −Ψ12 − C13 = 0, which simplifies to Ψ12 = −C13. This means that A
can indeed add its own randomness to C, because it can cancel it out exactly

with C13.

Except for C13 we can cancel all the other second category terms of C. C10,i

is zero because δ2si are only balanced by A10,iB3 but A10,i = 0; the same

thing happens to C11,i because of δti(αx + βx + x), to C12 (δ2t0 and δ2tisi),

to C14,i,j (δci,j), and to C15,i (δci,jtj).

We have now cancelled all the second category terms of A,B,C except for

C13 balancing out Ψ12. Now it is possible to proceed with the reduction exactly

as in the second branch of the Groth16 weak SE proof, having in mind the

similar difference with A5,i,A6,i elements explained in the first branch of the

current proof. In particular, we argue that Ψ11,j cancel from the third critical

equation:

0 =
l∑

i=0

aiui(x) +
l+lw∑
i=l+1

Ψ11,i−lui(x) +
m∑

i=l+lw+1

C6,iui(x)−
l∑

i=0

ak,iui(x)

Similarly to Groth16 weak SE,
∑m

i=l+lw+1C6,iui(x) = 0 because it is linearly

independent from all the 0 . . . l + lw input wires. Then, because input wires

are independent, all Ψ11,i−1 = 0 (which forbids adding nonzero honest cipher-

texts), and ai = ak,i. Hence, A has reused the simulated proof number k, but

potentially with ciphertext randomization (Ψ12) additionally to the (A,B,C)

randomization of Groth16.

Lemma 3.4.3. The Ext-Groth16 NIZK is rerandomizable with Rand in Fig. 3.3.

Proof. Follows directly from rerandomizability of SAVER in [Lee et al., 2019].
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3.5 Performance

In this section, we evaluate the efficiency of Int-Groth16 and Ext-Groth16. First,

in Table 3.1, we give a high-level comparison of Groth16 and (the most efficient)

C∅C∅ black-box SE transformation [Kosba et al., 2015, Section 4]. It shows the

asymptotic dependence of the performance metrics on the witness size lw and

the blow-up of the QAP size due to the use of cryptographic primitives for the

transformation. Enclw denotes an encryption scheme with sufficiently large plaintext

size to encrypt the witness. We note that even for Ext-Groth16 a small circuit

modification is required, and therefore m grows by 2lw bits, and n grows by lw;

additionally, lw wires for Ext-Groth16 have 6 times less capacity than for Int-Groth16

and C0C0. Clearly, in Table 3.1, an overhead of C∅C∅ in CRS size and prover time

is strictly bigger than in both constructions we suggest, due to the use of PRF

and commitment scheme, and Ext-Groth16 encryption overhead (thus proof size

and verification time) is bigger than in first two transformations because of the

expansion factor.

We also estimate the concrete performance of our two black-box constructions,

along the same four performance parameters defined in Table 3.2, as depending on

the bit-size of the encrypted witness. For both NIZKs we will use a 255-bit BLS12-

381 curve, defined over a 381 bit prime field. Let us assume that witness size is

Bw bits, and it is provided in bit-decomposed form in the original circuit. We aim

to optimize proof size, which is important for SNARKs, and thus will only consider

encrypting secret inputs at the maximum possible capacity (e.g. we do not encrypt

individual bits); the two approaches have different block capacities, so the num-

ber of plaintext (and ciphertext) blocks is different in both cases. For Int-Groth16,

block size is 248 bits, where the 6 remaining bits are reserved for Koblitz [Koblitz,

1987] message embedding padding. For Ext-Groth16 we split the plaintext in 43-

bit blocks, thus assuming that we can solve 43-bit discrete logarithm for black-box

extraction. This explains Ext-Groth16 expansion factor of 6 = ⌈248/43⌉. We base

our circuit design estimates, which are especially relevant to Int-Groth16, on zcash

implementation, description of which is provided in [Hopwood et al., 2022] (Section

“Circuit Design”).
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3.5.0.1 Concrete Performance of Int-Groth16

The performance overhead of Int-Groth16 compared to Groth16 depends mostly

on the increase in circuit size — we must implement the encryption scheme itself,

and also the infrastructure that converts the input (plaintext) data to the desired

form, which we discuss first. We remind that JubJub forms a 252 bit group over

255 bit prime field, which is equal to the group size of BLS, allowing seamless

integration of one into another.

Plaintext embedding into the JubJub curve — that is, converting plaintext blocks

into JubJub points — is the main technical challenge, which we solve using the

approach of Koblitz [Koblitz, 1987] to overcome it. To embed a plaintext block wi
of bit-length (254 − log2 κ) into the curve we reserve a padding pi for a nonce of

length log2 κ: with probability 1−2κ the concatenation wi∥pi is a valid x-coordinate

for some p. Because of how lengths are chosen, mi∥pi is always smaller than the

prime field of JubJub. For practical purposes it is enough to reserve 6 bits for the

padding, which gives κ = 64, leaving 248 bits for the message block, and thus

lw = ⌈Bw/248⌉. To avoid issues with completeness — since now it is possible, with

negligible probability, that some wi does not have a suitable padding — we allow a

fallback mechanism [Muralidhara and Sen, 2007], in which a random blinding bi is

chosen, and the algorithm is repeated for wi+bi, and bi is attached to the ciphertext

in clear. To avoid attacks where A finds non-encodable witnesses, we generate

this bi every single time (otherwise the presence of nonzero bi may leak something

about the message). From the circuit side, one extra wire per plaintext block is

required to contain bi, but it takes no extra mul-gates, since any gate that uses

wi can use wi + bi for free. We will denote this procedure by Embed(wi, bi, pi) =

((wi ⊕ bi) ∥ pi, y), where y coordinate is computed from x. Instead of computing y

in the circuit, we pass it through the intermediate secret wires, and just check that

(x, y) is on the curve, which takes just 4 constraints.

The second issue is that we must verify that circuit inputs corresponding towi are of

a right bit-size in order to guarantee correctness of decryption (used in extraction).

The standard way of solving this is to represent the values as bit-vectors of the

needed size. That is, for each encrypted element e = wi we supply its bit decom-

position {ei}n−1i=0 explicitly and assert that e =
∑

2iei, which certifies that e is a n

bit value. This takes n gates to ensure each ei is a binary value, and then one gate

is needed to combine them all. Converting from bit-decomposed representation to
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any other base is inexpensive, and takes one gate per digit in the chosen base, so

we assume that application (as opposed to the encryption-correctness check) is

taking each wi in bit-decomposed representation. To simplify the comparison, we

assume that this representation is used in the original non-transformed circuit too,

so we omit boolean-checks on wi from both estimates.

We now discuss the encryption scheme itself. To verify the ciphertext c0, c1, . . . , clw
we must check that c0 = r[1]1 and ci = r[si]1 + Embed(wi, bi, pi). All the JubJub

exponentiations here take 750 multiplication gates for each full-bit exponent —

we assume that public key points are embedded into the circuit, thus we use an

algorithm for fixed-base exponentiation.

• Checking c0 requires 254 constraints for bit-range check, 750 gates for fixed-

base exponentiation, 2 constraints to compare both coordinates of c0 to the

computed ones, and to perform onCurve check for c0 coordinates (4 gates);

together it takes 1010 constraints. The number of additional input wires that

we introduce (for r and ci) is 256, which we include in computation of m but

not n.

• For the ci checks we must additionally perform embedding and sum the em-

bedded point with r[si]. For the embedding, our circuit accepts bit-decomposed

wi, bi, pi and y (second coordinate of embedded point). Bit-checking bi, pi (wi
is excluded, r is bit-checked once and counted for c0 check already) takes

248 · 2 + 6 constraints. In order to optimize l we will pass bi as field elements

through public inputs and perform an equality-check with the bit-decomposed

witness-passed bi; this takes 1 constraint. Next, we must bit-add wi and bi,

which takes 250 constraints. We can now pack the bits corresponding to

x = (wi ⊕ bi) ∥ pi into a field element with a single gate, and it takes 4 gates

to verify onCurve(x, y). We sum the value with r[si] (this takes 750 constraints

to compute), which takes extra 6 constraints. On-curve check for ci and com-

parison of ci with the computed points takes 6 gates. In total, we get 1273

constraints. The number of additional input wires is 258 (bi, pi, y, ci).

Combining it all together, n increases by ∆n = 1010 + 1273lw, m increases by

∆m = ∆n+256+ 258lw = 1266+ 1531lw, and l increases by ∆l = 3lw because of

public blinding factors (lw field elements) and two values for ci.

We now analyse the NIZK parameters we compare along:
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1. CRS size. We get extra ∆m + 2∆n = 3286 + 4077lw G1, and ∆n = 1010 +

1273lw G2. Converting it to Bw, extra 3286 + 16.4Bw G1 and 1010 + 5.1Bw

G2.

2. Proof size. Using ElGamal we have lw + 1 points per message block, and lw
248-bit blinding factors. This results in additional ⌈Bw/248⌉ + 1 G1 plus Bw

bits.

3. Prover time. ∆m + 3∆n − ∆l = 4296 + 5347lw = 4296 + 21.6Bw E1. As in

the CRS, 1010 + 5.1Bw E2.

4. Verifier time. Extra ∆l = 3lw ≈ 0.012Bw exponentiations, plus time to decode

ci (finding second point coordinate), which we ignore in our comparison.

3.5.0.2 Concrete Performance of Ext-Groth16

As we mentioned before, efficient black-box extraction from Ext-Groth16 is only

possible if encrypted plaintext values are small enough, since the decryption algo-

rithm needs to solve DLP for each ciphertext element. We assume that it is feasible

to solve 43 bit DLP, which splits every 128 bits into 3 blocks.

Compared to Groth16, Ext-Groth16 has two types of overhead: on the first, struc-

tural layer, it has additional CRS elements (for the public key), ciphertext proof

elements, prover exponentiations, and verifier pairings; on the second infrastruc-

tural layer, the circuit should be changed to assert that encrypted wire values fit

into 43 bits, and then to convert from this representation to the desired one. We

will denote the number of secret input wires by l′w = ⌈Bw/43⌉ to distinguish it from

the number of wires lw in the more efficienly-packed Int-Groth16.

Regarding infrastructure, since we compare to the circuit which already uses binary-

decomposed witness, all the bits are checked to be binary, so the only real over-

head is to pack them into field values and compare to the plaintext values that are

plugged-in externally. Each comparison takes just one constraint, so we have ex-

tra ∆n = lw constraints. We also have an additional input wires for ciphertexts, so

∆m = ∆n+ lw = 2lw. Although we connect the ciphertexts externally, formally they

are not counted as public inputs, so ∆l = 0.

This gives, for the four parameters:

1. CRS size. ∆m+2∆n+2lw = 6lw ≈ 0.14Bw G1. For second group elements,
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Table 3.2: Overhead comparison of our constructions over plain Groth16. GJ

stands for bit-size of an encoded JubJub point, and Gi is the size of an encoded

BLS12-381 point. Highlighted cells indicate efficiency improvement.

Construction Int-Groth16 Ext-Groth16

CRS
3286 + 16.4Bw G1

1010 + 5.1Bw G2

0.14Bw G1

0.05Bw G2

Proof
(⌈

Bw

248

⌉
+ 1
)
GJ +Bw

(⌈
Bw

43

⌉
+ 2
)
G1

Prover
4296 + 21.6Bw E1

1010 + 5.1Bw E2

0.16Bw E1

0.05Bw E2

Verifier 3
⌈
Bw

248

⌉
E1

(⌈
Bw

43

⌉
+ 2
)
P

∆n + lw = 2lw = 0.05Bw G2.

2. Proof size. We produce l′w + 2 extra ciphertext points in G1.

3. Prover time. For E1, ∆m+3∆n−∆l+2lw = 7lw = 0.16Bw E1. The overhead

for E2 is the same as of G2 in CRS size.

4. Verifier time. We need to compute l′w + 2 more pairings than in Groth16, and

no additional exponentiations, since ∆l = 0.

3.5.0.3 Performance Comparison

Our estimates, summarized in Table 3.2, suggest that both constructions are quite

efficient practically. Ext-Groth16 achieves better prover time and CRS size at the

expense of slightly bigger proofs and verification time. CRS size and prover time

of Ext-Groth16 incur a very small overhead, and are asymptotically much smaller

than the same numbers for Int-Groth16, giving almost a 100 − 135× performance

gain. Hence, we focus our detailed analyses on the proof size and verifier time:

1. Proof size. Assuming that encoded BLS12-381 G1 takes 381 bits, and that

JubJub point GJ takes 256 bits, Int-Groth16 overhead is
(⌈

Bw

248

⌉
+ 1
)
256 +

Bw ≈ 2.03Bw +256 bits, and for Ext-Groth16 it is
(⌈

Bw

43

⌉
+2
)
381 ≈ 8.86Bw +

762 bits. Asymptotically, Int-Groth16 proof size is ×4.4 times smaller.

2. Verifier time. To compare the increase in exponentiations in Int-Groth16 with
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the increase in pairings in Ext-Groth16, we use the estimation that micro

benchmarks ([Atapoor and Baghery, 2019, Fig 2], also consistent with [Fauzi

et al., 2017, Table 3] for BN-254) show pairings to be approximately N = 35

times slower than processing one element of a multi-exponentiation. Thus,

the verification overhead of Int-Groth16 is small for practical witnesses, e.g.

1600 · 3/248 ≈ 20 wires for encrypting 200 bytes, comparing to tens of thou-

sands circuit constraints. And the overhead of Ext-Groth16 therefore is about

70×more than for Int-Groth16, although for real-world witnesses it takes less

than just a few tens milliseconds, and becomes immaterial for bigger public

input sizes.

3.6 Open Questions

We prove two important theorems about [Groth, 2016] and [Lee et al., 2019] en-

abling the composable analysis of provable secure protocols. We conjecture that

both our white-box and black-box results generalize to other SNARKs. In fact, we

first showed white-box weak SE in a modification of [Groth and Maller, 2017] with

the second equation removed. We decided to focus on Groth16 as the most im-

portant SNARK in this family to give a targeted proof and performance analysis.

Besides improving performance, we expect weak SE and proof randomization to

also have positive cryptographic applications that would be impossible with strong

SE — just as for Groth-Sahai proofs [Groth and Sahai, 2008, Belenkiy et al., 2009].





Chapter 4

Secure Non-Malleable Ceremonies

for SNARKs

This chapter is based on the work “Snarky Ceremonies”, published in
Asiacrypt 2021, and co-authored by Markulf Kohlweiss, Mary Maller,
and Janno Siim.

Every application using Groth16 must run a separate trusted setup ceremony in

order to ensure security, and even small errors in the setup could result a complete

break of the system. Indeed, the paper of the original Zcash SNARK [Ben-Sasson

et al., 2014c] contained a small typo which resulted in a bug that would allow an

attacker to print unlimited funds in an undetectable manner [Gabizon, 2019]. Some

would use this example as a reason to avoid any SNARK with a trusted setup

ceremony at all costs. And yet Groth16 is not only still being used, but many

protocols are being actively designed on top of it, potentially for the reasons listed

above. Thus we believe that if this SNARK ceremony is going to be used anyway,

it is important to put significant effort on simplifying its description and verifying its

security.

The primary purpose of this chapter is to take a formal approach to proving the

security of the Groth16 setup ceremony of Bowe, Gabizon, and Miers [Bowe et al.,

2017b] that is currently commonly used in practice. The first prominent applica-

tion of the protocol was the Zcash Sapling ceremony, but it was also run by many

other projects, for example Aztec protocol, Filecoin, Semaphore, Loopring, Tor-

nado Cash, Plumo Ceremony, and Hermez. Some of these ceremonies are based

87



88 Chapter 4. Secure Non-Malleable Ceremonies for SNARKs

on the project called Perpetual Powers of Tau (PPoT), which implements the first

phase of [Bowe et al., 2017b], that is not specialized to any circuit — this implies

that the project planning to run a ceremony can fork off the PPoT, reducing its own

setup cost. In other words, [Bowe et al., 2017b] is by far the most popular ceremony

protocol used in practice; but it is also modified, specialized, and re-implemented

by many independent projects. We simplify the original protocol, specifically we

remove the need for a random beacon. Our security proofs equally apply to the

version of the protocol with a beacon already used in practice.

A number of different works have analysed the setup security of zk-SNARKs. The

works of [Ben-Sasson et al., 2015, Bowe et al., 2017a, Abdolmaleki et al., 2019]

(see also [Aggelakis et al., 2020]) propose specialized multi-party computation pro-

tocols for SRS generation ceremonies. A common feature of these protocols is that

they are secure if at least one of the parties is honest. However, these schemes

are not robust in the sense that all parties must be fixed before the beginning of the

protocol and be active throughout the whole execution. In other words if a single

party goes offline between rounds then the protocol will not terminate.

Bowe, Gabizon, and Miers [Bowe et al., 2017b] showed that the latter problem

could be solved if there is access to a random beacon — an oracle that periodi-

cally produces bitstrings of high entropy — which can be used to rerandomize the

SRS after each protocol phase. Unfortunately, obtaining a secure random bea-

con is, by itself, an extremely challenging problem [Kiayias et al., 2017, Boneh

et al., 2018, Han et al., 2020]. Secure solutions include unique threshold signa-

tures [Hanke et al., 2018], which themselves require complex setup ceremonies as

well as verifiable delay functions [Boneh et al., 2018, Pietrzak, 2019, Wesolowski,

2019] that require the design and use of specialized hardware. Practical realiza-

tions have instead opted for using a hash function applied to a recent blockchain

block as a random beacon. This is not an ideal approach since the blockchain

miners can bias the outcome.1

The work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [Groth et al., 2018]

takes a different approach and directly constructs a SNARK where the SRS is up-

datable, that is, anyone can update the SRS and knowledge soundness and zero-

1It is desirable for a setup ceremony to avoid dependence on setups as much as possible—we
spurn random beacons but embrace random oracles.
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knowledge are preserved if at least one of the updaters was honest.2 Subsequent

updatable SNARKS like Sonic [Maller et al., 2019], Marlin [Chiesa et al., 2020], and

PLONK [Gabizon et al., 2019] have improved the efficiency of updatable SNARKs,

but they are still less efficient than for example [Groth, 2016]. Mirage [Kosba et al.,

2020] modifies the original Groth16 by making the SRS universal, that is the SRS

works for all relations up to some size bound. The latter work can be seen as com-

plementary to the results of this work as it amplifies the benefits of a successfully

conducted ceremony.

The key contributions of this chapter are as follows:

Designing a security framework. We formalize the notion of non-interactive zero-

knowledge (NIZK) argument with a multi-round SRS ceremony protocol, which

extends the framework of updatable NIZKs in [Maller et al., 2019]. Our def-

initions fix a syntax for ceremonies with Update and VerifySRS algorithms

and take a game-based approach. This is less rigid than a multi-party com-

putation definition (see for example [Abdolmaleki et al., 2019] for a UC-

functionality). Our security notion says that an adversary cannot forge a

SNARK proofs even if they can participate in the setup ceremony. We call

such a SNARK ceremonial. This notion is more permissible for the setup

ceremony than requiring simulatability and is therefore easier to achieve. In

particular, using our definitions we do not require the use of a random bea-

con (as is needed in [Bowe et al., 2017b]) or additional setup assumptions

([Ben-Sasson et al., 2015] assumes a common random string and [Abdol-

maleki et al., 2019] assumes a trusted commitment key), whereas it is not

clear that those could be avoided in the MPC setting. Our definitions are

applicable to SNARKs with a multiple round setup ceremony as long as they

are ceremonial.

Proving security without a random beacon. We prove the security of the Groth16

SNARK with a setup ceremony of [Bowe et al., 2017b] in our new security

framework. We intentionally try not change the original ceremony protocol

too much so that our security proof would apply to protocols already used

in practice. Security is proven with respect to algebraic adversaries [Fuchs-

bauer et al., 2018] in the random oracle model. We require a single party to

2Note that one can independently prove subversion ZK [Abdolmaleki et al., 2017, Fuchsbauer,
2018].
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be honest in each phase of the protocol in order to guarantee that knowledge

soundness and subversion zero-knowledge hold. Unlike [Bowe et al., 2017b],

our security proof does not rely on the use of a random beacon. However,

our security proof does apply to protocols that have been implemented us-

ing a (potentially insecure) random beacon because the beacon can just be

treated as an additional malicious party. We see this as an important security

validation of real-life protocols that cryptocurrencies depend on.

Revisiting the discrete logarithm argument. The original paper of [Bowe et al.,

2017b] used a novel discrete logarithm argument Πdl to prove knowledge

of update contributions. They showed that the argument has knowledge

soundness under the knowledge of exponent assumption in the random ora-

cle model. While proving the security of the ceremony protocol, we observe

that even stronger security properties are necessary. The discrete logarithm

argument must be zero-knowledge and straight-line simulation extractable,

i.e., knowledge sound in the presence of simulated proofs. Furthermore,

simulation-extractability has to hold even if the adversary obtains group ele-

ments as an auxiliary input for which he does not know the discrete logarithm.

We slightly modify the original argument to show that those stronger proper-

ties are satisfied if we use the algebraic group model with random oracles.

Thus, in this chapter we simplify the widely used protocol of [Bowe et al., 2017b]

and puts it onto firmer security foundations.

4.1 Technical Overview

We provide a high-level technical overview of the results in this chapter.

Security framework. Our security framework assumes that the SRS is split into

φmax distinct components srs = (srs1, . . . , srsφmax) and in each phase of the cer-

emony protocol one of the components gets finalized. We formalize this by en-

hancing the standard definition of NIZK with an Update and VerifySRS algorithms.

Given srs and the phase number φ, the Update algorithm updates srsφ and pro-

duces a proof ρ that the update was correct. The verification algorithm VerifySRS

is used to check that srs and update proofs {ρi}i are valid.

We obtain the standard updatability model of [Maller et al., 2019] if φmax = 1.
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When modelling the Groth16 SNARK we set φmax = 2. In that scenario, we split

the SRS into a universal component srs1 = srsu that is independent of the specific

relation that we want to prove3 and to a specialized component srs2 = srss, which

depends on a concrete relation R. Both srsu and srss are updatable; however, the

initial srss has to be derived from srsu and the relationR. Thus, parties need first to

update srsu, and only after a sufficient number of updates can they start to update

srss. The universal srsu can potentially be reused for other relations.

In our definition of update knowledge soundness, we require that no adversary

can convince an honest verifier of a statement unless either (1) they know a valid

witness; (2) the SRS does not pass the setup ceremony verification VerifySRS; or

(3) one of the phases did not include any honest updates. Completeness and zero-

knowledge hold for any SRS that passes the setup ceremony verification, even if

there were no honest updates at all. The latter notions are known as subversion

completeness and subversion zero-knowledge [Bellare et al., 2016].

Security proof of setup ceremony. We must prove subversion zero-knowledge

and update knowledge-soundness. Subversion zero-knowledge follows from the

previous work in [Abdolmaleki et al., 2017, Fuchsbauer, 2018], which already

proved it for Groth16 under knowledge assumptions. The only key difference is that

we can extract the simulation trapdoor with a discrete logarithm proof of knowledge

argument Πdl used in the ceremony protocol.

Our security proof of update knowledge-soundness uses a combination of the al-

gebraic group model and the random oracle (RO) model. As was recently shown by

Fuchsbauer, Plouviez, and Seurin [Fuchsbauer et al., 2020] the mixture of those

two models can be used to prove powerful results (tight reductions of Schnorr-

based schemes in their case) but it also introduces new technical challenges. Re-

call that the algebraic group model (AGM) is a relaxation of the generic group

model proposed by Fuchsbauer, Kiltz, and Loss [Fuchsbauer et al., 2018]. They

consider algebraic adversaries Aalg that obtain some group elements G1, . . . ,Gn

during the execution of the protocol and whenever Aalg outputs a new group el-

ement E, it also has to output a linear representation C⃗ = (c1, . . . , cn) such that

E = Gc1
1 G

c2
2 . . . G

cn
n . Essentially, Aalg can only produce new group elements by

3Similarly to the universal updatability notions that share the same “independence”, e.g. [Maller
et al., 2019], srsu still formally depends on the maximum size of the circuit, which can nevertheless
be made large enough to be practically universal.
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applying group operations to previously known group elements. In contrast to the

generic group model, the representation of group elements is visible to Aalg, and

thus security proofs in AGM are typically reductions to some group-assumptions

(e.g. the discrete logarithm assumption).

Already the original AGM paper [Fuchsbauer et al., 2018] proved knowledge sound-

ness of the Groth16 SNARK in the AGM model (assuming trusted SRS). They

proved it under the q-discrete logarithm assumption, i.e., a discrete logarithm as-

sumption where the challenge is (Gz,Gz2 , . . . ,Gzq). The main idea for the reduc-

tion is that we can embed Gz in the SRS of the SNARK. Then when the algebraic

adversary Aalg outputs a group-based proof π, all the proof elements are in the

span of the SRS elements, and Aalg also outputs the respective algebraic repre-

sentation. We can view the verification equation as a polynomial Q that depends

on the SRS and π such that Q(SRS, π) = 0 when the verifier accepts. Moreover,

since π and SRS depend on z, we can write Q(SRS, π) = Q′(z). Roughly, the

proof continues by looking at the formal polynomial Q′(Z), where Z is a variable

corresponding to z, and distinguishing two cases: (i) if Q′(Z) = 0, it is possible to

argue based on the coefficient of Q′ that the statement is valid and some of the co-

efficients are the witness, i.e., Aalg knows the witness, or (ii) if Q′(Z) ̸= 0, then it is

possible to efficiently find the root z of Q′ and solve the discrete logarithm problem.

Our proof of update knowledge soundness follows a similar strategy, but it is much

more challenging since the SRS can be biased, and the Aalg has access to all

the intermediate values related to the updates. Furthermore, Aalg also has access

to the random oracle, which is used by the discrete logarithm proof of knowledge

Πdl. Firstly, since the SRS of the Groth16 SNARK contains one trapdoor that is

inverted (that is δ), we need to use a novel extended discrete logarithm assumption

where the challenge value is ({Gzi}q1i=0, {Hzi}q2i=0, r, s,G
1

rz+s ,H
1

rz+s ) where G and

H are generators of pairing groups and r, s, z are random integers. We prove

that this new assumption is very closely related (equivalent under small change of

parameters) to the q-discrete logarithm assumption. In the case with an honest

SRS [Fuchsbauer et al., 2018] it was possible to argue that by multiplying all SRS

elements by δ we get an equivalent argument which does not contain division, but

it is harder to use the same reasoning when the adversary biases δ. The reduction

still follows a similar high-level idea, but we need to introduce intermediate games

that create a simplified environment before we can use the polynomialQ. For these
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games we rely on the zero-knowledge property and simulation extractability of Πdl.

Moreover, we have to consider that Aalg sees and adaptively affects intermediate

states of the SRS on which the proof by π can depend on. Therefore the polynomial

Q′ takes a significantly more complicated form, but the simplified environment will

reduce this complexity.

Revisiting the discrete logarithm argument. One of the key ingredients in the [Bowe

et al., 2017b] ceremony is the discrete logarithm proof of knowledge Πdl. Each up-

dater uses this to prove that it knows its contribution to the SRS. The original [Bowe

et al., 2017b] proved only knowledge soundness of Πdl. While proving the security

of the setup ceremony in our framework, we observe that much stronger properties

are needed. Firstly, Πdl needs to be zero-knowledge since it should not reveal the

trapdoor contribution. Secondly, Πdl should be knowledge sound, but in an environ-

ment where the adversary also sees simulated proofs and obtains group elements

(SRS elements) for which it does not know the discrete logarithm. For this, we

define a stronger notion simulation-extractability where the adversary can query

oracle Ose for simulated proofs and oracle Opoly on polynomials f(X1, . . . ,Xn) that

get evaluated at some random points x1, . . . ,xn such that the adversary learns

Gf(x1,...,xn) or Hf(x1,...,xn).

We show that proofs can be trivially simulated when the simulator has access to

the internals of the random oracle and thus Πdl is zero-knowledge. We once again

use AGM, this time to prove simulation-extractability. Since in this proof we can

embed the discrete logarithm challenge in the random oracle responses, we do

not need different powers of the challenge and can instead rely on the standard

discrete logarithm assumption. We also slightly simplify the original Πdl and remove

the dependence on the public transcript TΠ of the ceremony protocol, that is, the

sequence of messages broadcasted by the parties so far. Namely, the original

protocol hashes TΠ and the statement to obtain a challenge value. This turns out

to be a redundant feature, and removing it makes Πdl more modular.

Implementation and Optimization. Partners in a joint research project have

developed a Rust implementation4 of our Update and VerifySRS algorithms for

Groth16 building on the arkworks library with various optimizations such as batch-

4https://github.com/grnet/snarky

https://github.com/grnet/snarky
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ing and parallelization. This validates the correctness of our algorithms and in-

tends to serve as an independent implementation to measure other solutions. We

describe batched SRS update verification in 4.7.

4.2 Extended Discrete Logarithm Assumption

We presented the (q1, q2)-discrete logarithm assumption [Fuchsbauer et al., 2018]

previously in Definition 2.3.4. In our main theorem it is more convenient to use a

slight variation of it.

Definition 4.2.1 ((q1, q2)-edlog). The (q1, q2)-extended discrete logarithm assump-

tion holds for BGen if for any PPT A:

Pr


bp

$←− BGen(1λ)

z, r, s
$←− Zp s.t. rz + s ̸= 0

z′
$←− A(bp, {Gzi}q1i=1, {Hzi}q2i=1, r, s,G

1
rz+s ,H

1
rz+s )

: z = z′

 = negl(λ)

The assumption is an extension of (q1, q2)-dlog, where we additionally give A the

challenge z in denominator (in both groups), blinded by s, r, which A is allowed to

see. Later this helps to model fractional elements in Groth16’s SRS. Notice that

(q1, q2)-edlog trivially implies (q1, q2)-dlog, since A for the latter does not need to

use the extra elements of the former. The opposite implication is also true (except

for a slight difference in parameters) as we state in the following theorem.

Theorem 4.2.1. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog as-

sumption holds.

Proof. Suppose that a PPT adversary A breaks (q1, q2)-edlog assumption with a

probability ε. We will construct an adversary B that breaks (q1 + 1, q2 + 1)-dlog

assumption with the same probability.

The adversary B gets as an input a challenge (bp, {Gzi}q1+1
i=1 , {Hzi}q2+1

i=1 ). Firstly,

B samples r, s $←− Zp and we implicitly define x such that z = rx + s; the value

of x is unknown to B. After this B constructs a pairing description bp∗ which is

exactly like bp but the generator G is changed to Ĝ := Gz and H to Ĥ = Gz.5

Now, let us observe that Ĝ
1

rx+s = Ĝ1/z = G and Ĝxi = Ĝ((z−s)/r)i = Gz((z−s)/r)i for

5We implicitly assume that generators in bp are uniformly random. This might not always be the
case in a real-life pairing library.
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i = 1, . . . , q1 are all values that B either already knows or can compute from r, s

and {Gzi}q1+1
i=0 . Considering that the same is true for G2 elements, B is able to run

A on an input (bp, {Ĝxi}q1i=1, {Ĥxi}q2i=1, r, s, Ĝ
1

rx+s , Ĥ
1

rx+s ) and obtain some output

x′. Finally, B returns rx′ + s.

The adversary A will output x′ = x with a probability ε since the input to A is indis-

tinguishable from an honest (q1, q2)-edlog challenge. If this happens, then B will

succeed in computing z. Thus, B will break the (q1+1, q2+1)-dlog assumption with

the same probability ε. Given the statement of our theorem, ε must be negligible

and it follows that (q1, q2)-edlog assumption holds.

4.3 Ceremonial SNARKs

We present our definitions for NIZKs that are secure with respect to a setup cere-

mony. We discuss the new notions of update completeness and update soundness

that apply to ceremonies that take place over many rounds. We also define sub-

version zero-knowledge which is adjusted to our ceremonial setting.

Compared to standard MPC definitions, our definition of (update) knowledge sound-

ness is not simulation-based and the final SRS may not be uniformly random. We

believe that the attempt to realise standard MPC definitions is what led prior works

to make significant practical sacrifices e.g. random beacons or players that can-

not go offline. This is because a rushing adversary that plays last can manipulate

the bit-decomposition, for example to enforce that the first bit of the SRS is always

0. We here choose to offer an alternative protection: we allow that the final SRS

is not distributed uniformly at random provided that the adversary does not gain

any meaningful advantage when attacking the soundness of the SNARK. This is in

essence an extension of updatability definitions [Groth et al., 2018] to ceremonies

that require more than one round.

As usual, we consider NP-languages L and their corresponding relations R =

{(x,w)} where w is an NP-witness for the statement x ∈ L.

Definition 4.3.1. A NIZK with a ceremony protocol for a relation R is a NIZK with

the following additional algorithms:

UpdateSRS(φ, srs, {ρi}i)
$−→ srs′: A PPT SRS update algorithm that takes as input

a phase number φ ∈ {1, . . . ,φmax}, the current SRS srs, and proofs of pre-
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vious updates {ρi}i, and outputs a new SRS srs′ and an update proof ρ′.

It is expected that UpdateSRS itself forces a certain phase order, e.g. the

sequential one.

VerifySRS(srs, {ρi}i)→ 0/1: A DPT SRS verification algorithm that takes as an

input a SRS srs and update proofs {ρi}i, and outputs 0 or 1.

The description of NIZK also fixes a default srsd = (srsd1, . . . , srs
d
φmax

). The algo-

rithms Prove,Verify, Sim are as before, and, semantically, can accept any srs . The

Setup algorithm is also as before, but it is not used, since it is essentially replaced

by the multi-round setup algorithm UpdateSRS.

As before, we implicitly assume bp
$←− BGen(1λ) being run before all the algorithms,

and bp being passed to them implicitly. We disallow subversion of bp in this work

but in real life systems also this part of the setup needs scrutiny. This is arguable

easier since usually bp is trapdoor free.

As usual, we require that a secure NIZK satisfies the following flavours of com-

pleteness, zero-knowledge, and knowledge soundness. All our definitions are in

the (implicit) random oracle model, since our final SRS update protocol will be us-

ing RO-dependent proof of knowledge. Therefore, all the algorithms in this section

have access to RO, if some sub-components of NIZK require it. In addition, we will

require definitions

Completeness of NIZK additionally requires that UpdateSRS and Prove always sat-

isfy verification.

Definition 4.3.2 (Perfect Completeness). A NIZK with a ceremony protocol for R
is perfectly complete if for any adversary A, it has the following properties:

1. Update completeness:

Pr

[
(φ, srs, {ρi}i)

$←− A(1λ), (srs′, ρ′) $←− UpdateSRS(φ, srs, {ρi}i) :
VerifySRS(srs, {ρi}i) = 1 ∧ VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

]
= 0.

2. Prover completeness:

Pr

[
(srs, {ρi}i, x,w)

$←− A(1λ), π $←− Prove(srs, x,w) :

VerifySRS(srs, {ρi}i) = 1 ∧ (x,w) ∈ R ∧ Verify(srs, x, π) ̸= 1

]
= 0.

We will need a strengthening of the standard definition of zero-knowledge (Defini-

tion 2.6.5), by modelling potential subversion of the SRS; our definition follows [Ab-
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dolmaleki et al., 2017]. Intuitively it says that an adversary that outputs a well-

formed SRS knows the simulation trapdoor td and thus could simulate a proof

himself even without the witness. Therefore, proofs do not reveal any additional

information. On a more technical side, we divide the adversary into an efficient

SRS subverter Z that generates the SRS (showing knowledge of td makes sense

only for an efficient adversary) and into an unbounded distinguisher A. We let Z
send st to communicate with A.

Definition 4.3.3 (Subversion Zero-Knowledge). A NIZK with a ceremony protocol

for R is subversion zero-knowledge (sub-ZK) if for all PPT subverters Z , there

exists a PPT extractor ExtZ , such that for all (unbounded) A, |ε0 − ε1| is negligible

in λ, where

εb := Pr

[
(srs, {ρi}i, st)

$←− Z(1λ)
td

$←− ExtZ(viewZ)
:

VerifySRS(srs, {ρi}i) = 1 ∧
ASb,srs,td(·)(st) = 1

]

The simulation oracle Sb,srs,td is the first variant as defined in Fig. 2.2; it uses the srs

returned by Z .

Bellare et al. [Bellare et al., 2016] showed that it is possible to achieve sound-

ness and subversion zero-knowledge at the same time, but also that subversion

soundness is incompatible with (even non-subversion) zero-knowledge. Updatable

knowledge soundness from [Groth et al., 2018] can be seen as a relaxation of

subversion soundness to overcome the impossibility result.

We generalize the notion of update knowledge soundness to multiple SRS gener-

ation phases. SRS is initially empty (or can be thought to be set to a default value

srsd). In each phase φ, the adversary has to fix a part of the SRS, denoted by srsφ,

in such a way building the final srs. The adversary can ask honest updates for his

own proposal of srs∗φ, however, it has to pass the verification VerifySRS. The adver-

sary can query honest updates using UPDATE query through a special oracle Osrs,
described in Fig. 4.1. Eventually, adversary can propose some srs∗φ with update

proofs Q∗ to be finalized through FINALIZE query. The oracle does it if Q∗ contains

at least one honest update proof obtained from the oracle for the current phase. If

that is the case, then srsφ cannot be changed anymore and the phase φ+1 starts.

Once the whole SRS has been fixed, A outputs a statements x and a proof π. The

adversary wins if (srs, x, π) passes verification, but there is no PPT extractor ExtA
that can extract a witness even when given the view of A.
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Osrs(intent, srs∗,Q∗):

1. % Initially Q1 = · · · = Qφmax ← ∅;φ← 1

2. % SRS already finalized for all phases:

3. if φ > φmax then return ⊥

4. srsnew ← (srs1, . . . , srsφ−1, srs
∗
φ, . . . , srs

∗
φmax

)

5. % Invalid SRS:

6. if VerifySRS(srsnew,Q∗) = 0 then return ⊥

7. if intent = UPDATE then

8. (srs′, ρ′)
$←− UpdateSRS(φ, srsnew,Q

∗);

9. Qφ := Qφ ∪ {ρ′}
10. return (srs′, ρ′)

11. if intent = FINALIZE ∧Qφ ∩Q∗ ̸= ∅ then

12. srsφ := srs∗φ;φ := φ+ 1

Figure 4.1: SRS update oracle Osrs given to the adversary in Definition 4.3.4.

UPDATE returnsA an honest update for φ, and FINALIZE finalizes the current phase.

Current phase φ and current SRS srs are shared with the KS challenger. {Qφi
}i is

a local set of proofs for honest updates, one for each phase.

Definition 4.3.4 (Update Knowledge Soundness). An NIZK with a ceremony pro-

tocol for R is update knowledge-sound if for all PPT adversaries A, there exists a

PPT extractor ExtA such that Pr[GA,ExtAuks (1λ) = 1] is negligible in λ, where

GA,ExtAuks (1λ) :=



(x, π)
$←− AOsrs(·)(1λ)

Obtain (srs,φ) from Osrs
w

$←− ExtA(viewA)

return Verify(srs, x, π) = 1 ∧
(x,w) ̸∈ R ∧ φ > φmax


,

The SRS update oracle Osrs is described in Fig. 4.1.

If φmax = 1, we obtain the standard notion of update knowledge soundness. In

the rest of the chapter, we only consider the case where φmax = 2. In particular,

in the first phase we will generate a universal SRS srsu = srs1 that is independent

of the relation and in the second phase we generate a specialized SRS srss = srs2

that depends on the concrete relation. We leave it as an open question whether

ceremony protocols with φmax > 2 can provide any additional benefits. We also
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note that we do not model the possibility of the protocol running for several relations

honestly simultaneously, although A can construct such SRS variants on its own.

It is important to explain the role of the default SRS in the definition. Our definition

allows A to start its chain of SRS updates from any SRS, not just from the default

one; the only condition is the presence of a single honest update in the chain.

The default srsd is only used as a reference, for honest users. This has positive

real-world consequences: since the chain is not required to be connected to any

“starting point”, clients only need to verify the suffix of Q∗, if they are confident it

contains an honest update. In particular, clients that contribute to the SRS update

can start from the corresponding proof of update.

We again note that when using the random oracle model in a sub-protocol, we

assume that all of the above algorithms in our security model have access to RO.

4.4 Update Proofs of Knowledge

One of the primary ingredients in the setup ceremony is a proof of update knowl-

edge whose purpose is to ensure that adversary knows which values they used

for updating the SRS. In this section, we discuss the proof of knowledge given by

Bowe et al [Bowe et al., 2017b]. Bowe et al. only proved this proof of knowledge

secure under the presence of an adversary that can make random oracle queries.

This definition is not sufficient to guarantee security (at least in our framework),

because the adversary might be able to manipulate other users proofs or update

elements in order to cheat. We therefore define a significantly stronger property

that suffices for proving security of our update ceremony.

4.4.1 White-box Simulation-Extraction with Oracles

In this section, we provide definitions for the central ingredient of the ceremony

protocol — the update proof of knowledge that ensures validity of each sequential

SRS update. The proof of knowledge (PoK) protocol does not rely on reference

string but employs a random oracle as a setup. Hence we will extend the standard

NIZK definitions with ROt(·), defined in Fig. 2.1.

Since NIZK proof of knowledge is used in our ceremony protocol, we require it

to satisfy a stronger security property than knowledge soundness or even simula-
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tion extraction. Instead of the standard white-box simulation-extractability (SE), we

need a property that allows to compose the proof system more freely with other

protocols while still allowing the adversary to extract. This is somewhat similar to

idea of universal composability (UC, [Canetti, 2001]), but contrary to the standard

UC, our extractor is still white-box. Another way would be to use an augmented UC

model which allows white-box assumptions (see [Kerber et al., 2021a]). We follow

the more minimal and commonly used game-based approach.

We model influence of other protocols by considering a polynomial oracle Opoly in

the SE game of the update PoK.

The adversary can query the oracle Opoly on Laurent polynomials fi(Z1, . . . ,Zn)

and it will output Gfi(z1,...,zn) for z1, . . . , zn pre-sampled from a uniform distribution,

and unknown to A. We use Laurent polynomials since SRS elements, the access

to which the oracle models, may have negative trapdoor powers.6 By deg(f) we

will denote the maximum absolute degree of its monomials, where by absolute

degree of the monomial we mean the sum of all its degrees taken as absolute val-

ues. Formally, deg(c ·
∏

i Z
ai
i ) :=

∑
i |ai|, and deg(f(Z1, . . . ,Zn)) = deg(

∑
iMi) :=

max{deg(Mi)}, whereMi are monomials of f . For example, deg(3x2αδ−2+y) = 5.

This notion is used to limit the degree of input toOpoly — we denote the correspond-

ing degree d(λ) (or d, interchangeably).

This empowered adversary still should not be able to output a proof of knowledge

unless it knows a witness. Note that Opoly is independent from the random oracle

ROt and cannot provide the adversary any information about the random oracle’s

responses. In general, Opoly adds strictly more power to A. The intention of intro-

ducing Opoly is to account for the SRS of the Groth’s SNARK later on.

In addition, our ceremony protocol for Groth16 requires NIZK to be straight-line

simulation extractable, i.e., that extraction works without rewinding and is possible

even when the adversary sees simulated proofs. Below, we define such a NIZK in

the random oracle model.

As usual, let L be a language and R the corresponding relation. The argument

NIZK for R in the random oracle model consists of the standard three algorithms

with the following RO access: the prover ProveRO(·), the verifier VerifyRO(·), and the

simulator SimRO1(·).

6See the description of Groth16 SRS, which has 1/δ in some SRS elements.
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Ose(x):

% On init Q = ∅
π

$←− SimRO1(·)(x)

Q := Q ∪ {(x, π)}
return π

OG1
poly(f(Z1, . . . ,Zd(λ))):

if deg(f) > d(λ) then

return ⊥
else return Gf(z1,...,zd(λ))

OG2
poly(g(Z1, . . . ,Zd(λ))):

if deg(g) > d(λ) then

return ⊥
else return Hg(z1,...,zd(λ))

Figure 4.2: Simulation-extraction oracle and two d−Poly oracles — for G1 and G2.

All used in GsSE.

We assume that NIZK in the ROM satisfies the following variations of the standard

definitions, where the main difference is the new oracle algorithms, including RO,

that we add to the NIZK algorithms and parties.

Definition 4.4.1. An NIZK for R is perfectly complete in the random oracle model,

if for any adversary A,

Pr

[
(x,w)

$←− ARO(·)(1λ)

π
$←− ProveRO(·)(x,w)

:
VerifyRO(·)(x, π) = 1 ∧
(x,w) /∈ R

]
= 0.

Definition 4.4.2. A NIZK for R is straight-line simulation extractable in the (RO,

d−Poly)-model, if for all PPTA, there exists a PPT extractor ExtA such that Pr[GAsSE(1λ) =
1] = negl(λ), where

GAsSE(1λ) :=


Q← ∅; z1, . . . , zd(λ)

$←− Zp
(x, π)

$←− AOse,RO,OG1
poly,O

G2
poly(1λ)

w← ExtA(viewA)

:
VerifyRO(·)(x, π) = 1 ∧
(x,w) ̸∈ R ∧ (x, π) ̸∈ Q


The oracles Ose,OG1

poly,O
G2
poly are defined on Fig. 4.2.

Roughly speaking, the adversary wins if it can output a verifying statement and

proof for which it does not know a witness, such that this proof has not been ob-

tained from a simulation oracle. There are also up to d(λ) random variables chosen

at the start such that the adversary can query an oracle for arbitrary polynomial

evaluations with maximum degree d(λ) of these values in the group. With respect

to the relation of this definition to more standard one we note two things. First, our

definition is white-box (since ExtA requires viewA), and strong (in the sense that

proofs are not randomizable). Second, our notion implies strong-SE in the pres-

ence of RO, which is the special case of GsSE with Opoly removed, and thus is very

close to the standard non-RO strong-SE variant.
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Definition 4.4.3. A NIZK for the relation R is perfectly zero-knowledge in the ran-

dom oracle model if for all PPT adversaries A, ε0 = ε1, where

εb := Pr
[
ASb,⊥,⊥,RO(·),RO(·)(1λ) = 1

]
.

Sb,⊥,⊥,RO is a variant of Sb,⊥,⊥ on Fig. 2.2, that passes RO to the subroutines: i.e.

after the assertion it returns either ProveRO(·)(x,w) or SimRO1(·)(x). We do not pass

σ and td to S in this case since our RO-NIZK will not have a CRS.

Note that Sim is allowed to have access to RO discrete logarithms.

4.4.2 On the Security of BGM Update Proofs

We now prove that the proof system of [Bowe et al., 2017b] satisfies this stronger

property.

Bowe et al. [Bowe et al., 2017b] proved that the proof system is secure under a

Knowledge-of-Exponent assumption. Their analysis does not capture the possibil-

ity that an attacker might use additional knowledge obtained from the ceremony to

attack the update proof. Our analysis is more thorough and assumes this additional

knowledge. This means that we cannot use a simple Knowledge-of-Exponent as-

sumption. Instead we rely on the algebraic group model; the AGM is to date the

weakest idealized model in which Groth16 has provable security and thus we do

not see this as being a theoretical drawback. The proof of knowledge is for the

discrete logarithm relation

Rdl :=
{
(x = (m,Gy1 ,Hy2),w) | y1 = y2 = w

}
,

wherem is an auxiliary input that was used in the original [Bowe et al., 2017b] proof

of knowledge. The auxiliary input is redundant as we will see, but we still model

it to have consistency with the original protocol. We recall that one of our goals is

also to confirm the security of ceremony protocols already used in practice.

The protocol is given formally in Fig. 4.3. First the prover queries the random oracle

on the instance x. The oracle returns a fresh random group elementHr. The prover

returns π = Hrw. The verifier checks that the instance is well-formed (y1 = y2), and

then checks that ê(π,H) = ê(RO(x),Hy2) which ensures knowledge of y2. Intuition

for the last equation is that RO(x) acts as a fresh random challenge for x and the

only way to compute π = RO(x)y2 and Hy2 is by knowing y2. The fact that in Rdl
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Prove
RO(·)
dl (x,w):

Gr ← RO(x)

return Grw

Sim
RO1(·)
dl (x = (·,Gy1 ,Hy2)):

assert ê(Gy1 ,H) = (G,Hy2)

rx ← RO1(x)

return π := (Gy1)rx

Verify
RO(·)
dl (x = (·,Gy1 ,Hy2),π):

Gr ← RO(x)

return ê(Gy1 ,H) = (G,Hy2) ∧ ê(π,H) = ê(Gr,Hy2)

Figure 4.3: The discrete logarithm proof of knowledge Πdl.

every x with y1 = y2 belongs to Ldl (the exponent w always exists) justifies that

we will call the correspondent equation “well-formedness check”; subsequently, we

will refer to the other check as “the main verification equation”.

Here we have moderately simplified the description from [Bowe et al., 2017b]:

• We allow the message m to be unconstrained. Thus if one were to hash

the public protocol view, as current implementations do, our security proof

demonstrates that this approach is valid. However, we can also allow m to

be anything, including the empty string.

• The original protocol has the proof element in G2. We switched it to G1 to

have shorter proofs.

• Our protocol includes the pairing based equality check for y in Gy and Hy in

the verifier rather than relying on this being externally done in the ceremony

protocol. The value Gy is needed by the simulator.

We are now ready to state the security theorem for Πdl.

Theorem 4.4.1. The argument Πdl = (Prove
RO(·)
dl ,Verify

RO(·)
dl , Sim

RO1(·)
dl ) is (i) com-

plete, (ii) perfect zero-knowledge in the random oracle model, and (iii) straight-line

SE in the (RO,d−Poly)-model against algebraic adversaries under the (1, 0)-dlog

assumption in G1.

Completeness and perfect zero-knowledge follow directly from the construction of

the prover, verifier, and simulator algorithms. The proof of straight-line simulation

extractability, presented below, is more challenging, and its general idea is as fol-

lows. We consider security against algebraic adversaries A. Both statement x
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elements (Gy,Hy) and proof π ∈ G1 that A outputs are going to be in the span of

elements that A queried from oracles. Coefficients of those spans can we white-

box extracted from A’s view viewA due to A being algebraic. We construct an

extractor ExtA that gets viewA as an input and returns the coefficient k correspond-

ing to the element RO(x) = Gr. Rest of the proof focuses on proving that k is the

witness y. Roughly speaking, the idea is to construct a discrete logarithm adver-

sary C that embeds (a randomized) discrete logarithm challenge Gc into each of

the random oracle queries that A makes. We show that unless k = y, C is able to

compute the discrete logarithm c from viewA with an overwhelming probablity.

Proof. (i) Completeness: Holds straightforwardly.

(ii) Zero-Knowledge: It is easy to see that Πdl is perfect zero-knowledge with

respect to Sim in Fig. 4.3. When the simulator gets an input x = (m,Gw,Hw) (note

that x ∈ L by definition, so the exponent w is equal in Gw and Hw), it queries r for

Gr = RO(x) using RO1, and returns Gwr. No adversary can distinguish between

honest and simulated proofs since they are equal.

