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Chapter 1
Introduction

The main goal of this dissertation is to initiate and lay the basis for a systematic study of
the so-called pp-constructability poset, the study of which is motivated by the serendipitous
connection between Constraint Satisfaction Problems (CSPs) and universal algebra. In
particular, it has been relatively recently proved that the complexity of the CSP of a fixed
finite relational structure depends only on particular identities (universally quantified
equations) satisfied by its polymorphism clone (see [18, 38]).

The origins

Clones have undoubtedly played a prominent role as an object of study in universal
algebra; researchers have used different approaches in order to study clones, making use
of many diverse techniques from fields such as combinatorics, set theory or topology.
However, there is one approach that towers above the rest as it is the core1 of many
fundamental results in clone theory: it is the Galois connection Pol-Inv between operations
and relations, based on the notion of preservation [30, 53, 90].

We could historically locate the initiation of the systematic study of clones already
in the 1940s when Post completely described the lattice of Boolean clones ordered up
to inclusion [91]: the so-called Post’s lattice is countably infinite and enjoys a mirror
symmetry given by clones that are dual to each other, see Figure 5.1. Prompted by the
enthusiasm of this result, researchers tried to obtain a similar description for clones on
sets with more than two elements. This wave of research reached its peak in 1959 when
Janov and Mučnik [61] presented an equally famous result in clone theory: there exists
a continuum of clones over a k-element set for k ≥ 3. The goal to achieve a result à
la Post seemed to falter, subsequent research in universal algebra therefore focused on
understanding particular aspects of clone lattices on finite domains, for example on the
description of maximal clones [60, 92] or minimal clones [42, 43, 93].

One might still hope to classify all operation clones on finite domains up to some
1This word will reappear in this dissertation under mathematical guises. Here by core we refer to the

everyday definition of the world: a central and often foundational part (Merriam-Webster Dictionary).
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equivalence relation so that equivalent clones share many of the properties that are of
interest in universal algebra. Perhaps the most important equivalence relation on clones
is homomorphic equivalence: a function from C to D is called a clone homomorphism
if it preserves the arity of the operations, composition, and maps the i-th projection
of arity n in C to the i-th projection of arity n in D; two clones C and D are called
homomorphically equivalent if there exists a clone homomorphism from C to D and vice
versa. An attractive feature of homomorphic equivalence is that it also relates clones on
different domains.

A research strand that has developed in parallel with clone theory is the study of
varieties and strong Mal’cev conditions, i.e., primitive positive sentences in the language
of clones. In 1974, Neumann [80] defined the notion of interpretability between varieties,
and introduced the lattice of interpretability types of varieties formed by the class of all
varieties under the quasi-ordering V ≤ι W if and only if V is interpretable in W . Indeed,
such a quasi-order generates a lattice LVar that is in a sense the natural setting in which
to attack open problems related to Mal’cev conditions and has therefore been the subject
of study by many researchers both in the 1980s (see, e.g., [51, 58]) and more recently
(see, e.g., [69, 96]).

There is a rather natural link between the notions of clone homomorphism and
interpretability of types of varieties: a variety V is interpretable in a variety W if and
only if there exists a clone homomorphism from Clo(V) to Clo(W); in particular, W
satisfies all the identities that hold in V (see Chapter 4). The origin of the research
on Mal’cev conditions is closely linked to the study of congruence properties, and one
reason might be traced back to the following: in the light of Birkhoff’s theorem [21], it
became clear that in order to understand varieties, it was necessary to study products,
subalgebras, and factors of algebras. While products and subalgebras are relatively easy
to handle, the same cannot be said of algebras obtained by factoring by congruences.
Thus, algebraists began to study the properties of congruences in order to understand
factors of algebras. Concerning the case of locally finite varieties, one can say that the
peak of the systematic study of Mal’cev conditions was reached with the foundation
of Tame Congruence Theory by Hobby and McKenzie [58]; surprisingly, Kearnes and
Kiss [69] generalized many of the results of Hobby and McKenzie without the assumption
of local finiteness. Over the recent past, it turned out that Mal’cev conditions play a
key-role also in a different context, not related to the study of congruence properties,
but rather to the complexity of some specific decision problems known as Constraint
Satisfaction Problems (CSPs).

The Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSPs) provide a common framework for expressing a
vast range2 of both theoretical and real-life combinatorial problems [94]. As a matter

2A. A. Bulatov: "Almost everything is a CSP".
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of fact, the satisfiability problem for systems of linear equations over a Galois field or
the colouring-problem for graphs can be expressed as CSPs of suitable finite relational
structures; similarly, CSPs can also express widespread problems in theoretical computer
science or artificial intelligence such as scheduling, optimisation, and computational
biology, just to mention a few. In short, a CSP is a problem where as an input we get a
finite set of variables and a finite set of constraints that are imposed on the variables, and
the task is to assign values to the variables such that all the given constraints are satisfied.
In its logical formulation, the Constraint Satisfaction Problem of a given finite relational
structure A, in short CSP(A), is the computational problem of deciding whether a given
conjunction of atomic formulae over the signature of A holds in A. The question that
naturally arises is: for a given finite relational structure A, what is the computational
complexity of CSP(A)? What properties enjoyed by A ensure that CSP(A) is tractable
(also, "in P"), i.e., solvable in polynomial time? The first result we can report in this
vein and which provided a complete answer for relational structures on a two-elements
set is due to Schaefer [95]: for every Boolean structure A, either CSP(A) is in P or it
is NP-complete. Additionally, a concrete criterion was presented to distinguish which
of the two cases applies depending on which operations are polymorphisms of A, that
is, operations preserving all the relations in A. Subsequently, Hell and Nešetřil [57]
proved a similar result for undirected graphs. Again, only two different complexity classes
(assuming P 6= NP) show up: for every finite undirected graph G either CSP(G) is in P
or NP-complete. In the light of these results, Feder and Vardi [49] conjectured that such
a dichotomy is enjoyed by all finite relational structures. Note that this would mean that,
despite the wide range of problems that CSP covers, the NP-intermediate problems à
la Ladner [74] do not occur in CSP. In the literature, the Feder and Vardi conjecture is
often referred to as the Dichotomy Conjecture or the Tractability Conjecture.

In the last two decades, research in theoretical computer science has been moving
towards this research line and yielded quite a number of results: the conjecture was
indeed confirmed for structures with three elements [34] (extending Schaefer’s result), for
the class of smooth digraphs [15] (extending the result of Hell and Nešetřil), and for the
class of finite relational structures containing all unary relations [6, 36].

Universal algebra turned out to be a somewhat unexpected "ally" that catalysed the
process which eventually led to a series of results culminating in the complete resolution
of the Dichotomy Conjecture [37, 106, 107] and made this research field fertile.

Back to the future: the algebraic approach

It follows from a result of Bulatov, Jeavons, and Krokhin [38] that the complexity of
CSP(A) depends only on set of identities of a particular form that are satisfied by the
polymorphisms of A. The latter result, together with the fact that the set Pol(A) of all
polymorphisms of any finite relational structure A is a clone, suggested that in order to
solve the Dichotomy Conjecture it would be possible to make use of the rich theory of
universal algebra that focused on studying the connection between identities and "good

3



algebraic properties", thus giving a new impetus to the Pol-Inv Galois connection. This
marked the beginning of the so-called algebraic approach to the CSP which culminated
in an article by Barto, Opršal, and Pinsker [18]: the authors introduced the notion
of pp-constructability which gathered together, in a unique reduction, all the previous
unrelated methods that allow to reduce the CSP of a given structure to the CSP of
another structure. More precisely, if a finite structure A pp-constructs a finite structure
B, then there is a log-space reduction from CSP(B) to CSP(A). Interestingly, the notion
of pp-constructability is connected to a weakening of the notion of clone homomorphism,
known in the literature as minor-preserving map or minion homomorphism. In fact, it
was proved in [18] that, for every pair of finite relational structures A and B, it holds
that A pp-constructs B if and only if there exists a minor-preserving map from Pol(A)
to Pol(B) [18]. Two clones C and D such that there exists a minor-preserving map from
C to D and vice-versa are called minor-equivalent, and we write C ≡m D. As it turned
out, minor-equivalent clones need not satisfy the same Mal’cev conditions, with the
exception of those identities where exactly one operation symbol appears in both sides of
the equality. Such conditions are known in the literature as minor conditions or height 1
conditions and are tightly related to what is often referred to in the literature as linear
Mal’cev condition: the only difference is that, in minor conditions, identities of the form
f(x1, . . . , xn) = y are not allowed since there is no operation symbol occurring on the
right-hand side of the equality; given this, one could say that a linear Mal’cev identity
is an identity of height at most 1. Again in [18], the authors provided an analogue of
Birkhoff’s HSP theorem for classes of algebras described by minor conditions. Thus, the
algebraic approach led to a reformulation of the Dichotomy Conjecture in terms of a
purely algebraic statement, and this indeed turned out to be a key step. In 2017, Bulatov
and Zhuk independently provided a positive resolution to the Dichotomy Conjecture
which we can now finally call the CSP Dichotomy Theorem. In the literature, there
are several equivalent ways of describing the exact borderline between tractability and
hardness; below we present one of them:

Theorem 1.0.1 (CSP Dichotomy Theorem, [37, 106, 107]). If a finite relational structure
A has a weak near-unanimity polymorphism, i.e., there exists an n-ary operation w in
Pol(A), for some n ≥ 3, satisfying

w(x, . . . , x, y) ≈ w(x, . . . , x, y, x) ≈ · · · ≈ w(y, x, . . . , x)

then CSP(A) is solvable in polynomial time; otherwise, it is NP-complete.

Besides the prestigious achievement of having finally solved a conjecture that had
resisted for twenty years, the proof of Theorem 1.0.1 not only gives us a concrete borderline
but also provides an algorithm for solving CSP(A) when this is tractable. Moreover, one
of the greatest points in favour of this theorem is that the achievement of this result
has led as a byproduct to the development of new algebraic theories that aim to better
understand finite algebras. Theories such as Absorption Theory [14], Edge-coloring [37],

4



Strong Subalgebras [108], and Minimal Taylor Algebras [9] go in this direction and add to
a list of already established theories with the same purpose such as Commutator Theory
(see, e.g., [50, 69]) or Tame Congruence Theory [58].

It is indeed in this fruitful context that the main object of study of this dissertation,
i.e., the pp-constructability poset is rooted. Since pp-constructability is a reflexive and
transitive relation, it is a quasi-order on the class of all finite relational structures [18],
hence it makes sense to write A ≤Con B if A pp-constructs B and to consider the induced
equivalence relation A ≡Con B if and only if A ≤Con B and B ≤Con A. The poset that
arises by considering the ≡Con-classes, also known as pp-constructability types, of finite
relational structures ordered up to ≤Con is called the pp-constructability poset and denoted
by Pfin. Note that, via the Pol-Inv Galois connection and the main result from [18],
it follows that Pfin is isomorphic to the poset that one obtains considering ≡m-classes
of clones over a finite set, ordered by the existence of minor-preserving maps. As we
have already mentioned, the study of this poset finds motivation both from CSP and
universal algebra. The homomorphism order on clones has been studied intensively
by Garcia and Taylor [51] and it is, in a certain sense, the natural context in which
Mal’cev conditions and primeness of Mal’cev conditions can be rigorously described (see
Chapter 4). Analogously, the pp-constructability poset is the natural environment to the
study of minor conditions.

Contributions and outline of the dissertation

The results we have already achieved suggest that this area of research may be fruitful
and may lead to a classifications of a flavour similar to Post’s result [91] of the two
principal objects of study of this dissertation: Pfin and Pn, where Pn is the subposet of
Pfin arising from considering only clones over an n-element set.

In Chapter 2 we fix notation and present the mathematical background that is
necessary for an understanding of the results presented throughout the dissertation;
this chapter is purely intended to give an overview of classic and more recent results in
universal algebra and CSP.

Chapter 3 is more goal-oriented and focuses on the pp-constructability poset Pfin.
First, following the article The wonderland of reflections [18], we provide a formal
definition of the poset. Later, we prove results on the "general shape" of Pfin; in
particular, we describe the top element, the bottom element, and prove that Pfin is a
semilattice which has a unique coatom and it has no atoms. On the other hand, it turns
out that for every n, the poset Pn has atoms and every atom is the pp-constructability
type of some minimal Taylor clone [9] over {0, . . . , n − 1}. We conclude Chapter 3
presenting several open problems which are both directly and intrinsically related to Pfin.

Chapter 4 is a collection of results from the literature (mainly from [58] and [69])
concerning Mal’cev conditions. Therefore, this chapter has an almost independent interest
from the rest of the dissertation and, in principle, could be skipped without compromising
the reader’s understanding of the subsequent chapters significantly. However, in this
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chapter we define most of the Mal’cev conditions which will then be used in Chapter 5
and Chapter 6 to prove the separations in P2 and in P3. In addition, the author is not
aware of a survey in the literature covering such a large number of Mal’cev conditions
ordered by strength, thus Chapter 4 might be useful to researchers from different areas.
The impatient reader could then directly read Chapter 5 and Chapter 6 and return to
consult Chapter 4 only when some definition is needed. The author wishes that the
"map" illustrated in Figure 4.2 will be useful for the reader’s orientation, too.

In Chapter 5 we deal with the Boolean case of the pp-constructability poset, that
is, we provide a full description of P2. Furthermore, we use P2 to present the various
complexity regimes of Boolean constraint satisfaction problems that were described by
Allender, Bauland, Immerman, Schnoor, and Vollmer [3].

Chapter 6 is entirely devoted to the three-element case. We prove that P3 has
exactly three submaximal elements. The proof we present is of independent interest in
universal algebra. Indeed, we prove that if C is a clone over a three-element set such
that C has a binary symmetric operation, a 3-cyclic operation, and a Mal’cev operation,
then C also has: a fully symmetric majority operation, totally symmetric operations
of every arity n ≥ 2 and an oddition, i.e., a generalization of the minority operation
over {0, 1}, for every odd arity l ≥ 3. Moreover, we present a complete description of
the downset generated by one of the three aforementioned submaximal elements. More
precisely, we present a full description of the lattice that arises by considering clones of
self-dual operations ordered by the existence of minor-preserving maps. It follows from
our description that the latter lattice is countable, a result that is auspicious towards
obtaining a complete description of P3.

Finally, in Chapter 7 , we present a list of open problems. The aim is to suggest
a possible direction of research that could be beneficial for a better comprehension of
clones over finite sets and, as a byproduct, of the pp-constructability poset.
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Chapter 2
Preliminaries

In this chapter we present notation, definitions and some basic results from the literature
which we are going to use throughout the dissertation. The main aim is to introduce the
reader to several concepts of universal algebra that have many applications in theoretical
computer science, in particular in the classification of the complexity of CSPs. The link
between CSPs and universal algebra revolves around two celebrated Galois connections:
the Mod-Th Galois connection [21] between varieties and sets of identities (Section 2.1),
and the Pol-Inv Galois connection [30, 53] between finite relational structures and finite
algebras (Section 2.3).

2.1 Universal algebra

We assume the reader to be familiar with naive set theory and the elementary theory of
functions. This section is supposed to provide a short introduction that can hopefully
help the reader become familiar with all the ingredients needed in order to introduce
the Mod-Th Galois connection and the Inv-Pol Galois connection. For a more detailed
introduction to universal algebra we refer to the textbooks [20, 40].

2.1.1 Algebras

A type of algebras is a set τ of function symbols, where each symbol is associated with a
positive natural number, called the arity of the symbol.

Definition 2.1.1. An algebra A of type τ is an ordered pair A := (A;FA) where A is
a non-empty set called the universe of A, and FA is a set of finitary operations on A
indexed by symbols in τ such that, for every n-ary function symbol f ∈ τ , there is an
n-ary operation fA on A. We call the elements of FA basic operations of A.

We follow the convention that an algebra is denoted by a capital letter in bold-style,
while its universe is denoted by the same capital letter in italics. Moreover, if A is a
finite set, we say that the algebra A is finite. Throughout the whole dissertation we
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work with finite algebras. If F = {f1, . . . , fn}, we write A = (A; fA
1 , . . . , f

A
n ) instead of

A = (A;FA). If f is a function symbol of arity n, we say that fA is an n-ary function;
if n = 1, n = 2, or n = 3 we say that fA is unary, binary, or ternary, respectively. Also,
when A is clear from the contest, we prefer to write f instead of fA.

Another important notational convention in this dissertation is that if f : Ak → A

is an operation on A and t1, . . . , tk ∈ Am, then f(t1, . . . , tk) denotes the tuple in Am

obtained from applying f componentwise. We also use the convention that if f : A→ B

is a function and S ⊆ A, then f(S) denotes the set {f(a) | a ∈ S} and f−1(S) denotes
the set {f−1(a) | a ∈ S}. Note that the two conventions can be combined.

Example 2.1.2. Let us provide some examples of algebras. In particular, we define the
notions of semilattice and lattice; also, we establish some terminology that we will use
extensively throughout the dissertation.

• Let τ be a type of algebras that consists of a unique binary function symbol ∧. A
semilattice is an algebra S = (S;∧S) of type τ such that for all a, b, c ∈ S

a ∧S a = a;
a ∧S b = b ∧S a;

a ∧S (b ∧S c) = (a ∧S b) ∧S c.

Note that a semilattice naturally carries a partial order. As a matter of fact, by
defining R := {(a, b) ∈ S2 | a ∧S b = a}, we get that (S;R) is a poset.

• Let τ be a type of algebras that consists of two binary function symbols ∧ and ∨. A
lattice is a τ -algebra L = (L;∧L,∨L), such that (L;∧L) and (L;∨L) are semilattices
and

a ∨L (a ∧L b) = a, a ∧L (a ∨L b) = a.

A bounded lattice L is a lattice that has a top element 1 (also called maximum or
supremum) and a bottom element 0 (also called minimum) such that

0 ≤ a ≤ 1, for every a ∈ L.

Let a, b be elements of a poset (L;≤); by Int[a, b] we denote the interval between a and b,
i.e., Int[a, b] := {c ∈ L | a ≤ c ≤ b}. We say that b covers a (or b is covered by a), written
a ≺ b, if Int[a, b] = {a, b}. If L be a bounded lattice, we say that an element a ∈ L is an
atom if 0 ≺ a; analogously, we say that an element a ∈ L is a coatom if a ≺ 1. We say
that s is a submaximal element of L if s is covered by a coatom.

Example 2.1.3. Let τ be a type of algebras that consists of a unique ternary function
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symbol. Consider the following ternary operation d3 on the (Boolean) set {0, 1}:

d3(0, 0, 0) = d3(0, 0, 1) = d3(0, 1, 0) = d3(1, 0, 0) = 0;
d3(1, 1, 1) = d3(1, 1, 0) = d3(1, 0, 1) = d3(0, 1, 1) = 1.

This operation is usually called the majority operation on {0, 1} and the reason for this
name should be clear from the definition of d3. Then A := ({0, 1}; d3) is an algebra of
type τ .

Let A and B be algebras of the same type. A map α : A→ B is a homomorphism
from A to B if for every i, and a1, . . . , an ∈ A, we have

α(fA
i (a1, . . . , an)) = fB

i (α(a1), . . . , α(an)).

If additionally α is bijective, we say that A is isomorphic to B and write A ' B.
Let A = (A;FA) be an algebra and B ⊆ A. We say that B is a subuniverse of A

if for every n-ary fA ∈ FA and for all b1, . . . , bn ∈ B, it holds that fA(b1, . . . , bn) ∈ B.
We say that B is a subalgebra of A if B is a subuniverse of A and every basic operation
of B is the restriction of the corresponding operation of A to the set B. Note that it is
implicit from the definition that A and B are of the same type.

Let {Ai | i ∈ I} be a family of algebras of the same type τ . The direct product of
{Ai | i ∈ I}, denoted by ∏i∈I Ai, is the algebra of type τ , whose universe is the Cartesian
product ∏i∈I Ai, where a basic operation f

∏
i∈I Ai of arity n ≥ 0 is defined as

f
∏
i∈I Ai((a0,i | i ∈ I), . . . , (an−1,i | i ∈ I)) = (fAi(a0,i, . . . , an−1,i) | i ∈ I),

for every function symbol f and (a0,i | i ∈ I), . . . , (an−1,i | i ∈ I) ∈ ∏i∈I Ai.

Definition 2.1.4. Let K be a class of algebras of the same type. We define the following
operators:

• H(K) denotes the class of all homomorphic images of algebras from K;

• S(K) denotes the class of all subalgebras of algebras from K;

• P (K) denotes the class of all finite products of algebras from K;

• P fin(K) denotes the class of all finite products of algebras from K.

If K is such that H(K) ⊆ K, S(K) ⊆ K, and P (K) ⊆ K (P fin(K) ⊆ K), then we
say that K is closed under homomorphic images, closed under subalgebras, and closed
under (finite) direct products, respectively. A class of algebras of the same type which is
closed under homomorphic images, subalgebras and direct products is called a variety. If
K is a class of similar algebras, one might consider a new operator V (K) which denotes
the smallest variety containing K, also referred to as the variety generated by K. A
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celebrated result in the literature, also known as the HSP Lemma, characterizes the
operator V via the operators H, S, and P that we have already defined.

Lemma 2.1.5 ([100]). Let K be a class of algebras of the same type. It holds that

V(K) = HSP (K).

Note that for every variety V there is an algebra A such that V = HSP (A); in this
case we say that A is a generator of V . A variety V is finitely generated if V = V(K) for
some finite K containing finite algebras. A variety V is locally finite if and only if for
all A ∈ V and for all finite subsets {a1, . . . , an} ⊆ A, the subalgebra of A generated by
a1, . . . , an is finite.

The latter lemma provides a syntactic characterization of the operator V . A semantic
characterization can be provided as well: every variety can be described by the identities
satisfied by its members. Let X be a set of variables and let τ be a set of function
symbols. The set of τ -terms over X is the smallest set containing expressions of the form
t(x1, . . . , xn), with x1, . . . , xn ∈ X, such that:

• every variable xi ∈ X is a τ -term;

• if t1(x1, . . . , xn), . . . , tk(x1, . . . , xn) are τ -terms and f ∈ τ is a symbol of arity k,
then (f(t1, . . . , tk))(x1, . . . , xn) is a τ -term.

Definition 2.1.6. An identity (over τ) is a τ -sentence of the form

∀x1, . . . , xn : p(x1, . . . , xn) = q(x1, . . . , xn) (2.1)

where p and q are τ -terms. We often write p ≈ q as a shortcut for (2.1).

Definition 2.1.7. Let Σ be a set of identities over τ . We say that

• an algebra A satisfies Σ, denoted by A |= Σ, if pA = qA for all p ≈ q ∈ Σ.

• a class K of algebras of the same type τ satisfies Σ, denoted by K |= Σ, if A |= Σ
for every A ∈ K.

Let Σ be a set of identities and K be a class of similar algebras. We define

Mod(Σ) := {A | A |= Σ}

called the class of models of Σ and

Th(K) := {p ≈ q | K |= p ≈ q}

called the equational theory of K. We are now ready to present a result due to G. Birkhoff
which states that any variety is the class of models of a certain equational theory, and
viceversa.
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Theorem 2.1.8 ([21]). For every class K of algebras of the same type, we have

V(K) = Mod(Th(K)).

We say that a variety V is finitely presentable if it has finitely many basic operation
symbols and V = Mod(Σ) for some finite set of identities Σ. We conclude this section
with an example.

Example 2.1.9. Note that every non-empty set A can be seen as an algebra A := (A; ∅)
having no basic operations. Let us denote by Sets the class of non-empty sets. Observe
that, if we look at Sets as the class of models of {x ≈ x}, with no basic operation symbols,
it follows that such a class is a variety. Moreover, let E2 be the algebra ({0, 1}; ∅); it is
well-known that Sets = HSP (E2).

2.1.2 Clones

The notion of clone is a fundamental concept in universal algebra as an abstraction
of an algebra. A clone consists of operations which are defined by terms in a given
algebra; clones reappear in multi-valued logic in the form of a collection of truth functions
definable by formulae on a given set of connectives. Although they constitute research of
independent interest in universal algebra and have been used in the study of varieties,
more recently, clones are used in computer science where they appear as a generalization
of "symmetries" in the study of CSPs. In case the reader is interested in a more in-depth
introduction to clone theory, we strongly recommend the textbooks [76, 90, 99].

Definition 2.1.10. A (function) clone C on is a set of operations on a set A such that

• C contains all the projections, i.e., for all 1 ≤ i ≤ n it contains the n-ary operation
prni on A defined by prni (x1, . . . , xn) = xi;

• C is closed under composition, i.e., for every n-ary f ∈ C and for allm-ary operations
g1, . . . , gn ∈ C it holds that the operation f(g1, . . . , gn) ∈ C; where f(g1, . . . , gn) is
defined by

x1, . . . , xm 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

Throughout the dissertation, we denote by En be the set En := {0, 1, . . . , n− 1}. We
define:

O(k)
n = {f | f : Ekn → En}, On =

⋃
k≥1
O(k)
n .

By Pn we denote the set of all projections on the set En; it is immediate to see that Pn
is a clone for every n ≥ 2. Let F ⊆ On, we define 〈F 〉 to be the clone generated by F ,
i.e., the smallest clone which contains F . If F = {f}, we simply write 〈f〉. Moreover, if
C is a clone, then C(n) denotes the set of all at most n-ary operations in C.
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Example 2.1.11. Consider the universe E2 = {0, 1}. Then

• O2, i.e., the set of all operations on E2 is a clone.

• The set P2 of all projections on E2 is a clone and clearly P2 = 〈∅〉.

The following result can be considered folklore, we will obtain it as a byproduct of
the Inv-Pol Galois connection that we are going to present in Section 2.3.

Theorem 2.1.12. All clones of operations on the finite set En form an algebraic lattice
Ln under set inclusion. The lattice operations are defined as follows:

C ∧ D := C ∩ D and C ∨ D := 〈C ∪ D〉.

The least element of the lattice is Pn; the greatest element is On.

Remark 2.1.13. Let C be a clone on a finite set A, we consider the type of algebras τC ,
having an operation symbol f for every fC ∈ C; in this way, C can be viewed as an
algebra of type τC over the universe A. Therefore, one can easily adapt the notions
already defined for algebras to clones. For instance, we can apply the operators from
Definition 2.1.4 also to clones.

Definition 2.1.14. Let C and D be clones, and let ξ : C → D be a mapping that preserves
arities. We say that ξ is a clone homomorphism if

ξ(prni ) = prni and ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)).

Note that, if ξ is a clone homomorphism from C to D then D can be considered as an
algebra of type τC : if f is an operation symbol in τC , we define fD := ξ(fC).

Definition 2.1.15. A set of operations (for instance a clone) F satisfies a set of identities
Σ, denoted F |= Σ, if there is a map ξ assigning to each function symbol occurring in
Σ an operation in F of the same arity, such that if p ≈ q is in Σ, then ξ(p) = ξ(q).
Additionally, we say that an operation f satisfies Σ, and write f |= Σ, if {f} |= Σ.

We are finally ready to present Birkhoff’s famous HSP theorem:

Theorem 2.1.16 ([21]). Let A and B be clones, and let ξ : A → B be a mapping that
preserves arities. The following are equivalent:

(1) every identity satisfied by A is also satisfied by B;

(2) B ∈HSP fin(A);

(3) ξ is a surjective clone homomorphism from A to B.
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2.1.3 Reducts and expansions

Let A := (A;FA) be an algebra, we define Clo(A) to be the clone generated by the basic
operations of A, i.e., Clo(A) = 〈FA〉. We refer to Clo(A) as the clone of term operations
of A. We denote the clone of all n-ary term operations by Clon(A). We say that A and
B are term-equivalent if Clo(A) = Clo(B).

