
IFAC PapersOnLine 56-2 (2023) 11082–11087

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.814

10.1016/j.ifacol.2023.10.814 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

 Jiecheng Tang et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087 11083

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation:

A Deep Reinforcement Learning Approach

Jiecheng Tang. Yousef Haddad. John Patsavellas. Konstantinos Salonitis.

Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University,

Bedford, MK43 0AL, UK

(e-mail: jiecheng; yousef.haddad; john.patsavellas; k.salonitis@cranfield.ac.uk,)

Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a

cost-effective solution for responding to these challenges. However, given their complex adjustable nature,

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems.

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO)

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the

focus of further research.

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning,

scheduling, proximal policy optimisation

1. INTRODUCTION

In contrast to the manufacturing paradigms of high-throughput

dedicated production lines and wide functionality flexible

manufacturing systems, reconfigurable manufacturing

systems (RMS) target medium-volume-medium-variant

mixed order production. Since their conceptual introduction by

Koren et al., (1999), new technologies that can help to build

practical RMS became mature and accessible. An RMS

provides capabilities around 6 core characteristics that include

modularity, integrability, diagnosability, scalability,

customisability and convertibility. Aiming on high

customisation, a digitalised RMS highly relies on information

exchange to secure its more fundamental characteristics of

modularity and diagnosability (Tang et al., 2020). However,

whilst vital for RMS efficacy, extra information brings extra

challenges on an RMS. Whilst the problem of handling

fluctuating demand promoted the birth of RMS, their

scheduling can be considered as a special branch of the flexible

job-shop scheduling problem (FJSP). In such a problem, the

conventional fixed dispatching policies like first-in-first-out

cannot fully release the potential of an RMS. Meta-heuristics

like genetic algorithms (Dou et al., 2018, 2019, 2021) were

considered good approaches to the challenge of finding an

optimal scheduling solution. In recent years, reinforcement

learning (RL) has revealed great potential in finding a credible

scheduling policy (Tang & Salonitis, 2021). RL has gained

achievements in many fields including gaming (Silver et al.,

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et

al., 2021), nuclear fusion reaction control (Degrave et al.,

2022), and even mathematics (Fawzi et al., 2022). Some of

these problems share a common pattern of optimising one or a

limited number of measures in real-time from a predictable

environment with complicated input. The FJSP of RMS fit this

pattern as well. The unpredictable demand makes a roomy

observation space while the way how an RMS operating is

predictable. Although research of finding an optimal schedule

for an RMS in real-time is not fully developed, there are

considerable amount of papers regarding RL methods to solve

FJSPs even before the RMS paradigm was introduced (Zhang

& Dietterich, 1995a, 1995b).

There are two major approaches to solve FJSP by RL

algorithms. The first one is on-policy methods developed from

the principle of RL direct interaction. On-policy algorithms

upgrade their activity policies after every interaction with a

given environment (Sutton & Barto, 2018). Such algorithms

tend to suffer from low sample efficiency prompting

researchers to develop off-policy methods represented by deep

Q networks (DQN) that can store data firstly in a buffer and

then train the policy later. The DQN method was deployed to

improve a wafer fabrication scheduling system on equipment

utilisation by 8% and decrease lead time by 7 minutes (Stricker

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled

a semiconductor factory through discrete-event simulation

(DES) and developed a suboptimal scheduling policy with

DQN methods. Although DQN methods appear to have some

promise their training process can sometimes fall into

computational traps without recovery. This phenomenon

forced researchers to reconsider on-policy algorithms and

developed Proximal Policy Optimisation (PPO) (Schulman et

al., 2017). PPO provided promising results in scheduling

problems. For example, Rummukainen & Nurminen, (2019)

formulated a stochastic economic lot scheduling problem into

a semi-Markov setting. In their 3×109 state space environment,

PPO provided a promising control policy after 11×107 training

iterations.

Aiming on generate a real-time updating schedule of RMS,

this paper proposes a framework to train a reinforcement

learning-based scheduler. The following sections of the paper

are organised as follows: section two presents the general

structure of the proposed framework to train the scheduling

agent. Similar to all other reinforcement learning projects, this

general framework contains three major parts, a Markov

decision process environment to mimic an RMS, a reward

function which express the optimising goals, and a job

releasing schedule agent which contains the policy. Section

three presents a numerical case study about verifying the

framework by training a scheduling agent through the PPO

algorithm for a simplified DES-based RMS model. Further

analysis presenting processing results follow in section three.