(iii) Strong Simulation Extractability: Let A be an algebraic adversary playing

GsSE, and let us denote z⃗ = (z1, . . . , zd(λ)). AsA is algebraic, at the end of GsSE it re-

turns a statement and a proof (x, π) such that x = (m,Gy′ ,Hy) for some unknown

variables y, y′, and π ∈ G1. The fact that y′ = y immediately follows from the

instance well-formedness pairing equation in Verify, and implies x ∈ L (although

does not affect the proof in any other way). For the elements Hy and π, A re-

turns their representations (ρ, b1, . . . , bq2) and (α, a1, . . . , aq1 , k1, . . . kq3 , p1, . . . pq4)

that satisfy, correspondingly,

Hy = Hρ+b1g1(z⃗)+···+bq2gq2 (z⃗) (4.1)

and

π = Gα+a1f1(z⃗)+···+aq1fq1 (z⃗) ·
q3∏
j=1

K
kj
j ·

q4∏
j=1

P
pj
j (4.2)

In the former, ρ stands for the power of H, and bi are linear coefficients of the

polynomial evaluations returned by OG2
poly. Similarly, for π, the representation is split

into powers of the generator G, and coefficients ofOG1
poly, but it also accounts for the

answers to hash queries Kj, 1 ≤ j ≤ q3, and for the proof elements Pj, 1 ≤ j ≤ q4,

returned by the simulation oracle.
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Let S ⊂ [1, . . . , q3], replacing [1, . . . , q4], be a set of indices denoting queries made

by the simulator to the random oracle; |S| = q4, and we know q3 ≥ q4 since every

simulation query produces one RO query. Also in the following, we let r∗ and rj be

such that RO(x) = Gr∗ and RO(xj) = Grj for 1 ≤ j ≤ q3. RO responses {Grj}
, corresponding to the second set of elements {rj}, exist in viewA (in the list of

queries and responses to RO), since these values were generated by RO during

the game. On the other hand, Gr∗ may not exist in viewA, but then the probability

that π verifies is negligible, as fresh Gr∗ will be generated during the verification.

Therefore, since we assume that A wins GsSE, r∗ ∈ {rj}j∈[1,q3]\S. S is excluded

from the set of indices, since A also must not query Sim on x.

Thus, Kkj
j in the previously mentioned linear representations is just Grjkj . In

order to give algebraic representation of the simulated proofs Pj we must con-

sider algebraic representations of inputs to Sim first. Because the simulated proof

is constructed as (Gy1)r where Gy1 is an input provided by A, Gy1 is the only

input element that must be viewed algebraically. Notice that since we have a

ê(Gy1 ,H) = ê(G,Hy2) check in the simulator too, the algebraic representation

of y1 must be consistent with the one of y2, i.e. whatever A uses to construct Gy1

it must also have in G2 to construct Hy2 . In particular, this means that A cannot in-

clude (previous) direct RO responses and (previous) Sim responses into Gy1 , since

these both contain ri which A does not have in G2. Therefore, Pj = Grjyj is

algebraically represented as Pj = Grj(ρ̂j+
∑q1

i=1 âj,ifi(z⃗)). Note that if A has not yet

performed all the q1 queries to OG1
poly, then we can assume that âj,i = 0 for the

subsequent queries. Finally, it is important to emphasize that fi(z⃗) do not have any

further algebraic decomposition: A specifies these polynomials to Opoly in terms of

fi,j ∈ Zp, so these elements are just assumed to be standard public variables in

our reasoning.

Because of the verification equation we have RO(x)y = π. We thus have the two

equations describing challenge values Gy and π, corresponding to Equations 4.1

and 4.2, in the exponent form: y = ρ+
∑q2

i=1 bigi(z⃗) and

yr∗ = α +

q1∑
j=1

ajfj(z⃗) +

q3∑
j=1

kjrj +
∑
j∈S

pjrj(ρ̂j +

q1∑
i=1

âj,ifi(z⃗))

where in the second we used algebraic representations of Kj and Pj .

Let ExtA be the SE extractor with the following logic. First it obtains the set S of

(indices of) simulated queries; this can be deduced from the interaction pattern with
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the oracles, which is a part of viewA. Then, in the adversarial view viewA find such

an RO query index j ∈ [1, q3]\S that RO input is equal to x; if successful, return kj ,

and otherwise fail, returning 0. The intuition behind the extractor is the following.

Since honest proofs are RO(x)w for direct RO queries A makes, we expect kj to

be the witness. If j ∈ S, A re-used the simulation query and does not win.7 When

Gr∗ ̸= Grj (which implies r∗ ̸= rj) for all j ∈ [1, q3] \ S, A did not query RO, and

thus cannot win except with negligible probability.

We emphasize two limitations that any ExtA has, which shape the algorithm that we

have just presented. First, the extractor does not have access to exponent values

ri themselves, since they are embedded inside RO, but ExtA only sees interaction

with the oracle via viewA; therefore, it works only with Gri and S. Second, ExtA
cannot compute exponent y right away merely from the algebraic representation of

Hy passed as a part of x. Even though the coefficients (ρ, b1, . . . , bq2) are available

to ExtA in the SE game, it does not have access to the trapdoor z⃗ of OG1
poly, which

is intended to model the external honest SRS setup procedure.

To prove that ExtA is a valid SE extractor for A, we shall describe the behaviour of

an adversary C that succeeds against the discrete logarithm assumption whenever

ExtA fails to return a valid witness for A. Thus if A has non-negligible advantage

in the SE game with respect to ExtA, then C also succeeds with non-negligible

probability. As usual, C will simulate the SE game to A, and it will succeed when

A succeeds in the simulated game.

The adversary C takes as input a challenge C and aims to return c such that C =

Gc. To begin it samples (z1, . . . , zd)
$←− Zp and then runsA on input bp. C simulates

the oracles for A in the following way:

• WhenA queriesOG
poly with G = G1 on f(Z⃗), C returns Gf(z1,...,zd); on G = G2

and g(Z⃗) it returns Hg(z1,...,zd).

• When A queries RO on xj then C checks whether (xj,Gctj+sj , (tj, sj)) ∈ QRO

and if yes returns Gctj+sj .

Otherwise C samples tj, sj
$←− Zp, adds (xj,G

ctj+sj , (tj, sj)) to QRO and re-

turns Gctj+sj , thus embedding the challenge into the response.

• When A queries simulation oracle Ose on xj = (mj,G
yj ,Hyj) then its al-

7We exclude RO collision as they only happen with negligible probability.



4.4. Update Proofs of Knowledge 107

gebraic extractor outputs representations (ρ̂j, âj,1, . . . , âj,q1) such that yj =

ρ̂j +
∑q1

i=1 âj,ifi(z⃗) for fi(Z) being ith query to OG1
poly (the representation is,

as previously for y, due to the well-formedness verification equation). In this

case C obtains Kj = RO(xj) and returns K ρ̂j+
∑q1

i=1 âj,ifi(z⃗)
j (notice that C, un-

like ExtA, knows z⃗ but not ctj + sj , thus the simulation strategy is different

from Sim).

When, finally,A returns (x = (·, ·,Hy),π), C obtains (ρ, {aj}, {bj}, {kj}, {pj}) such

that y = (ρ+
∑q2

j=1 bjgj(z⃗)) and

y(ct∗+s∗) = α+

q1∑
j=1

ajfj(z⃗)+

q3∑
j=1

kj(ctj+sj)+
∑
j∈S

pj(ctj+sj)(ρ̂j+

q1∑
i=1

âj,ifi(z⃗)).

This is the same representation as ExtA obtains, with the previous randomness

now depending on the challenge c. Additionally we assume that Gr∗ = RO(x) is of

form r∗ = ct∗ + s∗ and that it is determined by the j∗th RO query of A (thus t∗ and

s∗ are, too). This is, again, because A cannot succeed without querying x to RO

during the game. Substituting y from the first equation into the second equation

gives us a polynomial equation in c which it is possible to solve. Note that c enters

the last equation in three different places. Now C sets

ξ =

(
(ρ+

q2∑
j=1

bjgj(z⃗))t
∗ −

q3∑
j=1

kjtj −
∑
j∈S

pjtj(ρ̂j +

q1∑
i=1

âj,ifi(z⃗))

)

and returns

c = ξ−1

(
α +

q1∑
j=1

ajfj(z⃗) +

q3∑
j=1

kjsj +
∑
j∈S

pjsj(ρ̂j +

q1∑
i=1

âj,ifi(z⃗))− s∗(ρ+
q2∑
j=1

bjgj(z⃗))

)
.

Observe that C succeeds (returns c) whenever ξ−1 exists i.e. whenever ξ ̸= 0.

Recall that since A succeeds, t∗ ̸= tj for any j ∈ S. Consider the coefficients of ξ

that include t∗ in the monomials:

ξ = t∗
[
(ρ+

q2∑
j=1

bjgj(z⃗))− kj∗
]
+ . . .

If ξ = 0 then this expression is equal to zero with overwhelming probability bounded

below by 1 − 1
p

by the Schwartz-Zippel Lemma. This is because the adversary

learns no information about the secret values, including tj , due to the presence of

the sj randomizers, thus ξ must be zero as a polynomial in all tj , and in particular
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in tj∗ = t∗. And for a zero polynomial, for all its monomial the related coefficients

are zero. However, if (ρ+
∑q2

j=1 bjgj(z⃗))−kj∗ = 0, then ExtA succeeds (since then

kj∗ = y), which we assumed to be false. Therefore, ξ ̸= 0 and C succeeds.

Finally observe that if r∗ is not determined by any adversarial query (A passing x

that was not sent to RO before), then (ρ+
∑q2

j=1 bjgj(z⃗)) = 0 except with negligible

probability by the same Schwartz-Zippel argument since A does not see RO expo-

nents. Therefore y = 0 is the only possible valid witness, so ExtA succeeds.

4.5 Groth16 is Ceremonial

We show that Groth16 is ceremonial for a setup ceremony similar to the one

proposed in [Bowe et al., 2017b]. In this section, we start by giving an intuitive

overview of the [Bowe et al., 2017b] ceremony protocol. After that, we recall the

Groth16 argument and carefully model the ceremony protocol in our security frame-

work.

4.5.1 Ceremony Overview

We briefly remind the main idea of the [Bowe et al., 2017b] ceremony protocol.

• The SRS contains elements of the form e.g. (A1, . . . ,An,T ) = (Gx,Gx2 , . . . ,

Gxn ,Gδp(x)) where p(X) is a public polynomial known to all parties, and x

and δ are secret trapdoors.8

• Parties initialize the SRS to (A1, . . . ,An,T ) = (G, . . . ,G,G).

• In the first phase any party can update (A1, . . . ,An) by picking a random x′ ∈
Zp and computing (Ax

′
1 , . . . ,A

(x′)n
n ). They must provide a proof of knowledge

of x′.

• The value T is publicly updated to Gp(x) given A1, . . . ,An.

• In the second phase any party can update T by picking a random δ′ ∈ Zp
and computing T δ

′
. They must provide a proof of knowledge of δ′.

In order to prove knowledge of x′ they assume access to a random oracle RO :

{0, 1}∗ → G2 and proceed as follows:

8The polynomial p(X) is introduced only in the scope of this example, and is not related to QAP.
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• The prover computesR← RO(TΠ∥Gx) as a challenge where TΠ is the public

transcript of the protocol.

• Then prover outputs π ← Rx as a proof which can be verified by recomputing

R and checking that ê(G, π) = ê(Gx,R). The original protocol is knowledge

sound under (a variation of) the knowledge of exponent assumption, which

states that if given a challenge R, the adversary outputs (Gx,Rx), then the

adversary knows x.

Our protocol differs from the [Bowe et al., 2017b] in a few aspects related to both

performance and security. Additionally to the RO switch to G1 and optionality of in-

cluding TΠ in evaluation of RO, which we described in Section 4.4, we remove the

update with the random beacon in the end of each phase. That means that SRS

can be slightly biased, but we prove that it is not sufficient to break the argument’s

security. We consider this to be the biggest contribution of this chapter since ob-

taining random beacons is a significant challenge both in theory and practice. Our

approach completely side-steps this issue by directly proving the protocol without

relying on the random beacon model.

4.5.2 Formal Description

We present the variant of Groth’s SNARK [Groth, 2016] from [Bowe et al., 2017b]

and adjust the ceremony protocol to our security framework by defining UpdateSRS

and VerifySRS algorithms which follow the intuition of the previous section.

We already described Groth16 NIZK [Groth, 2016] in Section 2.6.3. Bowe et

al. [Bowe et al., 2017b] modified original argument’s SRS to make it consistent

with their distributed SRS generation protocol. The full description of the latter

argument, variant of Groth16, is in Fig. 4.4.

We adjust the SRS in Fig. 4.4 to our model with a ceremony protocols: the de-

fault SRS, update algorithm, and a SRS specialization algorithm are described

in Fig. 4.5. 9 We obtain the default SRS from the trapdoor td = (1, 1, 1, 1). The

algorithm UpdateSRS samples new trapdoors and includes them in the previous

SRS by exponentiation as was described in Section 4.5.1. For example, to update

9Our Groth16 SRS follows [Bowe et al., 2017b] and not the original [Groth, 2016]. It addition-
ally contains {Hxi}2n−2

i=n−2, {Hαxi}n−1
i=1 , and {Hβxi}n−1

i=1 . This simplifies our presentation, but also
strengthens the security result as it shows that contrary to what happened with a different extended
SRS of Zcash [Gabizon, 2019] adding these elements does not break soundness.
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Setup(RQAP):

1. Sample td = (α, β, δ,x)
$←− (Z∗p)4

2. srsu ←
(
{Gxi ,Hxi}2n−2i=0 , {Gαxi ,Gβxi ,Hαxi ,Hβxi}n−1i=0

)
3. srss ←

(
Gδ,Hδ, {G

βui(x)+αvi(x)+wi(x)

δ }mi=ℓ+1, {G
xit(x)

δ }n−2i=0

)
4. return (srs := (srsu, srss), td)

Prove(RQAP, srs, {ai}mi=0 := (x ∥ w)):

1. Sample r, s $←− Zp
2. A← α +

∑m
i=0 aiui(x) + rδ

3. B ← β +
∑m

i=0 aivi(x) + sδ

4. C ←
∑m

i=ℓ+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+ As+Br − rsδ

5. return π := (GA,HB,GC)

Verify(RQAP, srs, {ai}ℓi=1 := x, π):

1. Parse π as (GA,HB,GC)

2. return ê(GA,HB)

3. = ê(Gα,Hβ) · ê(
∏ℓ

i=0G
ai(βui(x)+αvi(x)+wi(x)),H) · ê(GC ,Hδ)

Sim(RQAP, srs, td, {ai}ℓi=1):

1. A,B $←− Zp,

2. C ← AB−αβ−
(∑ℓ

i=0 ai(βui(x)+αvi(x)+wi(x))
)

δ

3. return (GA,HB,GC)

Figure 4.4: The variant of Groth16 zk-SNARK used in Chapter 4. Compare with

the naive variant in Fig. 2.3 used in Chapter 3.
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Gι, where ι is some trapdoor, the updater will sample ι′ and computes (Gι)ι
′
. De-

pending on the phase number φ ∈ {1, 2}, the algorithm will either update srsu or

srss. When updating srsu, we also derive a consistent srss using the Specialize algo-

rithm10 which essentially computes srss with δ = 1. This fixes a sequential phase

update scenario, since updating srsu after srss overwrites the latter.

Each update is additionally accompanied with an update proof ρ, which allows us to

verify update correctness. For each trapdoor update ι′, ρ containsGιι′ (the element

of the new SRS), Gι′ , H ι′ , and a NIZK proof of knowledge πι′ for ι′. Since Gι is

part of the previous update proof, we can use pairings to assert well-formedness

of Gιι′ , Gι′ , and H ι′ . The first element of the update proof duplicates the element

of the new SRS, but since we do not store every updated SRS but only update

proofs, we must keep these elements.

Finally, we have a SRS verification algorithm VerifySRS in Fig. 4.6, that takes as

an input srs and a set of update proofs Q, and then (i) uses pairing-equations to

verify that srs is well-formed respect to some trapdoors, (ii) checks that each update

proof ρ ∈ Q contains a valid NIZK proof of discrete logarithm, and (iii) uses pairing-

equations to verify that update proofs in Q are consistent with srs. In Section 4.7,

we show how to make VerifySRS more efficient by using batching techniques. This

will allow to substitute most of pairings in VerifySRS with significantly cheaper small-

exponent multi-exponentiations.

4.6 Security

We prove the security of Groth16 from Section 4.5 in our NIZK with a ceremony

framework of Section 4.3.

Theorem 4.6.1 (Completeness). Groth16 variant in Fig. 4.4 has perfect complete-

ness, i.e., it has update completeness and prover completeness.

Proof. Let us first make a general observation that if some bitstring s = (srs, {ρi}i)
satisfies VerifySRS(s) = 1, then there exists a unique α, β,x, δ ∈ Z∗p that define a

well-formed srs. See Lemma 4.8.1, Section 4.8.1.

10This generality simplifies our model. In practice srss can be derived using Specialize only once
just before starting phase 2.
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Default SRS: Run Setup in Fig. 4.4 with td = (1, 1, 1, 1) to obtain srsd.

UpdateSRS(RQAP,φ ∈ {1, 2}, (srs = (srsu, srss),Q)):

1. if φ = 1 then

2. Parse srsu =
(
{Gx:i,Hx:i}2n−2i=0 , {Gαx:i,Gβx:i,Hαx:i,Hβx:i}n−1i=0

)
3. Sample α′, β′,x′ $←− Z∗p
4. For ι ∈ {α, β,x}: πι′ ← Prove

RO(·)
dl (Gι′ ,H ι′ , ι′)

5. ρα′ ← (Gα′
αx:0,G

α′
,Hα′

, πα′)

6. ρβ′ ← (Gβ′

βx:0,G
β′
,Hβ′

, πβ′)

7. ρx′ ← (Gx′
x:1,G

x′ ,Hx′ , πx′)

8. ρ← (ρα′ , ρβ′ , ρx′)

9. srs′u ←
(
{G(x′)i

x:i ,H
(x′)i

x:i }2n−2i=0 , {Gα′(x′)i

αx:i ,G
β′(x′)i

βx:i ,H
α′(x′)i

αx:i ,H
β′(x′)i

βx:i }
n−1
i=0

)
10. srs′s ← Specialize(QAP, srs′u)

11. return ((srs′u, srs
′
s), ρ)

12. else if φ = 2 then

13. Parse srss =
(
Gδ,Hδ, {Gsum:i}mi=ℓ+1, {Gt(x):i}n−2i=0

)
;

14. Sample δ′ $←− Z∗p
15. πδ′ ← Prove

RO(·)
dl (Gδ′ ,Hδ′ , δ′)

16. ρ← (Gδ′

δ ,G
δ′ ,Hδ′ , πδ′)

17. srs′s ←
(
Gδ′

δ ,H
δ′

δ , {G
1/δ′

sum:i}mi=ℓ+1, {G
1/δ′

t(x):i}
n−2
i=0

)
18. return ((srsu, srs

′
s), ρ)

Specialize(RQAP, srsu):

1. % Computes srss with δ = 1

2. Parse srsu =
(
{Gx:i,Hx:i}2n−2i=0 , {Gαx:i,Gβx:i,Hαx:i,Hβx:i}n−1i=0

)
;

3. srss ←
(
G,H, {

∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij

x:j }mi=ℓ+1, {
∏n

j=0G
tj
x:(i+j)}

n−2
i=0

)
;

4. return srss;

Figure 4.5: Default SRS and update algorithm for Groth’s SNARK
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VerifySRSRO(·)(QAP, srs,Q):

1. Parse srs = (srsu, srss) and Q = (Qu,Qs) = {ρu,i}kui=1 ∪ {ρs,i}
ks
i=1

2. Parse srsu =
(
{Gx:i,Hx:i}2n−2i=0 , {Gαx:i,Gβx:i,Hαx:i,Hβx:i}n−1i=0

)
3. for i = 1, . . . , ku do

4. Parse ρu,i = (ρ
(i)
α′ , ρ

(i)
β′ , ρ

(i)
x′ )

5. for ι ∈ {α, β,x} do

6. Parse ρ(i)ι′ = (G
(i)
ι ,G

(i)
ι′ ,H

(i)
ι′ , π

(i)
ι′ )

7. assert VerifyRO(·)
dl (G

(i)
ι′ ,H

(i)
ι′ , π

(i)
ι′ ) = 1

8. if i ̸= 1: assert ê(G(i)
ι ,H) = ê(G

(i−1)
ι ,H

(i)
ι′ )

9. assert Gx:1 = G
(ku)
x ̸= 1 ∧Gαx:0 = G

(ku)
α ̸= 1 ∧Gβx:0 = G

(ku)
β ̸= 1

10. for i = 1, . . . , 2n− 2 do

11. assert ê(Gx:i,H) = ê(G,Hx:i) ∧ ê(Gx:i,H) = ê(Gx:(i−1),Hx:1)

12. for i = 0, . . . ,n− 1 and ι ∈ {α, β} do

13. assert ê(Gιx:i,H) = ê(G,Hιx:i) ∧ ê(Gιx:i,H) = ê(Gx:i,Hιx:0)

14. Parse srss ←
(
Gδ,Hδ, {Gsum:i}mi=ℓ+1, {Gt(x):i}n−2i=0 ,

)
15. for i = 1, . . . , ks do

16. Parse ρs,i = (G
(i)
δ ,G

(i)
δ′ ,H

(i)
δ′ , πδ′)

17. assert VerifyRO(·)
dl (G

(i)
δ′ ,H

(i)
δ′ , πδ′) = 1

18. if i ̸= 1 assert ê(G(i)
δ ,H) = ê(G

(i−1)
δ ,H

(i)
δ′ )

19. assert ê(Gδ,H) = ê(G,Hδ) and Gδ = G
(ks)
δ ̸= 1

20. for i = ℓ+ 1, . . . ,m do:

21. assert ê(Gsum:i,Hδ) = ê(
∏n−1

j=0 G
uij
βx:j ·G

vij
αx:j ·G

wij

x:j ,H)

22. for i = 0, . . . ,n− 2 do:

23. assert ê(Gt(x):i,Hδ) = ê(Gt(x),Hx:i), where Gt(x) =
∏n

j=0G
tj
x:j

Figure 4.6: SRS verification algorithm for Groth16.
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Update completeness: LetA be an adversary that outputs s = (φ, srs, {ρi}i) such

that VerifySRS(s) = 1. By the observation above, there exists some α, β,x, δ ∈ Z∗p
that map to a well-formed srs. It is easy to observe that by construction UpdateSRS(QAP,φ, (srs, {ρi}i))
picks a new α′, β′,x′ ∈ Z∗p (or δ′ if φ = 2) and rerandomizes srs such that the new

srs′ has a trapdoor αα′, ββ′,xx′ ∈ Z∗p (or δδ′ ∈ Z∗p). Since the srs′ is still well-

formed and ρ is computed independently, VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 1. See

details in Lemma 4.8.2, Section 4.8.1.

Prover completeness: Suppose that A output (srs, {ρi}i, x,w) such that (x,w) ∈
RQAP, and VerifySRS(srs, {ρi}i) = 1. It follows that srs is a well-formed SRS for

Groth’s SNARK. From here, the prover completeness follows from the complete-

ness proof in [Groth, 2016].

Subversion zero-knowledge of Groth’s SNARK was independently proven in [Ab-

dolmaleki et al., 2017] and [Fuchsbauer, 2018] under slightly different knowledge

assumptions. Our approach here differs only in that we extract the trapdoor from

Πdl proofs. For sake of completeness, we sketch the main idea below.

Theorem 4.6.2 (sub-ZK). If Πdl is a non-interactive proof of knowledge, then Groth16

in Fig. 4.4 is subversion zero-knowledge.

Proof (sketch). Let Z be a PPT subverter and A an unbounded adversary in the

subversion zero-knowledge definition. We suppose thatZ(1λ) outputs (srs, {ρi}i, st)
such that VerifySRS(srs, {ρi}i) = 1. The latter guarantees that srs is well-formed

and that update proofs verify. To prove subversion zero-knowledge, we need to

construct an extractor ExtZ that give viewZ extracts the simulation trapdoor for srs.

Idea behind ExtA is that we use straight-line extractability of Πdl to extract ι1, ..., ιm
for ι ∈ {x,α, β, δ} from the proofs {ρi}i and then compute ι =

∏
i ιi to obtain the

trapdoor td = (x,α, β, δ). Given that ExtA outputs the correct trapdoor td, proofs

can be perfectly simulated as is proven in [Groth, 2016].

4.6.1 Update Knowledge Soundness

Theorem 4.6.3. Let us assume the (2n−1, 2n−2)-edlog assumption holds. Then

Groth16 in Fig. 4.4 has update knowledge soundness with respect to all PPT alge-

braic adversaries in the random oracle model.
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ExtA(viewA)

1. Extract the set of algebraic coefficients Tπ ← ExtagmA (viewA) and ob-

tain {Ci:x:j}m1,m
i,j=(1,l+1) from it, corresponding to the elements {(βui(x) +

αvi(x) + wi(x))/δ} in the second phase, where m1 is the number of

update queries made in the first phase, and m is the QAP parameter.

2. From viewA deduce icrit2 — Osrs query index that corresponds to the last

honest update in the final SRS.

3. Return coefficients w = {Cicrit2 :x:j}
m
j=l+1.

Figure 4.7: The extractor ExtA for update knowledge soundness

Proof. Let A be an algebraic adversary against update knowledge soundness and

let us denote the update knowledge soundness game Guks by G0. We construct

an explicit white-box extractor ExtA and prove it to succeed with an overwhelming

probability. The theorem statement is thus AdvG0A,ExtA(λ) = negl(λ). We assume

that A makes at most q1 update queries in phase 1 and at most q2 in phase 2.

Often we will use ι to denote any of the elements x,α, β or δ.

Description of the extractor ExtA. We present the extractor ExtA in Fig. 4.7.

The extractor takes the adversarial view viewA as an input and extracts AGM coef-

ficients from viewA when A produces a verifying proof. The goal of the extractor is

to reconstruct the witness from this information.

The intuition behind its strategy is that, in Prove in Fig. 4.4, C is constructed as∑
i ai(αui(x)+βvi(x)+wi(x))/δ, and we would like to obtain precisely these ai as

AGM coefficients corresponding to the (αui(x) + . . .)/δ elements of the final SRS.

When A submits the final response (x, π = (A,B,C)), the proof element C ∈ G1

has the algebraic representation, corresponding to following G1 elements: (1) SRS

elements that the update oracle outputs, (2) corresponding update proofs, and (3)

direct RO replies. These sets include all the SRS elements that were produced

during the update KS game, not only those that were included in the final SRS.

The coefficient of elements (αui(x) + . . .)/δ that the extractor needs belong to the

the first category and in particular correspond to the second phase updates, since

δ is updated there.

Let mφ be the number of update queries that A makes in phase φ ∈ {1, 2}. We
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introduce the notion of the critical query — icritφ ∈ {1, . . . ,mφ} corresponds to the

last honest update that A includes into the finalized SRS in phase φ. Technically,

we define it in the following way. For every phase φ, the final SRS is associated

with update proofs {ρφ,i}kφi=1 (contained in Q∗ in Fig. 4.1) and at least one of them

must be produced by honest update query for finalization to succeed. Suppose

that ρφ,imax is the last honest update in that set, that is, the one with the largest

index i. If ρφ,imax was obtained as the j-th update query, then we define icritφ := j.

The extractor ExtA can deduce icritφ , since viewA includes Osrs responses and Q∗.

When ExtA obtains icrit2 , it merely returns the AGM coefficients (which it can obtain

from viewA since A is algebraic) corresponding to the (αui(x) + . . .)/δ elements

of update oracle response number icrit2 . For now, there is no guarantee that these

elements are in any way connected to the final SRS, but later we show that ExtA
indeed succeeds.

Description of G1. We describe G1 (see Fig. 4.9 for full details), that differs from

G0 in that one of the honest updates in each phase is a freshly generated SRS

instead of being an update of the input SRS. This simplifies further reasoning

(Lemma 4.6.5), and also at a later step we build a reduction B that embeds the

edlog challenge z into the trapdoors of the fresh SRS. For convenience, we de-

scribe G1 in terms of communication between the challenger C (top-level execution

code of G1) and A.

C of G1 maintains an update (current call) counter icall, which is reset to zero in

the beginning of each phase. Before the game starts, C uniformly samples two

values iguess1 and iguess2 , ranging from 1, . . . , q1 and 1, . . . , q2 (upperbounds on the

number of queries) correspondingly, in such a way attempting to guess critical

queries {icritφ}φ. In case the actual number of queries mφ in a particular execution

of A is less than iguessφ , C will just execute as in G0 for phase φ. C will generate

fresh SRS for at most two (randomly picked) update queries through Osrs, and

it will respond to all the other update requests from A honestly. The successful

guess formally corresponds to the event lucky, set during SRS finalization in G1
(see Fig. 4.9).

It is not possible for C to generate an update proof for a fresh SRS as in G0
because it does not know the update trapdoors ι̂′ for critical queries — these

values do not exist explicitly, since instead of updating an SRS, C generated a
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Osrs(intent, srs∗ = (srs∗u, srs
∗
s),Q

∗ = {ρ(i)u }kui=1 ∪ {ρ
(i)
s }ksi=1):

1. % Update icall ← icall + 1 on each successful return

2. if φ > 2 then return ⊥

3. srsnew ← if φ = 1 then srs∗ else (srsu, srs
∗
s)

4. if VerifySRSRO(·)(srsnew,Q
∗) = 0 then return ⊥

5. if intent = UPDATE ∧ φ = 1 ∧ icall = iguess1 then % Simulated update

6. srs′u ←
(
{Gzix ,Hzix}2n−2i=0 , {Gzαzix ,Gzβz

i
x ,Hzαzix ,Hzβz

i
x}n−1i=0

)
;

7. srs′s ← Specialize(RQAP, srs
′
u)

8. for ι ∈ {x,α, β} do ρι′ ← SimUpdProof(zι,φ = u);

9. return (srs′, (ρα′ , ρβ′ , ρx′))

10. if intent = UPDATE ∧ φ = 2 ∧ icall = iguess2 then % Simulated update

11. Let {ẑι}ι∈x,α,β correspond to the trapdoors at the end of phase 1

12. srs′s ←
(
Gzδ ,Hzδ , {G

ẑixt(ẑx)

zδ }n−2i=0 , {G
ẑβui(ẑx)+ẑαvi(ẑx)+wi(ẑx)

zδ }mi=ℓ+1

)
13. ρ′δ ← SimUpdProof(zδ,φ = s) return ((srs∗u, srs

′
s), ρ

′
δ)

14. if intent = UPDATE then % Honest update

15. (srs′, ρ′)← UpdateSRS(φ, srsnew,Q
∗); Qφ ← Qφ ∪ {ρ′}

16. return (srs′, ρ′)

17. if intent = FINALIZE ∧Qφ ∩Q∗ ̸= ∅ then

18. if φ = 1 then srsu ← srs∗u else srss ← srs∗s

19. φ← φ+ 1; icall ← 0

20. if φ > 2 then

21. Deduce {icritφ}φ from Q∗ as last honest updates in phase φ

22. lucky :=
(
iguess1 = icrit1 ∧ iguess2 = icrit2

)
SimUpdProof(zι,φ):

1. % PoKs may correspond both to honest and malicious updates

2. {ι̂j}kφj=1 ← extract trapdoors from {ρ(i)φ }kφi=1 PoKs using viewA

3. ι̂←
∏kφ ι̂j; G

ι̂′ ← (Gzι)ι̂
−1
; H ι̂′ ← (Hzι)ι̂

−1

4. πι′ ← Sim
RO1(·)
dl (xdl = (⊥,Gι̂′ ,H ι̂′))

5. ρι′ ← (Gzι ,Gι̂′ ,H ι̂′ , πι′); return ρι′

Figure 4.8: Oracles used in G1 (Fig. 4.9), a modified update KS game.
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GA,ExtA1 (1λ):

1. srs← srsd,φ = 1

2. Q1,Q2 ← ∅; icall ← 0; iguess1
$←− [0, q1]; iguess2

$←− [0, q2]

3.

4. {zι}ι∈{x,α,β,δ}
$←− Zp

5. Initialize ROt(·)
6. (x, π)← AOsrs,RO; w ← ExtA(viewA)

7. return Verify(srs, x, π) = 1 ∧ (x,w) /∈ R ∧ φ > 2

Figure 4.9: Description of G1, a modified update KS game. Helper oracles are

presented in Fig. 4.8.

new one. Therefore, it uses a specific technique to simulate update proofs using

the procedure SimUpdProof(see Fig. 4.9). The task of SimUpdProof is to create

ρι̂′ = (Gι̂′

ι̂ ,G
ι̂′ ,H ι̂′ , πι̂′), which is a valid update proof from srs∗ to a freshly gener-

ated srs′. Since C does not actually update srs∗, but creates a completely new one

with zι trapdoors, we have Gzι = Gι̂ι̂′ where ι̂ is the trapdoor value of srs∗ and ι̂′

is the new update trapdoor. Given the value ι̂ in clear, we can reconstruct Gι̂′ by

computing (Gι̂ι̂′)ι̂
−1

= (Gzι)ι̂
−1

.

This is the strategy of C: it uses viewA to extract the trapdoors ιj for all the ku

updates that led to srs∗φ, and thus obtains ι̂. Notice that these updates can be

both honest and adversarial, but importantly, none of them are simulated (because

we perform this procedure only once per phase), which guarantees that extraction

succeeds. Next, SimUpdProof computes a product ι̂ of these extracted values, and

using its inverse produces (Gι̂′ ,H ι̂′), which are the second and third elements of

the update proof. The first element of ρι̂′ is just an element of the new SRS (e.g.

for ι = x, it is Gι′
x:1, and for ι ∈ {α, β} it is Gι′

ιx:0), so we set the value to Gzι . The

last element, the proof-of-knowledge of ι̂′, we create by black-box simulation, since

Πdl is perfectly ZK. Namely, since the challenger already has xdl = (⊥,Gι̂′ ,H ι̂′), it

passes it into Simdl, and attaches the resulting πι′ to the update proof. Since we

know zι in G1 (and therefore know xdl exponent ι̂′), it is not necessary to simulate

the proof in G1 — technically, the procedure only requires Gzι . However, simulation

will be critical in the final part of our theorem, reduction to edlog, since in that case

zι contains embedded edlog challenge for which the challenger does not know the

exponent. This is why we introduce it here in G1.
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We prove in Section 4.8.2.1 that the game G1 that we introduced is indistinguishable

from G0 forA by relying on the zero-knowledge and simulation-extractability proper-

ties of Πdl. We recall that (1, 0)-dlog assumption is implied by (2n−1, 2n−2)-edlog

assumption.

Lemma 4.6.4. Assuming (1, 0)-dlog, the difference between advantage of A in

winning G0 and G1 is negligible: AdvG0A,ExtA(λ) ≤ AdvG1A,ExtA(λ) + negl(λ).

Reconstructing the proof algebraically. For the next steps of our proof we will

need to be able to reconstruct the proof elements, and the verification equation

generically from the AGM coefficients we extract from A. Almost all the elements

that A sees depend on certain variables Ψ⃗ that are considered secret for the ad-

versary (update trapdoors, RO exponents, critical query honest trapdoors). Since

A can describe proof elements A,B,C as linear combinations of elements it sees,

that depend on Ψ⃗, we are able to reconstruct the proof elements as functions

A(Ψ⃗),B(Ψ⃗),C(Ψ⃗) (Laurent polynomials, as we will show later). That is, for the

particular values ψ⃗ that we chose in some execution in G1, A(ψ⃗) = A (but we

can also evaluate A(Ψ⃗) on a different set of trapdoors). From these functions

A(Ψ⃗),B(Ψ⃗),C(Ψ⃗) one can reconstruct a SNARK verification equation Q(Ψ⃗), such

that Verify(ψ, π) = 1 ⇐⇒ Q(ψ⃗) = 0.

We note that it is not trivial to obtain the (general) form of these functions, because

it depends on viewA — different traces produce different elements that A sees,

which affects with which functions these elements are modelled. Therefore, we

start by defining which variables are used to model elements that A sees.

We denote by Ψ⃗ this set of variables which are unknown to A. This includes,

first and foremost, the set of trapdoors that are used for the (critical) simulation

update queries: Zx,Zα,Zβ,Zδ (these abstract the corresponding trapdoors {zι}).
To denote the expression that includes final adversarial trapdoors ιAj , we will use

Ẑι that is equal to the previously defined Zι, but now as a function of Zι: Ẑι(Zι) =

Zι
∏
ιAj for ι ∈ {x,α, β}, and Ẑδ(Zδ) = Zδ/

∏
δAj .11

The full list of variables that constitute Ψ⃗ is the following:

1. Critical honest trapdoor variables: Zα,Zβ,Zx,Zδ.

11If Ẑι is not equal Zι

∏
ιAj as a function we have Ẑι(Ψ)−Zι

∏
ιAj ̸= 0 but Ẑι(ψ)− zι

∏
ιAj ≡ 0

for ι ∈ {x,α,β, δ}, and we break the (2n− 1, 2n− 2)-edlog problem as in Lemma 4.6.7.
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2. Honest (non-critical) update trapdoors T⃗ = {Ti,ι}.
3. RO replies, which we, for convenience of indexing, split into three disjoint

sets:

• RO values for the critical queries K⃗ = {Kι}x,α,β,δ: these RO replies are

used in PoK simulation by G1.
• RO values for honest update proofs R⃗T = {RT :i:ι}i,ι. First phase up-

date query number i ∈ {1, . . . ,m1} corresponds to three values RT :i:x,

RT :i:α, RT :i:β, and second phase update query number j ∈ {1, . . . ,m2}
corresponds to RT :j:δ.

• RO responses R⃗A that A directly requests from RO. These are used

by A, in particular, but not only, to create PoKs for adversarial SRS

updates.

We denote by R⃗ = R⃗A ∪ R⃗T . Therefore, Ψ⃗ = ({Zι}ι, K⃗, T⃗ , R⃗). Since we will be

often working only with the first set of variables {Zι}, we will denote it as Ψ⃗2, and

all other variables from Ψ⃗ as Ψ⃗1.

Success in lucky executions. In general, the set structure of Q(Ψ⃗) can vary

enormously, and it depends on many things, including the way A interacts with the

challenger. Each interaction can present a different set of coefficients in A that

will be modelled by different functions. Therefore, we would like to take advantage

of the lucky event to simplify our reasoning and reduce the space of possible

interactions.

We claim that lucky is independent fromA’s success in G1. In other words, in order

to win G1 it suffices to only show the existence of a witness extractor in the case

where the lucky indices correspond to A’s critical queries.

AdvG1A,ExtA(λ) = Pr[GA,ExtA1 (1λ) = 1] = Pr[GA,ExtA1 (1λ) = 1 | lucky]

where q1 and q2 are polynomially bounded. Indeed, A is blind to whether we sim-

ulate or not, and so we can assume independence of events: Pr[GA,ExtA1 (1λ) = 1 |
simi] is the same for all simulation strategies simi, including the lucky one.

AdvG1A,ExtA(λ) =

q1q2∑
i=0

Pr[GA,ExtA1 (1λ) = 1 | simi]
1

q1q2

=
1

q1q2

∑
i

Pr[GA,ExtA1 (1λ) = 1 | lucky] = Pr[GA,ExtA1 (1λ) = 1 | lucky]



4.6. Security 121

Our choice of {iguessφ}φ, and thus the chosen simulation strategy simi is indepen-

dent from the success of A. This does not imply that we ignore some traces of A,

which would break the reduction. Instead, for each possible trace of A, and thus

each possible way it communicates with the challenger and the oracles, we only

consider those executions in which we guess the indices correctly.

Defining the functionQ(Ψ⃗) for G1. Therefore, when in G1 the challenger guesses

critical queries correctly (lucky), and A returns a verifying proof, the complexity is

greatly simplified, and we can now define at least the high-level form of the function

Q:

Q(Ψ⃗) :=

(
A(Ψ⃗)B(Ψ⃗)− ẐαẐβ−

ℓ∑
i=0

ai(Ẑβui(Ẑx)+ Ẑαvi(Ẑx)+wi(Ẑx))−C(Ψ⃗)Ẑδ

)
(4.3)

such that GA(ψ⃗) = A and similarly for B and C, where ψ⃗ is the concrete set of

secret values used for a particular execution.12 The function Q(Ψ⃗) reconstructs

verification equation of the proof in this particular game execution: in particular,

Q(ψ⃗) = 0 ⇐⇒ Verify(srs, x, π) = 1.

Note that the form of functions A(Ψ⃗),B(Ψ⃗), and C(Ψ⃗) depends on the interaction

with A, and thus on the particular execution trace. But the general form of Q

we have just specified is enough to argue the critical lemmas. The proof of the

following Lemma, which shows exactly that, is deferred to Section 4.8.2.2.

Lemma 4.6.5. In G1, conditioned on event lucky, the general form of the function

Q(Ψ⃗) reconstructing the main verification equation is as presented in Eq. (4.3), un-

der (2n− 1, 2n− 2)-edlog. Moreover, A,B,C are Laurent polynomials in Ψ⃗2 when

viewed over Zp[C⃗, Ψ⃗1], where C⃗ are AGM coefficients, abstracted as variables. In

other words, A,B,C ∈ (Zp[C⃗, Ψ⃗1])[Ψ⃗2] are Laurent. Therefore, Q also is Laurent

when viewed as (Zp[C⃗, Ψ⃗1])[Ψ⃗2] element.

Description of G2. The following game, presented in Fig. 4.10 extends G1 with

two additions. Firstly, it introduces the event bad. The condition that we are trying

12The form of the proof-independent parts of the verification equation (see Eq. (4.4)) is due to our
critical-step-simulation strategy that we introduce in G1. That is, these values they only depend on
the challenge variables Zι plus last adversarial trapdoors (e.g.

∏
αA
i etc). This is where guessing

the last query really helps: otherwise these terms would also depend on Ψ1, e.g. on T⃗ .
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GA,ExtA2 (1λ):

1. srs← srsd,φ = 1

2. Q1,Q2 ← ∅; icall ← 0; iguess1
$←− [0, q1]; iguess2

$←− [0, q2]

3. {zι}ι∈{x,α,β,δ}
$←− Zp

4. ROt, Osrs and SimUpdProof are constructed as in G1
5. (x, π)← AOsrs,RO

6. w ← ExtA(viewA)

7. bad :=
(

lucky ∧Q(ψ1, {zι}) = 0 ∧Q(ψ1, {Zι}) ̸≡ 0
)

8. return Verify(srs, x, π) = 1∧ (x,w) /∈ R∧φ > φmax∧ lucky

Figure 4.10: Description of G2, an extension of G1 with bad event. Q(Ψ⃗1, Ψ⃗2) is the

function (Laurent polynomial in Ψ⃗2) that corresponds to the way to reconstruct π

and verification equation, where Ψ2 corresponds to the trapdoor variables {Zι}.

to capture is whether A uses the elements that depend on trapdoors zι blindly or

not. When bad does not happen, the adversary is constructing π in such a way

that it works for any value of z′ι (Q(ψ1, {Zι}) is a zero as a polynomial). Otherwise,

we can argue that A’s cheating strategy depends on the specific value of zι, even

though it is hidden in the exponent (Q(ψ1, {zι}) = 0, but Q(ψ1, {Zι}) is a non-zero

polynomial).

Secondly, we require that adversary wins only if the event lucky happens. Since

lucky is an independent event, then Pr[GA,ExtA2 (1λ) = 1] = Pr[GA,ExtA1 (1λ) = 1 ∧
lucky] = Pr[GA,ExtA1 (1λ) = 1]/(q1q2). The last transition is due to independence of

winning G1 and lucky explained earlier (Pr[GA,ExtA1 (1λ) = 1] = Pr[GA,ExtA1 (1λ) =

1 | lucky]). We can use the total probability formula to condition winning in G2 on

the event bad.

Pr[GA,ExtA2 (1λ) = 1] =Pr[GA,ExtA2 (1λ) = 1 | ¬bad] · Pr[¬bad]

+Pr[GA,ExtA2 (1λ) = 1 | bad] · Pr[bad]

≤Pr[GA,ExtA2 (1λ) = 1 | ¬bad] + Pr[bad].

The next two lemmas will upperbound this probability. The Lemma 4.6.6 will bound

the first term of the sum and the Lemma 4.6.7 bounds the second term.

Extractor succeeds in good executions. In this subsection we present a lemma,

that states that whenever C guesses the critical indices correctly, and event bad
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does not happen, the output of the extractor ExtA is a QAP witness. The proof

of Lemma 4.6.6 is presented in Section 4.8.2.3.

Lemma 4.6.6. In G2, when ¬bad happens and A produces a verifying proof, then

ExtA succeeds: Pr[GA,ExtA2 (1λ) = 1 | ¬bad] = negl(λ).

Description of the EDLOG reduction. We show that the event bad can only

happen with a negligible probability by making a reduction to the edlog assumption.

If A triggers bad, then it could construct a proof in a manner that is specific to the

SRS ψ⃗2 and does not generalize to any other ψ⃗′2. This means thatA has knowledge

of the exponent element, which is impossible assuming edlog. The proof of the

following lemma is delayed to Section 4.8.2.4.

Lemma 4.6.7. The probability of bad in G2 is negligible under the (2n− 1, 2n− 2)-

edlog assumption.

Now, combining the results of Lemma 4.6.6 and Lemma 4.6.7 with previous game

transitions:

Pr[GA,ExtA0 (1λ) = 1] ≤ Pr[GA,ExtA1 (1λ) = 1] + negl(λ)

= (q1q2) Pr[GA,ExtA2 (1λ) = 1] + negl(λ)

≤ (q1q2)
(
Pr[GA,ExtA2 (1λ) = 1 | ¬bad] + Pr[bad]

)
+ negl(λ)

= (q1q2)(negl(λ) + negl(λ)) + negl(λ) = negl(λ)

This concludes the proof of the update knowledge soundness theorem.

4.7 Batched VerifySRS

We provide an optimized VerifySRS algorithm for Groth’s SNARK. It follows closely

the batching techniques used in [Abdolmaleki et al., 2017] for verifying the SRS for

subversion zero-knowledge Groth’s SNARK. Our approach only differs in that we

also consider update proofs.

We briefly remind the main idea behind the batching technique. Suppose the

verifier has to verify a set of pairing equations of the form ê(Gi,H) = ê(G,Hi)

for i = 1, . . . ,n. The naive way of checking those equations would require 2n
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pairings. Batching technique can be used substitute most of those pairings with

small exponent multi-exponentiations which is much cheaper. Idea is to sample

s1, . . . , sn
$←− Zp and instead verify a single equation

n∏
i=1

ê(Gi,H)si =
n∏
i=1

ê(G,Hi)
si .

By using bilinear properties, the latter equation can be simplified to

ê(
n∏
i=1

Gsi
i ,H) = ê(G,

n∏
i=1

Hsi
i ).

This equation requires only 2 n-wise multi-exponentions and 2 pairings. It can be

shown using the Schwartz-Zippel lemma that the probability that one of the initial

equations does not hold and ê(
∏n

i=1G
si
i ,H) = ê(G,

∏n
i=1H

si
i ) holds is bounded

by 1/p. Since this is a very low probability, we can even sample si from a much

smaller set to further speed up the exponentiation. For example, we may sample

si ∈ {0, 1}40, which will give an error 1/240.

We apply this technique to VerifySRS in Fig. 4.11 to construct a batched batchVerifySRS.

Theorem 4.7.1. Take any (possibly malformed) srs and Q and any valid QAP.

Then,

Pr[VerifySRS(QAP, srs,Q) ̸= batchVerifySRS(QAP, srs,Q)] ≤ 12/2κ,

where the probability is taken over random coin-tosses of batchVerifySRS.

Proof. Let us consider a set of equations in a general form ê(Gai ,Hbi) = ê(Gci ,Hdi)

for i ∈ {1, . . . , t} and let
∏t

i=1 ê(G
ai ,Hbi)si =

∏t
i=1 ê(G

ci ,Hdi)si be the respective

batched equation, where si
$←− {0, 1}κ. All of the batched equations in batchVerifySRS

follow this form. It is clear that if the initial equations are satisfied, then also the

batched equation is satisfied. Thus, VerifySRS(QAP, srs,Q) = 1 implies batchVerifySRS(QAP, srs,Q) =

1.

We can rewrite the batched equation as ê(G,H)
∑t

i=1(aibi−cidi)si = ê(G,H)0. Let us

now consider the polynomial p(X1, . . . ,Xn) =
∑t

i=1(aibi − cidi)Xi. If one of the

initial equations is not satisfied then p is a non-zero polynomial and the probability

p(s1, . . . , st) = 0 is bounded by 1/2κ. Given that we batch 12 sets of equations,

Pr[VerifySRS(QAP, srs,Q) = 0 ∧ batchVerifySRS(QAP, srs,Q) = 1] ≤ 12/2κ.
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batchVerifySRSRO(·)(QAP, srs,Q):

1. Parse srs = (srsu, srss) and Q = (Qu,Qs) = {ρu,i}kui=1 ∪ {ρs,i}
ks
i=1

2. Parse srsu =
(
{Gx:i,Hx:i}2n−2i=0 , {Gαx:i,Gβx:i,Hαx:i,Hβx:i}n−1i=0

)
3. Sample s0, . . . , smax

$←− {0, 1}κ where max = max{2n− 2,m, ku, ks}
4. for i = 1, . . . , ku do

5. Parse ρu,i = (ρ
(i)
α′ , ρ

(i)
β′ , ρ

(i)
x′ )

6. for ι ∈ {α, β,x} do

7. Parse ρ(i)ι′ = (G
(i)
ι ,G

(i)
ι′ ,H

(i)
ι′ , π

(i)
ι′ )

8. R
(i)
ι′ ← RO(G

(i)
ι′ ,H

(i)
ι′ )

9. for ι ∈ {α, β,x} do

10. assert ê(
∏ku

i=2(G
(i)
ι )si ,H) =

∏ku
i=2 ê((G

(i−1)
ι )si ,H

(i)
ι′ )

11. assert ê(
∏ku

i=1(G
(i)
ι′ )

si ,H) = ê(G,
∏ku

i=1(H
(i)
ι′ )

si)

12. assert ê(
∏ku

i=1(π
(i)
ι′ )

si ,H) =
∏ku

i=1 ê((R
(i)
ι′ )

si ,H
(i)
ι′ )

13. assert Gx:1 = G
(ku)
x ̸= 1 ∧Gαx:0 = G

(ku)
α ̸= 1 ∧Gβx:0 = G

(ku)
β ̸= 1

14. assert ê(
∏2n−2

i=1 Gsi
x:i,H) = ê(G,

∏2n−2
i=1 Hsi

x:i) ∧
15. ê(

∏2n−2
i=1 Gsi

x:i,H) = ê(
∏2n−2

i=1 Gsi
x:(i−1),Hx:1)

16. for ι ∈ {α, β} do

17. assert ê(
∏n−1

i=0 G
si
ιx:i,H) = ê(G,

∏n−1
i=0 H

si
ιx:i)∧

18. ê(
∏n−1

i=0 G
si
ιx:i,H) = ê(

∏n−1
i=0 G

si
x:i,Hιx:0)

19. Parse srss =
(
Gδ,Hδ, {Gsum:i}mi=ℓ+1, {Gt(x):i}n−2i=0 ,

)
20. for i = 1, . . . , ks do

21. Parse ρs,i = (G
(i)
δ ,G

(i)
δ′ ,H

(i)
δ′ , πδ′); R

(i)
δ′ ← RO(G

(i)
δ′ ,H

(i)
δ′ )

22. assert ê(
∏ks

i=2(G
(i)
δ )si ,H) =

∏ks
i=2 ê((G

(i−1)
δ )si ,H

(i)
δ′ )

23. assert ê(
∏ks

i=1(G
(i)
δ′ )

si ,H) = ê(G,
∏ks

i=1(H
(i)
δ′ )

si)

24. assert ê(
∏ks

i=1(π
(i)
δ′ )

si ,H) =
∏ks

i=1 ê((R
(i)
δ′ )

si ,H
(i)
δ′ )

25. assert ê(Gδ,H) = ê(G,Hδ) and Gδ = G
(ks)
δ ̸= 1

26. assert ê(
∏m

i=ℓ+1G
si
sum:i,Hδ) = ê(

∏m
i=ℓ+1

(∏n−1
j=0 G

uij
βx:j ·G

vij
αx:j ·G

wij

x:j

)si ,H)

27. assert ê(
∏n−2

i=0 G
si
t(x):i,Hδ) = ê(Gt(x),

∏n−2
i=0 H

si
x:i), whereGt(x) =

∏n
j=0G

tj
x:j

Figure 4.11: Batched SRS verification algorithm for Groth’s SNARK where κ ≈ 240
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4.8 Deferred Proofs

4.8.1 Lemmas for Groth16 Completeness

This section presents the additional lemmas for the completeness proof of Theo-

rem 4.6.1.