Definition 2.1.17. Let A and B be two algebras such that A = B. We say that B is a
reduct of A if every basic operation of B is in Clo(A); in this case we also say that A is
an expansion of B.

If K is a class of algebras of the same type, we denote by E(K) the class of all
expansions of algebras from K. Following Remark 2.1.13, we extend the definition of
expansion to clones, hence E(C) denotes the class of all clones obtained from the clone
C by adding operations to it. Recall that an algebra A := (A;F ) is idempotent if every
operation of A is idempotent, that is, for every f ∈ F it holds that f(x, . . . , x) ≈ x. By
Aid we denote the idempotent reduct of A := (A;F ), i.e., the algebra Aid := (A;F id)
where F id is the set of all idempotent operations f ∈ 〈F 〉. Likewise, the idempotent
reduct of a clone C is the clone Cid which consists of all idempotent operations in C.
Conservative operations are a particular case of idempotent operations; an operation f is
conservative if f(x1, . . . , xn) ∈ {x1, . . . , xn}.

2.2 Structures and relational clones

A relational signature τ is a set of relational symbols where each symbol is associated
with a natural number called its arity.

Definition 2.2.1. A τ -structure A is a tuple (A; (RA)R∈τ ) where A is a (finite) set called
the universe of A and (RA)R∈τ is a list of relations on A where every relation RA has
the opportune arity specified by τ .

Without loss of generality, throughout the dissertation, we assume that every relational
structure has universe En := {0, . . . , n− 1} for some n ≥ 1, unless otherwise specified.

Example 2.2.2. Let τ be a relational signature consisting of two binary relational
symbols and two unary relational symbols. Consider the relations C2 and ≤2 on the
universe {0, 1} defined as follows:

C2 := {(0, 1), (1, 0)} ≤2 := {(0, 0), (0, 1), (1, 1)}.

Then C≤2 := ({0, 1};C2,≤2, {0}, {1}) is a τ -structure.

Let A be a set and t ∈ Ak. For I = {i1, . . . , in} ⊆ {1, . . . , k} with i1 < · · · < ik we
write prI(t) for the tuple (ti1 , . . . , tin). For R ⊆ Ak we write prI(R) := {prI(t) | t ∈ R} for
the projection of R to the indices from I. If I = {i} for i ∈ {1, . . . , k} then pri(R) denotes
prI(R). A relation R ⊆ Ak is called subdirect if pri(R) = A for every i ∈ {1, . . . , k}.
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Definition 2.2.3. Let A be a τ -structure and B be σ-structure, with τ ⊆ σ. If A = B

and RA = RB for every R ∈ τ , then we say that A is a τ -reduct (or a reduct) of B.

Let A and B be two relational τ -structures, a map h : A→ B is a homomorphism if
for every R ∈ τ

if (a1, . . . , an) ∈ RA, then (h(a1), . . . , h(an)) ∈ RB. (2.2)

We write A→ B if there exists a homomorphism from A to B, and we say that A and B
are homomorphically equivalent if A→ B and B→ A, written A ≡ B. An isomorphism
of A and B is a bijective homomorphism h such that the inverse mapping h−1 : B → A

that maps h(x) to x is a homomorphism, too. In this case we say that A and B are
isomorphic and write A ' B. An embedding of A into B is an injective homomorphism
from A to B such that the implication in (2.2) is an equivalence. An endomorphism of A
is a homomorphism from A to A; an automorphism of A is a bijective embedding of A
into A.

Definition 2.2.4. A finite structure A is called a core if every endomorphism of A is an
automorphism. We say that C is a core of A if C is a core and C ≡ A.

We can talk about the core of a (not necessarily finite) relational structure : it has in
fact been proved that every relational structure has a unique core up to isomorphism [23].

Proposition 2.2.5 ([23]). Every finite structure A has a core, which is unique up to
isomorphism.

For n ≥ 1, we denote by An the structure with same signature τ as A whose domain
is An such that for any k-ary R ∈ τ , a tuple (a1, . . . ,ak) of n-tuples is contained in
RA

n if and only if it is contained in RA componentwise, i.e., (a1j , . . . , akj) ∈ RA for all
1 ≤ j ≤ n.

Definition 2.2.6. A polymorphism of a structure A is a homomorphism from An to A.

We denote by Pol(A) the set of all the polymorphisms of a structure A and we call it
the polymorphism clone of A. Indeed, it is easy to verify that Pol(A) is a clone in the
sense of Definition 2.1.10. When the domain is clear from the contest, we also write
Pol(Γ) instead of Pol((A; Γ)).

Definition 2.2.7. A primitive positive formula (over τ) is a first-order formula which
only uses relation symbols in τ , equality, conjunction and existential quantification.

When A is a τ -structure and φ(x1, . . . , xn) is a τ -formula with n free-variables
x1, . . . , xn then {(a1, . . . , an) | A |= φ(a1, . . . , an)} is called the the relation defined by φ.
If φ is primitive positive, then this relation is said to be pp-definable in A.

Definition 2.2.8. A relational clone is a set of relations Γ which is closed under defining
new relations via primitive positive formulae.
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Analogously to the case of clones: let Γ be a set of relations on a universe A, we
define 〈Γ〉 to be the relational clone generated by Γ, i.e., the smallest relational clone
which contains Γ.

2.3 The Inv-Pol Galois connection

The Galois connection between relational clones and clones was originally proved by
Bodnarčuk, Kalužnin, Kotov, and Romov [30], and indipendently by Geiger [53]. They
proved that a relation R has a primitive positive definition in a finite relational structure
A if and only if R is preserved by all polymorphisms of A. This connection turned out
to be a fertile research ground: Pöschel investigated the general case where the domain
may be infinite [89]; more recently, Jeavons [62, 63] gave a new life to the Inv-Pol Galois
connection by showing that it plays a crucial part in the study of the complexity of CSPs
(see Section 2.5).

Definition 2.3.1. We say that an operation f : An → A preserves a k-ary relation R on
A, written f BR, if for every

a1,1
a1,2
...

a1,k

 , . . . ,

an,1
an,2
...

an,k

 ∈ R, then

f(a1,1, . . . , an,1)
f(a1,2, . . . , an,2)

...
f(a1,k, . . . , an,k)

 ∈ R.

In this case we also say that the relation R is invariant under f .

Note that we already introduced the notion of polymorphism in Definition 2.2.6,
equivalently: a polymorphism of a relational structure A := (A; Γ) is an operation that
preserves Ri for each relation Ri ∈ Γ.

Example 2.3.2. Consider the structure B2 := ({0, 1};B2) with a single binary relation
B2 := {0, 1}2 \ {(0, 0)}. Let us define the following operations

∨ 0 1
0 0 1
1 1 1 m(x, y, z) := x⊕ y ⊕ z

where ⊕ is the usual addition modulo 2. We claim that ∨ ∈ Pol(B2) and m /∈ Pol(B2).
Suppose ∨ /∈ Pol(B2), then we would have the following

∨
(
a1 b1
a2 b2

)
:=
(
∨(a1, b1)
∨(a2, b2)

)
=
(

0
0

)
, (2.3)

where (a1, a2), (b1, b2) ∈ B2. By definition, ∨(a1, b1) = 0 if and only if a1 = b1 = 0. Since
(a1, a2) ∈ B2, we have that a2 = 1 and therefore ∨(a2, b2) = 1. This is in contradiction
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with (2.3). On the other side, consider the following

m

(
0 1 1
1 1 0

)
:=
(
m(0, 1, 1)
m(1, 1, 0)

)
=
(

0
0

)
. (2.4)

Every column of the matrix in (2.4) is a tuple in the relation B2; by applying m

componentwise we get (0, 0) /∈ B2.

Definition 2.3.3. Let F be any set of operations on a universe A and let Γ be any set
of relations on A. We define:

Pol(Γ) := {f | ∀R ∈ Γ, f BR},
Inv(F ) := {R | ∀f ∈ F, f BR}.

We already stressed in Section 2.2 that for all Γ, the set Pol(Γ) is a clone; note
that for every set of operations F , the set Inv(F ) is a relational clone. It follows that
〈F 〉 ⊆ Pol(Inv(F )) and 〈Γ〉 ⊆ Inv(Pol(Γ)). The next two theorems show that, in the
finite case, the inclusion ⊇ holds, too.

Theorem 2.3.4. Let F be a set of operations on a finite universe, then it holds that
Pol(Inv(F )) = 〈F 〉.

In particular, a relation is pp-definable in a relational structure A if and only if it is
preserved by every polymorphism of A.

Theorem 2.3.5 ([30, 53]). Let Γ be a set of relations on a finite universe, then
Inv(Pol(Γ)) = 〈Γ〉.

Definition 2.3.6. Let A be a structure on a universe A. An algebra A with universe A
is called a polymorphism algebra of A if Clo(A) = Pol(A).

It follows from the Galois connection [30, 53] that we presented in this section that
every finite algebra A is the polymorphism algebra of some suitable relational structure
A with the same universe.

Definition 2.3.7. An algebra A is called finitely related if finitely many relations suffice
to determine Clo(A), i.e., if Clo(A) = Pol(A) and A has finitely many relations.

Example 2.3.8. Consider the algebra A from Example 2.1.3 and the structure C≤2 from
Example 2.2.2. It is well known that Clo(A) = Pol(C≤2 ) = 〈d3〉, where d3 is the majority
operation defined in Example 2.1.3. In particular, A is finitely related since C≤2 has finite
signature.

Throughout the dissertation, we denote clones in calligraphic-style with the following
convention: we often refer to Clo(A) = Pol(A) as A, unless otherwise specified.
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2.4 CSP in a nutshell

This dissertation does not focus on the Constraint Satisfaction Problem (CSP), which
rather is a topic that runs through this dissertation only in a cross-cutting way; in this
section we simply fix some terminology with the aim of setting the pp-constructability
poset in a broader context, the study of which is also strongly motivated by questions
about CSPs. There are different variants of CSPs and, depending on the research area,
different approaches to it; in the present dissertation by CSP(A) we refer to the decision
version of the CSP of A, where A is a fixed finite relational structure and we are interested
in what is now referred to as the algebraic approach to CSP [18, 38]. Here we try to give a
general overview of CSP for finite structures, yet trying to keep the presentation concise.
We strongly recommend the surveys [5] and [17] for the basics of the finite domain CSP;
indeed, most of the examples we are going to present in this section are taken from [17].
For an introduction to complexity theory and for the definition of all the complexity
classes that we are going to mention throughout the dissertation, we refer the reader to
the textbook [85]. The reader who is particularly interested in CSP, can find a detailed
discussion of the current state of research and the problems still open in this area in the
book [24].

For a finite relational signature τ and a τ -structure A, the CSP(A) is the membership
problem of the class

{S | S is a τ -structure and there exists a homomorphism from S to A}.

Equivalently, CSP(A) can be expressed as the membership problem of the set of primitive
positive sentences which hold in A.

Definition 2.4.1. An instance of the CSP is a triple (V,D,C) where

• V is a finite set of variables,

• D is a finite domain,

• C is a finite set of constraints: each constraint is a pair C = (x, R) where x is a
tuple of variables of length n and R is an n-ary relation on D.

An assignment is a mapping f : V → D; we say that an assignment f satisfies a constraint
C := (x, R) if f(x) ∈ R. An assignment is a solution if it satisfies all constraints.

Let us provide some examples of computational problems that can be expressed as
CSP(A) for suitable finite relational structures A.

Example 2.4.2 (n-colorability). Given a graph G and a fixed natural number n, the
n-colorability problem is to decide whether it is possible to assign colors {0, . . . , n− 1}
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to the vertices of G such that adjacent vertices receive different colors. This problem is
equivalent to CSP(Kn) where

Kn := (En; 6=n) and 6=n := {(a, b) | a, b ∈ En and a 6= b}.

Indeed, if we consider variables as vertices and draw an edge from x to y whenever the
instance contains the constraint x 6=n y, then we get a graph. It is easy to check that
the original instance has a solution if and only if the obtained graph is n-colorable. The
translation in the other direction is similar. The n-coloring problem is NP-complete for
k ≥ 3 (see e.g., [85]); on the other hand, the 2-coloring problem is solvable in polynomial
time, in fact, it is in the complexity class L. Throughout the dissertation we prefer to
write C2 instead of K2.

Example 2.4.3 (n-SAT). The problem n-SAT, for a natural number n, is the problem
where the instance is a Boolean formula in conjunctive normal form with exactly n literals
per clause and the question is whether there is a Boolean assignment for the variables
such that in each clause at least one literal is true. It is well known that 3-SAT is an
NP-complete problem. The problem 2-SAT, instead, is solvable in polynomial time, and
is in fact complete for the complexity class NL under log-space reductions [85]. Moreover,
2-SAT is equivalent to CSP(C≤2 ), where C≤2 is the structure from Example 2.2.2.

Example 2.4.4 (HORN-SAT). The problem HORN-SAT is a version of 3-SAT where
each clause may have at most one positive literal. This problem is known to be equivalent
to CSP(HORN) where

HORN := (E2;R110, R111, {0}, {1})) and Rabc := {0, 1}3 \ {(a, b, c)}.

HORN-SAT is solvable in polynomial time, and is in fact a P-complete problem under
log-space reductions [85].

Example 2.4.5 (Linear equations). The problem 3-LIN(p), for a prime number p, has
as an input a system of linear equations over the Galois field over Ep (usually denoted
by Zp), where each equation has 3 variables; the question is whether the system has a
solution. this problem is equivalent to CSP(3LINp) where

3LINp := (Ep; all affine subspaces Rabcd of Z3
p of dimension 2), and

Rabcd := {(x, y, z) ∈ Z3
p | ax+ by + cz = d}.

This problem is solvable in polynomial time, e.g., by Gaussian elimination and it is
complete for the class ModpL [39].

Example 2.4.6 (s, t-connectivity). The STCON problem has as an input a directed
graph and two of its vertices, s and t; the question is whether there exists a directed path
from s to t. The constraint satisfaction problem CSP(B≤), where B≤ := (E2;≤2, {0}, {1})
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and ≤2 is the relation defined in Example 2.2.2 is closely related to s, t-connectivity;
indeed, from an instance of CSP(B≤) we get a graph in the same way as we did in
Example 2.4.2 and then label some vertices 0 or 1 according to the unary constraints.
The original instance of CSP(B≤) has a solution if and only if there is no directed
path from a vertex labeled 1 to a vertex labeled 0. Thus, both STCON and CSP(B≤)
can be solved in polynomial time and in particular are NL-complete under log-space
reductions [59, 98].

2.5 Reductions that preserve the complexity of CSPs

We already mentioned in Section 2.4 that the CSP over a fixed language can also be
formulated as the homomorphism problem between relational structures with a fixed
target structure [49, 62]. Hence, by definition, if A and B are homomorphically equivalent,
then CSP(A) and CSP(B) are log-space equivalent. In this section we briefly recap some
reductions that preserve the complexity of CSPs. Most of the results that we are going
to present in this section are directly taken over or reformulated from [30, 38, 53]. For
more details we strongly recommend the survey [17].

Definition 2.5.1. A relational structure A is a rigid core if A has only the identity as
an endomorphism.

For finite structures there is the following characterization of rigid cores.

Theorem 2.5.2 ([18]). Let A := (A; Γ) be a finite relational signature. Then the following
are equivalent:

• A is a rigid core;

• for every a ∈ A, the relation {a} ∈ 〈Γ〉.

Following the latter result, we denote by Ac the rigid core obtained by adding all
singleton unary relations to A.

Proposition 2.5.3 ([18]). Let A be a finite core with a finite relational signature. Then
CSP(A) is equivalent to CSP(Ac) under log-space reductions.

Moreover, the notion of rigid core is closely related to the notion of idempotent reduct
(Section 2.1.3) as explained in the next proposition.

Proposition 2.5.4. Let A be a relational structure that is a core and let A := Pol(A).
Then Aid = Pol(Ac).

We already defined, in Section 2.2, when a relation is pp-definable in a structure.
We can easily extend this notion to structures: let A and B be structures on the same
universe, we say that A pp-defines B, written A ≤Def B, if every relation in B can be
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pp-defined in A. It is easy to check that the relation ≤Def is indeed a preorder on all
the structures having the same universe; we denote by ≡Def the associated equivalence
relation, which we call interdefinability. The next result is an immediate consequence of
the Galois connection from Section 2.3.

Theorem 2.5.5 ([30, 53]). Let A and B be structures on the same finite universe A, and
let A = Pol(A) and B = Pol(B). Then A ≤Def B if and only if A ⊆ B.

In the early ’40s Post completely described L2, i.e., the lattice that arises by considering
all Boolean clones ordered by inclusion [91]. It turns out that this lattice, which is
named the Post’s Lattice, is countable. More details about this lattice can be found in
Section 5.1. The order that arises from pp-interdefinability allows us to compare CSPs of
finite structures with the same universe.

Proposition 2.5.6 ([38]). Let A and B be relational structures. If A pp-defines B then
CSP(B) is log-space reducible to CSP(A).

A more powerful tool, which can also be used to compare structures with different
domains, is pp-interpretability.

Definition 2.5.7. Let A and B be structures with possibly different universes and
signatures. We say that A pp-interprets B, written A ≤Int B, if there exists d ≥ 1 and a
surjective mapping I : Ad → B such that the following relations are pp-definable in A:

• the domain of I;

• the preimage of the equality relation in B under I;

• the preimage of every relation in B under I

where the preimage of every n-ary relation in B under I is regarded as a dn-ary relation
in A.

Proposition 2.5.8 ([38]). Let A and B be relational structures. If A pp-interprets B
then CSP(B) is log-space reducible to CSP(A).

Again, via the Inv-Pol Galois connection, we obtain a similar result to Theorem 2.5.5.
In Definition 2.1.14 we introduced the notion of clone homomorphism. Consider the
following preorder: we write A �h B if and only if there exists a clone homomorphism
from A to B. The next theorem is obtained as a combination of results from [21] and [38].

Theorem 2.5.9 ([21, 38]). Let A and B be finite structures, and let A = Pol(A) and
B = Pol(B). Then A ≤Int B if and only if A �h B.

In the 1980’s, Garcia, Taylor [51], and independently Neumann [80] studied the so
called lattice of interpretability types of varieties. It turns out that such lattice is isomor-
phic to the lattice that arises from the order considered in Theorem 2.5.9. Let Clo(V)

20



be equal to Clo(A) for some generator A of V. The notion of interpretability between
varieties [80] translates to clone homomorphism as follows: V has an interpretation in
W if there exists a clone homomorphism from Clo(V) to Clo(W). The lattice of inter-
pretability types of varieties was used to attack some open problems concerning Mal’cev
conditions and it is, in a sense, the natural environment for studying Mal’cev conditions.
Indeed, every Mal’cev condition determines a filter in the lattice of interpretability types
of varieties, see Chapter 4 for more details.

In Chapter 3 we deal with a coarser poset which we will use to study minor conditions,
a particular case of strong linear Mal’cev conditions. This poset arises by considering
finite relational structures ordered by pp-constructability, a new reduction introduced
by Barto, Opršal, and Pinsker [18] that combines all the reductions presented in this
section.
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Chapter 3
The pp-constructability poset

We concluded Chapter 2 presenting two posets that have been studied in universal algebra
for reasons that are of independent interest: the study of clones, varieties, and Mal’cev
conditions. In a recent turn of events, clones and Mal’cev conditions have been shown to
be of great importance in studying the complexity of CSPs. Barto, Opršal, and Pinsker
found unsatisfactory to have several uncorrelated methods of proving reductions between
CSPs. In the celebrated article The wonderland of reflections [18] they introduced a
coarser order than ≤Def and ≤Int which we presented in Section 2.5. All the mentioned
posets preserve the complexity of the CSPs (see Proposition 2.5.6 and Proposition 2.5.8).

3.1 The wonderland of reflections

3.1.1 Primitive positive constructions

Definition 3.1.1. Let A, B be relational structures. We say that A pp-constructs B, in
symbols A ≤Con B, if there exists a sequence A = S1, S2, . . . , Sk = B such that for every
1 ≤ i < k

• Si pp-interprets Si+1, or

• Si+1 is homomorphically equivalent to Si, or

• Si is a core and Si+1 is obtained from Si by adding a singleton unary relation.

Barto, Opršal, and Pinsker introduced a weakening of pp-interpretations which
together with homomorphic equivalence covers all reductions presented in Section 2.5. A
relational structure B is a pp-power of A if it is isomorphic to a structure with domain
An, where n ≥ 1, whose relations are pp-definable from A. Recall that a k-ary relation
on An is regarded as a kn-ary relation on A.

Theorem 3.1.2 ([18]). Let A and B be relational structures. Then A pp-constructs B if
and only if B is homomorphically equivalent to a pp-power of A.
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The next result asserts that, analogously to pp-definability and pp-interpretability,
pp-constructability preserves the complexity of CSPs:

Proposition 3.1.3 ([18]). Let A and B be relational structures. If A pp-constructs B
then CSP(B) is log-space reducible to CSP(A).

As an example, we would like to mention that every finite core A pp-constructs its
rigid core Ac.

Lemma 3.1.4 ([18]). Let A be a finite core. Then A pp-constructs Ac. In particular,
A ≡Con Ac.

Since pp-constructability is a reflexive and transitive relation on the class of all finite
relational structures [18], the equivalence relation ≡Con can defined by as follows

A ≡Con B :⇔ B ≤Con A ∧ A ≤Con B.

The equivalence classes of ≡Con are called the pp-constructability types and we denote by
A the pp-constructability type of A. For any two relational structures A and B we write
A ≤Con B if and only if A ≤Con B. We also write A <Con B if A ≤Con B and B �Con A.
The poset

Pfin := ({A | A is a finite structure};≤Con)

is called the pp-constructability poset. We denote by Pn the pp-constructability poset
restricted to structures with domain En.

3.1.2 Minor-preserving maps

An alternative, yet equivalent, approach to the pp-constructability poset involves a
weakening of the notion of clone homomorphism and particular identities called minor
identities. In the literature minor-preserving maps are also known as minion homomor-
phisms and occupy a central part in the algebraic theory inherent to the study of promise
CSPs [10]. However, we refrain from defining minions in this dissertation, thus we opt
for the name minor-preserving map.

Definition 3.1.5. Let τ be a set function symbols. An identity is said to be a minor
identity if it is of the form

f(xπ(0), . . . , xπ(n−1)) ≈ g(xσ(0), . . . , xσ(m−1))

where f, g are function symbols in τ , and π : En → Er and σ : Em → Er are mappings.

In other words, we require that there is exactly one occurrence of a function symbol
on both sides of the equality. The use of nested terms is forbidden. Identities of the
form f(x1, . . . , xn) ≈ y are forbidden as well. A minor condition is a finite set Σ of
minor identities. The reader might notice that the notion of minor condition is closely
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related (see Remark 4.3.2) to the notion of strong linear Mal’cev condition which has
been intensively studied in the literature (see ,e.g., [51, 69, 80, 96]). One difference is
that, in strong linear Mal’cev conditions, identities of the form f(x1, . . . , xn) ≈ y are
allowed. There is a way to get around this little difference and still make use of several
results on Mal’cev conditions from the literature; we will mention it later in this chapter.
A minor condition Σ is trivial if Pn |= Σ for some n ≥ 2; it is non-trivial otherwise.

In Chapter 4 we deal with Mal’cev conditions in more detail, providing concrete
examples and ordering them by strength.

Let f be any n-ary operation, and let σ be a map from En to Er. We denote by fσ
the following r-ary operation

fσ(x0, . . . , xr−1) := f(xσ(0), . . . , xσ(n−1)).

Any operation of the form fσ, for some map σ : En → Er, is called a minor of f .

Definition 3.1.6. Let A and B be clones and let ξ : A → B be a mapping that preserves
arities. We say that ξ is a minor-preserving map if

ξ(fσ) = ξ(f)σ

for any n-ary operation f ∈ A and σ : En → Er.

We write A �m B if there exists a minor-preserving map ξ : A → B, and we denote
by ≡m the equivalence relation where A ≡m B if A �m B and B �m A; in this case
we say that A and B are minor-equivalent or that A and B collapse. Analogously to
pp-constructability types, we denote by A the ≡m-class of A and we write A �m B if
and only if A �m B. We also write A ≺m B if A �m B and B �m A.

An example of collapse comes from Lemma 3.1.4: phrased in terms of clones, this
means that every clone of the form C = Pol(A), where A is a finite core, is minor-equivalent
to its idempotent reduct.

Lemma 3.1.7 ([18]). Let A be a finite core and let C = Pol(A). It holds that C ≡m Cid.

3.1.3 Reflections

We present another characterization of the pp-constructability poset. Barto, Opršal,
and Pinsker [18] also characterized what happens on the algebraic side of the picture
when one compares relational structures by a pp-power or a homomorphic equivalence.
The notion of reflection, which we are going to present in this section, somehow is the
algebraic counterpart of the notion of homomorphic equivalence. By defining a new
operator R for reflections, they obtain a Birkhoff-like theorem, also known as linear
Birkhoff or ERP-theorem.

Definition 3.1.8. Let B be an algebra of type τ , let A be a set, and let g : A→ B and
h : B → A be two maps. Then the reflection of B with respect to g and h is the algebra
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A of type τ on the universe A where for all a1, . . . , an ∈ A and for every n-ary f ∈ τ we
define

fA(a1, . . . , an) := h(fB(g(a1), . . . , g(an))).

We denote by R(K) the class of all reflections of algebras in K, where K is a class
of algebras of the same type. Once again, as we did previously for the operators E, H,
S, and P, we apply the operator R also to clones, with the obvious meaning. First, we
present an analogous to the HSP Lemma (Lemma 2.1.5).

Lemma 3.1.9 ([18]). Let K be a class of algebras of the same type τ . Then RP fin(K) is
the smallest class of algebras of type τ which contains K and is closed under the operators
R, H, S, and P fin.

Now we are ready to present the linear Birkhoff theorem (for finite structures) which
is essentially the genesis of the pp-constructability poset.

Theorem 3.1.10 ([18]). Let A and B be finite structures, and let A = Pol(A) and
B = Pol(B). Then the following are equivalent:

(1) A ≤Con B (i.e., A pp-constructs B);

(2) every minor condition satisfied by A is also satisfied by B;

(3) A �m B (i.e., there exists a minor-preserving map from A to B);

(4) B ∈ ERP fin(A);

Remark 3.1.11. Note that the latter theorem provides an important tool to prove that
two elements are distinct in Pfin: a compactness argument shows that if A �Con B, then
there is a minor condition Σ which is satisfied in A but not in B. In this case we also say
that Σ is a witness of A �Con B, equivalently of A �m B.

Corollary 3.1.12 ([18]). Let A be a finite relational structure, let C be the core of A
and let Cc be the expansion of C by all unary relations {a}a∈C . Then:

(1) A ≡Con C ≡Con Cc;

(2) for every minor condition Σ, Pol(A) |= Σ if and only if Pol(Cc) |= Σ.

