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Abstract

Accurate and fast modeling of the temperature distribution and phase transi-

tions in laser powder bed fusion is a major milestone in achieving its quality

assurance. Commonly referred to as digital twin technology, the goal is to find

agile, fast-to-compute but also sufficiently accurate simulators that can replicate

the 3D printing process while enhancing the quality of its outcomes. While the

nonlinear heat equation in the context of laser powder bed fusion is numerically

solved by the finite element method, three time-efficient surrogates are proposed

as fast alternatives with different trade-offs between model accuracy, robustness,

offline preparation, and online execution time. The first one is the reduced Gaus-

sian process surrogate, which is a data-driven model equipped with a nonlinear

dimension reduction scheme. It outperforms in real-time execution online man-

aging to predict temperature profiles almost instantly, though it is comparably

less accurate, not robust to random anisotropy, and requires offline preparation of

data generation, nonlinear dimension reduction, and training. The second one is

the sketched surrogate with data-driven local projection. It projects the accurate

but high-dimensional finite element method solution with a low-dimensional ba-

sis formed by subsampled training temperatures and then bypasses the majority

of costly computations for the temperature-dependent matrices in the projected

model by randomized sketching. It is the most accurate surrogate while lack-

ing robustness, necessitating the same offline preparation, and taking more time

compared with the first surrogate. The third one is the sketched surrogate with

online local projection. Its projection bases are generated in the process of simula-

tion by combining previous temperature profiles and locally deployed anisotropic

Gaussian functions, while the sketching process utilizes efficient sampling with-
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out replacement based on approximate optimal sampling distributions. Both the

projection and the sketching are designed to implement alongside the printing

process, which makes this surrogate capable of handling different process param-

eters without requiring prior computations offline. The third surrogate, therefore,

is accurate, robust, and requires no offline preparation, although it entails longer

online execution time compared to the other two surrogates. A series of numerical

experiments are carried out to present and compare the performance of the three

surrogates, which assumes a two-layer printing process with a fixed laser beam

trajectory using different printing attributes (laser power and scan speed) and ar-

bitrary thermal conductivity anisotropy. All three surrogates are also principally

feasible in other thermal-driven additive manufacturing to obtain better quality

assurance with techniques like uncertainty management and closed-loop control.
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Lay summary

In laser powder bed fusion, accurately modelling temperature distribution and

phase transitions is crucial for ensuring the quality of the 3D printing process.

The digital twin technology aims to create fast and accurate simulators that can

replicate the printing process and improve its outcomes. Three alternatives to

the traditional method of solving the heat equation have been proposed to reduce

computation time. The first alternative is a reduced Gaussian process model,

which uses data-driven techniques and dimension reduction. It can quickly pre-

dict temperature profiles in real-time, but it is slightly less accurate, not robust

to random variations, and requires some offline preparation. The second alter-

native is the sketched surrogate with data-driven local projection. It projects

the detailed but high-dimensional solution onto a lower-dimensional basis using

selected training temperatures. By using randomized sketching, it reduces the

computational workload. This model is the most accurate but lacks robustness,

requires the same offline preparation as the first alternative, and takes more time

to compute. The third alternative is the sketched surrogate with online local pro-

jection. It generates projection bases during the simulation by combining previous

temperature profiles with specialized Gaussian functions, while its sketching pro-

cess uses efficient sampling techniques. This model is accurate, robust, and does

not require offline preparation, but it takes longer to compute compared to the

other two alternatives. Numerical experiments are conducted using a two-layer

printing process with different laser power, scan speed, and thermal conductivity

variations. These three alternatives can also be applied to other thermal-driven

additive manufacturing processes to enhance quality assurance using techniques

like uncertainty management and closed-loop control.
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Chapter 1

Introduction

1.1 Motivation

Additive manufacturing (AM), popularly known as three-dimensional (3D) print-

ing, has been one of the fast-emerging technologies expected to drive a revolution

in prototyping and manufacturing at home, in a lab, and in the office. Since

the first 3D printer using stereolithography was produced by Charles Hall in the

1980s, the common novelty of AM is successively adding materials instead of

removing them as in traditional manufacturing [1]. It ultimately transforms a

computer-aided design (CAD) into the layer-upon-layer fabrication of a three-

dimensional object with various materials like polymers, ceramics, and metals

[2]. Since the object is fabricated additively, AM enjoys the superiority in de-

sign freedom resulting in increasingly wide applications in many fields such as

aerospace [3], automotive [4], food [5], and medical industry [6].

While AM outperforms in realizing complicated and personalized designs, it

faces the challenge of lacking quality assurance. The quality of printed parts

is not consistent, and the proper values for process parameters mainly rely on

”trial-and-error” efforts. These issues result in time and material waste and

become essential obstacles hindering the full potential of AM. One commonly

recognized way to address the problem is the digital twin (DT). It is a technology

expected to facilitate smart industries in the era of Industry 4.0 by promoting

process productivity and part quality [7]. Instead of being an isolated digital
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model, it is a virtual replica with successive updates based on sensor data received

from the physical twin, and it in turn makes proper decisions on diagnostics and

control. This is a two-way communication between a physical twin and a digital

twin which are respectively a printing process and correspondingly mechanical

models in the context of AM [8]. While high-fidelity mechanical models are

critical in reconstructing and understanding the dynamics in AM, they are also

computationally expensive. In DT, however, large and/or fast implementations

of these digital models are required for applications such as finding optimal prior

values for process parameters and calibrating the digital model with sensor data.

Therefore, it is a bottleneck problem for the DT framework to develop practical,

accurate, and fast-solving surrogates for mechanical models.

Laser powder bed fusion (LPBF), as a thermal-driven metal AM, has in-

trinsically cyclic thermal behaviours with steep thermal gradients, high cooling

rates, and intricate thermal histories, all of which would affect the final part’s mi-

crostructure and mechanical properties [9]. The computational models of LPBF

are categorized as powder bed model, heat source model, melt pool model, solid-

ification model, residual stress model, and other macro-level models [8, 10]. The

thermal modelling of LPBF is a critical mechanical model. On the one hand, it

integrates the model of the powder bed, heat source, and melt pool. While the

information on a powder bed and a heat source are hard to be explicitly obtained

during a printing process, we can use temperature or melt pool size measurements

to calibrate the thermal model to reduce or eliminate the uncertainty caused by all

three categories of models in thermal modelling. The process of calibration, how-

ever, requires a large number of forward implementations of the thermal model,

which increases the demand for fast-solving surrogates. On the other hand, the

results of thermal modelling like temperature profiles, thermal histories, and melt

pool sizes are required for the rest of the micro- and macro-scale models. There-

fore, it is also necessary for other models to develop accurate and fast-computed

surrogates of thermal modelling to facilitate the timely analysis and decision-

making based on all quantities of interest. All in all, it is a meaningful research

area to properly build a high-fidelity thermal model and design its time-efficient

surrogates to dwell in the DT framework of LPBF. Since our aim is set to reduce
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the online execution time, it is expected that there will be a compromise in model

accuracy, robustness, and offline preparation. To cope with different scenarios,

we determine to design the surrogates with different emphases. In specific, one

surrogate is aimed to fulfil real-time implementation. Another surrogate is de-

signed to keep a high level of accuracy. At last, we want a surrogate focusing

on robustness and less offline preparation. Though they are observed with differ-

ent advantages, the criterion of a valid design remains to maintain satisfactory

accuracy while requiring less online running time.

1.2 Objectives

1.2.1 Time-efficient surrogates with different advantages

The thermal model of LPBF is first numerically solved by the finite element

method (FEM) as a reference to evaluate the performance of designed surro-

gates. The thermal model of LPBF should simulate heat transfer during the

fabrication of an object. The powder bed is paved layer after layer on a building

platform which is temperature-controlled to improve the final object’s quality like

mechanical properties, microstructure, and residual stress. Following the trajec-

tory pre-determined by a sliced CAD design, a laser beam selectively melts and

fuses metal alloy powders under the protection of an inert gas atmosphere [1, 11].

As the printing process carries on, some heat is absorbed by powders yielding

melt pools while heat loss due to convection and radiation occurs on the top

and surrounding surfaces. Consequently, we model the heat transfer described

above as a heat equation with Neuman boundary conditions including heat flux

and heat loss, and a Dirichlet boundary condition imposing a constant bottom

surface. The powder bed domain is modelled as a 3D cuboid-shape spatial do-

main which is vertically extended layer upon layer. When a new layer is spread,

the information of remained temperature and material phases in all previous

layers should be kept to ensure the continuity of printing. Moreover, it is nec-

essary to build a high-fidelity simulation with additional designs related to the

nonlinearity due to temperature-dependent thermal properties, the latent heat
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effect, and the anisotropy due to the convection effect in melt pools [12–16]. Our

thermal model should present the characteristics of LPBF and retain adjustable

parameters including physical and nominal parameters such as laser power, scan

speed, beam size, hatch space, scan path, building platform temperature, layer

thickness, thermal properties, the scale factor of anisotropy, energy absorptivity,

and ambient temperature. FEM, as a traditional and high-fidelity way to work

out heat equations, is applied to build the numerical solver where the temporal

domain is finely discretized with a small time interval and the spatial domain is

discretized as tetrahedrons. To reduce computational complexity while maintain-

ing accuracy, a mesh scheme with refinement is developed with fine mesh around

scanning trajectories and coarse mesh elsewhere [17]. The heat equation, however,

is still high-dimensional in order to accurately capture thermal behaviours. The

heat equation is also nonlinear due to temperature-dependent thermal properties

and boundary conditions. Hence, to cope with the nonlinearity, Picard iteration

should be applied to converge to the final temperature result [18]. In short, we

should design a numerical solver with FEM to properly discretize the heat equa-

tion and solve it iteratively with nonlinear loops nested within time loops, the

model accuracy of which should be validated by published experimental data.

Surrogates are designed to improve time efficiency compared with FEM. While

less online execution time is required, there will be some compromise in other as-

pects such as model accuracy, robustness, and offline preparation. In the context

of thermal modelling in LPBF, model accuracy considers the accuracy of tem-

perature distributions, melt pool sizes, and thermal histories. The robustness,

however, means the ability to handle the random anisotropy of thermal conduc-

tivity yielding random melt pool size. In reality, the melt pool size at different

time instants varies with some randomness even with the same printing param-

eters. Therefore, robustness is an important performance as the surrogate being

robust in arbitrary thermal conductivity anisotropy can be more practical to

model a real printing process. Offline preparation indicates the work needed to

be accomplished before the simulations start. Generally, offline preparation aims

to facilitate less online execution time and/or higher accuracy. However, it is also

an advantage if a surrogate has no offline preparation required, which means that
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the surrogate requires no offline cost in either time or storage.

Each surrogate model individually balances the trade-off between running

time, model accuracy, robustness, and offline preparation. Therefore, we aim to

build three surrogates, all of which require less online execution time but respec-

tively bias on real-time implementation, high accuracy, and strong robustness

without offline preparation. The first surrogate focus on real-time implementa-

tion. It can be less accurate, not robust, and require offline preparation, but its

online implementation should be finished instantly. This surrogate is designed

to swiftly produce rough temperature descriptions, which is suitable for applica-

tions with comparably low accuracy requirements. The second surrogate focus

on model accuracy. It needs to keep high accuracy, but the compromise in online

execution time, robustness, and offline preparation is acceptable. This surro-

gate targets the application scenarios where accuracy matters most. The third

surrogate focus on robustness and no offline preparation. Though it has some

compromises in model accuracy and online execution time, it is competent in

handling arbitrary thermal conductivity anisotropy and saves the cost of offline

preparation. This surrogate aims to be more practical in simulating a real print-

ing process. Though the three surrogates have different advantages, they all need

less online execution time while maintaining reasonable accuracy.

1.3 Dissertation outline and notation

The dissertation contains 8 chapters: introduction, literature review, nonlinear

thermal model of LPBF, reduced Gaussian process surrogate, sketched surrogate

with data-driven local projection, sketched surrogate with online local projection,

results, and conclusion. In the chapter of introduction, we express what motivates

us to develop time-efficient surrogates for the digital twin of LPBF. The objec-

tives of this thesis are also delineated in the introduction part, which includes a

reference numerical solver and three time-efficient surrogates with different ad-

vantages. The literature reviews are outlined in chapter 2, which contains the

literature about laser powder bed fusion, thermal modelling of LPBF, digital twin

of AM, and surrogate model. The third chapter describes the nonlinear thermal
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model of LPBF. The nonlinear heat equation is set up in the context of LPBF

where temperature-dependent thermal properties, phase changes, the anisotropy

of thermal conductivity, and latent heat are considered. Correspondingly, the

full-order numerical solver with FEM is developed with Gaussian quadrature ap-

proximation and Picard iteration. Three time-efficient surrogates are respectively

explained in chapter 4, 5, and 6. In chapter 4, reduced Gaussian process surro-

gate is described by subsampling and a swift high-dimensional temperature pre-

dictor. Sketched surrogate with data-driven local projection is then introduced in

chapter 5 where the three subsections respectively show subsampling-based local

projection, randomized sketching, and high-dimensional temperature prediction.

Another sketched surrogate is shown in chapter 6. It is a sketched surrogate with

online local projection where Gaussian local projection bases are generated online

and randomized sketching is implemented with approximate sampling probabil-

ity. The results of the three surrogates are detailed in chapter 7 which include

the performance comparison in model accuracy, robustness, offline preparation,

and time cost reduction. The methods explained from chapter 3 to chapter 6

have been published either in [19] or in [20]. A simplified example of the sketched

surrogate with online local projection is given with codes provided in the Github

repository [21], the evaluation of which is detailed in section 7.4.1 of the result

chapter and has been published in [20]. The rest of the results chapter, how-

ever, is different from the two published papers to let the performance of the

three surrogates be compared under the same parameter settings. Conclusions

are then detailed in chapter 8 where the performance of the three surrogates is

summarized and some suggestions for their applications are given.

In this thesis, the matrices are presented in capital letters. For example, we

denote a matrix as X, the i-th row, the i-th column, and the (i, j)-th entry of

which are respectively expressed as Xi∗, X∗i, and Xij. Vectors that are not rows

or columns of a matrix are in lowercase letters, with the i-th entry of x denoted

as xi. Continuous quantities are also specified in lowercase letters and tensors are

denoted as ~x.
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Chapter 2

Literature Review

2.1 Laser powder bed fusion

2.1.1 Introduction to laser powder bed fusion

Generally, there are seven types of AM: vat photopolymerization (VPP), ma-

terial extrusion (MEX), material jetting (MJT), binder jetting (BJT), powder

bed fusion (PBF), sheet lamination (SHL), and direct energy deposition (DED),

among which PBF is a prevalent metal AM technique selectively melting and

fusing powders in the powder bed paved layer by layer [1]. LPBF, however, is a

sub-category of PBF using a laser instead of an electron beam as the heat source.

It is a prevalent AM technique in metal fabrication with superiority in realiz-

ing complex or personalized design resulting in increased application in fields

like aerospace [3], automotive [4], and medical industry [6]. LPBF successively

spreads and selectively melts thin layers of powder to fabricate physical parts

from 3D geometrical designs [1]. In specific, a sequence of 2-dimensional layers

is generated by slicing the CAD of a 3D object. One layer of powder is evenly

paved on the temperature-controlled building platform. Under the protection of

an inert gas atmosphere, the laser beam selectively scans the top of the powder

bed with the trajectory predetermined by the slicing software. Then, the plat-

form declines for the height of a layer thickness, and a new layer of powder is

recoated above the previous layers. After repeating this cycle, the printed part

is formed by fusing the melted material of adjacent trajectories and layers [22].
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The schematic of LPBF is illustrated as figure 2.1.

Figure 2.1: The schematic of LPBF.

As one promising technique of metal AM, a lot of research in material de-

velopment has been undertaken. Numerous metal materials can be employed in

LPBF, such as alloys [13, 23–32], steels [33–36], and superalloys [37–41]. Some

commonly-used metal materials in LPBF are listed in table 2.1. Despite the

Table 2.1: The list of some commonly-used metal materials in LPBF.

Material type Composition Reference

Aluminum alloy

AlSi7Mg [23]
AlSi10Mg [13, 24]
Al-12Si [25]
Al-20Si [26]

Titanium alloy
Ti6Al4V [27, 28]

TiAl [29, 30]

Magnesium alloy
ZK60 [31]

AZ91D [32]

Steel
316L [33, 34]

17-4SS [35]
H11 [36]

Superalloy

IN718 [37]
IN625 [38, 39]

IN738LC [40]
247LC [41]

choice of printing material, various shielding gases such as argon, nitrogen, and

helium are commonly used to protect the printed part from oxidation [38, 42].

Like other types of AM, LPBF has the advantage of fabricating parts with de-

signs deemed to be impractical or cumbersome in traditional manufacturing [43].
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Though it enjoys the ability to fabricate parts with high complexity, one of the

main challenges inhibiting the full potential of LPBF is the inconsistency of part

quality [44]. The part quality is affected by various process parameters such as

laser power and scan speed. Lee et al. proposed a model-free optimal controller

to reach a target temperature by adjusting scan speed [45]. In [46], an adaptive

control system was developed with a finite difference model of the heat equation

to control melt pool sizes by adjusting laser power. To avoid the ”trial-and-error”

effort in process optimization and control, it is essential to build models and sim-

ulations to deepen the understanding of the physics in LPBF. Though LPBF is a

conceptually straightforward process, the modelling of underlying physics is still

intricate and of large spatial and temporal scale [47].

2.1.2 Modelings of LPBF

There are extensive researches about the LPBF’s modelling and simulation which

are mainly divided into five types: powder bed model, heat source model, melt

pool model, solidification model, and residual stress model [8, 10]. The connec-

tions between these six categories of models are shown in figure 2.2. Powder bed

Figure 2.2: The connections between computational models of LPBF.

models are aimed to produce packing structures of powder beds like powder bed

porosity, packing density, and radial distribution based on inputs like the size and

shape of powder, layer thickness, re-coater shape, and velocity [48, 49]. Interac-

tions occurring between individual powder particles such as adhesion, collision,

and friction are modelled under the consideration of diverse forces such as friction,

gravity, elastic forces, and van der Waal forces [50, 51]. Numerically, the discrete
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element method (DEM) [50, 51] and the raindrop packing algorithm [52, 53] are

utilized under the assumption of spherical particle shape and a particle size dis-

tribution such as Gaussian [50], uniform [51], monosized [53], or bimodal [52].

It is essential to properly establish a heat source model since it affects the melt

pool geometries as well as the final parts’ mechanical properties. A laser beam

can be approximated as a two-dimensional surface heat source on the top surface

such as an ellipsoidal heat source decaying exponentially [12], or a Gaussian heat

source with normally distributed intensity [13, 54]. It can also be simulated as

a volumetric heat source considering the penetration of laser scanning. Various

three-dimensional geometries can be employed to model a heat source such as

cylindrical [55], semi-spherical [56], semi-ellipsoidal [56], and conical shapes [57].

The melt pool model governed by a heat equation with corresponding bound-

ary conditions describes the transient thermal fields and simulates the melt pool

characteristics. In [58], an analytical solver was proposed to model thermal his-

tories using specific enrichment and compensation functions. FEM is one of the

most popular numerical solvers of heat transfer in LPBF, which provides high-

fidelity results with fine spatial and temporal discretization [13, 59]. Another

numerical solver of melt pool models is coupling FEM and finite volume method

(FVM) with the software tool ALE3D employing arbitrary Lagrangian-Eulerian

(ALE) techniques [60, 61]. While the powder bed model gives the porosity distri-

bution and the heat source model gives the distribution of absorbed energy, the

thermal model based on the above-mentioned two distributions produces temper-

ature fields over the spatial and temporal domain which then become the inputs

of solidification and residual stress model either directly by thermal histories or

indirectly by melt pool sizes [10]. The solidification model depicts the formation

of grain structure during the solidification process yielding microstructure char-

acteristics including grain size, grain texture, and grain morphology [62]. With

the information on melt pool geometries, temperature gradients, and cooling rate,

the cellular automata (CA) and phase field (PF) methods are commonly used to

model grain structures. Zhang et al. developed a predictive model by coupling

cellular automaton and finite element method where coarse-scale temperatures

produced by the finite element (FE) model were interpolated to the scale needed
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for the CA model and the FE-CA model generated the evolution of grain mor-

phology occurring as the cooling of deposition [63]. Azizi et al. studied grain

growth with a multi-order parameter type PF model in the context of LPBF, the

underlying thermal conditions of which considered different build directions [64].

