
1

Drone’s Objective Inference using Policy Error

Inverse Reinforcement Learning
Adolfo Perrusquı́a, Member, IEEE, Weisi Guo, Senior Member, IEEE

Abstract—Drones are set to penetrate society across transport
and smart living sectors. Whilst many are amateur drones that
pose no malicious intentions, some may carry deadly capability. It
is crucial to infer drone’s objective to prevent risk and guarantee
safety. In this paper, a policy error inverse reinforcement learning
(PEIRL) algorithm is proposed to uncover the hidden objective of
drones from on-line data trajectories obtained from cooperative
sensors. A set of error-based polynomial features are used to
approximate both the value and policy functions. This set of
features are consistent with current on-board storage memories
in flight controllers. The real objective function is inferred using
an objective constraint and an integral inverse reinforcement
learning batch least-squares rule. Convergence of the proposed
method is assessed using Lyapunov recursions. Simulations stud-
ies using a quadcopter model are provided to demonstrate the
benefits of the proposed approach.

Index Terms—Drones, objective function, weight matrices,
inverse reinforcement learning, online trajectories, policy error

I. INTRODUCTION

Proliferation of cheaper drone technology has magnified

the threat space for drone malicious attacks [1]–[3], e.g.,

spoofing/sniffing, and reconnaissance activities; to mention

some of them. Reliable detection of drones and identifying

its intention is critical to ensuring safeguarding society and

national infrastructures against the most severe threats [4].

Current drone detection technologies focus on imagery

data to distinguish drones from other objects and clutter in

the airspace [5]–[7]. This is achieved by exploiting different

sensing technologies such as: radar, lidar, point-cloud, and

high-definition vision systems which are able to capture high-

dimensional features associated to the drone structure [8],

[9]. However, the snapshot data provided by these sensors

do not capture the drone’s hidden intent. Some authors were

interested in recognizing human actions [10] from drone

videos with interesting results [11]. Nevertheless, videos can-

not inform anything about the drone’s behaviour which can be

risky for the recorded humans.

Other approaches are based on predictive models using

time-series of the drone’s positions, velocities, orientations,

and control inputs trajectories [12]–[14]. These models use

data history to predict the trajectory [15] that the drone

will follow in future time steps. The most simple predictive

algorithms are linear regression and support vector regression

This work was supported by the Royal Academy of Engineering and the
Office of the Chief Science Adviser for National Security under the UK
Intelligence Community Postdoctoral Research Fellowship programme.

A. Perrusquı́a and Weisi Guo are with the School of Aerospace, Transport
and Manufacturing, Cranfield University, Bedford, UK
(e-mail: {Adolfo.Perrusquia-Guzman,Weisi.Guo}@cranfield.ac.uk).

which are able to find a model from observational data.

However, these methods are sensitive to the amount of data

and its heterogeneity. Recurrent neural networks [16]–[18]

are used as an alternative method for trajectory prediction

using high-dimensional features of the time-series trajectories.

Nevertheless, the predicted trajectories can diverge fast for

noisy input data.

Gaussian processes [19], [20] and Bayesian methods [21],

[22] combine the advantages of data-driven methods with

kernel functions to estimate posterior distributions with high

confidence prediction. The key idea is the design of adequate

kernel functions that capture the drone physics to infer the

future trajectory. If the drone physics is known in advance,

then Kalman filters and its variants [23]–[25] can be used for

trajectory prediction. However, it is well known that wrong

physics model can cause large bias in the predicted trajectory.

Two different categories for intent prediction are distin-

guished in the previous methodologies: i) high-level intent

classification associated to the drone’s purpose of use, e.g.,

delivery, surveillance, etc., and ii) trajectory intent prediction

which aims to predict the trajectory that the drone will follow

in future time steps [26]. Despite predictive models give an

insight about the drone’s future trajectory, they do not uncover

the hidden nature of intent. Therefore, a different approach is

required to identify the drone’s intent for any trajectory.

A. Related Work

In a control perspective, the intent of a drone is hidden

within the flight controller, that is, the control law is designed

to ensure the drone tracks a desired trajectory or destination

by minimizing an objective function [27], [28]. This objective

function defines the intention of the drone that we want to

identify. This fact is consistent with reinforcement learning

theory [29], [30] where the reward function is the most

succinct, transferable and robust definition of the task [31]

that the agent (in this case a drone) will perform. Here, the

objective function and the reward function are equivalent.

Hence, we are interested in extracting the objective function

of the drone’s controller to infer its intent for any trajectory

destination.

There exists different methodologies to extract the objective

function of controllers based on inverse optimal control (IOC)

algorithms [32] and inverse reinforcement learning (IRL)

techniques [33]. Whilst IOC is a model-based algorithm which

is mainly used for linear systems under quadratic objective

functions, IRL is a model-free algorithm which has been used

for linear systems and for nonlinear systems under binary

li2106
Text Box
IEEE Transactions on Neural Networks and Learning Systems, Available online 22 November 2023
DOI:10.1109/TNNLS.2023.3333551

li2106
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

reward functions [34]–[36], and quadratic structures. However,

drone physics is strongly nonlinear which makes difficult to

extract the objective function. Furthermore, binary rewards are

not commonly used in low-level control architectures since

they can generate discontinuous control policies that can lead

to undesired performances or chattering effects.

Human Behaviour Learning (HBL) [37] has been used for

experience inference. The idea of this approach is to infer

experience to another system by combining expert knowledge

with on-line interaction. Whilst the IRL aims to uncover the

objective function of a system from data trajectories, the HBL

algorithm finds the objective function that drives the system

to behave as the expert system. However, the HBL approach

is conservative and require some knowledge of the objective

function and a linear dynamic model assumption. In addition,

both HBL and IRL obtain multiple solutions for the objective

function which confuse our understanding of the real user’s

intention.

Hierarchical primitive-based learning [38], imitation learn-

ing [39], and safety critical control architectures [40] have

been adopted to extrapolate or infer optimal performances to

similar systems under similar trajectories or tasks. However,

the objective function is still hidden and require an additional

algorithm (e.g., IOC/IRL) to extract it from the measurements

of the system trajectories.

In view of the above, this paper proposes a policy error

IRL (PEIRL) approach [39] for drone’s objective function

inference. The algorithm is inspired by the closed-loop input

error technique of previous work [41] for parameter identifi-

cation and trajectory inference. Here, the algorithm learns the

hidden objective function associated to the observed trajecto-

ries using the input error between the real control policy and

the policy obtained from an off-line reinforcement learning.

The convergence of the proposed algorithm is assessed using

Lyapunov recursions [42]. Simulation studies are carried out

to demonstrate the benefits of the approach.

B. Contributions

The main features of the proposed work are the following:

• A novel policy error inverse reinforcement learning al-

gorithm for drone’s objective inference based on on-line

data trajectories.

• The conservative assumptions of previous works are

relaxed by avoiding prior knowledge of the objective

function and linear model assumptions.

• Convergence to the exact objective function is guaranteed

under a constrained batch least-squares rule.

The contribution of this work with respect to previous

developments for drone intent prediction are the following:

1) The proposed approach does not require knowledge of

the drone physics and high amount of data.

2) Instead of predicting future trajectory or classify the

high-level intent, this approach extracts the hidden ob-

jective function which is associated to the main task that

the drone aims to achieve (intent).

3) The proposed PEIRL combines data-driven with online

learning to extract the exact objective function under

function constraints.

4) Prior knowledge of the objective weights is avoided.

5) The approach does not require interaction with the real

system to test new policies derived by new objective

functions.

C. Outline of the paper and notations

The paper outline is as follows: Section II presents the

drone’s dynamics and preliminaries where the main assump-

tions and constraints are clearly stated. Section III develops

the mission profile objective function extraction where the

proposed PEIRL algorithm is designed in detail. Section IV

reports simulations studies using a quadcopter model. Conclu-

sions and future work are reported in Section V.