The final section concludes with the advantages and

disadvantages of the proposed framework and summarises the

prospects for future research.

2. A REINFORCEMENT LEARNING SCHEDULER

TRAINING FRAMEWORK

In a previous study, Tang et al., (2022) addressed the multi-

agent RMS scheduling problem, proposing a multi-agent RMS

scheduling agent based on an off-line reinforcement learning

algorithm called Dueling Double Deep Q-Network (DDDQN)

with a Prioritised Experience Replay (PER). Although this

framework was shown to be feasible, the converging speed

was slow. To overcome this limitation, this paper introduces a

newly designed framework focused on reconfigurable

machine tools (RMT), and employs a cutting-edge

reinforcement learning algorithm called Proximal Policy

optimisation (PPO) to train an intelligent scheduler within

reasonable computational time.

Similar thus to the RMS model proposed by Tang et al. (2022),

this paper presents a simplified dimensionless RMS which can

produce limited variants of a product. Such an RMS consists

of a fixed number of RMTs. These uniform RMTs can produce

different products with matched modules which need time to

be reconfigured. The goal of such an RMS is to fulfil a

constantly updating order list. This order list contains a certain

number of individual orders with each order consisting of a

random quantity of jobs. The deadlines are set as a function of

the order size; i.e. the bigger the order the longer the deadline.

Once the deadlines are set, then they are considered rigid and

non-negotiable. If an order missed the deadline due to no

sufficient inventory, there will be no extension or delay to

fulfil the demand. In that case a new order will be dispatched

automatically to the RMS stochastically regardless of whether

it was success or not. This is described schematically in Fig.

1.

The scheduling agent is designed to generate schedules for

every individual RMT. These maintenance-free RMTs would

equip a random module when initialising the RMS. When the

initialisation ends, the number of RMTs cannot be changed.

The agent generates a schedule by sending two types of action

commands to RMTs at every decision-making instance. The

first type of action is “stay rest”. In such a case, the RMT will

stay idle and generate neutral reward feedback for training.

Fig. 1. A stochastically updating order list with 3 products

The second type of action is to produce a certain kind of

product. In this circumstance, if an available RMT equips the

proper module to produce the required product, this RMT will

produce one product and send it to the inventory (if produced

before the deadline). If the module that RMT is equipped with

cannot follow the action order, the RMT will initiate

reconfiguration of itself with a proper module (which will

require a set amount of time) and then produce the required

product and send it to the inventory. For example, if an RMT

equips Module 1 which can produce Product 1 while the

scheduler asks it to produce Product 1, the RMT will produce

one Product 1 with a certain lead-time. If the scheduler asks an

RMT to produce Product 2 while the RMT is equipped with

Module 1, the RMT will spend some time to reconfigure itself

with Module 2 and then produce one Product 2 with a certain

lead-time. All products will be collected into a finished-good

inventory before being dispatched to customers. To formalise

the procedure to enhance applicability and transferability, Fig.

2 presents the flowchart below.

Fig. 2. RMS Simulation Flowchart

11084 Jiecheng Tang et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087

For the agent to be able to learn how to make decisions, a

reward policy is set. Considering thus the intelligent

scheduling policy as a function for reinforcement learning

algorithm to solve, the optimal solution for such functions is

fulfilling as much as order while keep the inventory level as

low as possible. To solve such a function properly under RL

content, the reward function framework shown in Table 1 is

proposed.

Table 1. Reward function category

Scenario Reward

Gain a product Small positive

Keep a product inventory Small negative

Fulfil an order Huge positive

Miss an order Medium negative

Reconfigure an RMT None

Keep an RMT rest None

The idea behind the proposed reward framework is to augment

the signal from missing or delivering an order, while providing

to the agent a relative dense reward signal from the inventory

during training. For increasing the compatibility of the

environment, all forementioned simulation features of an RMS

are following the OpenAI-gym interface developing rule.

Once the two out of the three major components, namely

environment and reward, of the RL project are ready, the agent

needs to be built. This paper involves the development of a

resilient framework for the training of the agent to take place.