Residual stress is induced by heating and cooling cycles with high thermal gra-

Table 2.2: Inputs and outputs of the computational models of LPBF [8, 10].

Model Inputs Outputs

Powder bed

Restitution coefficient
Damping coefficient
Young’s modulus
Sliding friction coefficient
Rolling friction coefficient
Radius distribution

Packing density
Powder bed porosity
Particle size distribution
Particle radial distribution

Heat source

Beam diameter
Laser power
Scan speed
Powder distribution
Powder shape

Absorbed energy
Vertical absorption distribution

Melt pool

Laser power
Scan speed
Absorption energy
Thermal properties
Layer thickness
Preheating temperature
Particle radial distribution

Melt pool size
Thermal history
Porosity
Layer bonding defects

Solidification
Cooling rate
Thermal history
Melt pool size

Grain size
Thermo-mechanical properties

Residual stress
Thermal history
Thermo-mechanical properties

Residual stress
Shrinkage
Deformation
Fatigue life

dients and rapid cooling, which may cause cracks and deformation of final parts.

It is modelled either by simple equilibria of force and moment [65] or the thermo-

mechanical analysis based on FEM [66, 67]. The accuracy of the residual stress

model depends on the thermal history and microstructure while the accuracy of

the microstructure depends on the melt pool geometries, thermal gradient, and
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cooling rate. We thus can tell that the errors of the thermal model will propagate

to the modelling and simulation of the properties of the final parts. The inputs

and outputs of each computational model of LPBF are listed in table 2.2.

2.2 Thermal modelling of LPBF

The thermal modelling of LPBF should describe the transient heat transfer dur-

ing rapid heating and cooling cycles of a printing process, from which thermal

histories and melt pool sizes will be characterized. The thermal model is gov-

erned by a heat equation under the context of LPBF, the numerical domain of

which is a layerwise-increased cuboid to simulate a powder bed paved layer af-

ter layer. A Dirichlet condition keeps the bottom surface constant to simulate

the temperature-controlled building platform. Other surfaces are imposed with

a Neumann boundary condition that considers heat source and heat loss. As the

temperature changes are driven by the laser beam, the heat source model describ-

ing the heat flux caused by a laser beam is critical. Distinguished by whether

the penetration depth is considered, the laser beam is modelled as either a vol-

umetric or surface heat source. Foroozmehr et al. adopted a volumetric heat

source where the laser beam penetrated the porous powder bed with an effective

optical penetration depth [55]. The surface heat source serves as a Neumann

boundary condition of the heat equation. In [13, 68], the heat flux density of the

laser beam was deemed to obey a Gaussian distribution. For a more complicated

surface heat source with anisotropy, Goldak et al. proposed a double-elliptical

model where there are front and rear quadrants with different heat fractions and

effective radius [56]. The heat loss, however, occurs on the surrounding and top

surfaces, which includes heat convection and radiation [13].

The heat equation is nonlinear, the nonlinearity of which is introduced by both

the radiation heat loss and the thermal properties including thermal conductivity,

density, and specific heat capacity. These thermal properties depend on materials,

phases, and temperatures. Experimental data on the thermal properties of metals

are available so that we can model the variation of thermal properties in terms

of temperature. In [14], thermal properties of AlSi10Mg were fitted by piecewise
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polynomials separated as three temperature ranges respectively representing the

solid, mushy, and liquid states. To consider the latent heat of the isothermal

phase change between solid and liquid, Kollmannsberge et al. characterized the

jump of specific heat capacity between two phases by a phase change function

where the smoothness was controlled by a calibratable parameter and the specific

value of latent heat was provided by experiments [12]. Another phase of metals in

LPBF is powder, the effective thermal properties of which can be represented by

the thermal properties of metals and shielding gas, and the porosity of the powder

bed. The powder bed porosity as the volumetric fraction of void in the entire

domain is employed to connect the temperature-dependent thermal properties of

powder with the corresponding thermal properties of solid and inert gas. In [69,

70], the thermal conductivity of porous material was characterized by the Maxwell

and the Bruggeman models using the thermal conductivity of solid and porosity.

The density and specific heat capacity of powder bed can be approximated by the

weighted sum of solid and inert gas according to their corresponding volumetric

fractions [13, 14, 71, 72].

One major criticism of heat transfer simulation which is also a primary differ-

ence between a thermal model and computational fluid dynamics (CFD) models

is the neglection of Marangoni convection in melt pool dynamics. In the review

presented by Shu et al., the necessity to consider the effect of convection, espe-

cially the Marangoni convection, was shown as it makes the results consistent

with experiments [73]. To mimic the Marangoni convection effect, Karayagiz et

al. artificially increased the thermal conductivity of the material in the liquid

phase [74]. An anisotropic enhanced thermal conductivity model was applied

and validated in [75] which used directional correction factors to manipulate the

thermal conductivity of liquid phase in the three Cartesian directions. There

are a considerable number of existing research fulfilling numerical solvers of the

thermal modelling of LPBF, some of which are validated by experiments. In [13],

nonlinear thermal modelling of SLM was implemented where AlSi10Mg powder

was melted in an argon atmosphere. The simulation solved by FEM was followed

by experimental validations, and the variation of melt pool size with different laser

power and scan speed was analyzed. Stefan et al. supplemented the anisotropy
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of thermal conductivity in liquid phase [12]. A different material IN625 was uti-

lized, and the experimental data set in AM benchmark marked as AMB2018-02

was employed as the reference for accuracy validation. It was shown that this

thermal model was more predictive than the thermal models without the con-

sideration of anisotropy. In LPBF, heat transfer in solid area is determined by

heat conduction, while in liquid area heat is transferred through a combination of

heat conduction and convection. Heat convection is the heat transport facilitated

by the fluid movement which primarily results from temperature-induced surface

tension gradients and the recoil pressure generated by the fluid evaporation at the

fluid’s free surface. A full CFD modelling is thus required to simulate the heat

transfer of LPBF [73]. In this thesis, the thermal modelling accommodates the

heat convection in liquid phase with the anisotropic enhanced thermal conduc-

tivity model proposed in [12, 75] which emulates heat convection by scaling the

liquid thermal conductivity in the three Cartesian directions with three positive

weights.

2.3 Digital twin of AM

Initially, DT is employed by NASA to predict the fatigue failure of critical com-

ponents in 2003 [7]. It replicates a real system with a multi-physical and multi-

variable simulation, the concept of which stretches from a single product to a ma-

chine or an entire environment of production over time [76]. For the elementary

level, a digital model runs according to the sensor data from a real machine. The

virtual replica at this level, also called digital shadow, is only a mono-directional

interaction from a physical object to a digital model [77]. Ladj et al. proposed

a digital shadow absorbing expert knowledge and artificial intelligence to charac-

terize the operation of the physical system, the application of which was provided

with an example in the aeronautical machining industry [78]. For the advanced

level, a bi-directional interaction is established where data from a digital shadow

is also delivered to its physical twin. Therefore, the loop of virtual feedback is

closed and a full DT is formed. A DT at this level can be used in process opti-

mization, defect detection, and achieving self-calibration [76]. Stojanovic et. al
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Figure 2.3: The schematic of DT operation.

presented a data-driven DT approach to enable root cause analysis and process

control in multi-dimensional and large process space, in which a 3D laser cutting

process was used as a showcase [79]. Tancredi et al. integrated machine learning

algorithms into a DT of a real industrial plant to enable anomaly detection in

industrial system operation and enhance employee safety [80]. The mono- and

bi-directional interaction in digital shadow and digital twin is shown in figure 2.3.

In the era of Industry 4.0, intelligent decisions are made for production systems

via real-time communication and cooperation to facilitate the mass and efficient

production of high-quality personalized products [81]. Both AM and DT are two

key concepts in Industry 4.0, the combination of which is an active research area to

release the innovative potential of digital manufacturing. The fabrication process

of AM involves complicated physical phenomena, and the quality of printed parts

is affected by the process variables of the 3D printer. The number and size of key-

hole pores are expected to increase with higher laser power, while the formation

of which is restrained by a higher scan speed [82]. The defect of lack-of-fusion

porosity can be overcome by narrowing hatch space, reducing layer thickness,

lower scan speed, and higher laser power [83]. Residual stress/distortion result-

ing from large thermal gradients and fast cooling rates during the layer-wise

solidification of LPBF can be relieved by higher laser power, lower scan speed,

and a reduction of build plan area [84]. Therefore, the process optimization and

efficient coordination of AM is profitable to fabricate structurally sound objects.

However, it is time- and resource-consuming to optimize the AM process with

trial-and-error efforts. Instead, we can alter printing attributes according to fast-

computed high-fidelity models that simulate how process parameters affect the

object’s properties. These models upon validation are the components of the DT
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of AM [85]. For the DT of LPBF, a numerical framework is thereby established

to estimate the interaction between powders, melt pool sizes, heating and cooling

rates, solidification parameters, the evolution of residual stress, and the formation

of defects, etc [60, 86].

Though high-fidelity numerical solvers of digital models produce accurate sim-

ulations and predictions of a LPBF system, they are computationally intensive

and thereby not applicable to connect with real-time sensor data and make intel-

ligent decisions in time. The computational speed of digital models is essential

in both realizing the one-way communication in a digital shadow to simulate the

physical system with real-time sensor data and the two-way communication in a

digital twin to perform corrective control commands, which excludes the option

of utilizing high-fidelity numerical solvers and makes the fast-solving yet accurate

enough alternatives become a fundamental part of developing a DT framework

[87].

2.4 Surrogate model

A surrogate model (SM) is an alternative to computer models, which is normally

swift in computation while remaining accurate. It is regarded as a better trade-

off between time cost and model accuracy and is thus appreciated in applications

requiring large and/or rapid simulations. Unlike other computer models, DT con-

tinuously tracks the physical twin by leveraging sensor data, machine learning,

and the internet of things [88]. It is compelling to use surrogates in DT technol-

ogy since detailed models are generally computationally demanding and thereby

are not suitable to effectively fulfil the tasks such as optimization, control, and

decision-making [89].

Data-driven surrogates are the most prevalent type of surrogate, which has

low online evaluation cost while subjecting to the computational-expensive cali-

bration, overfitting, and subjective structure [90]. Tang et al. trained a surrogate

based on deep learning to describe the temporal dynamics of an oil-water sub-

surface flow model [91]. In the context of AM, a recurrent neural network was

proposed by Mozaffar et al. to predict temperature profiles with different geome-
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tries in the directed energy deposition process, which was expensive in storage

and computational cost due to the requirement of an exorbitant amount of train-

ing data [92]. In [93], Roy et al. designed heat influence zones to cut down the

data required to train deep neural network mapping from part sizes to thermal

histories. For a complicated engineering process like AM, the full-order models

are normally high-dimensional, the dimensionality of which increases with higher

complexity and a larger number of system parameters. Dimension reduction is

therefore commonly employed in surrogate models to reduce the computation re-

quired without overly sacrificing the representativeness of the whole process [94].

Liu et al. developed a surrogate that couples principal component analysis (PCA)

and the Kriging model, which was employed to efficiently analyze uncertainty

propagation of dynamic systems in engineering [95]. In [96], the reduced Gaus-

sian process (GP) emulated the high-dimensional parametrized partial differential

equations (PDEs) where the dimensionality of output space was dramatically re-

duced by Isomap and kernel Isomap method and the high-dimensional results

were ultimately predicted as linear combinations of trained snapshots. In [97],

the surrogate model consisted of three cascading steps: dimension reduction, low-

dimensional mapping, and reconstruction. While the encoding and decoding of

the autoencoder were separated for dimension reduction and reconstruction, the

low-dimensional mapping was a feed-forward neural network trained to connect

the encoder and decoder of the autoencoder.

Another type of surrogates is projection-based where the governing equations

are projected to a low-dimensional subspace by an orthonormal basis which should

be able to span a space covering the final results. Projection bases can be estab-

lished via moment matching [98], balanced truncation [99], or proper orthogonal

decomposition (POD) [100]. The POD method is a data-driven approach to build

optimal bases where snapshots generated by the full order model are gathered to

form orthonormal projection bases [100]. As described in [101], moment matching

is an interpolation approach generating bases based on the Hermite interpolation

condition and Krylov subspace technique. Balanced truncation, however, is a

common notion in the community of control theory where bases are found based

on the reachability and observability Gramian [99]. In [102], Youngsoo et al. de-
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veloped the construction of the incremental space-time reduced basis for a large-

scale linear Boltzmann transport problem. A further speed-up was achieved in

[103] after the FEM for elliptic partial differential equations were projected onto

a low-dimensional subspace. The projected model was further sketched with ran-

domized sampling to accomplish a speed-up of two orders of magnitude with a

small compromise in accuracy. The performance of projection-based surrogates

is limited in nonlinear systems because the number of nonlinear computations is

still consistent with the dimensionality of the original, not the reduced system.

To tackle this issue, Boris et al. first lifted the nonlinear model and then applied

POD bases. The lifting introduced auxiliary variables and transformed ordinary

differential equations (ODEs) or differential-algebraic equations into polynomial

systems by variable transformation [100]. Since the reduced-order operators of

the polynomial system could be precomputed, the online computation was re-

duced without further approximation of nonlinear systems. In [104], the non-

linear parts of ODEs were approximated by the discrete empirical interpolation

method (DEIM). With the combination of projection and interpolation, DEIM

managed to cut down the number of nonlinear computations into a significantly

less amount proportional to the model dimension reduced by POD.

Surrogates can also be multi-fidelity-based, which are established by simplify-

ing the underlying physics and/or loosening the numerical resolution. To reduce

the computational complexity for the thermal simulation of LPBF, the compli-

cated melt pool convection can be ignored as in [13, 105], or be simplified to an

anisotropic enhanced thermal conductivity model as in [12, 37]. To reduce the

spatial nodes in FEM, adaptive meshing can be employed where a finer mesh is ap-

plied in the area with more complicated temperature fluctuation. Using the ther-

mal simulation in [13] as the benchmark, a lower-fidelity model was developed in

[14], the computational complexity of which was alleviated by a two-dimensional

adaptive mesh where the computation time and memory were dramatically re-

duced by increasing the distance between lower nodes. In [17], a strategy of

adaptive mesh was provided to refine the discretization around geometric com-

ponents while the rest of the domain had coarser meshes. A multi-fidelity-based

surrogate can also be established by combing a low-fidelity simulation with a
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coarse mesh and a discrepancy surrogate describing the difference between low-

and high-fidelity simulations. Zhang et al. constructed a multi-fidelity surrogate

model using linear regression. This method effectively utilized data from multiple

fidelity sources, leveraging low-fidelity models as basis functions while identifying

their coefficients and discrepancy function through linear regression [106]. Han

et al. proposed an alternative cokriging method for variable-fidelity surrogate

modelling, in which a scale factor was incorporated into the cokriging predictor

to accurately capture the impact of low-fidelity data on high-fidelity function pre-

dictions. Through illustrative examples, they demonstrated the potential of the

proposed surrogate in facilitating efficient aerodynamic data generation, shape

optimization, and other areas employing computer codes with diverse levels of

fidelity [107].
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Chapter 3

Nonlinear Thermal Model of

LPBF

In LPBF, a trajectory is predetermined according to the object we want to print.

Following this trajectory, a laser beam selectively scans the top surface of the

powder bed yielding melt pools. The melt pools fuse with the adjacent printed

part, and the final object will eventually be formed by layer-after-layer print-

ing. The schematic of printing a cuboid object and the temperature distribution

during printing are descriptively shown in figure 3.1.

Figure 3.1: Left, a schematic depicting the apparatus of a LPBF printing process
and to the right a typical profile of the temperature distribution in the part when
heated with a Gaussian heat source.
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3.1 Governing equations

Heat transfer of a tN seconds scanning process is modelled as a nonlinear heat

equation over a 3D computational domain Ω ∈ R3, which is

ρ(u)c(u)
∂u(x, t)

∂t
−∇ · ~κ(u)∇u(x, t) = 0, (x, t) in Ω× [0, tN ], (3.1)

where u(x, t) is the temperature at time t with 3D Cartesian coordinates x =

[x1, x2, x3]T . The thermal properties of the material including thermal conduc-

tivity ~κ, density ρ, and specific heat capacity c are temperature-dependent [12].

The boundary of Ω denoted as Γ is partitioned into three parts: the top surface

Γt, the side surface Γs that’s normal to the printing plane, and the bottom surface

Γb. For these we have a Neumann boundary condition relating the heat source q,

to the heat losses due to convection qc and radiation qr as

~κ(u)∇u(x, t) · n̂ = q(x, t)− qc(u)− qr(u), x on Γt ∪ Γs, (3.2)

where n̂ is the outward unit normal on the boundary surface. The heat source

function at the boundary q(x, t) models the cross-section of a Gaussian laser beam

as it enters the top surface of the domain

q(x, t) =
2αP

πς2
exp
(
−2‖x− µ(t)‖2

ς2

)
, x on Γt, (3.3)

where µ(t) ∈ R3 is the spatial coordinate of the laser beam centre at time t, α

is the absorptivity, P is the laser power, and ς is the effective radius of the laser

beam [13]. For the heat losses due to convection and radiation, we consider the

nonlinear models

qc(u) = h(u− ua), x on Γt ∪ Γs, (3.4)

qr(u) = σsε(u
4 − u4

a), x on Γt ∪ Γs, (3.5)

where h > 0, σs, ε, and ua are respectively the heat convection coefficient, the

Stefan-Boltzmann constant, the emissivity, and the ambient temperature, all of

which are regarded as constants according to [15, 16]. The bottom surface of the
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part is kept at a constant temperature via a temperature-controlled platform,

thus we impose a Dirichlet condition there as [108]

u(x, t) = ub, x on Γb, t ∈ [0, tN ]. (3.6)

In effect, an initial condition

u(x, 0) = u0, x in Ω, (3.7)

suffices to yield a unique temperature solution u(x, t) to simulate the heat transfer

over the spatial and temporal domain. In this thesis, the laser beam is modeled

perpendicular to the top surface of the powder bed. If a tilted angle is needed,

the heat source model in equation (3.3) can be changed as an anisotropic surface

heat source such as a double-elliptical shape featuring varied front and rear heat

fractions and effective radius [56].

3.2 Temperature-dependent thermal properties

3.2.1 Anisotropy of thermal conductivity

The influence of fluid flow, rather than heat conduction, on melt pool geome-

try and temperature distribution is more pronounced, necessitating the use of

detailed CFD for precise predictions. However, employing detailed CFD models

demands extensive computational resources and expertise [37]. As a practical

alternative, the anisotropy due to the intricate melt pool convection is simpli-

fied as an anisotropic enhanced thermal conductivity model which specifies the

divergence term in equation (3.1) as

∇ · ~κ(u)∇u :=
3∑

i,j=1

∂

∂xi

[
κij(u)

] ∂u
∂xj

. (3.8)

where κii satisfy κ11(u) : κ22(u) : κ33(u) = λ1 : λ2 : λ3, for some positive weights

λ ∈ R3. To correct the liquid thermal conductivity in three Cartesian directions,

we have κii scaled by λ = [λ1, λ2, λ3]T and κij = 0 when i 6= j. Furthermore, λ1,
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λ2, λ3 are different in liquid phase, while λ1 = λ2 = λ3 = 1 for the unmelted mate-

rials [12, 37]. The vector λ in liquid phase can be considered as time-invariant to

be estimated from experimental data as in [13], or it may allow to vary randomly

in a range which resembles more accurately a real process [75, 109].

3.2.2 Latent heat

The characterization of the latent heat effect during the isothermal phase change

is incorporated through the specific heat capacity c. Since the phase change

between solid and liquid in metals is not purely isothermal, the abrupt transition

is smoothed within the temperature range defined by us and ul which respectively

represent the lower and upper temperature bounds of the mushy area [12]. To

ensure a more realistic representation of the phase change process, the model of

specific heat capacity c is

c = c̄+ L
∂fp
∂u

, (3.9)

where L is the specific latent heat of materials and

fp = 1/(1 + exp (−$(u− (us + ul)/2))), (3.10)

is a temperature-dependent sigmoid function where $ > 0 is the logistic growth

rate controlling smoothness. The calibration of the parameter $ is necessary

since there is no available measurement to determine the exact process of the

phase change.

