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ABSTRACT 
This study presents a robust and integrated methodology that harnesses a range of computational 
techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. 
This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, 
ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of 
binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the 
employment of multiple linear regression (MLR). The initial MLR model underwent further refinement 
employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. 
Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 
0.95, respectively. The model’s precision was assessed via leave-one-out cross-validation (CV) yielding a 
Q2 value of 0.65, supplemented by rigorous Y-randomization. ,  The pharmacophore model effectively 
differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demon-
strated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited 
high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. 
Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited 
promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the 
new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns 
MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosyn-
thetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The 
overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with 
robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.
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1. Introduction

The regulation of cellular growth, differentiation, and main-
tenance relies on an important signalling pathway that 

involves Janus Kinase (JAK) family and STAT transcription fac-
tors. Dysregulation of this pathway can lead to autoimmune 
diseases like rheumatoid arthritis (RA) and cancer (Banerjee 
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et al., 2017; Xin et al., 2020). One subunit of JAK, known as 
JAK3, plays a role in signalling interleukin-2 (IL-2) and other 
cytokines responsible for immune response regulation. 
Mutations in the Cys909 residue of JAK3 can result in consti-
tutive activation of the kinase, leading to the development 
of autoimmune diseases (Bryan & Rajapaksa, 2018; Tan et al., 
2015). Therefore, inhibiting JAK3 has emerged as a promising 
therapeutic approach for RA and other autoimmune diseases. 
JAK3 inhibitors have shown effectiveness in alleviating RA 
symptoms and slowing down disease progression (Chen, Lu, 
et al., 2022; Fetter et al., 2020). Extensive research has dem-
onstrated that JAK3 inhibitors can reduce the production of 
pro-inflammatory cytokines, such as IL-2, IL-6, and IL-17, 
which are implicated in the development of RA (Barf & 
Kaptein, 2012; Zhong & Almahmoud, 2023), which are impli-
cated in the development of RA (Wang et al., 2023). 
Extensive research has demonstrated that JAK3 inhibitors can 
reduce the production of pro-inflammatory cytokines, such 
as IL-2, IL-6, and IL-17 (Ding et al., 2023; Faris, Hadni, 
Ibrahim, et al., 2023; Faris, Hadni, Saleh, et al., 2023). 
Furthermore, these inhibitors may also decrease the produc-
tion of growth factors and cytokines involved in cell prolifer-
ation and cancer cell survival, potentially slowing down 
cancer progression (Ghoreschi et al., 2009; Malemud & 
Pearlman, 2009; Salas et al., 2020). Given the involvement of 
JAK3 and STAT signaling in various autoimmune diseases 
and cancer, inhibiting JAK3 shows promise as a therapeutic 
strategy. However, further research is needed to fully under-
stand the roles of JAK3 and STAT in these diseases and to 
develop more specific and effective JAK3 inhibitors (Alunno 
et al., 2019; Banerjee et al., 2017; Hosseini et al., 2020; 
O’Shea et al., 2013).

Inhibiting distinct cytokine pathways offers a promising 
approach to addressing various medical conditions and has 
demonstrated notable efficacy. For instance, treatments tar-
geting anti-IL12/IL23 or more selective anti-IL23 agents have 
received approval for managing psoriasis, psoriatic arthritis, 
and have recently been granted approval in both Europe and 

the United States for treating patients with Crohn’s disease, 
exhibiting clear effectiveness and a favorable safety profile 
(Lai & Dong, 2016). Nonetheless, it is important to note that 
therapeutic antibodies, despite these therapeutic advance-
ments, may still be associated with immunogenicity concerns 
and are currently limited to parenteral administration. JAK 
inhibitors represent a class of small molecules that are cur-
rently available in the market or are in the development pipe-
line for the treatment of various immune-related diseases, 
including psoriasis, RA, and inflammatory bowel disease (IBD) 
(Gadina et al., 2018). The JAK family encompasses four tyro-
sine kinases, namely, JAK1, JAK2, JAK3, and TYK2, which inter-
act with the intracellular domain of a wide array of cytokines 
and certain growth factor receptor chains. Activation of JAKs 
is initiated through conformational changes induced by 
ligands in receptor complexes, triggering a phosphorylation 
cascade that leads to the activation of members of the 
signal transducer and activator of transcription (STAT) family 
(Figure 1) (Kurdi & Booz, 2009). Subsequently, phosphorylated 
STATs translocate to the nucleus, modulating gene expression 
in a ligand-dependent manner (Figure 1).

Research has established that different cytokine receptors 
are linked to specific JAK enzyme heterodimers or homo-
dimers, with each JAK being associated with more than one 
receptor (Figure 2). Numerous studies have indicated that 
JAK1/JAK3 plays a role in c-common chain cytokines, the 
JAK1/JAK2 complex is connected to INFc, IL-6, and other 
gp130 cytokines, while the JAK1/TYK2 heterodimer binds to 
type I interferons and the IL-10 family of cytokines. JAK2, in 
contrast, forms a homodimer on EPO and leptin receptors.

Several JAK inhibitors have made it to the market or are 
currently in clinical development, each with its unique profile 
(Figure 3). For instance, Ruxolitinib, the first JAK inhibitor to 
reach the market, is a JAK1/JAK2 inhibitor used to treat poly-
cythemia vera or myelofibrosis (McKeage, 2015). Tofacitini, 
the first JAK inhibitor used to combat autoimmune diseases, 
is a PAN JAK inhibitor, displaying some selectivity toward 

Figure 1. Signaling through cytokines.
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JAK1, JAK2, and JAK3 (Emery et al., 2018). With an enhanced 
understanding of JAKs and their involvement in cytokine 
receptors, pharmaceutical companies have been diligently 
working over the past decade to develop compounds with 
more refined selectivity profiles capable of modulating differ-
ent cytokine signaling pathways. Several JAK1 inhibitors, 
such as filgotinib, Upadacitinib, and Abrocitinib, or TYK2 
inhibitors like Deucravacitinib, are currently in clinical devel-
opment for autoimmune diseases such as RA, psoriasis, or 
Crohn’s disease (Hosking et al., 2018; White et al., 2018).

For a favorable comparison in this study, the comparison 
with the new inhibitors is made with Tofacitinib drug, as 
Tofacitinib predominantly inhibits JAK3, with minor effects 
on JAK1 and JAK2. Tofacitinib lowers inflammation and slows 
disease development by inhibiting JAK3. Tofacitinib, a JAK3 
inhibitor, effectively heals rheumatoid arthritis (Hu et al., 

2022), a key player in immune cell differentiation and prolif-
eration. Tofacitinib has been associated to several serious 
side effects in addition to its effectiveness. As a result, new 
inhibitors with unique designs are being investigated, with 
the potential to give more efficacy while having fewer side 
effects. The creation of novel pharmaceuticals has become 
more reliant on computer-aided drug development (CADD). 
It speeds up the process by immediately identifying potential 
drug candidates from enormous libraries of chemical sub-
stances. CADD lowers clinical trial costs and risks by selecting 
the most promising medications more quickly and precisely 
than earlier techniques. Scientists may use CADD to create 
and improve pharmaceuticals in a rational and effective 
manner, perhaps leading to the creation of innovative thera-
pies for previously incurable ailments (Kapetanovic, 2008; 
Nascimento et al., 2021, 2022).

Figure 2. JAK kinases form heterodimers with cytokine receptors.

Figure 3. Depictions of JAK inhibitors or JAK-targeted drugs.
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Several computational techniques were utilized, encom-
passing Quantitative Structure-Activity Relationship (QSAR) 
analysis, pharmacophore modeling, ADMET prediction, 
CovDock, MD simulation, Molecular Electrostatic Potential 
(MEP), and Molecular Mechanics/Generalized Born Surface 
Area (MM/GBSA) calculations. All these techniques were 
assigned distinct roles in the design and prediction of JAK3/ 
STAT inhibitors. In addition, MLR and ANN methodologies 
were applied to predict the properties of the newly designed 
compounds (Hadni & Elhallaoui, 2019). Pharmacophore mod-
els were constructed to identify essential chemical features 
required for compounds to interact effectively with the JAK3 
protein. These models aided in the design and prediction of 
new inhibitors by serving as a framework for the generation 
of potential drug candidates (Faris, Ibrahim, Al kamaly, et al., 
2023; Faris, Ibrahim, Hadni, et al., 2023). ADMET properties 
are crucial in drug development. Computational tools were 
used to predict the absorption, distribution, metabolism, 
excretion, and toxicity characteristics of the newly designed 
compounds, ensuring they have favourable pharmacokinetic 
profiles (Faris, Cacciatore, Ibrahim, et al., 2023; Ferreira & 
Andricopulo, 2019). CovDock techniques were applied to 
study the binding interactions between the designed inhibi-
tors and the JAK3 protein, providing insights into the forma-
tion of covalent bonds and the strength of binding contacts 
(Zhong & Almahmoud, 2023). MEP Is a crucial tool in design-
ing new molecules to target JAK3. By analysing the MEP of 
existing molecules and the active sites of JAK3, we can 
understand potential electrostatic interactions and more pre-
cisely design new inhibitors. This MEP-based approach allows 
us to rationalize the design of potent molecules, optimizing 
their electrostatic properties for improved binding and 
greater efficacy against JAK3, thereby paving the way for 
new advancements in drug development (Daoui et al., 2023). 
MD simulations were employed to assess the stability and 
dynamic behaviour of the newly proposed inhibitors within 
the JAK3 binding site. This technique helped evaluate the 
compounds’ ability to maintain stable interactions over time 
(En-Nahli et al., 2022; Kukol, 2014). Free binding Energy cal-
culations were used to estimate the binding affinity of the 
inhibitors. This approach provided a quantitative measure of 
the strength of binding between the compounds and the 
target protein (Faris, Cacciatore, Ibrahim, et al., 2023; Faris, 
Ibrahim, Al kamaly, et al., 2023; Ylilauri & Pentik€ainen, 2013). 
The combined use of these computational techniques led to 
the identification and design of new compounds with poten-
tial JAK3 inhibitory activity. The study also used QSAR mod-
els to estimate the pIC50 values of these compounds, 
demonstrating their efficacy in inhibiting JAK3. The findings 
suggested that these newly anticipated ligands could be 
promising candidates for JAK3 inhibition and potential alter-
natives to the medication tofacitinib-drug. Additionally, a ret-
rosynthetic study was conducted to simplify the synthesis of 
these prospective JAK3/STAT inhibitors. All approaches used 
in this study played specific roles in the design and predic-
tion of newly designed JAK3/STAT inhibitors, making them 
favorable for in vitro studies.

2. Methods and materials

2.1. Data set

Thirty pyrimidine-4,6-diamines were obtained from earlier 
studies were study (Yu et al., 2019) for JAK3/STAT inhibiting 
efficacy. A dataset of 21 molecules was used for training, 
while 9 molecules were saved for testing. To facilitate com-
pound analysis and comparison, the IC50 values (reported in 
nM) were converted into pIC50 (Exp) values using the formula 
pIC50 ¼ -log (IC50). As shown by the pIC50(Exp) values in 
Table 1, the obtained results exhibited a variety of inhibitory 
actions among the pyrimidine-4,6-diamine derivatives.