Unlike the supervised learning that is based in a steady and

clear labelled data set, stochastic gradient descent (SGD)

cannot guarantee a decent local optimum in RL. The training

data thus for RL are generated being highly dependent on

current policy and “burnt after training”. The constantly

changing data distribution of observation and rewards lead to

instability during agent training process. RL training is also

highly sensitive to hyperparameter tuning such as initialisation

(Schulman et al., 2017). One slight change on policy can have

a great impact on the performance. PPO algorithm is

developed for minimising the cost function by balancing

among small policy update, ease of implementation, sample

complexity, and ease of hyperparameter tuning. PPO is a

policy gradient method which belong to the on-policy category.

It is different from off-policy algorithms like DQN, as the

learning happens with exploration and is able to learn from

recorded data. On-policy agents always learn directly from

whatever they encounter in the environment, following their

own policies and cannot store past experiences in a replay

buffer. Additionally, a batch of experience will be discarded

immediately once it has been used to do a gradient update for

a policy.

Policy Gradient (PG) methods use samples of the interactions

only once, which mean they are significantly less efficient. The

general policy optimisation methods define the policy gradient

loss, 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)Â𝑡𝑡], as the expectation over

the probabilities of the policy actions, times an advantage

function estimation. The current policy, 𝜋𝜋𝜃𝜃 , with the policy

parameter 𝜃𝜃 takes the state of system, 𝑠𝑠𝑡𝑡, as input and output

an action, 𝑎𝑎𝑡𝑡. An advantage, Â𝑡𝑡, is an estimation of a relative

value of the selected action in 𝑠𝑠𝑡𝑡. To calculate Â𝑡𝑡, the sum of

discounted rewards and a value-function estimation are

needed. The discounted reward is a weighted sum of all the

rewards happen after taking current action which can be

presented as 𝐸𝐸 = ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡 + 𝑘𝑘∞
𝑘𝑘=0 . These advantages are not an

estimation as their value are calculated after the entire episode

sequence has been collected. The value function, which is the

second part of the advantage, is defined as the estimation of

discounted reward or final reward from this step onward. In

PPO, the value function is presented as a neural network. By

using the state and discounted reward records, the value

function network can be updated similar to a supervised

learning problem. In this case, the advantage estimation can be

presented as discounted rewards, a certain number, subtract the

value estimation, a neural network estimation. The advantage

can then instruct the agent whether the actions took return a

better or worse result than expected. According to that, the

probability of an agent choosing such an action can be

increased or decreased respectively. To train the policy, 𝜋𝜋𝜃𝜃 ,

SGD are used to minimise 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃). However, if an agent keeps

running gradient descent on the same batch of collected

rollouts, the neural network would be updated to a far outside

the reasonable range as the advantage itself is a noisy

estimation.

PPO brought the “Trust Region” concept from Trust Region

Policy Optimization (TROP), another iterative policy

optimisation approach, that never update the policy too far

away from the old one. By replacing the log operation with a

division by the old policy, the objective function can be

presented as a progressive empirical expectation 𝐿𝐿(𝜃𝜃) =
�̂�𝐸𝑡𝑡 [𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) Â𝑡𝑡]. Define the probability ratio between the

new and old policy output as a variable 𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) ∙
 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)−1. In such a case, 𝑟𝑟(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜) is equal to 1 and 𝐿𝐿(𝜃𝜃)

can be regarded as “surrogate” objective (Schulman et al.,

2015). While 𝑟𝑟𝑡𝑡(𝜃𝜃) is larger than one, if the sampled action is

more likely to be chosen in the new policy and rest between 0

and 1 if such action gets less chance before the last gradient

update. The central optimisation objective of PPO can be

written in relative conservative form as below.

 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡, 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)Â𝑡𝑡)]

An expectation operator takes the minimum of either the

normal policy gradients objective 𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡 , which push the

policy to yield a high positive advantage over the baseline, or

a truncated version of 𝑟𝑟𝑡𝑡(𝜃𝜃) with an exploration

hyperparameter 𝜀𝜀 which usually between 0.1 and 0.2, which

limits the update step in case it goes too far based on a single

noisy estimation. Considering the policy and value function

share parameters, a squared-error loss function 𝐿𝐿𝑡𝑡
𝑉𝑉𝑉𝑉(𝜃𝜃) is

involved. An entropy bonus 𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡) is used ensure keeping

agent exploring and the final training objective can now be

written as below.

 𝐿𝐿𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) − 𝑐𝑐1𝐿𝐿𝑡𝑡

𝑉𝑉𝑉𝑉(𝜃𝜃) + 𝑐𝑐2𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡)]

Combining the simulation environment and agent training

process, the framework to training a scheduling agent can be

present as pseudo code below.