3.2.3 Polynomial fitting

The temperature-dependent thermal properties including thermal conductivity

κ, density ρ, and specific heat capacity c̄ are modelled as polynomials by fitting

with experimental data. The fitted polynomials are piecewise functions in three

temperature ranges: u 6 us, us < u < ul, and u > ul, which respectively indicates

the solid phase, the mushy area, and the liquid phase [13].

23



3.2.4 Thermal properties of powder

In the temperature range u 6 us, the materials have two phases in LPBF: powder

and solid. Different from the thermal properties of solid which are fitted poly-

nomials based on experimental data, thermal properties of powder denoted as

κp, ρp, and c̄p are modelled according to the porosity of powder bed φp, thermal

properties of the solid material and the inert gas atmosphere [70, 110].

κp = (1− φp)1.5κ, (3.11)

ρp = (1− φp)ρ+ φpρa, (3.12)

c̄p = (1− φp)c̄+ φpca, (3.13)

where the density ρa and specific heat capacity ca of the surrounded inert gas are

similarly modelled as polynomials fitted by experimental data.

3.3 The full-order numerical solver with FEM

A high-fidelity numerical solver of the nonlinear thermal model as equations (3.1)-

(3.7) is developed using the FEM where fine discretization is applied in both tem-

poral and spatial domains. While a tN seconds printing process is discretized as

N time steps with an interval ∆t namely tn = n∆t for n = 0, 1, · · · , N , the spatial

domain Ω is discretized into ns surface triangles, ne tetrahedron elements, and

ñd = nd + n̄d nodes including nd degrees of freedom (DoF) and n̄d nodes on the

bottom surface Γb. The temperatures are approximated by linear combinations

of basis functions φi for i = 1, · · · , ñd. In other words, the temperature at the

nth time step is approximated as
∑ñd

i=1 ũniφi where ũn ∈ Rñd contains the tem-

peratures un ∈ Rnd at nd DoF and the temperatures ū = ub×1 ∈ Rn̄d imposed as

a constant temperature ub according to the Dirichlet condition as equation (3.6).

Given un−1, the temperature at the next time step un satisfies

A(un)un = b(un−1, un), for n = 1, · · · , N, (3.14)
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where the temperature-dependent matrixA(un) ∈ Rnd×nd and the vector b(un−1, un) ∈

Rnd in equation (3.14) are composed by

A(un) = K(un) +
1

∆t
M(un) +Qr(un) +Qc, (3.15)

b(un−1, un) =
1

∆t
M(un)un−1 + l(tn) + a− (K̄(un) + Q̄r(un) + Q̄c)ū. (3.16)

As stated in equation (3.15), the matrices on the left-hand side of equation (3.14)

are defined on nd DoF including the matrix of convection heat loss Qc ∈ Rnd×nd

that is not temperature-dependent and three temperature-dependent matrices:

the stiffness matrix K(un) ∈ Rnd×nd , the mass matrix M(un) ∈ Rnd×nd , and

the matrix of radiation heat loss Qr(un) ∈ Rnd×nd . On the right hand side

of equation (3.14), there are the terms 1
∆t
M(un)un−1 + l(tn) + a defined on nd

DoF and the terms K̄(un) + Q̄r(un) + Q̄c being the coefficients of n̄d nodes on

the bottom surface Γb. We subtract the terms relating to the Dirichlet condi-

tion (K̄(un) + Q̄r(un) + Q̄c)ū to balance the left-hand side that only contains

the nd DoF. The matrices and vectors in equation (3.15) and (3.16) are de-

fined as the integrals over the domain or the boundary, the integrands of which

are specified in table 3.1 where φi is the basis function of node i in FEM. The

Gaussian quadrature approximations of these integrals are also listed in table

3.1. nk, nm, nr, and nc respectively represent the number of integration points

sampled in each element to approximate the integrals in K(un), M(un), Qr(un),

and Qc by Gaussian quadrature rules. |Ωp| is the volume of the pth tetrahe-

dron element for p = 1, · · · , ne, and |Sq| is the area of the qth triangle sur-

face for q = 1, · · · , ns. The spatial coordinates and weights for the τth inte-

gration points of K(un), M(un), Qr(un), Qc, a and l(tn) are respectively de-

noted as {x(τ)
k ∈ Rne×3, w

(τ)
k ∈ Rne}nkτ=1, {x(τ)

m ∈ Rne×3, w
(τ)
m ∈ Rne}nmτ=1, {x(τ)

r ∈

Rns×3, w
(τ)
r ∈ Rns}nrτ=1, {x(τ)

c ∈ Rns×3, w
(τ)
c ∈ Rns}ncτ=1, {xa ∈ Rns×3, wa ∈ Rns},

and {x(τ)
l ∈ Rns×3, w

(τ)
l ∈ Rns}nlτ=1. As stated in algorithm 1, the nonlinear

system of equations (3.14) is solved via Picard’s iterations which takes several it-

erations of solving nd-dimensional linear equations to converge to the solution of

the original nonlinear equation when the error at the (k + 1)th iteration satisfies
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‖A(u
(k+1)
n )u

(k+1)
n − b(un−1, u

(k+1)
n )‖ < εp or ‖u(k+1)

n − u(k)
n ‖/‖u(k+1)

n ‖ < εp with a

small tolerance εp, e.g. 10−5, or the maximum number of iteration reaches [18,

111]. The steps of implementing the numerical solver with FEM are detailed in

algorithm 2.

Algorithm 1 The Picard iteration of solving a nonlinear heat equation

Input: the temperature un−1 ∈ Rnd , an error tolerance εp ∈ R, a maximum

number of iteration np, the temperature-dependent matrix A(un) ∈ Rnd×nd ,

and vector b(un−1, un) ∈ Rnd .

Output: the temperature un ∈ Rnd .

1: k = 0.

2: u
(0)
n = un−1.

3: do

4: u
(k+1)
n = A(u

(k)
n )−1b(un−1, u

(k)
n ).

5: ep = ‖A(u
(k+1)
n )u

(k+1)
n − b(un−1, u

(k+1)
n )‖ or ‖u(k+1)

n − u(k)
n ‖/‖u(k+1)

n ‖.

6: k = k + 1.

7: while ep > εp and k < np

8: un = u
(k)
n .

Table 3.1: The integral definition of matrices in FEM and their Gaussian quadra-
ture approximation.

Symbol Size
Integral definition

(i, j = 1, · · · , nd, j̄ = 1, · · · , n̄d)
Gaussian quadrature

approximation

K(un) Rnd×nd K(un)ij =
∫

Ω ~κ(un)∇φi · ∇φjdx W T
k DkWk

M(un) Rnd×nd M(un)ij =
∫

Ω ρ(un)c(un)φiφjdx
∑nm

τ=1W
(τ)T

m D
(τ)
m W

(τ)
m

Qr(un) Rnd×nd Qr(un)ij =
∫

Γt∪Γs
σεu3

nφiφjds
∑nr

τ=1W
(τ)T

r D
(τ)
r W

(τ)
r

Qc Rnd×nd Qcij =
∫

Γt∪Γs
hφiφjds

∑nc
τ=1W

(τ)T

c D
(τ)
c W

(τ)
c

a Rnd ai =
∫

Γt∪Γs
(hua + σεu4

a)φids W T
a da

l(tn) Rnd l(tn)i =
∫

Γt
q(tn)φids

∑nl
τ=1W

(τ)T

l d
(τ)
l

K̄(un) Rnd×n̄d K̄(un)ij̄ =
∫

Ω ~κ(un)∇φi · ∇φj̄dx W T
k DkW̄k

Q̄r(un) Rnd×n̄d Q̄r(un)ij̄ =
∫

Γt∪Γs
σεu3

nφiφj̄ds
∑nr

τ=1W
(τ)T

r D
(τ)
r W̄

(τ)
r

Q̄c Rnd×n̄d Q̄cij̄ =
∫

Γt∪Γs
hφiφj̄ds

∑nc
τ=1W

(τ)T

c D
(τ)
c W̄

(τ)
c

As the definition of Dk, D
(τ)
m , and D

(τ)
r stated in table 3.2, the number of

temperature-dependent nonlinear computations relates to the number of tetra-

hedron elements ne and the number of triangle surfaces ns, both of which are
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Table 3.2: The definition of matrices in Gaussian quadrature approximation.

Symbol Size
Definition

(j = 1, · · · , nd, j̄ = 1, · · · , n̄d, p = 1, · · · , ne, q = 1, · · · , ns)

Dk R3ne×3ne [Dk3p−2,3p−2 , Dk3p−1,3p−1 , Dk3p,3p ]
T = (|Ωp|

∑nk
τ=1w

(τ)
k κ(x

(τ)
kp∗

))λ

D
(τ)
m Rne×ne D

(τ)
mpp = |Ωp|w(τ)

m ρ(x
(τ)
mp∗)c(x

(τ)
mp∗)

D
(τ)
r Rns×ns D

(τ)
rqq = |Sq|σsεw(τ)

r u(x
(τ)
rq∗)

3

D
(τ)
c Rns×ns D

(τ)
cqq = |Sq|w(τ)

c h
da Rns daq = |Sq|wa(hua + σsεu

4
a)

d
(τ)
l Rns d

(τ)
lq

= |Sq|w(τ)
l q(x

(τ)
lq∗

)

Wk R3ne×nd [Wk3p−2,j
,Wk3p−1,j

,Wk3p,j
]T = ∇φj

W̄k R3ne×n̄d [Wk3p−2,j̄
,Wk3p−1,j̄

,Wk3p,j̄
]T = ∇φj̄

W
(τ)
l Rns×nd W

(τ)
l∗j

= φj(x
(τ)
l )

W
(τ)
m Rne×nd W

(τ)
m∗j = φj(x

(τ)
m )

W
(τ)
r Rns×nd W

(τ)
r∗j = φj(x

(τ)
r )

W̄
(τ)
r Rns×n̄d W̄

(τ)
r∗j̄ = φj̄(x

(τ)
r )

W
(τ)
c Rns×nd W

(τ)
c∗j = φj(x

(τ)
c )

W̄
(τ)
c Rns×n̄d W̄

(τ)
c∗j̄ = φj̄(x

(τ)
c )

Wa Rns×nd Wa∗j = φj(xa)

large numbers due to fine spatial discretization. Also, higher nonlinearity re-

sults in larger nk, nm, and nr, which yields more nonlinear computations. These

nonlinear computations are computed repeatedly in each Picard iteration as in

algorithm 1. Therefore, it is time-consuming to solve a high-fidelity nonlinear

heat equation due to the high dimensionality and nonlinearity. The high di-

mensionality caused by fine spatial discretization, however, can be alleviated by

adaptive meshing. In the context of LPBF, the powder is successively and ver-

tically piled. We correspondingly develop the vertically extended mesh with fine

discretization around the scanning line while having coarse mesh elsewhere. The

nonlinear thermal model with adaptive mesh is still computationally expensive,

which hinders its application requiring rapid and/or massive thermal simulations

like uncertainty quantification, process optimization, and closed-loop control.

27



3.4 Time consumption due to high dimension-

ality and nonlinearity

The full-order model with FEM is time-consuming since it is high-dimensional and

nonlinear. While the high dimensionality is caused by fine spatial discretization,

the nonlinearity is intrinsic to the material’s thermal properties at the applied

heat levels which trigger phase changes, as well as the radiation losses. On the

one hand, a large nd increases the dimension of the (3.14) system resulting in

more compute time per Picard iteration. On the other hand, both the high

dimensionality and nonlinearity increase the number of nonlinear computations

required to form the temperature-dependent matrices. Here we take the mass

matrix M(un) ∈ Rnd×nd as an example to show the time consumption due to

high dimensionality and nonlinearity. The entries of M are defined as

Mij(un) =

∫
Ω

ρ(un)c(un)φi(x)φj(x)dx for i, j = 1, · · · , nd, (3.17)

where the integrand is the product of the density function ρ(un), the specific heat

capacity function c(un), and the local basis functions φ(x) of the i-th and j-th

DoF. The integral in equation (3.17) is approximated via a nm-point Gaussian

quadrature rule as

Mij(un) =
ne∑
e=1

∫
Ωe

ρ(un)c(un)φi(x)φj(x) dx, i, j ∈ supp Ωe

≈
ne∑
e=1

nm∑
τ=1

|Ωe|wτρ(un(x(τ)
me∗))c(un(x(τ)

me∗))φi(x
(τ)
me∗)φj(x

(τ)
me∗),

(3.18)

where x
(τ)
me∗ is the coordinate of the τ -th integration point within the e-th element.

In matrix form, we can rewrite the approximation of M as

M(un) ≈
nm∑
τ=1

W (τ)T

m D(τ)
m W (τ)

m ,

= Wm
TDmWm,

(3.19)
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where Wm ∈ Rnmne×nd are the evaluations of the basis functions at all integration

points and the diagonal matrix Dm ∈ Rnmne×nmne contains the temperature-

dependent entries. Specifically,

Wm =


W

(1)
m

...

W
(nm)
m

 , and Dm =


D

(1)
m

. . .

D
(nm)
m

 . (3.20)

The matrix Wm does not depend on temperature, and can thus be computed

before the start of the simulation. The online computation due to nonlinearity

is reflected by the diagonal of Dm in each Picard iteration, which requires nmne

nonlinear computations in density ρ(un) and specific heat capacity c(un). The

higher the degree of nonlinearity is the larger nm is, and the finer the spatial

discretization is the larger ne becomes. Accordingly, it is worthwhile to figure

out a way that manages to reduce both the dimensionality and nonlinearity of

the thermal model as equation (3.14) but maintains the accuracy of temperature

profiles.

Algorithm 2 The numerical solver with FEM

Input: an total amount of layers nL; an ambient temperature ua; a building

paltform temperature ub; temperature-dependent functions of the material’s

thermal properties: ~κ(u), ρ(u) and c(u); a heat source function q(x, t); an

error tolerance εp; a time interval ∆t; a total amount of simulation time steps

nt; a maximum number of Picard iteration np; an anisotropy scaling factor

λ; Ω is the entire domain with the bottom Γb, side Γs, and top surface Γt.

Output: temperatures U ∈ Rnd×nt .

1: for L←1 to nL do

2: Linear part of Neumann conditionQc ∈ Rnd×nd , Q̄c ∈ Rnd×n̄d and a ∈ Rnd :

Qcij ←
∫

Γt∪Γs

hφiφjds for i, j = 1, · · · , nd,

ai ←
∫

Γt∪Γs

(hua + σεu4
a)φids for i = 1, · · · , nd,

Q̄cij̄ ←
∫

Γt∪Γs

hφiφj̄ds for i = 1 · · ·nd, j̄ = 1, · · · , n̄d.
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3: Initial condition u0 ← ua × 1 ∈ Rnd .

4: Set up the flag of material phase ξ ← 0 ∈ Rne where 0 and 1 respectively

represent powder and the printed object.

5: if L 6= 1 then

6: Respectively replace u0 and ξ at previous layers with the temperature

and material phase at the ntth time step in the L− 1 layers domain.

7: end if

8: for n←1 to nt do

9: Load vector l ∈ Rnd : li ←
∫

Γt
q(nt∆t)φids for i = 1, · · · , nd.

10: k = 0.

11: u
(k)
n ← un−1.

12: do

13: Get thermal properties with u
(k)
n : thermal conductivity ~κ(u

(k)
n ),

density ρ(u
(k)
n ), and specific heat capacity c(u

(k)
n ).

14: Stiffness matrix K(u
(k)
n ) ∈ Rnd×nd and K̄(u

(k)
n ) ∈ Rnd×n̄d :

K(u(k)
n )ij ←

∫
Ω

~κ(u(k)
n )∇φi · ∇φjdx for i, j = 1, · · · , nd,

K̄(u(k)
n )ij̄ ←

∫
Ω

~κ(u(k)
n )∇φi · ∇φj̄dx for i = 1, · · · , nd, j̄ = 1, · · · , n̄d.

15: Mass matrix M(u
(k)
n ) ∈ Rnd×nd :

M(u(k)
n )ij ←

∫
Ω

ρ(u(k)
n )c(u(k)

n )φiφjdx for i, j = 1, · · · , nd.

16: Radiation heat loss matrixQr(u
(k)
n ) ∈ Rnd×nd and Q̄r(u

(k)
n ) ∈ Rnd×n̄d :

Qr(u
(k)
n )ij ←

∫
Γs∪Γt

σε(u(k)
n )

3
φiφjds for i, j = 1, · · · , nd,

Q̄r(u
(k)
n )ij̄ ←

∫
Γs∪Γt

σε(u(k)
n )

3
φiφj̄ds for i = 1, · · · , nd, j̄ = 1, · · · , n̄d.
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17: A(u
(k)
n )← K(u

(k)
n ) + 1

∆t
M(u

(k)
n ) +Qr(u

(k)
n ) +Qc.

18: b(un−1, u
(k)
n )← 1

∆t
M(u

(k)
n )un−1 + l(tn) + a− (K̄(u

(k)
n ) + Q̄r(u

(k)
n ) +

Q̄c)ū.

19: u
(k+1)
n ← A(u

(k)
n )−1b(un−1, u

(k)
n ).

20: ep ← ‖u(k+1)
n −u(k)

n ‖/‖u(k+1)
n ‖ or

∥∥∥A(u
(k+1)
n )u

(k+1)
n − b(un−1, u

(k+1)
n )

∥∥∥.

21: k ← k + 1.

22: while ep > εp and k < np

23: Compute the temperature at the element center uc ∈ Rne based on

u
(k)
n .

24: Update the phase vector ξ ← (uc > us) ∨ ξ.

25: end for

26: end for
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Chapter 4

Reduced Gaussian process

surrogate

A data-driven surrogate is designed to obtain results almost in real time. It is

trained to form the latent mapping from the printing attributes in LPBF (laser

power and scan speed) and time to the high-dimensional temperature profiles.

Directly employing machine learning algorithms like neural networks requires a

huge amount of training data to guarantee fine response surfaces yielding accurate

predictions, which is a major obstacle in the data-driven surrogate of thermal

modelling in LPBF since for our high-dimensional nonlinear numerical solver

with FEM it might already be computationally prohibitive to generate a large

number of temperature snapshots. We thus propose a reduced GP surrogate

leveraging nonlinear model order reduction (MOR) to alleviate the cost of data

generation and training.

Figure 4.1: The framework of the reduced GP surrogate predicting high-
dimensional temperatures with three control inputs (laser power, scan speed and
time) via linear combinations of subsampled training temperatures.

The reduced GP surrogate is composed of two parts: subsampling and a
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swift predictor of high-dimensional temperatures. In subsampling, several train-

ing temperatures are selected according to the relative distance prediction which

is generated by a predictor formed by Gaussian process regression (GPR) and

nonlinear MOR. The swift predictor of temperatures then estimates the high-

dimensional temperature by the linear combination of the subsampled temper-

atures weighted according to the relative distance predictions. The framework

of the reduced GP surrogate is as figure 4.1 where the modules of subsampling

and the predictor of high-dimensional temperature are respectively explained in

section 4.1 and 4.2.

4.1 Subsampling

The high-dimensional temperature of a given test input can be predicted by a

linear combination of some training temperatures deemed as the closest ones

to this prediction, in which the weights of the linear combination are inversely

proportional to relative distances between the temperature prediction and the

selected training temperatures. We thus develop a subsampling scheme to select

training temperature snapshots based on a relative distance predictor mapping

input parameters to relative distances.

4.1.1 Normalization and Featuring

As a data-driven method, its prediction accuracy relies on finding a representative

training data set which is generated by the heat simulator with FEM. The training

inputs are selected from the controllable parameters of a LPBF process including

laser power, beam size, scan speed, time, preheating temperature, and so on. In

this thesis, the inputs matrix X ∈ Rnx×N contains N training points for a triplet

(nx = 3) of laser power P , scan speed v, and time t. For each X∗i
.
= [Pi, vi, viti]

T ,

one can readily run the heat simulator with FEM as equation (3.14) by tuning the

appropriate boundary conditions for times t = t1, . . . , ti until we obtain u(X∗i).