2.2. Software

Various software programs were used to conduct various 
analyses over the course of this investigation. Xlstat and 
JMPpro17 software were used for statistical analyses such as 
MLR, ANN, and LOO (Cox & Gaudard, 2013). Maestro’s 
(Schr€odinger Release, 2021-1; Maestro, Schr€odinger, LLC: New 
York, NY, USA, 2021) CovDock module was used to conduct 
covalent docking. The pkCSM web server was used to con-
struct ADMET predictions (Pires et al., 2015), with descriptor 
calculations executed using the PaDEL-Descriptor software as 
detailed in the supplementary file (Yap, 2011). For the visual-
ization of molecular structures in both 2D and 3D, BIOVIA 
Studio software was employed (Syst�emes, 2020), while 
ChemSketch software was utilized for molecule design (Free 
Chemical Drawing Software for Students j ChemSketch j ACD/ 
Labs, n.d.). Furthermore, to investigate molecular interactions 
and assess binding free energy, MD simulations and 
Molecular Mechanics Generalized Born Surface Area (MM/ 
GBSA) calculations were carried out employing Gromacs soft-
ware (Abraham et al., 2023).

2.3. 2D-QSAR model

2.3.1. Calculations of 2D-QSAR descriptors
As detailed in the supplemental file, the moe and PaDEL- 
Descriptor programs (Moe, 2014; Yap, 2011), were used to 
construct a total of 380 descriptors for a collection of mole-
cules. Based on four descriptors, the best-performing models 
were found among these descriptors.

2.3.2. Statistical analysis
The stepwise strategy, in conjunction with MLR and ANN 
methodologies, was used in the construction of the QSAR 
model. To discover the ideal collection of variables, the step-
wise technique, a statistical methodology, was used repeat-
edly to add or delete variables from the model depending 
on their statistical significance (Chowdhury & Turin, 2020; 
Faris, Hadni, Saleh, et al., 2023).

The stepwise regression are as follows: Forward selection: 
This approach begins with an empty model and evaluates 
the inclusion of each variable based on a chosen model fit 
criterion. The variable that results in the most statistically sig-
nificant improvement in fit is added to the model. The 
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Table 1. The experimental values and pIC50 prediction.

Compounds Structure 2D IC50 (Exp) pIC50 pIC50 MLR Residual pIC50 LOO (CV) Residual pIC50 ANN Residual

1 2,36 6.14 5.56 0.58 5.39 0.56 6.19 −0.047

2 1,93 6.23 5.63 0.60 5.47 0.57 6.16 0.073

3 0,126 8.91 8.14 0.78 7.98 0.86 8.27 0.641

4 0,222 7.62 8.14 −0.52 8.24 0.38 8.27 −0.649

5 0,139 8.14 8.07 0.07 8.04 0.01 8.08 0.059

6 0,160 8.03 8.07 −0.04 8.08 0.00 8.08 −0.051

7 0,137 8.15 7.61 0.55 7.52 0.39 8.15 −0.003

8 0,135 8.16 7.61 0.56 7.52 0.41 8.15 0.007

9 0,042 9.62 8.54 1.08 7.62 2.00 7.08 2.540

10� 0,559 7.08 7.62 −0.54 7.75 0.45 7.08 0

11� 0,087 8.68 8.89 −0.21 8.15 0.53 8.10 0.578

12 0,155 8.10 8.15 −0.05 8.17 0.01 8.10 −0.002

13� 2,41 6.05 6.92 −0.87 6.31 0.26 5.96 0.089

14� 0,796 6.67 5.82 0.86 6.23 0.44 5.95 0.721

15 0,107 8.46 8.29 0.17 8.19 0.07 8.53 −0.065

16 290 5.52 5.75 −0.23 5.82 0.09 5.55 −0.028

17 77,5 5.99 6.31 −0.32 6.37 0.14 5.96 0.029

(continued)
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process is then repeated until no additional variables 
improve the model to a statistically significant extent. 
Backward elimination: In this method, all candidate variables 
are initially included in the model. The deletion of each vari-
able is tested using a selected model fit criterion. The vari-
able that causes the least statistically significant deterioration 
in model fit is removed. The process is iterated until no fur-
ther variables can be deleted without a statistically signifi-
cant loss of fit. Bidirectional elimination: This technique 

combines elements of forward selection and backward elim-
ination. It involves testing for the inclusion or exclusion of 
variables at each step. The process evaluates variables for 
inclusion based on the most statistically significant improve-
ment in fit and evaluates variables for exclusion based on 
the least statistically significant deterioration in fit. This bidir-
ectional process continues until no further variables can be 
added or removed without a statistically significant impact 
on the model fit.

Table 1. Continued.

Compounds Structure 2D IC50 (Exp) pIC50 pIC50 MLR Residual pIC50 LOO (CV) Residual pIC50 ANN Residual

18 252 5.54 6.23 −0.69 6.33 0.62 5.95 −0.409

19� 0,394 7.81 8.23 −0.42 8.29 0.48 8.53 −0.715

20 290 5.52 5.75 −0.23 5.82 0.09 5.55 −0.028

21 100 6.00 5.78 0.22 5.73 0.07 6.10 −0.099

22� 228 5.56 5.80 −0.24 5.70 0.14 5.61 −0.049

23� 0,512 7.32 7.52 −0.20 7.76 0.44 8.37 −1.049

24 290 5.52 5.22 0.30 5.13 0.15 5.52 0.003

25� 290 5.52 5.52 0.00 5.33 0.19 5.52 −0.002

26 290 5.52 5.33 0.19 5.05 0.22 5.52 −0.002

27� 0,139 8.14 8.14 0.00 7.74 0.40 8.02 0.123

28 290 5.52 5.20 0.32 4.95 0.32 5.52 −0.002

29 344 5.46 6.29 −0.83 6.49 1.06 6.10 −0.643

30 378 5.41 6.29 −0.88 6.50 1.19 6.10 −0.693

�Test.
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Previously, a comprehensive model was created that 
included all accessible descriptors. Following that, variables 
were successively added or eliminated based on their statis-
tical significance, using a p-value threshold of 0.05. MLR 
was used as a statistical approach to investigate the connec-
tion between the dependent variable (Property) and several 
independent factors (Descriptors). The primary aim of this 
strategy is the mitigation of disparities existing between 
empirically observed and projected values. Artificial neural 
networks (ANNs) manifest as intricate networks of intercon-
nected cells engaged in the transmission and reception of 
data, thereby mirroring the structural and functional charac-
teristics of biological neurons as found in the human nervous 
system. These networks’ mathematical representations are 
made up of numerous layers of neurons. A multilayer per-
ceptron (MLP) network was used in this investigation, with 
neurons grouped into layers.

The artificial neural network was built with a 4-2-1 design, 
which included four neurons in the input layer, two neurons 
in the hidden layer, and one neuron in the output layer. A 
sigmoid function was used in the output layer. Concurrently, 
the ultimate layer comprises a singular neuron, assigned the 
responsibility of encapsulating the logarithmic IC50 values. In 
the intermediate, or concealed, layer, there exist a pair of 
neurons, a count determined by the parameter q, which is 
formulated as the ratio between the aggregate weight count 
and the overall connection count within the neural network. 
It is worth emphasizing that in the context of this specific 
investigation, the q value is constrained within the interval 
of 1< q< 3, as elucidated within pertinent scholarly works. 
Figure 4 provides a visual representation of the architecture 
characterizing the utilized Artificial Neural Network (ANN) 
models (Faris, Hadni, Saleh, et al., 2023; Hadni et al., 2018).

2.3.3. Assessment of predictive ability of a QSAR model
Various metrics, including the coefficient of determination, 
are used to evaluate the quality of a model (R2), standard 
deviation (S) or root mean square error (RMSE), cross-valid-
ation correlation coefficients (Q2

CV), and Fischer (F). The R2, S, 
and F values indicate the degree of correspondence between 
simulated and experimental data, signifying the model’s pre-
dictive capacity within its constraints and enabling estima-
tion of the accuracy of the test set values (Snedecor & 
Cochran, 1967). The Q2

CV coefficient, which is referred to as 
internal since it is computed from the structures used to 

generate the model, provides information on the model’s 
predictive capabilities. The R2 value measures the difference 
between theoretical and experimental values, with higher 
modelling quality observed when the points are closer to 
the fit line (Esposito et al., 2004). The coefficient of determin-
ation may be employed to evaluate the fit of points to 
this line.

R2 ¼ 1 −
P

yi:exp − ŷ i, theo

� �2

P
yi:exp − y i, exp
� �2 , (1) 

where, the experimental value of the anti-JAK3 activity is 
represented by yi, exp, while the theoretical value of the anti- 
JAK3 activity is denoted by yi, theo: The mean value of experi-
mental values of anti-JAK3 activity is indicated by y i, exp: A 
higher R2 value indicates a stronger correlation between the-
oretical and experimental values. Another statistical measure 
is the RMSE, which facilitates evaluation. The equation for R2 

is as follows:

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

yi:exp − yi, theoð Þ
2

n − k − 1

s

, (2) 

where: n is the number of observations and k is the number 
of independent variables.

The Fisher F test is a method utilized to determine the 
statistical significance of the model, which assesses the qual-
ity of the chosen descriptors from the model. The equation 
for the Fisher F test is given by:

F ¼

P
yi:theo − yi, expð Þ

2

P
yi:exp − yi, theoð Þ

2 �
n − k − 1

k
, (3) 

A cross-validation coefficient of determination is 
employed to evaluate the prediction accuracy of the training 
set. It is calculated using the following formula:

Q2
CV ¼

P
yi:theo − Y i, exp

� �2 −
P

yi:theo − yi, expð Þ
2

P
yi:theo − yi, expð Þ

2 , (4) 

2.3.4. Criteria for accepting a model
Eriksson et al. (2003) define the performance of a mathemat-
ical model as satisfactory when it achieves a value of 0.5 and 
exceptional when it reaches a value of 0.9. If the acceptance 
criteria are met, the model is expected to perform well dur-
ing testing. Golbraikh and Tropsha (2002), Ouattara et al. 
(2017), and Tropsha et al. (2003) propose five criteria, includ-
ing the external validation set, to determine the predictive 
capability of a model (Table 6).

2.4. Validation of the QSAR model

2.4.1. Y-randomization
The Y-randomization test is a popular approach for determin-
ing a model’s resilience. The dependent variable (biological 
activity) is randomly given values in this technique, while the 
independent variable (chosen descriptors) remains constant 
(Faris, Hadni, Saleh, et al., 2023). After then, the randomized 
data is utilized to build a new QSAR model. To confirm the 

Figure 4. Structure diagram of a multilayer perceptron.
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robustness of this new model, the randomized model’s 
squared correlation coefficient (R2) should be lower than the 
non-randomized model’s squares correlation coefficient (R2) 
(Hadni & Elhallaoui, 2019). Furthermore, the mismatch 
between the correlation values of the non-randomized and 
randomized models must be examined and highlighted.

2.4.2. Cross-validation (LOOCV)
Cross-validation with the leave-one-out approach was used 
to assess the prediction power of the QSAR model. This is an 
important stage since a high correlation value indicates a 
better fit of the data. According to Golbraikh and Tropsha’s 
research (Golbraikh & Tropsha, 2002), cross-validation is 
required but inadequate to prove the prediction capabilities 
of the suggested QSAR model. External validation with a test 
set is required instead to guarantee the model’s predictive 
capability. The external validation should precisely match the 
requirements of Golbraikh and Tropsha.