From Theorem 3.1.10 it also follows that the notions presented in the three sections
of the current chapter are equivalent; also note that every clone C on a finite set is of
the form C = Pol(C), for some finite relational structure C. In the light of this result, as
anticipated at the end of Section 3.1.2 the poset

({C | C is a clone on a finite set};�m)

is isomorphic to Pfin. In fact, we call both posets Pfin.
Moreover, combining Theorem 3.1.10 and Lemma 3.1.4 it follows that, in order to

prove that two elements are distinct in Pfin, it is sufficient to focus on idempotent clones.
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Corollary 3.1.13 ([18]). Let A be a finite relational structure and let C be its core.
Then, for every minor condition Σ we have that Pol(A) |= Σ if and only if Pol(Cc) |= Σ.

Remark 3.1.14. Unlike the case with the operators presented in Theorem 2.1.16, the
reflection of a function clone does not necessarily have to be a function clone as it is not
required to contain the projections or be closed under composition. Thus, we do not
have a result of a flavour similar to Theorem 2.1.12 and we do not know whether Pfin is
a lattice or not. In Section 3.2 we prove that Pfin is a semilattice.

3.2 The shape of Pfin

In this section, we provide general results on the pp-constructability poset when we do
not impose any restrictions on either the domain or the signature. We therefore answer
natural questions such as: is Pfin a lattice? What is the top/bottom element of Pfin?
Does Pfin have atoms? Similar issues will be addressed again in Chapters 5 and 6 where
we restrict the domain to two-element sets and three-element sets, respectively.

First, we show that Pfin is a meet-semilattice. The question whether it is a lattice or
not is still open (see Question 7.0.1). Let A and B be finite relational structures; for every
f ∈ Pol(A) and g ∈ Pol(B) we define h := (f, g) ∈ Pol(A)× Pol(B) to be the operation
on A×B defined as follows

h((a1, b1), . . . , (an, bn)) := (f(a1, . . . , an), g(b1, . . . , bn))

where ai ∈ A and bi ∈ B for every i ∈ {1, . . . , n}.
Let ΓA⊗B := Inv({(f, g) | f ∈ Pol(A), g ∈ Pol(B)}); we define

A⊗ B := (A×B; ΓA⊗B).

Proposition 3.2.1. Let A and B be finite relational structures. Then A⊗ B is the
greatest lower bound of A and B.

Proof. From Theorem 2.3.4 it follows that Pol(A⊗ B) = Pol(A)× Pol(B). It is straight-
forward to check that, for every f ∈ Pol(A) and g ∈ Pol(B), the maps (f, g) 7→ f

and (f, g) 7→ g are minor-preserving maps from Pol(A ⊗ B) to Pol(A) and to Pol(B),
respectively. Hence, A⊗ B ≤Con A,B and A⊗ B is a lower bound for A and B.

Now we show that A⊗ B is the greatest lower bound: suppose S ≤Con A,B. By
Theorem 3.1.10 there exist minor-preserving maps ξ1 : Pol(S)→ Pol(A) and ξ2 : Pol(S)→
Pol(B). Then, for every h ∈ Pol(S), the map ξ : h 7→ (ξ1(h), ξ2(h)) is a minor-preserving
map from Pol(S)→ Pol(A⊗ B), and therefore S ≤Con A⊗ B.

3.2.1 The top element

In this section we prove that the pp-constructability poset has a maximum. In particular,
we show that the top element of Pfin is the pp-constructability type of the loop graph,
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i.e., of the structure C1 := ({0}; {(0, 0)}). Indeed, it is immediate to see that every finite
structure pp-constructs C1.

Proposition 3.2.2. Every finite structure A pp-constructs C1.

Proof. Let A be a finite structure on the universe En for some n ≥ 1. Let A′ be the
structure (En;R), where R is defined by the primitive positive formula

R(x, y) := ∃z (z = z).

Clearly, A′ is homomorphically equivalent to C1.

It follows that C1 is the top element of Pfin. Observe that C1 corresponds to the class
of finite relational structure whose CSP is trivial: every finite structure F homomorphically
maps to some structure S ∈ C1. We now give a description of the top element of Pfin
from the perspective of clones. A constant operation (of arity n) is an operation cn

defined as follows
cn(x1, . . . , xn) := c

where c ∈ Em, for some n,m ≥ 1; if n = 1, we simply write c to denote the unary
constant operation c1. We want to remark that if C has a constant operation cn, for some
n, then it has a constant operation for every arity.

Theorem 3.2.3. Let A be a clone on a finite set and let B be a clone on a finite set
with a constant operation. Then A �m B.

Proof. Note that B contains a constant operation cn of arity n for every n ≥ 1. The map
ξ : A → B that maps every n-ary operation to cn is minor-preserving.

An immediate consequence of Theorem 3.2.3 is that all clones with a constant
operation belong to the same ≡m-class. Let 〈0〉 be the clone generated by the unary
constant operation 0.

Corollary 3.2.4. The ≡m-class 〈0〉 is the top element of Pfin.

Note that for every minor condition Σ, it holds that 〈0〉 |= Σ. In particular, the clone
〈0〉 satisfies the identity f(x) ≈ f(y) which is not satisfied by any idempotent operation.
This remark will be useful to us later in this dissertation, e.g., in Proposition 5.3.13.

3.2.2 The unique coatom

We continue our investigation of Pfin by studying what lies immediately below the top
element C1. It turns out that Pfin has a unique coatom, that is, there is exactly one
element of Pfin that is covered by the top element C1.

For every n ≥ 2 we denote by In the structure In := (En; {0}, . . . , {n− 1}). We show
that I2 is the unique coatom of Pfin. Observe that I2 := Pol(I2) is the clone that consists
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of all idempotent operations on {0, 1}, see Proposition 2.5.4. Note that, for every n ≥ 2,
Pol(C1) �m Pol(In), since Pol(C1) satisfies the minor identity f(x) ≈ f(y), while Pol(In)
does not. Therefore, for every n ≥ 2, the structure C1 does not pp-construct In.

Proposition 3.2.5. For every finite relational structure A exactly one of the following
holds: either C1 ≤Con A or A ≤Con I2.

Proof. Let A be a relational structure and let B be its core expanded by all unary relations.
By Corollary 3.1.12 it holds that C1 pp-constructs A if and only if C1 pp-constructs B and
A pp-constructs I2 if and only if B pp-constructs I2. Thus, we are going to prove the claim
for B. Let B = {b0, . . . , bn−1} be the domain of B. If n = 1, then it is straightforward
to see that C1 ≤Con B. Let us assume that n > 1, we need to show that B ≤Con I2.
Consider the pp-power S := ({b0, . . . , bn−1};O, I) of B, where O and I are the unary
relations defined by the formulae O(x) := (x = b0) and I(x) := (x = b1), respectively.
Let us define the maps g : S→ I2 that maps b0 to 0 and every other element to 1 and
h : I2 → S that maps 0 to b0 and 1 to b1. It is straightforward to check that g and h are
homomorphisms. Thus I2 and S are homomorphically equivalent and B ≤Con I2.

Proposition 3.2.6. For every n ≥ 2 it holds that I2 ≡Con In.

Proof. First, we show that I2 ≤Con In. Consider the structure S := ({0, 1}n; Φ0, . . . ,Φn−1)
where each Φi is defined as follows:

Φi := {(x0, . . . , xn−1) | (xi = 1) ∧
∧

j∈En\{i}
(xj = 0)}.

Let us denote by ei ∈ {0, 1}n the tuple that has a 1 in the i-th coordinate and 0s
elsewhere. The maps

g : i 7→ ei h : x 7→

i if x = ei,

0 otherwise.

are respectively homomorphisms from In to S and from S to In. This proves that
I2 ≤Con In. The other inclusion follows from Proposition 3.2.5.

As a consequence, one can think of I2 as the class of clones on finite sets that satisfy
every minor condition that does not imply the existence of a constant operation.

3.2.3 The bottom element

Some well-known problems, such as 3-SAT, 2-SAT, HORN-SAT, systems of linear
equations over finite fields or the 3-colorability problem, can be formulated as CSPs over
suitable finite relational structures (see Section 2.4). In fact, it was conjectured that
finite structures enjoy the following dichotomy: for every finite relational structure A,
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either CSP(A) is NP-complete, or it is solvable in polynomial time [49]. Recently, the
dichotomy conjecture was proved independently by Andrei Bulatov [37] and Dmitriy
Zhuk [106, 107]. It follows from Proposition 3.1.3 that structures with a "hard" CSP lie
at the bottom of Pfin. What is satisfactory in our setting is that, in a sense, there is
actually only one reason of hardness: the class of all structures whose CSP is NP-complete
coincides with K3, i.e., the pp-constructability type of the complete graph over three
vertexes, or equivalently, with P2, where P2 is the clone of all projections on {0, 1}. In this
section we prove that P2 is indeed the bottom element in Pfin. Furthermore, we provide
examples of relational structures structures A such that A is the bottom element in Pfin;
also, in Theorem 3.2.18 we provide a characterization of the bottom element in terms of
pp-constructability, satisfiability of particular identities, and via minor-preserving maps.

Let K3 be the complete graph over {0, 1, 2}, i.e.,

K3 := ({0, 1, 2};R 6=) where R 6= := {(x, y) ∈ {0, 1, 2}2 | x 6= y}.

The following result can be considered folklore (see, e.g., [24]).

Theorem 3.2.7. The structure K3 pp-interprets every finite relational structure.

Corollary 3.2.8. For every finite structure A it holds that K3 ≤Con A and therefore K3
is the bottom element in Pfin.

As we already pointed out in Example 2.4.2, CSP(K3) is equivalent to the 3-colorability
problem which is known to be NP-complete (see e.g. [52]). There are other NP-complete
problems which can naturally be expressed as CSP(S) for some suitable finite structure
S; here we present two relational structures whose CSP expresses variants of 3-SAT. Let
us define the following Boolean relational structures

1IN3 := ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}), and
NAE := ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

Here the relations of 1IN3 and of NAE should be read as one-in-three and not-all-equal,
respectively, two names that rather faithfully describe the tuples that are in the two
relations. It is known that CSP(1IN3) and CSP(NAE) correspond to the well-known
problems (1-IN-3)-SAT and NAE-SAT, respectively; both of these problems are known to
be NP-complete. Combining these results with Proposition 2.5.8 we obtain the following
corollary.

Corollary 3.2.9. Let A be a finite structure and let S ∈ {K3, 1IN3,NAE}. If A ≤Int S,
then there exist a reduct A′ of A with a finite relational signature and such that CSP(A′)
is NP-complete.

Now we move to the other side of the Galois connection. The next result can be
considered folklore; for a detailed illustration, we recommend Section 2 in [14].
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Proposition 3.2.10. The relational structure Kc3 has no other polymorphisms than the
projections. That is Pol(Kc3) = P3.

The next result basically follows from Theorem 2.1.16 and from the fact that the
variety Sets of all sets is generated by the two element set {0, 1}.

Proposition 3.2.11. For every n ≥ 2 we have that P2 ≡Con Pn.

Proof. Let En := (En; ∅); it is known that HSP (En) = HSP (E2) and Clo(En) = Pn,
for every n ≥ 2. The claim follows from Theorem 2.1.16.

The next result follows from a straightforward combination of the previous propositions
and Theorem 3.1.10.

Proposition 3.2.12. There is a clone homomorphism from P2 to every clone on a finite
set. Therefore P2 is the bottom element in Pfin.

We could have achieved the same result using the fact that the variety Sets interprets
in every variety V and by using the correspondence between the notion of interpretability
of varieties and notion of clone homomorphism, see Section 2.5 (c.f. Example 4.1.2). In
Figure 3.1 we show a draft of the shape of the semilattice Pfin, in its two facets; on the
left: every element of Pfin is the ≡Con-class of some suitable finite relational structure.
On the right: every element of Pfin is the ≡m-class of some suitable clone on a finite set.

C1

I2

K3

〈0〉

I2

P2

Figure 3.1: The meet-semilattice Pfin.

As a next step we want to point out that, for any finite relational structure A, having
an NP-complete CSP depends on the fact that Pol(A) satisfies identities that are too
weak in a precise sense that we will specify shortly. With this perspective, we introduce
the notion of Taylor identity whose satisfiability or not, as we will see, was proved to
be the boundary between finite relational structures whose CSP is in P and those with
an NP-complete CSP. First, using Theorem 2.1.16 we can get the following criterion for
NP-completeness.
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Theorem 3.2.13. Let A be a finite structure. If CSP(A) is not NP-complete, then there
is a finite set of identities Σ such that Pol(A) satisfies Σ and P2 does not satisfy Σ.

Definition 3.2.14. We call Taylor identity a set of identities of the form

t



x ? · · · ?
? x · · · ?
...

... . . . ...
? ? · · · x


 ≈ t



y ? · · · ?
? y · · · ?
...

... . . . ...
? ? · · · y




where each ? ∈ {x, y}. We say that a structure A has a Taylor polymorphism if Pol(A)
satisfies a Taylor identity.

Definition 3.2.15. An algebra is a Taylor algebra if it has an idempotent term t that
satisfies a Taylor identity. Such an operation t is called a Taylor term, and a clone with
a Taylor term is called a Taylor clone.

Note that, by definition, any Taylor term cannot be a projection unless the considered
algebra has only one element. The next result was originally proved in [101].

Theorem 3.2.16 ([101]). Let A be an idempotent algebra. If Pol(A) satisfies a set of
identities that cannot be satisfied by P2, then Pol(A) has a Taylor term.

Taylor’s identities may seem obscure and difficult to digest, but they are equivalent
to intuitively simpler conditions which we are going to introduce now.

Definition 3.2.17. We define the following minor conditions:

• We call cyclic identity of length p, with p ≥ 2, the following identity

c(x1, x2, . . . , xp) ≈ c(x2, . . . , xp, x1). (Σp)

• We call weak near-unanimity condition of arity n ≥ 3 the following set of identities

w(x, . . . , x, y) ≈ w(x, . . . , x, y, x) ≈ . . . ≈ w(y, x, . . . , x). (WNU(n))

The following theorem provides a list of properties that are equivalent to a clone
satisfying a Taylor identity and it can be derived combining [12], [38], [79] and [101].
Other items that could be added to Theorem 3.2.18 can be find in the literature, see
e.g., [16], [58], [70], [81], and [97]. We will come back to the condition presented in [97]
in Section 3.3.1.

Theorem 3.2.18 ([12, 38, 79, 101]). Let A be a finite relational structure. The following
are equivalent:

(1) A does not pp-construct K3;
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(2) There is no minor-preserving map from Pol(A) to P2;

(3) A 6= K3;

(4) Pol(A) satisfies a Taylor identity;

(5) Pol(A) satisfies WNU(n), for some n ≥ 3;

(6) Pol(A) satisfies Σp, for some prime p;

(7) Pol(A) satisfies Σp, for every prime p > |A|.

We can then rephrase the so-called CSP Dichotomy Theorem (see Theorem 1.0.1)
proved independently by Bulatov and Zhuk as follows:

Theorem 3.2.19 ([37, 106, 107]). Let A be a finite relational structure such that Pol(A)
does not pp-construct K3, then CSP(A) is in P. Otherwise, CSP(A) is NP-complete.

Thus, it follows that the pp-constructability type K3 of the complete graph over three
vertexes coincides with the class of all the finite structures with a NP-complete CSP.

3.2.4 No atoms

In this section we deal with the following question, which arises rather naturally at this
point: are there atoms in Pfin? Equivalently, does there exist a finite relational structure
A such that A covers K3? We prove that the answer to this question is negative.

The following family of directed graphs turns out to be of particular interest in the
study of the poset Pfin. A directed cycle of length n (for some n ≥ 1) is defined as follows

Cn := (En; {(i, i+ 1 mod n) | i ∈ En}).

In the present dissertation, we make use of directed cycles to prove that Pfin has an
infinite antichain and that is has no atoms. Note that the poset

PSD := ({C | C is a disjoint union of directed cycles};≤Con)

was completely described by Bodirsky, Starke, and the author of the dissertation in [27].
Recall that two elements a and b of a poset (P,≤) are incomparable if a � b and

b � a. An infinite antichain is an infinite set of pairwise incomparable elements.

Lemma 3.2.20. Let p, q be primes. Then Pol(Cq) |= Σp if and only if p 6= q.

Proof. If p 6= q, then there is an n ∈ N+ such that p · n = 1 mod q. The map

f(x1, . . . , xp) = n · (x1 + . . .+ xp) (mod q)

is a polymorphism of Cq satisfying Σp.
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Assume that f is a polymorphism of Cp satisfying Σp, then

f(0, . . . , p− 2, p− 1) = a = f(1, . . . , p− 1, 0)

and (a, a) is a loop, a contradiction.

Corollary 3.2.21. There is an infinite antichain in Pfin.

Proof. From Lemma 3.2.20 if follows that, for every pair of distinct primes p and q, Σp is a
witness for Cq �Con Cp and Σq is a witness for Cp �Con Cq. Therefore, {Cp | p is prime}
is an infinite antichain in Pfin.

Despite the fact that Pfin has an infinite antichain, this does not imply that Pfin has
the cardinality of the continuum, see Proposition 3.3.23.

Proposition 3.2.22. For every finite structure A, such that A 6= K3, there is a finite
structure B such that B <Con A and B 6= K3.

Proof. Let A be a finite relational structure such that A 6= K3; by Theorem 3.2.18 we
have that Pol(A) |= Σp for some prime p > |A|. Let Cp be the directed cycle of length p.
Consider the structure B := A⊗ Cp. Let q be a prime such that q > p · |A|. We prove
the following:

(?) Pol(B) 6|= Σp and (??) Pol(B) |= Σq.

(?): From Proposition 3.2.1 it follows that B ≤Con Cp; suppose that Pol(B) |= Σp,
from Theorem 3.1.10 we would have that Pol(Cp) satisfies Σp, too; this is in contradiction
with Lemma 3.2.20.

(??): From Theorem 3.2.18 we know that Pol(A) |= Σq and from Lemma 3.2.20
we have Pol(Cp) |= Σq. Let fA ∈ Pol(A) and let fCp ∈ Pol(Cp) be the operation that
witnesses Pol(Cp) |= Σq. Consider the function f defined as follows:

f(x1, . . . , xq) :=


fA(x1, . . . , xq) if x1, . . . , xq ∈ A.
fCp(x1, . . . , xq) if x1, . . . , xq ∈ Ep.
0 otherwise.

By definition, f ∈ Pol(B) and f satisfies Σq.
From (?) it follows that B <Con A in Pfin, moreover (??) implies that B 6= K3.

The reader might ask whether it would be possible to achieve the latter result via the
use of the infinite descending chain of minor conditions of the form ΣG introduced in [25].
The answer is negative since, for clones over finite sets, all non-trivial conditions of the
form ΣG are equivalent; in particular, they are equivalent to the 6-ary Siggers identity
that we will define in Definition 3.3.3.
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Theorem 3.2.23. Pfin has no atoms.

Proof. The statement follows from Proposition 3.2.22.

3.2.5 Minimal Taylor clones

We have proved in Section 3.2.4 that Pfin has no atoms. However, the scenario changes
significantly when we fix the size of the domain. In fact, the concept of atoms in Pn is
closely related to the concept of minimal Taylor clone on a n-element domain: every atom
of Pn is the ≡m-class of a minimal Taylor clone on En; we will show that the converse is
not true even if we consider minimal Taylor clones up to isomorphism. Minimal Taylor
clones have been recently introduced and studied by Barto, Brady, Bulatov, Kozik, and
Zhuk [9] and play a crucial role in the ongoing attempt to unify and simplify the two
existing proofs of the CSP Dichotomy Theorem [37], [106, 107]. In this direction, the
notion of minimal Taylor clone (or algebra) seems to be the right framework: the authors
studied the core relational structures whose CSP is in P and such that the addition of
any supplemental relation to them makes their CSP NP-complete [9]; by the Inv-Pol
Galois connection, these maximal relational structures correspond to minimal Taylor
clones. Recall the notion of Taylor clone and Taylor algebra from Definition 3.2.15.

Definition 3.2.24. A clone C on a finite domain is called a minimal Taylor clone if C is
Taylor and every proper subclone of C is not Taylor. A finite algebra A is a minimal
Taylor algebra if Clo(A) is a minimal Taylor clone.

Proposition 3.2.25 ([9]). Every Taylor clone on a finite domain contains a minimal
Taylor clone.

Brady [32] classified all minimal Taylor algebras on a three-element set.

Theorem 3.2.26 ([32], Theorem 4.4.23). There are exactly 24 minimal Taylor algebras
over {0, 1, 2}, up to term-equivalence and isomorphism.

The next proposition will come in handy in Section 6.2 and provides us all minimal
Taylor clones on {0, 1, 2} without any ternary cyclic operation.

Proposition 3.2.27 ([32], Theorem 4.4.12). Let C be a clone on E3 such that C 6|= Σ3,
then C is isomorphic to one of the following:

(1) Z3 := 〈f〉 where f(x, y, z) = x−3 y +3 z and +3 is the sum modulo 3;

(2) M3 := 〈M3〉 where M3 is the majority operation on E3 that returns the first
projection whenever |{x, y, z}| = 3;

(3) L := 〈m〉 where m is the minority operation on E3 that returns the first projection
whenever |{x, y, z}| = 3;
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(4) W := 〈w〉 where w is the binary symmetric idempotent operation on E3 such that
w(0, 1) = 1, w(1, 2) = 2, and w(0, 2) = 0.

We now provide an example of a minimal Taylor clone on E3 whose ≡m is not an
atom in P3. From the classification presented in Theorem 3.2.26 it turns out that, up
to isomorphism, there are exactly three minimal Taylor clones on E3 with a majority
operation. We denote these three clones by M1,M2, andM3 whereMi := 〈Mi〉, for
i = 1, 2, 3 and Mi is a majority operation defined as follows: M1 returns the constant
value 0 whenever |{x, y, z}| = 3, M3 is the operation defined in Proposition 3.2.27, and

M2(0, 1, 2) = M2(1, 2, 0) = M2(2, 0, 1) = 0
M2(0, 2, 1) = M2(2, 1, 0) = M2(1, 0, 2) = 1.

Proposition 3.2.28. There is a minor-preserving map from M2 toM1 and from M3
toM1. Moreover, the following inequalities hold:

• M1 �m M2 andM1 �m M3;

• M2 �m M3 andM3 �m M2.

Proof. The maps ξ1 : M2 7→ M1 and ξ2 : M3 7→ M1 are minor-preserving maps from
M2 to M1 and from M3 to M1, respectively. Clearly, M1 |= FS(3) while neither
M2 norM3 do have a fully symmetric operation of arity 3. Moreover, we know from
Proposition 3.2.27 thatM3 6|= Σ3 whileM2 clearly does; in addition, we have thatM3
satisfies the following minor condition

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x),
m(x, y, z) ≈ m(x, z, y)

and it is easy to check thatM2 does not.

It follows thatM1 is not an atom in P3. More recently, a joint work of the author
with Barto, Brady, and Zhuk led to the complete classification of the atoms of P3, a
result that will be the object of a future publication. Note that this classification provides
a concrete list of the hardest tractable CSPs over {0, 1, 2}, refining [34].

3.3 Open problems

We conclude this chapter by discussing some open problems that are related to the study
of pp-constructability poset. Additional open problems can be found in Chapter 7.

3.3.1 Loop-conditions and splitting-theorems

We call splitting-theorem every theorem of the following form: let Γ be a (possibly infinite)
fixed set of finite relational structures and let A be any finite relational structure, then
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either A pp-constructs some relational structure from Γ or Pol(A) satisfies a particular
set of minor conditions ΣΓ; in this case, we say that Γ is the set of obstructions for ΣΓ. If
Γ = {A} we also say that A is a blocker for ΣΓ. In other words, every splitting-theorem
induces a partition of Pfin into two classes:

{S | S ≤Con B, where B ∈ Γ} and {S | Pol(S) |= ΣΓ}.

The set of minor conditions ΣΓ and the fixed set of finite structures Γ are closely related:
in particular, if Γ = {G} and G is a digraphs, then ΣΓ falls into a special case of minor
conditions, known in the literature as loop conditions [82, 83].

Definition 3.3.1. Let σ, τ : Em → En be maps. A loop condition is a minor identity of
the form

fσ ≈ fτ .

An example of loop condition is the condition Σp from Definition 3.2.17. To any loop
condition Σ we can assign a digraph in a natural way.

Definition 3.3.2. Let σ, τ : Em → En be maps and let Σ be the loop condition, given
by the identity fσ ≈ fτ . We define the digraph GΣ := (En, {(σ(i), τ(i)) | i ∈ Em) and we
refer to it as the digraph associated to the loop condition Σ.

The name loop-condition comes from the following observation: if a digraph with a
polymorphism satisfying Σ contains GΣ as a subdigraph, then it also contains a loop.
This particular class of minor conditions has been generalized in the literature [10, 25]
and also adapted to the case of oligomorphic clones [54].

Definition 3.3.3. We define the following minor conditions:

• We call 6-ary Siggers the identity given by:

s(x, y, z, x, y, z) ≈ s(y, x, x, z, z, y).

• We call 4-ary Siggers the identity given by:

s(x, y, y, z) ≈ (y, x, z, x).

Example 3.3.4. Here we provide some examples of concrete loop-conditions with their
associated digraph:

• The cyclic identity of length p from Definition 3.2.17 is associated to the digraph
Cp, i.e., the directed cycle of length p.

• The 6-ary Siggers identity is associated to the digraph K3, i.e., the complete graph
over {0, 1, 2} which we introduced at the beginning of Section 3.2.3.
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• The 4-ary Siggers is associated to the digraph S4 (Figure 3.2).

Figure 3.2: The digraph S4

As we anticipated in Section 3.2.3 there are other conditions which are equivalent to
the seven items listed in Theorem 3.2.18. In particular, we would like to mention the
following results [70, 97] which are in turn our first two examples of splitting-theorems:

Theorem 3.3.5 ([70, 97]). Let A be a finite structure. Then either A pp-constructs K3
or Pol(A) satisfies the 6-ary Siggers identity.

Theorem 3.3.6 ([70]). Let A be a finite structure. Then either A pp-constructs S4 or
Pol(A) satisfies the 4-ary Siggers identity.

Definition 3.3.7. We call quasi Mal’cev the following minor condition:

m(x, y, y) ≈ m(y, y, x) ≈ m(x, x, x). (Σ′M)

Remark 3.3.8. The condition Σ′M originally appears in the literature in a slightly different
guise and it is known as Mal’cev:

m(x, y, y) ≈ m(y, y, x) ≈ x. (ΣM)

Note that ΣM is not a minor condition. Such a difference is stressed in Definition 3.3.7
by the presence of prefix "quasi" in the name of the condition. Following a general
convention, an operation satisfying Σ′M is called a quasi Mal’cev operation, while an
operation satisfying ΣM is a Mal’cev operation. Note that an idempotent quasi Mal’cev
operation is a Mal’cev operation. We use the same convention every time that we present
a condition with the prefix "quasi" in its name. For instance, we invite the reader to
compare the conditions QHM(n) from Theorem 3.3.16 and HM(n) from Theorem 4.2.2:
"Q" indeed stands for quasi. Once this clarification has been made, please note that from
Corollary 3.1.13 it follows that, in our setting, every strong linear Mal’cev condition can
be considered as a minor condition.
Remark 3.3.9. A note on terminology: please be careful not to confuse the notion of
Mal’cev condition with the condition "Mal’cev" (also denoted by ΣM), which is a particular
instance of a Mal’cev condition. In fact, ΣM was the very first (strong) Mal’cev condition
presented in the literature [77]. See also Section 4.2.1.