Lemma 4.8.1. If SRS passes VerifySRS, then it forms a valid Groth’s SNARK SRS.

Proof. We prove the statement following VerifySRS line by line.

• Line 4 certifies that Gx:1 ̸= [0]1, Gαx:0 ̸= [0]1, Gβx:0 ̸= [0]1. Assume then then

their values are x,α, β correspondingly.

• Line 5 ensures that (1) Gx:i has the same exponent as Hx:i (thus exponent

of Hx:1 is x too), and that (2) exponent of Gx:i is exponent of Gx:i−1 multiplied

by x. Thus, Gx:i = [xi]1, and Hx:i = [xi]2.

• Similarly, line 6 ensures that (1) Gιx:i has the same exponent as Hιx:i (thus

exponent of Hιx:0 is ι), and that (2) exponent of Gιx:i is ιxi. Therefore, the

exponent of Hιx:i is ιxi too.

• Line 9 certifies that Gδ ̸= [0] (thus let uss assume that its exponent is δ), and

that exponent of Hδ is the same.

• Line 10 certifies that Gsum:i is the ith x-power of
∑n−1

0 (βu(x) + αv(x) +

w(x))/δ.

• Line 11 ensures that each Gt(x):i is equal to t(x)xi/δ.

Therefore, SRS is in exactly the same form as in Setup presented in Fig. 4.4.

Lemma 4.8.2. Groth’s SNARK has update completeness.

Proof. Again, we are analysing UpdateSRS together with VerifySRS:

φ = 1 First, we will ensure that new SRS is well-formed. Line 8 first multiplies

every Gxi and Hxi by x′i replacing x with xx′. Next it updates each ιxi to

ιι′(xx′)i in Gιxi and H ιxi for ι ∈ α, β. Specialize merely recomputes srss from

srsu and its correctness is easy to verify. Thus, the new srs is well-formed.

Second, the update proof is correct because for each ι: (1) on step 3.b.ii of

VerifySRS the proof of knowledge created on line 3 will be correct, since it
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is applied to the same instance; and (2) for i > 1, assuming the previous

update was correct, the verification equation will check that the exponent of

G
(i)
ι (expected to be ιι′) is equal to the exponent of G(i−1)

ι (ι) multiplied by the

exponent of H(i)
ι′ (ι′).

φ = 2 Similarly. The SRS itself updates δ to δδ′, and proofs are verified exactly in

the same manner, but for δ instead of α, β,x.

4.8.2 Proofs for Update Knowledge Soundness

4.8.2.1 Proof of Lemma 4.6.4

Proof. We introduce the intermediate game G1⁄2, and prove the lemma in two steps,

corresponding to the transitions between G0 and G1⁄2, and between G1⁄2 and G1, cor-

respondingly. Both transitions are using security properties of the underlying Πdl

PoK (ZK and SE), which hold under (1, 0)-dlog.

Step 1. In G1⁄2, we choose the critical queries, but we still update the SRS honestly.

The only thing that we change is the PoK: instead of producing honest PoKs on

critical queries, we simulate them. That is, we still have the update trapdoor ι̂′,

but we use it to construct x = (⊥,Gι̂′ ,H ι̂′), and simulate for this x. G0 and G1⁄2 are

indistinguishable by perfect ZK of the PoK, thus AdvG0A,ExtA(λ) ≤ AdvG1⁄2
A,ExtA(λ) +

negl(λ). The formal reduction breaking ZK uses Sb,⊥,⊥,RO (the real prover, or the

simulator) in the critical queries; every other part of the game is the same.

Step 2. Next, we recall G1 which, compared to G1⁄2, generates a fresh SRS with

trapdoors {zι}ι, and reconstructs x for PoKs in a different way. Because for critical

queries we do not have the update trapdoor ι̂ in the clear (since we do not do the

update, but pretend our fresh SRS is the outcome of the update), we extract the

corresponding trapdoors ι̂i from honest and adversarial PoKs, and reconstruct ι̂′

from these and zι. Since fresh and updated trapdoors are identically distributed,

this part of the transition is perfect. Similarly, our reversed computation outputs

exactly the same value of the update trapdoor ι̂′ that the game was supposed to

obtain by honest update, so instance x to PoK is the same in two games. Therefore,

the only risk in the transition between the two games is that PoK extraction can
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fail, and in this case we abort the execution, which is noticeable by A. But the

PoK is simulation-extractable — even though A sees simulated PoKs already in

G1⁄2, the probability for PoK extractor to fail is negligible by SE. Therefore, G1⁄2 is

indistinguishable from G1: AdvG1⁄2
A,ExtA(λ) ≤ AdvG1A,ExtA(λ) + negl(λ).

Technically, we need to explain two things: why we are allowed to use PoK SE

here, and why it applies here, guaranteeing us extraction. First, by Theorem 4.4.1

our PoK is SE. Second, we must show that our current setting does not give A
more power than it is considered in the SE game. Concretely, in the SE game A is

given access to simulation oracle, RO, and two Poly oracles.

In our setting adversary also has access to RO, simulation oracle models update

proofs, and other elements that adversary sees (SRS elements and non-PoK up-

date proof elements) only depend on update trapdoors and fresh trapdoors, which

are modelled with Opoly. The degree d(λ) of Opoly that we need is q1(2n− 2) + q2.

Let us recall that we defined the degree of a Laurent polynomial to be the degree

of its highest degree momonial, where the degree of a monomial is the sum of

absolute values of variable degrees. Given this definition, the highest degree ele-

ment in the SRS is xn−2t(x)/δ, which has the degree 2n− 1, we obtain the degree

q1(2n− 2) + q2, if A updates a single SRS sequentially in all its queries.

4.8.2.2 Proof of Lemma 4.6.5

Proof. We will first argue why the form ofQ(Ψ⃗), and concretely its proof-independent

elements that are included in it (ẐαẐβ for instance), is as in Eq. (4.3). Consider the

first phase for now. When A finalizes srsu we locate in Q∗u (Q∗ = (Q∗u,Q
∗
s), where

ku := |Q∗u|) the critical update proofs for x,α, β — let their position be j ∈ [1, ku].

Note that j is not equal to theOsrs query index icrit1 since there can be many adver-

sarial updates inQ∗u. These update proofs are followed by a (potentially non-empty)

set of adversarial proofs with indices j+1, . . . , ku — honest proofs are not included

in this suffix since critical proofs are the last honest ones in Q∗u. Now, let us argue

that the element Gαx:0 in the final SRS corresponds to Zα
∏
αAi , where αAi are

adversarial update trapdoors. In step 3.b.iii of SRS verification we do a cascade

verification: in particular, on the j+1 step we check ê(G(j+1)
α ,H) = ê(G

(j)
α ,H

(j+1)
α′ ).

First of all, the form ofG(j)
α is exactlyGzα , since we assume that the proof number j,

which consists of ρ(j)α′ = (G
(j)
α ,G

(j)
α′ ,H

(j)
α′ , π

(j)
α′ ), is the last honestly generated one.

And since we assuming lucky, we know that the first tuple element of ρ(j)α′ is exactly
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Gzα (and other three are simulated; see Fig. 4.9). So, if the exponent of H(i)
α′ is

some αAj , and G(j)
α = Gα, then we know after this loop ends that G(ku)

α = Gzα
∏
αA
i .

Finally, from line 4 of verification procedure it follows from Gαx:0 = G
(ku)
α . Same

logic applies to Gx:1,Gβx:0. The next step is to use other VerifySRS equations, sim-

ilarly to the style in Lemma 4.8.1, to show that every α related slot in the final SRS

contains zα
∏
αAi (in other words, srs is consistent w.r.t. this value of α trapdoor).

We can show similar form and prove consistency similarly for the second phase

and δ slot being taken by zδ
∏
δAi , and srss being consistent w.r.t. this value. This

argument explains the form of the proof-independent part of Q(Ψ⃗):{
ẐαẐβ,

ℓ∑
i=0

ai(Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)), Ẑδ

}
(4.4)

One technical detail is that the statement of the current lemma suggests that execu-

tions of G1 possess a certain property (i.e. reconstructing the verification equation

is represented by Q(Ψ⃗)). But what really takes place is rather an AGM reduc-

tion: what we want to show is that the SRS elements A finalizes have such-and-

such form. This we do, based on the verification equations that are used inside

VerifySRS, and we base our reasoning critically on the assumption that A does

not break the discrete logarithm. So the lemma, in fact, implies a simple game

transition, and a reduction to the dlog (similar to the one that will be shown later in

Lemma 4.6.7).

What we also need to show to proceed, is that the exponents αAi (of elements

H
(i)
ι′ , that take third tuple-place in adversarial update proofs) should be constants.

Even though we can extract these values from PoKs, it is important that H(i)
ι′ are

not constructed as a non-constant linear combination of elements A has seen;

that is, we must have that the AGM coefficient matrix A returns together with H(i)
ι

has αAi as the only non-zero coefficient, associated with the constant slot. This

is guaranteed by the implicit reduction: the logic is very similar to the proof of

Theorem 4.4.1, where we showed that A can either return a simulated proof, or

create a honest one from a constant. Since A cannot reuse honest proofs (this

is guaranteed by VerifySRS), the only option for it is to create H
(i)
ι′ honestly (as

constants).

Finally, to explain why Q(Ψ⃗) is a Laurent polynomial in Ψ⃗2, it is enough to under-

stand three things. First, the elements E that Osrs outputs on the critical queries
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are Laurent polynomials in Ψ⃗2 — this can be verified by observing that the form

of honest SRS consists of Laurent polynomials in its trapdoors. Second, no new

elements depending on Ψ⃗2 can be obtained by passing E into RO, since RO re-

turns randomly sampled values that are independent of Ψ⃗2. Third, UpdateSRS of

SRS does not use any older trapdoors, and only introduces new ones: this means

that for any set of elements E ′ (that are Laurent polynomials in Ψ⃗2) being inputs

of UpdateSRS, it will merely produce linear combinations of E ′, which will be again

Laurent in Ψ⃗2.

4.8.2.3 Proof of Lemma 4.6.6

Proof. Assume Verify(srs, x, π) = 1, the event lucky happens since otherwise A
cannot win G2. Because bad did not happen, we deduce that Q(ψ1, Ψ⃗2) ≡ 0 w.o.p.,

where Q(Ψ⃗) is as in the equation Eq. (4.3).

The problem is that we do not know the form of Q; we want to argue that if

Q(ψ1, Ψ⃗2) ≡ 0 then AGM coefficients that A returns have some specific form,

and contain witness wires. But we also do not know what is the most general form

of Q — with AGM coefficients being treated as variables, and not as concrete val-

ues. For our proof to proceed in such generality, we will only care about those

AGM base elements that depend on Ψ⃗2 — all the other elements are considered

constants in Q(ψ1, Ψ⃗2). Now, we must determine which elements depend on Ψ⃗2.

Observation 3. Let E1,E2 be elements depending on Ψ⃗2 thatA sees as an output

of critical queries in the first and second round correspondingly. Then, the proof

elementsA,B,C can only include these elements and linear coefficients of E1∪E2

with constant values potentially unknown to A.

1. In the first phase, {Zx,Zα,Zβ} ⊂ Ψ⃗2 appear in the update query number

icrit1 : in SRS elements and in the corresponding update proof, let us call

these elements E1. Now, since icrit1 does not have to be the last query of

the first round, nothing stops A from passing E1 into other RO queries or

update oracle queries (and not using them for final SRS). Passing these

values into RO is generally useful both here and in the second phase: on

any request A will receive an unrelated constant value, so no elements

that depend on E1 can be produced in such a way. Passing E1 into SRS

update oracle only mixes E1 with some other values that are considered
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constants over Ψ⃗2. This is easy to see: UpdateSRS procedure is designed

in such a way that no knowledge of internal SRS trapdoors in needed to

perform the update. As a result, all output elements of UpdateSRS are

of form [k0 +
∑
kie], where e ∈ E1, and ki are constants (e.g. update

trapdoors). This is equivalent to A producing the linear combination of E1

elements on its own, but in this case ki may not be known to A. Therefore,

in the first round, until A finalizes, it only sees E1 and linear combinations

of E1 elements (with unknown coefficients potentially).

2. The same logic applies to the adversarial queries w.r.t. E1 in the second

round before the second round critical queries.

3. In the second round query icrit2 adversary obtains elements that depend on

E2 = {Zδ} ⊂ Ψ⃗2: second phase SRS elements and corresponding update

proofs. Now, similarly, A cannot mix E1 with E2 (and within these sets)

using update oracle, producing conceptually new elements that depend

on E2 and cannot be represented as linear combinations of E1 and E2

elements.

4. The second round ends andA submits the final SRS. It then can query RO

(since update oracle is disabled after the second round finalization), and

finally A submits the instance and the proof.

Then we can assume A,B,C to only contain linear combinations of both Ei, and

some other constant values. The form of this constant value may be complex,

since it is a linear (AGM) combination of constants, the form of which depends on

the particular execution, interaction pattern and other things. Nevertheless, these

values are constant factor in Q(ψ1, Ψ⃗2). As we just argued, elements that depend

on Ei and that are not direct outputs of update oracle on two critical queries are

linear combinations [
∑
kiei]ι. So since these are in the span of E1 ∪ E2, we will

only consider A,B,C to consist of linear elements E1 ∪ E2 and constant values.

We now formally state the list of elements that can be used in the algebraic base

of A,B,C. We use a custom enumeration to simplify our notation.

A(Ψ⃗2) = A0 +
2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x + A3:iZβZ

i
x) + A4Zδ
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+
m∑

i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+

n−2∑
i=0

A6:i
Ẑi
xt(Ẑx)

Zδ

+
∑
ι

(A7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

+ A8:ι
KιZι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

)

B(Ψ⃗2) = B0 +
2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

+
∑
i,ι

(B7:ι
Zι

(
∏
I1 Ti,ι)(

∏
I2 ι
A
i )

)

C is constructed as A. The constant value G sometimes corresponds to x0 and

could be referred to as A1:0, but we will give the coefficient a separate index 0 for

clarity. Indices 1 to 6 correspond to outputs of critical queries. Elements number

7 are second and third elements of proof of update: they contain update trapdoors

as exponents. Elements number 8 are corresponding PoKs. In both these last two

types of elements the denominator contains some honest and adversarial trap-

doors corresponding to the prefix of the update procedure before the critical query:

these are the elements that are extracted in SimUpdProof of G1. Essentially, we

divide the new trapdoor by the old one to reconstruct the update trapdoor (for the

update the challenger did not do).

We can immediately simplify the representation even further: observe that ele-

ments number 10 and 11 already exist in the span of elements they are included

into. For example, A10:ιZι/(
∏
I1 Ti,ι

∏
I2 ι
A
i ) is just Zι multiplied by a very specific

constant thatA knows only partially (because Ti is hidden from it). For ι = x, there

exists A1:1, for ι = α, β there exist, correspondingly, A2:0 and A3:0. Therefore, the

coefficient of Zx is now A1:1 +A10:ι/(
∏
I1 Ti,ι

∏
I2 ι
A
i ). It is more restrictive for A to

use constants which it knows only partially, therefore without loss of generality we

can assume that A10:ι = 0, and if adversary wants to include Zx it will set A1:1 to a

nonzero value. Similarly, A11:ι = B10:ι = 0.

Which leads to the general form similar to the one we have in the original proof

of Groth16 in [Bowe et al., 2017b], except our elements have extra adversarial

trapdoors (hidden inside some variables with hats):

A(Ψ⃗2) = A0 +
2n−2∑
i=1

A1:iZ
i
x +

n−1∑
i=0

(A2:iZαZ
i
x + A3:iZβZ

i
x) + A4Zδ

+
m∑

i=l+1

A5:i
Ẑβui(Ẑx) + Ẑαvi(Ẑx) + wi(Ẑx)

Zδ
+

n−2∑
i=0

A6:i
Ẑi
xt(Ẑx)

Zδ
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B(Ψ⃗2) = B0 +
2n−2∑
i=1

B1:iZ
i
x +

n−1∑
i=0

(B2:iZαZ
i
x +B3:iZβZ

i
x) +B4Zδ

We follow a proof strategy similar to the one in [Bowe et al., 2017b]. One structural

difference is that we will not try to deduce first which elements can be included

into A,B,C and which can not — since we do not know whether this will be nec-

essary for the result. Instead, we will start from the end, immediately locating the

three critical equations from which we expect to extract — these are equations

that correspond to the monomials of public verification equation elements. The

corresponding monomials are: Zi
X ,ZαZ

i
x,ZβZ

i
x. For ZαZi

x:

(
∑

A2,iZαZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐαvi(Ẑx))B4+

(
∑

B2,iZαZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐαvi(Ẑx)− (

∑
C5,iẐαvi(Ẑx)) = 0

For ZβZi
x:

(
∑

A3,iZβZ
i
x)(B0 +

∑
B1,iZ

i
x) + (

∑
A5,iẐβui(Ẑx))B4+

(
∑

B3,iZβZ
i
x)(A0 +

∑
A1,iZ

i
x)−

∑
aiẐβui(Ẑx)− (

∑
C5,iẐβui(Ẑx)) = 0

And for Zi
x:

(B0 +
∑

B1,iZ
i
x)(A0 +

∑
A1,iZ

i
x) + (

∑
A5,iwi(Ẑx) +

∑
A6,iẐ

i
xt(Ẑx))B4−∑

aiwi(Ẑx)−
∑

C5,iwi(Ẑx)−
∑

C6,iẐ
i
xt(Ẑx) = 0

Our strategy now is to attempt to remove the elements which clutter these equa-

tions and prevent us from substituting the first two into the third one to obtain a QAP.

Let us write out equations on monomials that include Zα,Zβ,Zx and see whether

we can deduce any simplifying relations on the AGM coefficients involved.

Z2
αZ

i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) = 0 =⇒

∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A2:jB2:k = 0,

Z2
βZ

i
x : (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) = 0 =⇒

∀i ∈ [0, 2n− 2] :

(n−1,n−1)∑
j,k:(0,0);j+k=i

A3:jB3:k = 0,
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ZαZβZ
i
x : (

n−1∑
i=0

A2:iZαZ
i
x)(

n−1∑
i=0

B3:iZβZ
i
x) + (

n−1∑
i=0

A3:iZβZ
i
x)(

n−1∑
i=0

B2:iZαZ
i
x) =

αAβA(̸= 0),

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(
n−1∑
i=0

B2,iZαZ
i
x) = 0,

Z2
βZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(
n−1∑
i=0

B3,iZβZ
i
x) = 0,

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(
n−1∑
i=0

B3,iZβZ
i
x)+

(
m∑

i=l+1

A5,iẐβui(Ẑx)/Zδ)(
n−1∑
i=0

B2,iZαZ
i
x) = 0,

ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x)+

(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B2,iZαZ
i
x) = 0,

ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x)+

(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)(

n−1∑
i=0

B3,iZβZ
i
x) = 0.

From the first equation, Z2
αZ

i
x, we have A2 ∗ B2 = 0, where ∗ denotes convolu-

tion product. From Z2
βZ

i
x, A3 ∗ B3 = 0. From ZαZβZ

i
x, A2 ∗ B3 + A3 ∗ B2 =

(αAβA, 0, . . . , 0)T .

Convolution products have a property useful in this context which we explain now.

Assume a ∗ b = 0, then a0b0 = 0, a1b0 + a0b1 = 0, a2b0 + a1b1 + a0b2 = 0 and so on

(the longest equation is for degree n, and then the number of elements decreases

one-by-one until degree 2n). It is easy to see that the product is symmetric: a ∗ b =
b ∗ a. Importantly, if a0 ̸= 0, then all bi = 0: from the first equation b0 = 0, from the

second equation a0b1 = 0, so b1 = 0 too, from the third equation similarly a0b2 = 0

(the other two terms cancel because of b0 = b1 = 0), and thus b2 = 0. This process

is continued until the degree n (middle, longest) equation. Therefore, if a ∗ b = 0,

then a0 ̸= 0 =⇒ b = 0, or b0 ̸= 0 =⇒ a = 0.

In our case, the ZαZβZi
x gives A2:0B3:0 + A3:0B2:0 = αAβA. But at the same time,
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at least one from {A2:0,B2:0} and {A3:0,B3:0} must be zero. If both zero values are

in both terms, it is impossible for their sum to be zero, therefore both zero values

must be in one term. This leads us to the two options:

(a) A2:0 = B3:0 = 0 and both A3:0 and B2:0 are nonzero. From this, by the

convolution property above, we immediately conclude ∀i. A2:i = B3:i = 0.

(b) Symmetrically, A3:i = B2:i = 0 for all i, but A2:0 and B3:0 are nonzero.

In the honest proof generation, β ∈ B, as in option (b), so let us assume option (a)

first. We will later see that one can indeed construct a proof with B swapped with

A; we will succeed with (a), so this choice is performed without loss of generality.

Now, the equation ZαZβZi
x becomes (

∑n−1
i=0 A3:iZβZ

i
x)(
∑n−1

i=0 B2:iZαZ
i
x) = αAβA ̸=

0 or A3 ∗ B2 = (αAβA, 0 . . . 0)T . By an argument similar to above we can argue

that A3,i = B2,i = 0 for all i > 0. We examine the highest degree coefficient

A3,nB2,n = 0, and assume A3,n ̸= 0 wlog, then B2,n = 0. Then, from the previous

equation A3,n−1B2,n +A3,nB2,n−1 = 0 we derive B2,n−1 = 0. This process goes on

until on the degree n equation A3,0B2,n+ . . .+A3,n−1B2,1+A3,nB2,0 = 0 where we

reach a contradiction since B2,0 = 0 but we assumed it is not. By a symmetric ar-

gument, B2,n ̸= 0 lead to A3,0 = 0 and contradiction too. So B2,n = A3,n = 0. The

equation 2n− 1 is now immediately satisfied, but the equation for 2n− 2 becomes

A3,n−1B2,n−1 = 0. Here the proof idea repeats, but we reach contradiction on de-

gree n − 1 equation instead. Using this process we conclude that A3,i = B2,i = 0

for i > 0.

If ∀i. A2:i = B3:i = 0, A3:0B2:0 = αAβA, and A3:i = B2:i = 0 for i > 0, our system

of equation becomes:

ZαZβZ
i
x : A3:0B2:0 = 1

Z2
αZ

i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)B2,0Zα = 0

ZαZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)B2,0Zα = 0

ZαZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐαvi(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x)+

(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0
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ZβZ
i
x/Zδ : (

m∑
i=l+1

A5,iẐβui(Ẑx)/Zδ)(
2n−2∑
i=0

B1,iZ
i
x) = 0

The equations Z2
αZ

i
x, Z

2
βZ

i
x, Z

2
βZ

i
x/Zδ are now satisfied, so are not considered

anymore. From Z2
αZ

i
x/Zδ we conclude that

∑m
i=l+1A5,ivi(Ẑx) = 0 as a polynomial

in Zx, and same for (
∑m

i=l+1A5,iui(Ẑx) = 0. ZαZi
x/Zδ reduces to

(
m∑

i=l+1

A5,iwi(Ẑx)/Zδ +
n−2∑
i=0

A6,iẐx
i
t(Ẑx)/Zδ)B2,0Zα = 0

from which, since these two sets are of different powers, we conclude

m∑
i=l+1

A5,iwi(Ẑx) = 0 and
n−2∑
i=0

A6,iẐx
i
t(Ẑx) = 0

both as polynomials in Zx.

We now return to the three critical equations which are now significantly simplified:

ZαZ
i
x : B2,0(A0 +

∑
A1,iZ

i
x) =

∑
aiα
Avi(Ẑx) + (

∑
C5,iα

Avi(Ẑx))

ZβZ
i
x : A3,0(B0 +

∑
B1,iZ

i
x) =

∑
aiβ
Aui(Ẑx) + (

∑
C5,iβ

Aui(Ẑx))

Zi
x : (B0 +

∑
B1,iZ

i
x)(A0 +

∑
A1,iZ

i
x) =

∑
aiwi(Ẑx)+∑

C5,iwi(Ẑx) +
∑

C6,iẐ
i
xt(Ẑx)

Express 1 and 2 and substitute into 3:

βAαA

A3,0B2,0

(
l∑

i=0

aiui(Ẑx) +
m∑

i=l+1

C5,iui(Ẑx))(
l∑

i=0

aivi(Ẑx) +
m∑

i=l+1

C5,ivi(Ẑx)) =

l∑
i=0

aiwi(Ẑx) +
m∑

i=l+1

C5,iwi(Ẑx) +
n−2∑
i=0

C6,iẐ
i
xt(Ẑx)

A3,0B2,0 = βAαA, so the first term is equal to 1. Our result is a QAP in Ẑx: C5,i

elements are witness wires, andC6,i are coefficients of h(Ẑx) (such that h(Ẑx)t(Ẑx)

is equal to QAP left hand side). Therefore the extractor targeting C5,i succeeds in

extracting the witness.

4.8.2.4 Proof of Lemma 4.6.7

Proof. Recall that we denote Ψ⃗2 = {Zι}ι; similarly, let us say ψ⃗2 = {zι}ι. Let us

define Q2(Ψ⃗2) := Q(ψ1, Ψ⃗2) ̸≡ 0. Also recall that bad implies lucky, so we are

implicitly considering lucky traces in this lemma.
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B({Gzi}2n−1i=1 , {Hzi}2n−2i=1 , rδ, sδ,G
1

rδz+sδ ,H
1

rδz+sδ ):

1. Initialize ROt(·)
2. {rι, sι}ι∈{x,α,β}

$←− Zp
3. Set implicitly zι ← rιz + sι for critical query embeddings for ι ∈ {α, β,x}
4. Similarly set zδ ← 1

rδz+sδ

5. Run A and Ext as in G1 using dlog challenge elements to embed zι
6. into critical SRS updates, and modified SimUpdProofB

7. assert Verify(srs, x, π) = 1 ∧ (x,w) /∈ R
8. Reconstruct Q(ψ⃗1, Ψ⃗2) using AGM matrix T and extracted trapdoors

9. from srs PoKs

10. Reinterpret it as Q′(Z); factor Q′(Z), find z among the roots

11. return z

SimUpdProofB(ι,φ):

1. Compute Gι̂′ ,H ι̂′ as before, except now we do not know exp of Gzι ,Hzι

2. % Notice: for δ, Gι̂′ = (G
1

rδz+sδ )ι̂
−1

due to inverted embedding

3. As in SimUpdProof, create x and call SimRO1(·)
dl on it to obtain πι′

4. return (Gzι ,Gι̂′ ,H ι̂′ , πι′)

Figure 4.12: Adversary B against (2n − 1, 2n − 2)-extended dlog assumption in

Theorem 4.6.3. It is parameterized by a full update knowledge soundness algebraic

adversary A, and the extractor ExtA as in Fig. 4.7. Its main task is to simulate G1
to A, embedding the edlog instance z into SRS on critical queries.
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Let A be a PPT adversary in G2. We want to show that it is computationally hard

for A to come up with a non-zero polynomial Q2 such that the verifier accepts, i.e.

Q2(ψ⃗2) = 0. The idea of the proof is to construct an adversary B that simulates G2
for A and embeds (2n− 1, 2n− 2)-edlog challenge z into the update trapdoors zι
(ψ⃗2) at critical queries icrit1 and icrit2 . We show Q2(Ψ⃗) ̸≡ 0 implies that a closely

related univariate polynomial Q′(Z) ̸≡ 0 where (2n − 1, 2n − 2)-edlog challenge

value z is one of the roots of Q′. Since Q′ is a univariate polynomial, B can effi-

ciently factor it and output z. It follows that Q2(ψ⃗2) = 0 and Q2(Ψ⃗) ̸≡ 0 can only

hold with negligible probability, thus event bad is negligibly rare.

We now explain in detail the embedding strategy of B in Fig. 4.12. Firstly, B ob-

tains as a challenge (bp, {Gzi}2n−1i=1 , {Hzi}2n−2i=1 , r, s,G
1

rz+s ,H
1

rz+s ). Instead of sam-

pling critical trapdoor values zι randomly, we implicitly define zι := rιz + sι for

ι ∈ {x,α, β} and let B sample sι, rι randomly.

When A requests an update number icrit1 in the first phase, B uses the challenge

input and (rx, rα, rβ, sx, sα, sβ) to set

srs′u =

(
{G(rxz+sx)i ,H(rxz+sx)i}2n−2i=0 , {G(rαz+sα)(rxz+sx)i ,G(rβz+sβ)(rxz+sx)

i
,

H(rαz+sα)(rxz+sx)i ,H(rβz+sβ)(rxz+sx)
i}n−1i=0

)
.

Similary SimUpdProof is computed exactly as in G2 except that B knows Gzι and

Hzι instead of zι = rιz + sι itself.

When A finalizes the first phase 1, B sees the verifying proofs (πA1:1, . . . , π
A
1:t1

)

for all updates after the last update query that A made. More precisely, B also

receives other verifying proofs, corresponding to the previous honest updates and

adversarial updates between them, but B can just discard them after verifying their

validity, keeping only the last t1 of them. Then B can extract (α⃗A, β⃗A, x⃗A) such that

srsu =


{G((rxz+sx)

∏
j x

A
j )

i

,H((rxz+sx)
∏

j x
A
j )

i

}2n−2i=0 ,

{G((rαz+sα)
∏

j α
A
j )((rxz+sx)

∏
j x

A
j )

i

,G((rβz+sβ)
∏

j β
A
j )((rxz+sx)

∏
j x

A
j )

i

,

H((rαz+sα)
∏

j α
A
j )((rxz+sx)

∏
j x

A
j )

i

,H((rβz+sβ)
∏

j β
A
j )((rxz+sx)

∏
j x

A
j )

i

}n−1i=0

 .

where j = 1, . . . , t1. The reasoning of why the form of srsu is that is similar to

Lemma 4.6.5: because the critical queries are guessed correctly, A can only add

its own adversarial trapdoors, but not to change the general form of the last honest

SRS elements. To simplify the notation, we, as before, us polynomials Zx(Z) =

(rxZ + sx)
∏

j x
A
j and Zα(Z) = (rαZ + sα)

∏
j α
A
j and Zβ(Z) = (rβZ + sβ)

∏
j β
A
j .



4.8. Deferred Proofs 139

The variable Z stands for the edlog challenge exponent z. We note that extrac-

tion of (α⃗A, β⃗A, x⃗A) above is possible only due to the strong form of simulation

extractability that we proved for Πdl (under (1, 0)-dlog, which is clearly implied by

(2n−1, 2n−2)-edlog). Namely, in our scenario,A sees both honest and simulated

proofs from B and also gets group-based auxiliary inputs that the strong simula-

tion extractability modelled byOG1
poly,O

G2
poly oracles (the extraction success is argued

similarly to how it is done in Lemma 4.6.4).

When A requests an honest update number icrit2 in the second phase, B uses

rδ, sδ from the challenge to set

srss =

(
G

1
rδz+sδ ,H

1
rδz+sδ , {G(rδz+sδ)(Zβ(z)ui(Zx(z))+Zα(z)vi(Zx(z))+wi(Zx(z)))}mi=ℓ+1,

{G(rδz+sδ)(Zx(z))it(Zx(z))}n−2i=0

)
.

Notice that B embeds rδz + sδ in an inverted way. This is due to the fact that we

only have G1/(rδz+sδ) and H1/(rδz+sδ) in the dlog challenge, but when we do the

second phase update we must construct the G(αui(x)+...)/δ and Gt(x)xi/δ elements

which we cannot do if δ is in the denominator. The reason is that these elements

are constructed from Gxi/δ,Gαxi/δ,Gβxi/δ monomials, and since B does not know

δ, it cannot exponentiate the elements A provided as an input to the update query,

so B must construct these problematic SRS parts from scratch using the edlog

challenge. For example, xi/δ would be represented as (rxz+sx)
i/(rδz+sδ), which

is not a Laurent polynomial but a rational function in z. So we cannot build Gxi/δ

from our dlog challenge with the direct δ embedding strategy. At the same time,

embedding rδz + sδ in an inverted way can be done: now xi/δ is G(rxz+sx)i(rδz+sδ)

which is a positive-power polynomial in z, so we can build it from {Gzj} which are

available. Simpler SRS elements Gδ and Hδ can also be constructed: they are just

G1/(rδz+sδ),H1/(rδz+sδ). Since if rδz+sδ is uniform, 1/(rδz+sδ) is also uniform, and

A cannot notice the inverted embedding.

The maximum degree polynomial here is in the fourth set of srss elements,G(rδz+sδ)(Zx(z))n−2t(Zx(z)),

equal to 2n−1, which explains the G1 degree of edlog. As for G2, its maximum de-

gree is in H(rxz+sx)2n−2
in srsu, and thus equal to 2n−2. Therefore, (2n−1, 2n−2)-

edlog is enough for the embedding to succeed.

Then B simulates a proof of correctness by using SimUpdProof as in φ = 1 case,

which again uses the PoK simulator in a black-box way after constructing an in-

stance x. In this case, with the inverted embedding, we must set Gι̂′ = (G
1

rδz+sδ )ι̂
−1

and similarly for H, but we can still do it from the edlog challenge.
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When A finalises in phase 2, B sees the verifying proofs (πA2:1, . . . , π
A
2:t2

) for all

updates after the last (critical) update query thatAmade. Again, the actual number

of proofs in the SRS is higher, but B discards the prefix corresponding to the pre-

critical execution. Then B can extract δ⃗A such that

srss =


G

∏
j δAj

rδz+sδ ,H

∏
j δAj

rδz+sδ ,

{
G

(rδz+sδ)(Ẑβ(z)ui(Ẑx(z))+Ẑα(z)vi(Ẑx(z))+wi(Ẑx(z)))∏
j δA

j

}m
i=ℓ+1

,{
G

(rδz+sδ)(Ẑx(z))it(Ẑx(z))∏
j δA

j

}n−2
i=0


where j = 1, . . . , t2. We, as before, set Zδ(Z) = rδZ+sδ∏

j δ
A
j

.

We first define Q3(Zx,Zα,Zβ,Zδ) = Q2(Zx,Zα,Zβ, 1/Zδ), which inverts the last

coefficient, to account for the inverted embedding of δ trapdoor. From bad we

know Q2 ̸≡ 0, and Q2(ψ⃗2) = 0; Q3 has similar properties. First, if Q2 ̸≡ 0, then

Q3 ̸≡ 0, since if Q2 includes some nonzero monomial MZi
δ for M monomial in

Zx,Zα,Zβ, and some i, then in Q3 there will be a nonzero coefficient of MZ−iδ .

Second, if Q2(ψ⃗2) = 0, then Q3(zx, zα, zβ, 1/zδ) = Q2(ψ⃗) = 0. We will denote

ψ⃗3 := (zx, zα, zβ, 1/zδ), so Q3(ψ⃗3) = 0.

Let us transform the Laurent polynomial Q3 to a standard positive-power polyno-

mial. We do this by defining Q4({Zι}ι) := Q3({Zι}ι) · Z2
δ , where Zδ is a formal

variable. Q4 is a positive power polynomial since Q3 can only have at most Z−2δ
as a negative degree monomial: e.g. Z−1δ in both A and B, which is true even

after Q3 inversion on the previous step, since δ has powers 1 and −1 in the SRS.

Moreover, since Q3({Zι}ι) ̸≡ 0 and Q3(ψ⃗3) = 0, it follows that Q4({Zι}ι) ̸≡ 0 and

Q4(ψ⃗3) = 0.

Next we introduce Q′(Z) := Q4(rxZ + sx, rαZ + sα, rβZ + sβ, rδZ + sδ), which

reinterprets Q4 as a polynomial over Z instead of {Zι}. Here, the last element

rδZ + sδ is passed into Q4 directly, since rδZ + sδ = 1/zδ. From this it follows that

(rxz+ sx, rαz+ sα, rβz+ sβ, rδz+ sδ) = ψ⃗3(z), and z is one of the roots of Q′ since

Q′(z) = Q4(ψ⃗3(z)) = 0.

If we can show thatQ′(Z) ̸= 0, then B can factor it to find z. To show this, let us first

define an intermediate polynomial Q′3(Z) = Q4({RιZ+Sι}ι) in variable Z over the

ring of polynomials Zp[Rα,Rβ,Rx,Rδ,Sα,Sβ,Sx,Sδ]. Accoding to Lemma 2.3.1,

the leading coefficient of Q′3(Z) is a polynomial C(Rα,Rβ,Rx,Rδ) with the same

degree d as is the total degree of Q4({Zι}ι). Since the total degree of Q4({Zι}ι) is
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non-zero, then C is a non-zero polynomial. Values rι are information-theoretically

hidden from A since B set critical trapdoors to be zι = rιz + sι (and for δ it is in-

verted). Therefore, rα, rβ, rx, rδ are chosen uniformly randomly and independently

from C. According to the Schwartz-Zippel lemma (see Lemma 2.3.2), the probabil-

ity that c := C(rα, rβ, rx, rδ) = 0 is bounded by d/p. Hence, with an overwhelming

probability Q′(Z) ̸≡ 0 since it has a non-zero leading coefficient c. This is sufficient

for B to factor Q′ and to find z.

It follows that the event bad can only happen with negligible probability.

4.9 Future Work

The proof of update soundness we present is quite complex structurally, and even

we had to carefully structure it into different subsections and lemmas, it seems

to be possible to simplify even further it and make more modular. However, we

believe it is an inherent property of such proofs, especially in the AGM, and thus

the question we would like to ask rather is “how simpler proof structure can be

achieved by adapting the proof model?”. Another immediate question is whether

it is possible to show simulation-extractable version of update (knowledge) sound-

ness, similarly to how we do it in Chapter 3. This would allow (after a certain

transformation to achieve black-box extractability) lifting our security properties to

the UC framework.





Chapter 5

Multi-Asset Swaps from SNARKs

This chapter is based on the work “Zswap: zk-SNARK Based Non-
Interactive Multi-Asset Swaps”, published in PoPETS 2022, and co-
authored by Felix Engelmann, Thomas Kerber, and Markulf Kohlweiss.

Pivacy-oriented cryptocurrencies, like Zcash or Monero, provide fair transaction

anonymity and confidentiality, but lack important features compared to fully pub-

lic systems, like Ethereum. Specifically, supporting assets of multiple types and

providing a mechanism to atomically exchange them, which is critical for e.g. de-

centralized finance (DeFi), is challenging in the private setting.

An atomic swap is the exchange of different assets between multiple parties. Atom-

icity means that either all the participants get their desired output simultaneously

or the transaction is aborted completely. A classical example is a foreign currency

exchange, where a bank sells a foreign currency to a customer who pays in the

local currency. There, atomicity is guaranteed by simultaneously handing over the

assets.

By combining insights and security properties from Zcash and SwapCT ([Engel-

mann et al., 2021] an atomic swap system for Monero), we present a simple zk-

SNARKs-based transaction scheme, called Zswap, which is carefully malleable to

allow the merging of transactions, while preserving anonymity. Our protocol en-

ables multiple assets and atomic exchanges by making use of sparse homomor-

phic commitments with aggregated open randomness, together with Zcash-friendly

simulation-extractable non-interactive zero-knowledge (NIZK) proofs. This results

in a provably secure privacy-preserving transaction protocol, with efficient swaps,

143
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and overall performance close to that of existing deployed private cryptocurrencies.

It is similar to Zcash Sapling and benefits from existing code bases and implemen-

tation expertise.

The transactions in our atomic swap protocol only reveal a map of the imbalance

for each asset where the sum of its inputs is unequal to the sum of its outputs.

Hence, a balanced transaction is the one that does not reveal any amounts or

types, it is fully private and semantically similar to a zcash transactions. Other-

wise it is imbalanced and can be viewed as an exchange offer, the imbalance of

which encodes exactly the exchange order conditions. Next, these unbalanced

transactions can be merged off-chain by untrusted parties. The mergers can nei-

ther deanonymize senders or receivers nor correlate a subsequent spending of an

output by its precise amount and type. With such little trust required in mergers,

this very basic functionality already allows creating local exchange markets, where

users can send exchange offers (as transactions with a negative imbalance for the

asked token and a positive imbalance for the offered), and community-selected

participants can match them and merge them to then submit to the blockchain.

The anonymity of the system is controlled by users: the system allows both private

swaps between several parties, who agree on their exchange off-chain, and bigger

exchange pools, as just mentioned. In both cases, the only information that the

mergers and other users see is the one necessary to match the offers (total value

for each unbalanced type), and it is erased as soon as the transaction is balanced

and sent to the ledger. For partial merges, any type with an imbalance of zero is

dropped. An open group of participants in a pool may provide sufficient liquidity

and maintain a public order book, similar to classical exchanges.

In Section 5.1 we start by presenting an intuition for our construction together with

a technical overview and comparison with Zcash and other concurrent work. The

main contributions of this chapter are summarised as follows:

Formal Modelling via OTA Scheme and Update Oracles. In Section 5.3 we de-

fine a formal model called a One-Time Account (OTA) System that abstracts a

private account-related mechanism used in private cryptocurrencies. In par-

ticular it captures the nullifier-like private UTXO mechanism, and we show

how to instantiate an OTA system from Zcash in Section 5.3. The OTA model

and our proof techniques could be of independent interest for proving sys-

tems such as Zcash and Monero secure.
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Section 5.4 presents a formal security model for a multi-asset Zcash system

with swaps that builds on top of the OTA system. The main security notions

of the scheme are somewhat similar to Zcash, but our modelling approach is

quite different, since we have to take into an account the update mechanics,

which we model through adversarial access to state-modifying oracles.

ZSwap Construction. In Section 5.5 we present Zswap, being a minimal practical

instantiation of a cryptocurrency mechanism supporting multiple assets and

private non-interactive atomic swaps. It is based on a simplified version of

Zcash that removes authorization and blinding signatures.

In Section 5.6 we prove our construction secure under commonly used as-

sumptions similar to the ones used in Zerocash. This validates the removal

of the Zcash signatures and shows that the perfect hiding and binding prop-

erties of spend and output commitments is sufficient for security. In addi-

tion, since Zswap uses a multi-asset mechanics that is being integrated in

real-world solutions like Zcash, we believe to simultaneously provide the first

security proofs of it which are of independent value.

Implementation and Evaluation. We implement and evaluate our protocol. In

Section 5.7 we present the results showing that our merging mechanism is

extremely efficient, and all the other performance overheads of our construc-

tion related to transaction creation and verification are small, as compared to

the basic single-asset protocol without swaps.

Speaking of adoption and practical applications, we believe that a simple atomic

swap mechanism we provide can be viewed as an easy and useful add-on to many

Zcash-like private cryptocurrencies. An interesting open question is how to inte-

grate Zswap with private smart contracts to support more elaborate private DeFi

solutions operating on complex intents, similarly to the approach of the Anoma

protocol1. A first step in that direction would be to extend a public smart contract

system with minting policies for private assets, to support, e.g. the private trading

of NFTs. Finally, our mechanism is compatible with existing consensus protocols,

such as proof-of-work or stake, and can be viewed as a standalone cryptocurrency.

1https://anoma.net/

https://anoma.net/
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5.1 Technical Overview and Related Work

A major challenge of many existing solutions that investigate transaction malleabil-

ity and swap mechanics is that transaction data is not explicitly separated from

the transaction signature, which binds inputs from multiple users together. This,

often results in the need for (slow) MPC protocols to construct such a signature

jointly. An important insight of our work is that the Zcash ecosystem already im-

plement signature separation. It was first introduces by Zcash Sapling [Hopwood

et al., 2022] to reduce the size of SNARK circuits for large transactions, and was

inherited by the corresponding Shielded Assets, or the similar MASP multi-asset

protocols. Another inspiration of our work is SwapCT, that realizes atomic swaps

on Monero [Engelmann et al., 2021]. We continue this direction by designing and

proving secure an extension of a Zcash Sapling like system that satisfies the re-

quired multi-asset and atomic swap properties.

As explained in Section 2.7.1, Zcash Sapling, unlike in the Zerocash paper, sepa-

rates the validation of inputs and outputs (each input and output requires a sepa-

rate NIZK) from the transaction balancing, which is done using homomorphic com-

mitments and a Schnorr-like binding signature. The binding signature “seals” the

inputs and outputs in place, forbidding adding or removing any extra inputs or out-

puts. Instead, in our work we use a sparse multi-value Pedersen commitments and

relax the signature, allowing transactions to be non-interactively merged together.

While inspired by SwapCT, we deal with different challenges specific to the zk-

SNARK setting and take advantage of the existing signature separation in Zcash

Sapling. The explicit signature separation opens more space for potential transac-

tion malleability, and should be taken with care. To our knowledge our work is the

first to extend the security analysis of [Ben-Sasson et al., 2014a] in that direction.

Our modelling relies on a one-time account (OTA) scheme to anonymously and

confidentially create and store value in notes. This is an abstraction from existing

protocols in Zcash and Monero. The spending of input notes, stored in a Merkle

tree, is authorized by a simulation extractable (SE) non-interactive zero-knowledge

proof (NIZK). Double spends are prevented by proving the correctness of a de-

terministic nullifier, marking an input as spent. To connect inputs to newly created

output notes, we use sparse homomorphic commitments to value-type pairs, which

can be summed to check that the transaction is well-balanced. Importantly, the val-
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ues and types remain hidden even when we publish their aggregated randomness,

which is necessary to facilitate transaction merging.

Our protocol bears similarities to variants of Zcash and SwapCT which we compare

in more detail:

Zcash Sapling: Compared to Sapling, we add multi-asset support and remove

the authorization signature which is replaced by the SE NIZK. We also do

not need a binding signature over all intermediate commitments — instead

we directly publish the randomness. This opens room for controlled mal-

leability, and enables non-interactive joint transaction generation (by merg-

ing) without MPC, which can be used to implement swaps mechanics. The

multi-asset aspect of our scheme is very similar to Shielded Assets or MASP,

both of which extend Sapling but do not provide a mechanism for atomic

swaps. We also provide a rigorous theoretical formalization, which is lacking

for both Sapling and its Shielded Asset and MASP variants, and can be of

independent interest.

Conversely, the technical discussions and implementation effort that went

into the Shielded Assets ZIP 220 and the MASP implementation are valu-

able starting points for the deployment of Zswap as part of a larger Zcash

like blockchain. In particular, deployment of our new transactions into Zcash

requires a hard fork and creates a new shielded pool holding typed notes.

Transferring tokens from an existing shielded pool is possible by explicitly

adding the Zcash type to the notes.

SwapCT: Our work is inspired by SwapCT which also provides atomic swaps and

transaction merging, but on top of Monero (ring based anonymity). We sim-

plified their scheme to unify their offers and transactions. With the use of

SNARKs (requiring a trusted or transparent setup) our simpler construction

no longer needs their anonymously aggregatable signatures. We achieve

better confidentiality for unfinished transactions as we only reveal a total im-

balance instead of per input and output values. Another important difference

is that the use of SNARKS allows to efficiently support large rings. This mo-

tivates the use of a single global ring in our formalization.

Formalization: We formalize our protocol using game based definitions, which

generalize Zerocash definitions, but are also compatible with Monero except
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for using a single global ring (as in Zcash and differing from SwapCT).

Zerocash [Ben-Sasson et al., 2014a] formalizes Ledger indistinguishability,

Transaction non-malleability and Balance. Our balance definition is very sim-

ilar with the addition of checking multiple assets. We replace indistinguisha-

bility with the privacy definition, as our transactions may be circulated off-

chain. The non-malleability of merged transactions is inspired by Zerocash

and SwapCT [Engelmann et al., 2021]. Instead of the strong non-malleability,

it provides a relaxed property that controls malleability (transaction merging)

and only requires theft prevention, namely that an adversary cannot steal

from the intended recipients of a transaction, or split unbalanced transac-

tions, rerouting honest funds. Modelling this malleability relies on a variant

of hiding of the Pedersen commitment scheme, when the joint commitment

randomness is revealed, which we call HID-OR2. This property does not

require any additional security assumptions.

5.2 Commitments and Open Randomness

In Section 2.5 we introduce the notion of sparse homomorphic commitments, and

showed how to instantiate it in the random oracle model. In this chapter we will

use SHC in what we called the “dynamic mode” — we assume the existence of a

cryptographic hash function H(·), which will be computing the bases Hi = H(tyi)

on-the-fly.

A remark about value space of commitments must be made. To avoid value over-

flows in our protocol, we will upper-bound the committed values by 2α − 1, and

the total number of commitments that we homomorphically combine to β — in this

way, the maximum sum in the exponent of a single base will be α + β bits, which

must be below certain B which in turn must be reasonably smaller than the order

of any base H(ty) (thus the message space). We assume that this upper bound

B(λ) and the parameters (α(λ), β(λ)), for simplicity, is given by the commitment

scheme.