Throughout this paper, N, R, Rn, Rn×m denote the spaces

of natural numbers, real numbers, real n-vectors, and real n×
m-matrices, respectively, In ∈ R

n×n is an n × n identity

matrix, A > 0 defines a positive definite matrix, ⊗̄ and ⊗
are the symmetric and standard Kronecker products; where

x ∈ R
n, A ∈ R

n×n and n,m ∈ N.

II. DRONE’S DYNAMICS AND PRELIMINARIES

The dynamic model of a drone verifies the following Euler-

Lagrange equation [43]

Mq̈ + C(q, q̇)q̇ +G(q) = u, (1)

where M ∈ R
m×m is a symmetric and positive definite inertia

matrix, C(q, q̇) ∈ R
m×m denotes the centripetal and Coriolis

forces, G(q) ∈ R
m is the gravity vector, u ∈ R

m defines the

input vector, and q, q̇, q̈ ∈ R
m are the position, velocity, and

acceleration vectors.

Remark 1: The dynamic model (1) is a general notation

for many Euler-Lagrange systems, e.g., rigid robots, mobile

robots, drones, etc. However, for this approach it is required

that the inertia matrix M to be constant or approximately

constant in order to apply the proposed methodology. Drones

are a special class of Euler-Lagrange systems that fulfils this

requirement.

The drone model (1) in state space notation is written as

ẋ = f(x) +Bu, (2)

where

f(x) =

[
q̇

−M−1[C(q, q̇)q̇ +G(q)]

]
∈ R

n

B =

[
0m
M−1

]
∈ R

n×m, x =

[
q

q̇

]
∈ R

n, n = 2m.

Assumption 1: The drone is controlled by an unknown

stabilizing optimal controller u∗ under hidden mission profile

objective function ξ(x, xd, u) and destination xd ∈ R
n.

Define the error between the drone’s trajectories and the

desired destination as

e := x− xd. (3)

Differentiating (3) with respect to time yields the following

closed-loop error dynamics

ė = f(x) +Bu− ẋd. (4)

3

A. The Optimal Control Problem

Assume that the stabilizing controller minimizes the follow-

ing infinite horizon value function [44]

V (e) =

∫ ∞

t

(S(e) + u⊤Ru)dτ, (5)

where S(e) ≥ 0 ∈ R is a positive semi-definite weight

function and R = R⊤ > 0 ∈ R
m×m is a positive definite

weight matrix. Both S(e) and R define the weights associated

to the hidden mission profile objective function.

Assumption 2: Only measurements of the tracking error e,

the states x, control input u, and the objective function ξ(e, u)
values are available. The drone’s dynamics f(·) and B, and

weight matrices S(e) and R are unknown.

Assumption 3: The measurements used in this approach

are obtained from cooperative sensors that are not embedded

in the drone, e.g., radar, lidar, radio transponder, etc. These

sensors do not have communication constraints that make

difficult to obtain the necessary signals for the proposed

approach. The measurements are assumed to be preprocessed

using filters or low-rank approximation methods to attenuate

noise, e.g., PCA or dynamic mode decomposition (DMD)

[45] to lump together the noise in the principal components

associated to the smallest eigenvalues. Unobservable states

can be obtained using Kalman filter or closed-loop output

error techniques [14].

Remark 2: Noise measurements are usually used as probing

noise to ensure parameter estimates convergences on either

on/off-policy architectures. This probing noise covers random

noise, sinusoidal, exponential-decay signals, and so on. It

has been proved in [46] that off-policy architectures have as

outcome unbiased solutions despite the presence of noise.

Remark 3: The structure of the proposed objective function

ξ(e, u) = S(e) + u⊤Ru gives a family of objective functions

by defining different positive semi-definite functions S(e).
However, the solution of the optimal control problem may not

exist for any objective function. The converse problem [30]

can be used to find an optimal control policy by imposing

an objective function structure and a desired solution for the

Hamilton-Jacobi-Bellman equation. Nevertheless, this method

requires to modify the dynamic model structure of the drone

which is not feasible since the dynamics of the drone is fixed.

The Hamiltonian of the problem between (4) and the (5) is

H(e, u,∇V) = S(e) + u⊤Ru+∇V (f(x) +Bu− ẋd), (6)

and the optimal value function by

V ∗(e) = min
u

∫ ∞

t

(S(e) + u⊤Ru)dτ, (7)

which verifies the following Hamilton-Jacobi-Bellman (HJB)

equation

min
u

[H(e, u,∇V ∗)] = 0, (8)

where ∇ = ∂
∂e

is the gradient of a function respect to the

error e. The control policy that satisfies (8) is computed by

differentiating the Hamiltonian (6) respect to u and equalling

to zero as

∂H

∂u
= 2u⊤R+∇V ∗B = 0,

then the optimal control policy is

u∗ = −
1

2
R−1B⊤∇⊤V ∗(e) := −K(e), (9)

where K(e) ∈ R
m comprises the control policy structure. The

HJB equation written in terms of the optimal control policy

(9) verifies

∇V ∗(e)
(
f(x)− ẋd

)
−
1

4
∇V ∗(e)BR−1B⊤∇⊤V ∗(e)

+S(e) = 0.
(10)

B. Value function approximation

The solution of the HJB equation is hard to find even if

we have complete knowledge of the drone’s dynamics and the

weight matrices of the objective function. Most ADP/RL algo-

rithms use the Weierstrass high-order approximation theorem

[44], [47] to approximate the optimal value function (5) and its

gradient in terms of a complete independent basis set {φi(x)}
as

V ∗(e) = W ∗⊤φ(e) + εV ,

∇V ∗(e) = W ∗⊤∇φ(e) +∇εV ,
(11)

where φ(e) = [φ1(e), · · · , φN (e)]⊤ : R
n → R

N is a N -

dimensional vector of basis functions, W ∗ ∈ R
N defines an

optimal vector of weights, and εV ∈ R is a residual error due

to the approximation. Then, the HJB equation written in terms

of the basis function approximation (11) is

S(e) −
1

4
W ∗⊤∇φ(e)BR−1B⊤∇⊤φ(e)W ∗

+W ∗⊤∇φ(e)
(
f(x)− ẋd

)
= εH ,

(12)

where

εH =−∇εV
(
f(x)− ẋd

)
+

1

2
W ∗⊤∇φ(e)R−1B⊤∇⊤εV

+
1

4
∇εV BR−1B⊤∇⊤εV ∈ R,

defines the residual error of the HJB which can be reduced

if the set basis functions accurately approximate the optimal

value function (7) such that εV ≈ 0. Therefore, the optimal

control policy is rewritten as

u∗ = −
1

2
R−1B⊤∇⊤φ(e)W ∗ ≈ −K(e). (13)

Assuming that the solution of the HJB equation (12) exists,

then without loss of generality, we can equivalently write (13)

as

u∗ = −KΦ(e), (14)

where K ∈ R
m×M is an optimal gain matrix and Φ(e) :

R
n → R

M is a vector composed of unique elements different

to zero of the gradient ∇φ(e). The Hamiltonian (6) in terms

of (14) is written as

H(e,K) = S(e) + (KΦ(e))⊤RKΦ(e)
+W⊤∇φ(e)[f(x)−BKΦ(e)− ẋd].

(15)

The parameterization in (14) is crucial for the proposed

objective function extraction algorithm which is discussed in

the next section.

4

III. MISSION’S PROFILE OBJECTIVE FUNCTION

EXTRACTION

The proposed PEIRL scheme is depicted in Fig. 1. The

measurements of the drone’s trajectories feed two complemen-

tary learning [37] architectures based on a parameterization of

the real control policy and an off-line reinforcement learning

algorithm that obtains in each episode i new improved control

policies based on iterative weight matrices Si and Ri. The

difference between the real and reinforcement learning control

policies feeds an inverse reinforcement learning algorithm to

estimate new improved weight matrices Si+1 and Ri+1. Sub-

sequently these matrices are used in the off-line reinforcement

learning algorithm and the procedure is repeated until the

policy error is less than a proposed threshold.