An example of an operation that satisfies Σ′M is the operation m(x, y, z) := x+ y + z

from Example 2.3.2. Recall that in Example 2.3.2 we showed that m /∈ Pol(B2); indeed,
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it can be proved that B2 is a blocker for Σ′M, as stated in the following splitting-theorem
which can be deduced from Proposition 7.7 in [84].

Theorem 3.3.10 ([84], Proposition 7.7). Let A be a finite structure. Then either A
pp-constructs B2 or Pol(A) satisfies Σ′M.

The next result is a consequence of Lemma 6.8 in [27] due to Bodirsky, Starke, and
the author of this dissertation. The same result could be reached using Theorem 4.1.8 in
[32] who in turn refers the reader to [12] and [108].

Theorem 3.3.11 ([27, 108]). Let A be a finite structure. Then for every prime p either
A pp-constructs Cp or Pol(A) satisfies the cyclic identity Σp.

The latter two theorems will come in handy in Section 3.3.2 in the investigation of
submaximal elements of Pfin.

Sometimes splitting-theorems are closely related to complexity classes; for example,
the partition induced by Theorem 3.3.5 marks the boundary between finite between finite
structures whose CSP is NP-complete and finite structures whose CSP is in P, as stated
in the CSP Dichotomy theorem. Analogously, there are other splitting-theorems which
are conjectured to mark a boundary for finer complexity classes. Next we present the
most important results in this direction that appear in the literature; we would like to
mention that the following results are reworded from the survey [17].

Recall the relation ≤2 from Example 2.2.2. First, we define the following relational
structures:

B≤ := (E2;≤2, {0}, {1})
HORN := (E2;R110, R111, {0}, {1})
3LINp := (Ep; all affine subspaces Rabcd of Z3

p of dimension 2)

where Zp is the Galois field with p elements, and for all a, b, c, d ∈ Ep:

Rabc := {0, 1}3 \ {(a, b, c)},
Rabcd := {(x, y, z) ∈ Z3

p | ax+ by + cz = d}.

Note that all the structures above, with the exception of 3LINp for p ≥ 3, are Boolean
structures and we will encounter them again in Section 5.3.

The first splitting-theorem we are going to present is about the family of relational
structures 3LINp, where p is a prime.

Theorem 3.3.12 ([11, 73]). Let A be a finite relational structure, then either

(1) A ≤Con 3LINp, for some prime p, or

(2) Pol(A) |= WNU(n) for every n ≥ 3.
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A rather significant result in the literature is the proof that the class of structures
satisfying the second item of Theorem 3.3.12 coincides with the class of finite relational
structures whose CSP has bounded width [11, 13, 35]. We do not define here what does it
mean for a structure to have bounded width, however it might be someone’s cup of tea
to know that this notion is equivalent to solvability by a Datalog program [49]. Other
conditions which are equivalent to the second item of Theorem 3.3.12 can be find, e.g,
in [31, 58, 66, 73, 79].

There is an analogous splitting-theorem for HORN; the minor condition involved in
the next theorem comes from [58].

Theorem 3.3.13 ([58]). Let A be a finite relational structure, then either

(1) A ≤Con HORN, or

(2) Pol(A) satisfies a Hobby-McKenzie condition, i.e., a minor condition of the form

t



x ? · · · ?
x x · · · ?
...

... . . . ...
x x · · · x


 ≈ t



y ? · · · ?
? y · · · ?
...

... . . . ...
? ? · · · y




where each ? ∈ {x, y}.

The next result comes from [58] and is related to another important complexity class:
indeed, the class described by the second item of Theorem 3.3.14 contains the class of
finite relational structures whose CSP has bounded linear width [1]. Moreover, it has
been proved that CSPs with bounded linear width are in the complexity class NL [44].

Theorem 3.3.14 ([58]). Let A be a finite relational structure, then either

(1) A ≤Con 3LINp, for some prime p, or A ≤Con HORN, or

(2) for some n ≥ 2, Pol(A) satisfies the following minor condition QSD∨(n):

d0(x, y, z) = d0(x, x, x),
di(x, y, y) = di+1(x, y, y) and di(x, y, x) = di+1(x, y, x) if i is even, i < n,

di(x, x, y) = di+1(x, x, y) if i is odd, i < n,

dn(x, y, z) = dn(z, z, z),

It has been conjectured that the two classes of relational structures mentioned above
coincide.

Conjecture 3.3.15 ([75]). Let A be a structure such that Pol(A) satisfies the minor
condition of the second item in Theorem 3.3.14, then CSP(A) has bounded linear width.
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The next minor condition comes from [56].

Theorem 3.3.16 ([56]). Let A be a finite relational structure, then either

(1) A ≤Con B≤, or

(2) for some n ≥ 2, Pol(A) satisfies the minor condition QHM(n), that is:

p0(x, y, z) = p0(x, x, x),
pi(x, x, y) = pi+1(x, y, y) for all i < n.

pn(x, y, z) = pn(z, z, z),

The minor condition QHM(n) is a generalization of the condition quasi Mal’cev from
Definition 3.3.7, as will be clarified in Chapter 4.

The next minor condition comes again from [58] and it is related to another interesting
descriptive complexity class: symmetric Datalog [47].

Theorem 3.3.17 ([58]). Let A be a finite relational structure, then either

(1) A ≤Con 3LINp, for some prime p, or A ≤Con B≤, or

(2) for some n ≥ 2, Pol(A) satisfies the following minor condition 4-HMcK(n):

f0(x, y, y, z) = f0(x, x, x, x),
fi(x, x, y, x) = fi+1(x, y, y, x) and fi(x, x, y, y) = fi+1(x, y, y, y) for all i < n,

fn(x, x, y, z) = fn(z, z, z, z).

Analogously to Conjecture 3.3.15, it was conjectured that the class of structures
satisfying the second item of Theorem 3.3.17 and the class of structures with a CSP
having bounded symmetric width coincide. One of the implications was proved in [48].

Conjecture 3.3.18 ([47]). Let A be a structure such that Pol(A) satisfies the minor
condition of the second item in Theorem 3.3.17, then CSP(A) has bounded symmetric
width.

The two conjectures are linked in the following way: Kazda [67] proved that if a
structure A satisfies the minor condition QHM(n), for some n, (see Theorem 3.3.16) and
CSP(A) has bounded linear width, then CSP(A) has bounded symmetric width. Thus,
Conjecture 3.3.18 reduces to Conjecture 3.3.15. Furthermore, the class of relational
structures A such that CSP(A) has bounded linear (respectively symmetric) width is
conjectured to coincide with the class of relational structures A such that CSP(A) is in
NL (respectively in L).

In Figure 3.3 we present a figure that aims to overview what is presented in this
section. In the figure: black arrows either follow from definition or are folklore. Red
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Figure 3.3: An overview of the results presented in Section 3.3.1.

arrows are presented in Chapter 3 of the dissertation. Green arrows either follow from
definition or from the pp-constructability order. Cyan arrows can be deduced combining
green and red arrows and will be discussed again in Chapter 4.

3.3.2 Submaximal elements

In Section 3.2.2 we proved that Pfin has a unique coatom: I2. In analogy to classical
clone theory, our investigation continues with the intention of determining whether there
are (and what are the) elements that have I2 as their only cover-element. We say that
an element A is submaximal in Pfin if A is covered by I2. In Chapter 5 we present
a complete description of P2, from which it comes out that C2 and B2 are the only
submaximal elements in P2. In Section 6.1 we prove that C2, C3, and B2 are the only
submaximal elements in P3. In particular, we prove that if A is a structure on E3
such that Pol(A) satisfies Σ′M (Definition 3.3.7), Pol(A) |= Σ2, and Pol(A) |= Σ3, then
there is a minor-preserving map from I2 = Pol(I2) to Pol(A). Note that, in this case,
Theorem 3.2.18 implies that Pol(A) |= Σp for every prime p.

In addition, let PD := ({D | D is finite directed graph};≤Con): it has been proved
that Cp, for every prime p, and B2 are the only submaximal elements in PD [26]. In the
light of these developments, the temptation to try to prove that the last result can be
generalised to the case of Pfin was strong. However, there is a structure in the literature
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that provides a counterexample.

Definition 3.3.19. We define the following minor conditions:

• We call n-ary (fully) symmetric condition the set of all identities of the form

f(x1, x2, . . . , xn) ≈ f(xπ(1), xπ(2), . . . , xπ(n)), (FS(n))

where π is a permutation of the set {1, 2, . . . , n}.

• We call n-ary totally symmetric condition the set of all identities of the form

f(x1, x2, . . . , xn) ≈ f(y1, y2, . . . , yn), (TS(n))

where {x1, x2, . . . , xn} = {y1, y2, . . . , yn}. If f is a totally symmetric operation we
also write f({x1, x2, . . . , xn}) instead of f(x1, x2, . . . , xn).

Carvalho and Krokhin [41] presented a structure K with 21 elements that has cyclic
polymorphisms of all arities, a Mal’cev polymorphism, and that does not have any fully
symmetric polymorphism of arity 5. Indeed, from Theorem 3.3.11 and Pol(K) |= Σp for
every prime p, it follows that K �Con Cp. Carvalho and Krokhin also show that Pol(K)
satisfies ΣM, it follows from Theorem 3.3.10 that K �Con B2. Moreover, we have that
I2 �Con K, since I2 |= FS(5) while Pol(K) 6|= FS(5).

The structure K is defined as follows: K := (K;R,S) where

K = {0, 1, 2, . . . , 9, 10, a, b, c, d, e, f, g, h, i, j}

and R and S are binary relations that are graphs of the following permutations r and s,
respectively (see Figure 3.4),

r = (0 1 2)(5 6 7)(8 9 10)(e b a)(d g i)(f h c),
s = (1 4)(2 3)(5 6)(7 8)(j e)(b c)(a d)(i f).

The author would like to thank Zarathustra Brady for notifying us of the existence of
the structure K in the literature and for many other fruitful conversations. In the light
of this, we have to weaken our pretensions; we then formulate the following conjecture.

Conjecture 3.3.20. Let A be a finite relational structure such that Pol(A) |= TS(n),
for every n ≥ 2, and such that Pol(A) satisfies ΣM. Then there is a minor-preserving
map from I2 to Pol(A).

3.3.3 Cardinality

As already mentioned, Post fully described the lattice L2 of all clones on a two-element
set ordered by inclusion [91] (see Theorem 2.1.12 for the definition of Ln). The result is
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Figure 3.4: The structure K := (K;R,S).

the countably infinite lattice displayed in Figure 5.1. The scenario changes drastically
already when we consider clones on a set of size three. Indeed, Janov and Mučnik [61]
showed that there are continuum many clones over a set with at least three elements.

Theorem 3.3.21 ([61]). Let A be a finite set such that |A| ≥ 3. Then the number of
clones on A is continuum.

With the current state of knowledge, a complete classification of L3 seems beyond
hope. Subsequent research in universal algebra therefore focused on understanding
particular aspects of clone lattices on finite domains, for example on the description of
maximal clones [92] or minimal clones [43, 42, 93].

However, it is easy to show that all the clones considered in the proof of Janov and
Mučnik are minor-equivalent to some Boolean clone. Since there are only countably
infinite many Boolean clones, the family of uncountable clones considered in [61] does
not imply the existence of uncountably many elements in Pfin. Similarly, all the families
of uncountable clones with at least a constant operation are minor-equivalent to 〈0〉 (see
Theorem 3.2.3). In fact, it is a consequence of Corollary 3.1.13, the family of uncountable
clones that would witness that Pfin is uncountable necessarily has to be a family of
idempotent clones. Uncountably many idempotent clones can be find in the literature
already over a three-element set: Marchenkov [78] proved that there are uncountably
many clones of self-dual operations, and Zhuk [104] presented a complete description
of their lattice. The proof that there are only countably many ≡m-classes of clones
of self-dual operations on a three-element domain is non-trivial and we prove this in
Section 6.2. This encouraging result led us to formulate the following conjecture.

Conjecture 3.3.22. The poset P3 is at most countably infinite.
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In addition, there is hope of achieving a similar result even if one does not place a
bound on the cardinality of the domain. It follows from the complete description of the
lattice

PSD := ({C | C is a disjoint union of directed cycles};≤Con)

that such lattice is countable. Moreover, we would like to point out that Corollary 3.2.21
does not imply that Pfin has 2ω elements.

Proposition 3.3.23. Let A be a finite relational structure such that A ≤Con Cp for all
but finitely many primes p. Then A = K3.

Proof. Let A be a finite structure satisfying the hypothesis of the proposition and suppose
A 6= K3. Then by Theorem 3.2.18 we have that Pol(A) |= Σq, for every prime q > |A|.
Hence, there exists a prime q0 big enough such that A ≤Con Cq0 and Pol(A) |= Σq0 . This
would be a contradiction to Theorem 3.3.11.

The last two mentioned results tempt us to formulate the following provocative
conjecture.

Conjecture 3.3.24. The poset Pfin is at most countably infinite.

Moreover, Aichinger, Mayr, and McKenzie proved that modulo term-equivalence and
a renaming of the elements, there are only countably many finite algebras with a Mal’cev
term [2]. Thus, from Theorem 3.3.10 it follows that in order to solve Conjecture 3.3.24
it is enough to determine the cardinality of the subposet {A | A ≤Con B2}. The main
result from [2] is a generalization of a previous result of Bulatov who proved that there
are only finitely many clones on {0, 1, 2} containing a Mal’cev operation [33].
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Chapter 4
The geography of linear Mal’cev conditions

This chapter is a survey of results from the literature, thus the reader might make
"encyclopedic" use of it. In fact, we opted not to go into depth on several of the topics
covered in this chapter, preferring instead to provide references to the literature for
the reader interested in more details. For example, we deal only superficially with
tame congruence theory, simply referring to the five types described by Hobby and
McKenzie [58] and providing the equational conditions to which they correspond.

We decided to include this chapter in the dissertation for the following reasons: first,
we are not aware of a survey in the literature that covers such a large number of Mal’cev
conditions ordered by strength. Second, we will use most of the Mal’cev conditions we
present here in Chapter 5 and Chapter 6 as a witness of A �m B for some clones A and
B on a finite set (see Remark 3.1.11 and Remark 3.3.8). Many of the classes dealt with
in this chapter are of interest in different communities: the same class therefore appears
in the literature in different guises; in this sense, this chapter serves as a dictionary.

4.1 Mal’cev filters

We have already (informally) defined strong Mal’cev conditions as finite sets of particular
identities satisfied by clones, see Definition 2.1.15. Formally, a strong Mal’cev condition
is a primitive positive sentence in the language of clones [69]. However, for our purpose
it is more convenient to look at Mal’cev conditions from a slightly different perspective:
by identifying a (strong) Mal’cev condition Σ with the class of varieties satisfying Σ, it
turns out that Σ can be associated to a (principal) filter in the lattice of interpretability
types of varieties. Thus, implications among Mal’cev conditions translate into inclusion
among the corresponding associated filters.

Definition 4.1.1. Let V and W be any two varieties and let F be the set of basic
operation symbols of V . An interpretation of V in W is a function ι from F to the set of
terms of W, such that the following statements hold:

(1) for every operation f ∈ F , ι(f) is a term of W of the same arity of f ;
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(2) for any algebra A ∈ W , the algebra Aι := (A; {ι(f)A | f ∈ F}) ∈ V .

Likewise in Chapter 2 and Chapter 3 with similar notions, we write V ≤ι W if there
exists an interpretation of V in W. We write V ≡ι W if V ≤ι W ≤ι V. The relation ≡ι
induces a partition on the class of all varieties in ≡ι-classes, called interpretability types
of varieties. As usual, V denotes the interpretability type of V, and we write V ≤ι W if
and only if V ≤ι W. We then define

LVar := (V | V is a variety;≤ι)

which turns out to be a lattice and is known in the literature as the lattice of interpretability
types of varieties [51, 80].

Example 4.1.2. In Example 2.1.9 we introduced Sets, i.e., the variety of all sets. Note
that Sets is trivially interpretable in any variety V , i.e., for every variety V we have that
Sets ≤ι V, and hence Sets is the bottom element of LVar.

Definition 4.1.3. A Mal’cev condition is a countable set Σ := {Vi | i ≥ 0} of inter-
pretability types of finitely presentable varieties, such that Vi+1 ≤ι Vi for every i ≥ 0. If
Vi+1 = Vi, for every i ≥ 0, we say that Σ = {V0} is a strong Mal’cev condition. A strong
Mal’cev condition {V} is linear if V = Mod(Γ) and Γ is a finite set of linear identities,
i.e., identities where for every (p ≈ q) ∈ Γ at most one function symbol appears both in
p and in q (the use of nested terms is forbidden).

Consequently, we also adapt the definition of satisfiability of a Mal’cev condition.

Definition 4.1.4. Let Σ := {Mi | i ≥ 0} be a Mal’cev condition, and V a variety. We
say that V satisfies Σ if there exists i ≥ 0 such thatMi ≤ι V.

Let CΣ ⊆ LVar, where LVar is the class of all interpretability types of varieties; CΣ is
a (strong) Mal’cev class if there exists a (strong) Mal’cev condition Σ := {Mi | i ≥ 0}
with

CΣ = {V | ∃i(Mi ≤ι V)}.

Note that a (strong) Mal’cev class CΣ generates a (principal) filter in LVar, to which we
refer to as the Mal’cev filter CΣ (see also [96]).

Frequently, when V0 is finitely presentable, it is convenient to denote the (strong)
Mal’cev condition {V0} by Σ where Σ is such that V0 = Mod(Σ).

Definition 4.1.5. Let Σ, Γ be linear Mal’cev conditions. We say that Σ implies Γ
(equivalently, Σ is stronger than Γ), denoted Σ ⇒ Γ, if CΣ ⊆ CΓ. Two linear Mal’cev
conditions Σ and Γ are equivalent if Σ⇒ Γ and Γ⇒ Σ.

As already mentioned in the final part of Chapter 2, the lattice LVar is isomorphic
to the lattice that arises from the order defined in Theorem 2.5.9. Define Clo(V) to be
equal to Clo(A) for some generator A of V, the choice of generator is irrelevant. The
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notion of interpretability between varieties translates to clone homomorphism as follows:
V ≤ι W if Clo(V) ≤h Clo(W), i.e., if there exists a clone homomorphism from Clo(V)
to Clo(W). Since in this dissertation we deal more with clones than with varieties, we
consider a lattice which is isomorphic to LVar:

LClo := (Clo(V) | V is a variety;≤h).

Thus, Definition 4.1.3, Definition 4.1.4, and Definition 4.1.5 can easily be adapted to
clones. For instance, a Mal’cev condition can be seen as the set {Clo(Vi) | i ≥ 0} for
some finitely presentable variety Vi. Implication between Mal’cev conditions translates
then to inclusion between clones in LClo.

Note that, since in this dissertation we only focus on clones over finite sets and from
Lemma 3.1.7 we have that C ≡m Cid, we will state most of the results for varieties that
are locally finite and idempotent (a variety V is idempotent if every algebra contained
in V is idempotent) at the cost of presenting weaker results even when some of the
statements are still true in a broader setting. We would also like to point out that in [58]
a theory of the local structure of finite algebras is developed, known as tame congruence
theory. One of the main achievements of the theory is that there are exactly five types
of local behaviour that can be associated with locally finite varieties. For each locally
finite variety V and each type i ∈ {1, . . . ,5}, V either admits i or omits i. The types
are often are often addressed by the following names: type 1 (also, the unary type),
type 2 (the affine type), type 3 (the Boolean type), type 4 (the lattice type), and type 5
(the semilattice type). Avoiding entering into Tame Congruence Theory, we will use this
theory as a black-box to easily obtain implications between Mal’cev conditions (in the
sense of Definition 4.1.5) and for the sake of exhaustiveness.

4.1.1 Filters of varieties omitting lattices

There is another way of generating filters in LVar that has received considerable attention
in the literature: filters arising from varieties that omit particular lattices (see, e.g., [69]).
We would attempt to keep this topic as succinct as possible so as not to deviate too much
from the topics on which this dissertation is focused on.

Recall that a congruence of an algebra A is an equivalence relation α ⊆ A2 of A
that is preserved by every operation of A in the sense of Definition 2.3.1. As usual, for
X ⊆ A2 the congruence generated by X is the smallest congruence containing X. Let
us denote by Con(A) the set of all congruences of an algebra A; it is well known that
Con(A) = (Con(A);∧,∨) is a lattice where for every two congruences α and β, α ∧ β is
the intersection of α and β, whereas α ∨ β is the congruence generated by α ∪ β. We
refer to Con(A) as the congruence lattice of A.

Definition 4.1.6. Let L be a finite lattice and V be a variety. We say that V admits L
if L is a sublattice of Con(A), for some A in V. we say that V omits L otherwise.
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We then define the following class for a fixed variety V

Adm(V) := {L | V admits L}.

On the other side, for a fixed finite lattice L, we define

F(L) := {V | L /∈ Adm(V)}.

It is well known that A is subdirectly irreducible if and only if Con(A) has exactly
one atom; given this, it is easy to check that all the lattices from Figure 4.1 are subdirectly
irreducible. The next proposition establishes a sufficient condition for F(L) to be a filter
in LVar.
Proposition 4.1.7. If L is a subdirectly irreducible lattice, then F(L) is a filter in LVar.

Determining when F(L) is a Mal’cev filter is more complicated, although there are
some results in this direction in the literature. However, such a question is beyond the
scope of this dissertation. For our purposes, it suffices to point out that if L is one of the
lattices whose Hasse diagram is shown in Figure 4.1, then F(L) is a Mal’cev filter. For
instance, the filter F(D1) coincides with a Mal’cev class that corresponds to a Mal’cev
condition we have already dealt with (c.f. Theorem 3.2.18).
Theorem 4.1.8 ([58, 69, 81, 97, 101]). Let V be an idempotent and locally finite variety.
The following are equivalent:

(1) V �ι Sets,

(2) V ∈ F(D1),

(3) V omits type 1,

(4) there is no clone homomorphism from Clo(V) to P2,

(5) Clo(V) satisfies a Taylor identity,

(6) Clo(V) satisfies the 6-ary Siggers identity,

(7) Clo(V) satisfies the Olšák condition, that is

t(x, y, y, y, x, x) ≈ t(y, x, y, x, y, x) ≈ t(y, y, x, x, x, y).

Proof. The equivalence between (1) and (4) follows from the fact that Clo(Sets) = P2
and the observation that V ≤ι W if and only if Clo(V) ≤h Clo(W). From Theorem 3.2.16
it follows (4) if and only if (5). The equivalence between (2) and (5) follows from
Theorem 4.16 and Theorem 4.23 in [69]. The equivalence (3) if and only if (5) follows
from Lemma 9.4 and Theorem 9.6 of [58]. The equivalence between (5) and (6) follows
from Theorem 3.2.18 and Theorem 3.3.5. To conclude, the equivalence between (5) and
(7) comes from Theorem 6.1 in [81].
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There is a similar characterization of the Mal’cev filter F(D2). We denote by S the
variety of semilattices. Let S2 := ({0, 1};∨), where ∨ is a semilattice operation; it is well
known that S = V(S2) and clearly Clo(S2) = 〈∨〉.

Theorem 4.1.9 ([58, 69]). Let V be an idempotent and locally finite variety. The
following are equivalent:

(1) V �ι S,

(2) V ∈ F(D2),

(3) V omits types 1 and 5,

(4) there is no clone homomorphism from Clo(V) to 〈∨〉,

(5) Clo(V) satisfies the Hobby-McKenzie condition from Theorem 3.3.13.

Proof. The theorem can be obtained by combining Lemma 9.5 and Theorem 9.8 in [58].
We also invite the reader to check Theorems 5.25, 5.28, and 8.11 in [69]; they prove that
all the statements of this theorem, with the exception of item (3) are equivalent even if
we drop the assumption that V is locally finite.

We deal with the Mal’cev filters F(M3) and F(N5) in the next section in more details.

D1 D2

M3 N5

Figure 4.1: The Hasse diagram of the lattices D1, D2, M3, and N5.

4.2 Congruence identities

Between the 1960s and 1970s, one of the most prosperous research topics in universal
algebra was the study of so-called congruence identities satisfied by varieties. If V be
a variety of algebras, then any identity in the language of lattices that holds in the
class {Con(A) | A ∈ V} of congruence lattices of algebras in V is called a congruence
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identity of V. A.I. Mal’cev can certainly be considered the founder of this research
line: he proved that any variety V has permutable congruences if and only if V belongs
to the class of varieties satisfying a precise condition, that is the condition ΣM from
Remark 3.3.8. Subsequently, Pixley [86], Jónsson [65], and Day [45] presented analogous
conditions for congruence arithmetical varieties, congruence distributive varieties, and
congruence modular varieties, respectively; the study of Mal’cev conditions was thus
initiated. These results are instances of a more general theorem that was obtained
independently by Pixley [87] and Wille [102] that can be considered as a groundwork of
the theory: they presented an algorithm to generate Mal’cev conditions associated with
congruence identities.

In order to keep this chapter as brief as possible and not to deviate too much from the
focus of the dissertation, with the exception of the congruence permutability property,
we will not give the definitions of the congruence-properties that we are going to mention;
rather, we will use the names of these properties to indicate Mal’cev classes in which we
are interested. Below we present the Mal’cev conditions we have just mentioned as well
as other Mal’cev conditions derived from congruence identities.

4.2.1 Congruence n-permutability

The first instance of a Mal’cev condition to appear in the literature comes from a result
due to A.I. Mal’cev who characterized congruence permutable varieties [77].

Let A be any algebra and let α, β ∈ Con(A), we define the relational product of α
and β as follows

α ◦ β := {(x, y) ∈ A2 | ∃z ∈ A, (x, z) ∈ α and (z, y) ∈ β}.

Note that in general α ◦ β is not a congruence on A; it is well known that α ◦ β is
a congruence if and only if α ◦ β = β ◦ α and it is known that in this case α ◦ β is the
smallest congruence containing α and β, i.e., α ∨ β.

Iterating, we define
α ◦n β := α ◦ β ◦ α ◦ . . .︸ ︷︷ ︸

n−1 occurences of ◦

.

We say that two congruences α and β n-permute, if α ◦n β = β ◦n α; we say that α and
β permute if they 2-permute. As usual, an algebra A is congruence n-permutable if all
pairs of congruences of A n-permute. A class of algebras (e.g., a variety) is congruence
n-permutable if all its members are.

Theorem 4.2.1 ([77]). For any variety V the following are equivalent:

(1) V is congruence permutable,

(2) Clo(V) satisfies the following condition

m(x, y, y) ≈ m(y, y, x) ≈ x. (ΣM)
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Hagemann and Mitschke provided a similar characterization for varieties that are
congruence n-permutable [56]. Please confront the following theorem with Theorem 3.3.16.

Theorem 4.2.2 ([56]). For any variety V the following are equivalent:

(1) V is congruence n-permutable,

(2) Clo(V) satisfies the HM(n) condition for some n ≥ 2, i.e.,

p0(x, y, z) ≈ x
pi(x, x, y) ≈ pi+1(x, y, y) for every i ≤ n
pn(x, y, z) ≈ z.

If we additionally assume that V is a locally finite variety, then the condition from
Theorem 3.3.16, that is "V is congruence n-permutable, for some n ≥ 2" is equivalent to
the condition V omits types 1, 4, and 5.