The Zswap construction that we will present later critically relies on the certain

property of the sparse Pedersen commitment scheme, instantiating SHC, that we

2HIDing with Open Randomness
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HID-ORb
A(1

λ):

1. pp← Setup(1λ)

2. {(tyt, at), (ty′t, a′t)}1t=0 ← A(pp)
3. ∆ty,t := {if tyt = ty then at else 0} − {if ty′t = ty then a′t else 0}
4. assert ∀ty ∈

⋃
tyt ∪

⋃
ty′t : ∆ty,0 = ∆ty,1

5. r, r′ $←− R
6. com← Commit(tyb, ab, r); com

′ ← Commit(ty′b, a
′
b, r
′)

7. b′ ← A(com, com′, rc = r − r′)
8. return b′

Figure 5.1: Hiding with Open Randomness Game

call hiding with open randomness. We observe that the adversary cannot distin-

guish between two pairs of commitments that sum to the same values (per type),

even if we reveal their common randomness. This is the main property used in

our swaps: we will use it to argue that transaction can be merged (to join two un-

balanced swap offers), but not split apart (so swap offers cannot be adversarially

modified).

Lemma 5.2.1 (Hiding with Open Randomness). The sparse Pedersen commitment

scheme is perfectly hiding with open randomness in the RO model. By this we

mean that if for all λ ∈ N and all PPT A:

Pr
[
HID-OR1

A(1
λ) = 1

]
− Pr

[
HID-OR0

A(1
λ) = 0

]
= 0

where the game is defined in Fig. 5.1.

The proof of this statement is based on perfect hiding together with the equivoca-

tion of the Pedersen commitment scheme.

Lemma 5.2.1. Let the hash function be modelled by the random oracle, andH(tyi) =

Gti , and thus the challenger knows all ti. The form of commitments that are given

to the adversary is thus:

[tbab + r], [t′ba
′
b + r′], rc = r − r′

The initial game is HID-OR0, in which A sees the previous equation for b = 0. In

G1 we sample r̂ and instead give A the following:

[r̂], [t′0a
′
0 + r′], rc = (r̂ − t0a0)− r′
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Note that t0a0 + r and r̂ are both uniform, so A does not see the difference, the

transition is perfect. Similarly we equivocate the second commitment:

[r̂], [r̂′], rc = (r̂ − r̂′)− (t0a0 − t′0a′0)

And now we “switch” the elements to the case of b = 1. Let T = {t0, t′0} = {t1, t′1}.
Given ∆ty,0 = ∆ty,1 for all ty ∈ T we have:

t0a0 − t′0a′0 =
∑
t∈T

t∆ty,0 =
∑
t∈T

t∆ty,1 = t1a1 − t′1a′1

Therefore what A sees now is:

[r̂], [r̂′], rc = (r̂ − r̂′)− (t1a1 − t′1a′1)

So we can proceed with replacing r̂ and r̂′ “back” into real commitments to the b = 1

values similarly to how we abstracted them in the first steps of the proof. The end

result is a distribution that A sees for b = 1 (HID-OR1): [t1a1 + r], [t′1a
′
1 + r′], rc =

r − r′ so our hiding holds with probability 1 (is perfect).

Corollary 5.2.1.1. Assuming commitment hiding, Lemma 5.2.1 holds even ifA pro-

vides two sets of size n (not just pairs) of input and output commitments, {(tyi,t, ai,t), (ty′i,t, a′i,t)}
n,1
i,t=0,0,

as long as they still jointly sum to the same values per type.

Proof. The proof is exactly the same as the previous one, except that we first

“idealise” 2n commitments (and not just two) from b = 0, and then de-idealise them

all back. The transition logic in the middle holds similarly because ∆ty,0 = ∆ty,1.

5.3 One-Time-Account Scheme

To highlight our novel transaction mechanism, we first describe the one-time ac-

count (OTA) scheme that we use to model the mechanics of underlying accounts

our transactions use. The OTA scheme may be seen as an anonymous version

of an unspent transaction output (UTXO) system (e.g. the one used in Bitcoin); it

generalises accounts of privacy-preserving transaction systems such as Zcash or

Monero. Instead of creating transaction outputs including a long term identity as

with plain UTXO, an OTA scheme generates a unique, anonymous, one-time ac-

count for each transaction output. To support the UTXO functionality to decide if a
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one-time-account is still valid, the OTA scheme allows generating a unique nullifier

which anonymously marks it as spent. A duplicate nullifier indicates that the same

one-time account is used.

The OTA scheme is used as follows. After a system Setup, each participant gen-

erates their credentials with KeyGen. Anyone with the public key can then non-

interactively derive a one-time account, also called “note” 3, with Gen. Each note

contains a set vector of attributes. Most importantly, one attribute is the amount

the note represents. In our multi-type setting, a second attribute is the type of the

amount. Other systems may make use of additional note attributes such as e.g.

time locks — a timestamp identifier, allowing a note to be spendable only after a

specified block number. To allow the intended recipient to recover the note, it is

accompanied by an encryption C calculated by Enc. With the secret key, note and

ciphertext, the original owner Receives the note and is then able to create the cor-

responding nullifier with NulEval, a unique serial value characterizing the note that

cannot be predicted by anyone else than the owner.

We emphasize that any party can create an OTA account for anyone knowing only

their public key. The OTA itself does not allow any claims to the value stored inside.

In our system, only the OTAs which are included as outputs of a valid, balanced and

persisted transaction can be claimed by their owners in subsequent transactions.

The transaction then enforces that sufficient inputs were consumed to cover for the

output. To mint coins an OTA needs to be included on the ledger in an unbalanced

transaction for the newly minted type. This transaction needs to be accepted by

the ledger rules. This behaviour might as well be governed by a smart contract.

Definition 5.3.1. A One-Time-Account (OTA) scheme consists of the PPT algo-

rithms (Setup,KeyGen,Enc,Gen,Receive,NulEval) defined as follows:

Setup(1λ)
$−→ pp: takes the security parameter λ and outputs the public parameters

pp which are implicitly provided to the subsequent algorithms. This includes

the note randomness space S, the message space M, and the encryption

randomness space Ξ.

KeyGen(1λ)
$−→ (sk, pk): generates a key pair (sk, pk). We assume a function P :

sk 7→ pk for generating the public key from a secret key.

3Unlike in some other works, “note” here means the final, hidden account; and not the plaintext
coin.



152 Chapter 5. Multi-Asset Swaps from SNARKs

Gen(pk, a⃗, r)→ note: takes a public key pk, a vector of attributes a⃗ ∈ M|⃗a|, where,

by agreement, the first might be an amount, and randomness r ∈ S. It

outputs a one-time-account, known as note.

Enc(pk, (⃗a, r), ξ)→ C: encrypts the attributes a⃗ and the randomness r ∈ S to the

public key pk with additional randomness ξ ∈ Ξ. It outputs a ciphertext C.

Receive(note,C, sk)→ (⃗a, r)/⊥: if the note and ciphertext C belongs to the secret

key sk, the algorithm outputs the vector of attributes a⃗ and the randomness r

or fails otherwise.

NulEval(sk, r)→ nul: Takes a secret key sk and a randomness r and outputs a

nullifier nul.

In addition, the algorithms Gen and NulEval must be efficiently provable in zero-

knowledge. More formally, the construction must provide NIZK-friendly circuits for

the following languages:

Lnul = {(note, nul) | ∃(sk, a⃗, r) : note = Gen(P (sk), a⃗, r) ∧ nul = NulEval(sk, r)}

Lopen = {note | ∃(pk, a⃗, r) : note = Gen(pk, a⃗, r)}

The language Lopen may optionally be extended, such that elements of a⃗ have

relations to other commitments.

We first present the basic correctness and soundness properties of the OTA scheme,

which primarily dictate how Receive should be implemented.

Definition 5.3.2 (OTA Correctness). An OTA scheme is correct if for any λ ∈ N with

pp ∈ Setup(1λ) it holds that any honestly generated note is receivable. Formally,

for every (sk, pk) ∈ KeyGen(pp), every (⃗a, r) ∈M|⃗a| × S and ξ ∈ Ξ it holds that

Receive (Gen(pk, a⃗, r),Enc(pk, (⃗a, r), ξ), sk) = (⃗a, r)

Definition 5.3.3 (OTA Soundness). An OTA scheme is sound if any non-⊥ output

of Receive reconstructs the note that was given to Receive as an input. Formally,

for any λ ∈ N with pp ∈ Setup(1λ), every (sk, pk) ∈ KeyGen(pp), every (⃗a, r) ∈
M|⃗a| × S, ξ ∈ Ξ it holds that

Receive(note,C, sk) = (⃗a, r) =⇒ OTA.Gen(P (sk), a⃗, r) = note

If correctness is present, soundness can be easily achieved by appending a con-

dition to the realisation of Receive that asserts that extracted (⃗a, r) is valid.
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Once a note is created, it must bind the attributes and prevent opening the note to

a different vector, even for the owner with the correct secret key.

Definition 5.3.4 (OTA Binding). An OTA scheme is binding with regard to the ac-

counts created and the vector of attributes if for any λ ∈ N with pp ∈ Setup(1λ) and

any PPT adversary A, it holds that

Pr


(pk0, r0, a⃗0, pk1, r1, a⃗1)← A(pp)
note0 ← Gen(pk0, a⃗0, r0)

note1 ← Gen(pk1, a⃗1, r1)

return note0 = note1 ∧ a⃗0 ̸= a⃗1

 = negl(λ)

The following privacy property assures that a note and its ciphertext do not leak

who the note belongs to and what attributes it stores.

Definition 5.3.5 (OTA Privacy). Consider the following oracle, modelling OTA note

receiving:

Onote∗,C∗

Rcv (i, note,C) :

assert note ̸= note∗ ∧ C∗ ̸= C

return Receive(note,C, ski)

An OTA scheme is private if for any λ ∈ N with pp ∈ Setup(1λ) and any stateful

PPT adversary A, it holds that

Pr



(sk0, pk0)
$←− KeyGen()

(sk1, pk1)
$←− KeyGen()

(i0, a⃗0, i1, a⃗1)← AO
⊥,⊥
Rcv (pp, pk0, pk1)

b
$←− {0, 1}, r $←− S, ξ $←− Ξ

note∗ ← Gen(pkib , a⃗b, r)

C∗ ← Enc(pkib , (⃗ab, r), ξ)

b′ ← AO
note∗,C∗
Rcv (note∗,C∗)

return b = b′ ∧ |⃗a0| = |⃗a1|


≤ 1

2
+ negl(λ)

The privacy game implicitly subsumes (1) note and ciphertext hiding, and (2) note

and encryption anonymity (key privacy). In the first case, A cannot decide the

content of the note or the ciphertext; in the second, it cannot decide which key

was used to create it. E.g. if note is not hiding, A efficiently wins the game by

first returning two different vectors a⃗0 ̸= a⃗1 and then distinguishing the note noteb

according to the attribute vector.
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We require notes to be unique when generated with honest randomness:

Definition 5.3.6 (Note Uniqueness). A binding and private OTA scheme satisfies

honestly generated note uniqueness: for all PPT A,

Pr


((pk0, a⃗0), (pk1, a⃗1))← A(1λ)
r0, r1

$←− S
return Gen(pk0, a⃗0, r0) = Gen(pk1, a⃗1, r1)

 = negl(λ)

The next property, similar to the tagging scheme of Omniring [Lai et al., 2019],

captures the requirement that nullifiers produced with sk must be only “predictable”

for the party that holds sk. This is achieved by requiring NulEval to behave like a

pseudorandom function.

Definition 5.3.7 (Nullifier Pseudorandomness). Let λ ∈ N with pp ∈ Setup(1λ),

(sk, pk)
$←− KeyGen(), and f be randomly sampled function on the range {0, 1}|S| →

{0, 1}|NulEval(sk,·)|. An OTA scheme nullifier is pseudorandom if for any PPT adver-

sary A, it holds that

Pr
[
AReceive(·,·,sk),f(·)(pk) = 1

]
− Pr

[
AReceive(·,·,sk),NulEval(sk,·)(pk) = 1

]
= negl(λ)

To detect duplicate use of the same note, each is assigned a unique nullifier. Even

with knowledge of the secret key, it is not possible to create two different nullifiers

for the same note. The separate secret keys are important for constructions based

on algebraic nullifiers. E.g. Omniring creates tags as g
1

sk+r for a generator g, so

randomness may be “traded” for secret key. Allowing only one note with a sin-

gle secret key would not capture the realistic setting where an adversary controls

multiple correlated accounts.

Definition 5.3.8 (Nullifier Uniqueness). An OTA scheme satisfies nullifier unique-

ness if for any λ ∈ N with pp ∈ Setup(1λ) and any PPT adversary A, it holds

that

Pr


(sk0, r0, a⃗0, sk1, r1, a⃗1)← A(pp);
note0 ← Gen(P (sk0), a⃗0, r0);

note1 ← Gen(P (sk1), a⃗1, r1)

return note0 = note1 ∧ NulEval(sk0, r0) ̸= NulEval(sk1, r1)

 = negl(λ)

Finally, the generated nullifiers must be also collision-resistant:
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Definition 5.3.9 (Nullifier Collision-Resistance). An OTA scheme satisfies nullifier

collision-resistance if for any pp ∈ Setup(1λ) and PPT A, it holds that

Pr
[
(sk0, r0, sk1, r1)← A(pp) : NulEval(sk0, r0) = NulEval(sk1, r1)

]
= negl(λ)

5.3.1 Zerocash-Style OTA

To use Zerocash style one-time-accounts, we provide an instantiation which is

compatible with Zerocash.

Given a key anonymous public key encryption scheme PKE, a labeled PRF and

a commitment scheme (Commit). The PRF of type PRFsn must in addition be

collision-resistant. The randomness space is S := ({0, 1}λ)3, the key space is and

the message space consists of two λ-bit integers M := Z2
2λ

the first representing

an amount and the second identifying a type. The randomness space Ξ is specified

by PKE.

Setup(1λ)
$−→ pp: Initializes the SNARK parameters pp.

KeyGen()
$−→ (sk, pk): Samples ask randomly from {0, 1}λ and defines apk ← PRFaddr

ask
(0);

samples an encryption key pair skenc, pkenc using the corresponding PKE al-

gorithm. Return sk = (ask, skenc), pk = (apk, pkenc).

P (sk): is defined as P (ask, skenc) := (PRFaddr
ask

(0),Penc(skenc)) where Penc is as-

sumed to be defined in the encryption scheme.

Gen(pk, a⃗, r)→ note: Parse (rk, rc, rn) ← r and (apk, pkenc) ← pk. Commit to

(apk, rn) with randomness rk as commitment com and then commit to com, a⃗

with randomness rc. So note = Commit(Commit(apk, rn; rk), a⃗; rc).

Enc(pk, (⃗a, r), ξ)→ C: Parse (apk, pkenc)← pk. Encrypt (⃗a, r) with pkenc to cipher-

text C and return C.

Receive(note,C, sk)→ (⃗a′, r′)/⊥: Parse (ask, skenc) ← sk. Decrypt C with skenc to

(⃗a′, r′). Parse (rk′, rc′, rn′) ← r′ and verify that these values recreate the

commitment

note = Commit(Commit(P (ask), rn
′; rk′), a⃗′; rc′)

If decryption fails or the commitment does not match the note, return ⊥.
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NulEval(sk, r)→ nul: Parse (ask, skenc) := sk and (rk, rc, rn) := r. Evaluate nul =

PRFsn
ask
(rn) and return nul.

The completeness and soundness proofs are straightforward: completeness fol-

lows by completeness of the PKE, and soundness is ensured by the verification

check in the end of Receive.

Theorem 5.3.1 (OTA Binding). When using a binding commitment scheme Commit,

the Zerocash commitment scheme is binding according to Definition 5.3.4

Proof. LetA return pk0, a⃗0, r0, pk1, a⃗1, r1 such that Gen(pk0, a⃗0, r0) = Gen(pk1, a⃗1, r1)

and a⃗0 ̸= a⃗1. Parsing ∀i ∈ {0, 1} : (rki, rci, rni) ← ri, the first condition implies the

equality

Commit
(
Commit(pk0, rn0; rk0), a⃗0; rc0

)
= Commit

(
Commit(pk1, rn1; rk1), a⃗1; rc1

)
but the commitments have different values for a⃗. This breaks the binding property

of the commitment scheme.

Theorem 5.3.2 (Note Uniqueness). Zerocash OTA style notes are unique accord-

ing to Definition 5.3.6

Proof. Trivially follows from binding of the underlying commitment scheme – since

both pk and a⃗ are commitment messages, finding a collision (even with adversari-

ally chosen randomness) amounts to breaking commitment binding.

Theorem 5.3.3 (Nullifier Uniqueness). The Zerocash OTA scheme has unique nul-

lifiers (Definition 5.3.8), if the PRF is secure and the commitment scheme is bind-

ing.

Proof. LetA return (sk0, r0, a⃗0, sk1, r1, a⃗1) which generates the same note but differ-

ent nullifiers nul0 and nul1. The binding commitment scheme ensures that (sk0, r0, a⃗0) =

(sk1, r1, a⃗1). As NulEval is deterministic, the nullifiers are equal, contradicting our

assumption.

Theorem 5.3.4 (Nullifier Pseudorandomness). The Zerocash OTA nullifiers are

pseudorandom (Definition 5.3.7), if the PRF is secure and the commitment scheme

is hiding.
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Proof. The pseudorandomness experiment is exactly the same as standard pseu-

dorandomness, exceptA is given (1) a public key, (2) an oracle access to Receive(·, ·, sk).
The public key is computed as PRFaddr

ask
(0), and so by pseudorandomness of this

PRF (with a different domain) can be replaced by a random value ψ, so knowledge

of an extra random value does not help A to distinguish. Regarding the Receive

oracle, it performs decryption with an unrelated skenc, so it does not interfere with

the main pseudorandomness reduction, since this oracle does not use ask (it uses

ψ which we already argued to be random and thus irrelevant).

Theorem 5.3.5 (Nullifier Collision-Resistance). Zerocash OTA nullifiers are collision-

resistant.

Proof. Follows directly from the collision-resistance of PRFsn which in practice is

instantiated using a collision-resistant hash function.

Theorem 5.3.6 (OTA Privacy). Using a hiding commitment scheme and a IND-

CCA, key anonymous4 (IK-CCA) encryption scheme, the Zerocash-style OTA is

private according to Definition 5.3.5.

Proof. The proof proceeds in three hops:

1. By commitment hiding we replace note∗ ← Commit(Commit(apkib , rn; rk), a⃗; rc)

by the commitment to zero: note∗ ← Commit(Commit(0, 0; rk), 0; rc). A re-

duction to commitment hiding is straightforward: we do not need anything

else to simulate ORcv to A when building B against hiding, because ORcv

does not reply to the challenge notes.

2. By IK-CCA we can replace the encryption under pkib to encryption under pk0
always and just ignore i1, i0. Note that in the first step we already remove

note dependency on pkib , so now public keys are only used in construction of

C∗. In the reduction to IK-CCA we simulate ORcv (which requires decrypting

non-challenge C∗) to A using IK-CCA decryption oracles. By the end of this

game A always receives C∗ = Enc(pk0, (a⃗b, r), ξ).

3. Finally, by IND-CCA we replace the encryption of ab by encryption of 0. To

simulate the ORcv oracle to A we again use the IND-CCA decryption oracle

(and we just need one, since we always use the same encryption key pk0).

4See [Bellare et al., 2001], Definition 1.
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After the three games what A sees is Commit(Commit(0, 0; rk), 0; rc) as a note,

and Encpk0(0; ξ) as a ciphertext. Both do not depend on b, and therefore A wins

the final game with probability exactly 1/2.

5.4 Zswap Scheme

A Zswap scheme is an extension of an OTA scheme which allows creating (SignTx),

merging (MergeSig), and verifying (Verify) transactions that transfer coins between

OTA accounts. SignTx takes a pre-transaction ptx as input and produces a transac-

tion signature σ, MergeSig combines transaction signatures σ1, . . . ,σn, and Verify

verifies a signature σ for a transaction tx. A signature σ is viewed separately from

its transaction tx (created by tx ← CompleteTx(ptx) defined below), and not con-

tained in it.

Many algorithms will make use of st – the current state of valid previously issued

notes. It consists of two parts: st.MT is the Merkle tree containing notes as leaves,

and st.NF is the set of used nullifiers. Intuitively, when the note is spendable, its

commitment should be in st.MT; when the note is spent, its (unique, unlinkable)

nullifier goes into st.NF.

5.4.1 Protocol Definition

We first present auxiliary algorithms for Zswap in Fig. 5.2 for creating pre-transactions

and transactions. These use the OTA scheme algorithms only in a black-box man-

ner and simplify the exposition when defining the security properties. The first set

of functions glues the Zswap and OTA schemes together.

• BuildPTx constructs inputs for SignTx from I,O instructions and a set of

secret keys SK. Inputs I consist of a list of existing (note,C) notes, outputs

O consist of a list of public key, value, and type triplets (pkT , aT , tyT ) for

creating the output notes. By receiving input notes and generating output

notes it produces a pre-transaction information ptx.

• CompleteTx constructs a transaction tx for Verify from a pre-transaction ptx

similar to SignTx.

• MergeTx creates a new transaction tx by combining a set of existing transac-
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tions tx1, . . . , txn. This is the non-cryptographic analogue of MergeSig.

• CheckPTx checks whether pre-transaction is valid w.r.t. st, which is used in

the correctness property. It is easy to see that for ptx = BuildPTx(st, ·, ·, ·)
we have CheckPTx(st, ptx) = 1.

• TryReceive attempts to “receive” a note note by decrypting its ciphertext C

using any of the set SK of available secret keys: if an input can be received

with one of the keys it also computes the note’s nullifier.

• CheckBalance is merely an alias that checks that for each type the pre-transaction

is balanced, and all the values are within bounds.

Definition 5.4.1. A Zswap transaction scheme, built on top of an OTA scheme,

consists of a tuple of PPT algorithms (Setup, SignTx,MergeSig,Verify) defined as

follows:

Setup(1λ)
$−→ pp takes the security parameter λ and outputs public parameters pp

which are implicitly given to all the following algorithms. Setup is called once

when a Zswap system is initialized.

SignTx(st, ptx)
$−→ σ takes a pre-transaction ptx = (S, T ) where

• S = {(skSi , noteSi , nuli, pathi, (aSi , tySi ), rSi )}
|T |
i=1 is a set of inputs with a

nullifier nuli corresponding to the noteSi , and stored in the current state

at the given path st.MT[pathi], secret key skSi , amount aSi and type tySi

with input OTA notes’ randomness rSi .

• T = {(pkTi , noteTi , (aTi , tyTi ), rTi )}
|T |
i=1 is a set of (output) notes noteTi with

amount aTi , type tyTi and output OTA notes’ randomness rTi .

It outputs a signature σ as authorization to spend the inputs S on the given

outputs T .

Verify(s⃗t, tx,σ)→ b takes a transaction tx, a signature σ and returns a bit b repre-

senting the validity of the transaction w.r.t. the valid history of states s⃗t (this

history may be partial, or contain just one last element5).

MergeSig({σi}ni=1)→ σ takes n transaction signatures and generates a combined

signature σ valid for the union of the transactions. To merge the correspond-

ing transactions tx1, . . . , txn together, we use the function MergeTx defined

5See the correctness definition in the next sections.
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BuildPTx(st, I,O, SK):

1. S, T ← ∅
2. for (noteS ,CS) ∈ I do

3. path← st.MT.getPath(noteS)

4. assert path ̸= ⊥
5. (skS , nul, (aS , tyS), rS)← TryReceive(note,C, SK)

6. S := S ∪ (skS , noteS , nul, path, (aS , tyS), rS)

7. assert {nuli} are distinct and ∀i. nuli /∈ st.NF

8. for (pkT , aT , tyT ) ∈ O do rT $←− S, ξ $←− Ξ

9. noteT ← OTA.Gen(pkT , (aT , tyT ), rT )

10. CT ← OTA.Enc(pkT , ((aT , tyT ), rT ), ξ)

11. T := T ∪ (pkT , noteT ,CT , (aT , tyT ), rT )

12. ptx← (S, T ); assert CheckBalance(ptx) = 1

13. return ptx

CheckPTx(st, ptx@(S, T )):

1. Parse S as {(skSi , noteSi , nuli, pathi, (aSi , tySi ), rSi )}
|S|
i=1

2. Parse T as {(pkTi , noteTi ,CTi , (aTi , tyTi ), rTi )}
|T |
i=1

3. % CTi is left to the receiver to verify

4. assert {nuli} are distinct and ∀i. nuli /∈ st.NF

5. for i ∈ [|S|] do

6. assert st.MT[pathi] = noteSi

7. assert nuli = OTA.NulEval(skSi , r
S
i )

8. assert noteSi = OTA.Gen(OTA.P (ski), (a
S
i , ty

S
i ), r

S
i )

9. for i ∈ [|T |] do assert noteTi = OTA.Gen(pkTi , (a
T
i , ty

T
i ), r

T
i )

10. assert CheckBalance(ptx) = 1

11. return 1

CompleteTx(ptx@(S, T )):

1. Parse S as {(·, ·, nuli, ·, (aSi , tySi ), ·)}
|S|
i=1

2. Parse T as {(·, noteTi ,CTi , (aTi , tyTi ), ·)}
|T |
i=1

3. for ty ∈ Ty@({tySi } ∪ {tyTi }) do

4. ∆ty ←
∑

(aSi ,ty)∈S
aSi −

∑
(aTi ,ty)∈T a

T
i

5. return
(
{nuli}|S|i=1, {noteTi ,CTi }

|T |
i=1, {∆ty}ty∈Ty

)

Figure 5.2: Auxiliary algorithms for Zswap. These only depend on the OTA scheme

and do not use Zswap methods such as Verify or SignTx.
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MergeTx({txj}nj=1):

1. Parse txj as
(
{nulj,i}

|S|j
i=1 , {(noteTj,i,CTj,i)}

|T |
i=1, {∆j,ty}ty∈Tyj

)
2. assert

∑
|Si|+

∑
|Ti| ≤ β

3. return
(
ToSet

(⋃
j,i{nulj,i}

)
,ToSet

(⋃
j,i{(noteTj,i,CTj,i)}

)
,

4. ToSet

({∑
j ∆j,ty

}
ty∈
⋃

j Tyj

))
TryReceive(note,C, SK):

1. for sk ∈ SK do

2. res← OTA.Receive(note,C, sk)

3. if res = ((a, ty), r) ̸= ⊥ then

4. nul← OTA.NulEval(sk, r)

5. return (sk, nul, (a, ty), r)

6. return ⊥

CheckBalance(ptx@(S, T )):

1. assert
∑
|S|+

∑
|T | ≤ β

2. for ty ∈ {tySi } ∪ {tyTi } do

3. assert
∑

(aSi ,ty)∈S
aSi −

∑
(aTi ,ty)∈T

aTi ≥ 0

4. assert (∀i. aSi < 2α) ∧ (∀i. aTi < 2α)

5. return 1

Figure 5.2: Auxiliary algorithms for Zswap (cont.)
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in Fig. 5.2. It just concatenates their input nullifiers, output notes, and sums

their ∆ty for each ty. As of the st, they must be equal in the transactions

that need to be merged, but we can assume that st is only updated once an

epoch, which is set to be a time interval long enough for transactions to be

merged.

5.4.2 Atomic Swap: A Workflow Example

After presenting all necessary algorithms, we show a small example of how they

interact to create an atomic swap transaction between two parties, Alice and Bob.

First, the system is created by Setup. Each participant joining, generates their key

pair (sk, pk) with KeyGen. The creation of new assets is delegated to an external

consensus mechanism which updates the global state of the system according

to an agreed policy. At one point, Alice and Bob have to be the beneficiary of a

transaction. They notice this by calling TryReceive with their secret key sk on every

published transaction output (note,C). If they successfully receive a (note,C) to

an amount a and type ty, they keep it for when they want to spend it. Let’s assume

Alice received a note of 10$ and Bob has a note of 10e. Alice now wants euros and

Bob dollars. They assume an exchange rate of 7:5 and proceed to generate their

pre-transactions ptxi. Each party calls BuildPTx with their note as input instruction

I. As output instructions O, Alice sends 5e to her key pk. To make sure that

someone fulfills the offer, she creates a change output to herself with only 2$,

leaving 1$ as incentive. Bob performs the same. He inputs the 10e note and

generates outputs of 7$ and 5e to himself.

The resulting pre-transactions are signed by both parties respectively with SignTx

to get signatures σi. The final transactions txi are generated from the pre-transactions

ptxi by CompleteTx and can be verified against their signature σi with Verify. Note

that both transactions by themselves cannot be included in the public ledger. Both

have a type with a negative balance. Alice’s transaction has ∆e = −5 and Bob’s

transaction has an imbalance of ∆$ = −7. So far Alice and Bob have not com-

municated. The non-malleability of the transactions allow them to publish their

transactions into an exchange pool. Exchange pools may be run globally or with

limited access. The first party seeing both transactions recognizes that they are

complementary and is able to merge both txi together with MergeTx and their sig-

natures σi with MergeSig. As a prize, the merger is allowed to claim the surplus of
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1$ paid by Alice. Technically there are now 3 transactions merged. The resulting

merged transaction has no imbalance and can be included in the public ledger.

Then all parties get their specified outputs and store them for future transactions.

5.4.3 Security Modelling with Support Oracles

The security of our scheme is based on several top-level games, plus the games

we define for the OTA scheme. To model potential blockchain executions we need

to introduce the oracles which will model note spending that the adversary A sees,

interactively. The relevant oracles, OKeyGen, OSpend and OInsert are presented in

Fig. 5.3. They are responsible for generating keys, honest transactions and insert-

ing them into the ledger.

OKeyGen allows generating honest public and secret keys for further use in OSpend.

OSpend models leakage of honestly generated transactions, including unbalanced

“offer” transactions. Each OSpend query allows spending some notes, and success-

ful spend logs are recorded in Spent. An adversary can specify any possible state it

likes as long as the request is valid with respect to this state. The requirement that

O has at least one honest output is a modelling artefact, and is explained further

in the “anti-theft” section.

OInsert models “recording” balanced transaction in the ledger. Branching is possi-

ble inside OInsert — A can append an honest transaction to any of the recorded

states, but still one can only spend notes through OInsert if their nullifier has not

been used in the same branch. Moreover, the st0 variable is shared between the

oracle records as the first “root” state that A can initialize the oracles with. OInsert

only accepts states that are eventually linked with this root st0.

GetLog function is a state maintenance helper. When called on the state st it makes

sure that st is a valid progression of the initial state st0, and returns two values: Ins′,

which is a log of this state progression (containing transaction history), and s⃗t –

subset of Ins′ containing states only (only state progression history). When GetLog

is called in security experiments on st, it implicitly asserts that st is a valid state that

was created through the oracles.
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OKeyGen():

1. if SK or PK is ⊥ then

2. SK,PK← ∅

3. (sk, pk)← KeyGen()

4. SK := SK ∥ sk
5. PK := PK ∥ pk
6. return pk

GetLog(st):

1. Ins′ ← []; s⃗t← (st)

2. while x@(st′, st, ·, ·) ∈ Ins do

3. Ins′ := x ∥ Ins′; st := st′

4. s⃗t = s⃗t ∥ st′

5. assert st = st0

6. return (Ins′, s⃗t)

OSpend(st, I,O):

1. if Spent is ⊥ then Spent← ∅

2. assert |O| > 0 ∧ ∃(pk, ·, ·) ∈ O : pk ∈ PK

3. ptx@(S, T )← BuildPTx(st, I,O, SK)

4. σ ← SignTx(st, ptx)

5. Parse S as {(nuli, ·, ·, ·)}|S|i=1; T as {(·, noteTj ,Cj, ·, ·)}
|T |
j=1;

6. Spent := Spent ∪ (st, I, {nuli}|I|i=1, {(noteTj ,Cj)}
|T |
j=1))

7. return σ

OInsert(st, tx,σ):

1. if Ins is ⊥ then Ins← ∅
2. if st0 = ⊥ then

3. assert st.NF = ⊥
4. s⃗t← {st}
5. else

6. assert (st, ·, ·, ·) ∈ Ins

7. (·, s⃗t)← GetLog(st)

8. (Nf@{nuli}|S|i=1, {noteTj , ·}
|T |
j=1, {∆ty}ty∈Ty)← tx

9. assert Verify(s⃗t, tx,σ) = 1 % Transaction verifies

10. assert ∀ty ∈ Ty : ∆ty ≥ 0 % And is not an offer

11. Construct st′ s.t.

12. st′.MT← st.MT.insert({noteTj }
|T |
j=1)

13. st′.NF← st.NF ∪ Nf

14. Ins := Ins ∪ (st, st′, tx,σ)

15. if st0 = ⊥ then st0 ← st

Figure 5.3: Oracles for the security experiments.
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5.4.3.1 Correctness

We start from the basic correctness definition, covering interactions between hon-

est users.

Definition 5.4.2 (Correctness). A Zswap scheme is correct if OTA is correct and if

for all λ ∈ N, pp ∈ Setup(1λ), and all PPT B (setup algorithm) it holds that:

(1) Honestly generated transactions are immediately valid: For any S, T , st such

that CheckPTx(st, (S, T )) = 1, and tx = CompleteTx(S, T ), and for any sig-

nature σ ← SignTx(st, (S, T )), it holds that Verify([st], tx,σ) = 1.

(2) Honestly generated transactions are valid in any future state: Let st1, st2 be

any pair of states returned by BOKeyGen,OSpend,OInsert(pp), such that (·, s⃗t)← GetLog(st2)

and st1 ∈ s⃗t (this implies GetLog does not fail, and st2 is a valid progression of

st1; st1 may be equal to st2). Let S, T be such that CheckPTx(st1, (S, T )) = 1;

let tx = CompleteTx(S, T ) and σ ← SignTx(st1, (S, T )). Then Verify(s⃗t, tx,σ) =

1.

(3) Honestly merged valid transactions are again valid: Let n ∈ N. Let {sti}ni=1,

st ← BOKeyGen,OSpend,OInsert(pp,n) be a set of states such that (sti, st) are valid

progressions in the same history: s⃗t ← GetLog(st) and ∀i. sti ∈ s⃗t. Let

there be a set of {(Si, Ti)}i∈[n] s.t. for all i, CheckPTx(sti, (Si, Ti)) = 1,

for each σi ∈ SignTx(sti, (Si, Ti)) and σ = MergeSig({σi}ni=1), and tx ←
MergeTx({CompleteTx (Si, Ti)}ni=1), it holds that Verify(s⃗t, tx,σ) = 1.

Regarding the ability to “receive” coins that were sent to the party, the formal com-

pleteness definition is part of the OTA scheme, and the fact we receive properly

send coins is guaranteed by BuildPTx, which is not part of zswap scheme. At the

same time, correctness of ciphertexts is not guaranteed, so it is possible to create

an output with an invalid ciphertext, undecryptable by the receiver. In this case,

receiver of the coin must consider this transaction factually invalid, as burning the

coin that was designated to them.

5.4.4 Security Definitions

Definition 5.4.3 (Zswap Security). The Zswap scheme is secure if the underlying

OTA scheme is secure, and the Zswap scheme satisfies (1) anti-theft, (2) balance,

and (3) privacy; properties as defined in this section.
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Anti-TheftA(1
λ):

1. pp← Setup(1λ)

2. st∗ ← AOKeyGen,OSpend,OInsert(pp)

3. (Ins′, ·)← GetLog(st∗)

4. for (st, ·, tx, ·) ∈ Ins′ do

5. (·, (NfA,MA))← SplitTx(st, tx)

6. MA ′ ← {(note,C) ∈MA | TryReceive(note,C, SK) ̸= ⊥}
7. if ∃(·, ·,Nf,M) ∈ Spent :MA ′ ∩M ̸= ∅ ∨ NfA ∩ Nf ̸= ∅ then

8. return 1

9. return 0

SplitTx(st, tx):

1. (Nf@{nuli}|S|i=1,M@{noteTj , ·}
|T |
j=1,C)← tx

2. txH ← []

3. Nf0 ← Nf

4. for (st′, ·,Nf ′@{nul′i}
|S′|
i=1,M

′@{(noteT ′j ,C ′j)}
|T ′|
j=1) ∈ Spent do

5. if st′.MT = st.MT ∧M ′ ⊂M ∧ Nf ′ ⊂ Nf0 then

6. txH = txH ∥ (Nf ′,M ′)

7. Nf0 := Nf0 \ Nf ′

8. txA = (Nf \ {NfH | (NfH, ·) ∈ txH}, M \ {MH | (·,MH) ∈ txH})
9. return (txH, txA)

Figure 5.4: The anti-theft experiment.

We now elaborate on the mentioned top-level security properties.

Anti-Theft and Non-Malleability. The notion of anti-theft we describe here is our

main non-malleability notion. Intuitively it says that an adversary A can only merge

transactions, but cannot split honest transactions apart, or modify them in any other

way. More concretely, for any honest tx that A sees, A cannot submit tx∗ which

contains any of the (1) input nullifiers of tx; or (2) honest output notes of tx; without

merging the whole tx into tx∗. Anti-theft subsumes the even more basic property

that A cannot spend honest notes without doing it honestly (asking honest parties

through OSpend).

The anti-theft game is modelled by allowing A to interact with the oracles de-
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scribed before: A can generate new keys, produce unbalanced honest transac-

tions (spend), and submit (insert) transactions (which we want to prove to be only

honest, dishonest, or merges of the two types). The adversary then returns a state

st∗ which is examined. The challenger searches through the log of inserted trans-

actions. The adversary wins if a transaction in the log contains an incomplete part

of (an honest) transaction earlier returned by OSpend to A, but used only partially.

To do that, it calls a sub-function SplitTx which locates complete “honest subtrans-

actions” returned byOSpend in tx, and returns these honest sub-transactions as first

argument, and the remaining parts of tx∗. If the challenger recognizes nullifiers or

output notes in this remaining part, that were created in OSpend, it means that A
managed to deconstruct it, changing the output of OSpend, or stealing an honest

nullifier.

Definition 5.4.4 (Anti-Theft). A Zswap scheme is protecting against theft, if for any

λ ∈ N and any PPT adversary A, Pr[Anti-TheftA(1λ) = 1] = negl(λ) where the

Anti-TheftA(1
λ) game is defined in Fig. 5.4.

Essentially, anti-theft captures non-malleability of output notes and their cipher-

texts, which is in practice guaranteed by NIZK SE (that implies instance binding).

If A can maul an output (e.g. change its value, or destination) and still submit the

tx to OInsert successfully, it wins the game, since SplitTx will not locate tx as being

in Spent, and thus the game challenger C will catch A spending a nullifier that was

in Spent but not located by SplitTx.

On the more basic non-malleability side,A cannot construct transactions spending

honest notes. Assume that A constructs tx0 sending a note to an honest party

(pk ∈ PK), and then succeeds to spend it using tx∗, without using OSpend. If this

is possible, it means A presented a nullifier inside tx∗ corresponding to the note

— then A could also make a single query to OSpend instructing to spend the same

note to elsewhere, and ignore the result of OSpend, submitting tx∗ as planned. This

would “mark” the nullifier, and trigger winning condition of the anti-theft game.

Modelling details. The requirement that O inOSpend contains at least one honest

output is needed so that SplitTx can uniquely identify honest sub-transactions6. In

other words, note uniqueness is necessary for the anti-theft game to make sense.

6Without this requirement, and without adding extra marker information to notes, identifying
honest sub-transactions within SplitTx would take exponential time.
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Without it the game would produce false positives: A could trick SplitTx into not

recognising some honest sub-transactions, even though the tx∗ submitted by A is

perfectly normal. This modelling artefact does not limit A from creating unbal-

anced input-only transactions, since A can still request to include a single zero-

valued output.

No similar restrictions are put on the inputs, and they can be null; in other words, A
can instruct to generate an offer with a single honest output. However, it is easy to

see that A cannot trigger the winning condition with this input — since the output

notes are unique, it is guaranteed that this output note will be detected in SplitTx.

This does not rule out the possibility of A using this output in other way to break

the property.

The set Nf0 in SplitTx is needed since without it honest sub-transactions can be

counted twice. E.g. let tx0, tx1 be two honest transactions with the same input

nullifiers Nf, but completely different outputs M0,M1 (each containing at least one

honest output note). Without Nf0, for tx containing Nf and M0 ∪M1, SplitTx will

detect both tx0, tx1, and the winning condition will not be triggered. We, on the other

hand, want anti-theft to prevent this: with Nf0 one of txi will be considered honest,

and the honest output note in tx1−i will trigger the anti-theft winning condition. We

do not need to similarly count M since output notes are unique — adding M =

M \M ′ into SplitTx simply does not change the behaviour of the game.

Finally, it is critical to filter MA ′ from MA. Otherwise, A would be able to trivially

win the game by triggering MA ∩M ̸= 0 in the following way:

1. A, through OSpend, requests an honest spend to an adversarial public key

pkA;

2. A obtains the proof and corresponding note∗, receives it, and creates a com-

pletely different, adversarial transaction tx∗ on its own, where note∗ is an

output;

3. the game will not find any honest subtransaction in tx∗ and thus note∗ ∈
M ∩MA.

Balance. The balance property says that transactions distribute underlying coins

“properly” — that is, the adversarial balance per type only changes predictably, by

the adversary receiving or sending these coins. In particular, the balance game
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forbids malicious conversion between asset types, coin forging, and double spend-

ing — both within a single transaction, and for any history of adversarial interaction

with the ledger.

Formally, the property is modelled as a game (Fig. 5.5) of A “against” the honest

parties, in which A has to prove that it has more coins that it could have obtained

honestly. The challenger lets A interact with the oracles, and asks A to present

two sets of values: I0 and I containing notes together with their secrets. Unlike in

other games, st0 in balance must contain only adversarial coins, and I0 must be all

the unspent corresponding notes. The other set I is the set of unspent adversarial

coins from the new state st∗ that (supposedly, asA claims) contain illicitly produced

coins, breaking the global balance condition. This balance condition is computed

next in the following manner. Initially, v0 is set to the sum of all values in I0, and

vA as a sum of all values in I (how much per type A owned in the beginning of

the game, and how much it owns in the end). Then, by traversing the history of

transactions from st0 to st∗, the game computes the following two values:

1. vH− is the sum of all honest inputs in transactions; and

2. vH+ is the total coins received by honest parties (located in transaction out-

puts).

The final condition checks that A cannot show in st∗ more coins than: (1) it had in

st0, plus (2) what was sent by honest parties, minus what was received by honest

parties. This last difference is non-positive (because I0 is all the system coins),

and importantly the balance of A per type is “tied” to the balance of honest parties,

so no extra coins can be produced.

Note that balance is defined in conjunction with anti-theft, since it uses SplitTx

which it assumes to work correctly (according to the anti-theft definition). In prac-

tice it also makes sense to see them together: balance and anti-theft jointly guaran-

tee that adversary cannot receive more than honestly, given that it can combine its

transactions with dishonest ones. Theft guarantees that A can only merge trans-

actions; balance guarantees that these transactions never break the total balance

of coins in the system.

In particular, the balance property guarantees the following:

1. Total spendable amount of coins per type is constant in the system: if there
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BalanceA,ExtA(1
λ):

1. pp← Setup(1λ)

2. (st∗, I0, I)← AOKeyGen,OSpend,OInsert(pp)

3. assert {notei} ∈ I0 are distinct, and st0.MT contains only these notes.

4. assert {notei} ∈ I are distinct, and are in st∗.MT

5. for (notei, nul, (a, ty), sk, r) ∈ I ∪ I0 do

6. assert notei = Gen(P (sk), (a, ty), r) ∧ nul = NulEval(sk, r)

7. for (·, nul, (a, ty), ·, ·) ∈ I0 do

8. assert nul /∈ st0.NF

9. v0[ty] := v0[ty] + a

10. for (·, nul, (a, ty), ·, ·) ∈ I do

11. assert nul /∈ st∗.NF

12. vA[ty] := vA[ty] + a

13. vH−, vH+ ← (ty 7→ 0) % map with default value 0

14. (Ins′, ·)← GetLog(st∗)

15. for all (st, ·, tx,σ) ∈ Ins′ do

16. ({nuli}|S|i=1, {noteTj , ·}
|T |
j=1, ∅)← tx

17. (txH, ·)← SplitTx(st, tx)

18. for (Nf,M) ∈ txH do

19. Find (·, I,Nf,M) ∈ Spent

20. for (note′,C ′) ∈ I do

21. (·, (a, ty), ·)← TryReceive(note′,C ′, SK)

22. vH−[ty] := vH−[ty] + a % Honestly spent inputs

23. for (note′,C ′) ∈M where (·,M) ∈ tx do

24. res← TryReceive(note′,C ′, SK)

25. if res = (·, (a, ty), ·) ̸= ⊥ then

26. vH+[ty] := vH+[ty] + a % Outputs to honest parties

27. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then

28. return 1

29. else return 0

Figure 5.5: The balance experiment
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are more coins in the system than v0, and they are spendable,A can transfer

them to itself, and present them in I, thus breaking vA > v0. Even if these

coins belong to the honest users, and thus vH−− vH+ > 0 (which should not

happen), A can always create a transaction transferring these coins to itself

using OSpend.

2. Every transaction is balanced per type, that is it does not produce more coins

than it consumes. This means no conversion between types, and no coin

forging. It follows from (1), since an unbalanced transaction would create

more funds in the state st′ that follows this transaction. So A could just

present state st′ and win the balance game.

3. Double spending is forbidden. Because we have balancing, it is not possible

to spend a note in such a way so that its funds disappear from the counter

of the total coins. This means that double spending would produce total coin

imbalance, which is forbidden.

Definition 5.4.5 (Balance). A Zswap scheme is balanced if for all PPT adversaries

A there exists a PPT extractor ExtA such that Pr[BalanceA,ExtA(1
λ) = 1] = negl(λ)

with the game defined in Fig. 5.5.

Privacy. The privacy game captures secrecy of coin transfers by means of an

indistinguishability experiment. To model the game we will first introduce the notion

of a transaction instruction tree T . Such a variable width tree has as its leaf i either

1. the instructions to construct an honest transaction ({notei,j,Ci,j
}|S|ij=1, {(pki,j, aTi,j, tyTi,j)}

|T |i
j=1),

similarly to the input to OSpend, or

2. a fully adversarial transaction (txi,σi).

Its intermediate leaves are empty, and merely represent how children transactions

must be merged.

We will also need to decide what a transaction resulting from a merge according to

T leaks. We formalize this notion by defining the tree equivalency relation, formally

in Fig. 5.6 as follows: EquivTree(T0,T1) = 1 if the following conditions hold:

1. The imbalance of amounts in each type is equal (B1).

2. The number of input notes is equal (published nullifiers), and the number of

output notes is equal. This applies to honest (BS2 ∧BT2 ) leaves, as the same
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PrivacybA(1
λ):

1. pp← Setup(1λ)

2. (st,T0,T1)← AOKeyGen,OSpend,OInsert(pp)

3. assert (·, s⃗t)← GetLog(st) % s⃗t[1] = st

4. tx0 ← EvalTree(s⃗t,T0); tx1 ← EvalTree(s⃗t,T1)

5. assert tx0 ̸= ⊥ ∧ tx1 ̸= ⊥ ∧ EquivTree(st,T0,T1) = 1

6. b′ ← A(txb)
7. return b′

Figure 5.6: Transaction privacy experiment. The helper functions EvalTree and

EquivTree are defined in Fig. 5.7.

property implicitly holds for adversarial leaves due to the next check (B3).

3. Malicious offers need to be the same in both trees, but maybe not at same

positions (B3).

4. For all the honest nullifiers Nf that A receives via OSpend, if any of the re-

lated notes are included in the honest leaves of a tree, these notes must be

included in both trees, (B4).

5. The adversarial output instructions of honest leaves are the same in both

trees (B5).

The privacy notion itself asks A to present two equivalent trees, and then builds

a single transaction for each tree which both must not fail. It returns one merged

transaction. The adversary wins the game if it can decide which tree was used.

To illustrate the notion with a single example, imagine trees that contains a single

leaf node, in the first case spending a single note with X coins, sending 1 to Alice

and X − 1 to Bob, and in the second case spending a single note of Y coins,

sending Y − 2 to Alice and 2 to Bob. Such trees are equivalent according to our

definition, and thus A should not be able to decide which transaction is produced

by which tree.

Definition 5.4.6 (Transaction Privacy). A Zswap scheme has private transactions,

if for all PPT adversaries A it holds that:∣∣Pr[Privacy0A(1λ) = 1]− Pr[Privacy1A(1
λ) = 1]

∣∣ = negl(λ)

with PrivacybA(1
λ) defined in Fig. 5.6.
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EvalTree(s⃗t,T ):

1. for all leafi ∈ T do

2. if leafi = (tx,σ) then % Validate adversarial txs

3. assert Verify(s⃗t, tx,σ) = 1

4. if leafi = (I,O) then % Replace instruction leaves

5. ptx← BuildPTx(s⃗t[1], I,O, SK) % with real txs

6. txi ← CompleteTx(ptx)

7. σi ← SignTx(s⃗t[1], ptx)

8. Replace leafi by (txi,σi) in T

9. % Fold T into a single root node by merging

10. while ∃ node N in T with only {(txi,σi)}ci=1 as children do

11. Replace node with merged transactions of its children:

12. N ← (MergeTx({txi}ci=1,MergeSig({σi}ci=1))

13. Remove its children

14. return T

EquivTree(st,T0,T1):

1. Parse each leafb,i of each Tb as either an adversarial leaf leafA:

2. (txb,i@({nulb,i,j}
|S|b,i
j=1 , {(noteTb,i,j,CTb,i,j)}

|T |b,i
j=1 , {∆b,i,ty}ty∈Tyb,i),σb,i)← leafAb,i

3. or an honest leaf leafH:

4. ({(noteSb,i,j,CSb,i,j)}
|S|b,i
j=1 , {(pkb,i,j, aTb,i,j, tyTb,i,j)}

|T |b,i
j=1 )← leafHb,i

5. for b ∈ {0, 1}, leafHi ∈ Tb do

6. for j ∈ [|Tb,i|] do

7. (nulb,i,j, (a
S
b,i,j, ty

S
b,i,j), rb,i,j)← TryReceive(noteSb,i,j,C

S
b,i,j, SK)

8. for ty ∈ {tySb,i,j}
|T |b,i
j=1 do

9. ∆b,i,ty ←
∑

j:tyb,i,j=ty a
S
b,i,j −

∑
j:ty0,i,j=ty a

T
0,i,j

10. B1 ← ∀ty :
∑

leafHi ∈T0
∆0,i,ty =

∑
leafHi ∈T1

∆1,i,ty

11. BS2 ←
∑

leafHi ∈T0
|S|0,i =

∑
leafHi ∈T1

|S|1,i
12. BT2 ←

∑
leafHi ∈T0

|T |0,i =
∑

leafHi ∈T1
|T |1,i

13. B3 ←
⋃

leafAi ∈T0
{(tx0,i,σ0,i)} =

⋃
leafAi ∈T1

{(tx1,i,σ1,i)}
14. Nf ←

⋃
(·,·,Nfi,·)∈Spent Nfi

15. B4 ← Nf ∩ (
⋃

leafHi ∈T0,j
nul0,i,j) = Nf ∩ (

⋃
leafHi ∈T1,j

nul1,i,j)

16. for b ∈ {0, 1}, leafHi ∈ Tb do OAb ←
⋃

pkb,i,j /∈PK
(pkb,i,j, a

S
b,i,j, ty

S
b,i,j)

17. B5 ← OA0 = OA1

18. return B1 ∧BS2 ∧BT2 ∧B3 ∧B4 ∧B5

Figure 5.7: Helper functions for the transaction privacy experiment (Fig. 5.6).
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5.5 The Zswap Protocol

We present the Zswap protocol in Fig. 5.8. It extends the OTA scheme (con-

structed in Section 5.3) and additionally utilizes a sparse homomorphic commit-

ment scheme (sparse Pedersen): SHC = (ComSetup,Commit). and NIZKs: NIZK =

(NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.Sim).