Repeating the process for N � 3 sampling points produces a corresponding

temperature snapshots matrix U ∈ Rnd×N where U∗i = u(X∗i) and N is typically
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chosen to be smaller than nd. To make the learned parameters in GPR scale-

invariant, we normalise the input quantities in the rows of X to be in the [0, 1]

range

X̃i∗ =
Xi∗ −min(Xi∗)

max(Xi∗)−min(Xi∗)
, for i = 1, · · · , nx. (4.1)

As for the feature engineering of the training output, we approximate the pair-

wise distances of temperatures in U with nonlinear dimensionality reduction [112].

The relative distance between U∗i and U∗j for i, j = 1, · · · , N , denoted as Qij in

the pair-wise distance matrix Q ∈ RN×N , is the shortest distance between the ith

and jth node of a weighted g-neighborhood graph. We first construct a weighted

g-neighborhood graph with N vertices representing the N training temperature

profiles and with edges weighted as the adjacency matrix G ∈ RN×N which is

given by

Gij =

‖U∗i − U∗j‖ if U∗j is a neighbour of U∗i

∞ otherwise

, for i, j = 1, · · · , N, (4.2)

where U∗j is a neighbour of U∗i if their Euclidean distance belongs to the g small-

est values in ‖U∗i − U∗j‖ for j = 1, · · · , N . The pair-wise distance matrix Q is

computed as the shortest path matrix of this graph via the Floyd–Warshall algo-

rithm [113]. We then find a reduced representation of Q by a rank n̄r truncation

of its singular value decomposition (SVD) which is

Q = EΛV T ≈ ErZ, (4.3)

where Z = ΛrV
T
r is the n̄r×N reduced representation after featuring. Here, E ∈

RN×N , V ∈ RN×N , and Λ ∈ RN×N are respectively the left, right singular vec-

tors, and the diagonal matrix of singular values. Er = [E∗1, · · · , E∗n̄r ] ∈ RN×n̄r ,

Vr = [V∗1, · · · , V∗n̄r ] ∈ RN×n̄r , and the diagonal matrix Λr ∈ Rn̄r×n̄r respectively

contain the left, right singular vectors, and singular values corresponding to the

n̄r largest singular values in Λ. To guarantee the accuracy of reduction, the value

of n̄r is chosen to satisfy (
∑n̄r

i=1 Λii)/(
∑N

i=1 Λii) > 99%. After normalisation and

featuring, the resulting training data set is {X̃∗i, Z∗i}Ni=1 which represents a map-
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ping from nx-dimensional normalised inputs to n̄r-dimensional reduced outputs

with n̄r � N .

4.1.2 Relative distance predictor

As the preprocessed training inputs X̃ and outputs Z are passed to the GPR

module, n̄r GPs are respectively trained to fit {X̃, Zi∗}n̄ri=1. GP is promising

in providing accurate predictions with corresponding variance using less lengthy

training compared with some other machine learning algorithms like neural net-

works. The multiple inputs and single output regression between X̃ ∈ Rnx×N

and each row of Y ∈ Rn̄r×N defined as

Yi∗ = Zi∗ −
1

N
Zi∗11T , for i = 1, · · · , n̄r, (4.4)

is a discrete GP with zero mean and positive definite covariance matrix Σ(i) ∈

RN×N , which is

Yi∗ ≈ GP(0,Σ(i)), (4.5)

where the covariance matrix Σ(i)(Θ∗i) arises from the discretisation of a covariance

function (kernel) k(x, x′; θ(i)) with hyper-parameters θ(i). More specifically

Σ(i) = Σ̄(i) + ε2
i I, (4.6)

where

Σ̄(i)
pq ≈ k(X̃∗p, X̃∗q; θ

(i))
.
= θ

(i)
0 exp

(
−1

2

nx∑
j=1

(X̃jp − X̃jq)
2

θ
(i)
j

)
, for p, q = 1, · · · , N,

(4.7)

outlining the smoothness of GP as a squared exponential function of X̃ [96]. The

strictly positive hyper-parameters Θ∗i ∈ Rnx+2 defined as

Θ∗i = [θ
(i)
0 , θ

(i)
1 , · · · , θ(i)

` , εi]
T , (4.8)

is optimally found via training. We hereafter respectively denote the ith column

of the strictly positive matrix Θ̂ ∈ R(nx+2)×n̄r and the covariance matrix Σ̂(i) as
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the trained hyper-parameters and the trained covariance matrix of the ith GP

for i = 1, · · · , n̄r. Assume Θ∗i is uniformly distributed, then with Baye’s rule we

have f(Θ∗i|Yi∗) ∝ f(Yi∗|Θ∗i) where the likelihood function f(Yi∗|Θ∗i) as defined

in equation (4.5) is

f(Yi∗|Θ∗i) = (2π)−
N
2 |Σ(i)|−

1
2 exp (−1

2
Yi∗(Σ

(i))−1Y T
i∗ ). (4.9)

Therefore, the maximum likelihood estimation of Θ∗i is

Θ̂∗i = argmax
Θ∗i

f(Θ∗i|Yi∗),

= argmax
Θ∗i

f(Yi∗|Θ∗i) = argmax
Θ∗i

ln f(Yi∗|Θ∗i),

= argmax
Θ∗i

(−1

2
ln |Σ̂(i)| − 1

2
Yi∗(Σ̂

(i))−1Y T
i∗ −

N

2
ln (2π)).

(4.10)

For a given test input x ∈ Rnx that is not in the training data set, we first

normalized it as x̃. Then, the prediction of its reduced representation ẑ ∈ Rn̄r

and the corresponding variances Var(ẑ) are

ẑi = BT
∗iS∗i +

1

N
Zi∗1, for i = 1, · · · , n̄r, (4.11)

Var(ẑi) = Θ̂1i −BT
∗i(Σ̂

(i))−1B∗i, for i = 1, · · · , n̄r, (4.12)

where the matrix B ∈ RN×n̄r and the matrix S ∈ RN×n̄r are respectively

B∗i = [k(X̃∗1, x̃; θ̂(i)), · · · , k(X̃∗N , x̃; θ̂(i))]T , for i = 1, · · · , n̄r. (4.13)

S∗i = (Σ̂(i))−1Y T
i∗ , for i = 1, · · · , n̄r. (4.14)

It is worth noting that only the matrix B is necessary to be computed online

as it depends on the normalized test input x̃, while the more computationally

expensive matrix S can be pre-computed offline. Therefore, the prediction of ẑ

as equation (4.11) can be implemented instantaneously. We then reconstruct the

36



full relative distance m̂ ∈ RN as

m̂ = Erẑ, (4.15)

where Er is the n̄r-dimensional orthonormal bases in equation (4.3), and m̂i is the

relative distance prediction between the temperature u(x) and the ith training

temperature U∗i. In other words, the smaller m̂i is the closer the training tem-

perature U∗i might be. We thereby could select a subset of training temperatures

that are deemed to be more similar to the final temperature prediction u(x).

4.2 High-dimensional temperature prediction

According to the prediction of relative distances m̂, we select n
′
r closest training

data in U as Ũ ∈ Rnd×n
′
r where n

′
r is normally selected as a comparably small value

(like 10 or 20). To extrapolate the high-dimensional temperature we compute the

weights w ∈ Rn
′
r of Ũ as

wi ∝ e−%m̂j , such that

n
′
r∑

i=1

wi = 1, (4.16)

where the ith column Ũ∗i weighted by wi is selected from the jth column in the

original matrix of training temperatures U , and % is a constant adjusting the

decline of weights. Eventually, the temperature prediction of the test input x is

û(x) = Ũw. (4.17)

The pseudo-code of the reduced GP surrogate is as algorithm 3.

Algorithm 3 The reduced GP surrogate

Input: the training input X ∈ Rnx×N , the training output U ∈ Rnd×N , a test

input x ∈ Rnx , a neighborhood size g, the number of selected temperature

n
′
r.

Output: the high-dimensional temperature prediction û(x) ∈ Rnd .

1: Normalize X as X̃, and normalize x as x̃.
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2: Compute the adjacency matrix G ∈ RN×N of the weighted g-neighborhood

graph with the training output U .

3: Compute the pair-wise shortest distance Q ∈ RN×N via Floyd-Warshall al-

gorithm.

4: Get Er ∈ RN×n̄r and Z ∈ Rn̄r×N by the rank n̄r truncation of the SVD of Q

where n̄r is chosen to cover more than 99% of the largest singular values.

5: Train n̄r GP to respectively fit {X,Zi∗}n̄ri=1.

6: Predict ẑ ∈ Rn̄r by the n̄r trained GP with the normalized test input x̃.

7: Reconstruct the full relative distance prediction m̂ ∈ RN as m̂ = Erẑ.

8: Select the n
′
r closest temperatures Ũ ∈ Rnd×n

′
r based on m̂.

9: Compute the weights wi ∝ e−%m̂j such that
∑n

′
r
i=1 wi = 1 where Ũ∗i is selected

from U∗j.

10: Get the prediction of the high-dimensional temperature û(x) = Ũw
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Chapter 5

Sketched surrogate with

data-driven local projection

While the reduced GP surrogate is entirely data-driven, the sketched surrogate

with data-driven local projection preserves the structure of the original heat simu-

lator with FEM as equation (3.14) but expedites it by data-driven local projection

and randomized sketching. Data-driven local projection targets at addressing the

issue of high dimensionality with the help of subsampling described in section 4.1.

Randomized sketching, on the other hand, bypasses the majority of burdensome

computation caused by high nonlinearity. The framework of the sketched surro-

gate with data-driven local projection is as figure 5.1 where the modules of local

projection, randomized sketching and the high-dimensional temperature predic-

tor are respectively explained in section 5.1, 5.2, and 5.3.

Figure 5.1: The framework of the sketched surrogate with data-driven local pro-
jection where high-dimensional temperatures of given test inputs (laser power,
scan speed, and time) are reconstructed by the projected results produced from
the surrogate with subsampling-based local projection and randomized sketching.
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5.1 Subsampling-based local projection

Recall the numerical solver with FEM as in section 3.3 where the temperature

at tn = n∆t time instance is denoted as un ∈ Rnd on the discrete spatial domain

with nd DoF. Instead of directly computing equation (3.14), we can assume

un ≈ Ψnrn, (5.1)

for a low-dimensional vector rn ∈ Rnr and a basis Ψn ∈ Rnd×nr . The FEM

equation is then projected to the subspace spanned by the columns of Ψn to yield

ΨT
nA(un)Ψnrn = ΨT

nb(un−1, un), (5.2)

where the projection basis Ψn ∈ Rnd×nr is orthonormal with nr � nd. The basis

Ψn should span a space containing the final temperature result un with as less

dimension nr as possible. In the reduced GP surrogate, we select a subset of

training temperatures and weight them according to the relative distance predic-

tion. It indicates that the selected subset forms a basis of the final temperature

prediction. Therefore, we develop a similar subsampling scheme to generate local

projection bases. Given a test input xn = [P, v, vtn]T , we predict its relative dis-

tance m̂ following equation (4.11) - (4.15). Then, temperature snapshots in the

training temperature matrix U corresponding to the nr smallest values in m̂ are

selected to form a subset U ∈ Rnd×nr . The local projection basis Ψn is the left

singular vectors in the compact SVD of U . We hereafter use boldface to represent

matrices and vectors after local projection such as

A(un) := ΨT
nA(un)Ψn ∈ Rnr×nr , (5.3)

b(un−1, un) := ΨT
nb(un−1, un) ∈ Rnr . (5.4)

The discretised heat equation after local projection is rewritten as

A(un)rn = b(un−1, un). (5.5)
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One advantage of local projection is that it relieves the curse of dimensionality as

the number of inputs increases and/or each input has a larger range of interest.

Both will cause a larger training data set (larger N) yielding more resource cost

in training and storage, but once we get the relative distance predictor the di-

mension after projection nr remains small so the online execution time does not

increase much. However, the construction of local bases needs to be implemented

online since in subsampling we use the values of test inputs which are not known

offline, while the construction of global basis with POD method [100] can be fin-

ished offline since it constructs the global basis as the left singular vectors of the

compact SVD of all temperature snapshots available thus independent from test

inputs. In other words, local projection sacrifices the online time cost required

to generate local project bases to further reduce the projected dimension from N

to nr with nr � N .

Nonetheless, the projected model remains time-consuming due to its high

nonlinearity. After local projection, the computation of nonlinear temperature-

dependent functions in both A and b are not reduced. The number of nonlinear

computations still depends on the original fine spatial discretization, the order of

nonlinearity, and Gaussian quadrature rules. The difficulty of nonlinearity and

its solution with randomized sketching are further elaborated in the following

section.

5.2 Randomized sketching

The nonlinearity of the heat equation comes from temperature-dependent ther-

mal properties and radiation heat loss, all of which are modeled as nonlinear

functions. As stated in section 3.3, the temperature-dependent parts of A(un)

and b(un−1, un), such as the stiffness matrix K(un) ∈ Rnd×nd , the mass matrix

M(un) ∈ Rnd×nd , and the nonlinear part of radiation heat loss Qr(un) ∈ Rnd×nd ,

need to integrate the corresponding nonlinear functions over the domain dis-

cretized into nd DoF and ne tetrahedral elements. For example, the mass matrix
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M(un) is defined as

M(un)ij =

∫
Ω

ρ(un)c(un)φiφjdx, (5.6)

where φi and φj are respectively the basis function of the ith and jth node in

FEM. The integration in equation (5.6) is approximated by taking nm integration

points in each element based on Gaussian quadrature rules [114, 115], which is

M(un) ≈
nm∑
τ=1

W (τ)T

m D(τ)
m W (τ)

m (5.7)

where W
(τ)
m ∈ Rne×nd is the matrix of basis functions in FEM evaluated at the

τth integration point of each element, and D
(τ)
m ∈ Rne×ne is a diagonal matrix

containing the product ρ(un)c(un) evaluated by the temperature at the τth inte-

gration point of each element. After local projection, the projected mass matrix

M(un) ∈ Rnr×nr becomes

M(un) =
nm∑
τ=1

ΨT
nW

(τ)T

m D(τ)
m W (τ)

m Ψn

=
nm∑
τ=1

W(τ)T

m D(τ)
m W(τ)

m ,

(5.8)

where W
(τ)
m = W

(τ)
m Ψn ∈ Rne×nr for τ = 1, · · · , nm do not need to be repeat-

edly computed in Picard iterations since they are not temperature-dependent.

The diagonals of D
(τ)
m for τ = 1, · · · , nm, however, have a total of ne × nm val-

ues awaiting for nonlinear computation of density and specific heat capacity at

integration points in each Picard iteration. It is time-consuming as finer spa-

tial discretization will increase ne and higher order of nonlinearity will increase

nm. Accordingly, the expensive time cost due to nonlinearity is not reduced by

a local projection which is also true for other temperature-dependent matrices

like K(un) and Qr(un). It is a major obstacle in implementing the projected

model rapidly. To address this issue, we introduce randomised sketching based

on Bernoulli sampling. Take the projected mass matrix M(un) as an example,

the sum in equation (5.8) can be rewritten as the sum of nmne rank-one matrices
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which is

M(un) =WT
mDmWm

=
nmne∑
i=1

DmiiWT
mi∗
Wmi∗ ,

(5.9)

where the thin matrixWm ∈ Rnmne×nr and the diagonal matrix Dm ∈ Rnmne×nmne

are respectively

Wm =


W

(1)
m

...

W
(nm)
m

 , and Dm =


D

(1)
m

. . .

D
(nm)
m

 . (5.10)

We then sketch M(un) with only some of these rank-one matrices weighted by a

factor. Namely,

M̂(un) =
nmne∑
i=1

ζmi
Dmii
ωmi
WT

mi∗
Wmi∗ , (5.11)

where ζmi is a Bernoulli random variable with probability of success 0 6 ωmi 6 1.

We only manage to dramatically reduce evaluating Dmii without much accuracy

compromise when many ζmi = 0 and ‖M̂(un) −M(un)‖ is small with a high

probability. To fulfill this, we set the probability ωmi according to the thin matrix

Wm as algorithm 4 [103]. The row selection scheme is accordingly generated as the

row selection vector ζmi and the corresponding weight 1/ωmi for i = 1, · · · , nmne.

Algorithm 4 The row selection scheme in randomised sketching

Input: a thin matrix Wm ∈ Rnmne×nr , a constant ι.

Output: a row selection vector ζm ∈ Rnmne , a probability vector ωm ∈ Rnmne .

1: Φ ∈ Rnmne×nr is the left singular vectors in the compact SVD of Wm.

2: for i = 1 to nmne do

3: Compute the leverage score `i = ‖Φi∗‖2.

4: ωmi = min{1, ι/nr`i}.

5: ζmi is generated as a Bernoulli random number with probability ωmi .

6: end for
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5.3 High-dimensional temperature prediction

Similar to the randomised sketching of the projected mass matrix M(un), we can

sketch other temperature-dependent matrices in the locally projected model. The

sketched emulator with data-driven local projection then becomes

Â(ûn)r̂n = b̂(ûn−1, ûn). (5.12)

After solving it with Picard iteration, we obtain an accurate result of r̂n. The

prediction of high-dimensional temperature ûn is then reconstructed by the data-

driven local projection basis Ψn following

ûn = Ψnr̂n. (5.13)

The pseudo code of the sketched surrogate with data-driven local projection is as

algorithm 5.

Algorithm 5 The sketched surrogate with data-driven local projection

Input: the training input X ∈ Rnx×N , the training output U ∈ Rnd×N , a test

input xn = [P, v, vtn]T ∈ Rnx , a reduced dimension nr, the basis function

matrices in the full-order model with FEM.

Output: the high-dimensional temperature prediction û(xn) ∈ Rnd .

1: Subsample the nr temperatures U ∈ Rnd×nr deemed to be the closest ones to

û(xn) as in section 4.1.

2: Compute the orthonormal basis Ψn ∈ Rnd×nr as the left singular vectors in

the compact SVD of U .

3: Respectively project the basis function matrices as Wk, W̄k, Wa, W
(τ)
m for

τ = 1, · · · , nm, W
(τ)
r and W̄

(τ)
r for τ = 1, · · · , nr, W

(τ)
c and W̄

(τ)
c for τ =

1, · · · , nc, and W
(τ)
l for τ = 1, · · · , nl.

4: Respectively form the tall matrices Wm, Wr, W̄r, Wc, W̄c, and Wl.

5: In randomized sketching, respectively generate the row selection scheme {ζm, ωm}

from Wm, {ζk, ωk} from Wk, and {ζr, ωr} from Wr.

6: Compute the temperature-dependent nonlinear functions for the selected di-

agonal entries in Dk, Dm, and Dr.
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7: Form the sketched and projected matrix Â(ûn) and vector b̂(ûn−1, ûn).

8: Solve the sketched and projected model Â(ûn)r̂n = b̂(ûn−1, ûn) with Picard

iterations, and get r̂n ∈ Rnr .

9: Reconstruct the high-dimensional temperature prediction û(xn) = Ψnr̂n.
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Chapter 6

Sketched surrogate with online

local projection

Similar to the sketched surrogate with data-driven local projection aforemen-

tioned in chapter 5, the proposed surrogate in this chapter also uses randomized

sketching and local projection. The difference, however, is the way to generate

the online local projection bases and the approximation of sampling probability

in randomized sketching. The meaning of online here is twofold. First, the gen-

eration of projection bases is swift and almost in real-time. Second, the entire

process of basis generation including the adjustment and calibration is finished

in the process of simulation without any offline preparation in advance, namely,

the data generation and training required for the data-driven local projection

in chapter 5. Compared with the data-driven local projection, this online local

projection needs more dimension (normally a few hundred) and therefore takes

more time in projection and randomized sketching. To further avoid the com-

putationally expensive full projection and randomized sketching, we develop an

additional design to approximate the sampling probability used in randomized

sketching.

At the start of a new line of scanning in LPBF, the temperature profiles are

not regular for the first few time steps. This is partly due to the temperature-

controlled building platform and the existing temperature from previous printing.

