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Abstract: Rapid product design updates, unstable supply chains, and erratic demand phenomena are 

challenging current production modes. Reconfigurable manufacturing systems (RMS) aim to provide a 

cost-effective solution for responding to these challenges. However, given their complex adjustable nature, 

RMSs cannot fully unlock their potential by applying old-fashion fixed dispatching rules. Reinforcement 

learning (RL) algorithms offer a useful approach for finding optimal solutions in such complex systems. 

This paper presents a framework to train a scheduling agent based on a proximal policy optimisation (PPO) 

algorithm. The results of a numerical case study that implemented the framework on a simplified RMS 

model, suggest a good level of robustness and reveal areas of unpredictable behaviour that could be the 

focus of further research.   

Keywords: Manufacturing plant control, Reconfigurable manufacturing system, reinforcement learning, 

scheduling, proximal policy optimisation 

 

1. INTRODUCTION 

In contrast to the manufacturing paradigms of high-throughput 

dedicated production lines and wide functionality flexible 

manufacturing systems, reconfigurable manufacturing 

systems (RMS) target medium-volume-medium-variant 

mixed order production. Since their conceptual introduction by 

Koren et al., (1999), new technologies that can help to build 

practical RMS became mature and accessible. An RMS 

provides capabilities around 6 core characteristics that include 

modularity, integrability, diagnosability, scalability, 

customisability and convertibility. Aiming on high 

customisation, a digitalised RMS highly relies on information 

exchange to secure its more fundamental characteristics of 

modularity and diagnosability (Tang et al., 2020). However, 

whilst vital for RMS efficacy, extra information brings extra 

challenges on an RMS. Whilst the problem of handling 

fluctuating demand promoted the birth of RMS, their 

scheduling can be considered as a special branch of the flexible 

job-shop scheduling problem (FJSP). In such a problem, the 

conventional fixed dispatching policies like first-in-first-out 

cannot fully release the potential of an RMS. Meta-heuristics 

like genetic algorithms (Dou et al., 2018, 2019, 2021) were 

considered good approaches to the challenge of finding an 

optimal scheduling solution. In recent years, reinforcement 

learning (RL) has revealed great potential in finding a credible 

scheduling policy (Tang & Salonitis, 2021). RL has gained 

achievements in many fields including gaming (Silver et al., 

2016, 2017; Vinyals et al., 2017), biotechnology (Jumper et 

al., 2021), nuclear fusion reaction control (Degrave et al., 

2022), and even mathematics (Fawzi et al., 2022). Some of 

these problems share a common pattern of optimising one or a 

limited number of measures in real-time from a predictable 

environment with complicated input. The FJSP of RMS fit this 

pattern as well. The unpredictable demand makes a roomy 

observation space while the way how an RMS operating is 

predictable. Although research of finding an optimal schedule 

for an RMS in real-time is not fully developed, there are 

considerable amount of papers regarding RL methods to solve 

FJSPs even before the RMS paradigm was introduced (Zhang 

& Dietterich, 1995a, 1995b). 

There are two major approaches to solve FJSP by RL 

algorithms. The first one is on-policy methods developed from 

the principle of RL direct interaction. On-policy algorithms 

upgrade their activity policies after every interaction with a 

given environment (Sutton & Barto, 2018). Such algorithms 

tend to suffer from low sample efficiency prompting 

researchers to develop off-policy methods represented by deep 

Q networks (DQN) that can store data firstly in a buffer and 

then train the policy later. The DQN method was deployed to 

improve a wafer fabrication scheduling system on equipment 

utilisation by 8% and decrease lead time by 7 minutes (Stricker 

et al., 2018). Waschneck et al., (2016, 2018b, 2018a) modelled 

a semiconductor factory through discrete-event simulation 

(DES) and developed a suboptimal scheduling policy with 

DQN methods. Although DQN methods appear to have some 

promise their training process can sometimes fall into 

computational traps without recovery. This phenomenon 

forced researchers to reconsider on-policy algorithms and 

developed Proximal Policy Optimisation (PPO) (Schulman et 

al., 2017). PPO provided promising results in scheduling 

problems. For example, Rummukainen & Nurminen, (2019) 

formulated a stochastic economic lot scheduling problem into 

a semi-Markov setting. In their 3×109 state space environment, 

PPO provided a promising control policy after 11×107 training 

iterations.  
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Aiming on generate a real-time updating schedule of RMS, 

this paper proposes a framework to train a reinforcement 

learning-based scheduler. The following sections of the paper 

are organised as follows: section two presents the general 

structure of the proposed framework to train the scheduling 

agent. Similar to all other reinforcement learning projects, this 

general framework contains three major parts, a Markov 

decision process environment to mimic an RMS, a reward 

function which express the optimising goals, and a job 

releasing schedule agent which contains the policy. Section 

three presents a numerical case study about verifying the 

framework by training a scheduling agent through the PPO 

algorithm for a simplified DES-based RMS model. Further 

analysis presenting processing results follow in section three. 