2.5. Docking molecular

2.5.1. Docking molecular (reversible) of Tofacitinib
Prior to conducting molecular docking, we subjected the 
ligands intended for docking to optimization using Avogadro 
software 2.0. Subsequently, we obtained the JAK3 structure 
from the RCSB database (PDB ID: 4Z16). The crystal complex 
of 4Z16 contains co-crystallized ligand 4LH and water 
molecules. To prepare the protein, we eliminated the water 
molecules and the co-crystallized ligand from the protein 
structure. Additionally, we introduced polar hydrogens to the 
JAK3 protein structure using Discovery Studio software 2021. 
The active site of 4Z16 was defined by the inclusion of the 
co-crystallized ligand (4LH) within a specified sphere. Once 
the ligand and protein were appropriately prepared, we 
conducted molecular docking utilizing AD4 and AutoVina 
methods. The three-dimensional grid was created using the 
AUTOGRID method, which calculates ligand binding energy 
with their receptor (Moriwaki et al., 2018). The initial grid 
size used in the docking process was set to x¼ 60, y¼ 60, 
and z¼ 60, with a grid point spacing of 0.375 Å. The active 
site of the receptor, located at coordinates (x¼−6.68875 Å, 
y¼−14.7757 Å, and z¼ 1.89597 Å), served as the center of 
the grid. The docking results obtained from the AD4 and 
Vina algorithms were visualized using Discovery Studio soft-
ware 2021 (Syst�emes, 2020; Trott & Olson, 2010). CovDock, 
the guide for the procedure, provides detailed instructions 
on how to carry out the CovDock approach, specifically utiliz-
ing AD4 with flexible side chains.

2.5.2. CovDock (irrevesible) of new compound predicted
The covalent docking approach is utilized in computational 
methods to predict the binding affinity and mode of ligands 
that can form covalent bonds with reactive residues in the 
target protein. Schrodinger’s software suite is commonly 
employed for covalent docking (Schr€odinger Release, 2021-1, 
2021).

Ligands undergo preparation using LigPrep before cova-
lent docking, which involves generating a three-dimensional 
structure, assigning bond orders and charges accurately, and 
limiting the ligand size to a maximum of 500 atoms. The lig-
and is neutralized, and energy calculations are performed 
using the OPLS_2005 force field. Stereoisomers are gener-
ated, resulting in up to 32 stereoisomers per ligand. In the 
protein preparation workflow, the user specifies the protein 
and small molecules for processing. The ligand to be docked 
is identified, and the presence of metal ions and other mole-
cules in the binding site is determined.

A reactive residue in the protein, such as Cys909, is 
selected, and a reaction type favoring covalent bond forma-
tion is chosen. Covalent docking involves docking the ligand 
to the protein using a search algorithm. The docking box is 
positioned based on the centroid of the workspace ligand 
and co-crystallized ligand, with its size adjusted to accommo-
date ligands of similar size. A docking cutoff of 2.5 kcal/mol 
is set to retain poses for subsequent refinement, allowing a 
maximum of 200 poses for optimization. After docking, MM- 
GBSA scoring is performed to calculate the binding free 
energy of the ligand-protein complex. The output includes 
ligand poses bound to the reactive site, with a maximum of 
1000 top-scoring ligands reported. Covalent docking, utilizing 
Schrodinger’s tools such as LigPrep and MM-GBSA scoring, is 
a powerful computational approach for predicting the bind-
ing mode and affinity of ligands that can form covalent 
bonds with reactive residues in the target protein.

The choice of the JAK3 4Z16 structure as the main point 
for investigating covalent inhibitors of JAK3 was motivated 
by several factors, emphasizing its advantages over other 
protein structures within the scope of this work. The 4Z16 
structure, in particular, has a commendably high resolution, 
allowing for a detailed investigation of JAK3 molecular inter-
actions and active sites (Chen, Yin, et al., 2022). This element 
is critical in understanding the processes driving JAK3 cova-
lent inhibition and developing tailored therapeutics. 
Furthermore, the 4Z16 structure’s distinguishing features, 
such as the inclusion of a cysteine residue (Cys909), provide 
exciting potential for the development of covalent JAK3 
inhibitors (Gholamhoseinnia & Asadollahi-Baboli, 2022; Su 
et al., 2022; Wang et al., 2023; Zhong & Almahmoud, 2023, 
2023; Zhu et al., 2020). Furthermore, the 4Z16 structure is 
preferred due to its ease of use and the availability of add-
itional data. Researchers may have previously worked with 
this structure in unrelated studies or have access to relevant 
information that substantiates its application in this specific 
research endeavor, particularly in the development of 
innovative compounds for treating conditions such as 
rheumatoid arthritis, immune diseases, inflammation, and 
haematopoiesis (Bank, n.d.; Tan et al., 2015).

2.6. Pharmacophore hypothesis

Pharmacophore hypothesis generation plays a crucial role in 
the field of drug discovery and design, as it facilitates the 
identification of critical chemical attributes necessary for 
molecular binding to a particular biological target. The 
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HypoGen algorithm, which is extensively utilized in Maestro 
software, is a commonly employed method for generating 
pharmacophore hypotheses (Suma et al., 2020). This approach 
involves feeding a collection of diverse compounds that are 
known to bind to the target of interest into Maestro. The soft-
ware then analyzes these compounds to generate a pharma-
cophore model that encompasses shared chemical features 
among all the compounds. This model serves as a valuable 
guide for designing new compounds with predicted high 
affinity and specificity for the target. The HypoGen algorithm, 
implemented within Maestro, is a powerful tool in the field of 
drug discovery and design. It enables the rapid generation 
of pharmacophore hypotheses that can inform the synthesis 
of novel compounds (Dhiman et al., 2023).

These pharmacophore models can then be employed to 
design more effective and selective compounds, ultimately 
resulting in the discovery of novel drugs to treat serious dis-
eases. This approach enables researchers to optimize their 
time and resources during the drug development process 
while enhancing the chances of identifying potent and 
selective compounds (Zhu et al., 2023).

2.7. ADMET predictions

The pharmaceutical industry has experienced significant ben-
efits from the application of molecular modeling techniques, 
which have played a crucial role in the discovery of new 
drug candidates. These techniques have reduced the heavy 
reliance on experimental testing and have improved overall 
success rates. Using In silico studies, it becomes possible to 
explore and evaluate the pharmacokinetic parameters related 
to ADMET. This allows researchers to gain valuable insights 
into the behaviour and properties of potential drug com-
pounds, facilitating the identification of promising candidates 
for further development (Chen, Yin, et al., 2022; Ferreira & 
Andricopulo, 2019). These parameters encompass a range of 
factors, such as drug absorption in the gastrointestinal tract, 
drug penetration through the blood-brain barrier and into 
the central nervous system, drug metabolism through chem-
ical biotransformation in the body, drug elimination through 
excretion pathways, and the evaluation of drug toxicity 
levels.

To evaluate the potential of the designed compounds as 
viable drugs, the ADMET pharmacokinetic parameters are 
assessed using the online tool pkCSM. This tool provides 
valuable insights into the pharmacokinetic properties of the 
compounds, aiding in the prediction and optimization of 
their absorption, distribution, metabolism, excretion, and tox-
icity characteristics. (Pires et al., 2015), alongside predictions 
concerning the challenges posed by synthetic accessibility 
(Villoutreix & Taboureau, 2015).

2.8. Molecular dynamics (MD)

The GROMACS simulation tool was used to run MD simula-
tions (Kumari et al., 2014). To generate the GROMACS input 
files, the CHARMM-GUI web server (CHARMM-GUI, n.d.) was 
used to produce the GROMACS input files, and the 

CHARMM36 force field was accessed via CHARMM-GUI. The 
TIP3P water model was used to solve the system within a 
cubic box of 85� 85� 85 angstroms. The system was neu-
tralized by adding Naþ and Cl− ions at a concentration of 
0.154 M, and the ion locations were calculated using the 
Monte Carlo technique (Jo et al., 2008). The system was 
exposed to a total of 52 Naþ ions and 50 Cl− ions. With a 
total of 5,000,000 steps, the energy reduction procedure was 
carried out utilizing the steepest descent approach. The sys-
tem then reached equilibrium at 310 K for 10 ns in an ensem-
ble with constant atom number, volume, and temperature 
(NVT). Following that, unconstrained MD simulations were 
run for 500 ns in an ensemble with a constant number of 
atoms, pressure, and temperature (NPT), at 310 K reference 
temperature and 1 ATM pressure (CHARMM-GUI, n.d.). MD tra-
jectory analysis was performed using the Visual Molecular 
Dynamics (VMD) software to examine the system’s stability e 
(Humphrey et al., 1996). Key parameters such as protein solv-
ent accessible surface area (SASA), the radius of gyration 
(RoG), root mean square deviation (RMSD), and root mean 
square fluctuation (RMSF) were computed (Boyenle et al., 
2022).

In the comprehensive analysis of protein structures, crucial 
parameters such as protein solvent accessible surface area 
(SASA), the radius of gyration (RoG), root mean square devi-
ation (RMSD), and root mean square fluctuation (RMSF) were 
computed. Furthermore, the analysis was enriched by incor-
porating define secondary structure of proteins (DSSP) to dis-
cern secondary structural elements, free energy landscape 
(FEL) exploration to unveil the energy landscape of the pro-
tein’s conformational space, and principal component ana-
lysis (PCA) to gain insights into the underlying structure and 
dynamics of the protein (Faris, Ibrahim, Al kamaly, et al., 
2023).

2.9. Binding free energy

The analysis of binding affinity between receptors and small 
ligands can be determined by examining the binding free 
energy. In this study, the binding free energy was calculated 
using the molecular mechanics/generalized Born surface area 
(MM/GBSA) method with the Gromacs (Kumari et al., 2014; 
Vald�es-Tresanco et al., 2021). The calculation Equations (1)– 
(7) used in this study are presented below [28]: DVDWAALS, 
DEEL, DEGB, DESURF, DGGAS, DGSOLV and DTOTAL.

DVDWAALS: This term represents the van der Waals inter-
action energy between the protein-ligand complex and its 
surroundings (Aqvist, 1990).

DVDWAALS ¼
XiXj

6e
rij

rij

� �12

− 2
rij

rij

� �6
" #

, (5) 

where e is the energy scaling factor, rij is the distance at 
which the potential energy of the interaction between atoms 
i and j is zero, rij is the distance between atoms i and j, and 
the summations are over all pairs of atoms i and j. The equa-
tion is based on the Lennard–Jones potential.
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DEEL: This term represents the electrostatic interaction 
energy between the protein-ligand complex and its sur-
roundings (Calculations were performed using Gaussian, 
2009; En-Nahli et al., 2022; Frisch et al., 2009).

DEEL ¼
XiXj qi�qj

er
, (6) 

where qi and qj are the partial charges on atoms i and j, r is 
the distance between atoms i and j, e is the dielectric con-
stant of the solvent, and the summations are over all pairs of 
atoms i and j. The equation is based on Coulomb’s law.

DEGB: This term represents the energy change associated 
with the molecule’s transfer from a vacuum to a solution 
(Kim et al., 2013).

DEGB ¼ c
Xi qi

2

ri
þ k
XiXj qi�qj

rij
þ
Xi

ri, (7) 

where c and j are constants that depend on the solvent 
dielectric constant and ionic strength, qi is the partial charge 
on atom i, ri is the distance from atom i to the center of the 
solvent-accessible surface, rij is the distance between atoms i 
and j, and ri is a surface tension term that penalizes the cre-
ation of a solvent-accessible surface. The equation is based 
on the Generalized Born model.

DESURF: This term refers to the energy change associated 
with the protein-ligand complex’s surface area (Dong et al., 
2013; Izadyar et al., 2015; Jaffar, 2015; Palacios-Prado et al., 
2022).

DESURF ¼ c
Xi 1

ri
, (8) 

where c is a constant that depends on the solvent dielectric 
constant and ionic strength, and ri is the distance from atom 
i to the centre of the solvent-accessible surface. The equation 
is based on the solvent-accessible surface area (SASA) model.

DGGAS: This term represents the Gibbs free energy change 
associated with the gas phase (Atkins et al., 2014).

DGGAS ¼ H – TS, (9) 

where H is the enthalpy, T is the temperature, and S is the 
entropy. The equation is derived from the Gibbs–Helmholtz 
equation.

DGSOLV: This term represents the Gibbs free energy 
change associated with the solvation of the protein-ligand 
complex (Friesner et al., 2006).