More importantly, with a small time interval, there is not enough heat at the be-
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ginning to form steady melt pools. For example, a thermal simulation of scanning

a straight line is shown in figure 6.1, from which we can tell that the steady tem-

perature distributions are gradually formed with obvious anisotropy. Therefore,

Figure 6.1: Temperature profiles whilst printing on a straight line trajectory.
Notice that the temperature profiles at the start of the printing on each layer
(left column) can not be described as (anisotropic) Gaussian functions.

to improve time efficiency while securing accuracy, we first run the full order

model for the first nt time steps and then replace the subsequent thermal simu-

lation with a time-efficient surrogate. The surrogate is also proposed to reduce

the expensive time cost due to high dimensionality and nonlinearity. To begin

with, we also project the full-order thermal model with FEM to a comparably low

dimension with a properly established orthonormal projection basis Ψn ∈ Rnd×nr

where nr � nd and un ≈ Ψnrn. As mentioned in chapter 5, the equation (3.14)

is projected as

A(un)rn = b(un−1, un), (6.1)

where A(un) = ΨT
nA(un)Ψn and b(un−1, un) = ΨT

nb(un−1, un). Same as the surro-

gate in chapter 5, though projection reduces the dimension of the matrix equation,

the amount of nonlinear computation is still consistent with the full-order model.

Accordingly, we further approximate equation (6.1) with randomized sketching

47



to yield a swift surrogate as

Â(ûn)r̂n = b̂(ûn, ûn−1), (6.2)

and get the projected solution r̂n ∈ Rnr via Picard iterations. Backprojecting

to the nd dimension we then reconstruct ûn = Ψnr̂n. The framework of the

sketched surrogate with online local projection is as figure 6.2. The procedure of

Figure 6.2: The framework of the sketched surrogate with online local projec-
tion where Gaussian local projection bases are generated online and randomized
sketching is achieved by approximate optimal sampling probability.

implementing the surrogate is outlined in algorithm 8 where both sketching and

projection procedures have several parameters to control the trade-off between

model accuracy and time cost. From algorithm 8, it is shown that we need to gen-

erate the projection basis before randomized sketching while the actual projection

happens after the settlement of row selection in randomized sketching. To state

the design clearly, we start from the assumption that we have a proper projection

basis and illustrate the randomized sketching with approximated success proba-

bility in section 6.1. Then, we explain online basis generation and projection in

section 6.2.

6.1 Randomized sketching with approximate sam-

pling probability

We now explain the design by focusing on the mass matrix M(un) defined in equa-

tion (3.17) as an example since the randomized sketching and projection of each

part of the full-order model are implemented in a very similar way. Herein, we

generally show the computational procedure of the projected and sketched mass
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matrix M̂(un) as figure 6.3 where the modules related to randomized sketching are

illustrated in detail and the module of Gaussian local projection is enriched later

in section 6.2. In the reduced model with a projection basis Ψn, the projected

Figure 6.3: The sketching procedure to compute the projected and sketched mass
matrix.

mass matrix M(un) ∈ Rnr×nr is

M(un) =WT
mDmWm,

=
nmne∑
i=1

DmiiWT
mi∗
Wmi∗ ,

(6.3)

where the tall matrixWm ∈ Rnmne×nr and Dm ∈ Rnmne×nmne are respectively the

projected basis function matrix and the temperature-dependent diagonal matrix

defined as equation (5.10). We also tell that M(un) can be represented as the

linear combination of nmne rank-one matrices WT
mi∗
Wmi∗ weighted by Dmii for

i = 1, · · · , nmne. The time cost due to nonlinearity, however, is reflected by the

diagonal matrix Dm. It is shown in equation (6.3) that projection only reduces

the columns of basis function matrix from nd to nr while all nmne evaluations of

temperature-dependent functions to form the diagonal of Dm remain, to bypass

the majority of which we further approximate the projected model via random-

ized sketching. It manages to approximate M(un) by selecting and weighting

some of the rows of Wm and Dm based on some non-uniform Bernoulli sampling

probabilities. In specific, the approximated mass matrix M̂(un) ∈ Rnr×nr is

M̂(un) = W̃T
mD̃mW̃m,

=

ng∑
i=1

D̃miiW̃T
mi∗
W̃mi∗ ,

(6.4)
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where W̃m ∈ Rng×nr only contains the ng selected rows ofWm. The total number

of both rank-one matrices and corresponding weights are reduced from nmne to

ng. When the ith row of W̃m weighted by D̃mii is selected from the jth row of

Wm weighted by Dmjj , we have the diagonal entries of D̃m ∈ Rng×ng as

D̃mii =
1

ωmj
Dmjj , for i = 1, · · · , ng, (6.5)

where 0 < ωmj 6 1 is the probability of selecting the jth row of Wm. All ng

indexes j in equation (6.5) are recorded as a row index vector βm ∈ Rng which is

useful in the online projection explained in section 6.2.2. In randomized sketching

stated above, it is essential to set all success probabilities ωm ∈ Rnmne properly to

ensure low sketching error while cutting down sketching time cost. Accordingly,

we specify ωm based on the fast-computed approximation of leverage scores which

is detailed in the subsequent section 6.1.1.

6.1.1 Approximate sampling probability

To significantly reduce nonlinear computations, it is critical to properly set the

success probabilities ωm ∈ Rnmne so that we manage to retain ng � nmne and a

small sketching error ‖M(un)− M̂(un)‖. The vector of probabilities ωm depends

on the leverage scores of the rows of Wm ∈ Rnmne×nr [103, 116]. Namely, for

i = 1, · · · , nmne we have

ωmi = min (1, ι/nr`i), (6.6)

`i = ‖Φi∗‖2, (6.7)

where the statistical leverage score ` ∈ Rnmne is the squared row norms of Φ, and

Φ ∈ Rnmne×nr is the left singular vectors in the compact SVD ofWm. The param-

eter ι > 0 is a positive integer that bounds the number of rows selected. Though

the exact leverage scores ` are needed for the randomized sketching, they are

computationally expensive to obtain. The two most computationally expensive

parts are the large matrix multiplication Wm = WmΨn with the computational

complexity O(nmnendnr) and the compact SVD of Wm. Therefore, we propose

a way to approximate ` with less time in SVD and without implementing the
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Figure 6.4: The relative errors with different percentages p.

exact product WmΨn. As in equation (6.7), the exact leverage scores are com-

puted as the squared row norms of the nr left singular vectors in Φ. We hereby

replace it with its first ñr (ñr < nr) columns that correspond to the ñr largest

singular values of Wm, and then use the squared row norms of the ñr columns to

approximate `. In specific,

ˆ̀
i = ‖Φ̃i∗‖2, (6.8)

where Φ̃ ∈ Rnmne×ñr containing the ñr left singular vectors is obtained from

the ñr rank approximation of Wm. We can choose ñr as a small proportion of

nr without a high sacrifice in accuracy. As shown in figure 6.4, we take p =

ñr/nr indicating the percentage we pick. Then, we compare the 2-norm relative

errors of temperatures and the corresponding sketching time with p ranging from

5% to 100%. As in figure 6.4, we can tell that the approximation error has a

comparably high tolerance for a small percentage p. The 2-norm relative errors

of temperatures are below 2% when p > 30%, while the increase of accuracy is

not significant when p > 80%. Therefore, an acceptable range of p is from 30%

to 80%, which can be further specified according to how much sketching time

we want to take. Given a reasonable percentage p, Φ̃ can be fast-computed via

randomized SVD. While the standard procedure of randomized SVD in [117] is

detailed by algorithm 7 in section 6.2.1, it is modified as algorithm 6 to avoid

computing Wm = WmΨn explicitly.

Algorithm 6 The approximation of success probability.

Input: the basis function matrix Wm ∈ Rnmne×nd , the Gaussian projection basis

Ψn ∈ Rnd×nr , a parameter ι > 0, a proportion 1/nr 6 p < 1, an embedding

dimension k.
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Output: an approximation of success probability ω̂m.

1: ñr = bpnrc.

2: Generate two random sub-Gaussian matrices Υ1 ∈ Rnr×ñr and Υ2 ∈ Rk×nmne .

3: Compute W̃m ∈ Rnmne×ñr by W̃m = Wm(ΨnΥ1).

4: Compute the orthonormal matrix Λ ∈ Rnmne×ñr in the QR-decomposition of

W̃m.

5: Compute the left singular vectors of (Υ2Λ)†Υ2WmΨn as Φ̄ ∈ Rñr×ñr .

6: Φ̃ = ΛΦ̄.

7: for i = 1 to nmne do

8: ˆ̀
i = ‖Φ̃i∗‖2.

9: ω̂mi = min (1, ι/nr ˆ̀i).

10: end for

In specific, as stated in the third step of algorithm 6 we compute Wm(ΨnΥ1)

instead of WmΨnΥ1 to avoid the expensive multiplication WmΨn. The com-

putational complexity of Wm(ΨnΥ1) and WmΨnΥ1 are respectively O(ndnrñr +

nmnendñr) and O(nmnendnr + nmnenrñr). Since we have ñr = bpnrc and 1/nr 6

p < 1, it is validated that O(ndnrñr + nmnendñr) < O(nmnendnr + nmnenrñr).

Moreover, the smaller the proportion p is the more time we can save by avoid-

ing this large matrix multiplication. Once the fast-computed ˆ̀ is obtained, the

approximated success probability ω̂m is accordingly generated via equation (6.6).

6.2 Gaussian local projection

To ensure model accuracy, it is essential to establish competent projection bases.

A satisfactory projection basis should embody the temperature distributions we

want while having as less dimension as possible. In LPBF, the laser beam scans

along the pre-determined trajectory yielding melt pools at different positions, the

areas around which are also where the changes of temperature gradient concen-

trate. As a result, it makes sense to use local projection bases instead of a global

basis since temperatures at different time coordinates are expected to be dissim-

ilar. The local projection basis Ψn at the nth time step, though required to be

updated as the printing process carries on, only needs to focus on the positions
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around the laser beam centre µ(tn) and thus requires fewer dimensions for an

accurate delineation of u(tn). More specifically, the temperature u(t) provoked

by a moving Gaussian heat source as equation (3.3) is expected to have its peak

at µ(t) and can be roughly outlined by a set of 3D Gaussian functions adjusted

from a benchmark Gaussian function with operations including translation and

variance scaling. The parameters of a benchmark Gaussian function, however,

are calibrated by linear least square regression based on the latest temperature.

The procedure of Gaussian local projection is exhibited as figure 6.5 in general,

while the details of online projection basis generation and online projection are

respectively explained in section 6.2.1 and section 6.2.2.

Figure 6.5: The projection procedure to compute the projected and sketched
mass matrix.

6.2.1 Online generation of projection basis

Inspired by the Gaussian heat source, melt pool shapes, and anisotropic temper-

ature distributions, we shall gather a set of 3D Gaussian functions to generally

cover the temperature we want. The selected Gaussian functions are evaluated

at all DoFs as G ∈ Rnd×nG where nG denotes the number of Gaussian functions.

Considering the heat remained by the previous temperatures, the projection basis

Ψn is then established as an orthonormal basis of the matrix Q ∈ Rnd×(nG+nu+1)

which is

Q = [G, un−nu , · · · , un−1, 1], (6.9)

where the temperatures at the previous nu time steps are included. The point,

however, is how to properly select nG Gaussian functions. We establish a Gaussian
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function with two parameters: the position of the mean and the variances. First,

we can set nµ mean positions located at the laser beam centre at the nth time

step and several positions ahead of the laser beam along the printing direction.

In a straight line printing, the coordinates of the selected means are µn ∈ R3×nµ

where µn∗i = µ(tn)+ i[∆d, 0, 0]T for i = 0, · · · , nµ−1. Then, we can find nσ sets of

standard deviations by properly scaling a set of benchmark values σ̄ ∈ R3 with an

empirical vector η ∈ Rnη > 0. The benchmark standard deviations σ̄ are obtained

by roughly outlining the normalized latest temperature un−1/max (un−1) as a 3D

Gaussian function fn−1(x) = exp (−
∑3

i=1(xi − µ(tn−1)i)
2/2σ̄2

i ). The optimal σ̄

satisfies

argmin
σ̄
‖un−1(X̄)/max (un−1)− fn−1(X̄)‖, (6.10)

where un−1(X̄) ∈ Rn
′
d contains the DoF in un−1 ∈ Rnd that are greater than

a temperature um. um is set empirically but is normally around the melting

temperature of the material. The coordinates of these n
′

d nodes are specified as

the rows in the matrix X̄ ∈ Rn
′
d×3. With linear least square regression, ˆ̄σ ∈ R3 is

approximated by

1/ˆ̄σ2 = (B(X̄)TB(X̄))−1B(X̄)T ln (un−1(X̄)/max (un−1)), (6.11)

where B(X̄) ∈ Rn
′
d×3 is B(X̄) = 1

2
[(X̄∗1−µ(tn−1)11)2, (X̄∗2−µ(tn−1)21)2, (X̄∗3−

µ(tn−1)31)2]. ˆ̄σ is then properly scaled by η yielding n3
η different sets of standard

deviations as

σ(η)∗i = [exp (ηj ln σ̄1), exp (ηk ln σ̄2), exp (ηq ln σ̄3)]T , for i = 1, · · · , nσ,

(6.12)

where nσ = n3
η. The jth, kth, and qth entry of η constitute one possible arrange-

ment in the permutations of η with repetition. Considering the designs above,

we can collect a total number of nG = nµnσ Gaussian functions and gather the
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matrix G in equation (6.9) as

Gdi = exp (−
3∑
ι=1

(Xdι − µnιj)2

2σ(η)ιk
2 ), for d = 1, · · · , nd, and i = 1, · · · , nG,

(6.13)

where X ∈ Rnd×3 contains the spatial coordinate of the nd DoF. The ith column

of G arranges the jth of nµ means and the kth of nσ standard variances as one

possible permutation. The projection basis Ψn ∈ Rnd×nr is then formed as the

left singular vectors of the nr-rank approximation of Q. As the number of DoF

nd is large and the number of selected Gaussian functions nG is typically a few

hundred, the SVD of Q can be computationally expensive. As a result, we use

randomized SVD as algorithm 7 to reduce the generation time of the orthonormal

basis Ψn [117].

Algorithm 7 Randomized SVD with sub-Gaussian random matrices

Input: a matrix Q ∈ Rnd×nQ , an approximation rank nr, an embedding dimen-

sion k .

Output: the orthonormal basis Ψn ∈ Rnd×nr .

1: Generate two random sub-Gaussian matrices Υ1 ∈ RnQ×nr and Υ2 ∈ Rk×nd .

2: Λ1 = Q×Υ1.

3: Compute the orthogonal matrix Λ2 in the QR-decomposition of Λ1.

4: Compute the left singular vectors of (Υ2Λ2)†Υ2Q as Ψ̄.

5: Ψn = Λ2Ψ̄.

6.2.2 Online projection

According to the design above, the projection basis Ψn is generated online and will

not be established until un−1 becomes available. Hence, the action of projection

should also be implemented online. The complete projection should be finished

by

Wm = WmΨn, (6.14)

which is the expensive large matrix multiplication that we want to avoid all along.

We have avoided computing it explicitly in randomized sketching as stated in

section 6.1.1 and algorithm 6. Consequently, we can obtain the row indexes of ng
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successful selections as βm before fulfilling the projection. We can thereby skip

Wm and directly get W̃m as

W̃m = Wmβm∗
Ψn. (6.15)

Since the majority of rows are bypassed via randomized sketching, we have

ng � nmne and thus the computational complexity is significantly reduced from

O(nmnendnr) for equation (6.14) to O(ngndnr) for equation (6.15).

Algorithm 8 The sketched surrogate with online local projection.

Input: a total amount of time steps nt, the full-order model as equation (3.14),

the number of reduced dimension nr, the integers nt, nu, nµ, and nσ, a dis-

tance ∆d, a scale vector η.

Output: the temperature profiles un for n = 1, · · · , N .

1: for n = 1 to N do

2: if n 6 nt then

3: Get un with the full-order model A(un)un = b(un−1, un).

4: else

5: Get nµ mean coordinates as µn∗i = µ(tn)+i[∆d, 0, 0]T for i = 0, · · · , nµ−

1 where µ(tn) is the center of laser beam at tn.

6: Calibrate the benchmark standard deviation σ̄ according to the previ-

ous temperature un−1 via linear regression.

7: Scale the benchmark standard deviation σ̄ with η to form nσ different

sets of standard deviation.

8: Evaluate nG = nµnσ different Gaussian functions as G ∈ Rnd×nG .

9: Gather the Gaussian functions and previous temperatures as Q =

[G, un−nu , · · · , un−1, 1].

10: Generate the Gaussian local projection basis Ψn as the left sigular

vectors of Q.

11: Respectively approximate success probabilities ω̂m, ω̂k, and ω̂r for Wm,

Wk, and Wr following algorithm 6 where the proportion p is used to balance

the trade-off between sketching time and model accuracy.

12: Respectively generate the selected row indexes βm, βk, and βr accord-
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ing to ω̂m, ω̂k, and ω̂r.

13: Implement online projection to obtain W̃m, W̃k, and W̃r.

14: Get the approximated matrices M̂(ûn), K̂(ûn), and Q̂r(ûn), and ac-

cordingly form Â(ûn) and b̂(ûn, ûn−1).

15: Get r̂n by solving the projected and sketched model Â(ûn)r̂n = b̂(ûn, ûn−1).

16: Reconstruct the temperature estimation ûn = Ψnr̂n.

17: end if

18: end for
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Chapter 7

Results

The thermal model of LPBF is numerically solved with FEM, which manages

to describe thermal characteristics with different printing parameters. It serves

as a reference to evaluate the performance of the three surrogates in model ac-

curacy and time cost reduction. We hereafter denote the reduced GP surrogate

as F1, the sketched surrogate with data-driven local projection as F2, and the

sketched surrogate with online local projection as F3. The results of the full-order

thermal simulator with FEM, the performance of the three surrogates, and their

comparison are detailed in this chapter.

7.1 The thermal simulator with FEM

7.1.1 Parameter setup and validation

The full-order model with FEM is used as a reference model, which simulates

the process of scanning two straight lines back and forth in a two-layer AlSi10Mg

powder bed surrounded by an argon atmosphere. AlSi10Mg is a favoured choice

for applications requiring lightweight metallic parts with high castability and

relatively high mechanical properties [118]. The parameters of this simulator

include the mesh size, thermal properties of AlSi10Mg and argon, adjustable

parameters in numerical experiments, and other model parameters. The powder

bed domain numerically expressed as a cuboid is discretized with a mesh scheme

with a conforming refinement in the printing area, in which fine meshes distribute
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around the scanning line on the top layer (tetrahedrons with a side length of

0.005mm) and the rest area has coarser mesh (tetrahedrons with a side length of

0.025mm). Under this mesh scheme, the domain Ω evolving from the first to the

second layer is spatially discretized into ne tetrahedron elements, nd DoF, and n̄d

constant temperature nodes on the bottom surface. Specifically, we have nd =

86333, n̄d = 11011, and ne = 510797 for the first layer, and for the second layer

nd = 96509, n̄d = 2134, and ne = 568908. It is worth noting that the printing area

in a real LPBF process is normally larger and the mesh refinement used here may

not be as efficient. For more realistic complexity or elaborate printing trajectories,

more sophisticated mesh generation algorithms will be advantageous such as the

area of fine mesh being set to be around and moving with the melt pool. The

thermal properties of AlSi10Mg and argon are fitted by piecewise polynomials

based on experimental data in [13, 119–122]. In specific, the fitted polynomials

Table 7.1: The fitted polynomial functions of thermal properties [13, 119–122].

Definition
(Unit)

Fitted polynomials

Thermal
conductivity
of AlSi10Mg

(W/mK)

κ =


8.36× 10−8u3 − 1.67× 10−4u2 + 0.12u+ 144.76, u 6 us

− 1.91u+ 1257.74, us < u < ul

0.0088u+ 78.46, u > ul

Density of
AlSi10Mg

(kg/m3)

ρ =


− 8.63× 10−4u2 + 0.17u+ 2634.20, u 6 us

− 0.85u+ 2922.55, us < u < ul

− 0.33u+ 2613.19, u > ul
Specific heat
capacity of
AlSi10Mg
(J/kgK)

c̄ =


0.0011u2 + 0.0168u+ 741.16, u 6 us

0.32u+ 924.04, us < u < ul

0.0068u+ 1134.32, u > ul

Density of

argon (kg/m3)

ρa = 3.54× 10−13u4 − 1.96× 10−9u3

+3.93× 10−6u2 − 0.0036u+ 1.65

Specific heat
capacity of

argon (J/kgK)
ca = 520

are listed in table 7.1 where us = 567◦C and ul = 614◦C are respectively the

lower and upper bound of the mushy temperature range. AlSi10Mg is solid when

its temperature is lower than us, and is liquid when its temperature exceeds ul.