The high-level idea is to create a transaction which has separate inputs and out-

puts handled by the OTA scheme. A transaction links them together through SHC

commitments. Each input and output has a corresponding SHC commitment with

an equal amount and type. This equivalency is assured by an NIZK for each input

and each output. The output NIZK additionally assure non-malleability for the note

ciphertext. The input NIZKs enforce that the transaction creator possessed the se-

cret key to authorize the spending and prove that the published nullifier is correct.

This is captured by two NIZK languages.

The first one authenticates a valid spend — it says that the (rerandomized) SHC

commitment comS is well-formed and contains the same value and type as a note

in the Merkle tree of state st with the given nullifier nul. To prevent overflows in

the homomorphic commitments, we include a range proof where α is chosen small

enough in relation to the group order (maximum inputs and outputs times 2α < |G|).
Thereby we assume integer amounts in subsequent arguments.

Lspend =
{(

st,nul, comS
)
| ∃(path, note, skS , aS , tyS , rS , rcS) :

st.MT[path] = note ∧

(note, nul; skS , (aS , tyS), rS) ∈ Lnul ∧

(note;OTA.P (skS), (aS , tyS), rS) ∈ Lopen ∧

comS = Commit(tyS , aS ; rcS) ∧ aS ∈ [2α]
}

The second language Loutput is even simpler. It claims that the two output com-

mitments, the real (which is contained inside the output note) and the randomized

one, contain the same value of the same type.

Loutput =
{
(noteT ,CT , comT ) | ∃(note, pkT , aT , tyT , rT , rcT ) :

(note; pk, (aT , tyT ), rT ) ∈ Lopen ∧

comT = Commit(tyT , aT ; rcT ) ∧ aT ∈ [2α]
}
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Setup(1λ):

1. ppSHC ← ComSetup(1λ); ppOTA ← OTA.Setup(1λ)

2. ppspend ← NIZK[Lspend].Setup(1λ); ppoutput ← NIZK[Loutput].Setup(1λ)

3. return pp := (ppSHC, ppOTA, ppspend, ppoutput)

SignTx(st, ptx@(S, T )):

1. Parse S as {(skSi , noteSi , nuli, pathi, (aSi , tySi ), rSi )}
|S|
i=1

2. Parse T as {(pki, noteTi ,CTi , (aTi , tyTi ), rTi )}
|T |
i=1

3. {rcSi
$←− R, comSi ← Commit(tySi , a

S
i ; rc

S
i )}
|S|
i=1 % Rerandomized input &

4. {rcTi
$←− R, comTi ← Commit(tyTi , a

T
i ; rc

T
i )}

|T |
i=1 % output commitments

5. {xSi :=
(
st, nuli, com

S
i

)
}|S|i=1;w

S
i := (pathi, sk

S
i , a

S
i , ty

S
i , r

S
i , rc

S
i )}
|S|
i=1

6. {πSi ← NIZK[Lspend].Prove(xSi ,w
S
i )}
|S|
i=1

7. {xTi := (noteTi ,C
T
i , com

T
i );w

T
i := (pki, a

T
i , ty

T
i , r

T
i , rc

T
i )}

|T |
i=1

8. {πTi ← NIZK[Loutput].Prove(xTi ,w
T
i )}

|T |
i=1

9. return (ToSet({(πSi , comSi )}
|S|
1 ),ToSet({(πTi , comTi )}

|T |
1 ),

|S|∑
i=1

rcSi −
|T |∑
i=1

rcTi )

Verify(s⃗t, tx,σ):

1. Parse tx as
(
{nuli}|S|i=1, {(noteTi ,CTi )}

|T |
i=1, {∆ty}ty∈Ty

)
2. assert |S|+ |T | ≤ β

3. assert {nuli} are distinct and ∀i : nuli /∈ s⃗t[1].NF

4. Parse σ as ({(πSi , comSi )}
|S|
i=1, {(πTi , comTi )}

|T |
i=1, rc)

5. for i ∈ [|S|] do

6. Find î such that tx was created w.r.t. s⃗t[̂i].

7. xi := (s⃗t[̂i], nuli, com
S
i )

8. assert NIZK[Lspend].Verify(πSi , xi)

9. for j ∈ [|T |] do assert NIZK[Loutput].Verify(πTj , (note
T
j ,C

T
i , com

T
j ))

10. % Commit(0, 0; rc)⊕
⊕

ty∈Ty Commit(ty, ∆ty, 0) =

11. return
⊕

comSi ⊖
⊕

comTi

MergeSig({σj}nj=1):

1. Parse σj as ({(πSji , com
Sj
i )}|Sj |i=1, {(π

Tj
i , com

Tj
i )}|Tj |i=1, rcj)

2. assert
∑
|Si|+

∑
|Ti| ≤ β

3. rc←
∑n

j=1 rcj

4. return
(
ToSet

(
n⋃
j=1

{(πSji , com
Sj
i )}|Sj |i=1

)
,ToSet

(
n⋃
j=1

{(πTji , com
Tj
i )}|Tj |i=1

)
, rc
)

Figure 5.8: The Zswap Construction
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Note that the ciphertext CT is not referred to in the relation, but when used with

a simulation extractable (SE) NIZK, realizes a Signature of Knowledge. I.e. every

proof is bound to a specific ciphertext and is invalid for any other ciphertext. The

transaction signature σ then contains a proof πSi for each input together with the

SHC comSi and for each output a signature πTi and the SHC comTi . The last com-

ponent of the signature is the aggregated randomness of the commitments which,

together with the ∆ty imbalance, allows verification.

For a full transaction verification, all proofs and signatures contained in σ must be

valid and the published nullifiers must be unique regarding the set of nullifiers in

state st.

With the transaction signature σ having a separate proof for each input and out-

put, it is possible to merge transactions by calculating the union of their proofs. To

maintain the verifiability of the commitments, the randomness of the merged trans-

actions is added. The irreversible addition operation then prevents future parties

to unmerge a transaction if they have not seen the separate parts beforehand. To

maintain the anonymity, we order inputs and outputs canonically after each merge.

As a remark, the aggregated randomness in a transaction may be replaced by a

proof of knowledge. Like the binding signature of Sapling, this finalizes a transac-

tion such that it can no longer be merged with others.

5.6 Security Proof

In this section we prove the main three security properties of Zswap construction

in Fig. 5.8 we introduced in Section 5.4.

Theorem 5.6.1 (Anti-Theft). The Zswap protocol prevents theft (Definition 5.4.4),

assuming OTA security, NIZK zero-knowledge, NIZK simulation-extractability, and

SHC binding and HID-OR.

We first discuss the general idea of the proof. When A triggers the winning condi-

tion of the anti-theft game with an adversarial transaction tx∗, there exists a note or

a nullifier taken from some honest OSpend query Ê, producing tx, such that not all

nullifiers and notes from tx were included in tx∗. This is the query that triggers the

winning condition. By NIZK simulation-extractability, the proofs that were produced

in Ê “bind” together notes and nullifiers with the corresponding input and output
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commitments. This means A uses some commitments from tx, but drops some

other. Assuming commitment binding, the values we extract for commitments of

tx∗ (we can extract them from NIZKs) are the same as the values committed in tx.

From this point we can build a reduction B to HID-OR. B guesses a commitment

CX that is present in both tx, tx∗, and CY that is only present in tx. It asks the

HID-OR challenger C for either

1. two commitments corresponding to the values (a1, ty1), (a2, ty2) as they should

be honestly; or

2. the values swapped as (a2, ty1), (a1, ty2) if both indices correspond to inputs

or both to outputs, and

3. swapped with negation (−a2, ty2), (−a1, ty1) otherwise.

This way of embedding guarantees the HID-OR requirement that ∆ty,1 = ∆ty,2.

Then B simulates the two NIZKs corresponding to CX ,CY . When A presents tx∗,

B will extract the randomness rci for all commitments except for CX , and thus be-

cause tx∗ also includes the joint randomness rc∗, B can compute the randomness

rcX for CX (as rc∗ −
∑

rci). Given rcX , B can check whether CX contains (a1, ty1)

or the “swapped” value, and thus wins HID-OR.

Theorem 5.6.1. The proof starts by assuming A wins the game, and finishes with

breaking the HID-OR assumption, while using other assumptions in the process.

Assume A wins the anti-theft game. The challenger finds valid st, tx∗,σ∗ in the log

ofOInsert such that for (NfA,MA′
) (obtained through SplitTx and filtering MA) there

exists an entry E = (·, ·,Nf,M) in Spent such that MA ′ ∩M ̸= ∅ ∨ NfA ∩ Nf ̸= ∅.

We will now argue that whenever A uses (in tx∗) an output note note or input

nullifier nul from E, it also uses the corresponding comT or comS . And vice versa

— including a commitment in tx∗ from E forces A to also include the same note or

nul as in E.

Let us first assume that MA ′ ∩ M ̸= ∅, let note ∈ MA ′ ∩ M . note is honestly

owned (by SK), by construction of MA ′. Since honestly produced notes are unique

(see Section 5.3), all output notes produced in OSpend are unique too, and thus

we can determine in which “critical” Spent call Ê this note was created; thus Ê

is uniquely defined. Locate the corresponding OSpend call, and the related “out-
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put” proof πT together with comT . Say that in tx∗ the proof πT ′ corresponding

to note is for the statement xT ′ = (note,CT ′, comT ′). We claim that under NIZK

SE and OTA anonymity, comT ′ = comT (and, more generally, xT ′ = xT , where

xT = (note,CT , comT ) as produced in OSpend). In other words, πT binds together

a unique note and comT , so A cannot produce a proof for note with a different

comT ′ ̸= comT .

Anti-Theft Claim 1. The gist of the reduction is that it will embed OTA anonymity

challenge (notec,Cc) in Ê into tx instead of (note,C), and simulate πT ; later, on

seeing πT ′ from tx∗, if comT ′ ̸= comT , the reduction extracts notec message from

πT ′ by NIZK SE.

The reduction B starts by guessing the OKeyGen query to use for embedding the

public key pkc provided by the anonymity game. (Formally the game will give B
two public keys — pk0, pk1, but B will only use one of them, say pk0, and also for

the challenge later, sending i0 = i1 = 0). Since the number of queries to OKeyGen

is poly-limited, the reduction can decide from the beginning which OKeyGen query it

will use for this. In that query B will return pkc to A.

Immediately B has the following issue with simulatingOSpend: when asked to spend

coins from pkc it cannot produce a proper πS since for that it needs to know the cor-

responding skc. Luckily, this can be overcome. When the challenger gets (note,C)

as part of A’s input in I, it will first, as before, try to see whether this note can be

received using SK (in which case it is an honest spend request). If not, it might

be that this is a request to spend from pkc: this B will verify by sending (note,C)

to ORcv. In this case it will obtain ((a, ty), r) and derive nul from this information.

Then, B will simulate the corresponding πS .

B also pre-guesses a “critical” OSpend query, in which it embeds the anonymity

challenge — again B can do it assuming poly-limited number of queries A can

do. This critical query must have an adversarial instruction to create an output

note for pkc with some (ty, a). But instead of doing that, B will give C two different

sets of attributes (e.g. (ty, 0), (ty, 1)) for the same anonymity game key (i0 = i1 =

0), receive the challenge note and ciphertext notec,Cc, and embed them into the

OSpend reply. The corresponding πT must be simulated7 Note that this embedding

7Formally, to apply SE, we must simulate all the NIZKs in the game (and we can do that).
However, by ZK A cannot distinguish between simulated and non-simulated proofs. Therefore, to
simplify the proof, we do not simulate all the proofs produced by OSpend, but only this critical one,
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strategy only makes sense when note is honest.

After embedding, B will continue to simulate OSpend as before, with the only differ-

ence. In all the following OSpend queries (if they happen at all) where A attempts

to spend from notec, B will use the original (ty, a) instead of properly receiving the

note (which it cannot do since skc is owned by C only).

In the end of the anti-theft game, on detecting tx∗ triggering a winning condition,

assuming comT ′ ̸= comT we know that xT ′ ̸= xT . Hence, by NIZK SE B can extract

from πT included with the challenge note of tx∗ (extraction is possible whenever

proof verifies, and statement is different from statements of all (simulated) proofs

A sees), and obtain the randomness r for this note. Using r, B can decide which

note, note0 or note1 it was given by anonymity challenger C, and thus break OTA

anonymity.

Second, assume that NfA∩Nf ̸= ∅, and take any nullifier nul from this intersection.

This case is a bit more tricky: since nullifiers are not unique, and nul can appear in

many Spent entries (call their set Spentnul), it is not immediately clear which (critical)

query Ê ∈ Spentnul the nullifier was “taken from”8.

In tx∗ locate the corresponding Lspend proof πS ′ and the commitment comS ′, such

that the proof verifies for xS ′ = (st∗, nul, comS ′). In the queries from E ∈ Spentnul,

OSpend produces proofs πi for statements xSi = (sti, nul, com
S
i ). We claim (by nul-

lifier pseudorandomness, collision-resistance, and weak SE of the NIZK) that for

some Ej ∈ Spentnul it holds that xSj = xS ′, and as a result, comS ′ = comSj . As a

side result of this claim, B can now identify the critical query Ej = Ê by looking for

comS
′

among comSj .

Anti-Theft Claim 2. The proof is similar to the first claim, but by NIZK SE extraction

we obtain the preimage of the nullifier (which is supposed to be pseudorandom).

Recall that the pseudorandomness game gives us a challenge public key pkc, a

Receive(·, ·, skc) oracleORcv, and the challenge oracleOPRF that returns evaluations

of either a real NulEval(skc, ·) or a randomly chosen f(·).

which is equivalent.
8The fact that each honest query has at least one honest output does not help with query iden-

tification: A does not have to include any honest output notes into tx∗, and still must be able to
trigger the winning condition of the game.
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The reduction B first selects a target OKeyGen query as in Claim 1, and in this query,

simulating OKeyGen to A, it will return pkc (without knowing skc). Whenever B needs

to receive a note sent to pkc (e.g. sent by A through OInsert), B will use the ORcv.

As the game proceeds, B uses OPRF to generate a value for each NulEval(skc, ·)
(in OSpend queries if such appear). It simulates all the corresponding Lspend NIZKs.

Call the logs of all these OSpend queries Spentnul. In other words, B embeds OPRF

responses into all relevant queries Spentnul simultaneously.

After simulating the anti-theft game toA, some tx∗ will trigger the winning condition.

By weak SE, and since πS ′ ∈ tx∗ verifies on xS ′ that includes nul (if B guessed

correctly), unless xS ′ = xSi for some xSi ∈ Spentnul, we can extract the witness from

πS ′. If extraction is possible, B obtains (sk, r) such that NulEval(sk, r) = nul for

nul ∈ Spentnul. By nullifier collision-resistance it is not possible that the extracted

(sk, r) is a different input from (skc, r′) (where r′ is from the critical query). This

means that either sk is an actual secret key used in OPRF if it is instantiated with a

nullifier evaluation; or the oracle is random. So B uses sk to compare OPRF outputs

with NulEval(sk, r) and thus break the PRF game.

Therefore, it has to be that ∃j such that xSj = xS ′ and thus comS ′ = comSj .

This last reduction can be applied to all the nullifiers in NfA ∩ Nf: if A uses an

honest nullifier, we are able to locate the critical query it was taken from, and the

related comS in tx∗ is the same as in that critical query.

Now, in tx∗, the adversary might try to combine several nullifiers or notes from

different Spent queries, and for the final reduction we only need to focus on a single

such critical query. In other words, winning condition “∃Spent entry | . . . ” can be

triggered by several such entries. Fix any query Ê that has an honest nullifier or a

note triggering winning condition9.

Let tx be the transaction from Ê, which defines M ,Nf. Call IM the indices in tx in

which we observe MA ′ ∩M ̸= ∅, similarly INf for NfA ∩ NF. Similarly, call I∗M , I∗Nf

the corresponding indices in tx∗. (E.g. this notation implies ∀i : nulINf,i
= nul∗I∗Nf,i

)

There exists a set C0 = {comSi }INf ∪{comTi }IM as part of tx. And after the previous

9Not all OSpend queries just triggering winning condition here work: when fixing Ê that shares a
nullifier with tx∗, recall that some other OSpend query can also have nul, but by the second claim we
can locate the “true” critical query for that nul by comparing comS . Fix only such a “truly” critical
query.
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two claims on NIZK binding commitments we now know that there is a subset

C∗0 = {comS∗i }I∗Nf
∪ {comT ∗i }I∗M of commitments C∗ in σ∗ which is exactly the same

as C0. But there are also other two disjoint sets of commitments, C1 = C \ C0 and

C∗1 = C \C∗0 . E.g. C∗1 corresponds to the input nullifiers and output notes of tx∗ that

were not taken from Ê, but from elsewhere (other honest queries, or adversarially

generated).

Recall that C0 is defined w.r.t. M ∩MA ′ and Nf ∩ NfA, and so nullifiers and notes

included with C∗1 in tx∗ are, by definition, disjoint with M and Nf in tx. We now

present the last claim: if A triggers the winning condition of the anti-theft game,

then it can break security (binding or HID-OR) of the commitment scheme.

Anti-Theft Claim 3. We first describe the reduction B to HID-OR. First, it pre-

guesses a query Ê in which it will embed. When A asks query Ê, B takes any

two distinct indices corresponding to inputs and outputs, which define two commit-

ments CX and CY it will embed into. The reduction will create all commitments

except these two honestly, and regarding the two it will put there HID-OR out-

put challenge for either: (1) original two original values (a1, ty1), (a2, ty2); or (2)

them swapped as (a2, ty1), (a1, ty2) if both indices correspond to inputs or both to

outputs, and swapped with negation (−a2, ty2), (−a1, ty1) otherwise. This way to

embed guarantees the HID-OR requirement that ∆ty,0 = ∆ty,1. The joint random-

ness rc0 for CX ,CY the reduction will sum together with the randomness for other

honestly produced inputs or outputs to output the final total randomness rc for tx.

The only two NIZKs that need to be simulated are the ones that correspond to

CX ,CY . Note that we always have at least one input and output in the transaction

— this is because there is always by OSpend mandates |O| > 0, and |I| > 0 since

offer without inputs cannot trigger the winning condition, since it is guaranteed to

be classified as honest by SplitTx because of note uniqueness.

Continue simulating the anti-theft game toA. This does not require any changes —

further queries to OSpend do not depend on our embedding, and can be performed

as before.

In the end of the game, A provides a tx∗ which triggers the winning condition with

some notes or nullifiers corresponding to commitments C0. The reduction will find

Cx in C0 (abort if it is not present), it will assert that CY /∈ C (abort otherwise).

Then it will call NIZK extractor to obtain the randomness rc∗i for all commitments
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in C∗ except for CX , which gives joint rc∗′ for the whole C∗1 when summed up, and

thus B computes rc∗0 = rc∗ − rc∗′ (where rc∗ is total joint randomness of tx∗). The

reduction will return b = 1 iff CX = Com((a1, ty1), rc
∗
0).

Now we argue that the reduction breaks binding or HID-ORof the commitment

scheme if A wins the anti-theft game. First, the total probability of all guesses

to be correct is 1/|Q|m2, which is polynomial, where Q is a number of queries

to OSpend, and m = poly(λ) is a maximum number of inputs and outputs in a Ê

transaction). The guess inside Ê is correct if CX ∈ C0 and CY ∈ C1 — therefore,

the probability of the guess being correct is at least 1/m2 = poly(λ) .

Now, assume all guesses are correct, and that A wins the anti-theft game — then

Ê was not included completely in tx∗, so CX ∈ C∗0 ,CY /∈ C∗. We know by the

previous two claims that CX in tx∗ is the same as in tx (since the nullifier or the

note is the same, because it triggered the winning condition). We cannot extract

from the corresponding (simulated) NIZK πX — however, by NIZK SE we can still

extract10 from all the other NIZKs in tx∗ (or they were honestly produced in tx, which

is equivalent), which is what reduction does. So the extractor in B will succeed,

and B will obtain rc∗0. This rc∗0 should give CX when message is either (a1, ty2) or

(a2, ty2); and thus B wins HID-OR. And if CX does not match Com((ab, tyb), rc
∗
0)

for both b ∈ {0, 1}, it means that binding of CX is broken, that isA found a different

value and randomness giving rise to the same CX . Thus B can either determine

whether CX commits to the original value or the “swapped” one, which is enough

to break HID-OR; or B breaks commitment binding.

This concludes the anti-theft proof.

Theorem 5.6.2 (Balance). The Zswap protocol satisfies the Balance property (Def-

inition 5.4.5) by anti-theft, NIZK SE, OTA Security, commitment binding, and Merkle

tree binding.

Intuitively, the property reduces to:

10Again, there is a catch in how we use SE here. In the original SE, all proofs are simulated,
and one can extract from those which do not have the same instances x as simulated ones xsimi .
In our case, only some (two) proofs are simulated, and other proofs are honest. But from honest
proofs we can straightforwardly extract (since we produced them), so still it is true that extraction is
possible when ∀i : x ̸= xsimi .
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1. NIZK SE (implying knowledge soundness (KS)) and commitment homomor-

phism (every valid transaction is balanced),

2. anti-theft, since A can use only its own notes; and binding, since A can only

open output commitments in a single way when spending them.

The first guarantees that transactions do not break per-type balance and do not

introduce any coins out of thin air etc. The second proves that in the long-term A
can only move funds through such honest transactions.

Theorem 5.6.2. We progress by the following sequence of games:

G1: We start by introducing transaction extractor into the balance game. The game

Balance1, presented below, is different from the standard Balance in two as-

pects:

1. the setup algorithm now generates the NIZK in the dishonest way, not

disposing of the trapdoor td from NIZK.Setup;

2. when the game processes transactions in the loop, the extractor ExtA
is introduced, which uses td to obtain pre-transaction ptx from every tx.

This extracted ptx is then asserted to be an input to tx.

Lines marked with a star ∗ indicate new or changed lines.

Balance1A,ExtA(1
λ)

1. % Use simulated setup for the NIZK.

2. (pp, td)← Setup′(1λ) *

3. (st∗, I0, I, SK
∗)← AOKeyGen,OSpend,OInsert(pp)

4. . . .

5. (Ins′, ·)← GetLog(st∗)

6. for all (st, ·, tx,σ) ∈ Ins′ do

7. . . .

8. Parse tx as
(
{nul∗i }

|S|
i=1{(noteT ∗i ,Ci)}|T |i=1, {∆a:ty}ty∈Ty

)
*

9. % Extract pre-transaction used to create tx *

10. ptxExt@(SExt, TExt)← ExtA(pp, td, tx,σ) *

11. Parse SExt as {(skSi , noteSi , nuli, pathi, (aSi , tySi ), rSi )}
|S|
i=1 *

12. Parse TExt as {(pkTi , noteTi ,CTi , (aTi , tyTi ), rTi )}
|T |
i=1 *

13. (·, s⃗t)← GetLog(st) *
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14. assert CheckPTx(st, ptxExt) = 1 ∧ CompleteTx(ptxExt) = tx *

15. . . .

16. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1

17. else return 0

Formally, we claim that for every adversary A there exists ExtA s.t.

Pr[Balance1A,ExtA(1
λ) = 1] ≥ Pr[BalanceA(1

λ) = 1]− negl(λ)

assuming KS of the NIZKs holds, and commitments are binding:

Theorem 5.6.2, Transition 1. The extractor ExtA is essentially a wrapper around

two NIZK extractors (for spend and output proofs): ExtA internally calls NIZK[Lspend].ExtA

and NIZK[Loutput].ExtA, both of which are guaranteed to exist by KS of the

NIZKs, and concatenates their results into S and T .

Note that the ptx assertion is the only way the games are different in terms

of possibility of different outcome. The only other line that can fail is the

internal GetLog(st); but since it queries a state which was returned by the

previous GetLog(st∗), it will not abort. Therefore we must only argue why

the assertion containing CheckPTx and CompleteTx will hold every time – in

other words the probability for adversary to win will not be hindered by the

assertion failing.

We first argue why CheckPTx(st, ptxExt) = 1. The check that nuli /∈ st.MT is

directly checked in Verify. All checks except for the CheckBalance reduce to

the NIZK knowledge-soundness.

Looking at every Lspend NIZK first, the fact it verifies implies that the extractor

NIZK[Lspend].ExtA returns w = (pathi, sk
S
i , a

S
i , ty

S
i , r

S
i , rc

S
i ), which by NIZK KS

guarantees for all i ∈ [|S|]:

st.MT[pathi] = noteSi ∧

nuli = OTA.NulEval(skSi , r
S
i ) ∧

noteSi = OTA.Gen(OTA.P (ski), (a
S
i , ty

S
i ), r

S
i )

Conditions (1) and (3) are satisfied by Lopen, and (2) is by Lnul (see Lspend

structure).
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Similarly, the output NIZK for the Loutput language guarantees that the extrac-

tor NIZK[Loutput].ExtA will return (pkTi , a
T
i , ty

T
i , r

T
i , rc

T
i ) such that:

∀i ∈ [|T |] : noteTi = OTA.Gen(pkTi , (a
T
i , ty

T
i ), r

T
i )

Which again holds by the NIZK KS and the structure of Lopen, being part of

Loutput.

The last balance check that CheckBalance(S, T ) = 1, which is implemented

as ∀ty ∈ {tySi }
|S|
i=1 ∪ {tyTi }

|T |
i=1:

∑
a∈{aSi |tySi =ty}|S|

i=1
a−

∑
a∈{aTi |tyTi =ty}|T |

i=1
a = ∆ty

succeeds by the commitment homomorphic property in Verify(·, ·, ·). We

know that tx verifies, therefore the homomorphic sum in Verify holds. By

the previous steps we also know that the extracted type-value pairs (aSi , ty
S)

and (aTi , ty
T ) are inputs to the commitments comS and comT correspond-

ingly. By the a ∈ [2α] check in NIZK, and by the β check in Verify (and by

the choice of α and β), we know that homomorphic sums of comS ,comT will

not overflow. Since the commitments in Verify (including commitment to ∆ty)

sum to the identity, the committed values ai sum to exactly ∆ty per type.

Therefore CheckPTx = 1 with overwhelming probability by existence of NIZK

extractors.

Finally, we claim that CompleteTx = 1. CompleteTx does two things: first,

it removes secret information from ptx, and, second, it computes the imbal-

ances ∆ty. First, the public information in tx ∩ ptx is input nullifiers, and

note-cipertext output pairs – because these are in the statements of cor-

responding NIZKs, they are bound to be exactly the same (formally, these

values are the input of Ext as x, and not its output). Therefore all parts of tx

except for the deltas are exactly like in the ptx extracted. Second, that the

deltas in tx are also the same as computed from ai follows from the commit-

ment binding. And the fact that they sum up to ∆ we have just shown when

arguing CheckPTx = 1.

Therefore the gap negl(λ) in this game consists of probability of failing, or

binding being broken.

Now that we have ptx values extracted in clear, the main balance property

will follow inductively by following the (st, st′, tx,σ) ∈ Ins′ loop step by step.
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But before we present the main proof reasoning, we must introduce sev-

eral auxiliary constructions into our game. Our intention within next several

games is to trace the notes that A can spend, and will argue that both during

the game, and in the end of it, the sum of these is not enough to break the

balance predicate.

G2: We add an additional condition on the extracted data by asserting that it is

equal to the type-value pairs we use when modifying vH+, vH−.

Balance2A,ExtA(1
λ)

1. . . .

2. for all (st, ·, tx,σ) ∈ Ins′ do

3. . . .

4. ptxExt@(SExt, TExt)← ExtA(pp, td, tx,σ)

5. . . .

6. for (Nf,M) ∈ txH do

7. Find (·, I,Nf,M) ∈ Spent

8. for (note′,C ′) ∈ I do

9. (·, (a, ty), ·)← TryReceive(note′,C ′, SK)

10. vH−[ty] := vH−[ty] + a

11. assert (a, ty) = (aSi , ty
S
i ) *

12. for (note′,C ′) ∈M where (·,M) ∈ tx do

13. res← TryReceive(note′,C ′, SK)

14. if res = (·, (a, ty), ·) ̸= ⊥ then

15. vH+[ty] := vH+[ty] + a

16. assert (a, ty) = (aTi , ty
T
i ) *

17. . . .

This game transition is by OTA binding and nullifier collision-resistance.

Theorem 5.6.2, Transition 2. The first assertion is reached because (·, I,Nf,M) ∈
Spent for (Nf,M) located by SplitTx to be honest on the basis of (Nf,M) ∈
tx, where tx is a currently processed transaction. Since notes that are added

to I pass checks in BuildPTx (inside OSpend), we know that (a, ty) are valid

inputs producing nul ∈ Nf and note. The argument is exactly the same as

second claim of proof of Theorem 5.6.1: this requires nullifier pseudoran-
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domness, collision-resistance, and weak SE of the NIZK. By this argument

we know that the NIZK statements are the same, thus value commitments

are the same, and thus the values inside the commitments (by value commit-

ment binding) are the same.

The second assertion will hold by OTA binding: TryReceive guarantees that

(a, ty) are valid input to note′, and so are (aSi , ty
S
i ) by CheckPTx and the

previous game. Therefore these must be equal.

G3: In the next game Balance3 we add more meaning to the extracted data by link-

ing input notes to the notes mentioned in previous transactions. We assert

that all the extracted input notes are the same as some output notes gen-

erated before, as the notes originally present in I0; and that they are not an

input to any previous transaction (thus not double spent).

Balance3A,ExtA(1
λ)

1. . . .

2. for all (st, ·, tx,σ) ∈ Ins′ do

3. . . .

4. ptxExt@(SExt, TExt)← ExtA(pp, td, tx,σ)

5. . . .

6. for nul ∈ tx do

7. assert The corresponding extracted noteS : *

8. (1) Is present at least once *

9. (1.1) in some TExt of some previous transaction; or *

10. (1.2) in I0 directly. *

11. (2) Is not part of SExt in any previous txs. *

12. . . .

13. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1

14. else return 0

The transition is by MT binding and nullifier uniqueness.

Theorem 5.6.2, Transition 3. By NIZK KS noteS must be in the Merkle tree.

Notes are put into the MT at previous steps, or they are present in st0.MT

— this is how MT is populated — so we can always find the previous step

where noteS was introduced. In other words, we can always find the previous
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state with Com(noteS) present. The note inserted into MT at that step is

equal to noteS because MT is a binding commitment scheme. This proves

the first part of the condition: there always exists the previous step with noteS

extracted, or this noteS was present in st0.MT.

Regarding the second condition of the assertion, namely that noteS is not an

input to any previous tx. Let nul be the nullifier of noteS ; by Lnul and previous

game we know that noteS = Gen(pk, (a, ty), r) and nul = NulEval(sk, r). Now

assume the contrary, that there is a previous spend which extracts noteS too.

Backtrace to this spend, and let nul0 be its nullifier, together with r, sk0 all

jointly satisfying the same Lnul equation. It must be that nul0 ̸= nul where

nul belongs to noteS — if nul0 = nul, tx cannot be verified at the current

state (nullifier’s set is append-only by construction). This is enough to break

nullifier uniqueness, since we just observed two nullifiers for the same note:

noteS = Gen(OTA.P (sk), (a, ty), r) = Gen(OTA.P (sk0), (a0, ty0), r0)

NulEval(sk, r) ̸= NulEval(sk0, r0)

Thus double-spending is not allowed.

Note that the first condition of the game is more nuanced. In fact, because

(malicious) transaction creator has control over the output note randomness,

it is possible to create several output notes with the same value and random-

ness. However, since all these notes have the same nullifier, only one of

them can be spent11. Hence we only require finding “at least one output”.

G4: In the next game Balance4 we will add a (multi-)set NH initially populated with

notes in I0. This set will track all non-honest notes, where “not honest” here

means not just adversarial notes (that A can claim similarly to how vA is

computed) but also notes that are “burned” — that cannot be accessed by

anyone.

Each loop iteration will

1. remove adversarial input notes from NH, and

2. add to NH all the output notes that cannot be received by SK.

11Similar to the “Faerie Gold” attack in zcash
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For both actions we need the data extracted in Balance1, that “reveals” the

notes behind the nullifiers, including adversarial ones. The new variable vH
will track balances inside NH, and is updated whenever NH is changed. NH
and vH track all the transient adversarial transactions, not counted in the final

vA (which only sums up the “resulting”12 assets of A).

Balance4A,ExtA(1
λ)

1. . . .

2. NH ← ∅ *

3. for (notei,Ci) ∈ I0 do

4. NH = NH ∪ {notei} *

5. (·, nul, (a, ty), ·)← TryReceive(notei,Ci, SK
∗)

6. assert nul /∈ st0.NF

7. v0[ty] := v0[ty] + a

8. vH−, vH+ ← (ty 7→ 0)

9. (Ins′, ·)← GetLog(st∗)

10. for all (st, ·, tx,σ) ∈ Ins′ do

11. . . .

12. ptxExt@(SExt, TExt)← ExtA(pp, td, tx,σ)

13. . . .

14. for note′ ∈ SExt | corresponding skS /∈ SK do *

15. NH := NH \ {note′} *

16. % tyS , aS as extracted by ExtA *

17. vH[ty
S ] := vH[ty

S ]− aS *

18. for (note′,C ′) ∈M where (·,M) ∈ tx do

19. . . .

20. res← TryReceive(note′,C ′, SK)

21. if res = (·, (a, ty), ·) ̸= ⊥ then

22. vH+[ty] := vH+[ty] + a

23. else *

24. NH := NH ∪ {note′} *

25. % tyT , aT as extracted by ExtA *

12E.g.A can “refresh” the note note ∈ I0 by moving its funds fully to another adversarial note′ /∈ I,
and without NH this will not be reflected anywhere.
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26. vH[ty
T ] := vH[ty

T ] + aT *

27. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1

28. else return 0

As can be seen in the part where NH is populated, it contains all the notes

that cannot be received by honest parties, which includes: (1) adversarial

notes, with or without correct ciphertext (this does not matter), (2) notes to

keys that are not controlled by both adversary and honest parties (burned),

(3) notes to honest parties with malformed ciphertext (also effectively burned).

We now argue that Pr[Balance4A,ExtA(1
λ) = 1] ≥ Pr[Balance2A,ExtA(1

λ) = 1]−
negl(λ) by OTA binding.

Theorem 5.6.2, Transition 4. This change only adds parallel logic into our

computation that almost does not interact with any previous logic. It does

not abort in all cases — when we append to the set and add or subtract from

the corresponding value variable — but one. The only exception is the set

subtraction, which we argue does not fail because of Balance3. There we

prove that each input note is present at least once in some outputs, and is

not present in the inputs. The latter guarantees that the note will not be re-

moved twice. The former guarantees that the note will be present once to be

removed: when attempting to remove a note, given that we know that it was

in some outputs, the only exception would be that this note was not put into

NH at that point, which means that it is receivable using SK, but to trigger

removal skS at the current step must be /∈ SK. Finding two different secret

keys, one in SK, another not in SK, for the same note, is not possible by OTA

binding.

G5: Next we add an “intermediate balance assertion”, similarly to the final one,

but with vH[ty] in place of vA[ty], to the end of each iteration (and before the

loop).

Balance5A,ExtA(1
λ)

1. . . .

2. (Ins′, ·)← GetLog(st∗)

3. assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *
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4. for all (st, ·, tx,σ) ∈ Ins′ do

5. . . .

6. assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *

7. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1

8. else return 0

We argue that it is not harder to win Balance5 than to win Balance4 by OTA

soundness and binding.

Theorem 5.6.2, Transition 5. It could be that an adversarial strategy that worked

with Balance4 will fail because the assertion fails. So we must argue that the

assertion never fails. We proceed inductively.

In the base case, before the first loop iteration (before any transaction is

processed), the assertion holds since vH[ty] = v0[ty] and vH+ = vH− = 0 –

so trivially ∀ty. vH[ty] ≤ v0[ty].

Assume now that the assertion holds in the beginning of the loop, we will

show it persists through the loop execution. This essentially reduces to the

observation that the end-of-the-loop equation is updated by differences that

satisfy this equation; which reduces to the balancing property of a single

transaction.

Fix a type ty, and apply the following reasoning to each type in the transaction

(all of which are available in the extracted data). Compute the local difference

values v∆H−, v
∆
H+ as prescribed by the game, but without updating the old

vH−, vH+ immediately. Similarly compute v∆H from the extracted (input and

output) NIZKs by adding all the non-honest output values and subtracting all

the non-honest adversarial input values. Note that v0 is at no point updated

after it is initialised before the main loop.

Now we need to prove that v∆H ≤ v∆H− − v∆H+, then the updated end-of-the-

loop equation will still hold. This reduces to the commitment balancing con-

dition. First, observe that v∆H =
∑
aT Hi −

∑
aSHi : we compute v∆H using

these extracted values ai directly, summing all outputs and subtracting all in-

puts. Similarly, v∆H− =
∑
aSHi and v∆H+ =

∑
aT Hi , the only difference being

that values ai here are obtained not from the extracted data, but by directly

receiving the corresponding notes via TryReceive(note,C, SK). But these “re-
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ceived” values ((a, ty), r) are equal to the extracted ones as we asserted in

the second game.

By the last (balancing) check in CheckPTx introduced in Balance1, substituting

the extracted ai values we just discussed, we obtain∑
aSHi +

∑
aSHi −

∑
aT Hi −

∑
aT Hi = 0

Which translates into −v∆H + v∆H− − v∆H+ = 0, equivalent to v∆H = v∆H− − v∆H+

as we need.

So the predicate persists through the loop iteration.

G6: Our next and final step is Balance6 where we show that after the loop vA ≤ vH.

This is because the former counts transactions that can be received with

SK∗, and the latter all that cannot be received by SK. Formally this can be

shown by comparing all the notes in NH and I: we claim that all notes in I

are present in NH.

We show it by doing two things. First, instead of computing vA in a separate

loop before the main loop, we will move it into the main loop. Now, vA is

updated whenever the balance game locates a note ∈ I in the outputs of tx

(this note is still attempted to be received by SK∗). To track what we have

already counted into vA, we will create a variable NA: by design after the

game NA is exactly all the notes in I. This allows us to track the successive

stake accumulation of A, but only on those coins that it claims in I. And

second, every time we locate a coin that goes into vA, we will assert that all

notes in I are also in NH.

Balance6A,ExtA(1
λ)

1. . . .

2. for (·, nul, (a, ty), ·, ·) ∈ I do

3. assert nul /∈ st∗.NF

4. % Removed the vA population line *

5. . . .

6. NA ← ∅ % This tracks notes in vA on the fly *

7. for all (st, ·, tx,σ) ∈ Ins′ do

8. . . .
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9. for (note′,C ′) ∈M where (·,M) ∈ tx do

10. % Compute vA on the fly *

11. if (note′,C ′) ∈ I then *

12. . . . % After NH is updated

13. if (note′, (a, ty), nul, . . .) ∈ I then

14. assert nul /∈ st∗.NF *

15. vA[ty] := vA[ty] + a *

16. NA = NA ∪ note′ *

17. assert ∀note ∈ NA. note ∈ NH *

18. assert ∀ty : vH[ty] ≤ v0[ty] + vH−[ty]− vH+[ty] *

19. assert vA ≤ vH *

20. if ∃ty : vA[ty] > v0[ty] + vH−[ty]− vH+[ty] then return 1

21. else return 0

The transition is by nullifier uniqueness, pseudorandomness, and OTA bind-

ing.

Theorem 5.6.2, Transition 6. Moving vA computation into the loop on its own

does not affect the control flow: this is because all the notes in I are present

as outputs of transactions in Ins′, since we assert (line 4 of the original Bal-

ance game) that all the notes from I must be present in the Merkle tree

st.MT of the final state, and state maintenance oracles guarantee that they

were introduced in one of the previous states st′ ∈ s⃗t.

The only thing that is important are the two assertions.

Let us focus on the first assertion ∀note ∈ NA. note ∈ NH. It holds by

induction: assuming on the previous iteration (of the inner loop) this condition

holds, it can only fail if (1) some old notes in NA have been removed from

NH, or (2) the currently added to NA note has not been added to NH just a

few steps before.

The first condition violates the assumption that notes in I are unspent: if note

was removed from NA it means its nullifier has been revealed. But in the

final state st∗ this nullifier is not present (this is checked in the beginning of

the game). So nullifier uniqueness must be broken.

Second condition can fail if the note was not added to NH, which happens

only if it can be received honestly. But this means that a note in I, in the
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beginning of the game, can be received using SK, and also A showed a

correct nullifier for it. This is impossible by nullifier pseudorandomness: A
cannot generate nullifiers for notes generated for SK.

The last assertion vA ≤ vH holds because we just showed notes inclusion

at each step of the iteration; and because of OTA binding the values used to

compute vH (extracted in Balance1) are the same as values provided by A in

I.

Because the predicate vH ≤ . . . holds in the end of each iteration for all types, and

thus in the end of the last iteration, and because vA ≤ vH as we showed in the last

transition, the predicate in the end of the game with vA ≤ (vH ≤) . . . will also hold,

and thus A cannot win the last game unless with negligible probability. Therefore,

it cannot win the original balance game.

Theorem 5.6.3 (Privacy). The Zswap protocol is private (Definition 5.4.6), if NIZK

is zero-knowledge, Pedersen commitments are hiding, and OTA is private and sat-

isfies nullifier pseudorandomness.

Proof. First, we note that changing the order of merge in the tree T does not affect

the resulting merge transaction. Let T ′ be a variant of T where any two transactions

are swapped — then EquivTree(T ,T ′) = 1 and EvalTree(st,T ) = EvalTree(st,T ′).

The first statement can be verified by manually checking all the predicates and

making sure they are indifferent to the order of the leaves. As for the evaluation

equality statement, first note that all the leaves will be processed in the same way

and with respect to the same st irrespectively of their order. So we only need to

argue that MergeTx and MergeSig are commutative — which is trivial since they

are only uniting sets and taking sums (which are commutative operations on their

own).

Hence we can represent T as a merge of two transactions, coming from subtrees

TA and TH. TA contains exactly the same leaves for both T0 and T1 if they are

equivalent. Therefore, we only need to show the indistinguishability of transactions

txH,0 and txH,1, created from TH,0,TH,1 correspondingly. If TH is empty in one case

(contains no leaves), it must be empty in the other case, due to the restriction on

input and output size, B2, in EquivTree. And thus if txH,b is empty, txH,1−b should

be empty too for each b ∈ {0, 1}, in which case the privacy proof is trivial, since
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adversarial transactions are constructed in exactly the same manner in both worlds.

Therefore, assume that there is at least one input or output in an honest transaction

in both cases. Next, observe that:

MergeSig({SignTx(st,BuildPTx(st, Ii,Oi, SK))}i) =

SignTx(st,BuildPTx(st, I ′ =
⋃

Ii,O
′ =
⋃

Oi, SK))

Because of this homomorphic property (and a similar one for MergeTx), we can

assume that both txH,b and their signatures are just a direct output of CompleteTx

and SignTx (w.r.t. (I ′,O′)), and no merging is involved. The form of txH,b that A
receives is

(
{nuli}|S|, {(notei,Ci)}|T |, {∆ty}, σi@

(
{(πSi , comSi )}|S|, {(πTi , comTi )}|T |, rc

))
We first argue informally why this transaction looks the same for both trees.

1. set sizes: number of inputs and outputs |S| and |T | are the same, guaranteed

by B2, and by the fact these dimensions are just summed when transactions

are merged,

2. size and content of the {∆ty} set is the same by B1,

3. the set of (honest) input nullifiers {nuli}|S| contains: nullifiers that A received

from OSpend — these are the same by B4; and nullifiers unknown previously

to A— deterministic but indistinguishable by nullifier pseudorandomness,

4. {(notei,Ci)}|T | are either: belonging to adversarial keys in which case both

the notes and ciphertexts have the same distribution, as guaranteed by B5 —

these notes contain the same values, but created in both trees with uniformly

sampled randomness, so are indistinguishable; the same applies to the ad-

versarial ciphertexts. Or the notes belong to the honest keys, in which case

they are (together with the ciphertexts) indistinguishable by the OTA privacy,

5. in the signatures σi:

(5.1) by zero-knowledge, proofs πSi and πTi can be simulated in both worlds,

so they are indistinguishable,

(5.2) intermediary commitments comSi , com
T
i can contain just zero (except

for one chosen commitment for each type which must contain ∆ty to bal-

ance out the public imbalance), and this is indistinguishable by HID-OR—

commitment hiding with open randomness (by a variation with n ele-

ments involved simultaneously, as described in Lemma 5.2.1).
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(5.3) joint randomness rc — the total randomness is always the sum of the

individual rci of internal nodes. If at least one node in the tree is honest,

the final rc is uniform in both worlds, so perfectly indistinguishable. If

there are no honest nodes, then the final rc is exactly equal in both

worlds (by B3 malicious leaves must be the same).

The formal reduction is as follows. We start from Privacy0A(1
λ).

G1: Replace all honest NIZKs (created inside OSpend and SignTx) to simulated

NIZKs.

G2: By nullifier pseudorandomness, replace all the honest nullifiersA has not seen

through OSpend by the nullifiers over a different set of secret keys.

To switch an individual NulEval(sk0, r0) to NulEval(sk1, r1), we first pick a ran-

dom function f and switch all evaluations of NulEval(sk0, r) to f(r) (for all

r). Since the nullifiers in txH have not been queried previously in OSpend, the

evaluation of f(r0) is the first one in the game. Hence, it is equivalent to

returning a random value ψ instead of f(r0). Then, again by pseudorandom-

ness, we return all the other (not related to txH) evaluations of f(·) back to

NulEval(sk0, ·). We now perform exactly the same steps then for the second

key, de-idealizing ψ into NulEval(sk1, r1). First we replace all evaluations of

NulEval(sk1, r) to f(r) (for all r), then we observe that r1 has not yet been

queried to f(·), so it is equivalent to return f(r1) instead of ψ. Then we re-

place all f(r) back to NulEval(sk1, r), including the target nullifier in txH. This

is how we have just replaced NulEval(sk0, r0) by NulEval(sk1, r1).

Repeat the procedure for all pairs of nullifiers in txH in any order (i.e. it does

not matter what the source and target of the replacement is since all values

are pseudorandom).

G3: Replace output notes and related ciphertexts to honest secret keys by the

notes and ciphertexts for T1. Recall that output notes to A keys must have

exactly the same inputs in both cases, so their distribution is exactly equal.

This step relies on the OTA privacy and again on nullifier pseudorandomness.

By OTA privacy one can replace OTA.Gen(pkb, (tyb, vb), r) and OTA.Enc(pkb,

(tyb, vb, r), ξ) from b = 0 to b = 1 even if there are Receive calls in the game

before and after the replacement. (After, we cannot query the challenge note
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in a CCA fashion, which is irrelevant since we replace it in the very end of the

game.)

The only detail left now is that there are also nullifier evaluations that use

the challenge skb, but by nullifier pseudorandomness we can replace these

nullifiers by consistent random values before the OTA privacy switch (we can

do that in the presence of Receive evaluations because of the Receive oracle

in the pseudorandomness definition), perform the privacy switch, and then

return the real NulEval evaluations back.

G4: Replace intermediary commitments com with the values from T1. Here we

apply HID-OR for vectors, as described in Corollary 5.2.1.1: replacing one

set of typed commitments with another, given that ∆ty,0 = ∆ty,1 for each type.

This transition is perfect.

G5: Remove the simulation, create real proofs according to the new data in T1.

From the first game, we have not modified anything outside of the scope

of EvalTree, so all NIZKs in OSpend queries are “restored” from simulations

without any issue, since they are for exactly the same data. Now it is a matter

of a completeness check to make sure that the new transaction constructed

in EvalTree has the same distribution as txH,1 except for the (yet simulated)

proofs, and in particular it satisfies Lspend and Loutput. So now we enable real

NIZKs back as well, and by zero-knowledge we obtain honest proofs for T1.

Now G5 is equivalent to Privacy1A(1
λ), which concludes the privacy proof.

5.7 Implementation

To show that our construction is practical, we developed a prototype implementa-

tion available online13. We use the rust framework ark-works14 and their Groth16

SNARK library. For an efficient hashing circuit, we use Poseidon [Grassi et al.,

2019]. As the construction is similar to the Zcash Sapling version, we use this as

performance comparison. Our implementation differs in various aspects that aren’t

material to the core protocol, including the SNARK implementation, hash functions

used, and commitments used in the coin commitment Merkle tree. The produc-

13https://github.com/felix-engelmann/zswap-code
14https://arkworks.rs

https://github.com/felix-engelmann/zswap-code
https://arkworks.rs
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Figure 5.9: Comparison of our protocol to our Mock Sapling implementation with

the same hash function and the original Zcash. The measurements of procedures

is in milliseconds.

tion Zcash Sapling implementation15 uses less performant variants for backwards

compatibility and integration purposes. A direct performance comparison to Zcash

is therefore misleading, and we introduce an artificial “Mock Sapling” code base,

that re-implements the Zcash Sapling cryptographic protocol but uses the same

primitives as we do. We achieve this by removing the types and type commitments

from our construction. The comparison then allows us to detect the performance

impact of our changes to the cryptographic protocol compared to Sapling without

the measurement error caused by different implementations.

For spend proofs, our protocol requires 25,416 gates, 10% more than Mock Sapling

(23,084). For output proofs, we use 14,852 gates, 18% more (12,520). In both

cases the difference of 2,332 gates consists of a hash-to-curve operation to asso-

ciate the type with a curve point. The rest of the constraints further break down

into two dominant groups: Symmetric cryptography (hashes, commitments, and

Merkle tree verification), and group operations related to the binding signature. For

spend proofs, symmetric operations dominate with 66% of constraints (16,935),

primarily from the Merkle tree verification (using a tree of height 32). The group

operations cover almost all of the remaining 24% of constraints (with 6,114). For

output proofs, group operations make up 41% of the constraints (with the same

6,114 constraints), and symmetric operations 43% of constraints (6,403).