DGSOLV ¼ DHSOLV � TDSSOLV, (10) 

where DHSOLV is the enthalpy change associated with the 
solvation process, DSSOLV is the entropy change associated 
with the solvation process, and T is the temperature. The 
equation is based on the thermodynamic definition of Gibbs 
free energy.

DTOTAL: This term represents the total energy change asso-
ciated with the interaction of the protein-ligand complex 
with its environment (Abel et al., 2017; Friesner et al., 2006).

DTOTAL ¼ DVDWAALS þ DEEL þ DEGB þ DESURF þ DGSOLV,

(11) 

Each term is determined using the corresponding equa-
tion as explained previously. The total energy change shows 

the protein-ligand complex’s overall stability or instability in 
its environment.

2.10. Retrosynthesis

Retrosynthesis, a potent organic chemistry method, is used 
to build efficient synthetic pathways for complicated com-
pounds. Synthetic Pathway Assembler (SPAYA), a recently 
created program, uses artificial intelligence and machine 
learning techniques to automate the retrosynthesis process. 
The retrosynthesis approach entails rapidly generating syn-
thetic routes for target molecules by analyzing a large data-
base of known reactions and suggesting paths that meet 
established criteria (Spaya.Ai, n.d.). Time and resources can 
be saved by using SPAYA during the synthesis of compli-
cated compounds. Chemists may utilize the program to 
quickly discover prospective starting materials and reaction 
pathways, allowing them to focus their efforts on the most 
promising synthetic routes. Furthermore, SPAYA assists in 
recognizing possible difficulties in synthesis plans, such as 
the creation of undesirable by-products, allowing for process 
modification and improvement.

2.11. Molecular electrostatic potential (MEP)

Using visualizations of the MEP (Daoui et al., 2023), we iden-
tified reactive sites favourable for electrophilic and nucleo-
philic actions on the surface of the model compound’s 
molecular structure, the most active molecule (6d). The ana-
lysis of the 3D contour map of the MEP simulation results 
was performed using GaussView 5.0 software. Prior to the 

Table 2. Chemical properties of compounds.

Compound A_Ar B_Dou P.V_P Q.V_N pIC50 (Exp)

1 18 2 12.95 184.657 6.14
2 18 2 12.95 184.31 6.23
3 17 2 12.95 149.549 8.91
4 17 2 12.95 149.549 7.62
5 17 2 23.274 157.317 8.14
6 17 2 23.274 157.317 8.03
7 17 2 12.95 152.053 8.15
8 17 2 12.95 152.053 8.16
9 18 2 12.95 174.905 9.62
10 18 2 12.95 174.905 7.08
11 18 2 12.95 172.402 8.68
12 18 2 12.95 172.402 8.1
13 18 2 12.95 181.103 6.05
14 18 1 12.95 165.294 6.67
15 18 1 12.95 155.588 8.46
16 18 0 0 142.021 5.52
17 18 2 12.95 181.103 5.99
18 18 1 12.95 165.294 5.54
19 18 1 12.95 155.588 7.81
20 18 0 0 142.021 5.52
21 18 2 12.95 183.607 6
22 18 1 12.95 167.798 5.56
23 18 1 12.95 158.092 7.32
24 18 0 0 144.525 5.52
25 18 1 21.995 176.075 5.52
26 18 1 21.995 176.075 5.52
27 17 1 12.95 135.239 8.14
28 17 0 0 121.672 5.52
29 17 2 12.95 158.25 5.46
30 17 2 12.95 158.25 5.41
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MEP analysis, the molecule was optimized using DFT BLYP3 
6-31 G method.

3. Results

3.1. QSAR model and statical analysis

After numerous rounds of iteration, a final model consisting 
of four descriptors, namely (Table 2), was produced: Aro (A_ 
Ar), Double (B_Dou), PEOE VSA PPOS (P.V_P), and Q VSA NEG 
(Q.V_N). The aromatic ring presence in a molecule is quanti-
fied by the descriptor A_Ar. The description B_Dou denotes 
the number of double bonds in a molecule. Using the PEOE 
approach, P.V_P describes a molecule’s positive partial sur-
face area. Q.V_N also uses the VSA technique to calculate a 
molecule’s negative partial surface area.

3.1.1. Multiple linear regression (MLR)
The MLR models, as shown in Table 3, exhibit good prediction 
quality for the training set and acceptable performance for the 
test set. The training set has a high adjusted coefficient of 
determination R2, indicating that the model is generalizable 
and avoids overfitting. The mean squared error (MSE) for the 
training set is 0.31, indicating that the model’s predictions dif-
fer by an average of 0.55 units from the real value of the 
dependent variable (Figure 5). The RMSE, determined as the 
square root of the MSE, is 0.31, suggesting good accuracy for 

the training set. Based on the findings of the multiple linear 
regression model, it can be concluded that the model is well- 
fitted and has high prediction quality for the training set as 
well as acceptable prediction quality for the test set (Table 3).

pIC50 ¼ − 51:65þ 4:86 � A Ar þ 3:43 � B Dou þ 0:15

� P:V P − 0:21 � Q:V:M,

(12) 

Obtained from Equation (13), it is clear that a linear regres-
sion model was used to predict the pIC50 value, using four 
independent variables, namely A_Ar, B_Dou, P.V_P, and Q.VN. 
According to the regression coefficients associated with these 
independent variables, the presence of aromatic groups and 
double bonds, indicated by A_Ar and B_Dou, respectively, 
favorably increases the pIC50 value, signifying increased 
inhibitory action. Greater values of P.V_P and Q.V_N, on the 
other hand, have a negative influence on the pIC50 value, 
suggesting that compounds with higher values of these varia-
bles have lesser inhibitory action. As a result of Equation (1), 
it is hypothesized that compounds with greater P.V_P and 
Q.V_N values are more likely to have lower inhibitory activity. 
Molecule 27 has the following formulas: A_Ar ¼ 17, B_Dou ¼
1, P.V_p¼ 12.95, Q.V_N¼ 135.239, and pIC50 ¼ 8.14. A_Ar ¼
17, B_Dou ¼ 2, P.V_p¼ 23.274, Q.V_N¼ 157.317, pIC50 ¼ 8.14 
for Molecule 5. Molecule 6: A_Ar ¼ 17, B_Dou ¼ 2, P.V_ 
p¼ 23.274, Q.V_N¼ 157.317, pIC50 ¼ 8.03, and for certain 

Figure 5. (A) Diagram of linear regression (MLR) in grey for the training set and violet for the test set. (B) Diagram of linear regression (ANN) in red for the training 
set and violet for the test set. (c) Standardized coefficients diagram for MLR.

Table 3. MLR statistical coefficients.

MLR statistical Observations Sum of weights DF R2 Adjusted R2 MSE RMSE

Training 21 21 16 0.85 0.81 0.31 0.56
Test 9 9 3 0.82 0.748 0.99 0.99

Table 4. MLR standardized coefficients (pIC50).

Source Value Standard error t-value Pr > jtj Lower bound (95%) Upper bound (95%)

A_Ar 1.947 0.315 6.191 <0.0001 1.280 2.614
B_Dou 2.205 0.302 7.298 <0.0001 1.565 2.846
P.V_P 0.829 0.170 4.890 0 0.470 1.188
Q.V_N −2.802 0.378 −7.403 <0.0001 −3.604 −1.999

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 11



molecules that may undergo an increase in activity: A_Ar ¼
17, B_Dou ¼ 2, P.V_p¼ 23.274, Q.V_N¼ 157.317, p Molecule 
9: A¼ 18, B¼ 2, p¼ 12.95, Q¼ 152.053, pIC50 ¼ 8.16. 
Molecule 10 has the following formulas: A_Ar ¼ 18, B_Dou ¼
2, P.V_p¼ 12.95, Q.V_N¼ 174.905, and pIC50¼ 7.08. A_Ar ¼
18, B_Dou ¼ 2, P.V_p¼ 12.95, Q.V_N¼ 184.31, pIC50¼ 6.23 
for Molecule 2. Molecule 1: A¼ 18, B¼ 2, p¼ 12.95, 
Q¼ 184.657, pIC50 ¼ 6.14.

The intensity of each independent variable’s influence on 
the dependent variable is calculated using standardized coef-
ficients that consider the units of measurement and the scale 
of the variables. These coefficients offer a measure of the 
relative size of the independent variables’ effect on the 
dependent variable while accounting for any discrepancies in 
their units or scales. The noteworthy positive standardized 
coefficients observed in Table 4 and Figure 5 provide com-
pelling evidence that variables A_Ar and B_Dou have a sub-
stantial impact on inhibitory activity, underscoring the 
importance of aromatic groups and double bonds in enhanc-
ing the activity. Additionally, the standardized coefficient for 
P.V_P is also significant, although relatively lower compared 
to the coefficients for A_Ar and B_Dou. This suggests that 
the indicator of molecular surface area, P.V_P, also contrib-
utes to increasing inhibitory activity, albeit to a lesser degree 
than aromatic groups and double bonds. The t-value and 
pvalue are utilized to test the null hypothesis that the true 
coefficient for the independent variable is equal to zero. A 
low p-value (<0.05) signifies statistical significance, indicating 
that the coefficient is unlikely to be a result of chance alone. 
In this instance, all the independent variables have p-value 
below 0.05, demonstrating their statistical significance as pre-
dictors of the dependent variable (Table 4).

Figure 5 presents the standardized coefficient, which 
reveals a significant negative value for Q.V_N. This suggests 
that higher values of Q.V_N., an indicator of molecular sur-
face area, are associated with a decrease in inhibitory activ-
ity. In summary, the standardized coefficients indicate that 
the presence of aromatic groups and double bonds in a mol-
ecule plays a crucial role in increasing inhibitory activity. 
Furthermore, higher values of P.V_P have a positive effect, 
although comparatively less significant. On the other hand, 
elevated values of Q.V_N tend to result in a decrease in 
inhibitory activity. These findings provide valuable insights 
that can assist in the design of new molecules with 
enhanced inhibitory activity.

3.1.2. Artificial neural network (ANN)
Table 5 presents the outcomes of ANN analysis performed 
using JMPpro (Ramsey, 2022), incorporating four descriptors: 
A_Ar, B_Dou, P.V_P, and Q.V_N. These descriptors encompass 

various molecular structural characteristics, such as the pres-
ence of aromatic rings or double bonds, as well as indicators 
of biological activity, such as molecular polarity. The ANN 
model was constructed with two hidden layers to capture 
non-linear relationships between the descriptors and the out-
put, which represents the pIC50 value—a quantitative meas-
ure of pharmacological activity. By utilizing molecular 
descriptors, the ANN analysis enables the prediction of pIC50 

values for novel compounds. This approach proves highly 
advantageous in rapidly and efficiently predicting the bio-
logical activity of a significant number of compounds, thus 
assisting in the design of innovative pharmaceuticals.

The results obtained from the analysis demonstrate the 
strong predictive performance of ANN model for both the 
training and test datasets, as depicted in Table 5 and 
Figure 5. The coefficient of determination (R2) values of 0.95 
for the training set and 0.85 for the test set indicate that the 
model effectively accounts for a significant portion of the 
variation in the dependent variable within the training set 
and to a satisfactory extent within the test set. Examining 
the average error of the model’s predictions against the 
actual values, the Root Average Squared Error (RASE) is cal-
culated as 0.25 for the training set and 0.39 for the test set, 
indicating relatively precise predictions. Similarly, the mean 
absolute deviation (MAD) values are 0.11 for the training set 
and 0.27 for the test set, suggesting reasonably accurate 
model predictions. Additionally, the sum of squared errors 
(SSE) is 0.85 for the training set and 1.067905 for the test 
set, indicating favorable prediction quality for both datasets. 
Finally, the Sum Frequency (Sum Freq) helps determine the 
average absolute errors and further supports the notion that 
the ANN model exhibits good predictive accuracy for both 
sets. The use of the artificial neural network in predicting the 
dependent variable yields promising outcomes, underscoring 
its capacity to achieve high predictive performance for both 
the training and test datasets.

