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The development of fast algorithms for key generation, encryption and decryption not only increases the efficiency of re-
lated operations. Such fast algorithms, for example, for asymmetric cryptosystems on quasi-cyclic codes, make it possible to
experimentally study the dependence of decoding failure rate on code parameters for small security levels and to extrapolate
these results to large values of security levels. In this article, we explore efficient cyclic convolution algorithms, specifically
designed, among other things, for use in encoding and decoding algorithms for quasi-cyclic LDPC and MDPC codes. Cor-
responding convolutions operate on binary vectors, which can be either sparse or dense. The proposed algorithms achieve
high speed by compactly storing sparse vectors, using hardware-supported XOR instructions, and replacing modulo oper-
ations with specialized loop transformations. These fast algorithms have potential applications not only in cryptography,
but also in other areas where convolutions are used.
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Разработка быстрых алгоритмов генерации ключей, шифрования и дешифрования не только повышает эффек-
тивность соответствующих операций. Такие быстрые алгоритмы, например, для асимметричных криптосистем
на квазициклических кодах, позволяют экспериментально исследовать зависимость вероятности ошибочного
расшифрования от параметров кода для малых параметров безопасности и экстраполировать эти результаты на
большие значения параметров безопасности. В этой статье мы исследуем эффективные алгоритмы циклической
свертки, специально разработанные, в том числе, для использования в алгоритмах кодирования и декодирования
квазициклических LDPC и MDPC кодов. Соответствующие свертки работают с двоичными векторами, которые
могут быть как разреженными, так и плотными. Предлагаемые алгоритмы достигают высокой скорости за счет
компактного хранения разреженных векторов, использования аппаратно поддерживаемых инструкций XOR и за-
мены операций по модулю специализированными преобразованиями цикла. Эти быстрые алгоритмы имеют
потенциальное применение не только в криптографии, но и в других областях, где используются свертки.

Ключевые слова: циклические свертки; быстрые алгоритмы; схемы шифрования
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Introduction
Convolution computation finds wide applications in digital signal processing [1], image processing [2],

steganography [3], deep neural network training and inference [4], and other areas of applied mathemat-
ics. The Fourier transform can be utilized to compute convolutions: classical Fast Fourier Transform (FFT)
algorithms such as Cooley-Tukey, Good-Thomas, Rader, and Winograd have a computational complexity
of 𝑂 (𝑛 log(𝑛)), where 𝑛 is a length of vectors. However, these algorithms are limited to specific lengths 𝑛,
such as powers of 2 or products of coprime numbers. In addition, these algorithms use complex numbers
arithmetic that may require more memory than the original vectors. Moreover, when using the Fourier
transform for convolution computation, the inverse Fourier transform must also be used. As memory ac-
cess is the performance bottleneck for modern computers [5], the use of Fourier transform could only be
beneficial for large-scale instances. For small vector lengths, and especially if the vector coordinates are
Boolean, optimized direct convolution computations can be faster. Note that Boolean convolutions over
cyclic groups find widespread applications across various computer science domains. One prominent area
is error-correction codes, where many practical codes exhibit cyclic or quasi-cyclic properties. By leverag-
ing convolutions over Galois fields, message encoding can be efficiently implemented for codes with cyclic
or quasi-cyclic properties. Additionally, for specific codes such as Quasi-Cyclic Low-Density Parity-Check
(QC-LDPC) andQuasi-CyclicModerate Density Parity Check Codes (QC-MDPC), convolutions play a crucial
role in implementation of decoding algorithms. Moreover, convolutions are extensively utilized in recently
proposed cryptographic protocols for public-key encryption and digital signatures. One notable example is
the Bit-flipping Key Encapsulation (BIKE) [6], a post-quantum public-key encryption algorithm that utilizes
random QC-MDPC codes. The convolutions involved in BIKE operate on both sparse and dense vectors over
both two-element Galois field GF(2) and ring of integers Z.

In the proposed paper, we delve into the optimization techniques for software implementations of convo-
lutions used in BIKE and in the decoding of QC-MDPC codes. Specifically, we consider dense-by-sparse con-
volutions over GF(2) and Z. Our proposed optimizations allow achieving high-speed performance through
the compact storage of sparse vectors, leveraging hardware-supported vector-executed XOR (exclusive OR)
instructions, and replacing the modulo operation with specialized loop transformations. These techniques
aim to enhance the performance of the convolutions involved in software implementations of BIKE and
decoding of QC-MDPC codes.