15https://github.com/zcash/zcash

https://github.com/zcash/zcash
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The median, min and max runtimes of 30 executions on a 6th generation i7 CPU@2.7GHz

are summarized in Figure 5.9. The times are for creating Commitments, Spend

proofs and Output proofs. For verification, we measure the homomorphic commit-

ment comparison, the Spend proof verification and the Output proof verification.

Without comparison to Sapling are Merging transaction and transaction assem-

bly. The SNARKs proving time takes around two seconds for each input and one

second for each output, dominating the transaction generation. The verification is

noticeably slower with support for types but approximately equal to Zcash. Overall,

we notice that the impact of the additional constraints required for our protocol are

minimal while providing additional functionality.





Chapter 6

Exploding Commitments and

Applications to AML

This chapter is based on the ongoing work co-authored by Bernardo
David, Felix Engelmann, Tore Frederiksen, Markulf Kohlweiss, and Elena
Pagnin.

In this chapter we introduce and study the notion of an exploding commitment

scheme (ECS), which allows parties in possession of a hint to privately extend a

verifiable sequence of commitments.

An exploding commitment scheme is protocol between a set of users which homo-

morphically update a commitment, and an auditor which wants to know a result of

a certain predicate on the committed value. ECS allows the auditor to set a se-

cret threshold t, and later to learn an escrow ecom containing only the predicate

evaluated on the sum of committed values P (t,
∑
xi). In this case the predicate

is positive we say that the commitment “exploded”. The important thing is that this

escrow ecom, in its more “raw” form that we call a hint, can be updated — thus the

users can add their xi to the escrow without knowing anything about t. In addition,

every hint update produces a so-called commitment tag. Both the parties and the

auditor can verify that a given sequence of commitment tags, that we call a history,

has been obtained by successive updates departing from an initial auditing public

key. In case the auditor detects that commitment for a given history explodes, they

can request an escrow for a prefix of that history (i.e. before the latest update)

or request the opening of individual commitments in the sequence the results of

201
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(run once)

(do not require )

Figure 6.1: Illustration of general workflow of an Exploding Commitment Scheme

for P (t,x). Note that authority only learns the predicate value, while parties only

know their own xi, but neither t nor the other parties’ xi. The two bottom methods

on the authority’s side do not require sk and can be in fact called by a third party if

necessary.

which will be correct and consistent by its binding and soundness properties. In

terms of privacy, an ECS hides the committed values, and the auditor’s choice of

predicate. In terms of efficiency, all commitment updates, verification of updates,

openings and predicate evaluations can be done non-interactively. This notion

can be seen as a multi-user extension of privacy-preserving blueprints [Kohlweiss

et al., 2023]. We give detailed security definitions of our new updatable notion in

Section 6.2. For a deeper but high-level perspective, see the technical overview

in Section 6.0.1. The diagram in Fig. 6.1 summarizes dependencies between dif-

ferent methods in our construction. Parts of it, such as the role of Commit (base

commitment scheme), are deferred to the aforementioned more technical sections.

In the context of AML, an ECS can be used to securely compute and validate a

joint suspiciousness score for transactions across multiple banks. In this applica-

tion, an exploding commitment scheme accumulates a suspiciousness score that is

appended to each transaction. Upon receiving a transaction to one of its accounts,

the sending bank can augment the transaction with a suspiciousness-contribution

commitment based on the suspiciousness score of the sending account. This al-

lows the receiving bank to obliviously update the suspiciousness score in the ex-

ploding commitment associated with the receiving account. At any moment, an

auditor (e.g. a tax authority) can validate the sequence of commitments held by

each bank and check if they satisfy a predicate that is true if the score exceeds a

certain threshold. If so, the auditor can further request the opening of related com-

mitments held by other banks. All of these operations do not require the users nor

the banks to perform any extra rounds of communication and only add a minimal
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overhead to the existing communication and computation involved in transfers. A

detailed discussion of this and other applications is given in Section 6.6.

The contributions of this chapter are as follows:

• In Section 6.1 we discuss updatability for algebraic NIZKs, concretely focus-

ing on the CH20 NIZK [Couteau and Hartmann, 2020]. This NIZK has been

known to be updatable ([Connolly et al., 2022]), but in this chapter we believe

to be first to approach it in a generalized and precise manner. Updatability of

CH20 is extensively used in our main efficient protocol.

• In Section 6.2 we provide a formalization of the exploding commitment scheme,

defining its semantics and security properties. One complexity of our defi-

nition comes from their interplay especially around extractability properties.

For example, in soundness we do not require exploding commitments to be

extractable, but assume that the tags and external commitments actually con-

tain the “update values”, which is important for interoperability.

• In Section 6.3 we present a concretely efficient ECS that allows for additive

updates and for computing the threshold predicate used in the aforemen-

tioned AML application. This construction critically relies on the updatability

property of [Couteau and Hartmann, 2020]. We discuss efficiency of our

construction in Section 6.5.

• Finally, Section 6.6 dicusses possible extensions and applications of our

primitive. While giving an overview of our techniques, we also discuss how

a generic (but inefficient) construction of an ECS scheme for any NP pred-

icate can be obtained from powerful primitives such as fully homomorphic

encryption (FHE) and non-interactive zero knowledge (NIZK).

Comparison with related work. A series of recent papers explored accountable

law enforcement access system [Goldwasser and Park, 2018, Frankle et al., 2018,

Scafuro, 2019, Green et al., 2021, Bartusek et al., 2023, Kohlweiss et al., 2023].

Exploding commitments are most closely related to a subcategory of these works

on abuse-resistant regulation compliance [Frankle et al., 2018, Bartusek et al.,

2023, Kohlweiss et al., 2023] in which ordinary users have full privacy even against

a malicious regulator/auditor. A consequence of full privacy for ordinary users is

that the auditors detection policy must be kept private. Otherwise, malicious users
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could adapt their behavior and avoid detection. This means that the problem is

inherently about securely computing a function on private inputs from the user and

the regulator.

Contrary to previous work on abuse-resistant regulation compliance, our protocol

involves private data of multiple users. In particular, it can be seen as a multi-user

extension of blueprint matching, restricted to predicates on aggregate values. A

private blueprint scheme [Kohlweiss et al., 2023] allows a user to create an escrow

that only reveals the value f(t,x) where t is kept private to the auditor and x is

kept private to the user. When f corresponds to the predicate P (t,x) defined as

x ∈ [t, t + d] where d > x, then their construction gives a one epoch exploding

commitment scheme for P (t,x). Notice that the predicate can only be tested on

an input that is fully known to a single user. This is insufficient when inputs come

from multiple mutually distrusting users. Exploding commitments extend blueprints

with an updatable hint mechanism, that allows iteratively computing the value of

the predicate P (t,x1 + · · ·+ xn).

The concrete threshold predicate for which we present an efficient ECS is closely

related to Yao’s Millionaire’s Problem, i.e. performing secure comparison. There

are many protocols for secure comparison (e.g., [Damgard et al., 2008, Garay

et al., 2007]) that could be used to detect whether an aggregate committed value

is higher than a threshold in a privacy preserving manner. However, this would

require continuous online involvement of parties and many rounds of interaction. In

our setting, no interaction is required from the users after they update commitments

and the auditor only needs to come online to check if commitments have exploded.

Updatable NIZKs, such as CH20 [Couteau and Hartmann, 2020] used as our prime

technical tool, have been previously investigated in [Belenkiy et al., 2009, Chase

et al., 2012, Chase et al., 2013a, Khalili et al., 2019]. While recursive approach

to NIZK updatability becomes more practical over time [Bitansky et al., 2013, Ben-

Sasson et al., 2014b, Chase et al., 2014, Bowe et al., 2019, Bünz et al., 2020c,

Bünz et al., 2020b, Bünz et al., 2021a, Kothapalli et al., 2021], direct malleability

without recursion is more lightweight and thus more suitable for tailored application,

such as various signature schemes [Dodis et al., 2010, Blazy et al., 2011, Fuchs-

bauer, 2011, Khalili et al., 2019], anonymous credentials [Acar and Nguyen, 2011],

scalable mix-nets [Hébant et al., 2020] etc. The malleability of CH20 was observed

in [Connolly et al., 2022] to build anonymous credentials and structure-preserving
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signatures on equivalence classes. It is also worth noting that RO-based NIZKs

are essentially non-malleable unless recursively [Faust et al., 2012, Kohlweiss and

Zając, 2021, Ganesh et al., 2022a]. This is why the CH20 NIZK combining the

simplicity of a Schnorr-like proof, together with a bilinear setup avoiding the ROM

limitation, stands out as a natural candidate for direct updatability.

The notions of fully homomorphic commitments [Damgård et al., 2014, Cascudo

et al., 2019] and of additively homomorphic functional commitments [Catalano

et al., 2022] are also closely related to exploding commitments. Both notions allow

for commitments to be updated by adding private values and for predicates to be

computed on committed values without revealing them. However, these schemes

require knowledge of the commitment opening for performing updates and pred-

icate evaluations. This requirement precludes the use of such schemes in our

multi-user setting, where individual user inputs/updates must be kept private.

A different cryptographic approach for privacy-preserving AML is based on the pri-

vate computation of similarity scores of transaction graphs [Gama et al., 2020,

de Perthuis and Pointcheval, 2022]. The latter work can be seen as a special-

ized primitive, a two-client inner-product functional encryption scheme that enables

non-interactive computation of similarity scores, thus avoiding the full power and

interaction of multi-party computation. As computing the similarity between all ac-

counts is expensive, the authors of [de Perthuis and Pointcheval, 2022] suggest

that banks preselect accounts. Out techniques can be seen as such a preselection

mechanism based on aggregate suspiciousness scores.

6.0.1 Technical Overview

The notion of exploding commitments. An exploding commitment scheme is

defined in terms of a base commitment scheme BC = (Setup,Commit) and a pub-

lic “explosion” predicate P (T ,X). The base commitment scheme is needed for

interoperability of our ECS scheme with external protocols: by exposing commit-

ments to the update values we allow external protocols to “talk” about these values.

The predicet P (T ,X) is taking two private inputs: an auditor value t and an ag-

gregate value
∑ι

i=1 xi (where ι denotes the lastest epoch). For a chosen t, the

history of base commitments C1, . . . ,Cι is meant to “explode” if the contained val-

ues x1, . . . ,xι satisfy P (t,
∑

i xi) = 1. The auditor R generates a key pair (sk, pk)
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and a hint0 for predicate P (t, ·), where sk and t remain private but pk is published

while hint0 is passed to the first user. Hint values enable users to append base

commitments to a history of commitments. Using pk and hintι−1, a user can extend

the history with their value xι, each time deriving an updated hintι. for extending

the history further.

In our construction, hintι−1 will contain the aggregate value
∑ι−1

i=1 xi that users can

“update” via homomorphic operations to add their own private input xι. A hint can

be transformed into a predicate escrow ecom, which reveals nothing to the users

but can be used by an auditor who knows sk to learn only whether P (t,
∑

i xi) = 1,

while keeping the xi values private. Moreover, when a user updates hintι−1 to

hintι, they obtain an update tag (tagι) for verifying the validity and consistency of

commitment histories by VfHistorypk({tagi,Ci}ιi=1), hints by VfHintpk(hintι, tagι),

and predicate escrows by VfECommitpk(ecomι, tagι). We have the following three

properties: 1. tagι can only verify for a single history, i.e., valid histories do not

collide in their tags. 2. from a valid history we can extract openings for all its base

commitments. 3. if ecom verifies with respect to tagι, then it indeed is an escrow of

predicate value P (t,
∑

i xi) for the openings xi of these base commitments.

We require hints, predicate escrows, and tags derived from valid hints to be hid-

ing. However, as hints contain the aggregate value
∑ι

i=1 xi, hiding for hints only

holds against adversaries who do not know sk. Thus hints should only be used for

updates between users but not given to the auditor. Finally, our scheme preserves

the hiding and binding properties of the base commitment scheme.

A generic but inefficient construction. Departing from circuit private Fully Ho-

momorphic Encryption (FHE) and non-interactive zero knowledge (NIZK), we can

construct a ECS for arbitrary predicates and updates. The auditor generates a

FHE key pair (pk, sk) and publishes pk along with an encryption of t under pk as

the ECS public key. Users encrypt their private inputs xi under pk and use the

resulting ciphertext to obtain an updated hinti by homomorphically evaluating the

update function on this ciphertext and hinti−1. The update tag tagi can be obtained

by generating a NIZK showing that hinti was correctly computed as an update of

a previous hint. To generate a predicate escrow ecom, a user homomorphically

evaluates the predicate P (T ,X) on hinti and the ciphertext containing t (obtained

from the public key) and computes the corresponding tag as a NIZK showing that
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the predicate was correctly evaluated. Using sk the auditor can decrypt ecom and

learn only the output of P (t,
∑

i xi) but nothing else, while the validity of ecom can

be checked by verifying the tag NIZK. This scheme provides support for arbitrary

predicates and updates (beyond additive ones) but clearly has a very high con-

crete computational complexity due to the use of heavy primitives such as FHE

and NIZKs for homomorphic computation on FHE ciphertexts. This is a serious

issue in a setting such as that of AML, where hundreds of thousands of updates

must be processed per second.

An efficient construction for threshold predicates. If we focus on the case of

a predicate P (T ,X) that outputs 1 if X > T , we can obtain a concretely efficient

ECS construction. The core of our scheme is a mechanism that relies on Pedersen

commitments for predicate evaluations in the multi-user scenario, guaranteeing

soundness of the updates.

The auditor starts by generating a polynomial Pd(t,X) with roots at positions {t, t+
1, . . . t + d − 1} where d is the size of the “exploding range” and t is the auditor’s

secret threshold. It then ElGamal encrypts the powers (−t)i for i ∈ [d], in the

exponent. The ciphertexts are included in the initial hint hint0. Users can combine

the ciphertexts to homomorphically evaluate the polynomial Pd(t,x) at their input x,

in the exponent. Moreover, given hintι−1 – which contains an encryption of Pd(t,x)

– a user can update the hint to hintι containing an encryption of Pd(t,x+ x′). This

is achieved by standard algebraic transformation on the polynomial representation,

as described in Section 6.3.1.0.3.

When converting hints to escrows, users homomorphically reconstruct the ElGa-

mal ciphertext for the value Pd(t,x), and then exponentiate it by a random β obtain-

ing an encryption of β ·Pd(t,x). If the polynomial evaluates to 0, the randomization

has no effect and the auditor is able to decrypt the message G0 (this is the “explo-

sion” case, since the predicate P (T ,X) = [Pd(T ,X)
?
= 0] outputs 1). On the other

hand, if the evaluation of the polynomial is not a root, the auditor learns nothing.

The main technical achievement of this work is the design of hints that do not grow

with the number of updates, and are reasonably sized for practical applications. We

make hints linear in the degree d of the polynomial and endow them with updat-

able proofs that attest to hint consistency. Intuitively, this is achieved by including

witness-products in the witness and checking the consistency of those products
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w.r.t. the minimal witness values by using Pedersen commitments and adding ex-

tra checks in the relation to ensure input consistency based on these commitments.

Thanks to the homomorphic property of Pedersen commitments, our witness and

instance are updatable: randomnesses and x values accumulate additively (see

Section 6.3.2 for further details).

For the many use cases which do require a linear history of proofs-of-updates we

provide a very concise “update trace” consisting of update tags tag, which naturally

grows in the number of updates, but allows enforcing update accountability. In

addition, as we use Pedersen as base commitment, it is easy to integrate our ECS

constructions with applications such as credentials and private payment systems:

one simply proves extra statements about base commitments, e.g., that their values

are equal to a credential attribute or a payment transaction value.

6.1 Updatable Algebraic Arguments

In this work we will use two NIZK proof systems, both of which work with the same

class of languages.

• Π: The standard non-updatable Σ-protocol proof system for equality of dis-

crete logarithm relations [Schnorr, 1990, Maurer, 2009]. It is assumed to be

straight-line knowledge-sound after non-interactive transformation, e.g. by

encrypting witnesses or using Fischlin’s technique [Fischlin, 2005].

• Πu: The CH20 NIZK [Couteau and Hartmann, 2020], which is Σ-like, but is

updatable, involves bilinear pairings, and has a uniform CRS. We provide an

overview of CH20 updatability and security in Section 6.1.

Let G be a prime ordered group. Define the set of linear polynomialsP ⊂ G[X1 . . . Xl]

in l variables with coefficients in G asP = {a0+
∑l

i=1 aiXi | a0 ∈ G, a1 . . . al ∈ Zq}.
Both Π and Πu work with the so-called algebraic language1 LM defined as follows:

LM =
{
x⃗ ∈ Gl | ∃ w⃗ ∈ Ztp :M (⃗x) · w⃗ = x⃗

}
whereM(X⃗) ∈ P l×t. In other words, it is a set of DLOG-like linear equations with a

common instance, and bases in M(X⃗) that can potentially depend on the instance

1For simplicity, and contrast with [Couteau and Hartmann, 2020], we do not consider arbitrary
Θ(⃗x) such that M (⃗x) · w⃗ = Θ(⃗x).
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x itself. We define the corresponding relation RM to be the set {(⃗x, w⃗) ∈ Gl × Ztp |
M (⃗x) · w⃗ = x⃗}.

Updatability for algebraic languages LM , due to their group structure, means that

there exist four matrices (Txm,Txa,Twm,Twa) such that for all (⃗x, w⃗) ∈ RM it holds

that

(Txm · x⃗+ Txa,Twm · w⃗ + Twa) ∈ RM

The functions Tx,Tw required in Definition 2.6.7 are defined as follows: Tx(x) :=

Txm · x⃗+Txa and Tw(w) := Twm · w⃗+Twa. We will show that the algebraic languages

we define in this work are updatable by explicitly providing the matrices and proving

they satisfy the equation.

We discuss updatable algebraic NIZKs in depth in the following Section 6.1.

For our main construction we use CH20 [Couteau and Hartmann, 2020] NIZK,

which we refer to as Πu which has controlled malleability. In this section we recall

the proof system and argue why is it updatable.

The Πu proof is using a uniform CRS consisting of a single group element [z]2,

where z ← Zq is a uniformly sampled trapdoor. For a language matrix M(X⃗) ∈
P l×t where l is the size of the instance and t is the size of the witness, Prove([z]2, x)

returns π = ([a]1 ∈ Gl
1, [d]2 ∈ Gt

2) where elements are constructed as follows:

[a]1 ← [M(x)]1 · s

[d]2 ← [z]2 · w + s

where s ∈ Ztq is sampled randomly. Then the proof is verified by checking running

Verify([z]2, π := ([a]1, [d]2)) which checks a single equation

ê([M(x)]1, [d]2)
?
= ê(x, [z]2) · ê([a]1, 1)

Updates in LM . Rephrasing the definition of updatability for algebraic languages,

L is updatable w.r.t. transformation (Txm,Txa,Twm,Twa) if for all (x,w) ∈ R, the

following relation holds:

Txm · x+ Txa =M(Txm · x+ Txa) ·
(
Twm · w + Twa

)
Intuitively, it means that there is a linear way to update both the instance and the

witness simultaneously. One simple example is the language of Diffie-Hellman
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tuples (C1,C2,C3) := (gx, gy, gxy). The matrix M defines the following relations:

C1 = Gx,C2 = Gy,C3 = Cy
1 . Then, for any α, β it holds that (Cα

1 ,C
β
2 ,C

αβ
3 ) is also

in the relation (this defines Txm implicitly, Txa = 0), since x′ = αx, y′ = βy (this

defines Twm with α, β as diagonal, and Twa = 0).

Updates in the CH20 NIZK. Proof updatability in CH20 requires an extra condi-

tion: valid language transformation must be compatible in the following way.

Definition 6.1.1 (Blinding-Compatible Transformations). Let LM be an algebraic

language defined w.r.t. a matrixM(x). A valid transformation T := (Txm,Txa,Twm,Twa)

on L is said to be blinding-compatible, if there exists another pair of matrices

(Tam,Taa) ∈ Zl×2lp × Zlp such that the following equation holds for all x ∈ L and

all s ∈ Ztp:

Tam ·
(M(x) · s

x

)
+ Taa =M(Txm · x+ Txa) ·

(
Twm · s+ Twa

)

Some valid T are trivially blinding-compatible: a simple (Tam,Taa) := (Txm | 0l×l,Txa)
will satisfy the equation; but this is not true generally.

Note that this equation is quite different from the one for language updatability.

First, it applies to all s completely independently from the instance x. Second, s ∈
Ztp is uniform and might not be a valid witness (e.g. Lmay require w2 = w2

1, but the

equation must work for completely independent s1, s2). Finally, Tam applies not only

to M(x) · s, but also to the instance x itself; this actually relaxes the requirement.

Overall, this much stronger condition is necessary due to the linearity that Schnorr-

like NIZKs use for blinding w with a uniform s.

Define Update(([a]1, [d]2),T := (Tam,Taa,Txm,Txa,Twm,Twa)) as a function return-

ing π′ = ([a′]1, [d
′]2) constructed as follows:

[a′]1 = Tam ·

(
[a]1

x

)
+ [Taa]1 + [M(x)ŝ]1

[d′]2 = Twm · [d]2 + [z]2Twa + [Twa]2 + [ŝ]2

where ŝ is sampled uniformly at random.
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Theorem 6.1.1 (Update Completeness of CH20). The CH20 proof system Πu

with Update0 satisfies update completeness with respect to all blinding-compatible

transformations T = (Tam,Taa,Txm,Txa,Twm,Twa) on an algebraic language LM .

Proof. Consider first the case with ŝ = 0 — this element rerandomises the proof,

which we will cover in the second step. Observe how the new proof elements are

expressed in terms of the old instance and witness:

[a′]1 = Tam ·

(
[M(x)]1 · s

x

)
+ [Taa]1

[d′]2 = [z]2(Twm · w + Twa) + [Twm · s]2 + [Twa]2

For convenience, define x′ = Txm ·x+Txa, w′ = Twm ·w+Twa, s′ = Twm ·s+Twa. Let

us check the verification equation directly; looking at the left and right hand sides

separately:

ê([M(x′)]1, [d
′]2) = [z ·M(x′) · (Twm · w + Twa) +M(x′)(Twm · s+ Twa)]3

ê(x′, [z]2) · ê([a′]1, 1) = [z · x′ + Tam ·

(
M(x) · s

x

)
+ Taa]3

Since T is a valid transformation, we first have that M(x′) · w′ = x′. Since, further-

more, T is blinding-compatible, we have Tam ·

(
M(x) · s

x

)
+Taa =M(x′)(Twm ·s+

Twa). This means that the verification equations will be satisfied by (a′,d′).

Now, considering ŝ ̸= 0, observe the form of the updated proof elements:

[a′′]1 = [a′]1 + [M(x)ŝ]1

[d′′]2 = [d′]2 + [ŝ]2

This merely sets the new challenge randomness to s′+ŝ, essentially rerandomising

the proof.

Note that setting (Tam,Taa,Txm,Txa,Twm,Twa) ← (Il|0l×l, 0l, Il, 0l, It, 0t) (where Il

is the identity matrix of size l) turns Update into a rerandomisation function without

transforming the instance.

Theorem 6.1.2 (Derivation Privacy of CH20). The CH20 proof system Πu with

Update satisfies derivation privacy for any valid transformation T on algebraic lan-

guages.
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Proof. This follows from the form of the update function, and the remark on ran-

domisation. The updated proofs which are additionally randomised are distributed

in the same way as the honest proofs, because randomisation has exactly the

same form as the honest Prove.

6.1.1 Example of Updatability for Algebraic Languages

We will illustrate updatability of algebraic languages and Πu on the example of a

concrete small language encoding a Diffie-Hellman tuple. Given a group G1 of

finite prime order p with a generator G, define the language as follows:

Ldh := {(C1,C2,C3) | ∃(a, b) s.t. C1 = Ga ∧ C2 = Gb ∧ C3 = Gab}

It is clear that the relation Rdh is hard under DDH in G1, therefore proving x ∈ Ldh

is non-trivial.

We start by formally defining how Ldh is expressed algebraically:

x = (C1,C2,C3) ∈ G3
1

w = (a, b) ∈ Z2
p

and M(x) =


G 0

0 G

0 C1



Recall that our formalisation defines M(X⃗) ∈ P l×t — in our example, the only

instance variable in M is C1, and all other elements are constants. It is easy to see

that for a fixed (x,w) the fact that M(x) · w = x directly implies (x,w) ∈ Rdh.

First, examining transformations on Ldh we observe that the following matrices can

be used:

Twm =

[
γ 0

0 δ

]
Txm =


γ 0 0

0 δ 0

0 0 γδ

 Twa =

(
0

0

)
Txa =


0

0

0


With them we can derive the new instance x′ := Txm · x = (Gγa,Gδb,G(γa)(δb))

that corresponds to the transformed witness w′ := Twm · w = (γa, δb). Indeed, as

required by Definition 2.6.7, with these two matrices the following equation holds:

M(Txm · x) ·
(
Twm · w

)
= Txm ·

(
M(x) · w

)
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Finally, let there be a CH20 proof of x ∈ Ldh created as

([a]1, [d]2) = ([M(x)]1 · s, [z]2 · w + s) =




[s1]1

[s2]1

[a · s2]1

 ,

(
[za+ s1]2

[zb+ s2]2

)
for some random s. When verifying this proof, we will compute, on each side:

ê([M(x)]1, [d]2) =


[za+ s1]3

[zb+ s2]3

[a(zb+ s2)]3



ê(x, [z]2) · ê([a]1, 1) =


[a · z]3
[b · z]3
[ab · z]3

+


[s1]1

[s2]1

[a · s2]1


which are exactly equal. The transformation is trivially blinding-compatible, which

means that (Tam,Taa) := (Txm | 0l×l,Txa) will do. Then:

([a′]1, [d
′]2) = (Txm · [a]1,Twm · [d]2) =




[γs1]1

[δs2]1

[γa · δs2]1

 ,

(
[zγa+ γs1]2

[zδb+ δs2]2

)
will be a (non-rerandomized) transformed proof for x′. It is easy to visually verify

that the transformed proof is structured exactly the same as the original proof, but

w.r.t. new instance and witness.

6.1.1.1 Introducing Additive Matrices

Our example can be further extended to commitments on DH tuples; this would

use additive matrices as well. Assume H ∈ G1 is uniformly sampled.

Ldh+ := {(C1,C2,C3) | ∃(a, b) s.t. C1 = GaHr1 ∧C2 = GbHr2 ∧C3 = GabHr1b+r3}

Because Pedersen commitments are perfectly hiding, every triple of group ele-

ments is in the language. But proving membership in it with an argument of knowl-

edge is meaningful, because it shows a way to extract a witness computationally,

and by computational binding of Pedersen it will be a unique one2. In this case we

have:

x = (C1,C2,C3) ∈ G3
1

w = (a, b, r1, r2, r3) ∈ Z5
p

and M(x) =


G 0 H 0 0

0 G 0 H 0

0 C1 0 0 H


2Even though CH20 proofs are only sound, in practice this issue can be overcome with pairing

CH20 with a regular Schnorr, which is ignored in this example.
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The matrices we will use are:

Twm =



γ 0 0 0 0

0 δ 0 0 0

0 0 γ 0 0

0 0 0 δ 0

0 0 0 0 γδ


Txm =


γ 0 0

0 δ 0

0 0 γδ

 Twa =



0

0

0

r′2

r′3


Txa =


0

Hr′2

Hr′3



To see that this matrix constitutes a valid transformation consider how the new

instance and witness look:

x′ =


Cγ

1

Cδ
2H

r′2

Cγδ
3 H

r′3

 =


GγaHγr1

GδbHδr2+r′2

G(γa)(δb)H(γr1)(bδ)+(γδr3+r′3)


w′ = (γa, δb, γr1, δr2 + r′2, γδr3 + r′3)

which clearly belong to the relation Rdd+. Proving the proof transformation is simi-

larly to how it was done with the previous example, except now we need to consider

the non-zero additive matrices. The proof is structured as follows (where h is a log-

arithm of H):

([a]1, [d]2) = ([M(x)]1·s, [z]2·w+s) =




[s1 + hs3]1

[s2 + hs4]1

[as2 + h(r1s2 + s5)]1

 ,



[za+ s1]2

[zb+ s2]2

[zr1 + s3]2

[zr2 + s4]2

[zr3 + s5]2




Now, after updating the proof (again without rerandomisation for simplicity) it will

look as follows:

[a′]1 = Txm · [a]1 + [Txa]1 =


[γs1 + h(γs3)]1

[δs2 + h(δs4 + r′2)]1

[(γa)(δs2) + h((γr1)(δs2) + (γδs5 + r′3))]1



[d′]2 = Twm · [d]2 + [z]2Twa + [Twa]2 =



[z · γa+ γs1]2

[z · δb+ δs2]2

[z · γr1 + γs3]2

[z · (δr2 + r′2) + δs4 + r′2]2

[z · (γδr3 + r′3) + γδs5 + r′3]2


It is easy to verify that this is structurally equal to the fresh proof, but w.r.t. (x′,w′);

formally, ([a]1, [d]2) = ([M(x′)]1 · s′, [z]2 · w′ + s′) with s′ = Twms+ Twa.
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6.2 Exploding Commitments

In this section we introduce the definition of an exploding commitment scheme and

provide a security model for this new primitive.

Following [Kohlweiss et al., 2023] we use non-interactive commitments to bind in-

puts to externally committed values. Our construction can be seen as an extension

of a base commitment scheme. One should think of the base commitment (BC)

as a standard single-base commitment scheme (e.g. Pedersen), satisfying SHC

definition in Section 2.5. We use it to provide a way in our construction to prove

external properties about update values. To clarify the notation however, in this

chapter we will use gothic fonts to denote the algorithms. In our main instantiation

we will use the Pedersen commitment scheme in group G1 of prime order q, which

exists as part of a bilinear group setup (G1,G2,GT ).

Definition 6.2.1 (Base Commitment Scheme). A tuple BC = (Setup,Commit) will

commonly refer to the “base” non-interactive commitment scheme. By that we will

mean SHC as per Definition 2.5.1, instantiated for a single default type ty (omitted in

notation), for a message space V and randomness space R. In security definitions

we will assume BC satisfies statistical hiding and computational binding.

An exploding commitment scheme extends a base commitment for message space

V, and is parameterized by a predicate P (T ,X) : V × V → {0, 1} ∈ PV. PV is a

family of efficiently computable predicates over V that define when commitments

“explode”. For a concrete example consider V = Zq and the family of predicates

to be range checks, i.e., predicates are parametrized by a public distance value

d ∈ Zq, and a private threshold value t ∈ Zq, i.e., Pd(t,X), and return 1 if x ∈
[t, t + d − 1], and 0 otherwise. We present a diagram summarizing interaction

between ECS protocols in Fig. 6.1.

Definition 6.2.2 (Exploding Commitment Scheme). Let BC = (Setup,Commit) be

an base commitment defined w.r.t. (V,R). Let P (T ,X) ∈ PV be an efficiently com-

putable binary predicate defined over V. Then an exploding commitment scheme

(ECS) for (BC,P ) is defined by the following set of algorithms:

Setup(1λ, pp)
$−→ (pp, td): the setup algorithm is randomized, takes as input the

security parameter λ, and base commitment parameters pp. It returns public

parameters that contain at least a description of a special value denoted by
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0. It also returns a trapdoor td that is only used in security definitions. pp and

pp are implicit inputs to all other algorithms.

KeyGen(t)
$−→ (sk, pk, hint0): the key generation algorithm is randomized, it takes

as input a threshold value t ∈ V. It outputs a key pair (sk, pk); a hint hint0
implicitly encoding 0 — this first hint is also the only public one.

VfKeyGen(pk, hint0)→ acc/rej : the verify key generation algorithm is determinis-

tic, it verifies the validity of the public output of KeyGen.

Updatepk(hint, tag,x, r)
$−→ (hint′, tag′): the update algorithm is randomized, it takes

as input an hint and its tag, a value, and external base commitment random-

ness. When hint = hint0, tag = ⊥. It returns an updated hint′ and the new

update tag′. To keep track of the update history (also called trace) of a com-

mitment we introduce an epoch index ι ≥ 1, e.g., Updatepk(hintι−1, tagι−1,xι, rι)
$−→

(hintι, tagι).

VfHistorypk({tagi,Ci}ιi=1)→ acc/rej : the verify history algorithm is deterministic,

it takes as input an ordered sequence of update tags and base commitments

and verifies the consistency of the update history (also called trace, see Def-

inition 6.2.3).

VfHintpk(hintι, tagι)→ acc/rej : the verify hint algorithm is deterministic, it takes

as input a hint and the last corresponding update tag. It returns acc if the

inputs are deemed to be consistent (see Definition 6.2.3), and rej otherwise.

Convertpk(hint)
$−→ ecom: the show algorithm is randomized, it takes as input a hint

for the last tag of a history. It returns a predicate escrow ecom that prepares

the history for audit evaluation.

VfECommitpk(ecomι, tagι)→ acc/rej: the verify escrow algorithm is deterministic,

it takes as input a predicate escrow ecom, and the update tag tag used in the

last update. It returns acc if the inputs are consistent, and rej otherwise.

Explodesk(ecom)→ 1(expl)/0(rej): the explode algorithm is deterministic, it takes

as input the auditor’s secret key sk and a predicate escrow. It returns expl

if the commitment history is deemed to explode (see Definition 6.2.3), and

rej otherwise. (Intuitively, explosion is determined by the evaluation of the

predicate P (t, x̂), where x̂ =
∑ι

i=1 xi is the sum of the committed values of

the history).
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The notion of correctness covers the honest execution of the protocol. It ensures

that: (1) the honestly generated key always verifies, (2) honestly updated histories

of base commitments verify, and (3) the result of explosion is consistent with the

evaluation of the predicate on the sum of update values.

Definition 6.2.3 (Correctness). Let λ ∈ N, BC = (Setup,Commit,V,R) be a base

commitment scheme, and P ∈ PV. An exploding commitment scheme (ECS) for

(BC,P ) is correct if the following statements hold for all pp $←− Setup(1λ), (pp, ·) $←−
Setup(1λ, pp) (remember these are implicit in all the algorithms):

• Full correctness: for all t ∈ V, all poly-sized sequences of values x1, . . . ,xn ∈
V and r1, . . . , rn ∈ R:

Pr



(sk, pk, hint0)
$←− KeyGen(t)

for i ∈ [n] :

(hinti, tagi)
$←− Updatepk(hinti−1, tagi−1,xi, ri)

ecomi
$←− Convertpk(hinti)

Ci ← Commit(xi; ri)

return VfKeyGen(pk, hint0) = acc ∧
for all i ∈ [n] :

VfHintpk(hinti, tagi) = acc ∧
VfHistorypk({tagj,Cj}ij=1) = acc ∧
VfECommitpk(ecomi, tagi) = acc ∧
Explodesk(ecomi) = P (t,

∑i
j=1 xj)



= 1

• Update correctness: for all pk, hint0 s.t. VfKeyGen(pk, hint0) = acc, and all

hintn, {tagj,Cj}ni=1 such that VfHintpk(hintn, tagn) = acc and

VfHistorypk({tagj,Cj}nj=1) = acc, and for all x, r:

Pr



(hintn+1, tagn+1)
$←− Updatepk(hintn, tagn,x, r)

ecomn+1
$←− Convertpk(hintn+1)

Cn+1 ← Commit(x; r)

return VfHintpk(hintn+1, tagn+1) = acc ∧
VfHistorypk({tagj,Cj}n+1

j=1 ) = acc ∧
VfECommitpk(ecomn+1, tagn+1) = acc


= 1

In both statements the probability is taken over the random coins internally sampled

by the randomized algorithms of ECS.
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6.2.1 Security Properties

We say that a history and predicate escrows are valid if they verify under a verifying

public key. Valid histories and escrows must satisfy two properties – history binding

and soundness.

History binding enforces that for any valid history, its prefix must also be valid, and

no alternative prefix can ever be valid. This means that after verifying a commit-

ment history one can use the last tag as a commitment to the whole history and is

guaranteed of the validity of each step in the history.

Definition 6.2.4 (History Binding). An ECS for (BC,P ) is history binding if for all

PPT A, it holds that:

Pr



pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

(pk, hint0, {{tag(0)i ,C
(0)
i }ιi=1}b∈{0,1})

$←− A(pp)
return VfKeyGen(pk, hint0) = acc ∧

VfHistorypk({tag
(0)
i ,C

(0)
i }ιi=1) = acc ∧(

VfHistorypk({tag
(0)
i ,C

(0)
i }ι−1i=1) ̸= acc ∨

VfHistorypk({tag
(1)
i ,C

(1)
i }ιi=1) = acc ∧

tag
(0)
ι = tag

(1)
ι ∧ ∃i. (tag(0)i ,C

(0)
i ) ̸= (tag

(1)
i ,C

(1)
i )
)


= negl(λ)

In practice, history binding prevents history manipulation: assuming an updater

that produced tag as a “receipt” of their update is later approached by the regulator

for presenting their escrow ecom, the updater will not be able to deceive the regu-

lator by saying “this tag tag I produced for a different history”. So history binding

is crucial for “tracking back” the history of changes done to the escrow ecom; it

enforces history linearity.

Soundness focuses on what VfECommit and VfHistory functions mean together :

(1) any verifying history “contains” a set of update values, and (2) if ecom verifies

w.r.t. the last tag of this history, it must explode according to predicate P evaluated

on the sum of its values.

Definition 6.2.5 (Soundness). An ECS for (BC,P ) is sound if there exists a deter-

ministic poly-time black-box extractor Ext, such that for all PPT A:
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1. Valid history can be explained in terms of commitments: for all ι > 0,

Pr



pp
$←− Setup(1λ)

(pp, td)
$←− Setup(1λ, pp)

(pk, hint0, {tagi,Ci}ιi=1)← A(pp)
(xι, rι)← Ext(td, tagι)

return VfKeyGen(pk, hint0) = acc ∧
VfHistorypk({tagi,Ci}ιi=1) = acc ∧
Cι ̸= Commit(xι, rι)


= negl(λ)

2. Explosions are always w.r.t. the sum of update values: for all t ∈ V, ι > 0,

Pr



pp
$←− Setup(1λ)

(pp, td)
$←− Setup(1λ, pp)

(sk, pk, hint0)
$←− KeyGen(t)

(ecom⋆, {tagi,Ci}ιi=1)
$←− A(pp, pk, hint0)

for i ∈ [1, ι] :

(xi, ri)← Ext(td, tagi)

return VfHistorypk({tagi,Ci}ιi=1) = acc ∧
VfECommitpk(ecom

⋆, tagι) = acc ∧
Explodesk(ecom

⋆) ̸= P (t,
∑ι

i=1 xi)



= negl(λ)

The extractor is the same in both clauses of the definition, and works the same

given the same inputs. This means that the two parts are composable: the ex-

tracted value in the second part satisfies ∀i.Ci = Commit(xi, ri) with overwhelm-

ing probability. Together with the binding property of BC, this guarantees that any

values xι that is opened, by revealing rι or that is used externally in proofs of

knowledge about Cι, must be the same as that used to evaluate P .

The first part of soundness considers dishonest keys (emulating a view of a third

party observing the history, e.g. on the bulletin board), while the second part has

honest key because it is viewed from the honest regulator’s perspective.

Our hiding definitions provide privacy guarantees, capturing the following proper-

ties: (1) output of KeyGen does not leak the threshold value t (Definition 6.2.6), (2)

tags do not leak the update value (Definition 6.2.7), (3) hints do not leak the update

value, without sk (Definition 6.2.8), and (4) exploding commitments only leak the

result of the explosion predicate (Definition 6.2.9).
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Threshold hiding states that it is computationally impossible to determine the thresh-

old value t chosen upon key generation from public key, without the secret key.

Definition 6.2.6 (Threshold Hiding). An ECS for (BC,P ) is threshold hiding if for

all PPT A it holds that:

Pr



pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

(t0, t1)← A(pp), b
$←− {0, 1}

(·, pk, hint0)
$←− KeyGen(tb)

b⋆ ← A(pk, hint0)
return b ?

= b⋆


≤ 1

2
+ negl(λ)

Tag hiding states that tags do not reveal any additional information than already

revealed by C itself.

Definition 6.2.7 (Tag Hiding). An ECS for (BC,P ) is hiding in tags if, for (pp, td) $←−
Setup(1λ,V,P) all t ∈ V, all pk, all pairs (hint, tag) such that

VfHintpk(hint, tag) = acc, and for all x ∈ V, r ∈ R, there exists a PPT S such that:

{
tag′ | (·, tag′) $←− Updatepk(hint, tag,x, r)

}
p
≈
{
S(td, pk, tag,C := Commit(x, r))

}
where distributions are over the internal randomness of the Update algorithm and

the simulator. For the first update, this holds conditioned on hint := hint0, tag := ⊥.

Note that the simulation-style definition here is dictated by tags being verifiable

w.r.t. base commitments in histories. This allows composable reasoning: tags are

hiding regardless of the base commitments hiding property; whereas IND-style

definition would imply that the base scheme needs to be hiding which we avoid.

Tag hiding also implies hiding for any sequence of tags, and thus for any history

{tagi,Ci}ιi=1: using S and {Ci} we can simulate all the tags one by one, without

any hints.

Hint hiding states that without the secret key, hints do not leak information update

values.

Definition 6.2.8 (Hint Hiding). An ECS for (BC,P ) is (computationally value) hiding
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in hints if, for all t ∈ V and all PPT A, it holds that:

Pr



pp
$←− Setup(1λ); (pp, ·) $←− Setup(1λ, pp)

(·, pk, hint0)
$←− KeyGen(t); b

$←− {0, 1}
(hint⋆, tag⋆,x(0),x(1), r)

$←− A(pp, pk, hint0)
(hint, ·) $←− Update(hint⋆, tag⋆,x(b), r)

b⋆
$←− A(hint)

return b⋆ ?
= b ∧ VfCommit(hint⋆, tag⋆)

?
= acc


≤ 1

2
+ negl(λ)

Explosion hiding models that even with the knowledge of the secret key, the es-

crow ecom does not leak anything about the values inside the history besides the

predicate result itself.

Definition 6.2.9 (Explosion Hiding). An ECS for (BC,P ) is explosion hiding if there

exists a PPT simulator S such that for all PPT A, it holds that:

Pr



(pp, td)
$←− Setup(1λ,V,P)

(t, pk, hint0, {tagi,xi, ri}ιi=1, hintι)
$←− A(pp)

b
$←− {0, 1}

ecom← if b = 0 then Convertpk(hintι)

else S(td, pk,P (t,
∑

i∈[ι] xi), tagι)

b⋆
$←− A(ecom)

return b⋆ = b ∧
VfKeyGen(pk, hint0) = acc ∧
VfHistorypk({tagi,Commit(xi, ri)}ιi=1) = acc ∧
VfHint(hintι, tagι) = acc



≤ 1

2
+ negl(λ)

6.3 Efficient Realization of Exploding Commitments

Our construction ECS is presented in the Figures 6.3 (main algorithms), 6.2 (helper

functions) and 6.4 (verification algorithms). The construction is instantiated with

Pedersen commitment scheme PedersenBCS as a base commitment, and the pred-

icate Pd(T ,X) that returns 1 if and only if x is in the range {t, t+1, . . . , t+d−1}. It

also uses the updatable proof system Πu instantiated by CH20, and a straight-line

simulation-extractable Π (instantiated by Fiat-Shamir transformed Σ-protocols for

proofs of equality of discrete logarithm representations with witness encryption).

Next, we proceed with an overview that gradually builds intuition on the techniques
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employed in our construction, and conclude with how to achieve privacy and sound-

ness.

6.3.1 Basic Construction

6.3.1.0.1 Explosion Predicate We consider the predicate that returns 1 if the

value x concealed in the exploding commitment is above the given threshold t. For

efficiency, we limit the check to a reasonable interval, i.e. the commitment only

explodes if the value x is in [t, t + d − 1] for a small value d: for generic X and T

the predicate is defined as

Pd = Pd(T ,X) =

[
d−1∏
δ=0

(X − T − δ) ?
= 0

]
∈ {0, 1}. (6.1)

Clearly, when evaluated, the predicate Pd(t,x) returns 1 if and only if x is in the

“critical range” [t, t + d − 1] on which the core polynomial evaluates to 0. The

polynomial is built in such a way to allow for efficient updates as discussed next.

6.3.1.0.2 Setup and Key Generation The setup takes as input a group G gen-

erated by Setup of the base commitment scheme (Pedersen), together with gen-

erator G1 = G and H. It finishes the bilinear group setup, creating ppBLG w.r.t. G1.

It also sets up common reference strings and trapdoors for the NIZK proofs (more

on this in Section 6.3.2). Most importantly, it generates d random masking values

W1, . . . ,Wd
$←− G which are needed for blinding ElGamal ciphertexts in the hints.

To run the key generation process, the regulator needs to choose a threshold value

t. In a nutshell, KeyGen samples sk
$←− Zq and computes its corresponding DH pub-

lic key H ← Gsk. The public key consists of H and some additional data to prove

consistency. The key generation process additionally returns a hint consisting of:

1) a sequence of d ElGamal ciphertexts encrypting the powers of t, t2, . . . , td under

the public key H; 2) a NIZK consistency proof πc,0 for these powers; and 3) addi-

tional dummy information for correct hint formatting. This allows public verifiability

of the correctness of the key generation procedure and of the hints in epoch ι = 0.

6.3.1.0.3 Hints and Updatability Hints are used to update the value concealed

in an exploding commitment. In our construction, updates perform addition of a

new known value xι to the already concealed one (which is possibly unknown).
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At each epoch ι hints have two main components: 1) a sequence of d ElGamal

ciphertexts in the exponent for a public key H (see Equation (6.5) for definition);

and 2) a base Pedersen commitment X for the accumulated value x̂ =
∑

i∈[ι] xi

embedded in the ciphertexts (the meaning of “embedded” will become clear in a

moment).

To understand the mechanics behind updatability, we need to look back at the poly-

nomial in our predicates Pd (see Equation (6.1)). This is a product of expressions

consisting of a sum of a private/unknown value (X − T ) and a public value δ.

Hence, the polynomial in Equation (6.1) can be written as a linear combination of

powers of (X − T ), namely:

d−1∏
δ=0

((X − T )− δ) =
d∑
i=0

Ui(X − T )i (6.2)

where all Ui are well-determined public coefficients that depend solely on i and d.3

By the binomial theorem it is possible to rewrite terms on the right side of Equation

(6.2) as:

(X − T + Y )i =
i∑

j=0

((
i

j

)
Y i−j

)
· (X − T )j. (6.3)

Equation (6.3) shows that we can always build ((x + y) − t)i linearly from (lower

powers) (x − t)j and y. This property is exploited by the UpdatePowers helper

function (Fig. 6.2) to compute hints for x + y as a linear combination of the old

hints values (dependent only on x and t), and values dependent only on the new

(known) input y = xι. For easy reference, we define the y-dependent values as

Vi,j(y) =

(
i

j

)
yi−j ∈ Zq. (6.4)

Recall that hints contain a sequence of ElGamal ciphertexts, in our construction the

initial hint, produced at epoch ι = 0 during key generation, contains encryptions of

powers of −ti, i.e.,

{A0,i = Gr0,i ,B0,i = G(−t)iHr0,i}i∈[d],

3To be precise, the Ui are the Stirling coefficients, i.e., Stirling numbers of the first kind are
defined as the coefficients in the expansion of the falling factorial polynomial (x)n =

∏n−1
i=0 (x− i) =∑n

k=0 s(n, k)x
k, and have closed form s(n, k) =

[
n
k

]
= (−1)n−k ·

∑
1≤i1<...<in−k≤n−1

(
∏n−k

j=1 ij)

[Konvalina, 2000].
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where the {r0,i}i∈[d] are the random values and t it the regulator’s secret threshold

for explosion. Hints get progressively updated (as we show momentarily) into the

following form:

{Aι,i = Gr̂ι,i ,Bι,i = G(x̂−t)iH r̂ι,i}i∈[d], (6.5)

where r̂0,i denotes accumulated randomness, x̂ =
∑

i∈[ι] xi is the committed value

accumulated at epoch ι. (Note that when ι = 0 the ciphertexts conceal the value

(0− t)i).

By linear homomorphism, it is possible to add a new known value y to the quantity

(x− t) that is concealed in the hints of the previous epoch via the expression:

Bι+1,i =
i∏

j=0

B
Vi,j(y)
ι,j = G

∑i
j=0(x−t)j ·Vi,j(y) · (Hrι,i)Vi,j(y) = G(x+y−t)iHrι,iVi,j(y)

where the last equality comes for Equation (6.3) and the definition in Equation (6.4)

and B0,0 = Gt0H0. Noting that Vi,0(y) = yi, each Bι+1,i can be computed solely

from hints of epoch ι with j > 0 in the following way:

Bι+1,i = Gyi
i∏

j=1

B
Vi,j(y)
ι,j

where we isolate the j = 0 term Gyi = B
Vi,0(y)
ι,0 to the left.

6.3.1.0.4 Preparing Hints for Explosion This procedure is performed by the

Convert algorithm (Fig. 6.3). Intuitively, the ElGamal ciphertexts are extracted from

the hint, and “evaluated”. The Evaluate algorithm raises both ciphertext compo-

nents to Ui·β, where β is a random non-zero value (used for masking non-explosion

data), and the Ui are the Stirling coefficients described in Section 6.3.1.0.3. Specif-

ically:

E1 =
∏
i∈[d]

(AUi
i )β = G

β·(
∑

i∈[d]

rι,i·Ui)

E2 =
∏
i∈[d]

(BUi
i )β =

(
G

∑
i∈[d]

Ui(x−t)i

H

∑
i∈[d]

rι,i·Ui
)β

= G
β·(

d−1∏
δ=0

(x−t−δ))
H
β·(
∑

i∈[d]

rι,i·Ui)

where the last equality comes for Equation (6.2). As a result, the holder of the

ElGamal secret key cannot efficiently decrypt the evaluated ciphertext. Decryption

corresponds to solving the discrete logarithm problem since β is random (and un-

known to the authority), unless the ciphertext encrypt the value “0”. Note that we
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built the predicate in such a way that the ciphertext encodes 0 only on the roots

of the polynomial, which correspond to values in the “critical range”. The Convert

procedure outputs the predicate escrow which, in addition to the evaluated ElGa-

mal ciphertext, contains additional components needed to prove consistency, and

verify the correctness of the procedure.

6.3.1.0.5 Testing for Explosion This procedure is run by the regulator and

simply attempts to decrypt the ciphertext (E1,E2) using the secret key sk corre-

sponding to the ElGamal encryption public key H. This entails computing M =

E2 · (E1)
−sk, which by construction is M = Gβ·(

∏d−1
δ=0(X−T−δ)), where the reader

should recognize the core polynomial of the predicate (see Equation (6.1)). Note

that β (unknown to the regulator) acts as a random mask that prevents efficient

decryption whenever the polynomial evaluates to a value other than 0. This makes

M gibberish unless the predicate Pd evaluates to 1 (the polynomial evaluates to 0),

which yields to M = G0 = 1G.