3.1.3. Leave-one-out cross-validation (LOOCV)
The achieved Q2 result, which stands at 0.66, demonstrates a 
noteworthy level of predictive performance. This finding sug-
gests that the model exhibits a reasonable degree of accur-
acy in predicting the values of the dependent variable for 
new data. The leave-one-out cross-validation method was 
employed in this study, wherein each data point is sequen-
tially removed from the training set. This approach is recog-
nized for its robustness as it utilizes the complete dataset to 
evaluate the predictive capability of the model (Faris, Hadni, 
Saleh, et al., 2023; Hadni & Elhallaoui, 2020).

3.1.4. External validation (Golbraikh & Tropsha)
The Golbraikh and Tropsha test results are utilized to evalu-
ate the predictive accuracy of a regression model and deter-
mine its reliability in predicting new data (refer to Table 6) 
(Faris, Hadni, Ibrahim, et al., 2023; Faris, Hadni, Saleh, et al., 
2023).

The outcomes presented in Table 6 exhibit that the model 
has successfully passed all Golbraikh tests, indicating its 
trustworthiness in predicting new data. With a Q2 value of 

Table 5. Statistics on ANN coefficients.

Training Value Test Value

R2 0.95 R2 0.85
RASE 0.25 RASE 0.39
Mean Abs Dev 0.11 Mean Abs Dev 0.27
SSE 0.85 SSE 1.07
Sum Freq 14 Sum Freq 7
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0.65, surpassing the threshold of 0.5, the model demon-
strates a reasonably effective predictive ability for the 
dependent variable in new data. Moreover, the R2 value of 
0.89 exceeds the threshold of 0.6, indicating that the model 
can explain a significant portion of the variability in the 
dependent variable. The difference between the coefficient 
of determination R2 and the adjusted coefficient of determin-
ation R’2, represented as jR_02-〖R’〗_02j, is 0.01243, which 
falls below the threshold of 0.3. This suggests that the model 
avoids overfitting and can generalize appropriately. The 
Golbraikh coefficients K and K’ are 1.014 and 0.98, respect-
ively, which fall within the acceptable range of 0.85–1.15, fur-
ther confirming the model’s reliability in predicting new 
data. The percentage change in R2 from R’2, calculated as 
[(R2 − R’2)/R2], is 1.014, indicating effective generalization by 
the model. Similarly, the percentage change in R2 from R’02, 
computed as [(R2 − R’02)/R2], is 0.00003, highlighting the 
model’s correct generalization.

All results from the Golbraikh test demonstrate successful 
outcomes, providing support for the reliability of the regres-
sion model in predicting new data.

3.1.5. Y-randomization
The findings presented in Table 7, derived from the analysis 
of dependent variable randomization, are utilized to evaluate 
the significance of the regression model and determine if 
the observed associations between variables are statistically 
meaningful or merely a result of chance correlation.

The original model demonstrates a strong correlation 
coefficient (R) of 0.92 and a coefficient of determination (R2) 
of 0.89, suggesting a robust relationship between the inde-
pendent variables and the dependent variable. Additionally, 
the Q2 coefficient of 0.65 indicates a reasonable predictive 
capability of the model for new data. The results obtained 
from randomizing the dependent variable reveal that the R, 
R2, and Q2 values of the random models are notably lower 
compared to those of the original model. These outcomes 
derived from the dependent variable randomization analysis 
provide evidence supporting the validity of the original 
regression model. The original model accurately predicts the 
values of the dependent variable for new data, and the 
strong correlation observed between the independent varia-
bles and the dependent variable is not merely due to chance 
correlation. Lastly, the fact that cRp2 0.76> 0.6 assures that 
the observed Q2

ðLOOÞ is statistically significant and indicates 
that the model is a good fit for the data.

3.2. Pharmacophore prediction

Based on the findings presented in Table 8 regarding the 
pharmacophore hypothesis, the initial model chosen is 
DDRRR_1.

To understand the rationale behind this selection, it is 
essential to conduct a comprehensive analysis of the distinct 
scores and compare them across models. Among the differ-
ent models, the DDRRR_1 model demonstrates the following 
scores: Survival Score: 5.456, Site Score: 0.860, Vector Score: 
0.918, Volume Score: 0.630, Selectivity Score: 1.901, Inactive 
Score: 2.242, and Adjusted Score: 3.213. Notably, the Survival 
Score achieves the highest value among all models, indicat-
ing that the DDRRR_1 model exhibits superior resilience dur-
ing a predetermined set of tests. Furthermore, the DDRRR_1 
model also achieves a higher adjusted score (3.213) com-
pared to the other models. The adjusted score considers all 
other scores (site, vector, volume, selectivity, and inactive) to 
provide a holistic evaluation of the model’s overall quality. 
Although the DDRRR_1 model may not possess the highest 
scores for each criterion, it strikes a balance across the differ-
ent scores. For instance, the Site Score (0.860) and Vector 
Score (0.918) both exhibit significant magnitudes, indicating 
a favorable alignment between the ligand anchor points and 
the features of the pharmacophore model. In summary, the 
DDRRR_1 model is chosen due to its equilibrium between 
the various scores and its superior overall performance com-
pared to the other models.

3.3. Data screening

Utilizing the pharmacophore model DDRRR_1, which is 
depicted in Figure 6, a virtual screening was performed using 
ZINCPharmer. This screening process resulted in the identifi-
cation of a set of 9 molecules, as presented in Tables 8
and 14. These molecules exhibit similarity to the reference 
compounds known for their high activity. In this context, the 
symbol D represents a hydrogen donor (H-donor), while R 
indicates a three-ring group.

Table 6. Golbraikh and Tropsha test.

Parameter Formula Threshold value Model score

Q2

Q2 ¼ 1 −
P

Ypred testð Þ−Y testð Þð Þ
2

P
Y testð Þ−Y�trð Þ

2

>0.5 0.65

R2 The coefficient of determination for the graph of expected versus seen for the test set >0.6 0.89
R2

0 − R020
�
�

�
� <0.3 0.012

r2
0 r2 at zero intercept

R020 r020 for the plot of observed against projected activity for the test set at zero intercept
R2−R2

0
R2

<0.1 0.01412

R2−R020
R2

<0.1 0.00003

k The slope of the plot of observed versus projected activity at the intercept 0.85 < k < 1.15 1.014
k‘ 0.85 < k‘ < 1.15 0.98

Table 7. Y-randomization test.

Parameters R R2 Q2
ðLOOÞ cRp2

Random models 0.39 0.17 −0.4 0.76> 0.6
Model original 0.94 0.89 0.65
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3.4. Strucural design

In the search for more potent ligands, we reach the stage of 
utilizing QSAR models. Initially, we consider the pharmaco-
phore model (DDRRR) obtained. To enhance our 

determination, we proceed with the calculation of the 
molecular electronic surface (MEP), based on the structure of 
the most active reference molecule 9 (pIC50¼ 9.62).

The negative electrostatic potential is represented by the 
red color, indicating that these areas are conducive to 

Table 8. Pharmacophore models.

Model Survival.S� Site.S� Vector.S� Volume.S� Selectivity.S� Inactive.S� Adjusted.S�

DDRRR_1 5.456 0.860 0.918 0.630 1.901 2.242 3.213
DDRRR_2 5.435 0.848 0.920 0.606 1.915 2.369 3.066
DDRRR_3 5.434 0.881 0.903 0.601 1.903 2.357 3.077
DDRRR_4 5.397 0.795 0.919 0.637 1.900 2.236 3.161
DDRRR_5 5.385 0.797 0.908 0.643 1.891 2.134 3.252
DDRRR_6 5.380 0.788 0.921 0.617 1.908 2.243 3.138
DDRRR_7 5.379 0.802 0.927 0.598 1.906 2.352 3.028
DDRRR_8 5.367 0.834 0.892 0.592 1.903 2.435 2.931
DDRRR_9 5.353 0.760 0.921 0.610 1.915 2.357 2.996
DDRR_1 5.039 0.963 0.968 0.626 1.336 2.548 2.491
DDRR_2 5.028 0.960 0.970 0.605 1.348 2.531 2.497
DDRR_3 5.025 0.960 0.980 0.591 1.348 2.536 2.489
DDRR_4 5.024 0.942 0.971 0.620 1.345 2.360 2.664
DDRR_5 4.990 0.962 0.934 0.584 1.363 2.364 2.625
DRRR_1 4.980 0.880 0.914 0.634 1.406 2.278 2.702
DRRR_2 4.974 0.864 0.915 0.640 1.409 2.293 2.681
DRRR_3 4.972 0.847 0.922 0.651 1.406 2.337 2.634
DDRR_6 4.971 0.916 0.950 0.601 1.358 2.361 2.610
DDRR_7 4.963 0.938 0.959 0.575 1.344 2.379 2.584

Figure 6. A: Useful features for ZINCPharmer. B: DDRRR pharmacophore model characteristics. C: the distances between the characteristics. D: the angles between 
the characteristics.

Table 9. Electrostatic potential mapping of the compound 9 (with pIC50 ¼ 9.62) after 
geometric optimization.

ELUMO: 0.093 EHOMO: 20.305 ETOTAL: 5 21399
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electrophilic reactions. Conversely, the positive electrostatic 
potential is denoted by the blue color, signifying that these 
regions are conducive to nucleophilic reactions. The green 
contours, on the other hand, do not exhibit any potential 
reactive sites. Based on the results provided by the MEP 
(Table 9) and the various previous approaches, we were able 
to encode the structures of diamines with the R1 and R2 
groups. This guided us in generating several suggested com-
pounds, from which we selected two compounds, D1 and 
D2 (Table 14), based on ADMET considerations, specifically 
their non-toxic and non-hepatotoxic properties, and accord-
ing to the prediction of biological activity using QSAR 
models.

3.5. Pharmacophore validation

H-validation is a widely employed technique in molecular 
modeling to assess the predictive performance of models 
(Faris, Ibrahim, Al kamaly, et al., 2023). This method involves 
dividing the dataset into multiple subsets or groups. Each of 
these subsets is then utilized to train and test the model in a 
cross-validated manner.

The results presented in Table 10 are derived from the 
H-validation of the pharmacophore model DDRRR1. Various 
metrics, including ROC, BEDROC, EF%, AUAC, and FOD, have 
been employed to evaluate the model’s performance. The 
ROC score of 0.86 indicates that the model exhibits high 
accuracy in distinguishing between active and inactive com-
pounds. The BEDROC score, with a value of 1.0 for alpha ¼
160.9, suggests that the model is exceptionally effective in 
identifying active compounds within the dataset. The EF% 
values further support the model’s efficacy in enriching the 
dataset with active compounds. For instance, the model 

demonstrates an EF of 2.7 for the top 1% of the dataset, 
indicating a retrieval rate of 2.7 times more actives than 
expected by chance. The AUAC score of 0.73 indicates that 
the model’s predictions are consistent with the actual data-
set. Additionally, the FOD values emphasize the model’s cap-
ability to filter out false positives, with an FOD of 0.01 for 
the top 1% of the dataset. Collectively, these results suggest 
that the pharmacophore model DDRRR1 is a highly effective 
tool for identifying active compounds within the dataset.

In Figure 7, the receiver operating characteristic (ROC) 
curve illustrates the performance of a binary classification 
model, depicting the relationship between the false positive 
rate (FPR) and the true positive rate (TPR). The false positive 
rate represents the proportion of incorrectly classified posi-
tive instances compared to the total number of true nega-
tives. The ROC curve’s positioning closer to the upper left 
corner indicates a better model performance. In this specific 
example, the model demonstrates good performance as its 
ROC curve approaches the upper left corner. This suggests 
that the model exhibits high sensitivity, meaning it has a 
strong ability to correctly identify true positives, while main-
taining a low false positive rate or specificity.