1. Cryptographic research motivation
Modern algorithms for asymmetric encryption and electronic digital signature are based on assumptions

about the computational complexity of solving the discrete logarithm problem in a finite group of large
order and the problem of factoring a large composite number into a product of two large prime numbers.
However, it turned out that these assumptions are confirmed so far only for the computation model on a
Turing machine, while for the quantum computation model, P. Shor’s efficient algorithm for solving these
problems is known. In 2016, the US National Institute of Standards and Technology (NIST) announced a
competition to develop asymmetric encryption and digital signature algorithms that would be resistant to
attacks carried out using quantum computing. One of the finalists in the NIST competition for an asymmetric
encryption scheme is the BIKE cipher [6], whose security is based on the difficulty of decoding a random
binary QC-MDPC code of length 2𝑟 , 𝑟 ∈ N. Note, that some computational operations during encryption
and decryption in BIKE can be implemented using cyclic convolutions. Recall, that for ring R and vectors
𝑎, 𝑏 ∈ R𝑟 the cyclic convolution 𝑎 ★𝑏 of 𝑎 = (𝑎0, . . . , 𝑎𝑟−1) and 𝑏 = (𝑏0, . . . , 𝑏𝑟−1) is defined as follows

𝑐 = 𝑎 ★𝑏 = (𝑐0, . . . , 𝑐𝑟−1), 𝑐𝑖 =
𝑟−1∑︁
𝑗=0

𝑎 (𝑖− 𝑗 ) mod 𝑟 · 𝑏 𝑗 , 𝑖 = 0, . . . , 𝑟 − 1. (1)
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The cryptosystem BIKE uses convolutions over rings Z (vectors of integers) and GF(2) (binary vectors), so
the notation ★𝑖 and ★𝑏 are used for the corresponding convolutions. Note, that for GF(2), the sum operator
in (1) is ⊕, and in the case Z sum is common operation with integers. Multiplication is common operation
with integers in both cases. To show which operations in BIKE can be calculated using convolutions, we
briefly describe this cryptosystem.

Let GF(2) = {0, 1} be a Galois field with additive operation ⊕: 0⊕ 0 = 1⊕ 1 = 0, 1⊕ 0 = 0⊕ 1 = 1. Denote
by 𝑅𝑛 = GF(2) [𝑥]/(𝑥𝑟 − 1) the cyclic factoring ring and let us consider the mapping 𝐿 : GF(2)𝑟 → 𝑅𝑛 such
that for 𝑎 = (𝑎0, . . . , 𝑎𝑟−1) ∈ GF(2)𝑟 , 𝐿(𝑎) = ∑𝑟−1

𝑖=0 𝑎𝑖𝑥
𝑖 . (Here and below, vector coordinates are numbered

starting from zero.) The number of non-zero elements in vector 𝑎 ∈ GF(2)𝑟 we denote as wt(𝑎). The secret
key in the BIKE system is a pair of polynomials (ℎ0, ℎ1) ∈ 𝑅2

𝑛 , where each polynomial is chosen randomly
and equiprobably such that wt(𝐿−1(ℎ0)) = wt(𝐿−1(ℎ1)) = 𝑤/2 ≈

√
2𝑟/2 and ℎ0 must be invertible in 𝑅𝑛 . The

public key is the polynomial ℎ = ℎ1 ·ℎ−10 , where multiplication is taken in 𝑅𝑛 . The plain text is represented as
a pair (𝑒0, 𝑒1) ∈ GF(2)𝑟 ×GF(2)𝑟 , where wt(𝑒0) +wt(𝑒1) = 𝑡 ≈

√
2𝑟 . The corresponding ciphertext 𝑠 ∈ GF(2)𝑟

is obtained by the rule
𝑠 = 𝑒0 ⊕ 𝐿−1(𝐿(𝑒1) · ℎ), (2)

where for the binary vectors 𝑎 = (𝑎0, . . . , 𝑎𝑟−1) and 𝑏 = (𝑏0, . . . , 𝑏𝑟−1) the result of operation 𝑎 ⊕ 𝑏 is the
binary vector (𝑎0 ⊕ 𝑏0, . . . , 𝑎𝑟−1 ⊕ 𝑏𝑟−1). When decrypting, the appropriate decoder for QC-MDPC codes is
used, which takes the vector 𝑠 , the secret key (ℎ0, ℎ1) and returns the vector (𝑒0, 𝑒1) or ⊥ if decoding failure
occurs.