 Jiecheng Tang et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087 11085

For the agent to be able to learn how to make decisions, a

reward policy is set. Considering thus the intelligent

scheduling policy as a function for reinforcement learning

algorithm to solve, the optimal solution for such functions is

fulfilling as much as order while keep the inventory level as

low as possible. To solve such a function properly under RL

content, the reward function framework shown in Table 1 is

proposed.

Table 1. Reward function category

Scenario Reward

Gain a product Small positive

Keep a product inventory Small negative

Fulfil an order Huge positive

Miss an order Medium negative

Reconfigure an RMT None

Keep an RMT rest None

The idea behind the proposed reward framework is to augment

the signal from missing or delivering an order, while providing

to the agent a relative dense reward signal from the inventory

during training. For increasing the compatibility of the

environment, all forementioned simulation features of an RMS

are following the OpenAI-gym interface developing rule.

Once the two out of the three major components, namely

environment and reward, of the RL project are ready, the agent

needs to be built. This paper involves the development of a

resilient framework for the training of the agent to take place.

Unlike the supervised learning that is based in a steady and

clear labelled data set, stochastic gradient descent (SGD)

cannot guarantee a decent local optimum in RL. The training

data thus for RL are generated being highly dependent on

current policy and “burnt after training”. The constantly

changing data distribution of observation and rewards lead to

instability during agent training process. RL training is also

highly sensitive to hyperparameter tuning such as initialisation

(Schulman et al., 2017). One slight change on policy can have

a great impact on the performance. PPO algorithm is

developed for minimising the cost function by balancing

among small policy update, ease of implementation, sample

complexity, and ease of hyperparameter tuning. PPO is a

policy gradient method which belong to the on-policy category.

It is different from off-policy algorithms like DQN, as the

learning happens with exploration and is able to learn from

recorded data. On-policy agents always learn directly from

whatever they encounter in the environment, following their

own policies and cannot store past experiences in a replay

buffer. Additionally, a batch of experience will be discarded

immediately once it has been used to do a gradient update for

a policy.

Policy Gradient (PG) methods use samples of the interactions

only once, which mean they are significantly less efficient. The

general policy optimisation methods define the policy gradient

loss, 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)Â𝑡𝑡], as the expectation over

the probabilities of the policy actions, times an advantage

function estimation. The current policy, 𝜋𝜋𝜃𝜃 , with the policy

parameter 𝜃𝜃 takes the state of system, 𝑠𝑠𝑡𝑡, as input and output

an action, 𝑎𝑎𝑡𝑡. An advantage, Â𝑡𝑡, is an estimation of a relative

value of the selected action in 𝑠𝑠𝑡𝑡. To calculate Â𝑡𝑡, the sum of

discounted rewards and a value-function estimation are

needed. The discounted reward is a weighted sum of all the

rewards happen after taking current action which can be

presented as 𝐸𝐸 = ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡 + 𝑘𝑘∞
𝑘𝑘=0 . These advantages are not an

estimation as their value are calculated after the entire episode

sequence has been collected. The value function, which is the

second part of the advantage, is defined as the estimation of

discounted reward or final reward from this step onward. In

PPO, the value function is presented as a neural network. By

using the state and discounted reward records, the value

function network can be updated similar to a supervised

learning problem. In this case, the advantage estimation can be

presented as discounted rewards, a certain number, subtract the

value estimation, a neural network estimation. The advantage

can then instruct the agent whether the actions took return a

better or worse result than expected. According to that, the

probability of an agent choosing such an action can be

increased or decreased respectively. To train the policy, 𝜋𝜋𝜃𝜃 ,

SGD are used to minimise 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃). However, if an agent keeps

running gradient descent on the same batch of collected

rollouts, the neural network would be updated to a far outside

the reasonable range as the advantage itself is a noisy

estimation.

PPO brought the “Trust Region” concept from Trust Region

Policy Optimization (TROP), another iterative policy

optimisation approach, that never update the policy too far

away from the old one. By replacing the log operation with a

division by the old policy, the objective function can be

presented as a progressive empirical expectation 𝐿𝐿(𝜃𝜃) =
�̂�𝐸𝑡𝑡 [𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) Â𝑡𝑡]. Define the probability ratio between the

new and old policy output as a variable 𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) ∙
 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)−1. In such a case, 𝑟𝑟(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜) is equal to 1 and 𝐿𝐿(𝜃𝜃)

can be regarded as “surrogate” objective (Schulman et al.,

2015). While 𝑟𝑟𝑡𝑡(𝜃𝜃) is larger than one, if the sampled action is

more likely to be chosen in the new policy and rest between 0

and 1 if such action gets less chance before the last gradient

update. The central optimisation objective of PPO can be

written in relative conservative form as below.