3.6. ADMET properties

In the context of drug discovery, it is of utmost importance 
to anticipate the properties associated with the absorption, 
distribution, metabolism, excretion, and toxicity of novel 
drugs to prevent their failure during clinical phases 
(Dearden, 2007; Faris, Ibrahim, Hadni, et al., 2023). Accurate 
prediction of pharmacokinetic and bioavailability properties 
stands as a fundamental stage in drug development. The 
outcomes of these predictions, utilizing the pkCSM predictive 
model, are presented in Tables 11 and 12. A notable caco-2 
permeability value reflects favorable absorption, with pre-
dicted values surpassing 50%, while values below 30% imply 
inadequate intestinal absorbance. A low total clearance value 
(logCLtot) signifies a prolonged drug half-life. Furthermore, a 
logBB value below −1 indicates limited distribution to the 
brain. Additionally, a positive outcome in the AMES test indi-
cates the potential mutagenic activity of the compound. 
AMES toxicity was observed in all compounds, as indicated 
by the results presented in Tables 11 and 12. As per the 
established ADMET guidelines, the evaluation of a molecule’s 

Table 10. Evaluation metrics for DDRRR_1 hypothesis.

Hypothesis DDRRR_1

Phase hypo score 1.33
EF1% 2.74
BEDROC160.9 1
ROC 0.86
AUAC 0.73
Ave outranking decoys 6.56
Total actives 27
Ranked actives 27
Matches 4 of 5
Excluded volumes Yes

Figure 7. ROC analysis and scree results for screening performance assessment.
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ability to penetrate the blood-brain barrier (BBB) and central 
nervous system (CNS) permeability is crucial for assessing its 
potential to elicit effects on the CNS. Acceptable BBB perme-
ability is determined by LogBB values within the range of 
−1< LogBB < 0.3, while CNS permeability is considered 
acceptable for LogPS values falling within −3< LogPS < −2. 
Values below −3 or above −2 are considered to be outside 
the acceptable range.

The results of the compounds ZINC72622261, 
ZINC14568680, ZINC52306282, ZINC13631917, ZINC52190419, 
and ZINC4810303 can be interpreted as follows: Absorption: 
The water solubility values of the compounds range from 
−3.858 to −4.447, suggesting low solubility in water. Caco-2 
permeability, which is used to assess intestinal absorption, 
varies from −0.788 to 1.061. Positive values indicate better 
intestinal absorption. Permeability: The values of skin perme-
ability range from −2.735 to −2.906, suggesting relatively 
low permeability through the skin. The values of blood-brain 
barrier (BBB) permeability range from −0.544 to 0.033, indi-
cating variable penetration into the central nervous system 
(CNS). Negative values indicate low BBB penetration. 
Metabolism: Inhibition of CYP3A4 is important in drug 
metabolism, as it can lead to an increase in the plasma con-
centration of drugs and thus to an increase in their efficacy. 
CYP3A4 inhibition may be beneficial for JAK3 inhibition, as 
many JAK3 inhibitors are metabolized by CYP3A4. By inhibit-
ing CYP3A4, the drug’s half-life can be prolonged and its 

bioavailability increased, which may improve its efficacy and 
reduce the doses needed to achieve sufficient JAK3 inhib-
ition (Faris, Hadni, Ibrahim, et al., 2023; Jain et al., 2019; Li 
et al., 2017). All compounds are substrates of CYP3A4, mean-
ing they can be metabolized by this hepatic enzyme. The 
compounds ZINC72622261, ZINC14568680, ZINC52306282, 
ZINC13631917, ZINC52190419, and ZINC4810303 also inhibit 
the enzymes CYP1A2, CYP2C19, and CYP3A4. Toxicity: All 
compounds exhibit positive toxicity according to the AMES 
test, indicating a potential for toxicity. None of the com-
pounds show skin sensitization according to the skin sensi-
tization test. Moreover, these molecules are eliminated 
because they represent AMES toxicity.

The findings for the compounds ZINC52190408, 
ZINC74072092, and ZINC78345744 can be concisely summar-
ized as absorption: The water solubility values of the com-
pounds range from −3.741 to −4.273, indicating low 
solubility in water. Caco-2 permeability, used to evaluate 
intestinal absorption, varies from 0.817 to 0.919. Positive val-
ues indicate better intestinal absorption. Permeability: The 
values of skin permeability range from −0.312 to 0.538, sug-
gesting moderate permeability through the skin. The values 
of the blood-brain barrier (BBB) permeability are not avail-
able in the provided data. Metabolism: In this study, CYP3A4 
was identified as the primary human enzyme responsible for 
the metabolism of rheumatoid (Sun et al., 2019; Thatcher 
et al., 2010) and colon cancer drugs (Thyroid Hormones 

Table 12. Properties of ADMET for new ligands with a negative AMES test.

ID ZINC52190408 ZINC74072092 ZINC78345744 Tofacitinib

Absorption Water solubility −3.741 −4.273 −4.025 −3.526
Caco2 permeability 0.919 0.868 0.817 1.36
Intestinal absorption (human) 94.638 90.579 92.776 93.481

Permeability Skin −0.293 −0.312 0.538 −3.154
BBB −2.257 −1.839 0.538 −0.752

Metabolism CNS −2.257 −1.839 No −3.064
Substrate CYP2D6 Yes Yes Yes No

CYP3A4 Yes Yes Yes No
Inhibitor CYP1A2 Yes Yes Yes Yes

CYP2C19 No No No No
CYP2C9 No No No No
CYP2D6 Yes Yes Yes No
CYP3A4 Yes Yes Yes No

Toxicity AMES toxicity No No No No
Skin Sensitisation No No No No

Table 11. Properties of ADMET for new ligands with a positive AMES test.

ID ZINC72622261 ZINC14568680 ZINC52306282 ZINC13631917 ZINC52190419 ZINC4810303

Absorption Water solubility −3.858 −3.816 −3.652 −3.231 −4.447 −3.693
Caco2 permeability 0.349 −0.788 0.519 −0.161 1.061 0.494
Intestinal absorption (human) 94.517 91.1 88.268 91.93 89.689 91.113

Permeability Skin −2.749 −2.741 −2.735 −2.735 −2.906 −2.735
BBB −0.135 −0.544 −0.296 −0.063 −0.901 0.033

Metabolism CNS −1.89 −2.181 −1.9 −1.994 −2.914 −1.922
substrate CYP2D6 No No No No No No

CYP3A4 Yes Yes Yes Yes Yes Yes
inhibitor CYP1A2 Yes Yes Yes Yes Yes Yes

CYP2C19 Yes Yes Yes Yes Yes Yes
CYP2C9 Yes Yes Yes No No Yes
CYP2D6 No No No No No No
CYP3A4 Yes Yes Yes Yes Yes Yes

Toxicity AMES toxicity Yes Yes Yes Yes Yes Yes
Skin Sensitisation No No No No No No
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Induce Doxorubicin Chemosensitivity through Enzymes Involved 
in Chemotherapy Metabolism in Lymphoma T Cells - PMC, n.d.; 
Zhou et al., 2019). The results revealed that all newly 
designed compounds appear to function as substrates and 
inhibitors of CYP3A4. The compounds ZINC52190408, 
ZINC74072092, and ZINC78345744 are also substrates of 
CYP1A2 and CYP2D6. However, they are not substrates of 
CYP2C19 and CYP2C9 enzymes. Toxicity: None of the com-
pounds exhibit toxicity according to the AMES test, suggest-
ing a low potential for toxicity. None of the compounds 
show skin sensitization according to the skin sensitization 
test. In comparison to the drug tofacitinib the compounds 
ZINC52190408, ZINC74072092, and ZINC78345744 demon-
strate good intestinal absorption, moderate permeability 
through the skin, and potential metabolism by the enzymes 
CYP3A4, CYP1A2, and CYP2D6. These results highlight their 
potential for advancing drug development. The newly dis-
covered compounds ZINC52190408, ZINC74072092, and 
ZINC78345744 exhibit promising, they display favorable char-
acteristics ADMET.

3.7. Lipinski’s rule

The rules that have been established to assess the physico-
chemical properties of molecules play a crucial role in deter-
mining their potential for biological activity and toxicity. 
According to these rules, a molecule needs to exhibit an 
LIPO value within the range of −0.7 to 5 to be classified as 
lipophilic. Additionally, the molecular weight is evaluated, 
and it must fall between 150 and 500 g/mol. Remarkably, all 
the molecules satisfy this criterion. Furthermore, the polarity 
assessment is based on the determination of the topological 
polar area (TPSA), which should lie within the range of 20– 
130 Å2.

The provided results, as shown in Table 13, illustrate that 
all the molecules under examination meet the required 
molecular weight (MW) criterion, which stipulates a range 
between 150 and 500 g/mol. Regarding lipophilicity, it is 

noteworthy that all the molecules fall within the acceptable 
range of −0.7 to 5 for Log pvalue, indicating their classifica-
tion as lipophilic compounds by established guidelines for 
assessing molecular physicochemical properties. In terms of 
other characteristics, all the molecules possess five rotatable 
bonds, except for molecule ZINC35324135, which has four. 
Furthermore, the number of hydrogen acceptors (H-bond 
acceptors) among the molecules ranges from two to five, 
while the number of hydrogen donors (H-bond donors) varies 
between two and three, with molecules D1 and D2 having 11 
and 9 rotatable bonds, respectively. Regarding polarity, mole-
cules ZINC52190408, ZINC74072092, ZINC35324135, D1, and 
D2 meet the specified condition for topological polar surface 
area (TPSA), which requires a range of 20–130 Å2. 
Consequently, in terms of Log S, all four molecules exhibit 
good solubility in water. The investigated molecules exhibit 
physicochemical properties, suggesting their potential as 
drugs for future investigations.

3.8. Prediction of biological activity

Following the acquisition of a pharmacophore model capable 
of facilitating the prediction of structurally viable compounds 
with potential biological activity against JAK3, the utilization 
of ZINCPharmer furnished us with 9 molecules recommended 
by the DDRRR pharmacophore model. Subsequently, we 
ensured the model’s reliability and robustness by employing 
five descriptors, coupled with internal and external validation 
methodologies, which yielded favorable outcomes. Using this 
model, we utilized it to make forecasts about the biological 
activity of novel identifiers and create ligands, and the out-
comes are displayed in Table 14.

Said table encompasses the descriptors corresponding to 
each predicted structure, accompanied by their respective 
predicted biological activity. The biological activity of the 
novel molecules was predicted utilizing the MLR and ANN- 
based model derived from Equation (1), which demonstrated 
significant activity against JAK3 for all compounds.

Table 13. The design and predicted compounds.

ID ZINC52190408 ZINC74072092 ZINC78345744 Tofacitinib D1 D2

Compound 2d

Plot Physicochemical 
Properties

MW 351.33 344.37 304.35 312.37 439.94 430.5
Log P 3.71 2.61 2.72 2.09 2.28 1.96
Rotatable bonds 5 5 5 4 11 9
H-bond acceptors 5 4 3 4 4 4
H-bond donors 2 2 2 1 3 3
MR 94.96 99.51 90.76 93.481 124.61 129.74
TPSA 80.3 84.21 66.91 88.91 102.16 91.41
Log S −5.43 −4.65 −3.96 −2.75 −5.69 −5.01
log Kp (cm/s) −5.57 −6.12 −6.1 −7.14 −6.25 −6.25
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3.9. Covalent docking docking

3.9.1. Analysis of new compound identifiers
A fundamental method for researching covalent bonds 
between a target protein and possible ligands is known as 
covalent docking. It is essential for creating novel pharmaco-
logical inhibitors, especially for the JAK3 protein and Cys909 as 

its active site. JAK3 (4Z16) complex, which exhibits exceptional 
resolution, may be used to evaluate the effectiveness of cova-
lent docking using the crystallographic structures that are cur-
rently available (Bank, n.d.; Tan et al., 2015). This high-resolution 
data allows for more precise In-silico studies of ligand-protein 
interactions, confirming the relevance of covalent docking in 
exploring new potential ligands. The protein JAK3 (ID: 4Z16) is 

Table 14. Predicted biological activity pIC50 using QSAR models MLR and ANN.