4.2.2 Congruence meet-semidistributivity

The Mal’cev condition we deal with in this section is closely related to Theorem 3.3.12.
As already discussed, we are not going to define when a variety V is congruence meet-
semidistributive, (V is SD∧, for short) however it is worth mentioning that the class
of varieties enjoying the SD∧ property play a key role both in tractable CSPs and in
commutator theory. Indeed, Barto and Kozik proved that for every finite relational
structure A, the polymorphism algebra Pol(A) generates a SD∧ variety if and only if
the CSP of A has bounded width [11, 13]. Moreover, it has been proved that a variety
V is SD∧ if and only if the commutator trivializes in V, i.e., [α, β] = α ∧ β, for every
α, β ∈ Con(A) and every A ∈ V [72] (see also [58] for locally finite varieties). We refer
the reader to [50, 69] for a basic introduction to Commutator Theory.

Theorem 4.2.3 ([58, 69, 73, 79]). Let V be an idempotent and locally finite variety. The
following are equivalent:

(1) V is SD∧,

(2) V ∈ F(M3),

(3) V omits types 1 and 2,

(4) there is an integer m > 1 such that Clo(V) |= WNU(k) for all k ≥ m.

(5) Clo(V) |= WNU(n) for every n ≥ 3;

(6) Clo(V) satisfies the WNU(3, 4) minor condition, that is:

g(y, x, x) ≈ g(x, y, x) ≈ g(x, x, y) ≈
h(x, x, x, y) ≈ h(x, x, y, x) ≈ h(x, y, x, x) ≈ h(y, x, x, x).
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Proof. The equivalence of items (1), (2), and (3) can be found in [58], Theorem 9.10.
Note that the equivalence of (1) and (2) holds even without assuming V to be idempotent
and locally finite, see Theorem 8.1 in [69]. The equivalence between (3) and (4) follows
from Theorem 1.2 in [79]. The equivalence of (3), (5) and (6) can be obtained combining
Theorem 1.6 and Theorem 2.8 in [73].

4.2.3 Congruence join-semidistributivity

The property we deal with in this section implies, in the sense of Definition 4.1.5, both
the Mal’cev class from Theorem 4.2.3 and the one from Theorem 4.1.9; indeed, it is the
intersection of the two mentioned filters. More recently, this class has also attracted
attention in terms of descriptive complexity of the CSP of finite relational structures and
is indeed the subject of what can perhaps be considered the most important open problem
still unresolved in CSP for finished structures. In fact, it has been conjectured that the
polymorphism algebra Pol(A) of any finite structure A generates a SD∨ variety if and
only if CSP(A) has bounded linear width, see also Theorem 3.3.14 and Conjecture 3.3.15.

Theorem 4.2.4 ([58, 69]). Let V be an idempotent and locally finite variety. The
following are equivalent:

(1) V is SD∨,

(2) V ∈ F(M3) and V ∈ F(D2),

(3) V omits types 1, 2, and 5,

(4) Clo(V) satisfies the SD∨(n) condition for some n ≥ 2, that is:

d0(x, y, z) = x,

di(x, y, y) = di+1(x, y, y) and di(x, y, x) = di+1(x, y, x) if i is even, i < n,

di(x, x, y) = di+1(x, x, y) if i is odd, i < n,

dn(x, y, z) = z.

Proof. The equivalence of all of the four items was proved in Theorem 9.11 in [58]. The
equivalence of (1), (2), and (4), without the assumption of locally finiteness, follows from
Theorem 8.14 in [69].

4.2.4 Congruence modularity

In this section we present a Mal’cev condition, known as congruence modularity, which
was first described through 4-ary terms by Day [45]. Subsequently, characterizations of
the same Mal’cev filter were found via the use of terms that are easier to work with; the
results of Gumm [55] and more recently of Kazda, Kozik, McKenzie, and Moore [68]
point in this direction. Remarkably, one of the most important conjectures about Mal’cev
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conditions concerns this Mal’cev filter: the so called Taylor’s modularity conjecture [51]
regarding the primeness of the filter of congruence modular varieties. This conjecture
has remained open for almost 40 years now, although partial results have been achieved
in [19], [96], and more recently in [84].
Theorem 4.2.5 ([22, 45, 55, 68]). Let V be an idempotent and locally finite variety. The
following are equivalent:

(1) V is congruence modular,

(2) V ∈ F(N5),

(3) Clo(V) satisfies the directed-Gumm condition, that is:

p1(x, y, y) ≈ x
pi(x, y, y) ≈ x for all 1 ≤ i ≤ m,
pi(x, y, y) ≈ pi+1(x, y, y) for all 1 ≤ i ≤ m− 1,
pm(x, y, y) ≈ q(x, y, y)
q(x, y, y) ≈ y.

Proof. The equivalence between (1) and (2) is a well-known result due to Dedekind and
can be find in Theorem 1.7.12 of [22]. The equivalence of (1) and (3) was first proved
by Day [45] and Gumm [55] via the so-called Day-terms and Gumm-terms, respectively.
However, here we decided to use the characterization provided in [68].

Barto proved that a finitely related algebra A (see Definition 2.3.7) generates a
congruence modular variety if and only if for some k ≥ 2, the variety generated by A
satisfies the so-called k-edge condition [8].
Theorem 4.2.6 ([8]). Let A be a finite algebra. Then the following are equivalent:

(1) A is finitely related and V (A) is congruence modular,

(2) V (A) satisfies the k-edge condition, that is:

f





y y x x · · · x
y x y x · · · x
x x x y · · · x
...

...
...

... . . . ...
x x x x · · · y




≈



x
x
x
...
x


where the arity of the operation symbol f is k + 1 and all but the first column have
exactly one y and k − 1 occurences of x.

We would like to point out that the 2-edge condition is equivalent to the Mal’cev
condition ΣM (up to permuting the inputs).
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4.2.5 Congruence distributivity

The Mal’cev condition we deal with in this section turned out to be the intersection of
the Mal’cev filters from Theorem 4.2.3 and Theorem 4.2.5 and a characterization through
terms was found by Jónsson [65].

Theorem 4.2.7 ([65]). For any variety V the following are equivalent:

(1) V is congruence distributive,

(2) V ∈ F(M3) and V ∈ F(N5),

(3) Clo(V) satisfies the Jónsson condition of length n for some n ≥ 2, i.e.,

d0(x, y, z) ≈ x
di(x, y, x) ≈ x 0 ≤ i ≤ n
di(x, x, z) ≈ di+1(x, x, z) for even i
di(x, z, z) ≈ di+1(x, z, z) for odd i
dn(x, y, z) ≈ z.

Following Remark 3.3.8 we define the minor condition QJ(n) by replacing the first,
second, and last line in the condition presented in the third item of Theorem 4.2.7 with
d0(x, y, z) ≈ d0(x, x, x), di(x, y, x) ≈ di(x, x, x), and dn(x, y, z) ≈ dn(z, z, z), respectively.

Barto proved a result of a flavour similar to Theorem 4.2.6 also for the case of
congruence distributive varieties [7].

Theorem 4.2.8 ([7]). Let A be a finite algebra. Then the following are equivalent:

(1) A is finitely related and V (A) is congruence distributive,

(2) V (A) satisfies the k-near unanimity condition, that is:

f





y x x · · · x
x y x · · · x
x x y · · · x
...

...
... . . . ...

x x x · · · y




≈



x
x
x
...
x

 (NU(k))

where k is the arity of the operation symbol f .

4.2.6 Congruence arithmeticity

A variety is called congruence arithmetical if it is both congruence distributive and
congruence permutable. A characterization of congruence arithmetical via terms was
provided by Pixley in [86].
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Theorem 4.2.9 ([86]). For any variety V the following are equivalent:

(1) V is congruence arithmetical,

(2) Clo(V) satisfies the Pixley condition, i.e.,

p(x, y, y) ≈ x, p(x, y, x) ≈ x, p(y, y, x) ≈ x.

Remark 4.2.10. We would like to point out that any operation satisfying the Pixley
condition (see Definition 2.1.15) automatically satisfies the Mal’cev condition ΣM. Fur-
thermore, if p is any operation satisfying the Pixley condition, then the operation m

defined by m(x, y, z) := p(x, p(x, y, z), z) is a majority operation, i.e., m satisfies NU(3).

4.3 Linear Mal’cev conditions ordered by strength

We conclude this chapter by collecting all the Mal’cev conditions that we introduced
throughout this chapter and in Chapter 3 and ordering them by strength, as established
in Definition 4.1.5. Please note that, in order to remain in line with the main purpose of
the dissertation, we are particularly interested in those implications that hold for locally
finite varieties. The outcome of this work is displayed in Figure 4.2, which is intended as
a summary map.
Remark 4.3.1. For those readers who are more interested in clones rather than in varieties,
the implication-order arising from Definition 4.1.5 can be interpreted as follows: given
two linear Mal’cev conditions Σ and Γ, we say that Σ implies Γ, denoted Σ⇒ Γ, if C |= Σ
implies that C |= Γ for all idempotent clones C over some finite set.
Remark 4.3.2. We would like to emphasise that, despite being very similar notions, there
are some differences between linear Mal’cev conditions and minor conditions. Note that,
e.g., the linear Mal’cev condition ΣM = {m(x, y, y) ≈ m(y, y, x),m(y, y, x) ≈ x} is not a
minor condition, since there is no function symbol occurring on the right-hand side of
the equality in the second identity. However, we have already discussed in Remark 3.3.8
how this difference – for finite idempotent clones – can be adjusted considering the
quasi-version of a linear Mal’cev conditions. On the other side, consider the minor
condition WNU(n) from Definition 3.2.17. By solely looking at Definition 4.1.3, the set
∃n.WNU(n) = {WNU(n) | n ≥ 3} is not a linear Mal’cev condition, since WNU(n) does
not imply WNU(n+ 1). However, from Theorem 4.1.8, it follows that ∃n.WNU(n) is
equivalent to the Olšák condition. Thus, for finite idempotent clones, the set ∃n.WNU(n)
is even a strong linear Mal’cev condition.

We would like to emphasise that a full classification of cyclic loop conditions ordered
by strength has been presented in a joint work by Bodirsky, Starke, and Vucaj [27].

Most of the results we are going to present below either follow by definition or are
well-known in the literature. Nevertheless, we explicitly disclose some of these results
with the goal of being self-contained.
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Definition 4.3.3. We call minority condition the following set of identities

m(x, y, y) ≈ m(y, x, y) ≈ m(y, y, x) ≈ x. (Minority)

It follows by definition that the Minority condition implies the Mal’cev condition ΣM.

Proposition 4.3.4. It holds that HM(2) ⇔ ΣM. Moreover, for every n ≥ 2, it holds
that HM(n)⇒ HM(n+ 1).

Proof. Note that for any clone C, C |= ΣM if and only if C |= HM(2). Indeed, if C has a
Mal’cev operation m, then C satisfies HM(2) by assigning p0 = pr3

1, p1 = m, and p2 = pr3
3.

If C satisfies HM(2), then pC1 is a Mal’cev operation. The second claim simply follows by
definition. Indeed, for every n ≥ 2, if α and β are n-permutable congruences, then α and
β are also (n+ 1)-permutable.

Theorem 4.3.5 ([64]). For any variety V, if V is congruence 3-permutable, then it is
congruence modular.

The latter result is optimal, i.e., it cannot be pushed beyond 3-permutability: the
so-called Polin’s variety [88] is an example of a variety which is congruence 4-permutable
but not congruence modular.

In the next proposition recall the condition 4-HMcK(n) from Theorem 3.3.17.

Proposition 4.3.6 ([58, 86]). The Pixley condition implies the following conditions:
NU(3), 4-HMcK(n), and ΣM.

Proof. From Remark 4.2.10 it follows that the Pixley condition implies both ΣM and
NU(3). From Theorem 9.15 in [58] it follows that Clo(V) satisfies the 4-HMcK(n)
condition if and only if V is SD∧ and it satisfies the condition V is congruence n-
permutable, for some n ≥ 2. The implication follows then by definition, since the Mal’cev
filter generated by the Pixley condition is the intersection of congruence distributivity
and congruence permutability.

Proposition 4.3.7. The following implications hold:

(1) for every n ≥ 3, it holds that NU(n)⇒ NU(n+ 1);

(2) if it exists some k ≥ 3 such that Clo(V) |= NU(k), then Clo(V) satisfies the Jónsson
condition;

(3) if it exists some k ≥ 3 such that Clo(V) |= NU(k), then Clo(V) satisfies the k-edge
condition;

(4) if Clo(V) satisfies the k-edge condition for some k, then Clo(V) satisfies the directed-
Gumm condition.
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Proof. Let C be an idempotent clone on a finite set and let fk ∈ C be an operation satisfy-
ing NU(k), for some k ≥ 3. Define fk+1(x1, . . . , xk+1) := fk(fk(x1, . . . , xk), x2, . . . , xk+1);
clearly fk+1 ∈ C and fk+1 satisfies NU(k + 1); this proves the implication in (1). The
implication in (2) follows from Theorem 4.2.8. The implication in (3) follows from the
observation that from a k-edge term one obtains a k-ary near-unanimity term by ignoring
its first input. Finally, the implication in (4) follows from Theorem 4.2.6.

Recall the conditions FS(n) and TS(n) from Definition 3.3.19.

Proposition 4.3.8. The following implications hold:

∀n ≥ 2, Clo(V) |= TS(n) ⇒ ∀n ≥ 2, Clo(V) |= FS(n) ⇒ V is SD∧ .

Proof. The first implication follow immediately by the definition of the conditions TS(n)
and FS(n). By Theorem 4.2.3 we have that V is SD∧ if and only if Clo(V) |= WNU(n)
for every n ≥ 3. The second implication follows then by definition.

All the remaining implications, which in Figure 4.2 are witnessed by the existence
of directed edges, follow simply by definition. For instance, one can deduce that the
directed-Gumm condition (see Theorem 4.2.5) implies the Hobby-McKenzie condition
(from Theorem 3.3.13) as follows:

Proposition 4.3.9. If Clo(V) satisfies the directed-Gumm condition, then it satisfies
the Hobby-McKenzie condition.

Proof. From Theorem 4.2.5 we know that Clo(V) satisfies the directed-Gumm condition
if and only if V ∈ F(N5). Analogously, from Theorem 4.1.9 we know that Clo(V) satisfies
the Hobby-McKenzie condition if and only if V ∈ F(D2). Since N5 is a sublattice of D2,
it follows that for every variety V, if V ∈ F(N5) then V ∈ F(D2).

Note that in Figure 4.2 by "All idempotent" we denote the class of all linear Mal’cev
conditions that are satisfied by the clone I2 (see Section 3.2.2).
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Figure 4.2: The geography of linear Mal’cev conditions.
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Chapter 5
Description of P2

In this chapter we describe systematically the poset P2; we refer the reader to Chapter 3
for the formal definition of Pn. Recall that P2 := ({C | C is a clone on {0, 1}};�m). The
results presented in this chapter come from a joint work of the author of the dissertation
and Manuel Bodirsky [28]. We first present a succinct description of Post’s lattice [91]: a
complete classification of all clones of operations over the Boolean domain {0, 1}.

5.1 Post’s lattice

We label the clones of Post’s lattice by generators: if f1, . . . , fn are operations on
{0, 1}, then 〈f1, . . . , fn〉 denotes the clone generated by f1, . . . , fn. As usual, we may
apply functions componentwise, i.e., if f is a k-ary map, and t1, . . . , tk ∈ {0, 1}m, then
f(t1, . . . , tk) denotes the m-tuple

(f(t1,1, . . . , t1,k), . . . , f(tm,1, . . . , tm,k)).

In the description of Post’s lattice, we use the following operations.

• 0 and 1 denote the two unary constant operations.

• ¬(x) is the usual Boolean negation, i.e., the non-identity permutation on {0, 1}.

• If f(x1, . . . , xn) is an n-ary operation, then f∆(x1, . . . , xn) denotes its dual operation,
given by f∆(x1, . . . , xn) := ¬(f(¬(x1), . . . ,¬(xn)))).

• x ∨ y is the operation defined in Example 2.3.2 and x ∧ y := x ∨∆ y.

• x⊕ y := (x+ y) mod 2 and x⊕′ y := ¬(x⊕ y).

• x→ y := ¬(x) ∨ y and x ∗ y := ¬(x) ∧ y.

• dn(x1, . . . , xn) := ∨n
i=1

∧
j=1,j 6=i xj . For n = 3 we obtain the majority operation

d3(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).
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Figure 5.1: Post’s Lattice.

• The minority operation m(x, y, z) := x⊕ y ⊕ z.

• p(x, y, z) := x ∧ (y ∨ z).

• q(x, y, z) := x ∧ (y ⊕′ z) = x ∧ ((y ∧ z) ∨ (¬(y) ∧ ¬(z))).

Post’s lattice has 7 atoms, 5 coatoms and it is countably infinite because of the
presence of some infinite descending chains; see Figure 5.1.

5.2 Collapses

First, we prove that certain Boolean clones are in the same ≡m-class. Later, in Section 5.3
we prove that certain Boolean clones lie in different ≡m-classes and, for each separation,
we provide a concrete minor condition as a witness.

Recall that if A ≡m B, then we say that A and B collapse. The next result is a
corollary of Theorem 3.2.3.

Proposition 5.2.1. All clones with a constant operation collapse.
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Proposition 5.2.2. Let C and C∆ be Boolean clones such that C := 〈f1, . . . , fm〉 and
C∆ := 〈f∆

1 , . . . , f
∆
m〉. Then C ≡m C∆.

Proof. To prove that C �m C∆, define ξ(f) := f∆ for any f ∈ C. Then

ξ(fπ)(x1, . . . , xn) = f∆
π (x1, . . . , xn) = ¬(fπ(¬(x1, . . . , xn))

= ¬(f(¬(xπ(1), . . . , xπ(n)))) = ¬(f(¬(xπ(1), . . . , xπ(n))))
= f∆(xπ(1), . . . , xπ(n)) = ξ(f)(xπ(1), . . . , xπ(n))
= ξ(f)π(x1, . . . , xn).

The same argument can be used to prove that C∆ �m C.

Recall that the idempotent reduct of a clone C is the clone Cid that consists of all
idempotent operations in C (see Section 2.1.3).

Lemma 5.2.3. Let C be a Boolean clone with no constant operations. Let D := 〈C ∪{¬}〉
be the clone generated by C and the Boolean negation c. Then we have D ≡m Did.

Proof. Since C contains no constant operations, for every f in C either f(x, . . . , x) ≈ x
holds or f(x, . . . , x) ≈ ¬(x) holds. We claim that there exists a minor-preserving map
ξ : D → Did. We define ξ : D → Did as follows: for an n-ary operation f ∈ D

ξ(f)(x1, . . . , xn) :=

 f(x1, . . . , xn) if f is idempotent
¬(f(x1, . . . , xn)) otherwise.

By definition ξ(f) ∈ Did. We claim that ξ is minor preserving: if f is idempotent, then ξ
is the identity, and the claim trivially holds; in the other case, the claim follows by the
definition of negation:

ξ(fπ)(x1, . . . , xn) ≈ (¬ ◦ fπ)(x1, . . . , xn) ≈ (¬ ◦ f)(xπ(1), . . . , xπ(n))
≈ ξ(f)(xπ(1), . . . , xπ(n)) ≈ ξ(f)π(x1, . . . , xn).

Proposition 5.2.4. The following equivalences hold: 〈∅〉 ≡m 〈¬〉; 〈d3,¬〉 ≡m 〈d3,m〉,
and 〈m,¬〉 ≡m 〈m〉.

Proof. Checking in Post’s lattice we have that that 〈¬〉id = 〈∅〉, 〈d3,¬〉id = 〈d3,m〉, and
〈m,¬〉id = 〈m〉. The statement follows from Lemma 5.2.3.

Note that with the collapses we have reported so far we can make some observations
on the number of atoms in P2. We already pointed out that 〈0〉 and 〈1〉 are not atoms
in P2, since 〈0〉 = 〈1〉 is the top-element in P2. Furthermore, we have that 〈∨〉 ≡m 〈∧〉
because of Proposition 5.2.2. Altogether, we get that P2 has at most three atoms: 〈∧〉,
〈m〉, and 〈d3〉. We prove in Section 5.3 that these are distinct elements in P2.
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Another case of collapse is the following: 〈∨,∧〉 ≡m 〈d3, p〉. This time we prove this
via a concrete pp-construction. We consider the binary relations

≤2 := {(0, 0), (0, 1), (1, 1)} and B2 := {(0, 1), (1, 0), (1, 1)}

and define:

B2 := ({0, 1};B2, {0}, {1})
B≤ := ({0, 1};≤2, {0}, {1})
B≤2 := ({0, 1};B2,≤2, {0}, {1})

where {0} and {1} are unary relations.

Proposition 5.2.5. 〈∨,∧〉 ≡m 〈d3, p〉.

Proof. It is known that 〈∨,∧〉 = Pol(B≤) and 〈d3, p〉 = Pol(B≤2 ) (see, e.g., [91, 103]).
Since 〈d3, p〉 ⊆ 〈∨,∧〉 it follows that 〈d3, p〉 �m 〈∨,∧〉. For the other inequality it suffices
to prove that B≤2 is homomorphically equivalent to a pp-power of B≤. We consider the
relational structure S with domain {0, 1}2 and relations defined by

Φ0(x1, x2) := (x1 = 0) ∧ (x2 = 1)
Φ1(x1, x2) := (x1 = 1) ∧ (x2 = 0)

Φ≤(x1, x2, y1, y2) := (x1 ≤2 y1) ∧ (y2 ≤2 x2)
ΦB2(x1, x2, y1, y2) := x2 ≤2 y1.

Note that S is indeed a pp-power of B≤. We define the map

f : S→ B≤2

as follows:

f((0, 1)) := 0; f((0, 0)) := f((1, 0)) := f((1, 1)) := 1.

Let g : B≤2 → S be a map such that g(0) := (0, 1) and g(1) := (1, 0). It is easy to check
that both f and g are homomorphisms. This proves that S is homomorphically equivalent
to B≤2 .

In Figure 5.2 we propose a visual representation of the pp-construction presented in
the proof that we hope will be helpful to the reader.

Remark 5.2.6. Alternatively, one could prove Proposition 5.2.5 by explicitly providing a
minor-preserving map from 〈∨,∧〉 to 〈d3, p〉. For the sake of completeness, we would like
to point out that the minor-preserving map that yields the result is ξ : f 7→ f ∨ f∆.
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Figure 5.2: The structure B≤ pp-constructs B≤2 . The red edges connect elements in B2;
the blue edges connect elements in ≤2.

5.3 Separations

Recall that if A �m B then there is a minor condition Σ which is satisfied by some
operations in A but by none of the operations in B. In this case we say that Σ is a
witness of A �m B (see Remark 3.1.11). We write A | B if A �m B and A �m B.

Proposition 5.3.1. The quasi Jónsson condition QJ(4) is a witness of 〈p〉 �m 〈∧〉.

Proof. Define the operations:

t
〈p〉
0 (x, y, z) := p(x, x, x) t

〈p〉
1 (x, y, z) := p(x, y, z)

t
〈p〉
2 (x, y, z) := p(x, z, z) t

〈p〉
3 (x, y, z) := p(z, x, y)

t
〈p〉
4 (x, y, z) := p(z, z, z);

then t
〈p〉
0 , . . . , t

〈p〉
4 are witnesses for 〈p〉 |= QJ(4). On the other hand, let us suppose

that there are witnesses t〈∧〉0 , . . . , t
〈∧〉
4 for 〈∧〉 |= QJ(4) . Since any operation in 〈∧〉 is

idempotent, we have t〈∧〉0 (x, y, z) = x. Moreover, from the identity

ti(x, y, x) ≈ ti(x, x, x) 0 ≤ i ≤ n

we have that t〈∧〉1 (x, y, z) does not depend on the second argument. Moreover, t0(x, x, z) ≈
t1(x, x, z) implies that t〈∧〉1 (x, y, z) does not depend on the third argument. Hence, we
conclude that t〈∧〉1 (x, y, z) = x. From the identity t1(x, z, z) ≈ t2(x, z, z) and using
t
〈∧〉
1 (x, y, z) = x, we get that t〈∧〉2 (x, y, z) = x. Similarly, we obtain also that t〈∧〉3 (x, y, z) =
x and t〈∧〉4 (x, y, z) = x. This is in contradiction with the identity t4(x, y, z) ≈ t4(z, z, z).
Hence, we conclude that 〈∧〉 does not satisfy QJ(4).

The following structures have already been defined in Section 3.3.1 and play an
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essential role in the next proposition:

C≤2 := ({0, 1};C2,≤2, {0}, {1})
HORN := ({0, 1};R110, R111, {0}, {1})
3LIN2 := ({0, 1};R1110, R1111)

where for all a, b, c, d ∈ {0, 1}:

Rabc := {0, 1}3 \ {(a, b, c)},
Rabcd := {(x, y, z) ∈ Z3

2 | ax+ by + cz = d}.

These structures are the relational counterparts of the atoms of P2 in the sense that
〈d3〉 = Pol(C≤2 ), 〈m〉 = Pol(3LIN2), and 〈∧〉 = Pol(HORN) (see, for instance, [91, 103]).

Proposition 5.3.2. The following holds:

(1) 〈∧〉 | 〈d3〉.

(2) 〈d3〉 | 〈m〉.

(3) 〈m〉 | 〈∧〉.

Proof. (1) By definition, d3 is a quasi majority operation. Let f be any Boolean quasi
majority operation. Then it is easy to check that f does not preserve R110 and thus
f /∈ 〈∧〉 = Pol(HORN). Hence, the quasi majority condition is a witness of 〈d3〉 �m 〈∧〉.

We claim that the minor identity f(x, y) ≈ f(y, x) is a witness of 〈∧〉 �m 〈d3〉. This
identity is clearly satisfied by ∧. Let f be any Boolean binary commutative operation.
Then f does not preserve C2. Hence, f /∈ 〈d3〉 = Pol(C≤2 ) and thus the claim is proved.

(2) Let f be a Boolean quasi majority operation. Then f does not preserve the
relation R1111 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and thus f /∈ 〈m〉 = Pol(3LIN2).
Hence, the quasi majority condition is a witness of 〈d3〉 �m 〈m〉. Let g be any Boolean
quasi minority operation, then g does not preserve R110 and therefore the quasi minority
condition is a witness of 〈m〉 �m 〈d3〉.

(3) Similar to case (1).

Corollary 5.3.3. 〈d3, p〉 �m 〈d3〉.

Proof. If 〈∧〉 ⊆ 〈d3, p〉, then 〈d3, p〉 satisfies the minor identity f(x, y) ≈ f(y, x). In
the proof of Proposition 5.3.2 it was shown that 〈d3〉 does not satisfy f(x, y) ≈ f(y, x).
Hence, 〈d3, p〉 �m 〈d3〉.

It is easy to check that 〈d3,m〉 = Pol(C2), where C2 is the relational structure
C2 := ({0, 1};C2, {0}, {1}).

Proposition 5.3.4. The following holds:
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(1) 〈d3,m〉 �m 〈d3〉.

(2) 〈d3,m〉 �m 〈m〉.

(3) 〈d3,m〉 | 〈∧〉.

Proof. (1) and (2) follow immediately from Proposition 5.3.2: the quasi minority con-
dition is a witness of 〈d3,m〉 �m 〈d3〉 and the quasi majority condition is a witness of
〈d3,m〉 �m 〈m〉. Concerning (3), it follows from Proposition 5.3.2 that the quasi majority
condition is a witness of 〈d3,m〉 �m 〈∧〉. Conversely, suppose that g is a Boolean binary
commutative operation. Then g does not preserve C2. Therefore, the minor identity
f(x, y) ≈ f(y, x) is a witness of 〈∧〉 �m 〈d3,m〉.