 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡, 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)Â𝑡𝑡)]

An expectation operator takes the minimum of either the

normal policy gradients objective 𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡 , which push the

policy to yield a high positive advantage over the baseline, or

a truncated version of 𝑟𝑟𝑡𝑡(𝜃𝜃) with an exploration

hyperparameter 𝜀𝜀 which usually between 0.1 and 0.2, which

limits the update step in case it goes too far based on a single

noisy estimation. Considering the policy and value function

share parameters, a squared-error loss function 𝐿𝐿𝑡𝑡
𝑉𝑉𝑉𝑉(𝜃𝜃) is

involved. An entropy bonus 𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡) is used ensure keeping

agent exploring and the final training objective can now be

written as below.

 𝐿𝐿𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) = �̂�𝐸𝑡𝑡[𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝜃𝜃) − 𝑐𝑐1𝐿𝐿𝑡𝑡

𝑉𝑉𝑉𝑉(𝜃𝜃) + 𝑐𝑐2𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡)]

Combining the simulation environment and agent training

process, the framework to training a scheduling agent can be

present as pseudo code below.

Clipped PPO-based Scheduling Agent Training Scheme

01 Randomly initialise 𝑁𝑁 parallel environments each

with a distinct order list, an RMS containing 𝑚𝑚 RMTs,

and an initially empty inventory that can store

different kinds of products

02 Initialise a job-releasing agent with a random

scheduling policy 𝜋𝜋 with parameter 𝜃𝜃

03 for iteration = 1 to limit M do

04 for actor = 1 to 𝑁𝑁 do

05 for time 𝑡𝑡 = 1 to simulation limit 𝑇𝑇 do

06 Form an observation 𝑠𝑠𝑡𝑡 from all known orders

and their deadlines, inventory levels, and RMT states

07 Request an action list 𝑎𝑎𝑡𝑡 which contains

individual commands for every RMT

08 Simulate 1 timestep according to 𝑎𝑎𝑡𝑡

09 Form another observation 𝑠𝑠𝑡𝑡+1 based on the

same method as 𝑠𝑠𝑡𝑡

10 Calculate the reward 𝑟𝑟𝑡𝑡 based on 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , and

𝑠𝑠𝑡𝑡+1
11 Form a transition {𝑠𝑠𝑡𝑡+1, 𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡}

12 end for

13 Calculate advantage estimates Â1, … , Â𝑇𝑇 for all

transitions and store to a rollout buffer

14 end for

15 for epoch = 1 to 𝐾𝐾 do

16 Optimise the loss objective 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) by sampling

a minibatch of size ≤ 𝑁𝑁𝑇𝑇
17 end for

18 end for

3. A NUMERICAL CASE STUDY

To verify the proposed RL framework, one numerical case

study is designed and presented in this section. The following

section will firstly describe the parameter setting for

initialising an RMS model, the reward function and the

scheduling agent. The training and performance changing

processes are presented and discussed progressively.

This case study used a simplified discrete-event simulation

(DES) model to describe an RMS. DES provides a feasible

framework to transfer the real production process into a

Markov Decision Process (MDP). The critical feature of DES

which is driving the model by events, helps the RL agent

identify the decision points.

The RMS-DES model in this case contains three identical

RMTs. All RMTs can reconfigure themselves with three

different modules for three different products. The production

cycle times for these products are equal (set at 1 minute) and

the reconfiguration time for all modules is 3 minutes. When

initialising the model, all three RMTs would be assigned to a

random module. To focus on reconfiguration and production

only, all material and finished goods transportation time is

considered negligible. The scheduling agent only need to

decide what action every RMT should take at every timestep

in a total of 960 minutes simulation.

The stochastic order generator sets the relevant model

parameters such as the order type and size. Every single order

thus is characterized by the product type (randomly setting one

out of three) and the batch size (that is defined from a uniform

random distribution ranging between 5 and 20 parts). The

deadline for completing the order is also randomly set, taking

however into consideration the batch size. This assumption

allows for the RMS in most of the orders to have just enough

time, to reconfigure RMTs, complete the production and at the

same time indirectly penalize the agent if it misses potential

gains. There will be always 5 orders in queue for the

scheduling agent to plan ahead.