ID Smile pIC50 (MLR) pIC50 (ANN)

ZINC78345744 8.57 7.84

ZINC72622261 6.88 7.02

ZINC74072092 8.67 8.45

ZINC52190408 8.99 6.78

ZINC14568680 6.17 7.32

ZINC52306282 7.18 7.60

ZINC13631917 7.69 8.41

ZINC52190419 8.07 7.47

ZINC4810303 6.49 7.60

D1 8.12 8.43

D2 7.68 6.53
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Table 15. Affinity and Non-Covalent interactions of novel compound identifiers (a. ZINC74072092: −6.95 kcal/mol b. ZINC78345744: −5.54 kcal/mol c. 
ZINC52190408: −9.47 kcal/mol d. Tofacitinib-Drug: −7.5 kcal/mol) and Designs (a1. D1: −9.57 kcal/mol b. D2: −7.45 kcal/mol.) with JAK3.

Novel identifier and design compounds
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an exciting discovery in the field of biochemistry. This protein 
exhibits an intriguing characteristic: it can form a covalent 
bond with Cys909 when it interacts with the ligand 4LH.

The covalent docking outcomes depicted in Table 15
reveal the formation of distinct bond types between the 
JAK3 protein and the three ligands. The distances associated 
with each bond, measured in Angstroms, assume significance 
in evaluating the strength and stability of the respective 
interactions. The JAK3-ZINC74072092 complex displayed 
binding interactions with several key residues, including 
Leu905, Arg911, Arg953, Cys909, Leu828, and Ala853 
(Table 15). The nature and distances of these binding interac-
tions were as follows: a hydrogen bond at 2.85 Å for LEU905 
and at 3.03 Å for Arg911, Pi-Alkyl interactions at 4.13 and 
4.70 Å for Arg953, at 3.99 and 4.70 Å for Cys909, at 5.12 and 
4.76 Å for Leu828, and a Pi-Alkyl interaction at 3.85 Å for 
Ala853. These findings highlight the specific amino acid resi-
dues involved in the binding and provide insights into the 
molecular interactions between JAK3 and ZINC74072092. 
JAK3-ZINC78345744 complex exhibited binding interactions 
with specific amino acid residues, namely Arg953, Leu828, 
Cys909, Leu956, and Ala853 (Table 15). The nature of these 
interactions and their corresponding distances are as follows: 
a hydrogen bond at 2.04 Å for ARG953, hydrogen bonds at 
2.91 and 2.93 Å (as well as a carbon hydrogen bond) for 
Leu828, a hydrogen bond at 2.59 Å and a Pi-Alkyl interaction 
at 4.70 Å for Cys909, a Pi-Alkyl interaction at 4.52 Å for 
Leu956, and a Pi-Alkyl interaction at 5.24 Å for Ala853. These 
findings provide detailed insights into the specific residues 
involved in the binding process, shedding light on the 
molecular interactions between JAK3 and ZINC78345744. The 
JAK3- ZINC52190408 complex exhibited binding interactions 
with multiple amino acid residues, including Asp912, Leu905, 
Cys909, Arg911, Gly908, Met902, Val836, Val884, Leu828, and 
Ala853 (Table 15). The binding distances and types of these 
interactions are as follows: a hydrogen bond at 2.24 Å for 
Asp912, hydrogen bonds at 1.92 and 2.36 Å for Leu905, a 
hydrogen bond at 1.86 Å and an alkyl interaction at 3.37 Å 
for Cys909, a hydrogen bond at 2.50 Å and a Pi-Cation inter-
action at 3.64 Å for Arg911, a Pi-Sigma interaction at 2.45 Å 
for Gly908, a Pi-Sulfur interaction at 5.15 Å for Met902, and a 
Pi-Alkyl interaction at 4.91 Å for Leu828. Furthermore, add-
itional Pi-Alkyl interactions were observed for Val836 (at 
5.02 Å), Ala853 (at 3.64 Å), Val884 (at 5.46 Å), Leu956 
(at 4.74 Å), Leu828 (at 4.60 Å), Ala853 (at 4.18 Å), and Leu956 
(at 4.30 Å).

3.9.2. CovDock of new compounds design
For D1 (Table 15): Direct hydrogen bonds are observed 
between the ligand and residues Arg953, and Leu905, with 
distances ranging from 1.78 to 1.88 Å, indicating strong and 
specific interactions. Carbon hydrogen bond interactions are 
present with Asn954, Glu903, and Tyr904 at longer distances, 
between 2.33 and 2.72 Å. P-P interactions of the amide- 
aromatic stacking or alkyl type are detected with Gly908, 
Ala966, and various aliphatic residues (Val836, Leu, Cys909) 
between 3.65 and 5.39 Å. For D2 (Table 15): The residues 
Arg953 and Leu905 form direct hydrogen bonds with the 

ligand again, at distances similar to D1. A carbon-hydrogen 
bond interaction is observed for Glu903. The presence of lon-
ger distance p-alkyl interactions is noted, up to 5.46 Å, not-
ably involving Leu956, Ala966, and Leu828/905.

3.9.3. Molecular docking analysis of Tofacitinib-Drug
Tofacitinib is a small-molecule drug that belongs to the class 
of Janus kinase (JAK) inhibitors. It is primarily used for the 
treatment of rheumatoid arthritis, psoriatic arthritis, and 
ulcerative colitis. Tofacitinib works by inhibiting the activity 
of JAK enzymes, which play a crucial role in controlling 
immune cell function and inflammation. By blocking the 
activity of JAK enzymes, tofacitinib helps to reduce inflamma-
tion and alleviate the symptoms of these autoimmune dis-
eases. At distances of 3.04, 2.75, 2.08, and 3.78, tofacitinib 
established numerous hydrogen bonds with residues Leu828 
and Leu906. Leu956, Ala966, Leu828 (4.35), Ala853 (4.56), 
and Leu956 (4.39) were among the residues with which tofa-
citinib interacted hydrophobically (Table 15).

Following an extensive examination of the ADMET charac-
teristics of the anticipated and engineered substances, we 
moved forward by conducting covalent docking of the 
most highly ranked compounds, namely ZINC52190408, 
ZINC74072092, ZINC78345744, D1, and D2, in comparison to 
the drug Tofacitinib. The objective of this docking investiga-
tion was to assess the interaction between the JAK3 receptor 
and the ligands, as well as to evaluate their mutual affinity. 
Furthermore, MD simulations were carried out to analyze the 
dynamic behavior and stability of the target protein.

3.10. Molecular dynamics

Molecular dynamics analysis is a vital approach for compre-
hending the motions and interactions of molecules under 
physiological or pathological conditions. To interpret the out-
comes of this analysis, various parameters, such as Root 
Mean Square Deviation (RMSD), Root Mean Square 
Fluctuation (RMSF), Solvent Accessible Surface Area (SASA), 
Radius of Gyration (RoG), and hydrogen bonds (H-Bonds), 
can be utilized. RMSD is employed to gauge the average 
deviation between the molecular structures during the simu-
lation, enabling the assessment of structural stability and 
comparisons at different time points. RMSF quantifies the 
magnitude of atom fluctuations, shedding light on molecular 
flexibility. High RMSF values in certain regions may indicate 
interaction areas with other molecules or crucial regions for 
the molecule’s biological function. SASA measures the 
accessible surface area of the molecule to the solvent, aiding 
in the understanding of interactions with the surrounding 
environment. Notable changes in SASA signify alterations in 
the molecule’s interaction with its environment, potentially 
impacting its biological function. RoG quantifies the com-
pactness of the molecule and allows monitoring of conform-
ational changes throughout the simulation. Hydrogen bonds 
play a crucial role in molecular dynamics, and their analysis 
provides insights into molecule-to-molecule interactions. 
Integrating these diverse parameters offers a comprehensive 
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Table 16. RMSD, RMSF, SASA, and RoG ZINC74072092, ZINC78345744, ZINC52190408, Tofacitinib drug, D1 and D2.

Novel compounds identifier

Novel design compounds
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understanding of molecular dynamics and its influence on 
the molecule’s biological function.

In this study, the stability of three compounds, namely 
ZINC78345744, ZINC52190408, and ZINC74072092, was ana-
lyzed during a 500 ns simulation. The remarkable stability of 
these compounds was assessed based on the results 
obtained from Table 16, which revealed average RMSD val-
ues of 3.05, 2.18, and 2.24 Å, respectively. To evaluate the 
stability of residues within the complexes, RMSF calculations 
were performed. Table 16 presents the results, indicating 
remarkable stability of the residues in the studied ligands, 
with mean values of 1.36, 1.17, and 1.47 Å for ZINC78345744, 
ZINC52190408, and ZINC74072092, respectively. Additionally, 
SASA and RoG calculations were conducted to assess the 
compactness of the complexes throughout the 500 ns 

simulation. As depicted in Table 16 the complexes main-
tained their compact structures, with mean SASA and RoG 
values of 14958 Å2 and 20 Å, respectively.

The analysis of hydrogen bond donors and acceptors 
(H-bonds) in Table 16 for the new ligands ZINC74072092, 
ZINC78345744, and ZINC52190408 reveals the maximum 
number of H-bonds formed during the 500 ns simulation to 
be 6, 4, and 5, respectively, with a minimum of 1 H-bond 
formed for all three ligands. During the 500 ns simulation, it 
was observed that ZINC74072092 exhibited stability with the 
JAK3 protein, forming 1–3 bonds. For ZINC78345744, it was 
observed to maintain its stability for 250 ns with 1–2 bonds, 
but no further remarks were made for the remaining simula-
tion, with occasional formation of 1 and 3 bonds. The com-
pound ZINC52190408 demonstrated stabilization with 1–3 

Table 17. DSSP analysis for the newly identified, designed compounds and Tofacitinib drug.

Identified compounds

Designed compounds
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bonds throughout the entire 500 ns simulation. The analysis 
of tofacitinib compared to a new compound showed discrep-
ancies during the 500 simulations, suggesting that the results 
of the covalent docking analysis indicate a strong affinity 
between the studied ligands and the JAK3 protein.

The results of MD analysis for the newly designed com-
pounds (Table 16) show an acceptable and stable RMSD com-
pared to tofacitinib. D1 and D2 in interaction with JAK3 
exhibited an RMSD ranging from 1.5 to 2.5 Å throughout the 
trajectory. The RMSF remained stable with a few exceptions for 
residues greater than 3, which were located outside the active 
site during the interaction of JAK3 protein with D1 and D2. 
These residues include a, b, and so on. The SASA and RoG 
showed stability during the trajectory. SASA ranged between 
15,500 and 160,000 Å2, while RoG ranged between 19.5 and 
20.9 Å, indicating favorable compactness of the complexes. The 
analysis of Hbond demonstrated stable bond formations during 
the simulation, with fewer disruptions. D1 and D2 in interaction 
with JAK3 exhibited maximum stability with several hydrogen 
bonds reaching up to 2, and minimum stability with 1 hydro-
gen bond. It is worth noting that D1 and D2 maintained stabil-
ity throughout the trajectory with hydrogen bonds.