Policy Error Inverse Reinforcement Learning Scheme

Control Policy
Parameterization

Off-line
Reinforcement

LearningDrone's Hidden
Objective

Inverse
Reinforcement

Learning

Fig. 1. Performance Objective Extraction Scheme

A. Policy Parameterization using On-line Data

The measurements of the drone’s trajectories are stored in

the following buffer matrices

U =
[
u(t− (p− 1)T) · · · u(t− T) u(t)

]
∈ R

m×p

X =
[
x(t− (p− 1)T) · · · x(t− T) x(t)

]
∈ R

n×p

E =
[
e(t− (p− 1)T) · · · e(t− T) e(t)

]
∈ R

n×p

(16)

These terms construct a set of memory matrices that give

feedback of the drone’s performance under a hidden objective

function. We can estimate the gain matrix K of (14) by solving

the next batch least-squares (LS) rule

U = −K̂Φ̄(E),

K̂ = −U Φ̄⊤(E)
(
Φ̄(E)Φ̄⊤(E)

)−1
,

(17)

where K̂ ∈ R
m×M is an approximation of the optimal gain

matrix K due to the presence of noise and measurement errors,

and Φ̄(E) : Rn×p → R
M×p. So, the control policy is

u = −K̂Φ(e). (18)

Remark 4: The weight matrices associated to the objective

function remain fixed in the drone’s mission profile, that is,

different destinations are reflected in the states and control

input measurements which are consistent with the objective

function values.

If we assume linear control policies, the basis functions are

equivalent to the error states, i.e., Φ(E) = E, then is easy to

extract the desired destination as

Xd = X − E, (19)

where Xd ∈ R
n×p is a matrix containing the trajectories of

the desired destination profile.

B. Off-line Reinforcement Learning

An off-line policy iteration algorithm [48] is used to ap-

proximate the real near optimal solution V ∗(e) under iterative

weight matrices Si(e) and Ri. This model evaluates different

weight matrices to find new policies which are close to the

real drone’s policy [49].

The nonlinear drone’s dynamics can be written in terms of

the off-line control policy vi as

ė = f(x)− ẋd +B(u+ v
j
i − v

j
i), v

j
i = −K

j
iΦ(e),

= f(x)− ẋd −BK
j
iΦ(e) +B(u+K

j
iΦ(e))

= g(x) +B(u+K
j
iΦ(e))

(20)

where g(x) := f(x)− ẋd −BK
j
iΦ(e), and K

j
i is the control

gain matrix in iteration j of episode i. The Hamiltonian (15)

is rewritten as an iterative equation as

H(e,Kj
i) =Si(e) + (Kj

iΦ(e))
⊤RiK

j
iΦ(e)

+W
j⊤
i ∇φ(e)[f(x)−BK

j
iΦ(e)− ẋd] = 0.

(21)

The term in brackets in (21) is equivalent to (20), so

H(e,Kj
i) =Si(e) + (Kj

iΦ(e))
⊤RiK

j
iΦ(e)

+W
j⊤
i ∇φ(e)[g(x) +B(u+K

j
iΦ(e))]. (22)

Notice that the Hamiltonian (22) is not equal to zero and is

not equivalent to (15) because is written in terms of g(x) which

has a different dynamics in comparison to f(x). Therefore, the

RL algorithms needs to compute the optimal weights and gain

associated to the new dynamics. For this purpose, let define

Kj+1Φ(e) = 1

2
R−1

i B⊤∇⊤φ(e)W j
i and notice that the term

B(u+K
j
iΦ(e)) is regarded as an additional term that must be

compensated to satisfy the Hamiltonian equality. Hence, the

Hamiltonian of the off-line RL Hn is given by

Hn :=Si(e) + (W j
i)

⊤∇φ(e)[g(x) +B(u+K
j
iΦ(e))]

+ Φ⊤(e)(Kj
i)

⊤RiK
j
iΦ(e)

− 2(u+K
j
iΦ(e))

⊤RiK
j+1

i Φ(e) = 0. (23)

Integrating the Hamiltonian (23) in a time-interval [t : t+T]
gives the integral reinforcement learning equation [50]

(φ(e(t+ T))− φ(e(t))⊤W j
i

− 2

∫ t+T

t

(u+K
j
iΦ(e))

⊤RiK
j+1

i Φ(e)dτ

= −

∫ t+T

t

(
S(e) + Φ⊤(e)(Kj

i)
⊤RiK

j
iΦ(e)

)
dτ. (24)

We construct a system of equations from κ samples of (24)

measured along the drone’s trajectories (2) as

ΨΘ = Ω (25)

5

where

Θ =

[
W

j
i

vec(Kj+1

i)

]
∈ R

ι,

Ψ =
[
z,−2[IΦΦ(IM ⊗ (Kj

i)
⊤Ri) + IΦu(IM ⊗Ri)

]
∈ R

κ×ι,

Ω = −IS − IΦΦvec((Kj
i)

⊤RiK
j
i) ∈ R

κ,

z =

[
φ(e(τ))

∣∣∣
t+T

t
, · · · , φ(e(τ))

∣∣∣
T

T −T

]⊤
,

IΦΦ =

[∫ t+T

t

Φ(e)⊗ Φ(e)dτ, · · · ,

∫ T

T −T

Φ(e)⊗ Φ(e)dτ

]⊤

IS =

[∫ t+T

t

Si(e)dτ, · · · ,

∫ T

T −T

Si(e)dτ

]⊤

,

IΦu =

[∫ t+T

t

Φ(e)⊗ udτ, · · · ,

∫ T

T −T

Φ(e)⊗ udτ

]⊤

,

where T := t + κT . Then the weights and control gain are

computed by the following batch least-squares rule

Θ = (Ψ⊤Ψ)−1Ψ⊤Ω. (26)

The weights W
j
i and gain matrix K

j
i define the optimal

solution associated to the performance weights Si(e) and Ri.

In the next section, the real and reinforcement learning policies

are connected to obtain new and improved weight matrices

Si(e) and Ri that are close to the real performance matrices.

C. Inverse Reinforcement Learning

Standard IRL algorithms use the information of reinforce-

ment learning algorithm to estimate the weight matrices of

the objective function. In this paper, the IRL algorithm uses

the information of both the real and RL control policies in

a complementary learning mechanism to estimate the real

weight matrices.

First, notice that from the parameterization (14) it holds that

∇⊤φ(e)W ≡ PΦ(e), (27)

where P ∈ R
n×M is a matrix composed by the values of the

weights W and the coefficients of the gradient ∇φ. Then for

any control policy u = −KΦ(e) and using (27) we obtain that

u = −
1

2
R−1B⊤∇⊤φ(e)W,

= −
1

2
R−1B⊤PΦ(e)

= −KΦ(e), K =
1

2
R−1B⊤P. (28)

When the weights and gain matrices of the off-line RL

converge, then we can extract information associated to the

input dynamics B and the current weight matrix Ri as

Ki = 1

2
R−1

i B⊤Pi

2KiP
†
i = R−1

i B⊤,
(29)

where P
†
i ∈ R

M×n is the Moore-Penrose pseudoinverse of

matrix Pi.

The policy error [41] between the real (18) and off-line RL

control policies (20) is used to connect these control policies

for the objective extraction. The policy error is defined as

ũi = vi − u

= − 1

2
R−1

i B⊤∇⊤φ(e)Wi + K̂Φ(e).
(30)

We want to minimize the following quadratic input error

index

Ũi = ũ⊤
i ũi. (31)

The above index is minimized when vi → u as t → ∞. In

other words, we want that both the off-line RL and the real

control policies be the same which means that the actual ob-

jective function can achieve the desired optimal performance.

Notice that many objective functions can achieve the same

performance of the real control policy. In the sequel of the

paper, we provide an effective method to ensure convergence

to the exact weight matrices.