The product 𝐿(𝑒1) · ℎ in encryption rule (2) is a multiplication of polynomials in the 𝑅𝑛 , which can be
realized as a cyclic convolution of a sparse vector 𝑒1 and a dense vector 𝐿−1(ℎ). So the rule (2) can be
rewritten as 𝑠 = 𝑒0 ⊕ (𝑒1 ★𝑏 𝐿

−1(ℎ)). Some operations in known decoders of QC-MDPC codes can also be
implemented using cyclic convolutions. Such operations may include calculating the current value of the
syndrome and unsatisfied parity check (UPC) counters (see pseudo code of some known decoding algorithms
for QC-MDPC-codes for example in [7]). For example, in Algorithm 1 the pseudo code of BitFlip decoding
algorithm is shown, where cyclic convolutions are calculated at each iteration: two convolutions over GF(2)
(calculating the current value of the syndrome 𝑠′) and two over Z (calculating the UPCs upc0 and upc1).

It is worth noting that fast convolution algorithms can speed up the key generation time of a system
BIKE when using combinations of iterative and majority logic decoding algorithms, as considered in [8, 9].
Indeed, to ensure a low decoding failure rate (DFR) in such systems, it is necessary to select keys with a large
majority margin. Therefore, the task of quickly calculating this boundary for randomly generated keys is
relevant. It is known that such a margin for each key can be calculated using cyclic convolution over Z.

Therefore, optimizing convolution algorithms can improve the speed of key generation, encryption and
decryption operations in BIKE. Note that, the similar techniques can also be employed in other modern
cryptographic primitives like HQC, NTRU, LWE, etc. As the length of vectors is not a power of 2 and is
not a product of coprime numbers in many encryption schemes, the use of FFT algorithms for convolution
calculations is impractical and new optimization algorithms are needed.

2. Fast cyclic convolution algorithms
This section presents algorithms for optimizing convolution computation. The algorithms are imple-

mented in C language. It is assumed that the convolution is calculated for vectors of length 𝑛. The direct
implementation GF2 noonpt of convolution over GF(2) is presented in Listing 1. The direct implementation
Z noopt of convolution over Z looks similar without taking modulo 2.

2.1. Generic optimizations for GF(2) and Z
The direct implementation of convolution can be improved. Indeed, all convolution algorithms used in

the decoder 1 involve at least one sparse vector. To store a sparse binary vector, we will use an integer
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Algorithm 1. BitFlip: iterative decoder for QC-MDPC codes
Input: The vector 𝑠 ∈ GF(2)𝑟 , the pair (ℎ0, ℎ1) ∈ 𝑅𝑛 × 𝑅𝑛 and the number of iterations 𝐼 .
Output: (𝑒0, 𝑒1) ∈ GF(2)𝑟 × GF(2)𝑟 or fail message ⊥.

1 𝑢 ← 0, 𝑣 ← 0; /* Initialize vectors 𝑢 and 𝑣 by zero value 0 ∈ GF(2)𝑟 */
2 𝑠′ ← 𝑠;
3 for 𝑖 = 1, . . . , 𝐼 do
4 compute threshold 𝑇 by 𝑠′;
5 upc0 ← 𝑠′ ★𝑖 𝐿

−1(ℎ0), upc1 ← 𝑠′ ★𝑖 𝐿
−1(ℎ1); /* Two cyclic convolutions over Z */

6 for 𝑗 = 0, . . . , 𝑟 − 1 do
7 if upc0, 𝑗 ⩾ 𝑇 then
8 𝑢 𝑗 ← 𝑢 𝑗 ⊕ 1; /* Flipping 𝑗th bit in 𝑢 */
9 if upc1, 𝑗 ⩾ 𝑇 then
10 𝑣 𝑗 ← 𝑣 𝑗 ⊕ 1; /* Flipping 𝑗th bit in 𝑣 */