The final section concludes with the advantages and 

disadvantages of the proposed framework and summarises the 

prospects for future research. 

2. A REINFORCEMENT LEARNING SCHEDULER 

TRAINING FRAMEWORK 

In a previous study, Tang et al., (2022) addressed the multi-

agent RMS scheduling problem, proposing a multi-agent RMS 

scheduling agent based on an off-line reinforcement learning 

algorithm called Dueling Double Deep Q-Network (DDDQN) 

with a Prioritised Experience Replay (PER). Although this 

framework was shown to be feasible, the converging speed 

was slow. To overcome this limitation, this paper introduces a 

newly designed framework focused on reconfigurable 

machine tools (RMT), and employs a cutting-edge 

reinforcement learning algorithm called Proximal Policy 

optimisation (PPO) to train an intelligent scheduler within 

reasonable computational time. 

Similar thus to the RMS model proposed by Tang et al. (2022), 

this paper presents a simplified dimensionless RMS which can 

produce limited variants of a product. Such an RMS consists 

of a fixed number of RMTs. These uniform RMTs can produce 

different products with matched modules which need time to 

be reconfigured. The goal of such an RMS is to fulfil a 

constantly updating order list. This order list contains a certain 

number of individual orders with each order consisting of a 

random quantity of jobs. The deadlines are set as a function of 

the order size; i.e. the bigger the order the longer the deadline. 

Once the deadlines are set, then they are considered rigid and 

non-negotiable. If an order missed the deadline due to no 

sufficient inventory, there will be no extension or delay to 

fulfil the demand. In that case a new order will be dispatched 

automatically to the RMS stochastically regardless of whether 

it was success or not.   This is described schematically in Fig. 

1. 

The scheduling agent is designed to generate schedules for 

every individual RMT. These maintenance-free RMTs would 

equip a random module when initialising the RMS. When the 

initialisation ends, the number of RMTs cannot be changed. 

The agent generates a schedule by sending two types of action 

commands to RMTs at every decision-making instance. The 

first type of action is “stay rest”. In such a case, the RMT will 

stay idle and generate neutral reward feedback for training.  

 

Fig. 1. A stochastically updating order list with 3 products 

 

The second type of action is to produce a certain kind of 

product. In this circumstance, if an available RMT equips the 

proper module to produce the required product, this RMT will 

produce one product and send it to the inventory (if produced 

before the deadline). If the module that RMT is equipped with 

cannot follow the action order, the RMT will initiate 

reconfiguration of itself with a proper module (which will 

require a set amount of time) and then produce the required 

product and send it to the inventory. For example, if an RMT 

equips Module 1 which can produce Product 1 while the 

scheduler asks it to produce Product 1, the RMT will produce 

one Product 1 with a certain lead-time. If the scheduler asks an 

RMT to produce Product 2 while the RMT is equipped with 

Module 1, the RMT will spend some time to reconfigure itself 

with Module 2 and then produce one Product 2 with a certain 

lead-time. All products will be collected into a finished-good 

inventory before being dispatched to customers. To formalise 

the procedure to enhance applicability and transferability, Fig. 

2 presents the flowchart below. 

 

 

Fig. 2. RMS Simulation Flowchart 
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For the agent to be able to learn how to make decisions, a 

reward policy is set. Considering thus the intelligent 

scheduling policy as a function for reinforcement learning 

algorithm to solve, the optimal solution for such functions is 

fulfilling as much as order while keep the inventory level as 

low as possible. To solve such a function properly under RL 

content, the reward function framework shown in Table 1 is 

proposed. 