We now prove that P2 contains an infinite descending chain.

〈d3, q〉 �m 〈d4, q〉 �m 〈d5, q〉 �m · · · �m 〈q〉. (C1)

In order to prove this fact, we introduce the following relational structures, also
known as cube term blockers [84]:

Bk := ({0, 1};Bk, {0}, {1}) where Bk := {0, 1}k \ {(0, . . . , 0︸ ︷︷ ︸
k

)}

B∞ :=
⋃
n∈N

Bn.

Cube blockers are the relational counterparts of the clones considered in the chain (C1),
because the same chain can be rewritten as:

Pol(B2) �m Pol(B3) �m Pol(B4) �m · · · �m Pol(B∞).

We use the QNU identities to prove that the order is strict: in fact, Pol(Bn−1) satisfies
QNU(n) but Pol(Bn) does not.

Proposition 5.3.5. For any natural number n > 2, the quasi near-unanimity condition
QNU(n) is a witness of Pol(Bn−1) �m Pol(Bn).

Proof. Let f be an n-ary quasi near-unanimity operation. Suppose for contradiction that
f is in Pol(Bn). Note that f is idempotent since it has to preserve the unary relations
{0} and {1}. In the following (n× n)-matrix every column is an element of Bn. Then we
get a contradiction since, applying f row-wise, we obtain the missing n-tuple (0, . . . , 0).

f


0 . . . 0 1
... ... 1 0

0 ... ... ...
1 0 . . . 0

 =


f(0, . . . , 0, 1)

...
f(1, 0, . . . , 0)

 =


0
...
0

 .
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Let g be an n-ary operation defined as:

g(x1, . . . , xn) :=

1 if at least two variables are evaluated to 1.
0 otherwise.

Then, by definition, g is a QNU operation. We claim that g ∈ Pol(Bn−1). Indeed, from
an analysis of any (n − 1) × n-matrix M such that applying g to the rows of M one
gets the tuple (0, . . . , 0), we conclude that one of the columns of M must be equal to a
0-vector. Thus the claim follows.

With the same argument we can prove that there is another infinite descending chain,
namely

〈d3, p〉 �m 〈d4〉 �m 〈d5〉 �m · · · �m 〈p〉. (C2)

For every k, we define

B≤k := ({0, 1};Bk,≤, {0}, {1}),
B≤∞ :=

⋃
n∈N

B≤n .

Again we consider the relational counterparts of the clones involved in (C2) and rewrite
the chain as follows:

Pol(B≤2 ) �m Pol(B≤3 ) �m Pol(B≤4 ) �m · · · �m Pol(B≤∞).

Proposition 5.3.6. For any natural number n > 2, the quasi near-unanimity condition
QNU(n) is a witness of Pol(B≤n−1) �m Pol(B≤n ).

The next step is to show that (C1) and (C2) are two distinct chains in P2. In
particular, we prove that there is no minor-preserving map from 〈q〉 to 〈d3, p〉. The minor
condition which we use as a witness of this fact is the quasi-version of a celebrated set of
identities from universal algebra [56].

Proposition 5.3.7. The minor condition QHM(3) is a witness of 〈q〉 �m 〈d3, p〉.

Proof. Note that 〈q〉 |= QHM((3); defining:

p
〈q〉
0 (x, y, z) := q(x, x, x)

p
〈q〉
1 (x, y, z) := q(x, y, z)

p
〈q〉
2 (x, y, z) := q(z, x, y)

p
〈q〉
3 (x, y, z) := q(z, z, z).
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Suppose for contradiction that C := Pol(B≤2 ) satisfies the minor condition QHM(3)
via pC0 , . . . , pC3 . Then we have

1 = pC0(1, 1, 0) = pC1(1, 0, 0) ≤2 p
C
1(1, 1, 0) = · · · = pC3(1, 0, 0) = 0

which is a contradiction.

Proposition 5.3.8. 〈m〉 �m 〈d3, p〉.

Proof. We claim that the quasi minority condition is a witness of 〈m〉 �m 〈d3, p〉. In
fact, let f be any Boolean quasi minority operation. Then f does not preserve B2
since the missing tuple (0, 0) can be obtained by applying f to tuples in B2. Hence,
f /∈ 〈d3, p〉 = Pol(B≤2 ) and thus the claim follows.

Corollary 5.3.9. Let C be a Boolean clone such that 〈p〉 ⊆ C ⊆ 〈d3, p〉. Then C | 〈m〉.

Proof. Let C be as in the hypothesis. Let us suppose that 〈m〉 �m C. Then we get
〈m〉 �m C �m 〈d3, p〉, contradicting Proposition 5.3.8. Let us suppose now that C �m 〈m〉.
Then we get 〈∧〉 ≺m 〈p〉 �m C �m 〈m〉, contradicting Proposition 5.3.2.

Corollary 5.3.10. 〈m〉 �m 〈d3, q〉.

Proof. Since 〈d3, q〉 = Pol(B2), the argument is essentially the same as the one of
Proposition 5.3.8.

Corollary 5.3.11. Let C be a Boolean clone such that 〈q〉 ⊆ C ⊆ 〈d3, q〉. Then C | 〈m〉.

Proof. The proof is essentially the same as the one of Corollary 5.3.9.

Proposition 5.3.12. Let C be a Boolean clone such that 〈∧〉 ⊆ C ⊆ 〈d4, q〉. Then
C | 〈d3〉.

Proof. Since 〈∧〉 ⊆ C and since, by Proposition 5.3.2, we have 〈∧〉 �m 〈d3〉, it follows
that C �m 〈d3〉. Since d3 is the Boolean majority operation, we have that 〈d3〉 satisfies
the quasi majority condition QNU(3). By Proposition 5.3.5, we have that 〈d4, q〉 does not
satisfy QNU(3) and hence no subclone of 〈d4, q〉 satisfies QNU(3). Since C is a subclone
of 〈d4, q〉 it follows that the quasi majority condition is a witness of C �m 〈d3〉.

Proposition 5.3.13. 〈0〉 �m 〈m, q〉.

Proof. Note that 〈m, q〉 = Pol({0, 1}; {0}, {1}) is the clone of all the idempotent opera-
tions on {0, 1}. Hence, 〈m, q〉 contains no constants and thus 〈m, q〉 6|= f(x) ≈ f(y) while
〈0〉 does.
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5.4 The lattice P2

Putting all the results of the sections 5.2 and 5.3 together, we display a Hasse diagram
of P2 which turns out to be a lattice (Figure 5.3). We then use this diagram to revisit
the complexity of Boolean CSPs. In Figure 5.4 we indicate for each element of P2 the
corresponding complexity class.

〈∅〉

〈m〉 〈d3〉 〈∧〉

〈d3,m〉 〈p〉

〈q〉

〈d5〉

〈d5, q〉

〈d4〉

〈d4, q〉

〈d3, p〉

〈d3, q〉

〈m, q〉

〈1〉

Figure 5.3: The lattice P2.

Theorem 5.4.1. The pp-constructability poset restricted to the case of Boolean clones
is the lattice P2 in Figure 5.3.

Proof. Recall that every element in P2 is a ≡m-class; for every ≡m-class we list explicitly
the clones on {0, 1} that are in the considered class. The list is justified by the results
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proved in Section 5.2:

〈∅〉 = {〈∅〉, 〈¬〉} 〈∧〉 = {〈∧〉, 〈∨〉}
〈d3〉 = {〈d3〉} 〈m〉 = {〈m〉, 〈m,¬〉}

〈d3,m〉 = {〈d3,m〉, 〈d3,¬〉} 〈p〉 = {〈p〉, 〈p∆〉}
〈q〉 = {〈q〉, 〈q∆〉} 〈d3, p〉 = {〈d3, p〉, 〈d3, p

∆〉, 〈∧,∨〉}
〈m, q〉 = {〈∨, q〉} 〈0〉 = {C | 0 ∈ C or 1 ∈ C}

Moreover, for every i > 3,

〈di, p〉 = {〈di, p〉, 〈di, p∆〉} 〈di, q〉 = {〈di, q〉, 〈di, q∆〉}.

Note that all the clones of Post’s lattice appear in this list. We have to show that
there are no further collapses. Recall that if C and D are elements of Post’s lattice
such that C ⊆ D, then C �m D. Using this remark together with the results proved in
Section 5.2 and Section 5.3 we get the following inequalities.

〈∅〉 �m C �m 〈m, q〉 ≺m 〈0〉, for every C 6= 〈0〉 (Propositions 5.2.4, 5.3.13, 5.2.1)
〈d3〉 ≺m 〈d3,m〉 and 〈m〉 ≺m 〈d3,m〉 (Proposition 5.3.4)

〈∧〉 ≺m 〈p〉 ≺m 〈q〉 (Propositions 5.3.1, 5.3.7)
〈d3〉 ≺m 〈d3, p〉 (Corollary 5.3.3)

〈p〉 ≺m 〈di+1, p〉 ≺m 〈di, p〉, for every i ≥ 3 (Proposition 5.3.6)
〈q〉 ≺m 〈di+1, q〉 ≺m 〈di, q〉, for every i ≥ 3 (Proposition 5.3.5)

〈di, p〉 ≺m 〈di, q〉, for every i ≥ 3 (Proposition 5.3.7)

It remains to prove that there are no other comparable elements in P2. Proposi-
tions 5.3.2, 5.3.4, 5.3.12, Corollary 5.3.9, and Corollary 5.3.11 ensure that this is indeed
the case.

Now we move to the relational side via the Inv-Pol Galois connection. We already
pointed out that the bottom element of P2 represents the class of all the Boolean
relational structures B such that CSP(B) is NP-complete, and Schaefer’s theorem [95]
implies that the CSP of every other Boolean structure is in P. It is well known that
Pol(1IN3) = 〈∅〉 and Pol(NAE) = 〈¬〉 [91] (see also [24] for a more modern approach).

Following [3], we describe the complexity of Boolean CSPs within P. Combining
Theorem 5.4.1 with the main result in [3] we obtain the following.

Theorem 5.4.2. Let A be a Boolean relational structure and finite relational signature.

• If Pol(A) ≡m 〈∅〉, then CSP(A) is NP-complete.

71



• If Pol(A) ≡m 〈∧〉, then CSP(A) is P-complete.

• If Pol(A) ≡m 〈m〉, then CSP(A) is ⊕L-complete.

• If Pol(A) ≡m 〈d3〉 or 〈p〉 �m Pol(A) �m 〈d3, p〉, then CSP(A) is NL-complete.

• If 〈d3,m〉 �m Pol(A) or 〈q〉 �m Pol(A), then CSP(A) is in L.

NAE

3LIN2 C≤2 HORN

C2 B≤∞

B∞

B≤4

B4

B≤3

B3

B≤
B2

I2

C1

LEGENDA
: Trivial

: in L

: NL-complete

: Mod2L-complete

: P-complete

: NP-complete

Figure 5.4: The lattice P2 split according to Theorem 5.4.2.

In Figure 5.4 each element of P2 is marked with the colour associated with the
corresponding complexity class, as is illustrated in the legenda. We invite the reader to
confront Figure 5.4 with the splitting-theorems from Section 3.3.1, in particular with
Theorem 3.3.14, Theorem 3.3.16, and Theorem 3.3.17 (see also Figure 3.3).
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Chapter 6
Clones over a three-element set

As we already anticipated in Section 3.3.3, almost twenty years after Post [91] succeeded
in completely describing the lattice L2 of all clones of operations on {0, 1}, Janov and
Mučnik [61] proved that there exists a continuum of clones on a n-element set, for n ≥ 3.
This result constituted a significant setback for clone theory: the goal of continuing Post’s
work and thus providing a complete description of Ln, seemed to be hopeless even in
the case of n = 3. Nevertheless, Jablonskij [60] described all maximal elements of L3.
Later, it was proved that all maximal clones in L3, except the clone of all linear functions,
contain a continuum of subclones [46, 78]; in particular, Marchenkov proved that there are
2ω clones of self-dual operations over E3 = {0, 1, 2} and Zhuk [104] presented a complete
description of their lattice. This lattice has a remarkably rich structure (see Figure 6.1)
and is large in the sense that its top element C3 := Pol({0, 1, 2}; {(0, 1), (1, 2), (2, 0)}) is
one of the 18 maximal clones found by Jablonskij [60].

In this chapter we show that, in contrast to L3, the poset P3 is rather tame. First,
we prove that it has only 3 submaximal elements, i.e., C2, C3, and B2. Here Cn = Pol(Cn)
and B2 = Pol(B2), where Cn and B2 are the relational structures defined in Section 3.2.4
and in Example 2.3.2, respectively. Although we are still do not know the cardinality of
P3, we know that a possible family of 2ω elements would necessarily have to be located
below B2 (see the discussion at the end of Section 3.3.3).

6.1 Submaximal elements of P3

In this section we prove that C2, C3, and B2 are the only submaximal elements of P3. In
particular, we show that if S is a clone on {0, 1, 2} such that

S �m C2, S �m C3, and S �m B2 (♠)

then there exists a minor-preserving map from I2 to S, i.e., I2 �m S. Our proof is of
syntactic nature: we prove several statements that entail the existence of operations satis-
fying suitable identities in some clone C, provided that C has certain operations. Results
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in this direction are Lemma 6.1.5, Corollary 6.1.6, Lemma 6.1.7, and theorems 6.1.10 and
6.1.11. Statements of this form constitute results of independent interest in universal
algebra as they lay in the foundations of the well-known Galois connection between
identities and varieties. We are going to prove that any clone on a three-element set
satisfying (♠) has an oddition of arity k for every odd k ≥ 3 and a totally symmetric
operation of arity n for every n ≥ 2. Recall that we say that an n-ary operation f is
totally symmetric if it satisfies the condition TS(n) from Definition 3.3.19.

As a first step, we want to prove that every clone S on E3 satisfying (♠) has a majority
operation. For this purpose, we need to introduce some more notions and terminology
concerning relations. In particular, we will consider essential and key relations.

The author would like to express his sincere gratitude to Dmitriy Zhuk: the formulae
used in Theorem 6.1.10 and Theorem 6.1.11 are due to him.

Definition 6.1.1. Let R be an n-ary relation on a finite set A. We say that

• R is an essential relation if there do not exist relations R1, . . . , Rm of arity smaller
than n such that R is obtained as a conjunction of relations from {R1, . . . , Rm}.
A tuple (a1, . . . , an) ∈ An \R is essential for R if if for every i ∈ {1, . . . , n} there
exists b such that (a1, . . . , ai−1, b, ai+1, . . . , an) ∈ R. We denote by Ess(R) the set
of all essential tuples for R.

• R is a key relation if there exists a tuple b ∈ An \R such that for every a ∈ An \R
there exists a tuple Ψ := (Ψ1, . . . ,Ψn), where Ψi : A→ A, which preserves R and
gives Ψ(a) = b.

Key relations are a generalization of critical relations introduced by Kearnes and
Szendrei in [71]. We only need one more ingredient in order to prove Lemma 6.1.7: the
notion of block of a relation R over a finite domain A.

We denote by R̃ the relation R ∪ Ess(R). Again following [105], we define a graph
GR̃ := (R̃;E) as follows: if a, b ∈ R̃ ⊆ An, then we have (a, b) ∈ E if and only if a and
b differ just in one element, i.e., there exists a unique i ∈ {1, . . . , n} such that ai 6= bi. A
block of R is a connected component of GR̃. A block is called trivial if it only contains
tuples from R; it is nontrivial otherwise.

Another notation that that will come in handy throughout the current chapter is the
following: we write +n to denote the addition modulo n, i.e., the operation of the group
of integers modulo n; please note that sometimes, e.g., in Chapter 5, we denote +2 by ⊕.

Theorem 6.1.2 (c.f. [105], Theorem 3.11). Let R be a key essential relation of arity
n ≥ 3, preserved by a Mal’cev operation. Then

• Every block of R equals B1 × · · · ×Bn, for some B1, . . . , Bn ⊆ A.

• For every nontrivial block B := B1 × · · · ×Bn of R, the intersection R ∩B can be
defined as follows: there exists an abelian group (G; +,−, 0) whose order is a power
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of a prime, and surjective mappings φi : Bi → G, for i = 1, 2, . . . , n such that

R ∩B = {(x1, . . . , xn) | φ1(x1) + φ2(x2) + . . .+ φn(xn) = 0}.

Theorem 6.1.3 ([4]). Let C be an idempotent clone on a finite set. Then, for every
k ≥ 2, the following are equivalent:

• C |= NU(k + 1);

• every (k + 1)-ary relation in Inv(C) can be obtained as a conjunction of relations
of arity k in Inv(C).

We want to remark that if an idempotent clone C does not have a near unanimity
operation of arity k then Inv(C) has an essential relation R of arity k. Furthermore, a
result of Zhuk [105] yields that R can be chosen to be a key relation. In fact, it almost
follows from definition that one can choose R to be critical (see [71]) and Zhuk proved
the following.

Lemma 6.1.4 ([105], Lemma 2.4). Let R be a critical relation, then R is a key relation.

Lemma 6.1.5. Let C be a clone over En, for some natural n ≥ 2, such that

(1) C |= Σp, for every prime p ≤ n, and

(2) C |= ΣM, i.e., C has a Mal’cev operation.

Then C has a majority operation.

Proof. Let C be a clone satisfying all the hypotheses and suppose that C does not have a
ternary near unanimity operation, i.e., a majority operation. Then by Theorem 6.1.3 we
have that Inv(C) has a critical relation R of arity k ≥ 3. Therefore, by Theorem 6.1.2, for
every nontrivial block B of R, there exists an abelian group G = (G,+,−, 0) whose order
` ≤ n is the power of some prime and surjective mappings φi : Bi → G, for i = 1, 2, . . . , k
such that R ∩B = {(x1, . . . , xk) | φ1(x1) + φ2(x2) + . . .+ φk(xk) = 0}.

Let us show that the relation R cannot be preserved by a cyclic operation cp of arity
p, where p divides `. Choose a mapping ψi : G→ Bi, for every i, such that φi(ψi(x)) = x,
for every x ∈ G. Let a be an element in G of order p. Notice, that

B1(x1) = ∃x2 . . . ∃xk
k∧
i=2

R(x1, ψ2(0), . . . , ψi−1(0), xi, ψi+1(0), . . . , ψk(0)),

which means that B1 is pp-definable from R and constants. Combining this with the
idempotency of C we derive that the cyclic operation cp preserves B1. Similarly, we show
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that cp preserves Bi, for every i. Applying cp to the rows of the matrices

ψ1(0) ψ1(a) ψ1(2a) . . . ψ1((p− 1)a)
ψ2(0) ψ2(−a) ψ2(−2a) . . . ψ2(−(p− 1)a)
ψ3(0) ψ3(0) ψ3(0) . . . ψ3(0)

...
...

... . . . ...
ψk(0) ψk(0) ψk(0) . . . ψk(0)




ψ1(0) ψ1(a) . . . ψ1((p− 2)a) ψ1((p− 1)a)
ψ2(−a) ψ2(−2a) . . . ψ2(−(p− 1)a) ψ2(0)
ψ3(a) ψ3(a) . . . ψ3(a) ψ3(a)
ψ4(0) ψ4(0) . . . ψ4(0) ψ4(0)

...
...

...
...

...
ψk(0) ψk(0) . . . ψk(0) ψk(0)


we get respectively the tuples

(c, d, ψ3(0), ψ4(0), . . . , ψk(0)), and
(c, d, ψ3(a), ψ4(0), . . . , ψk(0))

from R ∩B, which contradicts the definition of R ∩B. This contradiction proves that
such a relation R cannot exist in Inv(C), thus C has a majority operation.

Corollary 6.1.6. Let S be a clone on E3 such that S �m C2, S �m C3, and S �m B2.
Then S has a fully symmetric majority operation.

Proof. From Theorem 3.3.10 it follows that S has a Mal’cev operation, and from Theo-
rem 3.3.11 it follows that there exist c2, c3 ∈ C such that c2 |= Σ2 and c3 |= Σ3. Thus, it
follows from Lemma 6.1.5 that S has a majority operation M ′. We define the operation
M as follows:

M(x, y, z) := c2(c3(M ′(x, y, z),M ′(y, z, x),M ′(z, x, y)),
c3(M ′(x, z, y),M ′(z, y, x),M ′(y, x, z))). (♥)

It is easy to check that M is a fully symmetric majority.

Lemma 6.1.7. Let S be a clone on E3 such that S �m C2, S �m C3, and S �m B2.
Then S has a fully symmetric minority operation.

Proof. Let S be as in the hypothesis. It follows from Theorem 3.3.10 that S has a Mal’cev
operation d. Also, from Corollary 6.1.6 we know that S has a majority operation M . We
define m′3 as follows:

m′3(x, y, z) := M(d(x, y, z), d(y, z, x), d(z, x, y)).
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It is easy to check that m′3 is indeed a minority operation: note that, since d is a Mal’cev
operation, whenever we identify two variables in m′3 at least two of the values among
d(x, y, z), d(y, z, x), and d(z, x, y) are equal to the variable that occurs only once. Hence,
applying M we obtain this variable, again. Furthermore, it follows from Theorem 3.3.11
that S has a binary cyclic operation c2 and a ternary cyclic operation c3. We then define
a fully symmetric minority m3 in the same way we obtained a fully symmetric majority
in Corollary 6.1.6: we simply replace every occurrence of M in (♥) by m3.

Remark 6.1.8. Note that the value of a fully symmetric minority m3(x, y, z) has to be a
constant c ∈ {0, 1, 2} whenever the three values in the scope of m3 are all distinct, i.e.,

m3(0, 1, 2) = m3(0, 2, 1) = m3(1, 0, 2) = m3(1, 2, 0) = m3(2, 0, 1) = m3(2, 1, 0) = c.

In this case we also denote the fully symmetric minority operation by mc
3. We follow the

same convention for fully symmetric majority operations.

The "oddition"

An oddition1 of arity n, for some odd number n, is an idempotent operation mc
n : A→ A

defined as follows: mc
n(x1, . . . , xn) returns the constant c ∈ A if there are at least three

distinct values occurring an odd number of times in the tuple (x1, . . . , xn), otherwise
mc
n(x1, . . . , xn) returns the only value occurring an odd number of times.

Remark 6.1.9. Let mc
2n+1 be an oddition over a finite set A, for some n ∈ N. If

(a1, . . . , a2n+1) ∈ A2n+1 is such that ai = aj , for some i, j ∈ {1, . . . , 2n+ 1} with i < j,
then

mc
2n+1(a1, . . . , a2n+1) ?= mc

2n+1(a1, . . . , a2n+1, ai, aj)
??= mc

2n−1(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , a2n+1).

The equality ?= holds since mc
2n+1 is fully symmetric by definition, and ??= holds since

the output of mc
2n+1(a1, . . . , a2n+1) only depends on the parity of the values occurring as

arguments in mc
2n+1.

Note that the minority operation m3(x, y, z) = x+2 y +2 z on the Boolean set {0, 1}
is indeed an oddition of arity 3. Also note that if a clone C over {0, 1} contains the
minority operation m3(x, y, z) then, for every n ≥ 2, the oddition

m2n+1(x1, . . . , x2n+1) := m3(m2n−1(x1, . . . , x2n−1), x2n, x2n+1)
= x1 +2 x2 +2 . . .+2 x2n+1

1The name oddition is due to Péter Pál Pálfy. We decided to opt for this name since it is a portmanteau
of the words "odd" and "addition".
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is also in C. We prove an analogous result for the three-element case: we show that every
clone S on E3 satisfying condition (♠) has an oddition of every odd arity. Recall that
by Theorem 6.1.7 we know that S has a fully symmetric minority operation mc

3 where
c ∈ {0, 1, 2} is the constant value that mc

3(x, y, z) returns whenever |{x, y, z}| = 3, see
Remark 6.1.8. We define the following auxiliary operation

Dc(x, y, z) :=


c+3 1 if (x, y, z) ∈ {(c+3 2, c, c+3 1), (c+3 2, c+3 1, c)},
c+3 2 if (x, y, z) ∈ {(c+3 1, c, c+3 2), (c+3 1, c+3 2, c)},
x otherwise.

(♦)

Note that Dc(x, y, z) = mc
3(mc

3(x, y, z), y, z), hence Dc(x, y, z) ∈ S.

Theorem 6.1.10. Let S be a clone on E3 such that S �m C2, S �m C3, and S �m B2.
Then S has an oddition of every odd arity.

Proof. From Lemma 6.1.7 we know that S has a symmetric minority operation mc
3; let

Dc the operation defined as in (♦). For every n ≥ 2, we define the operation

mc
2n+1(x1, . . . , x2n+1) := mc

3(t2n+1(x1, x2, x3, x4, . . . , x2n+1),
t2n+1(x2, x1, x3, x4, . . . , x2n+1),
t2n+1(x3, x1, x2, x4, . . . , x2n+1))

where

t2n+1(x1, . . . , x2n+1) := mc
3(Dc(mc

2n−1(x1, x4, x5, . . . , x2n+1), x1, x1),
Dc(mc

2n−1(x1, x4, x5, . . . , x2n+1), x1, x2),
Dc(mc

2n−1(x1, x4, x5, . . . , x2n+1), x1, x3)).

The first argument of mc
3 in the latter formula equals to mc

2n−1(x1, x4, x5, . . . , x2n+1) how-
ever, we instead prefer to write Dc(mc

2n−1(x1, x4, x5, . . . , x2n+1), x1, x1) in the definition,
for the sake of symmetry.

We are going to prove the claim of the theorem by induction over n. Let us first make
a few remarks on the symmetries of mc

2n+1 in order to make the formula more digestible
for the reader. As an inductive hypothesis we assume that mc

2n−1 is an oddition. It
follows from the symmetry of mc

2n−1 that t2n+1 is invariant under any permutation of
the variables x4, . . . , x2n+1. Hence mc

2n+1 is also invariant under any permutation of the
variables x4, . . . , x2n+1. Since mc

3 is symmetric, t2n+1 is invariant under permutation of
x2 and x3 and therefore mc

2n+1 is invariant under any permutation of the variables x1,
x2, and x3. Notice that mc

1(x) := x. Moreover, since mc
2n−1 is an oddition, it holds

mc
2n−1(x1, x2, . . . , x2n−3, x, x) = mc

2n−3(x1, x2, . . . , x2n−3),
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thus, we obtain that

t2n+1(x1, x2, . . . , x2n−1, x, x) = t2n−1(x1, x2, . . . , x2n−1),

and therefore mc
2n+1(x1, x2, . . . , x2n−1, x, x) = mc

2n−1(x1, x2, . . . , x2n−1).

Combining this with the symmetry of mc
2n+1 over permutation of the last 2n − 2

coordinates, we obtain that mc
2n+1 behaves as an oddition for all the tuples having

repetitive elements in x4, . . . , x2n+1. Thus, if n ≥ 3 then 2n+ 1− 3 > 3 and mc
2n+1 is an

oddition. It only remains to consider the case when there are no repeated elements in the
first three components and no repeated elements in the last two components of mc

5. By
making use of the known symmetries, it suffices to verify that mc

5(x1, x2, x3, x1, x2) = x3.