From (30), it is clear that Wi is a free parameter that we

can tune to obtain new and improved weight matrices Si+1(e)
and Ri+1. The new weights Wi ∈ R

N are updated by the

following one-step gradient descent rule

Wi = Wi − α
∂Ũi

∂Wi

= Wi + α∇φ(e)BR−1

i ũi

= Wi + 2α∇φ(e)
(
KiP

†
i

)⊤

ũi,

(32)

where α > 0 is the learning rate. The gradient of the value

function approximation is equivalently written as

∇⊤φ(e)Wi = PiΦ(e), (33)

where Pi ∈ R
n×M is a rectangular matrix composed of the

new weights in Wi and the coefficients of the gradient ∇φ(e).
Then, we can compute a control gain Ki ∈ R

m×M associated

to the matrix Pi as

Ki := KiP
†
i Pi. (34)

Following a similar procedure to the off-line RL algorithm,

one can write

ė = f(x)− ẋd +B(u+ νi − νi), νi = −KiΦ(e),
= h(x) +B(u+KiΦ(e)),

(35)

where h(x) := f(x) − ẋd − BKiΦ(e). The Hamiltonian

associated to the new control gain Ki and weights Wi is given

by

H(e,Ki) :=Si+1(e) + (KiΦ(e))
⊤Ri+1KiΦ(e)

+W⊤
i ∇φ(e)[f(x)−BKiΦ(e)− ẋd] = 0,

(36)

where Si+1(e) and Ri+1 are unknown weight matrices that

satisfy the Hamiltonian equality. A procedure similar to the

off-line RL is followed to obtain the Hamiltonian of the IRL

Hs. The term in brackets in (36) is equivalent to (35), so

H(e,Ki) :=Si+1(e) + (KiΦ(e))
⊤Ri+1KiΦ(e)

+W⊤
i ∇φ(e)[h(x) +B(u+KiΦ(e))]. (37)

6

Let KiΦ(e) := 1

2
R−1

i+1B
⊤∇⊤φ(e)Wi and compensate the

term B(u+KiΦ(e)). Then the Hamiltonian Hs of the IRL is

given by

Hs :=Si+1(e) +W⊤
i ∇φ(e)[h(x) +B(u+KiΦ(e))]

− ν⊤i Ri+1νi + 2u⊤Ri+1νi = 0. (38)

Remark 5: The weight function Si(e) can be linearly

parametrized as Si(e) := ϑ⊤
i ψ(e), where ϑ ∈ R

s is a vector

of unknown weights and ψ(e) : Rn → R
s is a vector of known

polynomial basis functions. In addition, the maximum degree

of the basis functions in ψ(e) matches with the maximum

degree of the basis functions in φ(e).

Integrating the Hamiltonian Hs in a time-interval [t : t+T]
gives

∫ t+T

t

ψ⊤(e)dτ · ϑi+1 +W⊤
i [φ(e(t+ T))− φ(e(t))]

+ 2

∫ t+T

t

µ⊤
i Ri+1νidτ = 0, (39)

where µi(e) := u− 1

2
νi(e). We construct a system of equations

from ζ samples of (39) measured along the trajectories (2) as

ΣΠ = Υ, (40)

where

Π =

[
ϑi+1

vec(Ri+1)

]
∈ R

ρ, ρ = s+m2,

Σ =

[
Iψ 2Iην
Iψξ Iuu

]
∈ R

2ζ×ρ,

Υ =

[
IφζWi

Ξ

]
∈ R

2ζ ,

Iφζ = −

[
φ(e(τ))

∣∣∣
t+T

t
, · · · , φ(e(τ))

∣∣∣
Tζ

Tζ−T

]⊤

Iην =

[∫ t+T

t

µi ⊗ νidτ, · · · ,

∫ Tζ

Tζ−T

µi ⊗ νidτ

]⊤

,

Iψ =

[∫ t+T

t

ψ(e)dτ, · · · ,

∫ Tζ

Tζ−T

ψ(e)dτ

]⊤

,

Iψξ = [ψ(e(t)), · · · , ψ(e(t+ ζT))]
⊤
,

Iuu = [u(t)⊗ u(t), · · · , u(t+ ζT)⊗ u(t+ ζT)]
⊤
,

Ξ =
[
ξ(t), · · · , ξ(t+ ζT)

]⊤
,

with Tζ := t+ζT . Notice that in this case, we collect samples

of the real performance objective function ξ(t) to avoid the

existence of multiple solutions. The solution of (40) is

Π = (Σ⊤Σ)−1Σ⊤Υ. (41)

Theorem 1: The weights of the performance objective

function can be exactly estimated by the proposed PEIRL

algorithm as long as the policy error ũ converges to zero and if

the IRL batch LS rule meets the objective function constraint

Ξ.

Proof: Assume εH = 0. The Hamiltonian in (38) is

equivalent to the following HJB equation

Si+1(e) =−W⊤
i ∇φ(e)

(
f(x)− ẋd

)

+
1

4
W⊤

i ∇φ(e)BR−1

i+1B
⊤∇⊤φ(e)Wi. (42)

Additionally, the Hamiltonian (23) is equivalent to the

following HJB equation

Si+1(e) =−W⊤
i+1∇φ(e)

(
f(x)− ẋd

)

+
1

4
W⊤

i+1∇φ(e)BR−1

i+1B
⊤∇⊤φ(e)Wi+1. (43)

Recall that Wi = Wi −α ∂Ũ
dWi

, then Wi converges to Wi as

vi approaches to u. In other words, we have that in the limit

the following holds

lim
i→∞

vi = u =⇒ lim
i→∞

Wi = Wi.

Equalling the HJB equations (42) and (43) gives

lim
i→∞

(
−W⊤

i+1∇φ(e)
(
f(x)− ẋd

)

+
1

4
W⊤

i+1∇φ(e)BR−1

i+1B
⊤∇⊤φ(e)Wi+1

)
=

lim
i→∞

(
−W⊤

i ∇φ(e)
(
f(x)− ẋd

)

+
1

4
W⊤

i ∇φ(e)BR−1

i+1B
⊤∇⊤φ(e)Wi

)
.

If we add 1

4
W⊤

i ∇φ(e)R−1

i B⊤∇⊤φ(e)Wi in both sides of

the above equality gives

lim
i→∞

(
Si+1(e)−

1

4
W⊤

i ∇φ(e)BR−1

i+1B
⊤∇⊤φ(e)Wi

)
=

lim
i→∞

(
Si(e)−

1

4
W⊤

i ∇φ(e)BR−1

i B⊤∇⊤φ(e)Wi

)
.

The above equality has multiple solutions for different

combinations between the weights Si(e) and Ri. However,

the data collected of the real objective function Ξ restricts the

possible solutions such as the only way that the above equality

holds is when

lim
i→∞

Si(e) = S(e), lim
i→∞

Ri = R. (44)

This completes the proof.

Remark 6: This approach only requires two hyperparameters

to tune: the learning rate α and the number of episodes i.

The learning rate α is tuned manually since it depends on the

drone’s dynamics. A simple tuning approach is setting α small

enough to avoid divergence in the gradient rule and smoothly

increase its value to improve the learning performance as the

number of episodes i increases. Adaptive learning rates using

well-known optimizers, e.g., RMSprop or Adam can be used

to adapt the learning rate automatically based on the gradient

of the policy error Ũi. However, this is not used due to the

simplistic nature of the one-step gradient descent rule.

7

IV. SIMULATION STUDIES

In this section, we test the proposed algorithm using a

quadcopter model. The quadcopter satisfies the following

physics model [43]




z̈

φ̈

θ̈

ψ̈


 =




1

m
cθcφF
1

Ixx
τφ

1

Iyy
τθ

1

Izz
τψ


−




Az

m
ż

Iyy−Izz
Ixx

θ̇ψ̇
Izz−Ixx

Iyy
φ̇ψ̇

Ixx−Iyy

Izz
θ̇φ̇


−




g

0
0
0




where z denotes the altitude and φ, θ, ψ denote the orientation,

m is the mass of the quadcopter, Ixx, Iyy, Izz are the moments

of inertia, Az is a drag force, g is the gravitational acceleration,

F is the thrust force, τφ, τθ, and τψ are the roll, pitch, and yaw

torques. The parameters of the quadcopter are: m = 0.468 kg,

Ixx = Iyy = 4.856× 10−3 kgm2, Izz = 8.801× 10−3 kgm2,

Az = 0.25 kg/s, and g = 9.81 m/s2.