Table 1. Reward function category 

Scenario Reward 

Gain a product Small positive 

Keep a product inventory Small negative 

Fulfil an order Huge positive 

Miss an order Medium negative 

Reconfigure an RMT None 

Keep an RMT rest None 

 

The idea behind the proposed reward framework is to augment 

the signal from missing or delivering an order, while providing 

to the agent a relative dense reward signal from the inventory 

during training. For increasing the compatibility of the 

environment, all forementioned simulation features of an RMS 

are following the OpenAI-gym interface developing rule. 

Once the two out of the three major components, namely 

environment and reward, of the RL project are ready, the agent 

needs to be built. This paper involves the development of a 

resilient framework for the training of the agent to take place. 

Unlike the supervised learning that is based in a steady and 

clear labelled data set, stochastic gradient descent (SGD) 

cannot guarantee a decent local optimum in RL. The training 

data thus for RL are generated being highly dependent on 

current policy and “burnt after training”. The constantly 

changing data distribution of observation and rewards lead to 

instability during agent training process. RL training is also 

highly sensitive to hyperparameter tuning such as initialisation 

(Schulman et al., 2017). One slight change on policy can have 

a great impact on the performance. PPO algorithm is 

developed for minimising the cost function by balancing 

among small policy update, ease of implementation, sample 

complexity, and ease of hyperparameter tuning. PPO is a 

policy gradient method which belong to the on-policy category. 

It is different from off-policy algorithms like DQN, as the 

learning happens with exploration and is able to learn from 

recorded data. On-policy agents always learn directly from 

whatever they encounter in the environment, following their 

own policies and cannot store past experiences in a replay 

buffer. Additionally, a batch of experience will be discarded 

immediately once it has been used to do a gradient update for 

a policy.  

Policy Gradient (PG) methods use samples of the interactions 

only once, which mean they are significantly less efficient. The 

general policy optimisation methods define the policy gradient 

loss, 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)Â𝑡𝑡], as the expectation over 

the probabilities of the policy actions, times an advantage 

function estimation. The current policy, 𝜋𝜋𝜃𝜃 , with the policy 

parameter 𝜃𝜃 takes the state of system, 𝑠𝑠𝑡𝑡, as input and output 

an action, 𝑎𝑎𝑡𝑡. An advantage, Â𝑡𝑡, is an estimation of a relative 

value of the selected action in 𝑠𝑠𝑡𝑡. To calculate Â𝑡𝑡, the sum of 

discounted rewards and a value-function estimation are 

needed. The discounted reward is a weighted sum of all the 

rewards happen after taking current action which can be 

presented as 𝐸𝐸 = ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡 + 𝑘𝑘∞
𝑘𝑘=0 . These advantages are not an 

estimation as their value are calculated after the entire episode 

sequence has been collected. The value function, which is the 

second part of the advantage, is defined as the estimation of 

discounted reward or final reward from this step onward. In 

PPO, the value function is presented as a neural network. By 

using the state and discounted reward records, the value 

function network can be updated similar to a supervised 

learning problem. In this case, the advantage estimation can be 

presented as discounted rewards, a certain number, subtract the 

value estimation, a neural network estimation. The advantage 

can then instruct the agent whether the actions took return a 

better or worse result than expected. According to that, the 

probability of an agent choosing such an action can be 

increased or decreased respectively. To train the policy, 𝜋𝜋𝜃𝜃 , 

SGD are used to minimise 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃). However, if an agent keeps 

running gradient descent on the same batch of collected 

rollouts, the neural network would be updated to a far outside 

the reasonable range as the advantage itself is a noisy 

estimation.  

PPO brought the “Trust Region” concept from Trust Region 

Policy Optimization (TROP), another iterative policy 

optimisation approach, that never update the policy too far 

away from the old one. By replacing the log operation with a 

division by the old policy, the objective function can be 

presented as a progressive empirical expectation  𝐿𝐿(𝜃𝜃) =
𝐸̂𝐸𝑡𝑡 [ 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ) Â𝑡𝑡]. Define the probability ratio between the 

new and old policy output as a variable 𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  ∙
 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)−1. In such a case, 𝑟𝑟(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜) is equal to 1 and 𝐿𝐿(𝜃𝜃) 

can be regarded as “surrogate” objective (Schulman et al., 

2015). While 𝑟𝑟𝑡𝑡(𝜃𝜃) is larger than one, if the sampled action is 

more likely to be chosen in the new policy and rest between 0 

and 1 if such action gets less chance before the last gradient 

update. The central optimisation objective of PPO can be 

written in relative conservative form as below. 