11 𝑠′ ← 𝑠 ⊕ (𝑢 ★𝑏 𝐿
−1(ℎ0)) ⊕ (𝑣 ★𝑏 𝐿

−1(ℎ1)); /* Two cyclic convolutions over GF(2) */
12 if 𝑠′ = 0 then
13 return (𝑢, 𝑣)

14 return ⊥;

Listing 1. Direct implementation of convolution over GF(2) according to (1)

void GF2 noopt(unsigned short n,
unsigned short ∗a,
unsigned short ∗b,
unsigned short ∗c) {

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

c[j] = (c[j] + b[(j − i + n) % n] ∗ a[j]) % 2;
}

}
}

vector called inda, where each element will contain the position of a non-zero element (i.e., 1) in the original
vector, in ascending order. Let’s denote the length of the resulting vector as arrSize, which is smaller than
𝑛. For example, if the vector 𝑎 looked like this 𝑎 = (0, 1, 0.0, 0, 1, 0, 1), then the vector inda would be (1, 5, 7).
Therefore, to accelerate the computations, the sparse vector 𝑎 has been replaced with the inda vector of size
arrSize (see listing for GF2 opt1 in Listing 2 for convolutions over GF(2)). Using this new vector, we can
reduce the number of iterations and eliminate the multiplication operation. The code Z opt1 for computing
convolution over Z, excluding the modulo 2, looks similar to GF2 opt1.

2.2. Optimizations for convolutions over GF(2)
In C language there are bitwise operators ∼, &, |, and ^, which correspond to bitwise negation, bitwise

AND, bitwise OR, and bitwise XOR operations, respectively. For example, the XOR operation (operator ^)
can be used to replace addition of two numbers and taking the modulo 2 (see the listing GF2 opt2 in List-
ing 3). In the listings GF2 noopt, GF2 opt1 and GF2 opt2 the bit vector 𝑏 is represented as an array of type
unsigned short, where each element occupies 16 bits but stores only one bit of useful information. Let us
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Listing 2. Optimization 1 over GF(2): using sparsity of one vector

void GF2 opt1(unsigned short n,
int arrSize,
const unsigned short ∗inda,
unsigned short ∗b,
unsigned short ∗c) {

for (int i = 0; i < arrSize; i++) {
for (int j = 0; j < n; j++) {

c[j] = (c[j] + b[(j − inda[i] + n) % n]) % 2;
}

}
}

Listing 3. Optimization 2 over GF(2): using XOR in GF2 opt1 instead of sum modulo 2

void GF2 opt2(unsigned short n,
int arrSize,
const unsigned short ∗inda,
unsigned short ∗b,
unsigned short ∗c) {

for (int i = 0; i < arrSize; i++) {
for (int j = 0; j < n; j++) {

c[j] = (c[j] ˆ b[(j − inda[i] + n) % n]);
}

}
}

transform vector 𝑏 in such a way that each bit in the vector corresponds to the corresponding element of
the original vector. The resulting vector is denoted by b2 and has a length of 𝑚 = ⌈𝑛/16⌉. Thus, the first
element of b2 contains the first 16 elements of vector 𝑏. Note that 16 is the length of unsigned short type
in bits. However, since the data type can be changed to any other type of unsigned number, the code uses
the variable elementSize = 16. Let’s replace the dense vector 𝑏 with b2. Since the convolutions used involve
adding a cyclically shifted vector, we need the ability to shift the vector by 𝑛 bits to the right. The output
vector res is also compact, just like b2. Due to the changes in the input and output vectors, we need to be
able to assemble new elements of the output vector. For this purpose, we will introduce two arrays of masks:
arrSize and negMasks. Each element in the arrSize array represents a number whose binary representation
contains elementSize ones, shifted to the left by the element’s index. Therefore,𝑚𝑎𝑠𝑘𝑠 [0] is a number with
elementSize ones in its binary representation,𝑚𝑎𝑠𝑘𝑠 [1] has elementSize − 1 ones, and so on. Similarly, neg-
Masks is an array where each element can be obtained by bitwise negating the corresponding element in
the arrSize array. Variables𝑚𝑜𝑑 , 𝑚𝑜𝑑𝑁𝑒𝑔 and 𝑖𝑡 are service variables for joining vector concatenation. In
particular,𝑚𝑜𝑑 represents the remainder of dividing 𝑖𝑛𝑑𝑎[𝑖] by elementSize, which is necessary to select the
appropriate mask and correctly shift the element since the shift may not always be a multiple of elementSize.
This change allows for the computation of 16 elements in a single iteration of the outer loop, rather than
just 1 element, resulting in significant acceleration. An optimized version of the convolution calculation is
shown in Listing 4.
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Listing 4. Optimization 3 over GF(2): use compact representation of vectors in GF2 opt2