Let us check how the identification of variables transforms mc
5.

mc
5(x1, x, x, x4, x5) = mc

3
(
t5(x1, x, x, x4, x5), (?1)
t5(x, x1, x, x4, x5),
t5(x, x1, x, x4, x5)

)
= t5(x1, x, x, x4, x5)
= mc

3(Dc(mc
3(x1, x4, x5), x1, x1),

Dc(mc
3(x1, x4, x5), x1, x),

Dc(mc
3(x1, x4, x5), x1, x))

= Dc(mc
3(x1, x4, x5), x1, x1)

= mc
3(x1, x4, x5)

This proves that mc
5 behaves well on all the tuples having repetitive elements in the first

3 coordinates. To prove for the case when the first 3 coordinates are different we will
need the following identities:

t5(x1, x2, x3, x1, x2) = mc
3
(
Dc(mc

3(x1, x1, x2), x1, x1),
Dc(mc

3(x1, x1, x2), x1, x2),
Dc(mc

3(x1, x1, x2), x1, x3)
)

= mc
3(x2, x2, D

c(x2, x1, x3)) = Dc(x2, x1, x3);
t5(x1, x2, x3, x2, x3) = mc

3(Dc(mc
3(x1, x2, x3), x1, x1),

Dc(mc
3(x1, x2, x3), x1, x2),

Dc(mc
3(x1, x2, x3), x1, x3)) = mc

3(x1, x2, x3).

We check the last equality as follows. If |{x1, x2, x3}| < 3 then mc
3 is the minority and Dc

is the first projection, which implies the equality. Otherwise, if |{x1, x2, x3}| = 3, then
mc

3(x1, x2, x3) = c and, since Dc returns c whenever the first coordinate is c, we get the
equality.
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Finally, we obtain the following equation

mc
5(x1, x2, x3, x1, x2) = mc

3
(
t5(x1, x2, x3, x1, x2), (?2)
t5(x2, x1, x3, x1, x2),
t5(x3, x1, x2, x1, x2)

)
= mc

3
(
Dc(x2, x1, x3),
Dc(x1, x2, x3),
mc

3(x1, x2, x3)
)

= x3.

The equation (?2) above can be checked manually. If {x1, x2, x3} 6= {0, 1, 2}, then
it again follows from the fact that mc

3 is the minority and Dc is the first projection on
every 2-element subset.

If {x1, x2, x3} = {0, 1, 2} and x3 = c, then

mc
3(Dc(x2, x1, x3), Dc(x1, x2, x3),mc

3(x1, x2, x3)) = mc
3(x1, x2, c) = c.

If {x1, x2, x3} = {0, 1, 2} and x1 = c, then

mc
3(Dc(x2, x1, x3), Dc(x1, x2, x3),mc

3(x1, x2, x3)) = mc
3(x3, c, c) = x3.

Similarly, if {x1, x2, x3} = {0, 1, 2} and x2 = c, then

mc
3(Dc(x2, x1, x3), Dc(x1, x2, x3),mc

3(x1, x2, x3)) = mc
3(c, x3, c) = x3.

The equations (?1) and (?2) imply that mc
5 is an oddition.

Totally symmetric operations of every arity

Now we prove that every clone S on E3 satisfying condition (♠) has totally symmetric
operations of every arity n ≥ 2 (see Definition 3.3.19).

Theorem 6.1.11. Let S be a clone on E3 such that S �m C2, S �m C3, and S �m B2.
Then S has totally symmetric operations of every arity n ≥ 2, that is, S |= TS(n), for
every n ≥ 2.

Proof. From Corollary 6.1.6 and Lemma 6.1.7 it follows that S has a symmetric majority
operation M c and a symmetric minority operation m, respectively. Also, from Theo-
rem 3.3.11 it follows that there exists a binary cyclic operation s2 ∈ S, thus S |= TS(2).
For every n ≥ 3 we define:

sn(x1, . . . , xn) := m(sn−1(x1,M
c(x1, x2, x3), x4, . . . , xn),

sn−1(x2,M
c(x1, x2, x3), x4, . . . , xn),

sn−1(x3,M
c(x1, x2, x3), x4, . . . , xn)).
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We will prove by induction on n ≥ 2 that

(i) if {x1, . . . , xn} = {a, b} ⊂ {0, 1, 2}, then sn(x1, . . . , xn) = s2(a, b);

(ii) if {x1, . . . , xn} = {0, 1, 2}, then

sn(x1, . . . , xn) = m(s2(0, c), s2(1, c), s2(2, c)).

For n = 2 this is obvious. Notice that, for every n ≥ 3,

sn(x, x, x3, x4, . . . , xn) := m(sn−1(x,M c(x, x, x3), x4, . . . , xn),
sn−1(x,M c(x, x, x3), x4, . . . , xn),
sn−1(x3,M

c(x, x, x3), x4, . . . , xn))
= sn−1(x3, x, x4, . . . , xn)

Hence, by the inductive assumption we have the required properties (i) and (ii) on all
tuples whose first two elements are equal. Since the operations M c and m are symmetric,
sn is symmetric under any permutation of the first 3 variables. Therefore, the property
(i) always holds and the property (ii) holds on all tuples such that the first three elements
are not different.

Let us prove the property (ii) on all tuples (x1, x2, . . . , xn) such that {x1, x2, x3} =
{0, 1, 2}. For s3 it immediately follows from the definition. To prove this for n > 3
consider 3 cases.

Case 1. If {x4, . . . , xn} = {a} ⊂ {0, 1, 2} then

sn(x1, . . . , xn) = m(sn−1(x1, c, a, . . . , a),
sn−1(x2, c, a, . . . , a),
sn−1(x3, c, a, . . . , a))

?= m(sn−1(0, c, a, . . . , a), (•1)
sn−1(1, c, a, . . . , a),
sn−1(2, c, a, . . . , a)).

The equality ?= holds because m is symmetric. In case a = c, we obtain, by the induction
hypothesis, that

sn(x1, . . . , xn) = m(s2(0, c), s2(1, c), s2(2, c)).

If a 6= c, then in (•1) we have an argument of the form sn−1(a, c, a, . . . , a), one of the
form sn−1(c, c, a, . . . , a), and one where 0,1, and 2 occur. Therefore, by property (i) of
the induction hypothesis we get sn−1(a, c, a, . . . , a) = s2(a, c) and sn−1(c, c, a, . . . , a) =
s2(a, c). Moreover, by properties of m, we get

sn(x1, . . . , xn) = m(s2(a, c), s2(a, c), s3(0, 1, 2)) = s3(0, 1, 2).
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Case 2. If {x4, . . . , xn} = {a, b} ⊂ {0, 1, 2} then, by using the fact that sn−1 and m
are symmetric, we get

sn(x1, . . . , xn) = m(sn−1(0, c, a, . . . , a, b, . . . , b), (•2)
sn−1(1, c, a, . . . , a, b, . . . , b),
sn−1(2, c, a, . . . , a, b, . . . , b)).

If c /∈ {a, b} then each argument of m in the latter formula is equal to s3(0, 1, 2), by the
induction hypothesis. Otherwise, if c ∈ {a, b} then in (•2) we have an argument of the
form sn−1(a, . . . , a, b, . . . , b), one of the form sn−1(b, a, . . . , a, b . . . , b), and one where 0,
1, and 2 occur. By the induction hypothesis, we get

sn(x1, . . . , xn) = m(s2(a, b), s2(a, b), s3(0, 1, 2)).

Case 3. If {x4, . . . , xn} = {0, 1, 2}, then, by the symmetry of m and sn−1, we have

sn(σ(x1), . . . , σ(xn)) = m(sn−1(0, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2), (•3)
sn−1(1, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2),
sn−1(2, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2))

It follows, by the the induction hypothesis, that each argument of m in (•3) is equal to
s3(0, 1, 2); hence, we obtain sn(x1, . . . , xn) = s3(0, 1, 2). This concludes the proof.

The collapse of S and I2

In Section 3.2.2 we proved that I2 is the unique coatom in Pfin, where I2 is the clone over
{0, 1} generated by the operations ∧ and m(x, y, z) := x⊕ y ⊕ z, defined in Section 5.1.
Here we prove that, whenever a clone has totally symmetric operations and odditions of
an arbitrary large arity, there exists a minor homomorphism from I2 to this clone.

It is well-known that every operation over {0, 1} has a unique polynomial representa-
tion if we forbid repetitive monomials and disrespect the order of monomials. Applying
this fact to idempotent operations from I2 we obtain the following lemma, in which
operations ⊕ and ∧ denote the usual sum and multiplication modulo 2, respectively.

Lemma 6.1.12. For every operation f ∈ I2 there exists an up to the order of monomials
unique representation of the form f(x1, . . . , xn) := ⊕`

i=1
∧
Wi, where ` is odd and the

sets W1, . . . ,Wl ⊆ {x1, . . . , xn} are different and nonempty.

Proof. It is sufficient to check that every polynomial preserving {0} does not have the
constant 1 as a monomial, and that every polynomial preserving {1} has an odd number
of monomials different from constants.

Theorem 6.1.13. Let S be a clone over Ek, for some k ≥ 2, such that
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• S has a totally symmetric operation of arity n, for every n ≥ 2, and

• S has an oddition of arity n, for every odd n ≥ 3.

Then there exists a minor homomorphism from I2 to S.

Proof. Let f be any operation in I2. Notice that the identification of two variables of a
totally symmetric operation of arity n gives a totally symmetric operation of a smaller
arity. Similarly, the identification of three variables of an oddition gives an oddition of
a smaller arity. Then by König’s lemma there exist an infinite sequence of symmetric
operations s2, s3, s4, . . . , and an infinite sequence of odditions m3,m5,m7, . . . , such that
sn and mn are of arity n for every n, and they are compatible in the following sense. The
identification of two variables of sn gives sn−1 and the identification of three variables of
m2k+1 gives m2k−1.

By Lemma 6.1.12 there exists an up to permutation of monomials unique representa-
tion f(x1, . . . , xk) = ⊕`

i=1
∧
Wi, where ` is odd and the sets W1, . . . ,Wl ⊆ {x1, . . . , xn}

are different. Notice that, for every i ≥ 2, the operation si only depends on the set of
variables occurring in it, i.e., the order of the variables and their multiplicity can be
ignored. Thus, we write s|Wi|(Wi) to stress this fact; moreover, we set s1({x}) := x, for
every x ∈ {x1, . . . , xk}. We define the map ξ : I2 → S as follows

ξ :
(⊕̀
i=1

∧
Wi

)
7→ m`

(
s|W1|(W1), . . . , s|W`|(W`)

)
.

Since m` is symmetric, the map ξ is well defined.
Note that, both the operation ⊕ and m` only depend on the parity of the elements

occurring among their arguments.
Let π : {1, . . . , k} → {1, . . . , r} be a map. By first applying ξ we obtain

m`

(
s|W1|(W1), . . . , s|W`|(W`)

)
and then, via π, we obtain

m`

(
s|Wπ

1 |(W
π
1 ), . . . , s|Wπ

`
|(W π

` )
)
, where W π

i := {xπ(j) | xj ∈Wi}.

Let {U1, . . . , Ut} be the set of all different subsets in {W π
1 , . . . ,W

π
` }. Without loss

of generality we assume that Ui appears an odd number of times in W π
1 , . . . ,W

π
` for

i ∈ {1, 2 . . . , d} and Ui appears an even number of times in W π
1 , . . . ,W

π
` for i ∈ {d +

1, d+ 2 . . . , t}. Then using properties of m` we have

m`

(
s|Wπ

1 |(W
π
1 ), . . . , s|Wπ

`
|(W π

` )
)

= md

(
s|U1|(U1), . . . , s|Ud|(Ud)

)
.

On the other side, if we first apply π, we get ⊕`
i=1

∧
W π
i = ⊕d

i=1
∧
Ui. Since all the

monomials in⊕d
i=1

∧
Ui are different, ξ applied to it gives us md

(
s|U1|(U1), . . . , s|Ud|(Ud)

)
,
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which is exactly what we need.

Corollary 6.1.14. Let S be an idempotent clone over E3 such that S �m C2, S �m C3,
and S �m B2. There is a minor homomorphism from I2 to S.

Proof. From Theorem 6.1.10 we know that S has an oddition m`, for every odd number
` ≥ 3. Moreover, from Theorem 6.1.11 it follows that S has a totally symmetric operation
sn of arity n, for every n ≥ 2. Thus, the claim follow from Theorem 6.1.13.

6.2 Clones of self-dual operations

In this section we provide a complete description of the subposet ↓C3 of P3 that consists
of all subclones of C3 := Pol({(0, 1), (1, 2), (2, 0)}) factored by minor-equivalence and
ordered by the existence of minor-preserving maps, i.e., we describe the subposet

↓C3 := {A | A �m C3}.

Moreover, it follows from our description that ↓C3 is a lattice and that it is countably
infinite (Corollary 6.2.12). Note that every element of ↓C3 is the ≡m-class of a suitable
clone of operations that preserve the relation {(0, 1), (1, 2), (2, 0)}. We call such operations
self-dual. For this reason, we will often refer to ↓C3 as the lattice of clones of self-dual
operations up to minor-equivalence. The results presented in this section come from a
joint work of Bodirsky, Zhuk, and the author of the dissertation [29], an article with
which this section has therefore strong analogies.

6.2.1 A continuum of clones up to homomorphic equivalence

The following relations are defined on the set {0, 1, 2}.

C3 := {(0, 1), (1, 2), (2, 0)} (6.1)
R=

3 := {(x, y, z) | x ∈ {0, 1} ∧ ((x = 0)⇒ (y = z))} (6.2)
B2 = {(0, 1), (1, 0), (1, 1)} (6.3)

Marchenkov [78] proved that there are 2ω many distinct operation clones between

W := Pol({0, 1, 2};C3, R
=
3 ) and B3

2 := Pol({0, 1, 2};C3, B2);

(also see [104] and Figure 6.1). Our terminology is a simplified version of the terminology
used in [104]. We prove that there are 2ω of these clones even when considered up to
≡h-equivalence (Corollary 6.2.4).

Remark 6.2.1. Note that
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• We freely use the terms x +3 1, and x +3 2 in primitive positive definitions over
structures that contain the relation C3, since we can express y = x+3 1 as C3(x, y)
and y = x+3 2 as C3(y, x).

• B3
2 ⊆ W, because B2 is pp-definable in the structure ({0, 1, 2};C3, R

=
3 ) by the

formula
∃u, v

(
R=

3 (x, y, u) ∧R=
3 (y, x, v) ∧ C3(u, v)

)
.
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Figure 6.1: The lattice of clones of self-dual operations ordered by inclusion.

We obtain Corollary 6.2.4 as a consequence of Theorem 6.2.3, in the proof of which
we use the fact that W contains the operation ∨3 which is defined as follow:

∨3(x, y) :=


x if x = y

1 if {x, y} = {0, 1}
2 if {x, y} = {1, 2}
0 if {x, y} = {0, 2}.

(6.4)
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The operation ∨3 is also known as the rock-paper-scissors operation; indeed by identifying
0 with rock, 1 with paper, and 2 with scissors, we get that ∨3(x, y) is simply the winner
between x and y in the world-famous game (assuming that both players win in the event
of a draw). We also need the following lemma which states that if a subdirect relation
has a pp-definition in ({0, 1, 2};C3, R

=
3 ), then we can also find a pp-definition without

existential quantifiers and without using R=
3 .

Lemma 6.2.2 ([104], Lemma 17). Suppose that R ⊆ {0, 1, 2}n is a subdirect relation
preserved by ∨3. Then R can be defined by a conjunction of atomic formulae over C3.

Theorem 6.2.3. Let A and B be structures such that W ⊆ Pol(A),Pol(B) ⊆ B3
2. If

Pol(B) �h Pol(A), then Pol(B) ⊆ Pol(A).

Proof. By Theorem 2.5.9, the structure A has a d-dimensional pp-interpretation Γ in B,
for some d ≥ 1; choose Γ such that d is smallest possible. Let S := Γ−1(C3) ⊆ B2d. Let
I ⊆ {1, . . . , 2d} be the set of all i such that pri(S) = {0, 1, 2}. Note that S′ := prI(S) is
subdirect. By Lemma 6.2.2 the relation S′ can be defined by a conjunction of atomic
formulae over ({0, 1, 2};C3). We distinguish two cases.

Case 1. S′ = {0, 1, 2}|I| (Note that this includes the case that I = ∅). We will prove
that this case is impossible. Choose t = (t1, . . . , t2d) ∈ S such that prI(t) = (0, . . . , 0).
We know that Γ(t) ∈ C3. Then Γ(t) = (u, u +3 1) for some u ∈ {0, 1, 2} such that
Γ((t1, . . . , td)) = u and Γ((td+1, . . . , t2d)) = u+1 1. Note that

t′ := (td+1, . . . , t2d, s1, . . . , sd) ∈ Γ−1((u+3 1, u+3 2)) ⊆ S

and t′′ := (s1, . . . , sd, t1, . . . , td) ∈ Γ−1((u+3 2, u)) ⊆ S.

Then for every i ∈ {1, . . . , 2d} we have |{pri(t), pri(t′), pri(t′′)}| < 3:

• if i /∈ I, then this holds by the definition of I;

• if i ∈ I, then the choice of t implies that pri(t) = ti = 0. Also note that i+ d ∈ I,
too, since pri(S) = pri(Γ−1({0, 1, 2})) = pri+d(S), as C3 is a subdirect relation on
{0, 1, 2}. Hence, pri(t′) = ti+d = 0.

Let r := ∨3(∨3(t, t′), t′′). We claim that Γ(r) is of the form (a, a) for some a ∈ {0, 1, 2},
which is a contradiction since r ∈ S and therefore Γ(r) ∈ C3. To see this, note that the
operation ∨3 is associative and commutative when restricted to sets of size two, hence

∨3(∨3((t1, . . . , td), (td+1, . . . , t2d)), s) = ∨3(∨3((td+1, . . . , t2d), s), (t1, . . . , td)).

Here the left hand side is the projection of r to its first d coordinates, while the right
hand side is the projection of r to its last d coordinates. Therefore, Γ(r) has the form
(a, a) for some a ∈ {0, 1, 2}, as claimed.
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Case 2. S′ 6= {0, 1, 2}|I|. Then there are distinct i, j ∈ I such that pr{i,j}(S) is
the relation C3 or = on {0, 1, 2}. If i, j ∈ {1, . . . , d} or if i, j ∈ {d + 1, . . . , 2d}, then
we obtain a contradiction to the assumption that the interpretation Γ has a smallest
possible dimension. If for example 1, 2 ∈ I are such that pr{1,2}(S) equals =, then
Γ′(a1, . . . , ad−1) := Γ(a1, a1, a2, . . . , ad−1) is a (d − 1)-dimensional interpretation of A
in B. If pr{1,2}(S) equals C3, then Γ′(a1, . . . , ad−1) := Γ(a1, a1 +3 1, a2, . . . , ad−1) is a
(d− 1)-dimensional interpretation of A in B.

First consider the case that i ∈ {1, . . . , d} and that j ∈ {d + 1, . . . , 2d}; the case
that j ∈ {1, . . . , d} and that i ∈ {d+ 1, . . . , 2d} can be treated similarly. We claim that
for every a ∈ {0, 1, 2} we have | pri(Γ−1(a))| = 1. To see this, let c = (c1, . . . , cd), c′ =
(c′1, . . . , c′d) be elements of Bd be such that Γ(c) = Γ(c′) = a. Choose e ∈ Bd such that
Γ(e) = a +3 1. Since (a, a +3 1) ∈ C3, the tuples (c, e) = (c1, . . . , cd, e1, . . . , ed) and
(c′, e) = (c′1, . . . , c′d, e1, . . . , ed) both belong to Γ−1(C3) = S. Hence, (ci, ej), (c′i, ej) ∈
pr{i,j}(S), which implies that ci = c′i. We write f(a) for the element of pri(Γ−1(a); note
that f is a permutation of {0, 1, 2}.

Since Γ is an interpretation of A in B, we know that for every relation R of A the
relation Γ−1(R) over B is pp-definable in B. The same holds for every relation R that is
pp-definable in A: if φ is the pp-definition of R in A, then we may obtain a pp-definition
of Γ−1(R) by replacing each atomic formula in φ by its defining formula in B; the
resulting formula can be rewritten into a pp-formula over the signature of B by moving
the existential quantifiers to the front. In particular,

(∗) for every relation R that is pp-definable in A
the relation f(R) = pri(Γ−1(R)) is pp-definable in B.

The relation B2 is pp-definable in A, because we assumed that Pol(A) ⊆ B2. Therefore,
f(B2) is pp-definable in B, by (∗). Our assumption that W ⊆ Pol(B) together with
∨3 ∈ W implies that ∨3 preserves every relation is pp-definable in B. In particular, ∨3
preserves f(B2). Since ∨3 fails to preserve f(B2) if the permutation f is a transposition,
we conclude that f is either a cyclic permutation or the identity permutation. In both
cases, the graph of f is pp-definable in B. It follows that for every relation R of A, the
relation R = f−1(f(R)) is pp-definable in B, because f(R) is pp-definable in B, by (∗).
This proves that A is pp-definable in B, and hence Pol(B) ⊆ Pol(A).

Corollary 6.2.4. There are 2ω many clones of self-dual operations with respect to
homomorphic equivalence.

6.2.2 The decrease of cardinality up to minor-equivalence

We now describe clones of self-dual operations with respect to �m. The lattice of such
clones with respect to inclusion is drawn in Figure 6.1; all the clones that appear in
this picture will be defined progressively in the text when we present results concerning
them. Clones flagged with the same colour in Figure 6.1 are minor-equivalent. In
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Proposition 6.2.5 we prove that in order to get a complete description of the subposet
↓C3 := {A | A �m C3} is indeed enough to provide a complete description of the poset of
clones of self-dual operations factored by ≡m.

Note that, a priori, it could happen that there is a clone C on E3 which is not a subclone
of C3 and however there exists a minor-preserving map from C to C3; Proposition 6.2.5
shows that this is not the case. Note that we are only interested in Taylor clones, since
we already know from Theorem 3.2.18 and Proposition 3.2.11 that if A is a not a Taylor
clone, then A ≡m P3.

Proposition 6.2.5. Let A be a Taylor clone on {0, 1, 2}. If A �m C3, then A ⊆ C3.

Proof. Suppose A is a Taylor clone on {0, 1, 2} such that A * C3 and A �m C3. By
Proposition 3.2.25 we can assume without loss of generality that A is a minimal Taylor
clone. From A �m C3 and Theorem 3.3.11 we have that A 6|= Σ3. If follows that A must
be isomorphic to one of the clones listed in Proposition 3.2.27 and therefore A ⊆ C3, a
contradiction.

Let Q := ({0, 1, 2};C3, R
=
2 ) and R := ({0, 1, 2};C3, R

⇒
2 ), where

R=
2 :=

{
(x, y, z) | x ∈ {0, 1} ∧ x = 0⇒ y = z ∈ {0, 1}

}
R⇒2 :=

{
(x, y, z) | x, y ∈ {0, 1} ∧ x = y = 0⇒ z = 0

}
.

Zhuk proved that the interval between the clones Q = Pol(Q) and R := Pol(R) is a
countably infinite chain of clones [104]. Theorem 6.2.7 below implies that the entire chain
from Q to R collapses in our poset: they are all minor-equivalent (Corollary 6.2.8).
Remark 6.2.6. Note that for every n ≥ 2 the relation Bn := {0, 1}n \ {(0, . . . , 0)} has the
following pp-definition in R:

Bn(x1, . . . , xn)⇔ ∃u1, . . . , un−1
(
R⇒2 (x1, x2, u1) ∧ C3(un−1, x1)
∧

∧
i∈{2,...,n−1}

R⇒2 (ui−1, xi+1, ui)
)
.

Let ≤2 be the relation defined in Example 2.2.2. Note that x ≤2 y if and only if
R⇒2 (y, y, x) ∧R⇒2 (x, x, x) and hence ≤2 is pp-definable in R.

Theorem 6.2.7. The structure R pp-constructs the structure Q.

Proof. We first define a fourth pp-power R′ of R with domain R′ := {0, 1, 2}4, and then
show that there exists a homomorphism h : R′ → Q and a homomorphism g : Q → R′.
Our intuition for defining R′ will be guided by the choice of g:

g(0) := (0, 1, 0, 0)
g(1) := (1, 0, 1, 0)
g(2) := (2, 0, 0, 1).

88



The following relations are primitively positively definable over R:

CR
′

3 := {(x, y) ∈ (R′)2 | C3(x0, y0) ∧ x1 = y2 ∧ x2 = y3 ∧ x3 = y1}

(R=
2 )R′ :=

{
(x, y, z) ∈ (R′)3 | B3(x1, x2, x3) ∧B3(y1, y2, y3) ∧B3(z1, z2, z3)

∧ x3 = 0 ∧ x0 = x2 ∧ y3 ≤2 x0 ∧ z3 ≤2 x0

∧R⇒2 (x0, y2, z2) ∧R⇒2 (x0, z2, y2)
}

Claim. g is a homomorphism from Q to R′.

• Let that (a, b) ∈ C3. Then (g(a)0, g(b)0) = (a, b) ∈ C3. Moreover, g(a)1 = g(b)2,
g(a)2 = g(b)3, and g(a)3 = g(b)1. Hence (g(a), g(b)) ∈ CR′

3 .

• Let that (a, b, c) ∈ R=
2 . The definition of g implies that the first three conjuncts of

the definition of (R=
2 )R′ are satisfied by g(a), g(b), g(c). Moreover, a ∈ {0, 1} and

hence g(a)3 = 0.
Suppose that a = 0. We have either b = c = 0 or b = c = 1 by the definition of
R=

2 . Then g(a)0 = g(a)2 = 0 and 0 = g(b)3 = g(c)3 ≤2 g(a)0 = 0. Moreover, the
last two conjuncts in the definition of (R=

2 )R′ hold: if b = c = 0 then the conclusion
in the implication x = y = 0 ⇒ z = 0 from the definition of R⇒2 is satisfied in
each of the two conjuncts, and if b = c = 1 then the premise in the implication
x = y = 0⇒ z = 0 is not satisfied in each of the two conjuncts; moreover, for each
conjunct the first two arguments of R⇒2 are from {0, 1}.
Finally, suppose that a = 1. In this case b and c may take any value in {0, 1, 2}.
Note that g(a)0 = g(a)2 = 1 and g(b)3, g(c)3 ≤2 1. Since g(a)0 = 1 the last
two conjuncts in the definition of (R⇒2 )R′ hold again, because the premise in the
implication of the definition of R=

2 is not fulfilled and because the first argument
x0 of these conjuncts equals 1. This shows that (g(a), g(b), g(c)) ∈ (R=

2 )R′ .

Define h : R′ → {0, 1, 2} as follows.

h(x0, x1, x2, x3) :=


0 if (x1, x2, x3) ∈ {(1, 0, 0), (1, 0, 1)}
1 if (x1, x2, x3) ∈ {(0, 1, 0), (1, 1, 0)}
2 if (x1, x2, x3) ∈ {(0, 0, 1), (0, 1, 1)}
x0 otherwise

Claim. h is a homomorphism from R′ to Q.

• Let (a, b) ∈ CR
′

3 . From the definition of CR′
3 it follows that for a fixed a there

is a unique b such that (a, b) ∈ CR
′

3 . It is easy to check that if a is such that
(a1, a2, a3) ∈ NAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}, then b ∈ NAE and h is defined
such that (h(a), h(b)) ∈ C3. Otherwise, we have (h(a), h(b)) = (a0, b0) and the first
conjunct in the definition of CR′

3 implies that (a0, b0) ∈ C3.
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• Let (a, b, c) ∈ (R=
2 )R′ . Then a3 = 0 and B3(a1, a2, a3) implies that a1 = 1 or a2 = 1.