 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)Â𝑡𝑡)] 

An expectation operator takes the minimum of either the 

normal policy gradients objective 𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡 , which push the 

policy to yield a high positive advantage over the baseline, or 

a truncated version of 𝑟𝑟𝑡𝑡(𝜃𝜃)  with an exploration 

hyperparameter 𝜀𝜀 which usually between 0.1 and 0.2, which 

limits the update step in case it goes too far based on a single 

noisy estimation. Considering the policy and value function 

share parameters, a squared-error loss function 𝐿𝐿𝑡𝑡
𝑉𝑉𝑉𝑉(𝜃𝜃)  is 

involved. An entropy bonus 𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡) is used ensure keeping 

agent exploring and the final training objective can now be 

written as below. 

 𝐿𝐿𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) − 𝑐𝑐1𝐿𝐿𝑡𝑡

𝑉𝑉𝑉𝑉(𝜃𝜃) + 𝑐𝑐2𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡)] 

Combining the simulation environment and agent training 

process, the framework to training a scheduling agent can be 

present as pseudo code below. 
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For the agent to be able to learn how to make decisions, a 

reward policy is set. Considering thus the intelligent 

scheduling policy as a function for reinforcement learning 

algorithm to solve, the optimal solution for such functions is 

fulfilling as much as order while keep the inventory level as 

low as possible. To solve such a function properly under RL 

content, the reward function framework shown in Table 1 is 

proposed. 

Table 1. Reward function category 

Scenario Reward 

Gain a product Small positive 

Keep a product inventory Small negative 

Fulfil an order Huge positive 

Miss an order Medium negative 

Reconfigure an RMT None 

Keep an RMT rest None 

 

The idea behind the proposed reward framework is to augment 

the signal from missing or delivering an order, while providing 

to the agent a relative dense reward signal from the inventory 

during training. For increasing the compatibility of the 

environment, all forementioned simulation features of an RMS 

are following the OpenAI-gym interface developing rule. 

Once the two out of the three major components, namely 

environment and reward, of the RL project are ready, the agent 

needs to be built. This paper involves the development of a 

resilient framework for the training of the agent to take place. 

Unlike the supervised learning that is based in a steady and 

clear labelled data set, stochastic gradient descent (SGD) 

cannot guarantee a decent local optimum in RL. The training 

data thus for RL are generated being highly dependent on 

current policy and “burnt after training”. The constantly 

changing data distribution of observation and rewards lead to 

instability during agent training process. RL training is also 

highly sensitive to hyperparameter tuning such as initialisation 

(Schulman et al., 2017). One slight change on policy can have 

a great impact on the performance. PPO algorithm is 

developed for minimising the cost function by balancing 

among small policy update, ease of implementation, sample 

complexity, and ease of hyperparameter tuning. PPO is a 

policy gradient method which belong to the on-policy category. 

It is different from off-policy algorithms like DQN, as the 

learning happens with exploration and is able to learn from 

recorded data. On-policy agents always learn directly from 

whatever they encounter in the environment, following their 

own policies and cannot store past experiences in a replay 

buffer. Additionally, a batch of experience will be discarded 

immediately once it has been used to do a gradient update for 

a policy.  

Policy Gradient (PG) methods use samples of the interactions 

only once, which mean they are significantly less efficient. The 

general policy optimisation methods define the policy gradient 

loss, 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)Â𝑡𝑡], as the expectation over 

the probabilities of the policy actions, times an advantage 

function estimation. The current policy, 𝜋𝜋𝜃𝜃 , with the policy 

parameter 𝜃𝜃 takes the state of system, 𝑠𝑠𝑡𝑡, as input and output 

an action, 𝑎𝑎𝑡𝑡. An advantage, Â𝑡𝑡, is an estimation of a relative 

value of the selected action in 𝑠𝑠𝑡𝑡. To calculate Â𝑡𝑡, the sum of 

discounted rewards and a value-function estimation are 

needed. The discounted reward is a weighted sum of all the 

rewards happen after taking current action which can be 

presented as 𝐸𝐸 = ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡 + 𝑘𝑘∞
𝑘𝑘=0 . These advantages are not an 

estimation as their value are calculated after the entire episode 

sequence has been collected. The value function, which is the 

second part of the advantage, is defined as the estimation of 

discounted reward or final reward from this step onward. In 

PPO, the value function is presented as a neural network. By 

using the state and discounted reward records, the value 

function network can be updated similar to a supervised 

learning problem. In this case, the advantage estimation can be 

presented as discounted rewards, a certain number, subtract the 

value estimation, a neural network estimation. The advantage 

can then instruct the agent whether the actions took return a 

better or worse result than expected. According to that, the 

probability of an agent choosing such an action can be 

increased or decreased respectively. To train the policy, 𝜋𝜋𝜃𝜃 , 

SGD are used to minimise 𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃). However, if an agent keeps 

running gradient descent on the same batch of collected 

rollouts, the neural network would be updated to a far outside 

the reasonable range as the advantage itself is a noisy 

estimation.  