void GF2 opt3(unsigned short n,
int arrSize, int m,
const unsigned short ∗inda,
unsigned short ∗b2,
unsigned short ∗res) {

unsigned short modG=n % elementSize;
unsigned short modGNeg=(elementSize − modG) % elementSize;
unsigned short lastElementShifted =

(b2[m − 1] >> modGNeg) +
((b2[m − 2] & negMasks[modGNeg]) << modG);

for (int i = 0; i < arrSize; i++) {
unsigned short mod = inda[i] % elementSize;
unsigned short modNeg = (elementSize − mod) % elementSize;
int start = inda[i] / elementSize;
res[start] = res[start] ˆ ((b2[0] >> mod) +

((lastElementShifted & negMasks[mod]) << modNeg));
int j = 1;
for (int it = start + 1; it < m; it++, j++) {

res[it] = res[it] ˆ (((b2[j]) >> mod)+
((b2[j−1] & negMasks[mod]) << modNeg));

}
int targetElement = (start − 1) ∗ elementSize + n − inda[i] + 15;
int modBack = targetElement % elementSize;
int backStartTarget = targetElement / elementSize;
int newMod = elementSize − modBack − 1;
int newModNeg = (elementSize − newMod) % elementSize;
j = backStartTarget;
for (int it = start − 1; it >= 0; it−−, j−−) {

res[it] = res[it] ˆ (b2[j] >> newMod) ˆ
((b2[j − 1] & negMasks[newMod]) << newModNeg);

}
}
res[m − 1] = res[m − 1] & masks[modGNeg];

}

2.3. Optimizations for convolutions over Z

To speed up the calculation of convolution over Z, we use a partition of the iteration space into two
triangular ones to get rid of the operation of taking the modulus (see Listing 5).

3. Experimental results
Testing for the correctness of the decoder 1 implementation was performed using known answer tests

for two sets of parameters (𝑟,𝑤, 𝑡) of BIKE system: (𝑟 = 12323,𝑤 = 142, 𝑡 = 134) and (𝑟 = 24659,𝑤 = 206, 𝑡 =
199). Note that these parameters sets correspond to the cases BIKE Level-1 and BIKE Level-3. Performance
testing was performed with the same initial states of the pseudorandom number generators. Testing was
carried out both as a separate evaluation of the convolution operation and as part of the decoder 1 for
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Listing 5. Optimization 2 over Z: rearrange loops in Z opt1

void Z opt2(unsigned short n,
int arrSize,
const unsigned short ∗inda,
const unsigned short ∗b,
unsigned short ∗c) {

unsigned short ∗pointer c, ∗end = inda + arrSize;
int j, new j;
for (unsigned short ∗i = inda; i != end; i++) {

pointer c = c;
j = 0;
new j = n − ∗i;
for (; j < ∗i; j++) {

∗pointer c = (∗pointer c + b[new j]);
new j++;
pointer c++;

}
new j = j − ∗i;
for (; j < n; j++) {

∗pointer c = (∗pointer c + b[new j]);
new j++;
pointer c++;

}
}

}

Table 1. CPU computer specification
Manufacturer AMD
Number of cores 6
Number of threads 12
Frequency 3.60 Ghz / 3600 Mhz
Turbo Core 4.20 Ghz / 4200 Mhz
L1 cache 384Kb (6 x 32Kb + 6 x 32Kb)
L2 cache 3Mb (6 x 512Kb)
L3 cache 32Mb
Core (architecture) Matisse (Zen2, x86-64)
Process 7 nm
PCIe controller PCI Express 4.0 (16 lines)

number of iteration 𝐼 = 100; total number of tests is 1 000. In the experiments, the threshold 𝑇 , used in the
decoder 1, was not dynamically calculated, but was specified by an appropriate constant. All measurements
were performed using the CPU with the parameters, presented in the Table 1.