Apart from these temperature-dependent polynomials, the parameters of porosity
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and latent heat that do not depend on temperature are specified in table 7.2.

Laser power P and scan speed v are the printing parameters adjustable in the

Table 7.2: Parameters in thermal properties.

Symbol Definition Value Unit

φp the powder bed porosity 0.4 -
L the latent heat of AlSi10Mg 423 kJ/kg
$ the logistic growth rate of fp 0.05 -

simulations. For the numerical experiments in this section, the admissible range

of laser power P and scan speed v are respectively 200-300W and 200-1000mm/s.

The static scale factor of anisotropy λ = [2.5, 1, 3.2]T is found by the trial-and-

error calibration to fit the experiment results in [13] which includes a selective

laser melting process using the apparatus with a YLR-500-SM ytterbium fibre

laser and a numerical simulation using the ANSYS multiphysics finite element

package. The reference experiment was conducted with laser power P = 250W

and scan speed v = 200mm/s using the same material (AlSi10Mg powders with

99.7% purity and an average size around 30µm) in the same atmosphere (argon).

The scanning pattern in [13] is visualized as figure 7.1 where the positions at the

centre of each layer are used to validate our thermal simulation. We further detail

the validation of our thermal simulation in table 7.3.

Figure 7.1: The laser scanning pattern in [13] where position 1 and 2 used in
validation are respectively the centre of the first and second layer.

The scale factor λ, however, can also be a random scale factor. In this sec-

tion, the three values in the random scale factor λ are respectively generated

from uniform distributions λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), and λ3 ∼ U(1.5, 4.5)

to simulate the randomness of anisotropy in reality. Other model parameters are

set as the same for all numerical experiments. Specifically, on the top surface
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Table 7.3: The validation of the printing process with laser power 250W and scan
speed 200mm/s.

Layer Type Highest temperature (◦C) Melt pool size (µm)

1

[13] 1482 129.1× 94.2× 61.7

FEM

1501 137.5× 105.6× 65.6
1501 133.7× 105.3× 66.1
1500 133.5× 102.2× 65.7
1498 133.8× 105.0× 65.1
1495 135.0× 102.7× 66.0
1498 135.0× 104.7× 65.8
1498 133.6× 103.4× 65.3
1497 133.1× 104.2× 66.0
1495 133.4× 105.1× 65.7
1496 133.2× 104.4× 65.9
1464 120.0× 96.8× 59.7
1460 117.5× 95.1× 61.7
1467 118.1× 96.2× 60.4
1460 118.1× 96.8× 60.7
1462 117.5× 95.1× 60.5
1463 118.0× 96.9× 60.7
1459 117.5× 95.2× 60.9
1467 118.8× 95.1× 60.1
1463 118.1× 95.5× 61.5
1490 130.9× 98.3× 63.4

2

[13] 1548 148.3× 111.4× 67.5

FEM

1549 158.1× 116.0× 81.2
1553 163.0× 120.1× 84.1
1554 162.8× 119.6× 83.5
1555 162.9× 119.9× 82.9
1548 162.5× 121.6× 83.8
1552 162.5× 121.9× 84.5
1552 162.5× 121.8× 83.8
1555 163.1× 121.0× 83.2
1557 162.5× 121.2× 83.2
1554 165.0× 121.5× 84.2
1530 147.8× 113.6× 80.1
1514 142.5× 112.3× 77.0
1515 142.5× 111.2× 76.7
1514 140.4× 110.8× 76.7
1522 139.8× 111.5× 76.8
1517 141.4× 110.7× 75.9
1518 140.7× 112.2× 76.5
1513 141.1× 110.5× 77.1
1520 145.0× 110.6× 77.6
1546 156.9× 117.8× 81.8
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Figure 7.2: The scanning pattern and the selected positions of the two-layer
domain.

of the i-layer domain a laser beam first scans from x
(1)
l to x

(1)
r then from x

(2)
r to

x
(2)
l , and the hatch distance between the two lines is ∆h. The scanning pattern

of all numerical experiments is shown in figure 7.2. Following the same scanning

trajectory, the simulations are set with the same spatial and temporal discretiza-

tion, building platform temperature, heat loss and heat source parameters, the

values of which are listed in table 7.4.

Table 7.4: Model parameters in the thermal model of LPBF [13, 14, 108, 123].

Symbol Definition (Unit) Value

∆t A time step in temporal discretization (ms) 0.05
- The size of the i-layer domain (mm) 1.54× 0.70× 0.10i

x
(1)
l The start of the first line on layer i (mm) [0.30, 0.29, 0.10i]T

x
(1)
r The end of the first line on layer i (mm) [1.30, 0.29, 0.10i]T

x
(2)
l The end of the second line on layer i (mm) [0.30, 0.31, 0.10i]T

x
(2)
r The start of the second line on layer i (mm) [1.30, 0.31, 0.10i]T

∆h Hatch distance (mm) 0.02
ua Ambient temperature (◦C) 20
a Absorptivity 0.09
ς The effective laser beam radius (µm) 35
ub The constant temperature on Γb (◦C) 200
h Heat convection coefficient (W/(m2K)) 10
ε Emissivity 0.04

7.1.2 Thermal behaviours of LPBF

The thermal simulator with FEM manages to characterize temperature distri-

butions, thermal histories, and melt pool sizes during the printing process with

62



different laser power and scan speed. We hereby present 6 examples with dif-

ferent laser power P , scan speed v, and static/random scale factor of anisotropy

λ. These 6 examples are denoted as Di for i = 1, · · · , 6, and their parameters

are detailed in table 7.5. Four positions are selected to present the simulation

results, each of which belongs to different scanning line. They are marked in

figure 7.2 and respectively locate at χ1 = [0.5, 0.29, 0.1]T , χ2 = [0.7, 0.31, 0.1]T ,

χ3 = [0.9, 0.29, 0.2]T , and χ4 = [1.1, 0.31, 0.2]T . The temperature distributions of

the position χi for i = 1, · · · , 4 in all six tests are respectively shown in figure

7.3, 7.4, 7.5, and 7.6. The first and second interval in the colormap respec-

tively includes the temperature range u > ul and us 6 u < ul and represents

the liquid and musy state of the material, while other temperature intervals are

500◦C 6 u < us, 460◦C 6 u < 500◦C, 420◦C 6 u < 460◦C, 380◦C 6 u < 420◦C,

340◦C 6 u < 380◦C, 300◦C 6 u < 340◦C, 260◦C 6 u < 300◦C, and u < 260◦C.

Comparing the subplots (a) (P = 200W, v = 200mm/s) and (b) (P = 200W,

v = 1000mm/s), we can tell that with the same laser power a lower scan speed re-

sults in higher maximum temperature and larger melt pool size. By comparing the

subplots (b) (P = 200W, v = 1000mm/s) and (c) (P = 300W, v = 1000mm/s),

it is shown that with the same scan speed a higher laser power results in higher

maximum temperature and larger melt pool size. For the subplots in the same

column, they have the same laser power and scan speed but the upper row has

the static anisotropy scale factor λ while the lower row has random λ. It is

observed that the randomness of λ may lead to different highest temperature

and anisotropy in an irregular way. In specific, the highest temperatures and

melt pool sizes at the four positions χi for i = 1, · · · , 4 in the six tests Di for

i = 1, · · · , 6 are summarized in table 7.6.

Another thermal behaviour is the thermal history of a specific position through-

out the printing process. The thermal histories of the four positions χi for

i = 1, · · · , 4 in the six tests Di for i = 1, · · · , 6 are shown and compared in

figure 7.7. As it is a process of scanning two lines in two layers, there are four

peaks in the thermal histories of the positions on the first layer (χ1 and χ2) while

the thermal histories of the positions on the second layer (χ3 and χ4) have two

peaks. We can tell that with a lower scan speed (v = 200mm/s) the heating-up
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Table 7.5: Parameters of the 6 examples.

Test
Laser
power
(W)

Scan
speed

(mm/s)
λ

D1 200 200 [2.5, 1, 3.2]T

D2 200 1000 [2.5, 1, 3.2]T

D3 300 1000 [2.5, 1, 3.2]T

D4 200 200 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
D5 200 1000 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
D6 300 1000 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)

Figure 7.3: Temperature profiles at χ1 in all six tests.
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Figure 7.4: Temperature profiles at χ2 in all six tests.

Figure 7.5: Temperature profiles at χ3 in all six tests.
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Figure 7.6: Temperature profiles at χ4 in all six tests.
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Figure 7.7: Thermal histories at the four selected positions in all tests.
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and cooling-down speeds of a position are closer while with a higher scan speed

(v = 1000mm/s) the cooling-down speed is obviously slower than its heating-up

speed. With a high scan speed the laser beam arrives and leaves fast, fast arrival

Table 7.6: Highest temperatures and melt pool sizes at the selection positions in
all tests.

Position Test Highest temperature (◦C)
Melt pool size (µm)

Length Width Depth

χ1

D1 1285.82 115.89 94.11 56.57
D2 1198.69 115.00 80.89 44.91
D3 1601.10 156.23 95.81 60.27
D4 1518.07 130.05 104.57 45.80
D5 1171.93 135.62 85.45 40.41
D6 1549.71 182.50 100.27 53.75

χ2

D1 1249.28 102.50 86.98 51.08
D2 1174.10 105.00 77.46 40.75
D3 1573.55 147.50 92.16 58.38
D4 1308.97 110.00 84.00 44.88
D5 1235.93 102.84 79.81 46.29
D6 1673.56 135.98 94.82 63.83

χ3

D1 1333.99 140.00 107.23 73.00
D2 1223.63 135.00 87.38 51.25
D3 1633.00 190.85 103.23 71.55
D4 1308.84 160.00 97.93 69.32
D5 1184.22 130.42 81.73 57.25
D6 1580.86 185.95 98.92 77.86

χ4

D1 1296.33 121.34 98.19 64.68
D2 1222.35 142.50 85.83 54.52
D3 1642.65 206.03 109.65 77.44
D4 1222.16 117.88 95.20 70.66
D5 1287.44 150.00 83.67 52.49
D6 1742.34 224.19 103.94 76.08

makes the position quickly reach its maximum temperature while the cooling is

less affected by the laser beam that has already quickly moved away. With a low

scan speed, however, as the effect of the laser beam dominates the temperature

changes, the heating and cooling that happen when the laser beam slowly ap-

proaches and leaves are realized at a similar speed. In figure 7.7, the subplots in

the same row have the same laser power and scan speed but the left ones have

static anisotropy scale factors λ while the right ones have random λ. It is shown
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that the randomness of λ causes more significant effects on the thermal histories

with lower scan speed as it has more time steps enabling it to bring in more

randomness.

7.2 Reduced Gaussian process surrogate

7.2.1 Data generation and parameter setup

A data-driven relative distance predictor is used in both F1 and F2, the data

generator of which is the thermal simulator with FEM. As discussed before the

training input is of the form X∗j = [Pj, vj, vjtj]
T for j = 1, · · · , N containing

laser power P , scan speed v, and time t. In the absence of the information on

printing parameter distributions, we apply a uniform grid search in the admissible

range of laser power P : 200-300W with an interval of 50W, scan speed v: 200-

1000mm/s with an interval of 200mm/s, and time t: the whole printing process

with a fixed time interval ∆t = 0.05ms. With this sampling scheme, we construct

the training data set of the i-layer domain X(i) ∈ R3×1383 and U (i) ∈ Rnd×1383

for i = 1, 2. The dimensionality of training temperatures nd, however, is the

number of DoF in the i-layer domain. Additionally, there are a total amount of

16 tests including different laser power (P=225, 275W), scan speed (v=300, 500,

700, 900mm/s), as well as a static or random anisotropy scale factor λ. While the

static scale factor λ = [2.5, 1, 3.2]T is found by the trial-and-error calibration to

fit the experiment results in [13], the three values in the random scale factor λ are

respectively generated from uniform distributions λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5),

and λ3 ∼ U(1.5, 4.5) to simulate the randomness of anisotropy in reality. All

training data are generated with the static anisotropy scale factor λ, which makes

the data-driven relative distance predictor lacking of the knowledge of anisotropy

randomness. Therefore, with the 16 tests denoted as Si for i = 1, · · · , 16 we

validate the feasibility of our surrogate to cope with different printing parameters

and test its ability in enduring a certain level of anisotropy randomness. The

parameter settings of each test are specified in table 7.7, and the test inputs

and the corresponding reference temperature are respectively X
(i)
t ∈ R3×1272 and
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U
(i)
t ∈ Rnd×1272. Other model parameters used in thermal modeling have been

listed in table 7.4. The parameters needed in F1 are specified in table 7.8. For

the convenience of comparison, the performance of F3 is also evaluated with the

inputs Xt. All tests are implemented in Matlab R2020b on a computer with

2.6GHz 6-Core Intel Core i7 processor and 16GB RAM.

Table 7.7: Parameters of the 16 tests.

Test
Laser
power
(W)

Scan
speed

(mm/s)
λ

S1 225 300 [2.5, 1, 3.2]T

S2 225 500 [2.5, 1, 3.2]T

S3 225 700 [2.5, 1, 3.2]T

S4 225 900 [2.5, 1, 3.2]T

S5 275 300 [2.5, 1, 3.2]T

S6 275 500 [2.5, 1, 3.2]T

S7 275 700 [2.5, 1, 3.2]T

S8 275 900 [2.5, 1, 3.2]T

S9 225 300 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S10 225 500 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S11 225 700 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S12 225 900 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S13 275 300 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S14 275 500 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S15 275 700 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)
S16 275 900 λ1 ∼ U(1, 4), λ2 ∼ U(0.5, 1.5), λ3 ∼ U(1.5, 4.5)

Table 7.8: Parameters in F1.

Symbol Definition Value

g The size of neighborhood 20
n
′
r The number of training data selection 5
% The constant to adjust the decline of weights 0.001

7.2.2 Dimension reduction

In the pre-processing of F1, the number of GP is reduced by a nonlinear dimension

reduction technique. There are two important values in this method: one is the

neighbourhood size g, the value of which should keep the reachability between
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vertices in the weighted graph. In our case, as stated in table 7.8 we set g = 20.

Another one is the target of dimension reduction n̄r. It takes the minimum

value that satisfies (
∑n̄r

i=1 Λii)/(
∑N

i=1 Λii) > 99% where Λ is the singular value

diagonal matrix in equation (4.3). With the training temperature snapshots U (i)

for i = 1, 2, the reduced dimension, as in table 7.9 , are respectively 276 and

242. In comparison with the number of training data N = 1383, it is a dramatic

reduction respectively cutting down 80.04% and 82.50% of GPs required thus less

effort in both training and prediction.

Table 7.9: The dimension reduction in F1.

Layer Reduced dimension Reduction percentage (%)

1 276 80.04
2 242 82.50

7.2.3 Model accuracy and robustness

Given test inputs X
(i)
t in the i-layer domain for i = 1, 2, we predict the corre-

sponding temperatures as Ût
(i)

= F1(X
(i)
t ). The model accuracy is compared
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Figure 7.8: The boxplot of relative errors between FEM and F1.

in three aspects: relative errors, melt pools, and thermal histories. The relative

errors are computed in 2-norm and infinity-norm, both of which are defined on

the entire nd-dimensional temperatures. Namely, when u ∈ Rnd and û ∈ Rnd

respectively denote the simulated temperature with FEM and the corresponding

estimated temperature with a surrogate, we have the 2-norm relative error as
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Figure 7.9: The boxplot of relative errors between FEM and F1 without the first
five time steps of each scanning line.

e = ‖u − û‖2/‖u‖2 and the infinity-norm relative error as e∞ = ‖ec‖∞ where

eci = |ui − ûi| /ui for i = 1, · · ·nd. The spread of relative errors is shown in the

boxplot as figure 7.8 where the ith box expresses the relative errors of the test Si
for i = 1, · · · , 16. In each box, the red line represents the median (Q2) while the

bottom and top lines are respectively the 25th percentile (Q1) and 75th percentile

(Q3). The upper and lower whiskers of each box additionally extend with a dis-

tance of 1.5× (Q3 −Q1) where Q3 −Q1 is also known as the interquartile range

(IQR). All values beyond the two whiskers are marked by red crosses representing

outliers. At the beginning of each scanning line, there is not enough heat to melt

enough materials and form regular temperature distributions. Therefore, the

selected training data may not be competent to predict the temperature distri-

bution we want. In figure 7.9, the boxplots of relative errors without the first five

time steps of each scanning line are shown. Though some outliers are removed,

there are still some predictions observed with comparably large relative errors.

While for F2 the effect of picking out the first five time steps of each scanning

line is more obvious, the larger errors in figure 7.14 are removed in figure 7.15.

It indicates that some larger errors in F1 are caused by inaccurate predictions of

the order and exact value of relative distances instead of the selection of training

data.

We can tell from figure 7.8 that though the majority of temperatures can be

accurately predicted some predictions have very high errors. Specifically, there
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are respectively 4.52%, 30.07%, and 85.30% of tests with 2-norm relative errors

less than 1%, 2%, and 5%, while the maximum relative error is 10.21%. 41.94%,

66.51%, and 97.01% of infinity-norm relative errors are respectively less than

10%, 15%, and 30%, and the maximum infinity-norm relative error is 75.33%.

The first 8 tests Si for i = 1, · · · , 8 having the static anisotropy scale factor λ are

observed to be more accurate than the last 8 tests Si for i = 9, · · · , 16 having

the random λ. The comparison of the 2-norm and infinity-norm relative errors

between using a static/random λ is shown in table 7.10 where nt = 0 and 5

respectively indicates the relative errors with and without the first five time steps

of each scanning line. It tells that the exclusion of the first five time steps of each

Table 7.10: The accuracy comparison of F1 between using a static or random λ.

nt λ
2-norm relative error (%) Infinity-norm relative error (%)

Max < 1% < 2% < 5% Max < 10% < 15% < 30%

0
Static 9.26 8.96 51.34 96.46 56.97 70.44 90.33 98.35

Random 10.21 0.08 8.81 74.14 75.33 13.44 42.69 95.68

5
Static 9.26 9.40 52.30 96.90 56.97 71.72 90.16 98.40

Random 10.21 0.09 8.87 75.53 75.33 14.01 42.55 95.57

scanning line does not have a significant effect on the model accuracy and F1 is

not competent in dealing with anisotropy randomness. While the percentage of

tests having 2-norm relative errors less than 2% significantly drops from 51.34%

to 8.81% when λ is random, there are only 42.69% of tests with a random λ

satisfying e∞ < 15% but the corresponding percentage for a static λ is 90.33%.

Also, when λ is random instead of static, the maximum of e and e∞ respectively

increases from 9.26% to 10.21% and from 56.97% to 75.33%.

Despite the relative error of temperature profiles, we also evaluate the predic-

tion accuracy of melt pools and thermal histories. Take S8 and S9 as examples,

the temperatures around the melt pools at χi for i = 1, · · · , 4 are respectively

displayed as figure 7.10 and 7.11. The maximum of relative errors around

χi for i = 1, · · · , 4 are respectively 18.30%, 18.65%, 43.87%, and 32.74% in S8

while in S9 they are correspondingly 14.75%, 12.13%, 13.25%, and 8.86%. In

S8, the highest temperatures around the position χi for i = 1, · · · , 4 are respec-

tively 1517.59◦C, 1490.11◦C, 1540.79◦C, and 1548.21◦C with FEM while the corre-

72



Figure 7.10: The melt pool comparison between FEM and F1 in the test S8.
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Figure 7.11: The melt pool comparison between FEM and F1 in the test S9.
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sponding highest temperatures with F1 are 1451.79◦C, 1399.11◦C, 1574.90◦C, and

1587.89◦C with relative errors 4.34%, 6.11%, 2.21%, and 2.56%. In S9, with FEM

the highest temperatures are respectively 1559.23◦C, 1259.34◦C, 1244.87◦C, and

1331.57◦C while with F1 they are estimated as 1338.92◦C, 1312.15◦C, 1385.95◦C,

and 1378.00◦C with relative errors 14.13%, 4.19%, 11.33%, and 3.49%. It is also

observed that the position of the highest temperature may not be the exact po-

sition where the laser beam centre locates especially with the surrogate model.

The melt pool sizes at these four positions are listed and compared in table 7.11.