As the general performance signal for the RL agent, the reward

function of this case study is set as shown in Table 2.

Table 2. Case Study Reward function

Scenario Reward per timestep

Gain a product 5

Keep a product inventory -1

Fulfil an order 50 × Required quantity

Miss an order 1 ×Required quantity

Reconfigure an RMT 0

Keep an RMT rest 0

At the last step, a special reward is set for summarising the

delivered orders. This negative reward value equals to an

accumulative sum of the remaining inventory. For example, if

there are 5 products, regardless the product variant after the

first order was delivered, this cumulative sum equals to 5.

Then, if there are 3 products remained in the inventory after

the second order is delivered, this sum adds up to 8.

The policy and value networks of the scheduling agent trained

for this case study have similar structure. Both neural networks

start with three dense layers where each layer contains 8,192

neurons. The value network has another two dense layers,

1,024 and 256 neurons respective, before output layer while

the policy layer contains only one 1,024-neuron dense layer.

The learning rate is set as 0.00005 as the training with 0.0001

failed. The discount rate set as 0.9996 so that the expected

values of first action can still worth roughly to 70% at the last

step. The clip range for both networks is set as 0.1 and

maximum value for the gradient clipping set 0.5. Entropy

coefficient set 0.003 for forcing the agent exploring unknown.

When optimising the surrogate loss, the agent runs for 36

epochs.

Fig. 3. Exploit Performance Reward Record

Finally, the training process runs on a vectorised environment

with 36 sub-environments. Fig. 3 below shows the

11086 Jiecheng Tang et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087

performance of the training process in a deterministic way.

Every training cycle collects 1,036,800 transitions and trains

the two networks by using 34,560 as the mini-batch size. The

fade green area is the individual performance check after every

training cycle. The solid green line is the rolling mean of these,

exploiting reward every 1,800 cycles. The solid orange line

represents the highest reward the agent ever achieved during

training.

The reward trend observed in this case study is consistent with

that of other RL studies (Sutton & Barto, 2018), (Schulman et

al., 2015), (Schulman et al., 2017), but the significant surge

towards the end demands further investigation. As specified in

the introduction, the proposed RL training framework seeks to

train a scheduling agent that delivers the maximum number of

orders while ensuring a reasonable inventory level. To

scrutinise this trade-off, three performance comparisons were

conducted. The first one compared the delivered orders versus

the missed ones in a single simulation. Subsequently, the

inventory control performance is evaluated in two ways.

Assessing the effectiveness of RMT reconfiguration came at

last.

Fig. 4. Order Completion Record

Fig. 4 displays three correlated indices for the RMS order

delivery. The green solid line represents the average number

of orders that the agent can deliver across 36 different

environments. The individual results are depicted in the faded

green area. The solid red line and faded red area indicate the

average and individual numbers of missed orders,

respectively. The orange solid line and faded orange area

reflect the average and individual order completion rates,

combining both delivered and missed orders. The order

completion rate shows a steady upward trend until it reaches

the theoretical limit, which signifies that the primary objective

of this project has been achieved. However, it is important to

note that Fig. 4 alone does not provide enough evidence to

explain the reward jump and recovery in Fig. 3.

Fig. 5. Accumulated Inventory Record

To gain deeper insight into the observed phenomena, Fig. 5 is

presented to illustrates the changing trends in the cumulative

inventory level as training progresses. The analysis shows that

the average cumulative inventory level remains approximately

constant at 3,000 until a sudden drop in reward is observed.

Fig. 6 presents the trend of the average inventory level per

order by dividing the average cumulative inventory by the

average number of delivered orders. This approach helps

exploring the spread of individual orders. The plot indicates

that the agent attempted to increase the stock level, likely in an

attempt to improve order completion rates given the high

instant reward associated with such efforts.

Fig. 6. Average Inventory Level for Individual Orders

Fig. 7. Total Reconfiguration Times Record

In Fig. 7 above, the trend of the average sum of total

reconfiguration actions is plotted. The trend suggests that

reducing reconfiguration actions is the major driver of

improving order completion rate. While this driver starts

losing its momentum, the agent has to seek another way as to

achieve higher reward.

4. CONCLUSION AND FUTURE WORKS

The agent shows astonishing resilience on fulfilling fluctuate

demands. Emphasising the major optimising target can help

the agent overcome some frustrating performance drop.