The program code was compiled using clang compiler for C/C++. For each set of parameters, the running
time of the algorithms GF2 noopt, GF2 opt1, GF2 opt2, GF2 opt3, Z noopt, Z opt1 and Z opt2 was estimated
without compiler optimization, as well as using optimization options O3 and Ofast. Operating speed is given
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Table 2. Average performance for (𝑟 = 12323,𝑤 = 142, 𝑡 = 134)

Operation O0 O3 Ofast
seconds cycles seconds cycles seconds cycles

GF2 noopt 0.228056 228056 0.224785 224784 0.220196 220196
GF2 opt1 0.001029 1029 0.001094 1094 0.001035 1035
GF2 opt2 0.000742 742 0.000748 748 0.000792 792
GF2 opt3 0.000017 17 0.000017 17 0.000017 17
Z noopt 0.237824 237824 0.239727 239727 0.246001 246001
Z opt1 0.000810 810 0.000862 862 0.000815 815
Z opt2 0.000043 43 0.000043 43 0.000044 44
One iter. of alg. (1) (no opt.) 0.933065 933065 0.900846 900845 0.880317 880317
One iter. of alg. (1) (max. opt.) 0.000156 155 0.000153 153 0.000150 150

Table 3. Average performance for (𝑟 = 24659,𝑤 = 206, 𝑡 = 199)

Operation O0 O3 Ofast
seconds cycles seconds cycles seconds cycles

GF2 noopt 0.759139 759139 0.758156 758156 0.750196 750196
GF2 opt1 0.003079 3079 0.003022 3022 0.002988 2988
GF2 opt2 0.002202 2202 0.002172 2172 0.002171 2171
GF2 opt3 0.000047 47 0.000043 43 0.000041 41
Z noopt 0.737514 737514 0.714715 714714 0.716012 716012
Z opt1 0.002426 2426 0.002381 2381 0.002354 2354
Z opt2 0.000170 170 0.000125 125 0.000122 122
One iter. of alg. (1) (no opt.) 2.891910 2891910 2.884335 2884334 2.907707 2907706
One iter. of alg. (1) (max. opt.) 0.000409 409 0.000398 397 0.000403 402

in seconds and processor cycles. Evaluation of the influence of the applied optimizations in the calculation
of convolutions gave the results shown in Tables 2 and 3.

Experimental results show that non-optimized convolution calculations over rings GF(2) and Z have
no significant difference in computation speed. This is due to the fact that both in the case GF(2) and in
the case Z, the elements are represented by the same data type (unsigned short). The transition to special
representations leads, on the one hand, to a significant acceleration of calculations, and on the other hand,
the calculation speed already depends on the ring R. It is also clear that compiler optimization makes it
possible to speed up the calculation of convolutions for both rings only in the case 𝑟 = 24659. In the case
of estimating the speed of one iteration of the decoder 1, a slight acceleration of the work is observed when
using compiler optimization.

4. Fast convolutions in security evaluation of BIKE
The security of cryptographic algorithms is defined as the ability to withstand specific unauthorized