PPO brought the “Trust Region” concept from Trust Region 

Policy Optimization (TROP), another iterative policy 

optimisation approach, that never update the policy too far 

away from the old one. By replacing the log operation with a 

division by the old policy, the objective function can be 

presented as a progressive empirical expectation  𝐿𝐿(𝜃𝜃) =
𝐸̂𝐸𝑡𝑡 [ 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ) Â𝑡𝑡]. Define the probability ratio between the 

new and old policy output as a variable 𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  ∙
 𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)−1. In such a case, 𝑟𝑟(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜) is equal to 1 and 𝐿𝐿(𝜃𝜃) 

can be regarded as “surrogate” objective (Schulman et al., 

2015). While 𝑟𝑟𝑡𝑡(𝜃𝜃) is larger than one, if the sampled action is 

more likely to be chosen in the new policy and rest between 0 

and 1 if such action gets less chance before the last gradient 

update. The central optimisation objective of PPO can be 

written in relative conservative form as below. 

 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)Â𝑡𝑡)] 

An expectation operator takes the minimum of either the 

normal policy gradients objective 𝑟𝑟𝑡𝑡(𝜃𝜃)Â𝑡𝑡 , which push the 

policy to yield a high positive advantage over the baseline, or 

a truncated version of 𝑟𝑟𝑡𝑡(𝜃𝜃)  with an exploration 

hyperparameter 𝜀𝜀 which usually between 0.1 and 0.2, which 

limits the update step in case it goes too far based on a single 

noisy estimation. Considering the policy and value function 

share parameters, a squared-error loss function 𝐿𝐿𝑡𝑡
𝑉𝑉𝑉𝑉(𝜃𝜃)  is 

involved. An entropy bonus 𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡) is used ensure keeping 

agent exploring and the final training objective can now be 

written as below. 

 𝐿𝐿𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) = 𝐸̂𝐸𝑡𝑡[𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) − 𝑐𝑐1𝐿𝐿𝑡𝑡

𝑉𝑉𝑉𝑉(𝜃𝜃) + 𝑐𝑐2𝑆𝑆[𝜋𝜋𝜃𝜃](𝑠𝑠𝑡𝑡)] 

Combining the simulation environment and agent training 

process, the framework to training a scheduling agent can be 

present as pseudo code below. 

 

 

     

 

Clipped PPO-based Scheduling Agent Training Scheme 

01 Randomly initialise 𝑁𝑁  parallel environments each 

with a distinct order list, an RMS containing 𝑚𝑚 RMTs, 

and an initially empty inventory that can store 

different kinds of products 

02 Initialise a job-releasing agent with a random 

scheduling policy 𝜋𝜋 with parameter 𝜃𝜃  

03 for iteration = 1 to limit M do 

04     for actor = 1 to 𝑁𝑁 do 

05         for time 𝑡𝑡 = 1 to simulation limit 𝑇𝑇 do 

06             Form an observation 𝑠𝑠𝑡𝑡 from all known orders 

and their deadlines, inventory levels, and RMT states 

07             Request an action list 𝑎𝑎𝑡𝑡 which contains 

individual commands for every RMT 

08             Simulate 1 timestep according to 𝑎𝑎𝑡𝑡
 

09             Form another observation 𝑠𝑠𝑡𝑡+1 based on the 

same method as 𝑠𝑠𝑡𝑡  

10             Calculate the reward 𝑟𝑟𝑡𝑡 based on 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , and 

𝑠𝑠𝑡𝑡+1  
11             Form a transition {𝑠𝑠𝑡𝑡+1, 𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡} 

12         end for 

13         Calculate advantage estimates Â1, … , Â𝑇𝑇  for all 

transitions and store to a rollout buffer 

14     end for 

15     for epoch = 1 to 𝐾𝐾 do 

16         Optimise the loss objective 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃) by sampling 

a minibatch of size ≤ 𝑁𝑁𝑁𝑁  
17     end for 

18 end for 

3. A NUMERICAL CASE STUDY 

To verify the proposed RL framework, one numerical case 

study is designed and presented in this section. The following 

section will firstly describe the parameter setting for 

initialising an RMS model, the reward function and the 

scheduling agent. The training and performance changing 

processes are presented and discussed progressively. 