We can construct two nonlinear systems to decouple the

pose and orientation physics by defining

ẋ1 = f1(x1) +B1u1

ẋ2 = f2(x2) +B2u2,

where x1 = [z, ż]⊤, u1 = cθcφF , x2 = [φ, θ, ψ, φ̇, θ̇, ψ̇]⊤,

u2 = [τφ, τθ, τψ]
⊤, and

f1(x1) =

[
ż

− 1

m
Az ż − g

]
, B1 =

[
0
1

m

]
,

f2(x) =




φ̇

θ̇

ψ̇

−
Iyy−Izz

Ixx
θ̇ψ̇

− Izz−Ixx

Iyy
φ̇ψ̇

−
Ixx−Iyy

Izz
θ̇φ̇




, B2 =




0 0 0
0 0 0
0 0 0
1

Ixx
0 0

0 1

Iyy
0

0 0 1

Izz



.

Let focus first in the orientation physics. Consider the

following quadratic cost index

V (e2) =

∫ ∞

t

(e⊤2 S
oe2 + u⊤

2 R
ou2)dτ,

where So ≥ 0 and Ro > 0 are unknown symmetric weight

matrices and e2 = [φ, θ, ψ]⊤ − [φd.θd, ψd]⊤ is the orientation

error and φd.θd, ψd define the orientation destination. Then,

the controller u2 has the next structure u2 = −Koe2, where

Ko ∈ R
3×6 is the unknown optimal control gain. The same

procedure can be applied to the pose physics.

We can observe that the first nonlinear system can be

expressed as a standard linear system with a disturbance as

ẋ1 =

[
0 1
0 − 1

m
Az

]
x1 +

[
0
1

m

]
(u1 −mg).

The pose controller has the following structure u1 =
−Kpe1+mg := K̄pē1, where Kp ∈ R

1×2 stands to the opti-

mal control gain of a H2 control formulation, K̄p = [−Kp,m]
and ē1 = [e⊤1 , g]

⊤. The controller is designed to minimize the

following quadratic cost index

V (e1) =

∫ ∞

t

(e⊤1 S
pe1 + u⊤

1 R
pu1)dτ,

for some unknown symmetric matrices Sp ≥ 0 and Rp > 0.

Here e1 = z−zd is the altitude error and zd is the quadcopter’s

altitude destination.

10 20 30 40 50 60

0

2

4

Fig. 2. Noise-free trajectory obtained from the DMDc method

Both the pose and orientation controllers are assumed to

stabilize and track the desired destination with low-tracking

error. The desired destination is zd = 3+ 0.9 sin
(
π
6
t
)
, φd =

1

12
π cos

(
π
12
t
)
, θd = 1

18
π sin

(
π
12
t
)
, ψd = 0.

The optimal pose and orientation controllers are designed

in terms of the following performance objective matrices

Sp =

[
100 50
50 100

]
, Rp = 1,

So = diag{2, 2, 2, 1, 1, 1}, Ro = I3.

These matrices are chosen arbitrarily to observe the ef-

fectiveness of the approach for different weight matrices

structures, e.g., diagonal and non-diagonal positive semi-

definite/definite matrices.

Thus, the approximate optimal control gains are

Kp ≈
[
10 10.2105

]
,

Ko ≈



1.414 0 0 1.007 0 0
0 1.414 0 0 1.007 0
0 0 1.414 0 0 1.012


 .

The states are corrupted by a Gaussian distributed noise

with zero mean and variance 0.1. We measure the states and

control inputs each 1 ms. A dynamic mode decomposition with

control (DMDc) [51] is used to attenuate noise. The states of

the DMDc output model are used instead of the real states

to avoid biased parameter estimation. Fig. 2 shows the noise

attenuation of the altitude trajectory.

Each 100 samples, the quadcopter’s trajectories are stored

in the following matrices U1 ∈ R
1×100, U2 ∈ R

3×100,

E1 ∈ R
2×100, and E2 ∈ R

6×100. The real control gains are

computed by the batch-LS rules

̂̄K
p

= −U1Ē
⊤
1 (Ē1Ē

⊤
1)−1

K̂o = −U2E
⊤
2 (E2E

⊤
2)−1,

where ̂̄K
p

and K̂o are estimates of K̄p and Ko, respectively.

Here Ē1 =

[
E1

~g

]
∈ R

3×100 with ~g = [g, · · · , g] ∈ R
1×100.

Fig. 3 shows the performance of the quadcopter using the

above pose and orientation optimal controllers.

The hidden objective associated to matrices Sp, Rp, So, and

Ro are extracted from real-time trajectories using the pro-

posed PEIRL. The basis functions are proposed as quadratic

functions, that is, φ(e1) = e1⊗̄e1 and φ2(e2) = e2⊗̄e2. The

8

0 50 100

2

3

4

(a) Altitude trajectory

0 50 100

-0.2

0

0.2

(b) Orientation trajectories

Fig. 3. Quadcopter’s trajectories

initial weight matrices for the off-line RL are set to: S
p
i = I2,

R
p
i = 0.5, So

i = 0.5I6, and Ro
i = 0.5I3. The learning rates

are tuned manually until stable performances are achieved.

The final learning rates are: αp = 0.003 and αo = 3e−5. The

number of parameters to extract are: Π1 = 4 and Π2 = 27 for

the pose and orientation objective functions, respectively.

0 5 10

0

100

200

(a) Convergence results of the pose
objective function

0 5 10

0

50

100

(b) Weight matrices convergence of
the pose objective function

0 10 20 30 40

0

1

2

(c) Convergence results of the orien-
tation objective function

0 10 20 30 40

0

1

2

(d) Weight matrices convergence of
the orientation objective function

Fig. 4. Objective extraction results

Fig. 4 shows the results of the control policies’ objective

extraction. Two different scenarios where considered in this

case of study: diagonal weight matrices, and non-diagonal

weight matrices. Fig. 4(a)-Fig. 4(b) show the results for the

pose controller. The proposed PEIRL achieves convergence of

the off-line RL control gain K
p
i to the real control gain K̂p.

In addition, the weight matrices S
p
i and R

p
i converge in the

first seven episodes. Furthermore, these matrices converge to

the real weight matrices (see Fig. 4(b)). On the other hand,

the results for the orientation controller shows similar results

to the pose controller, however they require more episodes

to converge (see Fig. 4(c)-Fig. 4(d)). This is caused due to

the selection of the learning rate, that is, large learning rates

accelerate convergence of the algorithm, however they can

produce instability in the long run. Hence, the selection of the

learning rate is crucial to guarantee convergence and stability

of the proposed PEIRL approach. The computational time

per episode depends highly on the number of parameters to

estimate and an user-defined threshold that determines when

to stop either the RL or IRL loops. In this paper, we used

a threshold of 0.01 for both the RL and IRL loops. The

computational time per episode of the pose objective function

is approximately 1.23 seconds, whilst for the orientation

objective function is approximately 3.92 seconds.

We further test the approach using non-diagonal weight

matrices for the orientation controller design. In this case the

real weights and gain are:

So =




5 4 3 2 1 0
4 5 3 1 2 0
3 3 5 4 3 0
2 1 4 5 2 0
1 2 3 2 5 0
0 0 0 0 0 5



, Ro = 2I3,

Ko ≈




1.396 0.702 0.911 1.552 0.324 0.001
0.706 1.413 0.681 0.324 1.552 0.001
−0.231 −0.094 1.098 0 0 1.587


 .

The results are exhibited in Fig. 5. Notice that the samples

in Ξ give a constraint to the batch LS rule to guarantee

convergence to the exact weight matrices of the mission profile

objective function.