 Jiecheng Tang et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087 11087

performance of the training process in a deterministic way.

Every training cycle collects 1,036,800 transitions and trains

the two networks by using 34,560 as the mini-batch size. The

fade green area is the individual performance check after every

training cycle. The solid green line is the rolling mean of these,

exploiting reward every 1,800 cycles. The solid orange line

represents the highest reward the agent ever achieved during

training.

The reward trend observed in this case study is consistent with

that of other RL studies (Sutton & Barto, 2018), (Schulman et

al., 2015), (Schulman et al., 2017), but the significant surge

towards the end demands further investigation. As specified in

the introduction, the proposed RL training framework seeks to

train a scheduling agent that delivers the maximum number of

orders while ensuring a reasonable inventory level. To

scrutinise this trade-off, three performance comparisons were

conducted. The first one compared the delivered orders versus

the missed ones in a single simulation. Subsequently, the

inventory control performance is evaluated in two ways.

Assessing the effectiveness of RMT reconfiguration came at

last.

Fig. 4. Order Completion Record

Fig. 4 displays three correlated indices for the RMS order

delivery. The green solid line represents the average number

of orders that the agent can deliver across 36 different

environments. The individual results are depicted in the faded

green area. The solid red line and faded red area indicate the

average and individual numbers of missed orders,

respectively. The orange solid line and faded orange area

reflect the average and individual order completion rates,

combining both delivered and missed orders. The order

completion rate shows a steady upward trend until it reaches

the theoretical limit, which signifies that the primary objective

of this project has been achieved. However, it is important to

note that Fig. 4 alone does not provide enough evidence to

explain the reward jump and recovery in Fig. 3.

Fig. 5. Accumulated Inventory Record

To gain deeper insight into the observed phenomena, Fig. 5 is

presented to illustrates the changing trends in the cumulative

inventory level as training progresses. The analysis shows that

the average cumulative inventory level remains approximately

constant at 3,000 until a sudden drop in reward is observed.

Fig. 6 presents the trend of the average inventory level per

order by dividing the average cumulative inventory by the

average number of delivered orders. This approach helps

exploring the spread of individual orders. The plot indicates

that the agent attempted to increase the stock level, likely in an

attempt to improve order completion rates given the high

instant reward associated with such efforts.

Fig. 6. Average Inventory Level for Individual Orders

Fig. 7. Total Reconfiguration Times Record

In Fig. 7 above, the trend of the average sum of total

reconfiguration actions is plotted. The trend suggests that

reducing reconfiguration actions is the major driver of

improving order completion rate. While this driver starts

losing its momentum, the agent has to seek another way as to

achieve higher reward.

4. CONCLUSION AND FUTURE WORKS

The agent shows astonishing resilience on fulfilling fluctuate

demands. Emphasising the major optimising target can help

the agent overcome some frustrating performance drop.

Although PPO is developed to fight against some disastrous

situations like one policy update pushes the policy network

into a region of the parameter space where next batch of data

under a very poor policy causing it to never recover again,

some training records still suggested that training could fall

into traps with a bad hyperparameter setting. The other major

problem showed on case study, similar to other RL projects, is

the time-consuming training process. An RMS may involve

new modules or new RMTs to expand its capability or the

other way around. In such circumstances, week-long training

time would significantly influence the deploying process.

This research focused on improving the convertibility of an

RMS by training a smart schedule policy. However, the

number of RMT is fixed which means current setup lacks

consideration of diagnosability, such as breakdowns, nor

scalability, adding or removing machines or modules from

systems, of an RMS. All possible improvement aiming on the

six core characteristics of RMS can bring observation space

and action space change. These changes will challenge the

scheduling agent on transfer learning (Taylor & Stone, 2009)

and practical deployment.

REFERENCES

Degrave, J., Felici, and Other, (2022). Magnetic control of

tokamak plasmas through deep reinforcement learning.

Nature, 602(7897), 414–419.

Dou, J., Li, J and Other, (2021). A multi-objective particle

swarm optimisation for integrated configuration design

and scheduling in reconfigurable manufacturing system.

International Journal of Production Research, 59(13),

3975–3995.

Dou, J., Zhao, X., and Other, (2018). An Improved Genetic

Algorithm for Optimization of Operation Sequencing.

2018 IEEE International Conference on Mechatronics

and Automation (ICMA), 695–700.