This case study used a simplified discrete-event simulation 

(DES) model to describe an RMS. DES provides a feasible 

framework to transfer the real production process into a 

Markov Decision Process (MDP). The critical feature of DES 

which is driving the model by events, helps the RL agent 

identify the decision points.  

The RMS-DES model in this case contains three identical 

RMTs. All RMTs can reconfigure themselves with three 

different modules for three different products. The production 

cycle times for these products are equal (set at 1 minute) and 

the reconfiguration time for all modules is 3 minutes. When 

initialising the model, all three RMTs would be assigned to a 

random module. To focus on reconfiguration and production 

only, all material and finished goods transportation time is 

considered negligible. The scheduling agent only need to 

decide what action every RMT should take at every timestep 

in a total of 960 minutes simulation. 

The stochastic order generator sets the relevant model 

parameters such as the order type and size. Every single order 

thus is characterized by the product type (randomly setting one 

out of three) and the batch size (that is defined from a uniform 

random distribution ranging between 5 and 20 parts). The 

deadline for completing the order is also randomly set, taking 

however into consideration the batch size. This assumption 

allows for the RMS in most of the orders to have just enough 

time, to reconfigure RMTs, complete the production and at the 

same time indirectly penalize the agent if it misses potential 

gains. There will be always 5 orders in queue for the 

scheduling agent to plan ahead. 

As the general performance signal for the RL agent, the reward 

function of this case study is set as shown in Table 2. 

Table 2. Case Study Reward function 

Scenario Reward per timestep 

Gain a product 5 

Keep a product inventory -1 

Fulfil an order 50 × Required quantity 

Miss an order 1 ×Required quantity 

Reconfigure an RMT 0 

Keep an RMT rest 0 

At the last step, a special reward is set for summarising the 

delivered orders. This negative reward value equals to an 

accumulative sum of the remaining inventory. For example, if 

there are 5 products, regardless the product variant after the 

first order was delivered, this cumulative sum equals to 5. 

Then, if there are 3 products remained in the inventory after 

the second order is delivered, this sum adds up to 8. 

The policy and value networks of the scheduling agent trained 

for this case study have similar structure. Both neural networks 

start with three dense layers where each layer contains 8,192 

neurons. The value network has another two dense layers, 

1,024 and 256 neurons respective, before output layer while 

the policy layer contains only one 1,024-neuron dense layer. 

The learning rate is set as 0.00005 as the training with 0.0001 

failed. The discount rate set as 0.9996 so that the expected 

values of first action can still worth roughly to 70% at the last 

step. The clip range for both networks is set as 0.1 and 

maximum value for the gradient clipping set 0.5. Entropy 

coefficient set 0.003 for forcing the agent exploring unknown. 

When optimising the surrogate loss, the agent runs for 36 

epochs. 

 

Fig. 3. Exploit Performance Reward Record 

Finally, the training process runs on a vectorised environment 

with 36 sub-environments. Fig. 3 below shows the 



11086	 Jiecheng Tang  et al. / IFAC PapersOnLine 56-2 (2023) 11082–11087
 

 

     

 

performance of the training process in a deterministic way. 

Every training cycle collects 1,036,800 transitions and trains 

the two networks by using 34,560 as the mini-batch size. The 

fade green area is the individual performance check after every 

training cycle. The solid green line is the rolling mean of these, 

exploiting reward every 1,800 cycles. The solid orange line 

represents the highest reward the agent ever achieved during 

training. 

The reward trend observed in this case study is consistent with 

that of other RL studies (Sutton & Barto, 2018), (Schulman et 

al., 2015), (Schulman et al., 2017), but the significant surge 

towards the end demands further investigation. As specified in 

the introduction, the proposed RL training framework seeks to 

train a scheduling agent that delivers the maximum number of 

orders while ensuring a reasonable inventory level. To 

scrutinise this trade-off, three performance comparisons were 

conducted. The first one compared the delivered orders versus 

the missed ones in a single simulation. Subsequently, the 

inventory control performance is evaluated in two ways. 