3.10.1. DSSP (define secondary structure of proteins)
DSSP algorithm is a commonly used method for assigning 
the secondary structure of proteins. It identifies alpha helices, 
beta sheets, kinks, and loops, as well as disulfide bridges and 
3/10 helices. The method uses the protein’s atomic coordi-
nates to determine the local conformation of each residue. 

DSSP analysis assigns a code to each residue based on its 
secondary structure, enabling quantitative and qualitative 
analysis of the protein’s structure. The results of DSSP ana-
lysis can be used to study the stability of protein structure, 
and protein-protein interactions, as well as for the prediction 
of protein function and dynamics. In short, DSSP analysis is a 
powerful tool for characterizing protein structure and study-
ing protein function and dynamics.

DSSP analysis for the predicted new ligands shows signifi-
cant results for the secondary structure, these results may be 
useful for understanding the interactions between ligands 
and the target protein, and for designing new ligands with 
similar properties. Table 17 shows that ligands ZINC74072092, 
ZINC78345744, ZINC52190408, D1, and D2 exhibit pseudo 
transitions similar to those of the known apoprotein, passing 
in particular through structural elements H (alpha helix), B 
(isolated strand), E (extended strand in parallel and/or antipar-
allel beta-sheet conformation), G (3-10 helix), I (pi helix), T 
(turn of 3 to 4 residues), S (bend) or C (turn). In a parallel 
manner, all three compounds exhibit alterations akin to those 
observed in the apoprotein. The DSSP analysis, when con-
trasted with tofacitinib, implies that the anticipated novel 
ligands manifest a secondary structural profile closely resem-
bling that of the established apoprotein, characterized by 
quasi-analogous transitions among distinct structural ele-
ments. Additionally, the congruence in secondary structural 
attributes between the ligands and the apoprotein may imply 
a commensurate stability for these compounds, a facet of sig-
nificance in the context of designing ligands that would offer 
an optimal level of biological activity.

Figure 8. Principal component analysis (PCA) for the newly identified and designed compounds.
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3.10.2. Free-energy-landscapes (FEL)
FEL is a valuable tool for interpreting and analyzing biomo-
lecular processes such as molecular folding, aggregation, and 
recognition. The free energy landscape of a molecule can be 
computed using the formula:

F CV1, CV2ð Þ ¼ − kbTlnP CV1, CV2ð Þ, (13) 

where kb and T represent the Boltzmann constant and abso-
lute temperature, respectively, and P (CV1, CV2) is the prob-
ability distribution of the molecular system along the 
reaction coordinates or collective variables (CV1 and CV2). A 
range of reaction coordinates can be selected, including con-
tact distances between two atoms, the root means square 

deviation (RMSD), the radius of gyration, angles, dihedral 
angles, principal component analysis (PCA), and others.

The PCA analysis results provided the following (Figure 8): 
in the complex with ZINC52190406, JAK3 showed cluster 
motion covering a range on PC1 and PC2 between (0, 20, 
and −2.5). In the complex with ZINC74072092, JAK3 showed 
cluster motion covering a range on PC1 and PC2 between 
(−10, 30 and −10, 30). In the complex with ZINC783445744, 
JAK3 showed cluster motion covering a range on PC1 and 
PC2 between (0, 15 and −2.5, 17.5). In the complex with D1, 
JAK3 showed cluster motion covering a range on PC1 and 
PC2 between (−25, 10 and −2.5, 17.5). In the complex with 
D2, JAK3 showed cluster motion covering a range on PC1 
and PC2 between (−2.5, 10 and −2.5, 17.5). In the case of a 

Figure 9. Free energy landscape For the newly identified and designed compounds.
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complex with Tofacitinib, JAK3 showed cluster motion cover-
ing a range on PC1 and PC2 between (−4, 8) and 
(−2.5, 17.5).

The results of the FEL analysis in Figures 9 and 10
provided the following: The compound ZINC52190408, 
JAK3, exhibited confirmation stability with an RMSD and 
RoG of 0.16 and 1.94 nm, respectively. The compound 
ZINC74072092, JAK3, exhibited confirmation stability with an 
RMSD and RoG of 0.25 and 1.96 nm, respectively. The com-
pound ZINC52190408, JAK3, exhibited confirmation stability 
with an RMSD and RoG of 0.22 and 1.94 nm, respectively. 
The compound ZINC78345744, JAK3, exhibited confirmation 
stability with an RMSD and RoG of 0.13 and 1.94 nm, respect-
ively. The compound D1, JAK3, exhibited confirmation stabil-
ity with an RMSD and RoG of 0.23 and 1.98 nm, respectively. 
The compound D2, JAK3, exhibited confirmation stability 
with an RMSD and RoG of 0.15 and 1.98 nm, respectively. 
The drug Tofacitinib, JAK3 (Figure 8), exhibited confirmation 
stability with an RMSD and RoG of 0.2 and 1.95 nm, respect-
ively. Figure 9 shows the stable conformations for each 
complex.

3.10.3. Free binding energy (MM/GBSA)
In the assessment of covalent bond stability between ligands 
and proteins, MM/GBSA is a commonly employed method 
following covalent docking simulations (Jin et al., 2020; 

Kumar et al., 2022; Wang et al., 2019). While covalent dock-
ing simulations aid in predicting potential binding sites, they 
do not consider the stability of the covalent bond itself. 
Thus, MM/GBSA serves as a valuable tool for evaluating cova-
lent bond stability and selecting the most stable complexes. 
Moreover, MM/GBSA plays a crucial role in assessing the sta-
bility of ligand-protein complexes post-simulated covalent 
docking, thereby facilitating a comprehensive understanding 
of ligand-protein interactions under various physiological or 
pathological conditions.

The binding energies between JAK3 and the ligands 
(ZINC74072092, ZINC78345744, ZINC52190408, D1, and D2) 
were estimated using the MM/GBSA method, as presented in 
Table 18. The results indicate that three discovery ligands 
and newly designed exhibit negative binding energies, indicat-
ing spontaneous binding to the target protein. Among 
the ligands, ZINC74072092 displays the lowest binding 
energy (DTOTAL¼−25.44 kcal/mol), followed closely by 
ZINC78345744 (DTOTAL¼−22.66 kcal/mol) and ZINC52190408 
(DTOTAL¼ −21.34 kcal/mol), D1(DTOTAL¼−32.67 kcal/mol) and), 
D2(DTOTAL¼−32.13 kcal/mol). The contributions of DVDWAALS 

and DEEL are also negative, signifying favorable interactions 
between the ligands and the target protein. The solvent envir-
onment significantly impacts the stability of the complexes. 
Positive DEGB values suggest that the ligands interacting with 
JAK3 may exhibit reduced affinity for the surrounding solvent 
or environment. Conversely, negative DEGB values indicate a 

Table 18. Delta Energy via MM/GSBA for ligand complexes (ZINC74072092, ZINC78345744, and ZINC52190408) interacting with JAK3.

Delta energy (Kcal/mol) ZINC74072092 ZINC78345744 ZINC52190408 D1 D2 Tofacitinib

DVDWAALS −26.18 −34.40 −32.16 −40.32 −47.19 −22.82
DEEL −124.81 −20.82 −10.69 −39.78 −28.82 −32.93
DEGB 129.68 37.81 25.76 53.40 50.22 55.89
DESURF −4.12 −5.25 −4.25 −5.98 −6.33 −3.34
DGGAS −151.00 −55.22 −42.85 −80.10 −76.01 −55.75
DGSOLV 125.56 32.56 21.51 47.43 43.88 52.55
DTOTAL −25.44 −22.66 −21.34 −32.67 −32.13 −3.20

Figure 10. Stable conformations for each complex.
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higher affinity of the ligands for the interacting surface or 
interface. Nevertheless, the DGSOLV values are lower than the 
DGGAS values, resulting in negative binding energies for all 
three complexes.

The novel compounds ZINC74072092, ZINC78345744, 
ZINC52190408, D1, and D2 had more favorable interactions 
with the target protein than Tofacitinib, MMGBSA data imply 
that the new compounds can form stable complexes with 
the JAK3 protein and may have promise as JAK3 therapeutic 
candidates. The retrosynthesis of D1 and D1 is not available.

3.10.4. Retrosynthesis
Retrosynthesis of identified compounds using ZINCPharmer. 
The automated retro-synthesis tool, the SPAYA web server, 
serves as a valuable resource for identifying potential 

synthetic pathways for a given target molecule. By leverag-
ing a database of pre-registered reactions, the server gener-
ates and suggests feasible syntheses by considering the 
target molecule and the availability of reagents. The out-
comes obtained for the three predicted ligands have been 
comprehensively compiled and presented in Table 19.

3. Conclusion

In summary, this study employs a multifaceted molecular 
modeling approach to design and predict novel JAK3/STAT 
inhibitors based on the pyrimidine-4,6-diamine scaffold. The 
robust QSAR model, validated through various methods, reli-
ably predicts inhibitory potency with pIC50 values ranging 
from 6 to 8. A robust pharmacophore model identifies three 
potential JAK3 inhibitors with favorable ADMET properties 

Table 19. Retrosynthesis of predicted ligands.

ID Method Reaction

ZINC52190408 Chloro N-arylation 
Reference: 
US04088770A 
Substituted 2-anilinobenzoxazoles used as 

immunosuppressive agents 
Similarity: 
0.47 
Time: 
16 hours 
For a solution of 17.9 g. (0.1 mole) of 4-fluoro-3- 

(trifluoromethyl)aniline in 200 ml. of 
tetrahydrofuran was added dropwise 15.4 g. 
(0.1 mole) of 2-chlorobenzoxazole in 150 ml. of 
tetrahydrofuran with vigorous agitation. Following 
the addition, the reaction mixture was heated in 
a steam bath under reflux for 16 hours. Then the 
tetrahydrofuran solvent was removed by 
distillation under vacuum, and 100 ml. of water 
was added to the residue. The residue was an 
oily liquid that solidified with the addition of 
water. The residue was removed by filtration and 
dried in vacuo. The dried residue was dissolved in 
a minimum amount of warm acetone, and about 
200 ml. of water was added to the solution, 
resulting in the crystallization of the reaction 
product. The precipitates were filtered and dried 
and 24.5 g. of 2-[4-fluoro-3- 
(trifluoromethyl)anilino]benzoxazole having a 

melting point of 190�-191� C. was recovered.
ZINC74072092 Carboxylic esterþ amine reaction 

Reference: 
US07947685B2_0145 
Pyrazine-2-carboxamide derivatives 
Similarity: 
0.28 
The title compound, MS: m/e¼ 325.1 (MþHþ), was 

prepared by the general method of example 1, 
step 2 from 3-phenylamino-pyrazine-2-carboxylic 
acid methyl ester and 3-chloroaniline.

ZINC78345744 Carboxylic esterþ amine reaction 
Reference: 
US20100227887A1_0198 
Pyridine-2-yl Carboxylic Acid Amides 
Similarity: 
0.31 
The title compound, white solid, MS (ISP) m/ 

e¼ 281.0 [(MþH)þ], mp 174� C., was prepared 
from 4-chloro-6-methyl-pyridine-2-carboxylic acid 
ethyl ester [CAS-No. 315494-03-2] and 
commercially available 3-chloroaniline according 
to the general method of Example 3.
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and strong binding interactions. Molecular dynamics simula-
tions confirm inhibitor stability and MM/GBSA calculations 
validate binding affinity. These inhibitors exhibit promising 
ADMET profiles and lack AMES toxicity, suggesting their 
potential for further development. The retrosynthetic analysis 
aids in synthesis planning. This study advances JAK3 inhib-
ition through comprehensive computational techniques, 
offering potent therapeutic candidates with favorable profiles 
and practical insights for future research, contributing to our 
understanding of JAK3/STAT inhibitors and drug develop-
ment for related diseases.
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