No melt pool sizes are precisely approximated (like with a relative error less than

0.01%). The relative errors of melt pool size approximation in S8 ranges from

0.11% to 9.99%, while in S9 the range is from 1.10% to 12.27%. The thermal

histories at χi for i = 1, · · · , 4 are compared in figure 7.12 for S8 and figure 7.13

for S9. Their relative errors are respectively 6.64%, 8.37%, 7.88%, and 9.14%

in S8, and in S9 the corresponding relative errors are 9.20%, 6.41%, 9.50%, and

6.53%. The effect of anisotropy randomness on thermal histories is obvious
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Figure 7.12: The thermal history comparison between FEM and F1 in S8.
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Figure 7.13: The thermal history comparison between FEM and F1 in S9.
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in S9 but the results from F1 are not capable of predicting these randomnesses

since the training data of data-driven relative distance predictor only contains

the temperatures with the static anisotropy scale factor λ.

Table 7.11: The comparison of melt pool sizes between FEM and F1 in the test
S8 and S9.

Test Position Melt pool size FEM (µm) F1 (µm) Relative error (%)

S8

χ1

Length 148.20 133.39 9.99
Width 94.19 103.28 9.65
Depth 59.59 63.07 5.84

χ2

Length 135.00 123.56 8.48
Width 91.18 93.95 3.04
Depth 56.43 58.42 3.53

χ3

Length 179.51 180.00 0.27
Width 103.63 103.23 0.39
Depth 69.45 69.52 0.11

χ4

Length 188.27 172.55 8.35
Width 105.09 110.25 4.91
Depth 73.62 76.08 3.34

S9

χ1

Length 130.00 122.50 5.77
Width 96.69 95.29 1.45
Depth 55.89 58.21 4.16

χ2

Length 122.87 107.79 12.27
Width 86.98 90.26 3.77
Depth 55.80 53.26 4.55

χ3

Length 143.24 145.39 1.50
Width 118.77 109.69 7.65
Depth 82.16 73.70 10.29

χ4

Length 147.50 131.34 10.96
Width 94.81 104.22 9.93
Depth 66.59 67.32 1.10

7.2.4 Offline preparation

The offline preparation required includes data generation, nonlinear dimension

reduction, and training. The time cost of data generation is the total time of

running 15 simulations with laser power P = 200, 250, 300W, scan speed v = 200,

400, 600, 800, and 1000mm/s, and ∆t = 0.05ms. The time cost of nonlinear di-
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mension reduction includes establishing the weighted graph with a neighbourhood

size of 20, computing the shortest distance with Floyd–Warshall algorithm [113],

and getting the reduced representation of the pair-wise relative distance. The

training time contains the implementation of the maximum likelihood estimation

of the strictly positive hyperparameters Θ̂ ∈ R5×n̄r and the computation of the

matrix S as in equation (4.13). Though these are offline efforts, they are also the

necessary resource cost to fulfil F1. The offline time cost of F1 is summarized in

table 7.12.

Table 7.12: The offline time cost of F1.

Layer Data generation (day)
Nonlinear dimension

reduction (s)
Training (hr)

1 7.30 55.10 1.10
2 9.28 53.49 0.85

7.2.5 Time cost reduction

At each time step of the high-fidelity thermal model with FEM, the online ex-

ecution consists of Picard iterations. Therefore, for one layer of printing in one

test, we record and compute the average time cost of implementing the simulation

where the nonlinear thermal properties and boundary conditions are repeatedly

evaluated at each integration point in each Picard iteration. With the level of ac-

curacy compromise described in section 7.2.3, the predictions of high-dimensional

temperatures are accomplished almost in real-time since only swift computations

are left for online execution. In specific, the comparison of time cost is listed as

table 7.13. Though the preparation described in section 7.2.4 is required offline,

the online execution time is respectively reduced from 459.90s to 0.12s and from

597.72s to 0.11s on average in the one- to two-layer domain. The real-time imple-

mentation benefits from three characteristics of F1. First, the purely data-driven

approach skips the burdensome computation caused by nonlinearity like Picard

iteration and Gaussian quadratures. Second, only a comparably small number

of GPs are required after nonlinear dimension reduction, which cuts the time

cost of offline training and online prediction. Third, the prediction as equation
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(4.11) manages to simultaneously predict all GPs by executing the dot product

between matrices instead of computing the univariate GP individually. While

the performance in reducing online execution time is satisfactory, the compro-

mise of accuracy is evident. Therefore, F1 is suitable for applications that ask for

real-time implementations but are endurable to some accuracy compromise.

Table 7.13: The average execution time of FEM and F1.

Layer FEM (s) F1 (s)

1 459.90 0.12
2 597.72 0.11

7.3 Sketched surrogate with data-driven local

projection

7.3.1 Parameter setup

For the convenience of comparison, the same test inputs X
(i)
t are used to develop

temperature predictions and evaluate the performances. For each pair of test

input X
(i)
t∗j for j = 1, · · · , 1272, a local projection basis is formed by selecting nr

temperature snapshots from U (i) that are predicted as the closest ones to U
(i)
t∗j .

While the neighbourhood size g = 20 and the constant to adjust the weight decline

% = 0.001 are the same as F1 listed in table 7.8, other parameters necessary for

F2 are specified in table 7.14. It is noticed that in randomized sketching with a

smaller projection dimension nr the multiplier of leverage score ι that manages

to accurately approximate the model can be smaller, which makes F2’s ι in table

7.14 become smaller than F3’s ι in table 7.21.

Table 7.14: Parameters of F2.

Symbol Definition Value

nr the dimension of projection 30
ι the multiplier of leverage score 50000
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7.3.2 Model accuracy and robustness

The test temperatures U
(i)
t are estimated with F2 as Û

(i)
t = F2(X

(i)
t ). The spread

of 2-norm and infinity-norm relative errors are shown as the boxplots in figure

7.14. Among all tests, the maximum of 2-norm and infinity-norm relative errors

are respectively 7.99% and 65.69%. There are respectively 46.31%, 69.73%, and

97.76% of tests with 2-norm relative errors less than 1%, 2%, and 5%, while

74.45%, 89.31%, and 99.41% of tests respectively have the infinity-norm relative

errors less than 10%, 15%, and 30%. Though the projection bases in F2 do not

rely on previous temperatures in the simulation like the inclusion of previous

temperatures and the Gaussian function calibration in F3, these data-driven lo-

cal projection bases are not very accurate for the first several time steps. With
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Figure 7.14: The relative errors between FEM and F2.
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Figure 7.15: The relative errors between FEM and F2 without the first 5 time
steps of each scanning line.
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a small time interval ∆t = 0.05ms there is not enough heat to melt many ma-

terials at the beginning, which results in irregular melt pools and temperature

distributions. The selected training temperatures though deemed to be similar to

the final temperature are not competent to fulfill accurate approximation. The

relative errors excluding the first 5 time steps of each scanning line are shown as

the boxplots in figure 7.15, from which we can tell that F2 is quite accurate for

the tests with static anisotropy scale factors. Among all tests with static λ (Si for

i = 1, · · · , 8), the maximum 2-norm and infinity-norm relative errors are respec-

tively 1.72% and 6.19%. Though the tests with random λ (Si for i = 9, · · · , 16)

are less accurate, it is still a significant improvement where the maximum 2-norm

and infinity-norm relative errors are respectively 6.38% and 27.12%. To compare

the model accuracy in the situation with static/random λ and with (nt = 0)

/without (nt = 5) the first 5 time steps, the relative errors of all tests are summa-

rized in table 7.15. It is obvious that the performance of F2 drops significantly

Table 7.15: The accuracy comparison of F2 between using a static or random λ.

nt λ
2-norm relative error (%) Infinity-norm relative error (%)

Max < 1% < 2% < 5% Max < 10% < 15% < 30%

0
Static 7.77 89.62 98.35 99.76 61.41 98.90 99.29 99.53

Random 7.99 2.99 41.12 95.75 65.69 50.00 79.32 99.29

5
Static 1.72 93.53 100.00 100.00 6.19 100.00 100.00 100.00

Random 6.38 3.10 42.73 96.63 27.12 51.60 82.18 100.00

when λ is random. The percentage of tests with e < 1% falls from 89.62% to

2.99%, and there are only 41.12% of tests with random λ satisfying e < 2% in

comparison with 98.35% in the case with static λ. Similarly, for the infinity-norm

relative error the randomness in λ makes the percentage of tests with e∞ < 10%

decreasing from 98.90% to 50.00% while with e∞ < 15% the drops is from 99.29%

to 79.32%. Since F1 is not agile to handle anisotropy randomness and F2 also uses

the same data-driven relative distance predictor in F1 to form projection bases,

it is expected that F2 is also not robust enough to random λ and the adding of

randomness in λ causes an evident drop of the model accuracy performance of

F2. The melt pools around the four selected positions in the test S8 and S9 are

respectively delineated in figure 7.16 and 7.17, and the approximation of melt
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Figure 7.16: The melt pool comparison between FEM and F2 in the test S8.
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pool sizes are listed in table 7.16. In S8, the maximum temperatures at χi for

i = 1, · · · , 4 are estimated as 1504.46◦C, 1507.15◦C, 1520.17◦C, and 1537.94◦C

with relative errors 0.86%, 1.14%, 1.34%, and 0.66%, and the maximum rel-

ative errors of temperatures around melt pools are respectively 3.27%, 2.53%,

2.22%, and 3.45%. While the width of χ1 and χ3 are precisely approximated,

Figure 7.17: The melt pool comparison between FEM and F2 in the test S9.

the maximum of relative errors in melt pool size approximation is 5.70%. In S9,

the maximum temperatures at χi for i = 1, · · · , 4 are estimated as 1522.54◦C,
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1281.55◦C, 1283.88◦C, and 1318.68◦C with relative errors 2.35%, 1.76%, 3.13%,

and 0.97%. The maximum of relative errors around melt pools are respectively

9.54%, 6.65%, 8.34%, and 4.82%. The length of χ4 is precisely approximated, and

the maximum of relative errors in melt pool size approximation is 8.92%. As

Table 7.16: The comparison of melt pool sizes between FEM and F2 in the test
S8 and S9.

Test Position Melt pool size FEM (µm) F2 (µm) Relative error (%)

S8

χ1

Length 148.20 146.20 1.35
Width 94.19 94.19 < 0.01
Depth 59.59 58.21 2.31

χ2

Length 135.00 132.50 1.85
Width 91.18 91.31 0.15
Depth 56.43 56.16 0.47

χ3

Length 179.51 176.02 1.95
Width 103.63 103.63 < 0.01
Depth 69.45 70.47 1.48

χ4

Length 188.27 177.53 5.70
Width 105.09 104.26 0.79
Depth 73.62 73.87 0.34

S9

χ1

Length 130.00 127.50 1.92
Width 96.69 99.99 3.42
Depth 55.89 60.00 7.35

χ2

Length 122.87 122.96 0.08
Width 86.98 91.18 4.83
Depth 55.80 56.43 1.12

χ3

Length 143.24 148.74 3.84
Width 118.77 111.21 6.36
Depth 82.16 77.60 5.55

χ4

Length 147.50 147.50 < 0.01
Width 94.81 103.26 8.92
Depth 66.59 68.51 2.88

shown in figure 7.18, the four thermal histories in S8 are finely recovered, which

merely have relative errors 0.65%, 0.98%, 0.98%, and 1.01%. In the test S9 with

random λ, however, the corresponding relative errors are 3.07%, 3.05%, 3.83%,

and 3.34%. It is less accurate than the test S8, but the approximated lines from

F2 in figure 7.19 show that the randomness in thermal histories can be partly

predicted as in F2 we still run the thermal simulator. Though it is projected and
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Figure 7.18: The thermal history comparison between FEM and F2 in S8.
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Figure 7.19: The thermal history comparison between FEM and F2 in S9.

sketched, the information of anisotropy scale factor λ is used at each time step.

7.3.3 Offline preparation

Since F2 also needs the data-driven relative distance predictor in F1, its offline

preparation also includes data generation, nonlinear dimension reduction, and

training as the description in section 7.2.4. Once the relative distance predictor

is established, there is no other preparation required before the simulations start.

7.3.4 Time cost reduction

Since the accuracy compromise of F2 is comparably small, it is expected that

F2 needs more running time. While the offline preparation time is the same

as F1, the total online execution time, listed as 22.41s and 20.28s on average

for the one- to two-layer domain in table 7.17, is composed of four parts: basis

generation, projection, sketching, and simulation. It is noted that in the i-layer

domain for i = 1, 2 the average execution time of basis generation (0.23s and
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0.26s) and projection (2.59s and 2.76s) is much less than sketching (8.04s and

7.86s) and simulation (11.55s, and 9.40s). The first three parts: basis generation,

projection, and sketching, however, only needs to be computed once with one

set of test inputs while the simulation part includes the Picard iteration taking

several runs to converge. The online execution time is still observed with a

significant reduction respectively saving 95.13% and 96.61% of time cost in the

one- to two-layer domain. The promising advantage of F2 is that it expedites

the high-fidelity simulator with a small compromise of accuracy. F2 manages to

make most predictions with relative error less than 1% using no more than 5%

of online running time required by FEM, thus its performance is encouraging

for applications that require accurate thermal simulations but do not excessively

demand real-time implementations.

Table 7.17: The time cost reduction of F2.

Layer
Average time cost of F2 (s)

Reduction
(%)Basis

generation
Projection Sketching Simulation Total

1 0.23 2.59 8.04 11.55 22.41 95.13
2 0.26 2.76 7.86 9.40 20.28 96.61

7.4 Sketched surrogate with online local projec-

tion

7.4.1 A simplified example

A simplified example is provided to simulate the heat transfer with a Gaussian

heat source moving forward with a speed v, the codes of which are provided in

the GitHub repository [21]. The Gaussian function follows equation (3.3) with

a fixed amplitude denoted as fs in this section. The three-dimensional domain

is discretized by mesh with less refinement, and the thermal properties includ-

ing thermal conductivity, density, and specific heat capacity are temperature-

dependent but are only set as simple polynomials. As a result, this simplified
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example is comparably not high-dimensional and only has mild nonlinearity. The

parameters of the thermal model and the surrogate are respectively listed in table

7.18 and table 7.19.

Table 7.18: Thermal model parameters in the simplified example.

Symbol Definition (Unit) Value

nd the number of degrees of freedom 2986
n̄d the number of nodes on Γb 561
ne the number of elements 17453
- the size of domain (mm) 0.50× 0.17× 0.10
- the side length of refined tetrahedron mesh (mm) 0.01
- the side length of coarse tetrahedron mesh (mm) 0.025

∆t A time step in temporal discretization (ms) 0.05
N The total amount of time steps 15
v The moving speed of Gaussian heat source (mm/s) 400
fs The amplitude of Gaussian heat source 45000
h Heat convection coefficient (W/(m2K)) 10
ς The effective radius of Gaussian heat source (µm) 50
ub The constant temperature on Γb ( ◦C) 20
κ Thermal conductivity (W/mK) u3 + u2 + u+ 1
ρ Density (kg/m3) u+ 1
c Specific heat capacity (J/kgK) u+ 1

Table 7.19: The surrogate model parameters in the simplified example.

Symbol Definition Value

η the scale factor of Gaussian function variance [0.5, 1, 1.5]T

um the temperature threshold of node selection 30◦C
nr the dimension of projection 40
ι the multiplier of leverage score 4000
nt the number of FOM time steps 5
nu the number of previous temperatures 5
nµ the number of mean positions 2
p the selection proportion in randomized sketching 60%

∆d the distance interval of translation 50µm

7.4.1.1 Model accuracy

The model accuracy is evaluated by relative errors which are computed in 2-norm

and infinity-norm. The boxplots as figure 7.20 show the two types of relative

errors for the simplified example in this section. We can tell that 2-norm relative
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Figure 7.20: Relative errors between FEM and SM.

errors range from 1.53% to 3.56% while infinity-norm relative errors range from

6.96% to 12.69%. More specifically, we can compare the temperature distributions

between FEM and the surrogate F3. Take one time step (t = 0.4ms) as an

example, the temperature profiles and the relative errors are shown in figure

7.21.

Figure 7.21: The comparison of temperature distribution between FEM and SM.

7.4.1.2 Time cost reduction

The average time cost of FEM and F3 are summarized in table 7.20 where the

time cost of F3 consists of four parts: basis generation, sketching, projection, and

simulation. It indicates that 33.64% of time cost is saved on average. The total

time cost is reduced from 1.3414s to 0.8901s, which is not a significant reduction.

However, a more remarkable improvement in time efficiency will be shown when

the thermal model has a higher dimension and nonlinearity.

7.4.2 Parameter setup

To compare the performance of F3 with the previous two surrogates F1 and F2,

we use the same 16 tests listed in table 7.7. The online local projection basis is
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Table 7.20: The comparison of average time cost for the simplified example.

FEM
(s)

F3 (s)
Reduction

(%)Basis
generation

Sketching Projection Simulation Total

1.3414 0.0066 0.2754 0.0077 0.6004 0.8901 33.64

applied and updated at each time step, which means it is swiftly generated in the

process of simulation without the help of offline preparation. The parameters of

F3 are specified in table 7.21, which include the parameters to generate Gaussian

local projection bases, approximate the sampling probability, and implement the

row selection in randomized sketching.

Table 7.21: Parameters of F3.

Symbol Definition Value

η the scale factor of Gaussian function variance [0.5, 0.8, 1, 1.2, 1.5]T

um the temperature threshold of node selection 500◦C
nr the dimension of projection 200
ι the multiplier of leverage score 80000
nt the number of FOM time steps 5
nu the number of previous temperatures 5
nµ the number of mean positions 3
p the selection proportion in randomized sketching 40%

∆d the distance interval of translation 35µm

7.4.3 Model accuracy and robustness

The spread of 2-norm and infinity-norm relative errors of all 16 tests are shown

as the boxplots in figure 7.22. We can tell that most of the 2-norm relative errors

are smaller than 3%. More specifically, there are respectively 3.99%, 52.22%, and

99.47% of 2-norm relative errors below 1.5%, 2%, and 3%, while the maximum

2-norm relative error among all tests is 3.35%. The infinity norm relative errors,

however, ranges from 5.34% to 21.50% where 69.28%, 98.76%, and 99.91% of

tests are respectively below 10%, 15%, and 20%. The robustness of F3 in deal-

ing with some anisotropy randomness is shown in table 7.22. It indicates that

though using a random λ results in higher error both in terms of the maximum
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Figure 7.22: The boxplot of relative errors between FEM and F3.

Table 7.22: The accuracy comparison of F3 between using a static or random λ.

λ
2-norm relative error (%) Infinity-norm relative error (%)

Max < 1.5% < 2% < 3% Max < 10% < 15% < 20%

Static 2.99 5.32 61.61 100.00 17.48 79.79 99.56 100.00
Random 3.35 2.66 42.82 98.94 21.50 58.78 97.96 99.82

and the spread of relative errors F3 outperforms in handling the randomness of

λ than F1 and F2. While the increase of the maximum relative error is compara-

bly small (an increase of 0.36% for 2-norm and 4.02% for infinity-norm relative

errors), the percentage of tests with e < 2% and e∞ < 15% respectively de-

crease from 61.61% to 42.82% and from 99.56% to 97.96%. It is a significantly

smaller drop compared with F1 and F2. In addition to the relative errors of

high-dimensional temperatures, we further focus on the area around melt pools

where most temperature gradients concentrate. Around the selected positions χi

for i = 1, · · · , 4 in S8, the maximum temperatures with FEM are respectively

1517.59◦C, 1490.11◦C, 1540.79◦C, and 1548.21◦C while with F3 they are corre-

spondingly estimated as 1416.10◦C, 1424.75◦C, 1480.37◦C, and 1386.82◦C with

relative errors 6.69%, 4.39%, 3.92%, and 10.42%. In S9, the maximum tempera-

tures at χi for i = 1, · · · , 4 are 1559.23◦C, 1259.34◦C, 1244.87◦C, and 1331.57◦C

with FEM. With F3, they are 1477.90◦C, 1201.75◦C, 1175.61◦C, and 1266.21◦C

with relative errors 5.22%, 4.57%, 5.56%, and 4.91%. Figure 7.23 and 7.24 respec-

tively compares the temperatures around the positions χi for i = 1, · · · , 4 in the

test S8 and S9. The maximum relative errors around χi for i = 1, · · · , 4 in S8 are
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Figure 7.23: The melt pool comparison between FEM and F3 in the test S8.
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Figure 7.24: The melt pool comparison between FEM and F3 in the test S9.
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respectively 6.86%, 10.52%, 13.66%, and 10.50%, while in S9 the correspondingly

maximum relative errors are 11.71%, 8.46%, 9.79%, and 7.27%. The comparison

of melt pool size with FEM and F3 is listed in table 7.23. The maximum relative

Table 7.23: The comparison of melt pool sizes between FEM and F3 in the test
S8 and S9.