Assessing the effectiveness of RMT reconfiguration came at 

last. 

 

Fig. 4. Order Completion Record 

Fig. 4 displays three correlated indices for the RMS order 

delivery. The green solid line represents the average number 

of orders that the agent can deliver across 36 different 

environments. The individual results are depicted in the faded 

green area. The solid red line and faded red area indicate the 

average and individual numbers of missed orders, 

respectively. The orange solid line and faded orange area 

reflect the average and individual order completion rates, 

combining both delivered and missed orders. The order 

completion rate shows a steady upward trend until it reaches 

the theoretical limit, which signifies that the primary objective 

of this project has been achieved. However, it is important to 

note that Fig. 4 alone does not provide enough evidence to 

explain the reward jump and recovery in Fig. 3. 

 
Fig. 5. Accumulated Inventory Record 

To gain deeper insight into the observed phenomena, Fig. 5 is 

presented to illustrates the changing trends in the cumulative 

inventory level as training progresses. The analysis shows that 

the average cumulative inventory level remains approximately 

constant at 3,000 until a sudden drop in reward is observed. 

Fig. 6 presents the trend of the average inventory level per 

order by dividing the average cumulative inventory by the 

average number of delivered orders. This approach helps 

exploring the spread of individual orders. The plot indicates 

that the agent attempted to increase the stock level, likely in an 

attempt to improve order completion rates given the high 

instant reward associated with such efforts. 

 
Fig. 6. Average Inventory Level for Individual Orders 

 
Fig. 7. Total Reconfiguration Times Record 

In Fig. 7 above, the trend of the average sum of total 

reconfiguration actions is plotted. The trend suggests that 

reducing reconfiguration actions is the major driver of 

improving order completion rate. While this driver starts 

losing its momentum, the agent has to seek another way as to 

achieve higher reward. 

4. CONCLUSION AND FUTURE WORKS 

The agent shows astonishing resilience on fulfilling fluctuate 

demands. Emphasising the major optimising target can help 

the agent overcome some frustrating performance drop. 
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the introduction, the proposed RL training framework seeks to 
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conducted. The first one compared the delivered orders versus 

the missed ones in a single simulation. Subsequently, the 

inventory control performance is evaluated in two ways. 

Assessing the effectiveness of RMT reconfiguration came at 

last. 

 

Fig. 4. Order Completion Record 

Fig. 4 displays three correlated indices for the RMS order 

delivery. The green solid line represents the average number 

of orders that the agent can deliver across 36 different 

environments. The individual results are depicted in the faded 

green area. The solid red line and faded red area indicate the 

average and individual numbers of missed orders, 
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reflect the average and individual order completion rates, 

combining both delivered and missed orders. The order 

completion rate shows a steady upward trend until it reaches 

the theoretical limit, which signifies that the primary objective 

of this project has been achieved. However, it is important to 

note that Fig. 4 alone does not provide enough evidence to 

explain the reward jump and recovery in Fig. 3. 
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instant reward associated with such efforts. 

 
Fig. 6. Average Inventory Level for Individual Orders 

 
Fig. 7. Total Reconfiguration Times Record 

In Fig. 7 above, the trend of the average sum of total 

reconfiguration actions is plotted. The trend suggests that 

reducing reconfiguration actions is the major driver of 

improving order completion rate. While this driver starts 

losing its momentum, the agent has to seek another way as to 
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Although PPO is developed to fight against some disastrous 

situations like one policy update pushes the policy network 

into a region of the parameter space where next batch of data 

under a very poor policy causing it to never recover again, 

some training records still suggested that training could fall 

into traps with a bad hyperparameter setting.  The other major 

problem showed on case study, similar to other RL projects, is 

the time-consuming training process. An RMS may involve 

new modules or new RMTs to expand its capability or the 

other way around. In such circumstances, week-long training 

time would significantly influence the deploying process. 

This research focused on improving the convertibility of an 

RMS by training a smart schedule policy. However, the 

number of RMT is fixed which means current setup lacks 

consideration of diagnosability, such as breakdowns, nor 

scalability, adding or removing machines or modules from 

systems, of an RMS. All possible improvement aiming on the 

six core characteristics of RMS can bring observation space 

and action space change. These changes will challenge the 

scheduling agent on transfer learning (Taylor & Stone, 2009) 

and practical deployment. 
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