actions by an attacker. For example, if a cipher is resistant to finding the plaintext by one ciphertext, then
the cipher is OW-secure (the cipher has the One-Way property). If the attacker cannot distinguish which
of the two plaintexts 𝑚0 or 𝑚1 corresponds to the given ciphertext 𝑐 , then the cipher is IND-CPA secure
(INDistinguishable under Chosen Plain text Attack). The strongest ciphers are those with IND-CCA security
(INDistinguishable under Chosen Cipher text Attack), when the attacker cannot distinguish which of the
two plaintexts𝑚0 or𝑚1 corresponds to the given ciphertext 𝑐 , even if the attacker can send requests to the
decryption oracle (but cannot send 𝑐). The cipher is said to have security level _ (OW, IND-CPA, IND-CCA)
if the probability of success of the corresponding attack does not exceed 1/2_ . For example, currently ciphers
with a security level of _ ⩾ 128 are considered secure.
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The disadvantage of BIKE system is that for a QC-MDPC code, the decoder may incorrectly decode
the received vector 𝑠 , which means that a legitimate user of the BIKE system cannot decrypt the message
(𝑒0, 𝑒1). Thus, BIKE is characterized by a non-zero decoding failure rate (DFR). However, as shown in the
work [10] for binary case and then in [9] for 𝑞-ary case, with a high DFR an reaction attack is possible that
allows to find the secret key of the cryptosystem BIKE. Thus, to guarantee the IND-CCA security of the
BIKE system with the security parameter _, the DFR value must be less than 1/2_ . However, at present,
for the fast decoder from [6], a theoretical estimate on DFR has not been obtained, and an experimental
study of this probability for _ = 128 means at least 2128 experiments (one experiment includes generating a
QC-MDPC code, encoding a random vector, and decoding), which is currently computationally impossible.
Therefore, IND-CCA security cannot yet be guaranteed for BIKE. Note that in [6] the IND-CCA security of
the BIKE is proved under the assumption that DFR is less than 1/2_ at security level _. There are a number
of approaches to assessing DFR. In [11], a lower theoretical DFR estimate was obtained for an ML decoder
(Maximum Likelihood decoder), which differs from the iterative decoder from [6]. However, this estimate
may be redundant: the real DFR may be lower when using modern fast decoders. The second approach to
DFR estimation is experimental estimation for small code parameters with subsequent extrapolation to a
higher level of security. In this case, extrapolation may lead to the choice of falsely strong parameters of
the cryptosystem: the real DFR may be higher than the estimate obtained using an extrapolation. This is
due to the fact that there is an inflection point of the decoding error probability versus code length curve:
there is such a code length, starting from which the rate of decrease in the error probability decreases. The
third approach is an extension of the second and is related to the study of the inflection point. However, it
is not computationally possible to estimate the inflection point for _ = 128, as noted above. In this regard,
in [12, 13] the inflection point is studied only for _ = 20, and for large values of _ it is proposed to perform
extrapolation. The study, including experimental, of the inflection point for values of _ exceeding 20, seems
to be an urgent task, since this can allow more accurate extrapolation to the values of _ corresponding to
the values recommended in practice (_ = 128, 192, 256). Note that the efficient implementation of the BIKE
cryptosystem is beneficial for obtaining estimates of the probability of decryption errors [11–13]. The par-
allel computations mentioned in [12, 13] alone may not provide significant acceleration. The performance
of programs largely depends on data localization [14]. Moreover, one should not rely on good code opti-
mization by an optimizing compiler [15]. One of the main engineering tasks in such a study is the efficient
implementation of algorithms for encoding and decoding the QC-MDPC code, which makes it possible to
carry out the study in a reasonable time. It seems that the greatest computational resources are consumed
during encoding and decoding, while the generation of QC-MDPC code does not require large computa-
tional costs. As follows from the description above, the encoder and decoder of the QC-MDPC code can be
implemented based on the calculation of convolutions. That is why the study of ways to speed up the calcu-
lation of convolutions is important in the study of the cryptosystem BIKE. The use of fast implementations
of convolutions developed in this work will make it possible to estimate the time required to conduct 2_
experiments on a single processor with parameters (𝑟,𝑤, 𝑡) corresponding to the given security level _. For
example, with _ = 30, the experiment time on one processor will be about 24 days, taking into account that
one decoder operation spends 0.000409 seconds (taken from Table 3) and the decoder uses 5 iterations when
decoding. This is a rough estimate, since, on the one hand, for _ = 30 the decoder operating time will be less
than 0.000409, but on the other hand, during decoding, threshold 𝑇 are usually calculated dynamically (see
decoder 1), which can only increase the time of one decoding iteration. However, such approach allows us
to estimate in advance the value of _ for which experiments can be carried out under conditions of limited
computing and time resources.
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Conclusion
It seems that further acceleration of convolutions can be achieved through, for example, the use of

PCLMULQDQ instruction of the processor, which performs the multiplication of polynomials of degree
no higher than 63. This approach is used, for example, in [16] to accelerate decoder for QC-MDPC codes.
Note that the relevance of researching ways to optimize the QC-MDPC encoding/decoding algorithms is as-
sociated not only with the problems of accelerating key generation/encryption/decryption algorithms and
refining security of BIKE system. It seems that the results of such study can make it possible to formulate
requirements for microcircuits that implement these algorithms in hardware, and these results can be trans-
ferred to versions of the BIKE cryptosystem, where quasi-cyclic or quasi-group codes over finite fields of
higher order are used. The presented algorithms for fast vector convolution, can also be used in other areas
as well. For example, it seems that these algorithms can accelerate speed of data embedding in digital images
in adaptive steganographic algorithms.
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