Test Position Melt pool size FEM (µm) F3 (µm) Relative error (%)

S8

χ1

Length 148.20 147.50 0.47
Width 94.19 94.19 < 0.01
Depth 59.59 57.57 3.39

χ2

Length 135.00 130.70 3.19
Width 91.18 93.11 2.12
Depth 56.43 53.26 5.61

χ3

Length 179.51 177.92 0.89
Width 103.63 103.63 < 0.01
Depth 69.45 63.73 8.24

χ4

Length 188.27 197.50 4.90
Width 105.09 102.99 2.00
Depth 73.62 69.47 5.63

S9

χ1

Length 130.00 130.00 < 0.01
Width 96.69 96.17 0.54
Depth 55.89 58.21 4.16

χ2

Length 122.87 120.41 2.00
Width 86.98 87.99 1.16
Depth 55.80 52.93 5.16

χ3

Length 143.24 142.85 0.27
Width 118.77 111.80 5.87
Depth 82.16 73.70 10.29

χ4

Length 147.50 147.50 < 0.01
Width 94.81 93.81 1.05
Depth 66.59 64.70 2.84

errors of melt pool sizes are respectively 8.24% and 10.29% in S8 and S9, while

the width of χ1 and χ3 in S8, the length of χ1 and χ4 in S9 are precisely approxi-

mated. At the same four positions, their thermal histories are compared as figure

7.25 and 7.26. In S8, the relative errors of thermal histories at χi for i = 1, · · · , 4

are respectively 1.88%, 3.30%, 3.09%, and 5.36%. For the thermal histories in

S9, we can see the effect of anisotropy randomness while the relative errors at the

four selected positions are respectively 3.01%, 2.88%, 3.37%, and 3.30%.
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Figure 7.25: The thermal history comparison between FEM and F3 in S8.
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Figure 7.26: The thermal history comparison between FEM and F3 in S9.

7.4.4 Offline preparation

Different from F1 and F2, there is no offline preparation required for F3. It is an

advantage of F3 as the data generation and training can be costly in time and

storage.

7.4.5 Time cost reduction

While the accuracy of F3 is validated in section 7.4.3, another important perfor-

mance is the reduction of execution time. The online execution of F3, however,

consists of 4 parts: basis generation, sketching, projection, and simulation. While

the basis generation, sketching, and projection respectively corresponding to sec-

tion 6.2.1, 6.1, and 6.2.2 are successively executed, the simulation part is also

the Picard iterations but is implemented with the projected and sketched model

where only a small amount of nonlinear computations are required. On average,

as shown in table 7.24, F3 manages to respectively save 87.85% and 90.39% of
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time cost for the one- and two-layer printing. Specifically, while the average exe-

cution time of FEM is respectively 459.90s for layer 1 and 597.72s for layer 2, the

average execution time of F3 is correspondingly 55.90s and 57.47s. Most of the

execution time in F3 is taken by sketching and simulation parts, though both of

which are necessary they can be further reduced if more sacrifice in accuracy is

acceptable. Namely, a smaller proportion p in algorithm 6 will reduce the sketch-

ing time required, and a smaller multiplier ι will cut down the simulation time

required.

Table 7.24: The time cost reduction of F3.

Layer
Average time cost of F3 (s)

Reduction
(%)Basis

generation
Sketching Projection Simulation Total

1 1.56 22.95 1.99 29.40 55.90 87.85
2 1.90 24.35 2.34 28.88 57.47 90.39

7.5 Comparison and discussion

Three time-efficient surrogates, namely the reduced GP surrogate F1, the sketched

surrogate with data-driven local projection F2, and the sketched surrogate with

online local projection F3, have been introduced as rapid computational alterna-

tives to thermal modelling of LPBF with FEM. These three surrogates effectively

estimate most tests with high accuracy and offer substantial time savings during

online execution. However, it is important to note that each surrogate possesses

its own distinct advantages and disadvantages, rendering them suitable for vari-

ous application scenarios.

7.5.1 Model accuracy

Model accuracy, a crucial performance metric, is assessed using the 2-norm and

infinity-norm relative error measurements. We evaluate and compare the three

surrogates Fi (i = 1, 2, 3) in two distinct sets of tests to respectively assess model

accuracy and robustness. The first set comprises the initial 8 tests (Si for i =
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1, · · · , 8), where a static anisotropy scale factor is employed. In contrast, the

second set consists of the remaining 8 tests (Si for i = 9, · · · , 16), which adopt

a random anisotropy scale factor. In this section, the first set is utilized to

evaluate model accuracy, while the second set will be addressed later in section

7.5.2 to evaluate model robustness. The comparison of the 2-norm and infinity-

norm relative errors, denoted as e and e∞ respectively, is presented in table

7.25. Notably, these relative errors are computed across all time steps, except

for the initial five time steps of each scanning line, as the initial stages exhibit

irregularities in the melt pools.

Table 7.25: The comparison of model accuracy and robustness.

Type Quartile
Static Random

F1 F2 F3 F1 F2 F3

e (%)

Q1 1.35 0.41 1.75 2.69 1.65 1.85
Q2 1.95 0.55 1.93 3.60 2.16 2.06
Q3 2.48 0.72 2.10 4.95 3.20 2.28

Max 9.26 1.72 2.99 10.21 6.38 3.35

e∞ (%)

Q1 5.08 1.96 8.11 11.84 7.31 8.67
Q2 7.51 2.40 8.91 16.46 9.85 9.65
Q3 10.69 2.91 9.81 21.29 13.37 10.93

Max 56.97 6.19 17.48 75.33 27.12 21.50

In terms of model accuracy, F2 demonstrates the highest level of accuracy.

For 25%, 50%, and 75% of the tests, the 2-norm relative errors are below 0.41%,

0.55%, and 0.72% respectively. The maximum 2-norm relative error among all

the tests is only 1.72%, and the infinity-norm relative errors for all tests remain

below 6.19%. Following closely, the second most accurate surrogate is F3. The

maximum 2-norm and infinity-norm relative errors for this surrogate are 2.99%

and 17.48% respectively, indicating that all tests are estimated with satisfactory

accuracy. On the other hand, F1 is the least accurate among the three surrogates.

Although the Q1, Q2, and Q3 values of F1 are similar to those of F3, the maximum

2-norm and infinity-norm relative errors for F1 are 9.26% and 56.97% respectively,

suggesting the presence of inaccurately estimated outliers.
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7.5.2 Robustness

The three surrogates exhibit varying degrees of robustness when it comes to

handling the randomness of the anisotropy scale factor λ. Among them, F3 is

the most robust one. With a random λ, there is a slight increase in Q1, Q2,

Q3, and the maximum of 2-norm relative errors respectively by 0.10% (from

1.75% to 1.85%), 0.13% (from 1.93% to 2.06%), 0.18% (from 2.10% to 2.28%),

and 0.36% (from 2.99% to 3.35%) for F3. In terms of the infinity-norm relative

errors, the increase in Q1, Q2, Q3, and the maximum are respectively 0.56% (from

8.11% to 8.67%), 0.74% (from 8.91% to 9.65%), 1.12% (from 9.81% to 10.93%),

and 4.02% (from 17.48% to 21.50%). Both F1 and F2 exhibit less robustness

when handling random λ. However, the decrease in model accuracy caused by

introducing randomness in λ is slightly more noticeable for F2 since it performs

quite accurately in tests with static λ. Specifically, for F1, the increase in Q1, Q2,

Q3, and the maximum of 2-norm relative errors is 1.34%, 1.65%, 2.47%, and 0.95%

respectively, while for F2, the corresponding increase is 1.24%, 1.61%, 2.48%, and

4.66%. The increase in Q1, Q2, Q3, and the maximum of infinity-norm relative

errors is 6.76%, 8.95%, 10.60%, and 18.36% respectively for F1, whereas for F2,

these values are 5.35%, 7.45%, 10.46%, and 20.93% respectively.

7.5.3 Time cost and offline preparation

The time cost of the three surrogates can be divided into two categories: offline

preparation time and online execution time. Offline preparation is necessary for

constructing the data-driven relative distance predictor used in both F1 and F2,

resulting in the same offline preparation time for these two surrogates. However,

F3 does not require any offline preparation time. The details of offline preparation

time, including data generation (7.30 days for layer 1 and 9.28 days for layer 2),

nonlinear dimension reduction (55.10s for layer 1 and 53.49s for layer 2), and

training (1.10hr for layer 1 and 0.85hr for layer 2), are presented in table 7.12.

The reduction in online execution time is compared in table 7.26. Among

the three surrogates, F1 is the fastest, offering near real-time implementations

(0.12s for layer 1 and 0.11s for layer 2). F2 is the second fastest surrogate,
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with a reduction in execution time of 95.13% for layer 1 and 96.61% for layer

2. Although F3 is the slowest among the three, it still manages to significantly

reduce the online execution time (87.85% for layer 1 and 90.39% for layer 2).

Table 7.26: The comparison of the online execution time.

Layer
Online execution time (s) Reduction (%)

FEM F1 F2 F3 F1 F2 F3

1 459.90 0.12 22.41 55.90 99.97 95.13 87.85
2 597.72 0.11 20.28 57.47 99.98 96.61 90.39

7.5.4 Different strengths of each surrogate

The three surrogates exhibit superior performance in various aspects. F1 excels

in reducing time costs, enabling near real-time implementation. However, it is

less accurate and robust compared to the other surrogates. While F1 relies on

finding a representative training dataset, limiting its accuracy and robustness, a

similar reliance exists in F2 as they share the same relative distance predictor.

However, F2 overcomes this limitation to some extent. It constructs data-driven

local projection bases that do not heavily depend on precise relative distance pre-

dictions. Instead, all subsampled temperature snapshots equally contribute to the

projection bases. Conversely, F1 requires accurate and ordered relative distance

predictions to compute weights for high-dimensional temperature extrapolation.

The strength of F2 lies in its model accuracy, leveraging information from both

precomputed temperature data and the numerical solver with FEM. Although

it takes more time than F1 and lacks robustness to random anisotropy, it offers

improved accuracy. F3 outperforms in terms of robustness to random anisotropy

and requires no offline preparation. However, it takes more time compared to the

other two surrogates and is less accurate than F2. Its performance is influenced

by the method used to generate online local projection bases. Since the gener-

ation of projection bases does not rely on a pre-trained data-driven model, no

offline preparation is needed. By employing hundreds of calibrated and adjusted

Gaussian functions to delineate temperature distributions, the projection bases of

F3 can cover a wider range of temperature distributions, enhancing its robustness
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in handling anisotropy randomness. However, this also increases the dimension

of the projected model to hundreds comparing with the tens in F2, resulting in

longer online execution time.

The analysis above reveals that all three surrogates demonstrate strong per-

formance in reducing time costs while maintaining accuracy. Despite being the

least accurate and robust, F1 still achieves a commendable result by suppressing

85.30% of all tests with 2-norm relative errors below 5%. F2, although slower and

less robust, manages to save over 95% of the time cost and reduces the 2-norm

relative errors of 95.75% of tests with random λ to below 5%. Similarly, the

slower and less accurate F3 still achieves a remarkable outcome by saving more

than 87% of execution time and yielding relative errors lower than 3% for 99.47%

of the tests.

The selection of F1, F2, or F3 depends on the specific application require-

ments. If a general description of temperature profiles suffices, F1 is a more ef-

ficient choice. For situations where precise analysis is essential and an execution

time of approximately 20 seconds is acceptable, F2 is preferable. If considering

anisotropy randomness and/or minimizing offline preparation is crucial, F3 is

the more suitable option, even though it entails an execution time of around 50

seconds, which is tolerable.

98



Chapter 8

Conclusion

Together with a nonlinear thermal model of LPBF numerically solved by FEM,

three time-efficient surrogates: the reduced GP surrogate F1, the sketched surro-

gate with data-driven local projection F2, and the sketched surrogate with online

local projection F3 are proposed as swift alternatives with different trade-offs in

terms of model accuracy, robustness, offline preparation, and time cost reduction.

The methods are published in [19] or [20], while the results of the three surrogates

are compared under the same parameter settings and are thereby different from

the two aforementioned papers. A simplified example of F3 published in [20] is

presented, the codes of which are provided in the GitHub repository [21].

The thermal model of LPBF is governed by a nonlinear and anisotropic heat

equation, the computational domain of which is modelled as a cuboid vertically

extended layer after layer. The Dirichlet boundary condition is employed to

simulate temperature control on the building platform, imposing a constant tem-

perature on the bottom surface. The Neumann boundary condition is employed

to account for Gaussian heat flux, convection, and radiation heat loss. The ther-

mal properties of the metal material are temperature-dependent, additionally

considering phase changes, anisotropy, and latent heat. To simulate temperature

distributions under various printing parameters (laser power and scan speed), as

well as static/random anisotropy, a full-order numerical solver based on FEM

is employed. This solver captures melt pool sizes and thermal histories at any

desired location. The powder bed domain is discretized using tetrahedrons, with
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conforming refined mesh elements around the printing area. Gaussian quadrature

approximation and Picard iterations are respectively utilized for integral estima-

tion and solving the nonlinear heat equation. The full-order model exhibits high

computational complexity due to the fine spatial discretization and intricate non-

linearity resulting from temperature-dependent thermal properties and boundary

conditions. The increased number of elements resulting from high dimension-

ality, as well as the higher number of integration points required for Gaussian

quadrature approximation, contribute to the demands of nonlinear computations

in each Picard iteration, significantly impacting computation time. On average,

the full-order model with FEM requires 528.81s per time step.

Three time-efficient surrogates with different advantages and disadvantages

are proposed. To evaluate their performance, a series of numerical experiments

are conducted using a two-layer printing process involving two straight lines

scanned back and forth on an AlSi10Mg powder bed under an argon atmosphere.

The reduced GP surrogate F1 is a data-driven model that approximates high-

dimensional temperatures through linear combinations of subsampled training

temperatures closest to the final prediction. The subsampling process relies on a

relative distance predictor comprising nonlinear dimension reduction and Gaus-

sian process regression with three control inputs: laser power, scan speed, and

time. Once the relative distance predictor is well-trained, it enables almost real-

time high-dimensional temperature prediction. However, F1 exhibits lower accu-

racy compared to the other surrogates. In this chapter, the first five time steps

of each scanning line are excluded to assess model accuracy as there is not suf-

ficient heat to melt materials and form regular melt pools at the beginning. For

static anisotropy, 52.30% and 96.90% of tests for F1 respectively achieve 2-norm

relative errors below 2% and 5%. However, F1 is weak in handling anisotropy

randomness, with only 8.87% and 75.53% of tests with random anisotropy achiev-

ing 2-norm relative errors below 2% and 5% respectively. Despite its limitations,

F1 is the only surrogate suitable for real-time implementation, with an average

prediction time of 0.12s. Offline preparation is required for F1, including data

generation (16.58 days), nonlinear dimension reduction (108.59s), and training

(1.97hr). The sketched surrogate with data-driven local projection F2 accelerates
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the full-order model by subspace projection using data-driven local projection

bases. These bases are constructed by subsampling training temperatures based

on the relative distance predictor in F1. However, unlike F1, F2 is less reliant

on finding representative training data due to its tolerance for prediction errors

in relative distances. After projection, the randomized sketching technique is

applied to subsample the algebraic operations involved in solving the nonlinear

model with Picard iterations. F2 exhibits the highest accuracy among the three

surrogates, with 93.53% of tests achieving 2-norm relative errors below 1% for

static anisotropy. However, similar to F1, F2 is not robust in handling anisotropy

randomness. The percentage of tests with 2-norm relative errors below 1% and

2% respectively decreases from 93.53% to 3.10% and from 100.00% to 42.73%

when random anisotropy is introduced. The offline preparation for F2 is the

same as F1, as both surrogates utilize the same relative distance predictor. In

terms of online execution time, F2 ranks second among the three surrogates, tak-

ing an average of 21.35s, which represents a time cost reduction of over 95%.

The sketched surrogate with online local projection F3 also employs local projec-

tion and randomized sketching techniques, albeit with different implementations

compared to F2. The local projection bases of F3 are generated online, elimi-

nating the need for offline preparation. These bases consist of several previous

temperature snapshots and three-dimensional Gaussian functions derived from

a benchmark Gaussian function calibrated by the most recent temperature dis-

tribution. The randomized sketching process in F3 exploits the approximated

sampling probability to further reduce sketching costs and avoid full projection,

both are time-consuming steps given the larger reduced dimension compared to

F2. F3 achieves higher accuracy than F1 but lower accuracy than F2. For static

anisotropy, the maximum 2-norm relative error is 2.99%, with 61.61% of tests

exhibiting relative errors below 2%. However, F3 demonstrates greater robust-

ness, as for tests with random anisotropy, the maximum relative error is 3.35%,

while 42.82% and 98.94% of tests respectively achieve relative errors below 2%

and 3%. F3 has the longest execution time among the three surrogates, taking

56.69s on average. In addition to temperature profiles, the estimation of thermal

histories and melt pool sizes at selected positions are also considered. F1 exhibits
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the least accuracy in estimating melt pool size and thermal history, while F2 is

the most accurate, and F3 demonstrates the highest robustness. It is notewor-

thy that only F2 and F3 are able to capture the effects of random anisotropy in

thermal histories.

All three surrogates demonstrate accurate estimation capabilities and signif-

icant reductions in online execution time. However, each surrogate strikes a

balance between accuracy, robustness, offline preparation, and online execution

time in its own way. F1 prioritizes real-time implementation but compromises of-

fline preparation, accuracy, and robustness. F2 exhibits impressive performance,

achieving relative errors below 1% for 93.53% of static tests while utilizing less

than 5% of the full-order model’s time cost. However, it requires the same level

of offline preparation as F1 and lacks robustness in handling anisotropy random-

ness. F3 stands out as the only surrogate showing robustness without the need

for offline preparation. It also achieves considerable accuracy, with 99.47% of all

tests displaying 2-norm relative errors below 3%. However, it does take more time

compared to the other two surrogates. In summary, selecting the most suitable

surrogate depends on the specific requirements of accuracy, robustness, offline

preparation, and time cost for different applications. If only rough temperature

profiles are needed, with no constraints in robustness and offline preparation,

F1 is recommended for producing real-time predictions. For applications that

prioritize high accuracy without excessive demands on robustness, offline prepa-

ration, and online execution time, F2 is suitable. F3, however, is recommended

for scenarios that require sufficiently accurate temperature profiles while consid-

ering robustness and/or no offline preparation, with a tolerance for longer online

execution time. If the thermal model was utilized in real-time control, the online

execution time should be as fast as the real printing process. Namely, the online

execution time of each time step should be closed to the time interval set in ther-

mal simulation. When the scale of the thermal model increases such as a FEM

model with millions of elements, in each Picard iteration there will be more non-

linear computations required and more time caused by high-dimensional matrix

multiplication and inverse. It will cause a significant increase of online execution

time in the FEM model as well as F2 and F3 since all of them will implement
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Picard iterations in each time step. The increase of F1’s online execution time,

however, will be less significant since it is entirely data-driven and the dimen-

sionality increase will mainly affect its offline preparation time. In this case, it is

recommended to use a high-performance computer and also apply parallel com-

puting for each Picard iteration in each time step to finish some computations

like temperature-dependent thermal properties in parallel.

All three surrogates enable fast computation of temperature profiles, thermal

histories, and melt pool sizes, which are vital for models related to microstructure,

residual stress, and the prediction of final part mechanical properties, deforma-

tion, and fatigue life. Consequently, they advance the quality assurance process

for the final parts. In principle, these surrogates can be adapted for other types of

thermal-driven additive manufacturing by appropriately adjusting domain evolu-

tion and heat source models. Future work can explore their application in solving

problems that involve large and/or fast thermal simulations, such as process op-

timizations and closed-loop controls.
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