0 10 20 30 40

0

10

20

(a) Convergence results

0 10 20 30 40

0

2

4

6

(b) Weight matrices convergence

Fig. 5. Orientation objective function results under non-diagonal weight
matrices

A. Robustness results

First we verify the claim that the proposed technique holds

for any drone’s trajectories. The drone’s desired trajectories

are modified to zd = 3+0.9 sin(π
6
t)− 1

2
cos(π

4
t)+ 1

4
cos(π

3
t),

φd = 1

12
π cos(π

12
t) − 1

36
π cos(π

4
t) + 1

45
sin(π

6
t), θd =

1

18
π sin(π

12
t)+ 1

36
π sin(π

4
t)− 1

30
π cos(π

6
t), ψd = 0. The same

non-diagonal weight matrices are used for the optimal control

design. In addition, we simulate different sensor’s sampling

time to demonstrate the algorithm robustness, i.e., we measure

the states each 0.02 seconds. Fig. 6 exhibit the tracking of the

altitude and attitude trajectories.

0 50 100

1

2

3

4

(a) Altitude trajectory

0 50 100

-0.4

-0.2

0

0.2

(b) Attitude trajectories

Fig. 6. New trajectories testing

The initial weight matrices of the proposed PEIRL are set to

S
p
i = 0.1I2, R

p
i = 0.1, So

i = 10I6, and Ro
i = I3. The results

of the objective inference are shown in Fig. 7. The results show

that the same expert’s weight matrices are obtained despite

the trajectories are modified and measured with a different

9

sampling time. It is observed that the initial weight matrix R0

can cause divergence of the proposed PEIRL if it is not close

to the exact weight matrix. One solution is to decrease the

value of the learning rate α which can cause a slow learning

inference or set R0 close to its real value.

0 10 20 30 40

0

50

100

(a) Weight matrices convergence of
the pose objective function

0 10 20 30 40

0

100

200

(b) Convergence results of the pose
objective function

0 10 20 30 40

-5

0

5

(c) Weight matrices convergence of
the orientation objective function

0 10 20 30 40

0

5

10

(d) Convergence results of the orien-
tation objective function

Fig. 7. Robustness results for different drone’s desired destinations

B. Sensitivity Analysis

We perform a sensitivity analysis of the proposed PEIRL.

One of the main advantages of the proposed approach is that

the learning rate α is the only hyperparameter to tune. We

test five different learning rates and compare them to obtain

more insights of the proposed approach. In addition, we also

test the sensitivity of the learning rate α under different initial

weight matrices Fig. 8 shows the convergence curves of the

error between the estimated kernel matrix Pi with the optimal

P matrix under different initial weight matrices.

Similarly to standard gradient descent rules, the learning

rate must be chosen small enough to avoid divergence or

convergence to a local minima. Notice that for small initial

weights, the PEIRL finds rapidly the solution for relatively

large learning rates (see Fig. 8(a)). On the other hand, for

relatively large initial weight matrices, the PEIRL requires

more episodes to converge despite of using the same learning

rates (see Fig. 8(b)). We observe that the initial weight values

play a major role in the convergence of the algorithm. Here,

for large initial weight matrix S0 and small weight matrix

R0, the algorithm shows a fast convergence with similar

behaviours across all the learning rates. Since Ri is small in

the first episodes, then the applied control policy will be large.

In consequence, the policy error will be large such that its

gradient accelerates the learning phase of the PEIRL.

C. Comparison results

We compare the proposed methodology with a human

behaviour learning (HBL) algorithm proposed in [37] and a

data-driven IRL algorithm proposed in [52]. We assume that

Rp and Ro are known in advance to implement the HBL and

IRL algorithms, that is, Rp = 1 and Ro = I3. The same initial

weight matrices and learning rates are used in this experiment.

Here we adapt the IRL algorithm to match to the proposed

nonlinear formulation. We consider the first simulation case

using diagonal weight matrices. Fig. 9 and Fig. 10 show the

objective extraction results for both the pose and orientation

objective functions using the HBL and IRL algorithms. The

inferred weight matrices of each algorithm are

S
p
HBL =

[
100 103.19

103.19 100

]
, S

p
IRL =

[
99.97 106.41
106.41 100

]
,

So
HBL =




2 0 0 0.921 0 0
0 2 0 0 0.921 0
0 0 2 0 0 0.926

0.921 0 0 1 0 0
0 0.921 0 0 1 0
0 0 0.926 0 0 1



,

So
IRL =




2 0 0 1.417 0 0
0 2 0 0 1.417 0
0 0 1.94 0 0 1.405

1.417 0 0 1 0 0
0 1.417 0 0 1 0
0 0 1.405 0 0 1



.

Notice that in both cases the weight matrices do not

converge to their real values despite the matrix R is known

in advance. Furthermore, the matrices S
p
j , j = HBL, IRL

are not positive definite and can pose an undesired objective

function. Both the HBL and IRL can obtain multiple solutions

due to the lack of constraints. These solutions define different

intentions that obtain the desired behaviour imposed by the

user. However, we cannot identify which is the real objective

function that the user uses in the control design and, in

consequence, biased conclusions or assumptions are obtained.

Here, the constraint proposed in this approach fix this problem

by forcing the PEIRL algorithm to converge to the exact

weight matrices. Additionally, the constraint allows to infer

both weight matrices and relax the conservative assumptions

of both HBL and IRL. In terms of the computational time,

both HBL and IRL require less time to infer the objective

function from the data in comparison to the PEIRL. These

differences of time are derived due to the incorporation of

the objective constraint in the IRL loop. The computational

time per episode of both pose and orientation objectives are

0.76 and 3.05 seconds for the HBL and 0.73 and 2.96 seconds

for the IRL. This defines a trade-off between computation time

and parameters’ inference accuracy that, in view of the results,

is acceptable due to the relatively fast convergence results.

D. Safety Critical Control Application

The objective function inference problem has several appli-

cations in the security domain. One of them is safety critical

control whose aim is to ensure the safe implementation of

control and AI models in real-world applications. In this

scenario, the objective function acts as an experience inference

architecture that injects a desired behaviour or performance to

another system.

10

0 1000 2000 3000

0

50

0 10 20
0

20

40

(a) Initial weights S = 0.1I4 and R = 0.1

0 1000 2000 3000

0

50

(b) Initial weights S = 10I4 and R = 2

0 2 4 6 8 10

0

50

5.2 5.4 5.6 5.8
1.4

1.5

1.6

(c) Initial weights S = 10I4 and R = 0.1

Fig. 8. Sensitivity analysis of the learning rate under different initial weight matrices

0 5 10 15 20

0

50

100

(a) Convergence results of the pose
objective function

0 5 10 15 20

0

50

100

(b) Weight matrices convergence of
the pose objective function

0 50 100

0

0.5

1

(c) Convergence results of the ori-
entation objective function

0 50 100

0

1

2

(d) Weight matrices convergence of
the orientation objective function

Fig. 9. Objective function extraction results using HBL

Fig. 11 shows the diagram of the proposed safety critical

control application which exhibits a similar architecture to the

objective inference problem of Fig. 1. The main differences

are the incorporation of expert data and that an on-line RL

architecture is used. The expert data defines the data of an

expert behaviour that we aim to infer to the real drone by

modifying its objective function. We used on-line RL rather

than off-line RL due to the nature of the safety critical control

problem which requires an on-line implementation. In this

implementation, the gains of the expert data are approximately

Kp
e ≈

[
3.5355 3.7339

]
,

Ko
e ≈



2.236 0 0 0.722 0 0
0 2.236 0 0 0.722 0
0 0 2.236 0 0 0.734


 ,

which are obtained using the following weight matrices

Sp =

[
25 5
5 25

]
, Rp = 2,

So = diag{10, 10, 10, 1, 1, 1}, Ro = 2I3.

The real drone is controlled using the following approxi-

mated gains

Kp ≈
[
1.4142 1.5902

]
,

Ko ≈



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


 .

0 5 10 15 20

0

20

40

60

(a) Convergence results of the pose
objective function

0 5 10 15 20

0

50

100

(b) Weight matrices convergence of
the pose objective function

0 20 40 60

0

0.5

1

(c) Convergence results of the ori-
entation objective function

0 20 40 60

0

1

2

(d) Weight matrices convergence of
the orientation objective function

Fig. 10. Objective function extraction results using IRL

The learning rate is manually tuned until a fast convergence

result is obtained. The final learning rates are: αp = 0.003 and

αo = 3e−5. The objective function inference results are shown

in Fig. 12. Similarly to the previous experiments, the PEIRL

reduces the policy error by inferring the objective function of

the expert data to the real drone. Fig. 13 shows the results of

the experience inference algorithm for safety critical control.