Dou, J., Zhao, X., and Other, (2019). Robust Optimization

Models of Integrated Configuration Design and

Scheduling for Reconfigurable Flowline. 2019 IEEE

International Conference on Mechatronics and

Automation (ICMA), 70–75.

Fawzi, A., Balog, M., and Other, (2022). Discovering faster

matrix multiplication algorithms with reinforcement

learning. Nature, 610(7930), 47–53.

Jumper, J., Evans, R., and Other, (2021). Highly accurate

protein structure prediction with AlphaFold. Nature,

596(7873), 583–589.

Koren, Y., Heisel, U., and Other, (1999). Reconfigurable

Manufacturing Systems. CIRP Annals, 48(2), 527–540.

Rummukainen, H., and Nurminen, J. K. (2019). Practical

Reinforcement Learning -Experiences in Lot Scheduling

Application. IFAC-PapersOnLine, 52(13), 1415–1420.

Schulman, J., Levine, S., and Other, (2015). Trust Region

Policy Optimization. In F. Bach & D. Blei (Eds.),

Proceedings of the 32nd International Conference on

Machine Learning (Vol. 37, pp. 1889–1897). PMLR.

Schulman, J., Wolski, F., and Other, (2017). Proximal Policy

Optimization Algorithms. CoRR, abs/1707.0.

Silver, D., Huang, A., and Other, (2016). Mastering the game

of Go with deep neural networks and tree search. Nature,

529(7587), 484–489.

Silver, D., Schrittwieser, J., and Other, (2017). Mastering the

game of Go without human knowledge. Nature,

550(7676), 354–359.

Stricker, N., Kuhnle, A., and Other, (2018). Reinforcement

learning for adaptive order dispatching in the

semiconductor industry. CIRP Annals, 67(1), 511–514.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning,

second edition: An Introduction. MIT Press.

Tang, J., Emmanouilidis, C., and Other, (2020).

Reconfigurable Manufacturing Systems Characteristics

in Digital Twin Context. IFAC-PapersOnLine, 53(2),

10585–10590.

Tang, J., Haddad, Y., and Other, (2022). Reconfigurable

manufacturing system scheduling: a deep reinforcement

learning approach. Procedia CIRP, 107.

Tang, J., & Salonitis, K. (2021). A Deep Reinforcement

Learning Based Scheduling Policy for Reconfigurable

Manufacturing Systems. Procedia CIRP, 103, 1–7.

Taylor, M. E., & Stone, P. (2009). Transfer Learning for

Reinforcement Learning Domains: A Survey. In Journal

of Machine Learning Research (Vol. 10).

Vinyals, O., Ewalds, and Other, (2017). StarCraft II: A New

Challenge for Reinforcement Learning.

Waschneck, B., Altenmüller, T., and Other, (2016).

Production Scheduling in Complex Job Shops from an

Industry 4.0 Perspective: A Review and Challenges in

the Semiconductor Industry. SAMI@ IKNOW, 1–12.

Waschneck, B., Reichstaller, and Other, (2018a). Deep

reinforcement learning for semiconductor production

scheduling. 2018 29th Annual SEMI Advanced

Semiconductor Manufacturing Conference (ASMC),

301–306.

Waschneck, B., Reichstaller, and Other, (2018b). Optimization

of global production scheduling with deep reinforcement

learning. Procedia CIRP, 72, 1264–1269.

Zhang, W., & Dietterich, T. (1995a). High-performance job-

shop scheduling with a time-delay TD (λ) network.

Advances in Neural Information Processing Systems, 8.

Zhang, W., & Dietterich, T. (1995b). A Reinforcement

Learning Approach to Job-shop Scheduling. 1995

International Joint Conference on Artificial Intelligence,

1114–1120.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-11-22

Multi-objective reconfigurable

manufacturing system scheduling

optimisation: a deep reinforcement

learning approach

Tang, Jiecheng

Elsevier

Tang J, Haddad Y, Patsavellas J, Salonitis K. (2023) Multi-objective reconfigurable

manufacturing system scheduling optimisation: a deep reinforcement learning approach.

IFAC-PapersOnLine, Volume 56, Issue 2, pp. 11082-11087. 22nd IFAC World Congress, 9-14

July 2023, Yokohama, Japan

https://doi.org/10.1016/j.ifacol.2023.10.814

Downloaded from Cranfield Library Services E-Repository