6.3.1.0.6 Achieving Privacy Up to this point we discussed correctness of our

construction. Now we focus on how to achieve privacy, i.e., the authority only learns

Pd(t,x) and nothing else, and updators learn nothing about the concealed value.

The IND-CPA property of ElGamal ciphertexts {Ai = Gri ,Bi = G(x−t)iHri}i∈[d]
prevents updaters from seeing the concealed value. The regulator however can

obtain {G(x−t)i}i∈[d] by decrypting the ciphertexts, and even though encoding val-

ues in the exponent makes generic decryption inefficient, it does not prevent the

regulator from obtaining x by when the encoded values are in small, predictable

ranges (which is the setting of our application). To hide x properly, updaters will

blind hints before sending them to the regulator with the escrow.

The blinding is performed by BlindPowers and consists of multiplying each Bi com-

ponent by a value Wα
i , where the {Wi}di=1 are public group elements generated

upon system setup, and α is a freshly sampled random value. Specifically, blinded

ciphertexts are of the form: {Ai,Di := Bi ·Wα
i }i∈[d]. To achieve efficient updat-

able proofs, the α component will be zero while the hints are updated, which means

parties will exchange unblinded hints; and α will only be set while the hints are con-

verted to an escrow (more details on this in the upcoming description of updatable

proofs).
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6.3.2 Achieving Soundness Using NIZKs

Intuitively speaking, soundness means then whenever the data (primarily hints and

escrows) is valid, it must be “good” – bind to the history, contain only updates that

are relevant to commitments, etc. As of now, hints and escrows can be malformed,

and lacks these guarantees. We overcome these issues by employing NIZKs to

ensure data correctness.

Our construction employs four kinds of proofs. The key proof (πpk) will show that

the public key was built correctly. The consistency proof (πc) will show consistency

of all the components in a hint, and it will be updatable (details of which are the

main technical contribution of the construction). The trace proof (πt) will show that

the new hint — obtained updating a hint from the previous epoch — is computed

correctly, and that the update value is the same as in the external commitment C.

Trace proofs are included in tags tag and form the trace. The escrow proof (πe) will

show that the escrow ecom was produced correctly from a tag and its hint.

6.3.2.1 Key Proof (πpk)

During the key generation phase, the regulator produces the ElGamal encryptions

of the powers of the threshold (as explained in Section 6.3.1.0.2), in particular,

we will use the first ciphertext (A0,1,B0,1) := (Gr0,1 ,GtHr0,1) that is a standard

ElGamal encryption of t for the auditor’s public key H. In addition, the regulator

computes a Pedersen commitment to the threshold T = GtHrt (which is included in

the public key pk). The public key additionally contains πpk that proves knowledge

of the sk corresponding to the ElGamal public key H = Gsk, and knowledge of

a threshold value t and randomnesses that realize the public components B0,1

(contained in hint0) and T. Specifically, the language Lpk is defined by:

x = (H,B0,1,T) ∈ G3

w = (sk, t, r0,1, rt) ∈ Z4
q

and M(x) =


G 0 0 0

0 G H 0

0 G 0 H

 .

where witness here and in the following is highlighted in gray.

6.3.2.2 Consistency Proof (πc)

This proof shows that all the hint values (including the {A0,i,B0,i} produced by

KeyGen) are indeed encodings of (x̂ − t)i, where x̂ and t are the current accumu-
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lated value, and the original threshold selected by the regulator. It works for both

unblinded (Bi) and blinded (Di) hints. This proof is produced (1) originally by the

regulator in KeyGen to prove the consistency of powers in hintpk, and (2) by up-

dating parties to prove that the hints they send further are still consistent, (3) by

updating parties to prove to the regulator that the blinded hints in the escrow are

consistent. The consistency proof will always refer to T (the Pedersen commitment

to the threshold included in pk) to make sure that the witness t used in all proof

iterations is the same as the initial one.

At epoch ι, the consistency proof πc proves the following statement: for an instance

x = (H, {Aι,i,Dι,i}i∈[d],T,Xι,A) ∈ G2d+4

there exists a witness

w =

 t, rt, x̂ι, r̂x,ι,α, rα, {r̂ι,i}i∈[d],
(x̂ι − t), {rι,i(x̂ι − t)}d−1i=1 ,α(x̂ι − t), rα(x̂ι − t)

 ∈ Z2d+8
q

such that the following relations are satisfied:

1. T = G tHrt (rt is the randomness used to create T, the Pedersen commit-

ment to the threshold)

2. Xι = G x̂ιH r̂x,ι (Pedersen commitment to x̂ι, the accumulated value)

3. Aι = GαHrα (Pedersen commitment to the randomness for blinding factors)

4. Aι,1 = G r̂ι,1 (rι,i is the randomness used to create the ElGamal ciphertext)

5. Dι,1 = G x̂ι − tH r̂ι,1W α
1 (the blinded ciphertext encrypts (x̂− t))

6. ∀ i ∈ [2, d]:

(a) Aι,i = G r̂ι,i

(b) Dι,i = (Dι,i−1)
x̂ι − t (H−1) r̂ι,i−1(x̂ι − t)H r̂ι,i (W−1

i−1)
α(x̂ι − t)W α

i

7. Witness products (needed for step 6):

(a) 1 = G x̂ι (G−1) t (G−1) x̂ι − t

(b) 1 = A
x̂ι − t
ι (G−1)α(x̂ι − t) (H−1)rα(x̂ι − t)

(c) 1 = A
x̂ι − t
ι,i (G−1) r̂ι,i(x̂ι − t) , for i ∈ [d− 1]:

The complexity of this formula is due to the fact that we need to prove the relation-

ship between the powers of (x̂− t)i, which we do recursively. Note that we do not

store powers as additional witnesses; the only witness is the first power (x̂ι − t).

When simplified, the recursive formulas reduce to the following four relations:
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1. T = G tHrt

2. X = G x̂H r̂x

3. A = GαHrα

4. (Ai,Di) = (G r̂i ,G( x̂− t )iH r̂iW α
i ), for i ∈ [d]

As briefly mentioned before, we use α in two different ways depending on the

scenario: (1) while updating the hints blinding is disabled: users will set α = rα = 0,

and thus A = 1; thus Di will be actually just Bi; (2) while creating escrow, the

blinding values α, rα will be introduced, A ̸= 1 will be sent to the regulator, but α, rα
will not, which will ensure hiding of the blinding approach.

Therefore, to verify the consistency proof, the party (user or regulator) needs an

instance x, which consists of the original D0,1 produced during key generation; a

collection of ciphertexts {(Aι,i,Dι,i)}i∈[d] (unblinded or blinded); a tag tagι contain-

ing a commitment X to the accumulated x̂ι; and a special commitment A to the

blinding randomness α (either trivial A = 1 for users, or nontrivial for regulator).

Consistency proofs are instantiated by Πu, which is linear in the size of the hints,

but is also updatable, meaning that the proof for new hints is a transformation of

the previous consistency proof. Practically, this is quite efficient, since otherwise

consistency proofs would need to be aggregated, and hints would thus grow in

size; this is especially expensive given that the consistency language is linear in d.

Because of updatability, no updating party (except for the regulator, who creates

the initial proof) ever knows the whole witness “contained” in the proof.

6.3.2.2.1 Updating Hints and Consistency Proof. Th consistency proof lan-

guage Lc is structured in such a way, that it supports a transformation that we

will call Tupd, which can change all the necessary witnesses, including our tar-

get aggregated commitment value x̂ι. To fit within algebraic language updatability

framework, we must be able to represent the new instance and witness as linear

combination of the old instance and witness values correspondingly.

We first start with the instance, which implicitly defines Txm,Txa:

1. Using the (plaintext) update value xι, sample rerandomisation factors rι,i,

and compute the new hints:

(a) Aι,i =
(∏i

j=1(Aι−1,j)
Vi,j(xι)

)
Grι,i .
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(b) Bι,i = Gxiι

(∏i
j=1(Bι−1,j)

Vi,j(xι)
)
Hrι,i , where Gxiι covers the role of im-

plicit (Bι−1,0)
Vi,0(xι).

2. Sample rx,ι, update the tag commitment Xι = Xι−1G
xιHrx,ι .

3. Sample α, rα, create the special commitment A = GαHrα (optionally, or still

assume A = 1).

Next we show how to update the witness, which implicitly defines Twm,Twa:

x̂ι = x̂ι−1 + xι

x̂ι − t = x̂ι−1 − t + xι

r̂ι,i =
i∑

j=1

r̂ι−1,i · Vi,j(xι) + rι,i

r̂ι,i(x̂ι − t) =
i∑

j=1

r̂ι−1,i(x̂ι−1 − t) · Vi,j(xι) +
i∑

j=1

r̂ι−1,i · xι · Vi,j(xι) + rι,i · (x̂ι−1 − t) + rι,ixι

r̂x,ι = r̂x,ι−1 + rx,ι

α̂ = α

r̂α = rα

α̂(x̂ι − t) = α · (x̂ι−1 − t) + α · xι
r̂α(x̂ι − t) = rα · (x̂ι−1 − t) + rα · xι

The language transformation Tupd is formally a set of matrices (Txm,Txa,Twm,Twa)

as implicitly defined above, that is parameterised by a vector of update values

wupd,c = (xι, {rι,i}i∈[d], rx,ι,α, rα), where all the “product witnesses” can be defined

in terms of this tuple.

Note that we do not describe the last four witnesses as “accumulatable” — if we

try to update w with (α, rα) more than once, α̂ will not be equal to the sum of

previous α unlike e.g. r̂x,ι. This is due to our setup: (1) we apply Tupd incrementally

parameterised with (xι, {rι,i}i∈[d], rx,ι,α = 0, rα = 0) with blinding turned off ; (2)

and then, given α = rα = 0 and A = 1, we can introduce blinding, applying Tupd
parameterised with α, rα ̸= 0 only once. In fact, this separation is a result of a

deeper limitation of Πu, discussion of which we defer to Section 6.3.3:

Theorem 6.3.1 (Validity of Tupd (Informal)). The transformation Tupd is valid w.r.t.

Lc, and the Πu proof system for Lc satisfies update completeness and derivation

privacy w.r.t. Tupd when applied according to the two distinct parametrisations de-
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scribed above.

Proof. In Section 6.1 we explained that Πu is complete and secure (Theorem 6.1.1)

w.r.t. blinding-compatible transformations (Definition 6.1.1). Validity of Tupd can

be straightforwardly derived from the instance and witness transformation matrices

presented above. In Lemma 6.3.2, that follows the current more high-level overview

section, we give details on the blinding compatibility of the transformation, and

show that there exist a transformation (a variant of Tupd) that is indeed blinding

compatible.

6.3.2.3 Trace Proof (πt)

Trace proofs are small aggregatable proofs that allow parties to linearise their up-

dates. At epoch ι, the party performing an update with local value xι will prove

the following statement. For an instance x = (H,Xι−1,Xι,Cι, πt,ι−1) (where Cι =

GxιHr), there exists a witness w = (xι, rx,ι, rι) such that:

1. Xι = Xι−1 · GxιHrx,ι (the new tag is computed the form the previous one,

and the updating information is completely known to the updator).

2. Cι = Commit(xι , rι )(the updated value xι is the same as in Cι).

Note that the value πt,ι−1 is in the instance, and thus bound by the NIZK being

a signature of knowledge, but it does not appear in any equations. In practice

this translates with hashing the additional value when computing a Fiat-Shamir

challenge, but not using it otherwise. This proof will be instantiated with a standard

non-updatable Π Σ-protocol.

As a potential future-work extension of our scheme, one can consider parties in-

cluding their signatures on these elements, to sign the update act, which can be

used for extending updater accountability w.r.t. the regulator.

6.3.2.4 Escrow Proof (πe)

This proof is produced upon conversion of a hint into an escrow ecom. The ecom

contains an ElGamal encryption E = (E1,E2) of β · Pd(x̂, t) for some masking

value β (random), an escrow proof, a consistency proof (rerandomized, and with

α introduced), and information needed to check the proofs: a commitment X to

the accumulated value, a commitment B to the randomness β, a commitment A
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BlindPowers({Bi}i∈[d],α):

1. return {Di := Bi ·Wα
i }i∈[d]

Evaluate({Ai,Bi}i∈[d], β):

1. Let {Ui}di=1 be Stirling numbers as defined in ?? 6.3.1.0.3.

2. return

( ∏
i∈[d]

(AUi
i )β,

∏
i∈[d]

(BUi
i )β

)
UpdatePowerspk({Aι−1,i,Bι−1,i}i∈[d],xι, {rι,i}i∈[d]):

1. Let Vi,j(X) :=
(
i
j

)
X i−j

2. for i ∈ [d] do

3. Aι,i ←
(∏i

j=1(Aι−1,j)
Vi,j(xι)

)
Grι,i

4. Bι,i ←
(
Gxiι

∏i
j=1(Bι−1,j)

Vi,j(xι)
)
Hrι,i

5. return {Aι,i,Bι,i}i∈[d]

Figure 6.2: Helper functions for the main protocol. The values {Wi}i∈[d] are inde-

pendent bases, being part of the public parameters, and {Vi,j}, {Ui}i∈[d] are public

values as defined in ?? 6.3.1.0.3.

to the introduced accumulated blinding exponent α, and, most importantly, blinded

ElGamal ciphertexts {Ai,Di}i∈[d] (with α).

The escrow proof for Le proves the following statement. For an instance x =

(H,E1,E2,B,A,
∏
AUi
i ,
∏
DUi
i )}di=1), there exists a witness w = (α, rα, β, rβ, βα, rβα)

such that the following conditions are satisfied:

1. A = GαHrα

2. B = GβHrβ

3. 1 = Bα (G−1)βα (H−1)rβα

4. E1 =
∏

i(A
Ui
i )β

5. E2 =
∏

i(D
Ui
i )β ·

∏
i(W

−Ui
i )βα

The language is compact, so the proof πe can be created from scratch, and since it

is not necessary for it to be updatable performance-wise we can also use standard

Π as a proof system.



232 Chapter 6. Exploding Commitments and Applications to AML

Setup(1λ, pp):
1. % To ensure G1 is the same for Pedersen

BCS and the pairing system

2. Parse pp as (G1,G,H,Pd)

3. ppBLG ← BLG.Setup(1λ;G1,G)

4. % Blinding factors for {Di}di=1

5. {Wi}i∈[d]
$←− G1 % d comes from Pd ∈ pp

6. (σΠ, tdΠ)← Π.Setup(1λ, ppBLG)

7. (σΠu , tdΠu )← Πu
Lc .Setup(1λ, ppBLG)

8. pp← (pp, ppBLG, {Wi}i∈[d], 0,Pd,σΠ,σΠu )

9. td← (tdΠ, tdΠu )

10. return (pp, td)

KeyGen(t):

1. sk
$←− Zq , H ← Gsk

2. {r0,i}di=1, rt
$←− Zq

3. for i ∈ [d] do

4. % ElGamal encryptions of ti

5. A0,i ← Gr0,i , B0,i ← G((−t)i)Hr0,i

6. T← Commit(t; rt) % T = GtHrt

7. X0,A0 ← Commit(0; 0) % X0 = A0 = 1G1

8. xc ← (H, {A0,i,B0,i}i∈[d],T,X0,A0)

9. wc ←


t, rt, {r0,i}i∈[d], x̂ := 0,

r̂x := 0, {r0,i · (0− t)}i∈[d],

α := 0, rα := 0

α · (x̂− t) := 0, rα(x̂− t) := 0


10. πc

$←− Πu
Lc.Prove(xc, wc )

11. πpk
$←− ΠLpk .Prove((H,B0,1,T), (sk, t, r0,1, rt) )

12. pk← (H,T,πpk)

13. hint0 ←
(
{A0,i,B0,i}i∈[d],X0,πc

)
14. return (sk, pk, hint0)

Updatepk(hintι−1, tagι−1,xι; r):
1. Parse tagι−1 as (πt,ι−1,Xι−1)

2. rx,ι
$←− Zq

3. hintι ← UpdateHint(hintι−1,xι, rx,ι)

4. Cι ← Commit(xι, r)

5. Parse hintι−1 as (·,Xι−1, ·)
6. Parse hintι as (·,Xι, ·)

7. xt ←
(

H,Xι−1,Xι,

Cι,πt,ι−1

)
8. πt,ι

$←− ΠLt.Prove(xt, (xι, rx,ι, rι) )

9. tagι ← (πt,ι−1,Xι)

10. return (hintι, tagι)

UpdateHintpk(hintι−1,xι, rx,ι): (Helper)

1. Parse hintι−1 as

(
{Aι−1,i,Bι−1,i}i∈[d],

Xι−1,πc,ι−1,

)
2. {rι,i}i∈[d]

$←− Zq

3. % rx,ι is the input to UpdateHint

4. Xι ← Xι−1 · Commit(xι; rx,ι)

5. % = Commit(
∑

i∈[ι] xi;
∑
rx,i)

6. {Aι,i,Bι,i}i∈[d] ←
7. UpdatePowers

(
{Aι−1,i,Bι−1,i}i∈[d],

8. xι, {rι,i}i∈[d]

)
9. xc ← (H, {Aι−1,i,Bι−1,i}i∈[d],T,Xι−1,A := 1)

10. wupd,c ← (xι, {rι,i}i∈[d], rx,ι,α := 0, rα := 0)

11. πc,ι
$←− Πu

Lc.Update(πc,ι−1; xc, T⃗upd(wupd,c ))

12. hintι ←
(
{Aι,i,Bι,i}i∈[d],Xι,πc,ι

)
13. return hintι

Convertpk(hintι):
1. % Partially rerandomize the hint

2.
(
{Ai,Bi}i∈[d],X,πc

)
← UpdateHintpk(hintι, 0, 0)

3. α,β, rα, rβ
$←− Z⋆

q

4. A← Commit(α; rα)

5. B← Commit(β; rβ)

6. {Di}i∈[d] ← BlindPowers({Bi}i∈[d],α)

7. (E1,E2)← Evaluate({Ai,Bi}i∈[d],β)

8. xc ← (H, {Ai,Bi}i∈[d],T,X,A := 1)

9. wupd,c ← (xι := 0, {rι,i := 0}i∈[d], rx,ι := 0,α, rα)

10. π′
c

$←− Πu
Lc.Update(πc; xc,Tupd(wupd,c ))

11. we ←
(
α, rα,β, rβ

)
12. πe ← ΠLe.Prove

((
H,E1,E2,B,

A, {Ai,Di}i∈[d]

)
, we

)

13. ecom←
(

E1,E2,πe,π′
c,X,

{Ai,Di}i∈[d],A,B

)
14. return ecom

Explodesk(ecom):
1. Parse ecom as (E1,E2, ·)
2. M ← Decryptsk(E1,E2)

3. % M = GβP (t,x̂)

4. return [M
?
= 1G1

]

Figure 6.3: Our ECS protocol for the PedersenBCS = (Setup,Commit) and the

predicate Pd(T ,X) =
[∏d−1

δ=0(X − T − δ)
?
= 0
]
, and CH20 as NIZK proof system.

Main Algorithms.
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VfKeyGen(Pd, pk, hint0):

1. Parse pk as (H,T, πpk)

2. Parse hint0 as
(
{Ai,Bi}i∈[d],X, πc

)
3. assert X = 1G

4. assert ΠLt,0.Verify(πpk; (H,B1,T))

5. assert Πu
Lc .Verify

(
πc;

(
{Ai,Bi}i∈[d],

T,X,H,A := 1

))
6. return acc

VfHistorypk({tagi,Ci}ιi=1):

1. Set X0 ← 1G, πt,0 ← πpk

2. Parse tagι as (πt,ι,Xι) for all i ∈ [ι]

3. for i ∈ [ι] do

4. assert ΠLt.Verify

(
πt,i;

(
H,Xi−1,Xi,

Ci, πt,i−1

))
5. return acc

VfHintpk(hint, tag):

1. Parse hint as
(
{Ai,Bi}i∈[d],X, πc

)
2. Parse tag as (πt,X)

3. return Πu
Lc.Verify

(
πc;

(
H, {Ai,Bi}i∈[d]
T,X,A := 1

))
VfECommitpk(ecom, tag):

1. Parse ecom as

(
E1,E2, πe, πc,X

{Ai,Di}i∈[d],A,B

)
2. Parse tag as (·,X′)
3. assert X′ = X

4. assert Πu
Lc.Verify

(
πc;

(
H, {Ai,Di}i∈[d],

T,X,A

))

5. assert ΠLe.Verify

(
πe;

(
H,E1,E2,B,

A, {Ai,Di}i∈[d]

))
6. return acc

Figure 6.4: Verification Algorithms for the ECS protocol. Continuation of Fig. 6.3.
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6.3.3 Updatability for the Consistency Language

In Section 6.3.2.2 we presented the consistency language Lc together with a gen-

eral language transformation, that affects virtually all the witness elements simulta-

neously. In this section we provide technical details on Theorem 6.3.1 that claims

that such transformation can indeed be used within Πu.

While we describe transformation for Lc in a unitary manner, in fact there exist two

distinct blinding-compatible transformations for Lc. The first one, Tupd, will assume

that the current witness has α̂ = r̂α = 0, and therefore A = 1 in the instance, and

will update all the internal randomness values, including the commitment value x̂ι.

This transformation may be parameterised with either α = rα = 0, in which case it

can be applied to the transformed proof further; or with α, rα ̸= 0, in which case the

new hints will become properly blinded, but the transformation will no longer apply.

The second one, Tblind does not assume α̂ = r̂α = 0, can introduce non-zero

(α, rα) and other randomisers, except it does not update the value xι.

The intuition here is that although the consistency language is fully updatable, we

can only update the proof (1) with xι, while (Ai,Bi) are not blinded, (2) with the

blinder α, but then we cannot update xι further. In both cases all other randomisers

are included and non-exclusive. The matrices Tam,Taa for both of these transforma-

tions look exactly the same structurally, except they will need to be parameterised

with zero or non-zero update values depending on the case.

We will not further consider Tblind in this section because for our application it is

only necessary to use Tupd in two modes: either with α = rα = 0 when running

Update, or with non-zero α, rα when blinding within Convert.

We will describe the matrices Tam,Taa in the form of a list for conciseness — we will

present the linear transformations, per row, that characterize the mapping (x,S) 7→
Tam · (S, x)T + Taa, where S = M(x) · s. For clarity, unlike in Section 6.3, we

will use U· notation to denote update values explicitly, e.g. Ux is an update value

corresponding to the variable x. In this syntax SAi
corresponds to the line ofM(x)·s

that would produce Ai if there was w instead of s. Note that S3+2d+i for i ∈ [d+ 1]

are generally not 1G, unlike the real counterparts in x. Given the update values

(Ux,Urx,i , {Urι,i}di=1,Uα,Urα), the update transformation is as follows:

1. S ′T = ST.
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2. S ′X = SXG
UxHUrx .

3. S ′A = GUαHUrα .

4. S ′A1
= SA1G

Ur1

5. S ′D1
= SD1G

UxHUr1WUα
1

6. S ′Ai
=
(∏i

j=1(SAj
)Vi,j(Ux)

)
GUrι,i for i ∈ [1, d]

7. S ′Di
= GUx

i
ι

(∏i
j=1 S

(i−1
j−1)U

i−j
x

Dj

)(∏i−1
j=1D

(i−1
j )U

i−j
x

j

)
HUriWUα

i for i ∈ [1, d]

8. S ′3+2d+1 = S3+2d+1

9. S ′3+2d+2 = 1

10. S ′5+2d+i =
(∏i

j=1(S5+2d+j)
Vi,j(Ux)

)(∏i
j=1(Aj)

(ij)U
i−j+1
x

)(∏i
j=1(SAj

)−(
i
j)U

i−j+1
x

)
for i ∈ [1, d− 1]

Now, we need to show why Tam,Taa defined implicitly so satisfies the blinding-

compatibility equation:

Tam ·
(M(x) · s

x

)
+ Taa =M(Txm · x+ Txa) ·

(
Twm · s+ Twa

)
More precisely, we need to prove that the equation is satisfied for all x ∈ L, s such

that xX = 1, and sα = srα = 0.

Lemma 6.3.2. The transformation Tupd described above is blinding-compatible

w.r.t. (x,w) ∈ Lc for which α = rα = sα = srα = 0.

Proof. Assume sα = srα = 0. Since the (Tam,Taa) (defined through the set of 10

clauses we just mentioned) determines the left hand side (LHS) of the blinding-

compatibility equation, we will focus on showing that the RHS is equal to it.

Let us look at s′ := (Twm · s+ Twa):

1. s′t = st

2. s′rt = srt

3. s′x = Ux + sx

4. s′rx = Urx + srx

5. s′α = Uα

6. s′rα = Urα

7. s′x−t = Ux + sx−t

8. s′α(x−t) = Ux · Uα + Uα · sx−t
9. s′rα(x−t) = Urα · Ux + Urα · sx−t

10. s′ri =
(∑i

j=1

(
i
j

)
U i−j
x srj

)
+ Uri , for i ∈ [d].
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11. s′ri(x−t) =
(∑i

j=1

(
i
j

)
U i−j+1
x srj

)
+
(∑i

j=1

(
i
j

)
U i−j
x srj(x−t)

)
+UriUx+Uri ·sx−t,

for i ∈ [d− 1].

Now let us look at M(Txm · x+ Txa) ·
(
Twm · s+ Twa

)
, which we expect to be equal

to LHS defining Tam,Taa.

1. “T”: GstHsrt

2. “X”: GUx+sxHUrx+srx

3. “A”: GUαHUrα

4. “A1”: GUr1+sr1

5. “D1”: GUx+sx−tHUr1+sr1WUα
1

6. “Ai”,i ∈ [2, d]: G(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

7. “Di”,i ∈ [2, d]:

(D′i−1)
Ux+sx−t × (H−1)(

∑i−1
j=1 (

i−1
j )U

i−j
x srj)+

(∑i−1
j=1 (

i−1
j )U

i−j−1
x srj(x−t)

)
+Uri−1Ux+Uri−1 ·sx−t

×H(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

× (W−1
i−1)

Ux·Uα+Uα·sx−tWUα
i

8. “3 + 2d+ 1”: Gsx+Ux(G−1)st(G−1)sx−t+Ux

9. “3 + 2d+ 2”: (GUαHUrα )Ux+sx−t(G−1)Ux·Uα+Uα·sx−t(H−1)Urα ·Ux+Urα ·sx−t

10. “5 + 2d+ i”, i ∈ [d− 1]:

(A′i)
Ux+sx−t(G−1)(

∑i
j=1 (

i
j)U

i−j+1
x srj)+

(∑i
j=1 (

i
j)U

i−j
x srj(x−t)

)
+UriUx+Uri ·sx−t

Clause 1 is completely unchanged. In clauses 2,3,4,5,6,8 M does not change

(M(x)[i] = M(x′)[i]), but the witness s′ does. In the rest clauses 7,9,10 both M

and the witness change.

It is easy to verify that RHS clauses 1-6 are equal to the LHS presented earlier. Let

us examine the other clauses one by one.

6.3.3.0.1 Clause 8. The LHS is S ′3+2d+1 = S3+2d+1, while the RHS is

Gsx+Ux(G−1)st(G−1)sx−t+Ux

equal to Gsx(G−1)st(G−1)sx−t , which is in turn exactly equal to S3+2d+1, as ex-

pected.

6.3.3.0.2 Clause 9. The LHS is S3+2d+2 = 1, while the RHS is

(GUαHUrα )Ux+sx−t(G−1)Ux·Uα+Uα·sx−t(H−1)Urα ·Ux+Urα ·sx−t

which is also equal to 1 when all the exponent terms cancel.
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6.3.3.0.3 Clause 10. The RHS is equal to:

(A′i)
Ux+sx−t(G−1)

(∑i
j=1 (

i
j)U

i−j
x (Uxsrj+srj(x−t))

)
+UriUx+Uri ·sx−t

= (G
∑i

j=1 (
i
j)rjU

i−j
x +Uri )Ux+sx−t(G−1)

(∑i
j=1 (

i
j)U

i−j
x (Uxsrj+srj(x−t))

)
+UriUx+Uri ·sx−t

= G

(∑i
j=1 (

i
j)U

i−j
x (rj(Ux+sx−t)−Uxsrj−srj(x−t))

)

Now, consider the LHS:( i∏
j=1

(S5+2d+j)
Vi,j(Ux)

)
×
( i∏
j=1

(Aj)
(ij)x

i−j+1
ι

)
×
( i∏
j=1

(SAj
)−(

i
j)x

i−j+1
ι

)
=
( i∏
j=1

(S5+2d+j)
Vi,j(Ux)

)
×
( i∏
j=1

G(
i
j)x

i−j+1
ι (rj−srj )

)
Recall that S5+2d+j = A

sx−t

j G
−srj(x−t) = G

rjsx−t−srj(x−t) , then

=
( i∏
j=1

(G
rjsx−t−srj(x−t))(

i
j)U

i−j
x

)
×
( i∏
j=1

G(
i
j)x

i−j+1
ι (rj−srj )

)
=
( i∏
j=1

G(
i
j)U

i−j
x (rjsx−t−srj(x−t)+Ux(rj−srj )

)
which is exactly equal to the RHS.

6.3.3.0.4 Clause 7. We start with the RHS:

(D′i−1)
Ux+sx−t × (H−1)

(∑i−1
j=1 (

i−1
j )U

i−j−1
x (Uxsrj+srj(x−t)

)
+Uri−1Ux+Uri−1 ·sx−t

×H(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri

× (W−1
i−1)

Ux·Uα+Uα·sx−tWUα
i

Expanding the first term with D′i−1 into

= (G(x+Ux−t)i−1

H
∑i−1

j=1 (
i−1
j )rjU

i−j−1
x +Uri−1WUα

i−1)
Ux+sx−t × . . .

we immediately see that the Wi−1 terms and HUri−1 (Ux+sx−t) terms cancel:

= (G(x+Ux−t)i−1

H
∑i−1

j=1 (
i−1
j )rjU

i−j−1
x )Ux+sx−t × (H−1)

(∑i−1
j=1 (

i−1
j )U

i−j−1
x (Uxsrj+srj(x−t)

)

×H(
∑i

j=1 (
i
j)U

i−j
x srj)+Uri ×WUα

i

Rearrange the terms, grouping them by base:

= H
∑i−1

j=1 (
i−1
j )U

i−j−1
x (rj(Ux+sx−t)−Uxsrj−srj(x−t)) ×H

∑i
j=1 (

i
j)U

i−j
x srj
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×G(x+Ux−t)i−1(Ux+sx−t)HUriWUα
i

Given that
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
, we haveH

∑i
j=1 (

i
j)U

i−j
x srj = HsriH

∑i−1
j=1((

i−1
j−1)+(

i−1
j ))U

i−j
x srj .

Plugging it in into the previous equation we arrive at

= H
∑i−1

j=1 (
i−1
j )U

i−j−1
x (rj(Ux+sx−t)−srj(x−t)) ×H

∑i
j=1 (

i−1
j−1)U

i−j
x srj

×G(x+Ux−t)i−1(Ux+sx−t)HUriWUα
i

= H
∑i−1

j=1 (
i−1
j )U

i−j−1
x (rj(Ux+sx−t)−srj(x−t)+srj+1 ) ×G(x+Ux−t)i−1(Ux+sx−t)HUri+U

i−1
x sr1WUα

i

Now, we will switch to the LHS, and show that it is equal to this last reduced version

of the RHS.

GU i
x

(
i∏

j=1

S
(i−1
j−1)U

i−j
x

Dj

)(
i−1∏
j=1

D
(i−1

j )U
i−j
x

j

)
HUriWUα

i

=

(
GU i

x ·
i−1∏
j=1

D
(i−1

j )U
i−j−1
x Ux

j

)(
i∏

j=1

S
(i−1
j−1)U

i−j
x

Dj

)
×HUriWUα

i

Expand product over Dj :

=

(
GU i

x ·
i−1∏
j=1

D
(i−1

j )U
i−j−1
x Ux

j

)(
i∏

j=1

S
(i−1
j−1)U

i−j
x

Dj

)
×HUriWUα

i

=

(
GU i−1

x

i−1∏
j=1

(G(x−t)jHrj)(
i−1
j )U

i−j−1
x

)Ux
(

i∏
j=1

S
(i−1
j−1)U

i−j
x

Dj

)
×HUriWUα

i

=
(
G(x+Ux−t)i−1

H
∑i−1

j=1 rj(
i−1
j )U

i−j−1
x

)Ux

(
i∏

j=1

S
(i−1
j−1)U

i−j
x

Dj

)
×HUriWUα

i

Recalling that SD1 = Gsx−tHsr1 and SDj
= D

sx−t

j−1 (H
−1)

srj−1(x−t)Hsrj , substitute:

= H
∑i−1

j=1 rj(
i−1
j )U

i−j
x (Gsx−tHsr1 )U

i−1
x

(
i∏

j=2

(D
sx−t

j−1 H
srj−srj−1(x−t))(

i−1
j−1)U

i−j
x

)
×GUx(x+Ux−t)i−1

HUriWUα
i

= H
∑i−1

j=1 rj(
i−1
j )U

i−j
x (Gsx−tHsr1 )U

i−1
x

(
i−1∏
j=1

(D
sx−t

j H
srj+1−srj(x−t))(

i−1
j )U

i−j−1
x

)
×GUx(x+Ux−t)i−1

HUriWUα
i

= H
∑i−1

j=1 rj(
i−1
j )U

i−j
x (Gsx−tHsr1 )U

i−1
x

(
i−1∏
j=1

((G(x−t)jsx−tH
rjsx−t+srj+1−srj(x−t))(

i−1
j )U

i−j−1
x

)
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×GUx(x+Ux−t)i−1

HUriWUα
i

=

(
i−1∏
j=1

H(i−1
j )U

i−j−1
x (rjUx+rjsx−t+srj+1−srj(x−t))

)
×G(sx−t+Ux)(x+Ux−t)i−1

HUri+sr1U
i−1
x WUα

i

It is easy to see now that LHS is equal to the RHS, so clause 7 holds.

6.4 Security Proofs for ECS Construction

We show that our ECS protocol w.r.t. (PedersenBCS,Pd(T ,X)) introduced in Sec-

tion 6.3 is secure according to the security definitions in Section 6.2 under: hiding

and binding of PedersenBCS; DDH in G1 that in particular implies ElGamal IND-

CPA; completeness, strong simulation-extractability, and ZK of Π; and (update)

completeness, soundness, derivation privacy, and ZK of Πu.

Theorem 6.4.1 (History Binding). The ECS protocol is a history binding ECS for

(PedersenBCS,Pd(T ,X)) by strong simulation-extractability of Π.

Proof. The first winning condition for the history binding game, that VfHistory must

verify for any prefix, is trivially satisfied by the construction: our VfHistory checks

every proof linearly, so if all proofs are valid, any prefix is also valid.

The second condition says that two histories are “merged”: the last tags are the

same, tag(0)ι = tag
(1)
ι , but the histories are different: ∃i. (tag(0)i ,C

(0)
i ) ̸= (tag

(1)
i ,C

(1)
i ).

Locate the greatest index j satisfying the second condition. This also implies that

(tag
(0)
j+1,C

(0)
j+1) = (tag

(1)
j+1,C

(1)
j+1). We will refer to tag

(0)
j+1 = tag

(1)
j+1 as just tagj+1.

Because tagj ← (πx,j,Xj), our condition is equivalent to either πx,j , Xj , or Cj being

different in the two cases. Note that both Cj and Xj are inputs to πx,j ; and that Xj

is an input to πx,j+1 which is equal in both cases.

By strong simulation-extractability, proofs with different instances are distinct, so by

SE of πx,j+1 we get X(0)
j = X

(1)
j and π(0)

x,j = π
(1)
x,j . Applying the same SE logic to πx,j

now, we obtain C
(0)
j = C

(1)
j . This contradicts the second winning condition.

Theorem 6.4.2 (Soundness). The ECS protocol is a sound ECS for (PedersenBCS,

Pd(T ,X)), if Π is straightline-extractable knowledge sound, Πu is sound, and bind-

ing of PedersenBCS.
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Proof. To prove soundness we must show existence of an extractor Ext that sat-

isfies two probabilistic statements for any PPT A. Our extractor Ext, when given

tagι = (πx,ι,Xι), will use tdΠ produced by Setup to extract witness (xι, rx,ι, rι) from

πx,ι such that Cι = Commit(xι, rι) and Xι = Xι−1G
xιHrx,ι .

The first part of the soundness proof is then a trivial application of knowledge-

soundness of Π, since it guarantees the well-formedness of Cι w.r.t. the extracted

values. In the rest of the proof we will focus on the second statement. The second

part of the soundness proof uses the same extractor multiple times, using which

we now obtain {xi, rx,i, ri}ιi=1 from the whole trace. In addition we rely on KS of Π

for the escrow proof, and on Πu soundness for the consistency proof.

Right after the extraction from Xi = Xi−1G
xiHrx,i and X0 = 1 we conclude that

Xι = Gx̂ιHr̂x,ι where x̂ι :=
∑ι

i=1 xi and similarly r̂x,ι :=
∑ι

i=1 rx,ι. Because T is

honestly constructed, we know T = GtHrt .

By soundness of the escrow proof πe we know that ∃α, rα, β, rβ, βα, rβα such that

A = GαHrα

B = GβHrβ

1 = Bα̂(G−1)βα(H−1)rβα

(E1,E2) =

(
d∏
i=1

(AUi
i )β,

d∏
i=1

(DUi
i )β ·

d∏
i=1

(W−Ui
i )βα

)

The purpose of lines (2) and (3) is to merely introduce the product variables cor-

rectly (without revealing β): by binding of B (which is binding of PedersenBCS) we

know that the witness standing for βα is actually equal to β · α, and same stands

for rβα.

From the lines (1) and (4), simplifying, we now deduce that ∃α, rα, β:

A = GαHrα

(E1,E2) =

(∏
i

AUiβ
i ,

∏
i

DUiβ
i ·

∏
i

(W−Ui
i )β·α

)

Let us now analyse the consistency proof πc. It can be shown similarly that by

binding of the commitments, soundness of πc, and in particular set of equations in

line 7 in the description of Lc in Section 6.3.2.2, that the product witness elements
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α(x̂ι − t) and r̂ι,i(x̂ι − t) are product of, correspondingly, witness elements α with

(x̂ι − t) and r̂ι,i with (x̂ι − t). In addition, we thus deduce that witness variable

(x̂ι − t) is equal to the difference of other two witness variables x̂ι and t. With

these simplifications in mind, and collapsing recursive relations in line 6.b of Lc
description, we obtain that ∃t, rt, x̂ι, r̂x,ι,α, rα, {r̂i}di=1 such that

T = GtHrt

Xι = Gx̂ιHr̂x,ι

A = GαHrα

(Ai,Di) = (Gr̂i ,G(x̂ι−t)iH r̂iWα
i ) for i ∈ [d]

By binding of T and all Xι, we know that the existentially introduced t, rt, x̂ι, r̂x,ι are

the same that we constructed from the output of an earlier extractor. Therefore they

can be removed from the existential statement together with commitment-validity

lines.

By binding of A we know that the existentially introduced variables (α, rα) are equal

in both statements, and the statement A = GαHrα itself can be removed from both.

Combining two sets of equations for πc and πe we now have: ∃α, β, {r̂i}di=1:

(Ai,Di) = (Gr̂i ,G(x̂ι−t)iH r̂iWα
i ) for i ∈ [d]

(E1,E2) =

(∏
i

AUiβ
i ,

∏
i

DUiβ
i ·

∏
i

(W−Ui
i )β·α

)

Substituting first into the second we arrive at: ∃α, β, {r̂i}di=1:

(E1,E2) =

(∏
i

Gr̂iUiβ,
∏
i

(G(x̂ι−t)iH r̂iWα
i )

Uiβ ·
∏
i

(W−Ui
i )β·α

)

=

(∏
i

Gr̂iUiβ,
∏
i

G(x̂ι−t)iUiβH r̂iUiβ

)
=
(
Gβ

∑
i r̂iUi ,Gβ

∑
i(x̂ι−t)iUiHβ

∑
i r̂iUi

)
=
(
Gβ

∑
i r̂iUi ,GβP (t,x̂ι)Hβ

∑
i r̂iUi

)
By combining everything, we deduce that (E1,E2) is an encryption of βP (t, x̂ι :=∑ι

i=1 xi); by ElGamal completeness, this will be the explosion value. This last

transition used soundness of πc, πe and binding of the commitment scheme.
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Theorem 6.4.3 (Threshold Hiding). The ECS protocol is a threshold hiding ECS for

(PedersenBCS,Pd(T ,X)), under DDH in G1, and ZK of both Π and Πu.

Proof. First, recall that the honest KeyGen(t) outputs

pk = (H,T, πpk)

hint0 =
(
{A0,i,D0,i}i∈[d],X0 = 1G, πc

)
We proceed in the sequence of hybrid games.

In the first game transition, we will replace (pp, ·) $←− Setup(1λ) by (pp, td)
$←−

Setup(1λ), and using td will simulate both πpk and πc by zero-knowledge of Π and

Πu. The transition is perfect.

In the second game, we will replace T by a randomly sampled element. Since the

honest T = GtHrt for uniformly random r sampled in KeyGen, T is uniform in T,

and thus can be replaced. This transition is also perfect.

At this stage the game directly reduces to the IND-CPA of ElGamal (m-message

variant) w.r.t. the public key of the regulator, which is known to be implied by DDH in

the underlying group. Assuming A breaks threshold hiding of ECS, we describe an

attacker B interacting with the d-IND-CPA challenger C. First, B obtains H = Gsk

from C, which is a public key of the regulator. Then, B gets two threshold values

t1, t2 from A, gives C threshold powers {ti1}di=1 and {ti2}di=1, obtains ciphertexts

{A0,i,B0,i}di=1 which are encryptions of those powers. Remembering that no hint

blinding is involved at this step, B can assemble (pk, hint0) (with simulated proofs

and randomly chosen T as before) and give it to A. Now, if A can return b⋆ that

decides threshold secrecy, then B can pass this b⋆ to C and decide d-IND-CPA.

Theorem 6.4.4 (Tag Hiding). The ECS protocol is a tag hiding ECS for (PedersenBCS,

Pd(T ,X)), assuming ZK of the trace proof, and hiding of PedersenBCS.

Proof. To prove tag hiding, we must construct S(td, pk, tagι−1,Cι := Commit(xι, rι))

that outputs tag distributed equally to the honest Updatepk(hintι−1,xι, rι).

Our simulator S will return tagι = (πx,ι,Xι), where Xι is randomly sampled, and

πx,ι is fully simulated using td. Since the honest Xι = Xι−1 · Commit(xι; rx,ι) =

Xι−1G
xιHrx,ι is perfectly hiding due to rx,ι being sampled randomly, a randomly
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sampled Xι ∈ G is in distributed exactly the same. Because Π is perfect zero-

knowledge, S with td can simulate πx,ι for the instance x = (H,Xι−1,Xι,Cι, πx,ι−1),

where H (part of pk), tagι−1 = (πx,ι−1,Xι−1), and Cι are all provided as an input to

S.

Theorem 6.4.5 (Hint Hiding). The ECS protocol is a hint hiding ECS for (PedersenBCS,Pd(T ,X)),

under DDH in G1, ZK of both Π and Πu, and hiding of PedersenBCS.

Proof. Recall the hint structure; as an output of Update we obtain:

hintι =
(
{Aι,i,Dι,i}i∈[d],Xι, πc,ι

)
This proof is very similar to how threshold hiding is proven, since KeyGen also

produces a hint.

We start from the hint hiding game. As a first step, we switch to simulated setup

Setup, and simulate πc,ι, πx,ι. One difference with the threshold hiding proof is that

while πx,ι is produced by Prove, πc,ι is produce as a result of update of πc,ι−1.

However, we can still instead simulate πc,ι−1 for the new instance, because Πu is

derivation private (updated proof is distributed as a completely fresh one for the

new instance) and standard zero-knowledge. This transition is perfect.

In the next game we sample Xι uniformly at random, as in the threshold hiding

proof. Since it is perfectly hiding, this transition is also perfect.

Now, we can directly embed d-IND-CPA of ElGamal into our game. This is very sim-

ilar to the threshold hiding case, except we will request encryptions of {(x(0))i}di=1

and {(x(1))i}di=1 from d-IND-CPA challenger, and then homomorphically append

them to {Aι−1,i,Bι−1,i}di=1. It follows that if A wins this last variant of the hint hid-

ing game, than the reduction we just described will break d-IND-CPA of ElGamal,

which is known to hold under DDH in G1.

Before we formulate and prove explosion hiding, we state simple lemmas explain-

ing why our blinding technique with Di = BiW
α
i is hiding.

Lemma 6.4.6. Let G be a finite group with prime order q and generator G. Then

for any polynomial d, DDH in G is equivalent to following problem we call d-VDDH:

(Gx, {Gyi ,Gxyi}di=1)
c≈ (Gx, {Gyi ,Gzi}di=1)
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Proof. The basic idea is that under DDH we can always create the d+1 challenge

tuple (Gyd+1 ,Gxyd+1 or zd+1) as ((Gyd)β, (Gxyd or zd)β) for a uniformly sampled β. This

proves (d+ 1)-VDDH =⇒ d-VDDH; everything else is straightforward.

It is clear that 1-VDDH is exactly DDH. It is also straightforward that d-VDDH implies

standard (d − 1)-VDDH and thus DDH, since VDDH tuple contains DDH tuple as

a subset (take (Gx,Gy1 ,Gxy1)); so whenever A can break (d − 1)-VDDH, A can

break d-VDDH – we just pass A a subset of the bigger challenge. We will now

focus on the DDH =⇒ d-VDDH direction.

Consider 2-VDDH, a problem to distinguish

(Gx,Gy1 ,Gxy1 ,Gy2 ,Gxy2) and (Gx,Gy1 ,Gz1 ,Gy2 ,Gz2)

where z1, z2 are uniform in Zp. When we are given DDH challenge (C1,C2,C3) :=

(Gx,Gy1 ,Gxy1 or Gz1), we can always pick β, and pass A the following VDDH

challenge: (C1,C2,C3,C
β
2 ,C

β
3 ). The fourth element of the tuple is Gy1β, so call

y2 := y1β; the last element of the tuple is either Gx(y1β) = Gxy2 , or it is Gz1β. This

last z1β term is not quite a perfectly uniform Gz2 , but it is hard to tell because Gz1β

can be viewed as a DH challenge itself.

Formally, let G0 be the original 2-VDDH game, where we generate all the chal-

lenges by ourselves. In the G1 the challenger C will generate fourth and fifth ele-

ment of the tuple as in our reduction, instead of picking fresh (y2, z2). We claim that

if adversary B can distinguish G0 from G1, we can break DDH. Let us build reduc-

tionRB. Our DDH challenge be (C1,C2,C3) := (Gβ,Gy1 ,Gβy1 or Gy2), where y2 is

assumed to be uniformly random. R embeds the challenge as follows: it samples

x, z1, and returns either (Gx,C2,C
x
2 ,C3,C

x
3 ) (real) or (Gx,C2,G

z1 ,C3,C
z1
1 ) (ran-

dom). If the DDH challenge is real, then R behaves identical to G1, returning ei-

ther (Gx,Gy1 ,Gy1x,Gβy1 ,Gβy1x) (real) or (Gx,Gy1 ,Gz1 ,Gβy1 ,Gβz1) (random). If the

DDH challenge is random,R is identical to G0, returning either (Gx,Gy1 ,Gy1x,Gy2 ,Gy2x)

(real) or (Gx,Gy1 ,Gz1 ,Gy2 ,Gβz1) (random). In the latter case, βz1
p
≈ z2, because

β is uniformly random and is used in the tuple only there, once. This proves that

RB solves DDH with the same probability of success that B has in distinguishing

G0 from G1.

Now, G0
c≈ G1 under DDH, and G0 is essentially VDDH. This concludes the proof,

because the probability of A to win G1 is itself negligible under DDH, since it allows

for a direct reduction that constructs 2-VDDH tuple from the DDH tuple.
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Now it is easy to prove (d− 1)-VDDH =⇒ d-VDDH. Consider the d case:

(Gx, {Gyi ,Gxyi}di=1)
c≈ (Gx, {Gyi ,Gzi}di=1)

The idea is the same: G0 is d-VDDH, but in G1 we return ((Gyd−1)β, (Gxyd−1 or zd−1)β)

as the last two tuple elements instead of honest version. By DDH with challenge

(C1,C2,C3) := (Gβ,Gyd−1 ,Gβyd−1 or Gyd) we argue that G1
c≈ G2. This is done

as before: the reduction needs to sample x, zd−1, {(yi, zi)}d−2i=1 , and simulate the

rest of the challenge: it will return either (Gx, {Gyi ,Gxyi}d−2i=1 ,C2,C
x
2 ,C3,C

x
3 ) or

(Gx, {Gyi ,Gzi}d−2i=1 ,C2,G
zd−1 ,C3,C

zd−1

1 ). The argument proceeds as before.

Now, G2 depends on y1 . . . yd−1 and z1 . . . zd−1, without depending on yd, zd, so if A
can solve G2, then RA can solve (d− 1)-VDDH. This concludes the proof.

Lemma 6.4.7. Let G be a finite group with prime order q and generator G, and d

poly-sized. If DDH holds in G, then for all PPT A the following holds:

Pr



{Wi}di=1
$←− G

(H, {xi}di=1)
$←− A(1λ, {Wi}di=1)

{zi, ri}di=1,α
$←− Zq

b
$←− {0, 1}

b⋆ ← A({Ai := Gri ,

Di := if b = 0 then GxiHriWα
i else Gzi}di=1)

return b⋆ = b


≤ 1

2
+ negl(λ)

Proof. WhatA gets is essentially encryptions of GxiWα
i , where xi is either random

or chosen, for a random α. The structure seems similar to Pedersen commitments,

except we use same randomness α for every commitment, but with different bases

Wi. We show that these exponents xi+wiα are computationally hiding xi, assum-

ing d-VDDH, proven secure in Lemma 6.4.6 under DDH.

Our d-VDDH challenge is (C0,C1, . . . C2d) := (Gα, {(Gwi ,Gαwi or zi)}di=1). It is

straightforwardly embedded into our game. First, set all Wi := C2∗i−1 — the distri-

bution of these is still uniform, so A does not see the difference when it is first for

the first time. After A responds, as before, generate {ri}di=1
$←− Zq, and now set

all (Ai := Gri ,Di := GxiHriC2∗i). The distribution of Di is as in the honest game

too: if VDDH instance is real, Di = GxiHriWα
i ; if VDDH instance is random, then

Di = GxiHriGzi which is uniform in G, which is the same as Gzi for zi uniform in

Zq.
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Theorem 6.4.8 (Explosion Hiding). The ECS protocol is an explosion hiding ECS

for (PedersenBCS,Pd(T ,X)), assuming DDH in G1, zero-knowledge of Π,Πu, knowledge-

soundness of Π, soundness of Πu, and hiding and binding of PedersenBCS.