Control Policy
Parameterization

On-line
Reinforcement

Learning

Real Drone

Inverse
Reinforcement

Learning
Expert Data

Fig. 11. Safety Critical Control Scheme

The results of Figs. 12-13 show that the objective function

is the one that determines the closed-loop performance of the

drone. Here, the safety critical control based on the objective

function inference algorithm is capable to infer the objective

function and obtain the same expert performance. This task is

becoming relevant in several applications that involve multi-

agent systems and imitation learning. In contrast to HBL and

IRL, the inferred objective function is stable and provides the

accurate information of the real objective intent. Future work

will study the experience inference of drones’ policies with

different structures and parameters.

11

0 5 10 15 20

0

20

40

(a) Convergence results of the pose
objective function

0 5 10 15 20

0

10

20

(b) Weight matrices convergence of
the pose objective function

0 10 20 30 40

0

5

10

(c) Convergence results of the orien-
tation objective function

0 10 20 30 40

0

5

10

(d) Weight matrices convergence of
the orientation objective function

Fig. 12. Objective function inference for Safety Critical Control

0 2 4 6 8 10

0

1

2

(a) Initial Altitude performance

0 2 4 6 8 10

0

0.1

0.2

(b) Initial Attitude performance

0 2 4 6 8 10

0

1

2

(c) Altitude Inferred performance

0 2 4 6 8 10

0

0.1

0.2

(d) Attitude inferred performances

Fig. 13. Experience Inference results for Safety Critical Control

V. CONCLUSIONS

This paper reports a policy error inverse reinforcement

learning algorithm for drone’s objective inference using online

data trajectories. The error and control input of the drone’s

trajectories are used to extract the hidden objective under an it-

erative mechanism inspired by the closed-loop input error tech-

nique. A set of basis functions is used to linearly parametrize

the nonlinear control policy applied to the drone. Two off-line

reinforcement learning/inverse integral reinforcement learning

algorithms are used to generate new policies and objective

weights until they converge to their respective real values.

Convergence to the exact weight matrices is achieved under a

batch-LS rule with an objective constraint. Convergence of the

algorithm is verified using Lyapunov recursions. Simulations

studies and comparisons using a quadcopter model are carried

out to verify the stability, hyperparameter sensitivity, and

robustness of the approach for different weight matrices. A

safety critical control application is given to demonstrate the

benefits of the PEIRL in experience inference tasks.

Further work will exploit the merits of the proposed tech-

nique to design control informed algorithms to enhance the

robustness and stability of data-driven trajectory prediction

algorithms. Different objective functions that consider con-

straints in the input and output signals in a H2-control sense

will be further analysed. Other future research vector consists

in the objective extraction of robust control policies to incor-

porate aerodynamical effects at high velocities. Measurements

obtained from non-cooperative sensors and/or communication

issues pose a great challenge in safety and security sectors.

This is also a concern for future work.

REFERENCES

[1] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis
of drones systems: Attacks, limitations, and recommendations,” Internet

of Things, vol. 11, p. 100218, 2020.
[2] Y. Zhou, K. G. Vamvoudakis, W. M. Haddad, and Z.-P. Jiang, “A secure

control learning framework for cyber-physical systems under sensor and
actuator attacks,” IEEE Transactions on Cybernetics, vol. 51, no. 9, pp.
4648–4660, 2020.

[3] A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila,
“Swarms of unmanned aerial vehicles—a survey,” Journal of Industrial

Information Integration, vol. 16, p. 100106, 2019.
[4] A. Perrusquia, W. Guo, B. Fraser, and Z. Wei, “Uncovering drone

intentions using control physics informed machine learning,” PREPRINT

(Version 1) available at Research Square, 2023.
[5] G. Lykou, D. Moustakas, and D. Gritzalis, “Defending airports from

uas: A survey on cyber-attacks and counter-drone sensing technologies,”
Sensors, vol. 20, no. 12, p. 3537, 2020.

[6] I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu, and D. Matolak,
“Detection, tracking, and interdiction for amateur drones,” IEEE Com-

munications Magazine, vol. 56, no. 4, pp. 75–81, 2018.
[7] B. Taha and A. Shoufan, “Machine learning-based drone detection and

classification: State-of-the-art in research,” IEEE access, vol. 7, pp.
138 669–138 682, 2019.

[8] B. K. Kim, H.-S. Kang, and S.-O. Park, “Drone classification using
convolutional neural networks with merged doppler images,” IEEE

Geoscience and Remote Sensing Letters, vol. 14, no. 1, pp. 38–42, 2016.
[9] H.-S. Shin, D. Turchi, S. He, and A. Tsourdos, “Behavior monitoring

using learning techniques and regular-expressions-based pattern match-
ing,” IEEE transactions on intelligent transportation systems, vol. 20,
no. 4, pp. 1289–1302, 2018.

[10] A. Perrusquı́a and W. Yu, “Human-behavior learning for infinite-horizon
optimal tracking problems of robot manipulators,” in 2021 60th IEEE

Conference on Decision and Control (CDC). IEEE, 2021, pp. 57–62.
[11] W. Sultani and M. Shah, “Human action recognition in drone videos

using a few aerial training examples,” Computer Vision and Image

Understanding, vol. 206, p. 103186, 2021.
[12] H. Zhang, Y. Yan, S. Li, Y. Hu, and H. Liu, “Uav behavior-intention esti-

mation method based on 4-d flight-trajectory prediction,” Sustainability,
vol. 13, no. 22, p. 12528, 2021.

[13] H. Ahn, H.-L. Choi, M. Kang, and S. Moon, “Learning-based anomaly
detection and monitoring for swarm drone flights,” Applied Sciences,
vol. 9, no. 24, p. 5477, 2019.

[14] A. Perrusquı́a and W. Guo, “A closed-loop output error approach for
physics-informed trajectory inference using online data,” IEEE Trans-

actions on Cybernetics, vol. 53, no. 3, pp. 1379–1391, 2022.
[15] F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir

computing approaches for representation and classification of multivari-
ate time series,” IEEE transactions on neural networks and learning

systems, vol. 32, no. 5, pp. 2169–2179, 2020.
[16] K. Saleh, M. Hossny, and S. Nahavandi, “Intent prediction of pedestrians

via motion trajectories using stacked recurrent neural networks,” IEEE

Transactions on Intelligent Vehicles, vol. 3, no. 4, pp. 414–424, 2018.
[17] A. Perrusquı́a and W. Yu, “Identification and optimal control of nonlinear

systems using recurrent neural networks and reinforcement learning: An
overview,” Neurocomputing, vol. 438, pp. 145–154, 2021.

[18] C. Legaard, T. Schranz, G. Schweiger, J. Drgoňa, B. Falay, C. Gomes,
A. Iosifidis, M. Abkar, and P. Larsen, “Constructing neural network
based models for simulating dynamical systems,” ACM Computing

Surveys, vol. 55, no. 11, pp. 1–34, 2023.
[19] H. Oh, H.-S. Shin, S. Kim, A. Tsourdos, and B. A. White, “Airborne

behaviour monitoring using gaussian processes with map information,”
IET Radar, Sonar & Navigation, vol. 7, no. 4, pp. 393–400, 2013.

[20] R. Rezaie and X. R. Li, “Gaussian conditionally markov sequences:
Modeling and characterization,” Automatica, vol. 131, p. 109780, 2021.

[21] J. Liang, B. I. Ahmad, M. Jahangir, and S. Godsill, “Detection of
malicious intent in non-cooperative drone surveillance,” in 2021 Sensor

Signal Processing for Defence Conference (SSPD). IEEE, 2021, pp.
1–5.

[22] R. Rezaie and X. R. Li, “Destination-directed trajectory modeling,
filtering, and prediction using conditionally markov sequences,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 57, no. 2, pp.
820–833, 2020.

12

[23] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and
G. Neumann, “Recurrent kalman networks: Factorized inference in
high-dimensional deep feature spaces,” in International Conference on

Machine Learning. PMLR, 2019, pp. 544–552.

[24] G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. Van Sloun, and
Y. C. Eldar, “Kalmannet: Neural network aided kalman filtering for
partially known dynamics,” IEEE Transactions on Signal Processing,
vol. 70, pp. 1532–1547, 2022.

[25] C. Wang, H. Han, J. Wang, H. Yu, and D. Yang, “A robust extended
kalman filter applied to ultrawideband positioning,” Mathematical Prob-

lems in Engineering, vol. 2020, 2020.

[26] B. Fraser, A. Perrusquı́a, D. Panagiotakopoulos, and W. Guo, “Hybrid
deep neural networks for drone high level intent classification using
non-cooperative radar data,” in 2023 3rd International Conference on

Electrical, Computer, Communications and Mechatronics Engineering

(ICECCME). IEEE, 2023, pp. 1–6.

[27] W. Yu and A. Perrusquı́a, “Simplified stable admittance control using
end-effector orientations,” International Journal of Social Robotics,
vol. 12, no. 5, pp. 1061–1073, 2020.

[28] A. Perrusquı́a, “Solution of the linear quadratic regulator problem of
black box linear systems using reinforcement learning,” Information

Sciences, vol. 595, pp. 364–377, 2022.

[29] N. Ab Aza, A. Shahmansoorian, and M. Davoudi, “From inverse optimal
control to inverse reinforcement learning: A historical review,” Annual

Reviews in Control, vol. 50, pp. 119–138, 2020.

[30] K. Vamvoudakis and F. L. Lewis, “On-line actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, pp. 878–888, 2010.

[31] A. Perrusquı́a and W. Guo, “Cost inference of discrete-time linear
quadratic control policies using human-behaviour learning,” in 2022

8th International Conference on Control, Decision and Information

Technologies (CoDIT), vol. 1. IEEE, 2022, pp. 165–170.

[32] H. El-Hussieny and J.-H. Ryu, “Inverse discounted-based lqr algorithm
for learning human movement behaviors,” Applied Intelligence, vol. 49,
no. 4, pp. 1489–1501, 2019.

[33] W. Xue, B. Lian, J. Fan, P. Kolaric, T. Chai, and F. L. Lewis,
“Inverse reinforcement q-learning through expert imitation for discrete-
time systems,” IEEE Transactions on Neural Networks and Learning

Systems, 2021.

[34] A. Y. Ng, S. Russell et al., “Algorithms for inverse reinforcement
learning.” in International Conference on Machine Learning, vol. 1,
2000.

[35] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first International

Conference on Machine learning, 2004.

[36] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with gaussian processes,” Advances in neural information

processing systems, vol. 24, 2011.

[37] A. Perrusquı́a, “A complementary learning approach for expertise trans-
ference of human-optimized controllers,” Neural Networks, vol. 145, pp.
33–41, 2022.

[38] M.-B. Radac and T. Lala, “A hierarchical primitive-based learning
tracking framework for unknown observable systems based on a new
state representation,” in 2021 European Control Conference (ECC).
IEEE, 2021, pp. 1472–1478.

[39] J. Ramı́rez, W. Yu, and A. Perrusquı́a, “Model-free reinforcement
learning from expert demonstrations: a survey,” Artificial Intelligence

Review, vol. 55, no. 4, pp. 3213–3241, 2022.

[40] A. Perrusquı́a and W. Guo, “Optimal control of nonlinear systems using
experience inference human-behavior learning,” IEEE/CAA Journal of

Automatica Sinica, vol. 10, no. 1, pp. 90–102, 2023.

[41] A. Perrusquı́a, R. Garrido, and W. Yu, “Stable robot manipulator pa-
rameter identification: A closed-loop input error approach,” Automatica,
vol. 141, p. 110294, 2022.

[42] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Systems Magazine, vol. 32,
no. 6, pp. 76–105, 2012.

[43] A. Perrusquı́a and W. Guo, “Closed-loop output error approaches for
drone’s physics informed trajectory inference,” IEEE Transactions on

Automatic Control, 2023.

[44] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal
and autonomous control using reinforcement learning: A survey,” IEEE

transactions on neural networks and learning systems, vol. 29, no. 6,
pp. 2042–2062, 2017.

[45] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-

chine learning, dynamical systems, and control. Cambridge University
Press, 2022.

[46] Y. Yang, Z. Guo, H. Xiong, D.-W. Ding, Y. Yin, and D. C. Wunsch,
“Data-driven robust control of discrete-time uncertain linear systems
via off-policy reinforcement learning,” IEEE transactions on neural

networks and learning systems, vol. 30, no. 12, pp. 3735–3747, 2019.
[47] A. Perrusquı́a and W. Yu, “Neural H2 control using continuous-time

reinforcement learning,” IEEE Transactions on Cybernetics, vol. 52,
no. 6, pp. 4485–4494, 2022.

[48] S. A. A. Rizvi and Z. Lin, “Reinforcement learning-based linear
quadratic regulation of continuous-time systems using dynamic output
feedback,” IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4670–
4679, 2019.

[49] A. Perrusquı́a, “Human-behavior learning: A new complementary learn-
ing perspective for optimal decision making controllers,” Neurocomput-

ing, vol. 489, pp. 157–166, 2022.
[50] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-

forcement learning and experience replay for adaptive optimal control
of partially-unknown constrained-input continuous-time systems,” Auto-

matica, vol. 50, no. 1, pp. 193–202, 2014.
[51] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decom-

position with control,” SIAM Journal on Applied Dynamical Systems,
vol. 15, no. 1, pp. 142–161, 2016.

[52] B. Lian, V. S. Donge, F. L. Lewis, T. Chai, and A. Davoudi, “Data-driven
inverse reinforcement learning control for linear multiplayer games,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Adolfo Perrusquı́a received the B.Eng. degree in
Mechatronic Engineering from the National Poly-
technic Institute (UPIITA-IPN) in 2014, and the
M.S. and Ph.D. degrees, both in Automatic Con-
trol from the Automatic Control Department at the
CINVESTAV-IPN in 2016 and 2020, respectively.
He is currently a lecturer at the School of Aerospace,
Transport and Manufacturing, Cranfield University,
and a former UK-IC Postdoctoral Research Fellow.
He is a member of the IEEE Computational Intelli-
gence Society. His main research of interest focuses

on robotics, mechanisms, machine learning, reinforcement learning, nonlinear
control, system modeling and system identification.

Weisi Guo (received the M.Eng. degree in engineer-
ing, and the M.A. and Ph.D. degrees in computer sci-
ence from the University of Cambridge, Cambridge,
U.K., in 2005, 2011, and 2011, respectively. He is
a Chair Professor of Human Machine Intelligence
with Cranfield University, Cranfield, U.K. He has
published over 180 papers and is a PI on a number
of molecular communication research grants.

Prof. Guo’s research has won him several interna-
tional awards. He was a Turing Fellow at the Alan
Turing Institute.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-11-22

þÿ�D�r�o�n�e ��s� �o�b�j�e�c�t�i�v�e� �i�n�f�e�r�e�n�c�e� �u�s�i�n�g� �p�o�l�i�c�y

error inverse reinforcement learning

Perrusquía, Adolfo

IEEE

þÿ�P�e�r�r�u�s�q�u�í�a� �A�,� �G�u�o� �W�.� �(�2�0�2�3�)� �D�r�o�n�e ��s� �o�b�j�e�c�t�i�v�e� �i�n�f�e�r�e�n�c�e� �u�s�i�n�g� �p�o�l�i�c�y� �e�r�r�o�r� �i�n�v�e�r�s�e

reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems.

Available online November 2023

https://doi.org/10.1109/TNNLS.2023.3333551

Downloaded from Cranfield Library Services E-Repository