Proof. An exploding commitment has the following form:

ecom =
(
E1,E2, πe, πc,X, {Ai,Di}i∈[d],B,A

)
In the explosion hiding game we have a number of conditions before we claim

equality of distributions. Let us first present the simulator, and then argue, based

on these conditions, why the distributions are indeed equal.

The simulator S(td, pk, vP := P (t,
∑

i∈[ι] xi), tagι) will:

1. Sample β, rE
$←− Zq, create fresh encryption (E1,E2) = (GrE ,GβvPHrE)

based on the predicate value vP ;

2. Sample {Ai,Di}i∈[d],B,A
$←− G all independently uniformly at random.

3. Set X := tagι.X.

4. Simulate πe, πc for these elements using td.

To formally prove that
{
Convertpk(hintι)

}
c≈
{
S(td, pk,P (t,

∑
i∈[ι] xi), tagι)

}
we

will proceed in the series of games, starting from G0, whereA observes Convertpk(hintι),

towards S, implementing parts of the S step by step.

G1 : Simulate both πe, πc in the output of Convert. Because both Π and Πu are

zero-knowledge, the simulation is perfect, so G1
p
≈ G2.

G2 : Sample B,A
$←− G uniformly at random. These two are honest commitments

with H as a base, and fresh randomness rα, rβ generated in Convert. By

perfect hiding of Pedersen commitments, G2
p
≈ G1.

G3 : In this game we simulate setup for Π and extract from all {πx,i}ιi=1, πpk, sim-

ilarly to how it is done in the soundness proof. The extractor will return

(t′, rt, {x′i, r′i, rx,i}ιi=1). Additionally, we assert that (t′, {x′i, r′i}ιi=1) are the same

as provided byA; we will refer to these values (t, {xi, ri}ιi=1) (without “primes”)

as before.

This assertion does not fail unless with negligible probability because com-

mitments T, {Xi}ιi=1 are binding. This transition is thus computational by
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knowledge-soundness of Π and DH in G1 (which guarantees Pedersen bind-

ing).

G4 : In this game we replace (E1,E2) by a fresh encryption of βvP instead; except

for that, all other part of ecom are as before. This is in contrast with the previ-

ous game, where we still honestly call (E1,E2)← Evaluate({Ai,Bi}di=1, β).

We start by establishing the form that hintι takes, using soundness of πc,ι
similarly to the proof of Theorem 6.4.2 (soundness). From the previous game

we know xi, {rx,i}i∈[d] that each Xi = Xi−1G
xiHrx,i , and X0 = 1G. Inductively,

this implies that Xι = Gx̂ιHr̂x,ι , where x̂ι :=
∑ι

i=1 xi, r̂x,ι :=
∑ι

i=1 rx,i. By

soundness of the input πc,ι and binding of PedersenBCS (both of which are

needed to assert that witness-products are formed correctly; similar to the

soundness proof), we deduce that ∃{r̂ι,i}di=1, x̂
′
ι, r̂
′
x,ι, t

′, r′t,α
′, r′α such that for

i ∈ [d], Aι,i = Gr̂ι,i , Bι,i = G(x̂′ι−t′)iH r̂′ι,iWα′
i , Xι = Gx̂′ιHr̂′x,ι ,T = Gt′Hr′t ,

1 = A = Gα′
Hr′α . First, since πc,ι verifies w.r.t. A = 1, we must conclude

by binding of PedersenBCS that α′ = r′α = 0, and thus Bι,i = G(x̂′ι−t′)iH r̂′ι,i

is not blinded. Also by binding of (T, {Xi}ιi=1), we know that x̂′ι guaranteed

existentially by πc is the same as the extracted x̂ι; same applies to t′, r′t, r̂
′
x,ι,

so we can remove the “primes”. Now we simply know that ∃{r̂ι,i}di=1 such

that for i ∈ [d], Aι,i = Gr̂ι,i , Bι,i = G(x̂ι−t)iH r̂ι,i .

Honest Evaluate will return (E1,E2) =

( ∏
i∈[d]

(AiG
r′′ι,i)Uiβ,

∏
i∈[d]

(BiH
r′′ι,i)Uiβ

)
,

where r′′ι,i are freshly sampled on the line 1 of Convert. Denote r̂′′ι,i := r̂ι,i+r
′′
ι,i.

Then together with the previous existential statement in mind we conclude

that ∃{r̂ι,i}di=1 such that

(E1,E2) =

∏
i∈[d]

G(r̂ι,i+r
′′
ι,i)·Uiβ,

∏
i∈[d]

G(x̂ι−t)i·UiβH(r̂ι,i+r
′′
ι,i)·Uiβ


=
(
G
∑d

i=1 r̂
′′
ι,i·Uiβ,GβP (t,x̂ι)H

∑d
i=1 r̂

′′
ι,i·Uiβ

)
which is exactly the encryption of βP (t, x̂ι) with the uniformly random

∑d
i=1 r̂

′′
ι,i·

Uiβ.

This means that our honestly-produced encryption of vP = βP (t, x̂ι) will be

distributed equally to freshly encrypted (E1,E2). The computational transi-

tion is by soundness of πc and binding of PedersenBCS that implies binding of

various H-based Pedersen commitments.
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G5 : Replace {Ai,Di}i∈[d] with randomly sampled elements, instead of return-

ing a blinded re-randomized version of Ai,Bii∈[d] with locally sampled α. If

G5 ̸
c≈B G4, then we can build a d-VDDH attacker from B by embedding the

{Ai,Di}i∈[d] challenge directly into our game (and changing Wi in the setup

on the first line of the game). Note that important aspect is that Convert

fully rerandomises honest {Ai,Bi}i∈[d] at line 1 with {r′′ι,i}i∈[d]. Therefore, by

Lemma 6.4.7, G5
c≈ G4 under DDH in G1.

The last game is exactly equivalent to the output of S — note that the honest and

simulated X is exactly the same, so it does not appear in any game transitions.

This concludes the proof.

6.5 Instantiation and Performance

In this section we evaluate the complexity of our exploding commitments: giving

suggestions for concrete instantiations, analysing concrete bottlenecks, and giving

asymptotic comparison of our algorithms.

6.5.0.1 General Algorithmic Choices

We consider an instantiation of our exploding commitments in the “standard model”,

with a caveat that we apply the Fiat-Shamir heuristic for the non-updatable proof

system Π. The updatable proof system Πu, that is instantiated by the CH20 [Couteau

and Hartmann, 2020] NIZK, is non-interactive by design.

We realize the base commitment BC using Pedersen’s scheme [Pedersen, 1992]

over G1 of a practical type III pairing friendly elliptic curve, where source groups

G1 and G2 have no efficiently computable isomorphism. While we do not con-

sider a specific curve, we remark that several curves could be used, such Barreto-

Naehrig [Barreto and Naehrig, 2006] or BLS12-381 [Barreto et al., 2003]. While the

computational security of the Barreto-Naehrig 256 bit curve (BN256) is generally

considered to have less than 128 bits of computational security [Tibouchi, 2016]

due to algorithmic advancements [Kim and Jeong, 2017], this curve is supported

by native operations in Solidity on Ethereum4 and can thus be evaluated with a

cheap gas price, in contrast to any other pairing scheme whose operations would

4Specified in EIP-1108 (https://eips.ethereum.org/EIPS/eip-1108) and introduced in Is-
tanbul fork (https://eips.ethereum.org/EIPS/eip-1679)

https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1679
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have to be manually implemented at a huge gas penalty. To give a rough estimate

of curve performance, on AWS z1d.3xlarge a BN256 pairing can be computed in

about 1ms and a curve multiplication 0.25/1.2ms (in G1 and G2 correspondingly); in

BLS12-381 implementations timings are only slightly higher: a pairing costs about

1.3 ms and curve multiplication in 0.6/1.5ms (for G1 and G2 correspondingly) [gna,

2023, mir, 2023].

6.5.0.2 Consistency Proof

The consistency proof is constructed in KeyGen, updated in Update and Convert,

and verified in VfKeyGen, VfHint and VfECommit. The consistency language uses

witness of size 2d + 8, and instance of size 2d + 4, therefore being overall O(d)

in size; during updates, four of witness elements corresponding to zero values of

α = rα = 0 related elements, do not need to be communicated, but we will ignore

this minor performance improvement and focus on the O(d) terms instead. Our

matrices — both M(x) and update matrices (Tam,Twm, . . .) — are quite sparse:

M(x) has ≈ 8d elements excluding constants (≈ 6d if blinding is disabled), Tam
has ≈ 3 · d(d − 1), and Twm about (3/2) · d(d − 1) elements. Performance of

Πu mostly depends on the number of elements in these matrices. The setup

phase is O(1) since we only need to generate a single G2 challenge element.

In terms of space, the proof takes |x|G1 + |w|G2 = 4d + 12 elements. We es-

timate proving time to be ≈ 6d · E1 + 2d · E2, where Ei stands for exponentia-

tion in group Gi (here again we give constants for the asymptotically dominating

term). Update time will be quadratic and dominated by the update matrices sizes:

≈ 3d(d− 1) ·E1+(3/2)d(d− 1) ·E2. We note however, that update time in Convert

will be linear, because the update matrices will only introduce blinders α, rα and

randomize Bi without updating the commitment value x̂ — thus the matrices will

only contain linear number of non-zero elements. As for verification time, Πu sup-

ports two approaches: naive and batched. With the naive approach, directly as

described in [Couteau and Hartmann, 2020], the cost will be dominated by about

12dP (where P stands for pairings). However, using a well-known pairing batching

optimisation, we can bring down the verification cost to ≈ (2d + 8) · P + 10d · E1.

This is achieved by sampling random values ϕi for i ∈ [l] on the verifier’s side,

and combining all the rows of the verification equation into a single one, where

every row is taken with scalar multiple ϕi. Security of such a transformation is
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guaranteed by Schwartz-Zippel lemma as usual: if the final ϕi-linearly-combined

equation holds, equations corresponding to the individual rows must hold unless

with negligible probability due to ϕi being sampled randomly and independently. In

practice, this is much more efficient, since not only pairings are much more expen-

sive than multiplications, but also because we can use multi-scalar-multiplication

optimisations to batch those further.

6.5.0.3 Non-Updatable Proofs

The key, trace, and escrow proofs are all created using standard Σ-protocol tech-

niques, instantiated in G1. For all of them we assume Π to be FS-transformed,

but also straightline-extractable, which we will assume is achieved by adding El-

Gamal encryptions of corresponding witnesses (to a CRS-embedded public key).

Without the extra encryptions, Π is quite similar in Πu, except G2 exponentiations

are now Fq multiplications, and G1 exponentiations are used instead of pairings;

we will still achieve (|x| + |w|)G1 proof size, ≈ |M(x)|E1 + |w|EF proving time

(where |M(x)| stands for the number of non-zero items in the matrix and EF are

multiplications in Fq), and ≈ |M(x)| multiplications in verification. For more details

see [Maurer, 2009, Sec. 6.5]. Straightline extractability will add extra |w| elements

into the witness (Paillier randomness), 2|w| ciphertexts into the instance (Paillier

ciphertexts), and extra 3|w| exponentiations into M(x) (each ciphertext is three ex-

ponentiations). The setup will only see the extra one Paillier modulus generated,

which we will treat as a constant cost. In practice, such transformation will not

change asymptotics, only increasing the constant factors by ≈ 2 − 3, which is af-

fordable because Π is generally efficient. The approach of [Couteau et al., 2021]

can also be used for better asymptotic efficiency.

The key proof is very small andO(1) for our calculations: it only contains 3 instance

elements, 4 witness elements, and 5 exponentiations in M(x) in total. It is created

in KeyGen and verified in VfKeyGen.

Similarly, the trace proof is O(1) with its 5 instance elements, 3 witness elements,

and 5 exponentiations in total. The proof is created as part of Update and is verified

in VfHistory.

The escrow proof is also compact, since even though it uses {Ai,Di}di=1, only their

products
∏
AUi
i (similarly for Di) enter M(x), so these products can be treated like
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constants from the perspective of Le. Therefore we have |x| = 5, |w| = 6, the

proof is constant sized, and we will only treat its proving and verification time as

O(d) due to the need to construct the aforementioned
∏
AUi
i (which is efficient via

MSM). The proof is constructed as part of Convert and verified of VfECommit.

Table 6.1: Complexity of our ECS construction in terms of the number exp of group

exponentiations (point multiplications) and the number pair of pairing operations.

#G indicates the number of new group elements returned as output of an algo-

rithm. Constant d is defining the “explosion” range [t, t + d − 1]. Value ιcur stands

for the current epoch (history length). The bottom “total” row represents the mini-

mum complexity of ECS construction executed iteratively over ι updates.

Algorithm pair exp #G

Setup 0 O(1) O(d2)

KeyGen 0 O(d) O(d)

Update 0 O(d2) O(d)

Convert 0 O(d) O(d)

Explode 0 O(1) 0

VfKeyGen O(d) O(1) 0

VfHint O(d) O(1) 0

VfHistory 0 O(ιcur) 0

VfECommit O(d) O(d) 0

Total (w. hints stored) O(ι · d) O(ι · d2) O(d2 + ι · d)
Total (w/o. hints stored) O(ι · d) O(ι · d2) O(d2 + ι)

6.5.0.4 Asymptotic Summary

We summarize the asymptotic complexity of the different algorithms in Table 6.1.

We assume that the public combinatorial values (binomial coefficients for Vi,j and

Stirling coefficients for Ui) are pre-computed, which requires total auxiliary storage

of 2d2 elements (added into the cost for Setup). Given that most constants, as we

discussed in the previous paragraphs, are quite low (for UpdatePowers it is 1, for

updating the proofs it is ≈ 3), we roughly estimate that the conservative choice of d

could be about 30-100, in order to achieve a latency in running Update of at most 1

second (given pairing timing of 0.25ms to 1ms). However, in practice many optimi-

sations should be possible, such as parallelising the (row-independent) quadradic
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computations, and using efficient MSMs, so concrete performance could be much

better. Nevertheless, the estimates clearly show that the system is practical, the

NIZK overhead is comparably low, and given that hints are not aggregated due to

updatability of Πu, the space use is quite optimal w.r.t. what is absolutely necessary

to produce an update ({Ai,Bi}).

6.6 Extensions and Applications

We now consider some possible extensions and use-cases of our exploding com-

mitments and how we imagine they could be deployed.

6.6.1 External Proofs

The main scenario we describe sets d to a small value, which defines the range

[t, t+ d− 1], such that commitment “explodes” when the internal aggregated value

x̂ is within this range. For this example to fully work, an auxiliary mechanism must

be employed to ensure that the commitment of the accumulated value, happening

as part of Update, does not cause a overflow. In other words, we need an extra

range proof on the update value xι, which we can conventiently integrate into the

protocol which already exposes Ci = GxιHri for exactly this purpose.

There are several different approach to range proofs based on Pedersen commit-

ments such as Bulletproofs [Bünz et al., 2018] or “adjusted” Pedersen commit-

ments and square decomposition [Couteau et al., 2021]. These are efficient, with

the latter only requiring a constant amount of exponentiations and group elements

in the proof. However for our case there is a much simpler approach: committing

to bits of xι, and using Π to prove that (1) C contain bit-reconstructed values; and

(2) commitments are actually to the bit values ∈ {0, 1}. The latter can be done

as follows: given C = GxHr for H being chosen uniformly at random, note that

condition x ∈ {0, 1} is equivalent to (x − 1)x = 0, therefore it is enough to prove

that Cx = Hr′ for some r′. This requires O(log(d)) exponentiations and group

elements, which is practically efficient for our choice of d.

With this in mind, every updater can only “adjust” the aggregated rating x̂ by xι ∈
[0, d], which makes ECS a proper score aggregation system. It goes without saying

that other more complicated predicates can be proven in a similar manner about
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xι; commitment Ci is used precisely for this kind of external intergration of ECS with

other applications.

6.6.2 Extensions

Our scheme is presented for a limited class of predicates and features to keep

our definitions and construction simple. However, it can be easily generalized to

support arbitrary polynomial predicates and non-binary explosion values. Another

interesting feature could be the distributed decryption of predicate escrows.

6.6.2.1 Arbitrary Polynomial Predicates

Our protocol targets the “range polynomial” Pd(T ,X), that is zero in [t, t + d −
1]. Additional structure of Pd allows us to use a linear number of hints which is

beneficial for the performance of our construction. However, the main idea of our

protocol can be generalised to any polynomial predicate P (T ,X) — for this we

will need use a quadratic number of hints, each encoding {xitj}i,j:i+j≤d, which

are updatable in a similar way our linear hints are. That is, assuming P (T ,X) =∑
i,j Ci,jX

iT j , we can always construct the evaluation of the updated polynomial

P (T ,X + Y ) =
∑

i,j Ci,j(X + Y )iT j from the hints, if we can transform old hints

{(xitj)}i,j into the new ones {(x + y)itj}i,j . The latter is always possible since

(x+ y)itj = tj
∑i

k=0

(
i
k

)
yi−k× (tjxk) is a linear combination of the previous (tjxk),

which are known. Quadratic number of hints makes many algorithms much less

efficient, and generally imposes much stricter upper bounds on d. It is easy to

see however that in the “mixed” scenario, where P (T ,X) captures several disjoint

ranges (e.g. [t1, t1 + d1] and [t2, t2 + d2]), our construction works almost the same

with two sets of linear hints, and thus the tradeoff is much softer. An example

of using non-interval predicates could be designing P to encode a certain few

excluded “exploding” points, for example representing a certain blacklist of public

key hashes.

6.6.2.2 Non-binary Explosion Value

In some applications, e.g., when users are anonymous, it is desirable for Convertpk
to return not only a binary explosion value but also information about the user (e.g.

their identity) to enable further investigations. The ECS scheme can be modified
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to realise this functionality. The core idea is that Convertpk, given a piece of ex-

tra information y, instead of returning an encryption of βP (x), will instead return

(β1P (x), β2P (x) + y) for random β1, β2, which in case P (x) ̸= 0 produces two

random points and in the case P (x) = 0 (i.e. if the commitment exploded) returns

(0, y). The extra information y then can be proven to be added correctly by inte-

grating a pre-computed commitment Cy to y (e.g. coming from an external identity

scheme) into the escrow proof, which now will not only attest to the correctness of

the evaluation w.r.t. (x, y) but also that y is coming from the designated commit-

ment Cy.

Another simple but useful variation of this idea is to return y not based on Cy, but

as a function of x. Consider two polynomials P1,P2, where polynomial P1 is binary

and defining “explosion predicate” as before, and P2(x) = y is defining what the

result in case of explosion will be. Then Convertpk can return (β1P1(x), β2P1(x) +

P2(x)), revealing the non-binary y that depends on x. Since P1 and P2 are different

predicates, they will have different set of hints; but assuming that degP2 is low,

the previous paragraph explained how we can extend the ECS scheme to support

polynomial reconstructions for arbitrary P2. Again, here the escrow proof must be

modified to attest to the correct evaluation of the escrow.

6.6.2.3 Distributed Explosions

We observe that while we explicitly consider the KeyGen and Explode algorithms

to be run by a single party, these steps could be distributed or thresholdized us-

ing standard techniques [Gennaro et al., 2007]. This would have the advantage of

both separating the attack surface for the secret decryption key sk and of requiring

explicit consensus of exploding/decryption by a quorum of different key share hold-

ers. That is, it would only make it possible for the auditors to discover exactly which

update caused the explosion (by running Explode after each update) if sufficiently

many of them agree that they should learn this.

6.6.3 Applications to Accountable Privacy Preserving Blockchains

We believe that exploding commitments can find multiple uses in ensuring account-

ability for privacy preserving blockchain applications beyond cryptocurrencies. The

security properties of ECS and their flexibility as a building block in modular con-
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Authority, Public bulletin board

Updating party,

Figure 6.5: Illustration of a potential usage of exploding commitments in the

blockchain setting. Dotted boxes illustrate optional communication and compu-

tation depending on the scenario.

structions makes them easy to integrate into various applications without under-

mining existing privacy properties.

In this setting, we assume access to a public append-only public ledger with sup-

port for a Turing complete scripting language (e.g. Ethereum or Cardano). We

consider a model with an auditor who ensures setup of the system and who is

able to decrypt the exploding commitment. With such a ledger, any auditor can

run Setup and deploy a smart contract which embeds the verification functions:

VfKeyGen,VfHint,VfHistory and VfECommit. The auditor can then run KeyGen for

a specific choice of exploding threshold t, and send the public key and hint0 to the

initial 0-commitment hint0 to the smart contract, which validates these values us-

ing VfKeyGen and stores them if they are valid. External parties can now interact

offchain, constructing updates by running the Update algorithm and sending the

resulting hint to the next updating party, after validating the last hint using VfHint.

When mandated by the application (potentially after every update), the updating

party will publish its tag to the ledger, which will form a consistent history that will

be validated by the smart contract using VfHistory. When necessary, authority can

request a party to Convert a certain hint corresponding to a point in history, ob-

tain escrow ecom off-chain and check if the corresponding update has caused an

explosion; this would also obviate any need for off-chain communication between

authority and updating parties. Alternatively, ecom can be sent to the smart con-

tract directly, which would be more expensive in terms of escrow validation, but



256 Chapter 6. Exploding Commitments and Applications to AML

can be used to e.g. allow authority to prove to a third party that a certain escrow

exploded. We illustrate this in Fig. 6.5.

This approach is generic and allows for many application-specific variations. For

example, it is possible the augment the smart contract logic to ensure that only a

permissible set of parties are able to update the exploding commitments. Or, one

could limit the quantity of updates any specific updating party is allowed to make;

etc.

In case one wishes to simplify the smart contract and save gas, it is also possible

to have the smart contract only store protocol elements but not run any of the

verification algorithms, instead putting the responsibility for those on the auditor.

Observe that each call to a smart contract is signed by the caller and stored on the

ledger, linking it to the caller’s public key. Thus, by augmenting the smart contract

with Decentralized Identifiers [Sporny et al., ] it is possible to publicly audit which

parties correctly follow the protocol.

6.6.4 Traditional AML

The exploding commitment scheme can be used in traditional AML by allowing

banks to secretly communicate the user’s suspiciousness score, or credit score,

from the sending bank to the receiving bank. Concretely, by having the sending

bank use the score of the sending account to compute a value with which the

recipient’s score should be increased. That is, an auditor generates keys (KeyGen)

for an exploding commitment for each account in each bank. Then each bank

checks that public keys using VfKeyGen and uses Update to add each account’s

base score to the corresponding hint0 (initially containing 0). When an account

holder makes a transaction, the sending bank updates the hint of the receiving

account holder with an amount computed from the quantity of the transaction and

the base-score of the sender. The receiving bank then runs VfHint and VfHistory

to validate the update. At certain time-intervals each bank runs Convert to create

the predicate escrow ecom to be shared with the auditor along with the tags that

have been constructed as part of the updates since the last time the auditor did a

check. The authority can then run Explode (along with VfECommit) to check if an

account should be flagged. We illustrate the overall flow of this in Fig. 6.6.

We observe that the scheme will allow the banks to get a much more accurate
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... ... ... ...
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Figure 6.6: Illustration of the interaction between parties in the AML use-case.

suspiciousness score on each account without any bank leaking the base-score of

their account holders. When manual inspection of an exploded account results in

the bank needing to report the customer to the authorities, if it possible for the bank

to also share all the hints used to compute the updates. This allows the authority

to validate the entire history of transactions. Finally we also note that this can be

enhanced using the idea of distributing the secret key in Sec. 6.6.2.3 to make the

powers of the authority distributed.

6.6.5 Blockchain AML

The previously discussed approach to privacy preserving AML based on explod-

ing commitments can be generalized to the blockchain setting. Most decentralized

cryptocurrencies (e.g. Bitcoin, Ethereum and Cardano) allow anyone to perform

transactions with no privacy guarantees, publicly revealing the transaction graph

and transferred amounts. While this seemingly makes AML easy, it is cheap and

easy to create new accounts, it is easy to perform layering though many accounts

and various “mixing services”, mixing tokens from many different sources [Pert-

sev et al., 2019]. Hence, although the transaction graph is public, AML is not

simple. This issue is exacerbated by privacy preserving cryptocurrencies such as

Zether [Bünz et al., 2020a], which is built on top of a smart contract system, or

ZCash [Ben-Sasson et al., 2014a], Monero, and Dash, which incorporate privacy

in their basic design. These schemes aim at hiding all transaction data, making

AML even harder.
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In order to reach a compromise between privacy and AML, several different idea

have been proposed by authors in the recent years. Some authors [Sander and

Ta-Shma, 1999, Barki and Gouget, 2020, Damgård et al., 2021] suggest an es-

crow system where anonymity and privacy can be broken if suspicious or illegal

activities occur. Another approach is to specify a small spending limit per client

which they can use every month for anonymous payments. After the client has

made more transactions than covered by this budget, any future transactions can

be traced [Wüst et al., 2019, Tomescu et al., 2022].

We now discuss how exploding commitments could be used to achieve private

spending limits on ledgers with Turing complete smart contracts supporting private

transactions.

6.6.5.1 Private Spending Limit

In this setting, we assume that the underlying ledger supports private transactions

and the goal of an authority is to be able to find out which (if any) users go over

their private spending limit. This is achieved by having a smart contract store an ex-

ploding commitment hint associated with each user and validate that each private

transaction is supported by a Update to the user’s exploding commitment history

consistent with the transaction amount, followed by a Convert. If an update causes

the commitment to explode, it leaks the user’s real identity to the auditor via the

extension discussed in Sec. 6.6.2 that allows for explosions to output specific mes-

sages.

With this in mind we describe the use-case step by step: An authority starts by

setting up new public and private keys and an initial hint0 using KeyGen for an

exploding commitments scheme. Public key pk and hint0 are going to be “shared”

by all users with a private spending limit. Next we require each user to get their

real-world identity y validated by the auditor and linked in a privacy preserving

manner to their smart contract. This is done by having the user post a commitment

Y = GyHry to a Merkle tree in the smart contract and prove to the auditor that the

committed message is indeed their identity y. Each user gets a copy of hint0 which

they will store, and use for their first Update. For each private transaction the user

runs Update and Convert to make a new hint, tag and ecom which will open to y

in case of an explosion. The latter is based on the extension of Sec. 6.6.2. They

then construct a zero-knowledge proof that the value y that ecom will open to in
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case of an explosion corresponds to the value of a leaf commitment on a path in

the smart contract’s Merkle tree (without revealing the path). Finally the user also

constructs a proof of equality between the value in the base commitment of the

update and the value of the private transaction they wish to carry out. The smart

contract now validates the proofs, the private transaction, and whether the updates

are valid (VfHistory, VfECommit).





Chapter 7

Conclusion

This work unites several closely connected topics, best united by their reliance on

or analysis of malleability, primarily in NIZKs. The overarching sentiment of the

paper is that subtleness in malleability definitions and analysis is important both

theoretically and practically.

1. In Chapter 3 we examined and analysed Groth16 SNARK, clarifying the

somewhat confusing security notion that was unclear around its randomiz-

ability. This notion is necessary for its security modelling, and we suggest

several ways to transform Groth16 for use in protocol that require black-box

extraction; our findings make black-box transformations more efficient.

2. In Chapter 4 we focused on the ceremony of Groth16, and showed how by

careful analysis we can prove Groth16 security together with the ceremony,

simplifying the latter, which has not been done before. Our proof techniques

can be of independent interest for malleability analysis of algebraic NIZKs.

3. In Chapter 5 we show that allowing partial malleability in zcash-like trans-

actions can be used to build an atomic swap system, which is simple yet

concretely practical. In addition to that, we formalise the notion of primate

multi-assets, which started to gain practical traction, yet without a proper se-

curity analysis.

4. In Chapter 6 our main focus is on the unique malleability of CH20 NIZK,

which was not yet used in practice. We formalize the notion and use it to

create an efficient “exploding commitment” scheme, that finds applications

261
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for many AML and similar accountability tasks.

Due to the diverse content of this work, each chapter naturally leads to its own

questions regarding open questions and future work.

Starting from weak simulation extractability, one follow-up work by Faonio et al. [Fao-

nio et al., 2023] that we briefly mentioned in the Section 2.6.2 deserves special

attention. What it provides is in essence a generalisation of our approach with

adding malleability into the SE notion. Its SE definition is extended to any predicate

Φ, which captures not just randomizable, but arbitrary controlled-malleable NIZKs.

This notion is initially used for the KZG [Kate et al., 2010] polynomial commitment

scheme, but it is generally crucial to the contexts where both composability and

argument malleability are present. In other words, in the situations where want to

ensure that NIZKs for certain statements are sound in the presence of the simula-

tor, yet cannot be mauled into proofs for statements that contradict the application

logic. This concern can be seen as a generalised replay attack protection, where

an alternative statement could be maliciously replayed instead.

At the same time, since one of our main motivations behind analysing weak SE

of Groth16 was its UC applications, it is worth noting the ongoing and perspective

research direction that intends to improve SNARK composability by adjusting the

simulation paradigm instead. For example, [Kerber et al., 2021a] investigates the

role of knowledge assumptions in UC directly, while [Ganesh et al., 2023] alterna-

tively relies on the global random oracle to prove (witness)-succinct NIZK security

fully within UC. Both approaches seem promising, and arguably complementary to

the black-box transformations, which are a simpler and still relatively inexpensive

way to integrate NIZKs into UC, albeit perhaps theoretically unsatisfactory due to

their “erasure” of the argument’s succinctness.

As of setup ceremonies for SNARKs, our main observation is that the ecosystem

at this point seemingly moved away from the monolitic SNARK approach towards

more modular thinking. SNARKs used in the modern protocols are quite often ei-

ther transparent, or based on a universal SRS. The approach of Sonic [Maller et al.,

2019] and Plonk [Gabizon et al., 2019] was undoubtedly a great influence on the

modular thinking, leading to the popularisation of the so-called interactive oracle

proof (IOP) model, where SRS-related issues were abstracted away from the main

argument into a polynomial commitment scheme. And even though many projects
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switched to the transparent IPA (generically, inner product argument) based com-

mitment scheme [Bünz et al., 2021b], some solutions, notably Ethereum, still use

the KZG commitment scheme, which is essentially based on a universal SRS. The

main advantage of the universal SRS is that ceremonies for it are easier to im-

plement, however I believe the same composability question can be raised about

constructing a KZG commitment scheme securely within the bigger argument pro-

tocol.

On the topic of DeFi and atomic asset exchange, it seems reasonable to assume

that no simple protocol can be practical without an ability to integrate with smart

contract platforms, especially recent privacy oriented ones. Zswap can be seen

as a simple yet effective extension that can be applied to many private cryptocur-

rencies. That being said, it still requires extending a layer one solution, while most

existing popular exchanges thrive due to their simplicity and variety of delivered fea-

tures. And although these solutions might be limited in their privacy settings, and

private smart contracts do not allow atomic swaps per se, it seems to be a reason-

able trade-off practically. This, however, does not mean that private atomic swaps

are not a desired functionality — notably, the Anoma protocol1 focuses on exactly

this problem, by generalising transactions to transaction intents, allowing users to

specify final conditions (similar to Zswap’s “offer transaction” exchange conditions),

and allow network nodes to satisfy them. The academic research on the topic of

atomic and private intent resolution is not sufficiently active at this point, however,

and it can be definitely viewed as a potentially fruitful open research question.

Finally, Chapter 6 is concerned with two big problems: the role of simple malleable

NIZKs in cryptographic protocols, and the state of accountability and DeFi, with

an emphasis of efficiency of simple and modular regulation-compliance primitives.

Starting with the latter, in Section 6.6.2 we already mentioned several potential

extensions of our excom scheme, such as support for arbitrary polynomials pred-

icates or non-binary explosion values. We believe that our system design is quite

flexible, and that it captures a non-trivial amount of potentially useful real-world

functionality. However, in terms of regulation compliance in general, it stands to

reason that a viable solution will most likely rely on generic, efficient private smart

contract systems strengthened by interoperability between many smaller protocols.

The latter topic of the last chapter is updatable algebraic NIZKs, the primitive which

1https://anoma.net/

https://anoma.net/
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I believe has a lot of research potential. As it was already said, small malleable

NIZK proofs are an indispensable tool for protocols which involve data update, and

more particularly, homomorphic operations on some algebraic structures. They

have literally no viable alternatives in this area, where recursive SNARKs are pro-

hibitively expensive, and non-updatable SNARKs or regular algebraic NIZKs would

incur performance overhead due to repeated consistency re-proving.

The relatively moderate interest in directly malleable NIZKs, especially within prac-

tical cryptography, can be perhaps explained in terms of the more salient short-

term goals of the field that overfocuses on generic and powerful primitives, giving

rise to versatile solutions that prioritise wide-scope innovation over excellence in a

concrete narrowly-defined task. Non-linearity of cycles in both economy and cryp-

tographic research being a given, I am confident that a change to the opposite trend

can be expected. And together with the evidence of applicability of malleable prim-

itives in this work and in adjacent areas, I think the notion will to see much more

light in the coming decade, and I particularly hope that the field of zero-knowledge

will converge towards standardized, reusable and interoperable solutions to benefit

privacy needs of all the involved parties.
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extractability of universal zkSNARKs. Cryptology ePrint Archive, Report

2021/511. https://eprint.iacr.org/2021/511.

[Konvalina, 2000] Konvalina, J. (2000). A unified interpretation of the binomial co-

efficients, the stirling numbers, and the gaussian coefficients. The American

Mathematical Monthly, 107(10):901–910.

[Kosba et al., 2015] Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papa-

manthou, C., Pass, R., shelat, a., and Shi, E. (2015). C∅c∅: A framework for

building composable zero-knowledge proofs. Cryptology ePrint Archive, Report

2015/1093. https://eprint.iacr.org/2015/1093.

[Kosba et al., 2016] Kosba, A. E., Miller, A., Shi, E., Wen, Z., and Papamanthou,

C. (2016). Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–

858. IEEE Computer Society Press.

[Kosba et al., 2020] Kosba, A. E., Papadopoulos, D., Papamanthou, C., and Song,

D. (2020). MIRAGE: Succinct arguments for randomized algorithms with applica-

tions to universal zk-SNARKs. In Capkun, S. and Roesner, F., editors, USENIX

Security 2020, pages 2129–2146. USENIX Association.

[Kothapalli et al., 2021] Kothapalli, A., Setty, S., and Tzialla, I. (2021). Nova: Re-

cursive zero-knowledge arguments from folding schemes. Cryptology ePrint

Archive, Report 2021/370. https://eprint.iacr.org/2021/370.

[Kothapalli et al., 2022] Kothapalli, A., Setty, S., and Tzialla, I. (2022). Nova: Re-

cursive zero-knowledge arguments from folding schemes. In Dodis, Y. and

Shrimpton, T., editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages

359–388. Springer, Heidelberg.

[Kozaki et al., 2007] Kozaki, S., Kutsuma, T., and Matsuo, K. (2007). Remarks on

cheon’s algorithms for pairing-related problems. In International Conference on

Pairing-Based Cryptography, pages 302–316. Springer.

[Kurosawa, 2002] Kurosawa, K. (2002). Multi-recipient public-key encryption with

shortened ciphertext. In Naccache, D. and Paillier, P., editors, PKC 2002, volume

2274 of LNCS, pages 48–63. Springer, Heidelberg.

https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2021/370


Bibliography 285

[Kwon and Buchman, 2019] Kwon, J. and Buchman, E. (2019). Cosmos whitepa-

per. A Netw. Distrib. Ledgers, 27.

[Lai et al., 2019] Lai, R. W. F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.

A. K., and Wang, J. (2019). Omniring: Scaling private payments without trusted

setup. In Cavallaro, L., Kinder, J., Wang, X., and Katz, J., editors, ACM CCS

2019, pages 31–48. ACM Press.

[Lee, 2021] Lee, J. (2021). Dory: Efficient, transparent arguments for generalised

inner products and polynomial commitments. In Nissim, K. and Waters, B., edi-

tors, TCC 2021, Part II, volume 13043 of LNCS, pages 1–34. Springer, Heidel-

berg.

[Lee et al., 2019] Lee, J., Choi, J., Kim, J., and Oh, H. (2019). SAVER: Snark-

friendly, additively-homomorphic, and verifiable encryption and decryption with

rerandomization. Cryptology ePrint Archive, Report 2019/1270. https://

eprint.iacr.org/2019/1270.

[Liang et al., 2022] Liang, M., Karantaidou, I., Baldimtsi, F., Gordon, S. D., and

Varia, M. (2022). (ϵ, δ)-indistinguishable mixing for cryptocurrencies. PoPETs,

2022(1):49–74.

[Lindbergh, 2011] Lindbergh, A. M. (2011). Gift from the Sea. Pantheon.

[Lipmaa, 2012] Lipmaa, H. (2012). Progression-free sets and sublinear pairing-

based non-interactive zero-knowledge arguments. In Cramer, R., editor,

TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg.

[Lipmaa, 2019] Lipmaa, H. (2019). Simulation-extractable SNARKs revisited.

Cryptology ePrint Archive, Report 2019/612. https://eprint.iacr.org/

2019/612.

[Lipp et al., 2021] Lipp, M., Kogler, A., Oswald, D. F., Schwarz, M., Easdon, C.,

Canella, C., and Gruss, D. (2021). PLATYPUS: Software-based power side-

channel attacks on x86. In 2021 IEEE Symposium on Security and Privacy,

pages 355–371. IEEE Computer Society Press.

[Maller et al., 2019] Maller, M., Bowe, S., Kohlweiss, M., and Meiklejohn, S.

(2019). Sonic: Zero-knowledge SNARKs from linear-size universal and updat-

https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2019/612


286 Bibliography

able structured reference strings. In Cavallaro, L., Kinder, J., Wang, X., and Katz,

J., editors, ACM CCS 2019, pages 2111–2128. ACM Press.

[Maurer, 2009] Maurer, U. M. (2009). Unifying zero-knowledge proofs of knowl-

edge. In Preneel, B., editor, AFRICACRYPT 09, volume 5580 of LNCS, pages

272–286. Springer, Heidelberg.

[Maxwell, 2013] Maxwell, G. (2013). Coinjoin: Bitcoin privacy for the real world.

https://bitcointalk.org/?topic=279249.

[Meiklejohn and Mercer, 2018] Meiklejohn, S. and Mercer, R. (2018). Möbius:

Trustless tumbling for transaction privacy. PoPETs, 2018(2):105–121.

[Meiklejohn et al., 2016] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K.,

McCoy, D., Voelker, G. M., and Savage, S. (2016). A fistful of bitcoins: charac-

terizing payments among men with no names. Commun. ACM, 59(4):86–93.

[Miers et al., 2013] Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013).

Zerocoin: Anonymous distributed E-cash from Bitcoin. In 2013 IEEE Symposium

on Security and Privacy, pages 397–411. IEEE Computer Society Press.

[Moshkovitz, 2010] Moshkovitz, D. (2010). An alternative proof of the schwartz-

zippel lemma. In Electron. Colloquium Comput. Complex., volume 17, page 96.

[Muralidhara and Sen, 2007] Muralidhara, V. N. and Sen, S. (2007). A result on

the distribution of quadratic residues with applications to elliptic curve cryptogra-

phy. In Srinathan, K., Rangan, C. P., and Yung, M., editors, INDOCRYPT 2007,

volume 4859 of LNCS, pages 48–57. Springer, Heidelberg.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash

system. Decentralized business review.

[Narula et al., 2018] Narula, N., Vasquez, W., and Virza, M. (2018). zkledger:

Privacy-preserving auditing for distributed ledgers. In Banerjee, S. and Seshan,

S., editors, 15th USENIX Symposium on Networked Systems Design and Im-

plementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018, pages 65–80.

USENIX Association.

[Naveh and Tromer, 2016] Naveh, A. and Tromer, E. (2016). PhotoProof: Crypto-

graphic image authentication for any set of permissible transformations. In 2016

https://bitcointalk.org/?topic=279249


Bibliography 287

IEEE Symposium on Security and Privacy, pages 255–271. IEEE Computer So-

ciety Press.

[Noether et al., 2016] Noether, S., Mackenzie, A., et al. (2016). Ring confidential

transactions. Ledger, 1:1–18.

[Oren, 1987] Oren, Y. (1987). On the cunning power of cheating verifiers: Some

observations about zero knowledge proofs (extended abstract). In 28th FOCS,

pages 462–471. IEEE Computer Society Press.

[Paillier and Vergnaud, 2005] Paillier, P. and Vergnaud, D. (2005). Discrete-log-

based signatures may not be equivalent to discrete log. In Roy, B. K., editor,

ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20. Springer, Heidelberg.

[Parno et al., 2013] Parno, B., Howell, J., Gentry, C., and Raykova, M. (2013).

Pinocchio: Nearly practical verifiable computation. In 2013 IEEE Symposium

on Security and Privacy, pages 238–252. IEEE Computer Society Press.

[Pedersen, 1992] Pedersen, T. P. (1992). Non-interactive and information-theoretic

secure verifiable secret sharing. In Feigenbaum, J., editor, CRYPTO’91, volume

576 of LNCS, pages 129–140. Springer, Heidelberg.

[Pertsev et al., 2019] Pertsev, A., Semenov, R., and Storm, R. (2019). Tor-

nado Cash Privacy Solution, version 1.4. https://web.archive.org/

web/20211026053443/https://tornado.cash/audits/TornadoCash_

whitepaper_v1.4.pdf.

[Pietrzak, 2019] Pietrzak, K. (2019). Simple verifiable delay functions. In Blum, A.,

editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs.

[Poelstra et al., 2019] Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., and

Wuille, P. (2019). Confidential assets. In Zohar, A., Eyal, I., Teague, V., Clark,

J., Bracciali, A., Pintore, F., and Sala, M., editors, FC 2018 Workshops, volume

10958 of LNCS, pages 43–63. Springer, Heidelberg.

[PUB, 1993] PUB, N. F. (1993). Digital signature standard.

[Rackoff and Simon, 1992] Rackoff, C. and Simon, D. R. (1992). Non-interactive

zero-knowledge proof of knowledge and chosen ciphertext attack. In Feigen-

baum, J., editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer,

Heidelberg.

https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf


288 Bibliography

[Reid and Harrigan, 2011] Reid, F. and Harrigan, M. (2011). An analysis of

anonymity in the bitcoin system. In PASSAT/SocialCom 2011, Privacy, Secu-

rity, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on and

2011 IEEE Third International Conference on Social Computing (SocialCom),

Boston, MA, USA, 9-11 Oct., 2011, pages 1318–1326. IEEE Computer Society.

[Reuter and Truman, 2004] Reuter, P. and Truman, E. M. (2004). Chasing Dirty

Money: The Fight Against Money Laundering. Peterson Institute for International

Economics.

[Ron and Shamir, 2013] Ron, D. and Shamir, A. (2013). Quantitative analysis of

the full Bitcoin transaction graph. In Sadeghi, A.-R., editor, FC 2013, volume

7859 of LNCS, pages 6–24. Springer, Heidelberg.

[Ruffing and Moreno-Sanchez, 2017] Ruffing, T. and Moreno-Sanchez, P. (2017).

ValueShuffle: Mixing confidential transactions for comprehensive transaction pri-

vacy in bitcoin. In Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P. Y. A.,

Teague, V., Bracciali, A., Sala, M., Pintore, F., and Jakobsson, M., editors, FC

2017 Workshops, volume 10323 of LNCS, pages 133–154. Springer, Heidel-

berg.

[Ruffing et al., 2014] Ruffing, T., Moreno-Sanchez, P., and Kate, A. (2014). Coin-

Shuffle: Practical decentralized coin mixing for bitcoin. In Kutylowski, M. and

Vaidya, J., editors, ESORICS 2014, Part II, volume 8713 of LNCS, pages 345–

364. Springer, Heidelberg.

[Sahai, 1999] Sahai, A. (1999). Non-malleable non-interactive zero knowledge

and adaptive chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE

Computer Society Press.

[Sander and Ta-Shma, 1999] Sander, T. and Ta-Shma, A. (1999). Flow control: A

new approach for anonymity control in electronic cash systems. In Franklin, M.,

editor, FC’99, volume 1648 of LNCS, pages 46–61. Springer, Heidelberg.

[Scafuro, 2019] Scafuro, A. (2019). Break-glass encryption. In Lin, D. and Sako,

K., editors, PKC 2019, Part II, volume 11443 of LNCS, pages 34–62. Springer,

Heidelberg.

[Schnorr, 1990] Schnorr, C.-P. (1990). Efficient identification and signatures for

smart cards. In Brassard, G., editor, CRYPTO’89, volume 435 of LNCS, pages



Bibliography 289

239–252. Springer, Heidelberg.

[Schnorr, 1991] Schnorr, C.-P. (1991). Efficient signature generation by smart

cards. Journal of Cryptology, 4(3):161–174.

[Shoup, 1997] Shoup, V. (1997). Lower bounds for discrete logarithms and related

problems. In Fumy, W., editor, EUROCRYPT’97, volume 1233 of LNCS, pages

256–266. Springer, Heidelberg.

[Shoup, 2004] Shoup, V. (2004). Sequences of games: a tool for taming com-

plexity in security proofs. Cryptology ePrint Archive, Report 2004/332. https:

//eprint.iacr.org/2004/332.

[Sporny et al., ] Sporny, M., Longley, D., Sabadello, M., Reed, D., Steele, O., and

Allen, C. Decentralized identifiers (DIDs) v1.0 - core architecture, data model,

and representations. https://w3c-ccg.github.io/did-spec/. Accessed:

2023-05-18.

[Steffen et al., 2022] Steffen, S., Bichsel, B., Baumgartner, R., and Vechev, M. T.

(2022). ZeeStar: Private smart contracts by homomorphic encryption and zero-

knowledge proofs. In 2022 IEEE Symposium on Security and Privacy, pages

179–197. IEEE Computer Society Press.

[Steffen et al., 2019] Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov,

P., and Vechev, M. T. (2019). zkay: Specifying and enforcing data privacy in

smart contracts. In Cavallaro, L., Kinder, J., Wang, X., and Katz, J., editors,

ACM CCS 2019, pages 1759–1776. ACM Press.

[Tibouchi, 2016] Tibouchi, M. (2016). CRYPTO and CHES 2016, santa

barbara, CA, USA. https://ellipticnews.wordpress.com/2016/09/02/

crypto-and-ches-2016-santa-barbara-ca-usa/. Accessed: 2023-05-16.

[Tomescu et al., 2022] Tomescu, A., Bhat, A., Applebaum, B., Abraham, I., Gueta,

G., Pinkas, B., and Yanai, A. (2022). UTT: Decentralized ecash with accountable

privacy. Cryptology ePrint Archive, Report 2022/452. https://eprint.iacr.

org/2022/452.

[Valiant, 2008] Valiant, P. (2008). Incrementally verifiable computation or proofs of

knowledge imply time/space efficiency. In Canetti, R., editor, TCC 2008, volume

4948 of LNCS, pages 1–18. Springer, Heidelberg.

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://w3c-ccg.github.io/did-spec/
https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/
https://ellipticnews.wordpress.com/2016/09/02/crypto-and-ches-2016-santa-barbara-ca-usa/
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452


290 Bibliography

[Werner et al., 2021] Werner, S. M., Perez, D., Gudgeon, L., Klages-Mundt, A.,

Harz, D., and Knottenbelt, W. J. (2021). Sok: Decentralized finance (defi). arXiv

preprint arXiv:2101.08778.

[Wesolowski, 2019] Wesolowski, B. (2019). Efficient verifiable delay functions. In

Ishai, Y. and Rijmen, V., editors, EUROCRYPT 2019, Part III, volume 11478 of

LNCS, pages 379–407. Springer, Heidelberg.

[Wood, 2016] Wood, G. (2016). Polkadot: Vision for a heterogeneous multi-chain

framework. White paper, 21(2327):4662.

[Wood et al., 2014] Wood, G. et al. (2014). Ethereum: A secure decentralised

generalised transaction ledger. Ethereum project yellow paper, 151(2014):1–32.

[Wüst et al., 2019] Wüst, K., Kostiainen, K., Capkun, V., and Capkun, S. (2019).

PRCash: Fast, private and regulated transactions for digital currencies. In Gold-

berg, I. and Moore, T., editors, FC 2019, volume 11598 of LNCS, pages 158–

178. Springer, Heidelberg.

[Xu et al., 2021] Xu, J., Vavryk, N., Paruch, K., and Cousaert, S. (2021). Sok:

Decentralized exchanges (dex) with automated market maker (amm) protocols.

arXiv preprint arXiv:2103.12732.

[Yi et al., 2019] Yi, Z., Ye, H., Dai, P., Tongcheng, S., and Gelfer, V. (2019). Confi-

dential assets on MimbleWimble. Cryptology ePrint Archive, Report 2019/1435.

https://eprint.iacr.org/2019/1435.

https://eprint.iacr.org/2019/1435

	Introduction
	Decentralization, Privacy, Accountability
	Zero-Knowledge Arguments
	Malleability in Cryptography
	Thesis Outline

	Background
	Basic Notions and Notation
	Bilinear Groups
	Models and Assumptions
	Public Key Encryption
	Non-Interactive Commitments
	Zero-Knowledge Arguments
	Updatable and Malleable NIZKs
	Simulation-Extractability and Limits of Malleability
	SNARKs and Groth16

	Distributed Ledgers
	Privacy in Ledgers
	Asset Exchange in Private Ledgers

	Privacy for Accountability

	Extraction and Malleability in Groth16
	Approaching SNARK Soundness Algebraically
	White-box Weak SE of Groth16
	Malleability of Groth16
	Black-box Weak SE of Groth16
	BB Weak SE with Internal Encryption
	BB Weak SE with External Encryption

	Performance
	Open Questions

	Secure Non-Malleable Ceremonies for SNARKs
	Technical Overview
	Extended Discrete Logarithm Assumption
	Ceremonial SNARKs
	Update Proofs of Knowledge
	White-box Simulation-Extraction with Oracles
	On the Security of BGM Update Proofs

	Groth16 is Ceremonial
	Ceremony Overview
	Formal Description

	Security
	Batched VerifySRS
	Deferred Proofs
	Lemmas for Groth16 Completeness
	Proofs for Update Knowledge Soundness

	Future Work

	Multi-Asset Swaps from SNARKs
	Technical Overview and Related Work
	Commitments and Open Randomness
	One-Time-Account Scheme
	Zswap Scheme
	Protocol Definition
	Atomic Swap: A Workflow Example
	Security Modelling with Support Oracles
	Security Definitions

	The Zswap Protocol
	Security Proof
	Implementation

	Exploding Commitments and Applications to AML
	Technical Overview
	Updatable Algebraic Arguments
	Exploding Commitments
	Security Properties

	Efficient Realization of Exploding Commitments
	Basic Construction
	Achieving Soundness Using NIZKs
	Updatability for the Consistency Language

	Security Proofs for ECS Construction
	Instantiation and Performance
	Extensions and Applications
	External Proofs
	Extensions
	Applications to Accountable Privacy Preserving Blockchains
	Traditional AML
	Blockchain AML


	Conclusion
	Bibliography