Moreover, a0 = a2 implies that a ∈ {(0, 1, 0, 0), (1, 1, 1, 0), (1, 0, 1, 0)} and thus
h(a) ∈ {0, 1}.
If h(a) = 1 thenR=

2 (h(a), h(b), h(c)) holds trivially. If h(a) = 0 then (a0, a1, a2, a3) =
(0, 1, 0, 0) by the definition of h and the observations above. Hence, b3 = c3 = 0
since b3, c3 ≤2 a0 = 0. This implies that h(b), h(c) ∈ {0, 1}. From R⇒2 (0, b2, c2) and
R⇒2 (0, c2, b2) it follows that u := b2 = c2. Now we distinguish two cases: if u = 0, we
have B3(b1, 0, 0) and B3(c1, 0, 0), thus b1 = c1 = 1. Therefore, h(b) = h(c) = 0. If
u = 1, then it follows from the definition of h that h(b0, b1, 1, 0) = h(c0, c1, 1, 0) = 1.
This concludes the proof.

Corollary 6.2.8. R ≡m Q.

Proof. It is an immediate consequence of Theorem 6.2.7 and Theorem 3.1.10 that P �m Q.
Conversely, Q �m P follows from the fact that Q ⊆ P .

Below we define the clones Bnπ∞ for every n ∈ {3, . . . ,∞} and Mn for every
n ∈ {2, 3, 4, . . . ,∞}. There are 2ω many clones between B∞π∞ and M∞. In this
section we prove that the clones B∞π∞ andM∞ (and therefore all the 2ω many clones
between them) are minor-equivalent. We obtain this result as a direct consequence of
Theorem 6.2.11. The proof is similar to the proof of the minor-equivalence of Q and R
presented in Theorem 6.2.7.

Definition 6.2.9. Define, for every k ≥ 2,

B3
k := ({0, 1, 2};C3, Bk) B3

k := Pol(B3
k)

B3
∞ := ({0, 1, 2};C3, B2, B3, . . . ) B3

∞ := Pol(B3
∞)

Mk := ({0, 1, 2};C3,≤2, Bk) Mk := Pol(Mk)
M∞ := ({0, 1, 2};C3,≤2, B2, B3, . . . ) M∞ := Pol(M∞).

Note that this definition is compatible with the definition of B3
2 that was already

defined earlier.
To define Bnπ∞ we need to introduce new relations on {0, 1, 2}. Let

W :=
(

0 0 1 1 1
0 1 0 1 2

)
⊆ {0, 1, 2}2.

Note that W (x, y) holds if x ∈ {0, 1} and x = 0 implies y ∈ {0, 1}.
For m, k ∈ N and S1 ∪ · · · ∪ Sm = {1, . . . , k}, the relation RS1,...,Sm consists of all

tuples (x1, . . . , xm, y1, . . . , yk) ∈ {0, 1, 2}m+k such that

(1) x1, . . . , xm ∈ {0, 1},

(2) for every i ∈ {1, . . . ,m}, if xi = 0 then yj ∈ {0, 1} for every j ∈ Ai, and
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(3) not x1 = · · · = xm = y1 = · · · = yn = 0.
Definition 6.2.10. We define B∞π∞ to be the structure on {0, 1, 2} with the relations
C3, W , and the relation RS1,...,Sm for every m, k ∈ N and all S1, . . . , Sm ⊆ {1, . . . , k} such
that S1 ∪ · · · ∪ Sm = {1, . . . , k}. For n ∈ {3, . . . ,∞}, let Bnπ∞ be the reduct of B∞π∞
that contains all relations of B∞π∞ of arity at most n. As usual, Bnπ∞ := Pol(Bnπ∞).

It is known that Bnπ∞ ⊆Mn for every n ∈ {3, 4, . . . ,∞}; in particularMn contains
the generator operation of Bnπ∞ (see [104], Theorem 29 and Theorem 30). It immediately
follows that, for every n ∈ {3, 4, . . . ,∞}, there exists a minor-preserving map from Bnπ∞
toMn, therefore Bnπ∞ pp-constructs Mn. Now we prove the other direction.
Theorem 6.2.11. For every n ∈ {3, 4, . . . ,∞}, the structure Mn pp-constructs Bnπ∞.

Proof. As in the proof of Theorem 6.2.7, we use a fourth pp-power M′n of Mn, this time
with the signature of Bnπ∞. The relation CM

′
n

3 is defined as in the proof of Theorem 6.2.7.
Let k ∈ N and S1, . . . , Sm ⊆ {1, . . . , k} be such that S1 ∪ · · · ∪ Sm = {1, . . . , k} and

m+ k ≤ n. Then the following relations are primitively positively definable over Mn.

WM′
n := {(x, y) ∈ ({0, 1, 2}4)2 | B3(x1, x2, x3) ∧B3(y1, y2, y3)

∧ x3 = 0 ∧ x0 = x2 ∧ y3 ≤2 x0}

R
M′
n

S1,...,Sm
:=
{
(x1, . . . , xm, y1, . . . , yk) | Bm+k(x1

2, . . . , x
m
2 , y

1
2, . . . , y

k
2 )

∧
∧

i∈{1,...,m}

(
B3(xi1, xi2, xi3) ∧ xi3 = 0 ∧ xi0 = xi2

∧
∧
j∈Si

(yj3 ≤2 x
i
0) ∧B3(yj1, y

j
2, y

3
3)
)}

Let g : {0, 1, 2} → {0, 1, 2}4 and h : {0, 1, 2}4 → {0, 1, 2} be defined as in the proof of
Theorem 6.2.7
Claim. g is a homomorphism from Bnπ∞ to M′n. We have already verified in the proof
of Theorem 6.2.7 that g preserves C3.

• Let (a, b) ∈ W . By the definition of g it holds that B3(g(a)1, g(a)2, g(a)3) and
B3(g(b)1, g(b)2, g(b)3). If a 6= 0, then a = 1 and

g(b)3 ≤2 g(a)0 = g(a)2 = 1

since g(b)3 ∈ {0, 1} by the definition of g. If a = 0 then b ∈ {0, 1}. Also, g(a)3 = 0
and g(b)3 = 0 ≤2 g(a)0 = g(a)2 = 0.

• Let (a1, . . . , am, b1, . . . , bk) ∈ RS1,...,Sm . Then there exists i ∈ {1, . . . ,m} such that
ai = 1 or j ∈ {1, . . . , k} such that bj = 1. If ai = 1 then g(ai) = (1, 0, 1, 0). If
bj = 1 then g(bj) = (1, 0, 1, 0). In both cases we have

Bm+k(g(a1)2, . . . , g(am)2, g(b1)2, . . . , g(bk)2).
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To verify the other conjuncts in the definition of RM
′
n

S1,...,Sm
, let i ∈ {1, . . . ,m}.

Clearly, B3(g(ai)1, g(ai)2, g(ai)3). Since ai ∈ {0, 1} it follows that g(ai)3 = 0
and g(ai)0 = g(ai)2. Let j ∈ Ai. Clearly, B3(g(bj)1, g(bj)2, g(bj)3). If ai = 1
then g(bj)3 ≤2 g(ai)0 = 1 because g(bj)3 ∈ {0, 1}. If ai = 0, then g(ai) =
(0, 1, 0, 0). We have g(bj)3 = 0 ≤2 0 = g(ai)0. We can therefore conclude that
(g(a1), . . . , g(am), g(b1), . . . , g(bk)) ∈ RM

′
n

S1,...,Sm
.

Claim. h is a homomorphism from M′n to Bnπ∞. We have already verified in the proof
of Theorem 6.2.7 that h preserves C3.

• Let (a, b) ∈ WM′
n . Since a3 = 0 and B3(a1, a2, a3) we have that a0 = a2 ∈ {0, 1}.

If a0 = 1 then h(a) = 1, and (h(a), h(b)) ∈ W . If a0 = 0, then b3 = 0 since
b3 ≤2 a0. Then B3(b1, b2, b3) implies that (b1, b2, b3) ∈ {(1, 0, 0), (0, 1, 0), (1, 1, 0)}
and therefore h(b) ∈ {0, 1} and (h(a), h(b)) ∈W .

• Let (a1, . . . , am, b1, . . . , bk) ∈ RM
′
n

S1,...,Sm
. We have to show that

(h(a1), . . . , h(am), h(b1), . . . , h(bk))

satisfies the items (1), (2), and (3) in the definition of RS1,...,Sm .
For every i ∈ {1, . . . ,m} we have that B3(ai1, ai2, ai3) and ai3 = 0 which implies that
(ai1, ai2, ai3) ∈ {(1, 0, 0), (0, 1, 0), (1, 1, 0)} and thus h(ai) ∈ {0, 1}, showing (1).
Let j ∈ Si. If h(ai) = 0 then bj3 ≤2 a

i
0 = ai2 = 0 implies that bj0 ∈ {0, 1}. Since

B3(bj1, b
j
2, b

j
3) we have h(bj) ∈ {0, 1}, showing (2).

To prove (3), suppose for contradiction that

h(a1) = · · · = h(am) = h(b1) = · · · = h(bk) = 0. (6.5)

For every i ∈ {1, . . . ,m} we have ai3 = 0, B3(ai1, ai2, ai3), and ai0 = ai2, and hence
ai = (0, 1, 0, 0). Since bj3 ≤2 a

i
0 we obtain bj3 = 0 for all j ∈ {1, . . . , k}. Since we

assumed (6.5), it follows that bj ∈ {(0, 0, 0, 0), (0, 1, 0, 0)} for every j ∈ {1, . . . , k};
in both cases we obtain a contradiction since Bm+k(a1

2, . . . , a
m
2 , b

1
2, . . . , b

k
2) must

hold. This shows (3), and thus (a1, . . . , an, b1, . . . , bm) ∈ RS1,...,Sm .

Corollary 6.2.12. The minor-equivalence relation has only countably many equivalence
classes of clones of self-dual operations.

6.2.3 Other collapses

We now show other collapses with the goal of completing the classification of the lattice
of clones of self-dual operations. We start from two rather simple examples of collapse:
one is an immediate consequence of Lemma 3.1.7, the other follows from a precise notion
of duality.
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The idempotent reduct

Recall that every finite core structure A pp-constructs the expansion of A by all constant
unary relations, see Lemma 3.1.4. Note that every expansion of ({0, 1, 2};C3) is a core.
Therefore, when working with a structure A, we will often tacitly work instead with the
expansion of A by the unary relations, and allow the constants 0, 1, and 2 in primitive
positive formulae. We define the following clones:

L3 := Pol({0, 1, 2};C3, L3) L0
3 := Pol({0, 1, 2};C3, L3, {0})

P3 := Pol({0, 1, 2};R 6=, {0}, {1}, {2}) K3
3 := Pol({0, 1, 2};C3, R 6=)

C0
3 := Pol({0, 1, 2};C3, {0}).

where

R 6= := {(x, y) ∈ {0, 1, 2}2 | x 6= y}, and (6.6)
L3 := {(x1, x2, x3) | x1 +3 x2 +3 x3 = 0}. (6.7)

Proposition 6.2.13. The following clones are minor-equivalent: C3 ≡m C0
3 ; L3 ≡m L0

3;
and K3

3 ≡m P3.

Proof. The claims follow immediately from Lemma 3.1.7.

The conservative reduct

Here we prove that clones C3, C0
3 , which we already defined, are minor-equivalent to

C0,1
3 := Pol(C0,1

3 ), where C0,1
3 := ({0, 1, 2};C3, {0, 1}). Note that C0,1

3 is the clone of all
conservative (see Section 2.1.3) self-dual operations on {0, 1, 2}.

Proposition 6.2.14. The structure C3 pp-constructs C0,1
3 .

Proof. Note that by Lemma 3.1.4 we can use the constants 0, 1 and 2 in our pp-formulae.
Analogously to the proof of Theorem 6.2.7, we define a fourth pp-power S of C3. More
precisely: we consider S := ({0, 1, 2}4;CS3 , RS{0,1}) where CS3 is defined by the same
primitive positive formula that defines CR′

3 in Theorem 6.2.7 and RS{0,1} is defined as
follows:

RS{0,1} :=
{
(x0, x1, x2, x3) ∈ {0, 1, 2}4 | (x0 = x1) ∧ (x3 = 1)

}
.

We define g : C0,1
3 → S as follows:

g(0) := (0, 0, 1, 1); g(1) := (1, 1, 0, 1); g(2) := (2, 1, 1, 0).

It is immediate to check that g is a homomorphism.
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Define h : {0, 1, 2}4 → {0, 1, 2} as follows:

h(x0, x1, x2, x3) :=


x0 − 1 if (x1, x2, x3) ∈ A1 := {(1, 1, 2), (1, 2, 1), (2, 1, 1)}
x0 if (x1, x2, x3) ∈ A2 := {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
x0 + 1 if (x1, x2, x3) ∈ A3 := {0, 1, 2}3 \ (A1 ∪A2).

Claim. h is a homomorphism from S to C0,1
3 .

• Let (a, b) ∈ CS3 . From the definition of h it follows that if (a1, a2, a3) ∈ Ai, for some
i ∈ {1, 2, 3}, then (b1, b2, b3) ∈ Ai. Therefore,(

h(a0, a1, a2, a3), h(b0, b1, b2, b3)
)
∈ {(a0 − 1, b0 − 1), (a0, b0), (a0 + 1, b0 + 1)}.

Since (a0, b0) ∈ C3, it follows that
(
h(a0, a1, a2, a3), h(b0, b1, b2, b3)

)
∈ C3.

• Let (a0, a1, a2, a3) ∈ R{0,1}. It follows that a0 = a1 and a3 = 1. We distinguish
three cases. If a0 = 0, we have:

h(0, 0, a2, 1) :=


1 if a2 = 0,
0 if a2 = 1,
1 if a2 = 2.

If a0 = 1:

h(1, 1, a2, 1) :=


1 if a2 = 0,
1 if a2 = 1,
0 if a2 = 2.

If a0 = 2:

h(2, 2, a2, 1) :=


0 if a2 = 0,
1 if a2 = 1,
0 if a2 = 2.

Therefore, we can conclude that h(a0, a1, a2, a3) ∈ {0, 1}.

Corollary 6.2.15. The clones C3 and C0,1
3 are minor-equivalent.

Proof. Since C0,1
3 ⊂ C3, there exists a minor-preserving map from C0,1

3 to C3. From
Proposition 6.2.14 and Theorem 3.1.10 it follows that there exists a minor-preserving
map from C3 to C0,1

3 . Therefore, C3 ≡m C0,1
3 .
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Duals

In this chapter we consider two different dualities: with respect to a cyclic permutation
and with respect to a transposition.

Formally, for a permutation π of {0, 1, 2} we define fπ by

f (π)(x1, . . . , xn) := π(f(π−1(x1), . . . , π−1(xn))),

and say that f (π) is dual to f with respect to π. As it follows from the definition, if π is
a cyclic permutation, then f = fπ if and only if f ∈ Pol({0, 1, 2};C3), that is why we
call such operations self-dual.

Sometimes we will need to consider duality with respect to the transposition

σ : {0, 1, 2} → {0, 1, 2} defined by σ(0, 1, 2) = (1, 0, 2).

In the following we write f∗ instead of f (σ) and denote C∗ = {f∗ | f ∈ C}. We call f∗
dual to f with respect to the transposition. For example, ∧3 is dual with respect to the
transposition to the rock-paper-scissors operation ∨3 whose composition table can be
found below, and we write (∧3)∗ = ∨3.

∨3 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

∧3 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Note that f preserves R if and only if f∗ preserves

R∗ := {(σ(x1), . . . , σ(xn)) | (x1, . . . , xn) ∈ R}.

Proposition 6.2.16. Let C be a clone of self-dual operations. Then C ≡m C∗.

Proof. The map ξ : C → C∗, given by ξ : f 7→ f∗ is a minor-preserving map.

The clones such that C∗ = C are drawn in the middle of the diagram. We refer to the
middle part as the spine; all clones that are not in the spine are either in the left wing
or in the mirror symmetric right wing; the symmetry is given by taking the dual with
respect to the transposition and clearly visible in Figure 6.1. o avoid confusion we either
write "self-dual", meaning the duality with respect to a cyclic permutation, or "dual with
respect to the transposition".
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A hinge between the spine and the wings

Here we study the minor-equivalence class ofM2 = Pol(M2). Let N be the relation

N :=
(

0 1 1 1
0 0 1 2

)
⊆ {0, 1, 2}2. (6.8)

Note that N(x, y) holds if x ∈ {0, 1} and x = 0 implies y = 0. Define

N2 := ({0, 1, 2};C3, N,B2), and
M := ({0, 1, 2};C3,≤2).

We will show that there is a pp-construction of N2 in M. Note that N(y, x) ∧N(x, x) is
equivalent to x ≤2 y, so M also has a pp-construction in N2 (even a pp-definition). It will
follow thatM := Pol(M) and N2 := Pol(N2) are minor-equivalent. Note that M∗ = M,
so M is already part of the spine.

Instead of directly specifying the pp-construction of M in N2, we found it more
convenient to prove this in two steps: first we show that N2 has a pp-construction in M2,
and then we show that M2 has a pp-construction in M.

Lemma 6.2.17. There is a pp-construction of N2 in M2.

Proof. We again use a four-dimensional pp-power A of M2 and the maps h and g from
the proof of Theorem 6.2.7. The structure A has domain A := {0, 1, 2}4 and signature
{C3, N,B2}. The relation CA3 is defined as in the proof of Theorem 6.2.7, and

NA := {(x, y) ∈ A2 | x3 = 0 ∧ x0 = x2 ∧B2(x1, x2)
∧ x1 ≤2 y1 ∧ y2 ≤2 x2 ∧ y3 ≤2 x0},

BA2 := {(x, y) ∈ A2 | B2(x0, y0) ∧ x0 = x2 ∧ y0 = y2 ∧ x3 = y3 = 0}.

Claim. The map g is a homomorphism from N2 to A.
We have already verified in the proof of Theorem 6.2.7 that g preserves C3.

• Let (a, b) ∈ N . If a = 0, then b = 0, and hence (x0, x1, x2, x3) := g(a) = (0, 1, 0, 0)
and (y0, y1, y2, y3) := g(b) = (0, 1, 0, 0) satisfies the formula from the definition of NA.
If a = 1, then putting (x0, x1, x2, x3) := g(a) = (1, 0, 1, 0) satisfies x3 = 0, x0 = x2,
B2(x1, x2). Moreover, putting (x0, x1, x2, x3) := g(b) all the remaining conjuncts
in the definition of NA are satisfied as well: for x1 ≤2 y1 since x1 = 0, and for
y2 ≤2 x2 and y3 ≤2 x0 since y2, y3 ∈ {0, 1} and x0 = x2 = 1.

• Let (a, b) ∈ B2. Then a, b ∈ {0, 1}, and hence (g(a), g(b)) satisfies x0 = x2, y0 = y2,
and x3 = y3 = 0. Moreover, B2(x0, y0) holds because otherwise a = b = 0, contrary
to the assumption that B2(a, b).
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Claim. The map h is a homomorphism from A to N2.
We have already verified in the proof of Theorem 6.2.7 that h preserves C3. Let us
assume that that (x, y) ∈ NA. We must have x3 = 0 and x0 = x2 therefore h(x) ∈
{0, 1}. Since x3 = 0 and B2(x1, x2) it is impossible that x1 = x2 = x3 and therefore
x ∈ {(0, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)}. If x ∈ {(1, 0, 1, 0), (1, 1, 1, 0)} then h(x) = 1 and
(h(x), h(y)) ∈ N . If x = (0, 1, 0, 0) then 1 = x1 ≤2 y1, y2 ≤2 x2 = 0, and y3 ≤2 x0 = 0,
and hence h(y) = 0. Thus, (h(x), h(y)) = (0, 0) ∈ N .

Let (x, y) ∈ BA2 . Again the conjuncts x3 = 0 and x0 = x2 imply that h(x) ∈ {0, 1},
and similarly h(y) ∈ {0, 1}. If h(x) = 0 then x = (0, 0, 0, 0). In this case the conjunct
B2(x0, y0) implies that y0 6= 0, and hence h(y) 6= 0. So (h(x), h(y)) ∈ B2.

Lemma 6.2.18. The structure M pp-constructs M2.

Proof. Let A be the structure with domain A := {0, 1, 2}2 and signature {C3,≤2, B2}
such that

CA3 := {(x, y) ∈ A2 | C3(x1, y1) ∧ C3(y2, x2)},
≤A2 := {(x, y) ∈ A2 | x1 ≤2 y1 ∧ y2 ≤2 x2},
BA2 := {(x, y) ∈ A2 | x2 ≤2 y1 ∧ x1 ≤2 x1 ∧ y2 ≤2 y2}.

Let g : {0, 1, 2} → {0, 1, 2}2 be defined as follows: g(0) := (0, 1), g(1) := (1, 0), and
g(2) := (2, 2).

Claim 1: g is a homomorphism from M2 to A. Let (a, b) ∈ C3. If (a, b) = (0, 1) then
(g(a), g(b)) = ((0, 1), (1, 0)) ∈ CA3 . If (a, b) = (1, 2) then (g(a), g(b)) = ((1, 0), (2, 2)) ∈ CA3 .
If (a, b) = (2, 0) then (g(a), g(b)) = ((2, 2), (0, 1)) ∈ CA3 .

Now suppose that a ≤2 b. If a = b = 0 then

(g(a), g(b)) = ((0, 1), (0, 1)) ∈ ≤A2

and similarly for a = b = 1. If a = 0 and b = 1 then (g(a), g(b)) = ((0, 1), (1, 0)) ∈ ≤A2 .
Finally, suppose that (a, b) ∈ B2. Then a, b ∈ {0, 1} and hence the entries of h(a)

and h(b) are from {0, 1} as well. Thus, the final two conjuncts in the definition of BA2
are always satisfied. If a = b = 1 then (g(a), g(b)) = ((1, 0), (1, 0)) ∈ BA2 since 0 ≤2 1. If
a = 1 and b = 0 then (g(a), g(b)) = ((1, 0), (0, 1)) ∈ BA2 since 0 ≤2 0. And if a = 0 and
b = 1 then (g(a), g(b)) = ((0, 1), (1, 0)) ∈ BA2 since 1 ≤2 1.

Let h : {0, 1, 2}2 → {0, 1, 2} be defined by

h(0, 1) = h(0, 2) = h(2, 1) = 0,
h(0, 0) = h(1, 0) = h(1, 1) = 1,
h(2, 0) = h(1, 2) = h(2, 2) = 2.
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Note that h(a, b) = a for every a, b ∈ {0, 1, 2} with three exceptions: h(2, 1) = 0,
h(0, 0) = 1, and h(1, 2) = 2; we call (2, 1), (1, 2), (0, 0) the exceptional points and all other
points regular.

Claim 2: h is a homomorphism from A to M2. Let (a, b) ∈ CA3 . Then C3(a1, b1) and
C3(b2, a2). In particular, note that a equals (2, 1) if and only if b equals (0, 0). In this
case, (h(a), h(b)) = (0, 1) ∈ C3 and we are done. Similarly, we verify the statement if a
equals (1, 2) or (0, 0). Also note that a is an exceptional point for h if and only if b is. If
a and b are regular then (h(a), h(b)) = (a1, b1) ∈ C3 and we are done.

Now let (a, b) ∈ ≤A2 . Then by definition we have a1 ≤2 b1 and b2 ≤2 a2. Note that in
particular, neither a nor b can be the exceptional points (1, 2) or (2, 1) for g. If a = (0, 0)
then b1, b2 ∈ {0, 1}, hence h(b) ∈ {0, 1}, and thus h(b) ∈ {0, 1} and h(b) ≤2 h(a) = 1.
For the regular points the verification is again immediate.

Finally, let (a, b) ∈ BA2 . Note that then a1, a2, b1, b2 ∈ {0, 1}, hence h(a), h(b) ∈ {0, 1}.
Suppose that h(b) = 0. By the definition of BA2 , we have a2 ≤2 b1 = 0, so we have
h(a) = h(0, 0) = 1. This shows that (h(a), h(b)) ∈ B2.

The Spine

We now discuss collapses in the spine; again, some of them can be proved by exhibiting
pp-constructions, while in one case it was more convenient to directly exhibit a minor-
preserving map (in Proposition 6.2.21). The following structures are at the bottom of
the spine in Figure 6.1: TL≤, L≤, and Kc3; we show that they are equivalent with respect
to pp-constructability. Recall that by Kc3 we denote the rigid core of the complete graph
over {0, 1, 2}, i.e., Kc3 := ({0, 1, 2};R 6=, {0}, {1}, {2}) (see Section 3.2.3). Following [104]
we define

K3
3 := ({0, 1, 2};C3, R 6=),

TL≤ := ({0, 1, 2};C3, T, L2,≤2),
L≤ := ({0, 1, 2};C3, L2,≤2),

where

L2 := {(x1, x2, x3) ∈ {0, 1}3 | x1 +2 x2 +2 x3 = 0} (6.9)
and T := {(0, 1), (1, 0), (2, 2)}. (6.10)

Lemma 6.2.19. The structures Kc3, K3
3, TL≤, and L≤ pairwise pp-construct each other.

Proof. Every finite structure has a pp-interpretation in ({0, 1, 2};R 6=) (see Theorem 3.2.7).
The structure TL≤ is an expansion of L≤. Finally, observe that L≤ interprets primitively
positively the structure

({0, 1};L2,≤2, {0}, {1})

and that all polymorphisms of this structure are projections [91]. Hence, L≤ interprets
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all finite structures (see, e.g., [24], Theorem 6.3.10). Finally, note that P3 = Pol(Kc3) and
K3

3 = Pol(K3
3); from Proposition 6.2.13 if follows that K3

3 ≡m P3.

In the lattice of clones of self-dual operations (Figure 6.1) the clone L≤ := Pol(L≤) is
covered by

L2 := Pol(L2) := Pol({0, 1, 2};C3, L2)

and the clone T L≤ := Pol(TL≤) is covered by

T L2 := Pol(TL2) := Pol({0, 1, 2};C3, T, L2).

Proposition 6.2.20. The structures TL2 and L2 pp-construct each other.

Proof. Since TL2 is an expansion of L2 it suffices to prove that L2 pp-constructs TL2.
We consider the pp-power A of L2 with domain {0, 1, 2}2 and the same signature as TL2
whose relations are defined as follows.

CA3 := {(x, y) ∈ A2 | C3(x1, y1) ∧ C3(y2, x2)}
TA := {(x, y) ∈ A2 | x1 = y2 ∧ x2 = y1}
LA2 := {(x, y, z) ∈ A3 | L2(x1, y1, z1) ∧ L2(x1, x2, 1) ∧ L2(y1, y2, 1) ∧ L2(z1, z2, 1)}.

We prove that TL2 and A are homomorphically equivalent. Let g : {0, 1, 2} → {0, 1, 2}2
be defined by g(0) := (0, 1), g(1) := (1, 0), and g(2) := (2, 2). Then g is a homo-
morphism from TL2 to A: the proof that g preserves C3 we have already seen this
in the proof of Lemma 6.2.18. Now suppose that (x, y) ∈ T . If (x, y) = (0, 1) then
(g(0), g(1)) = ((0, 1), (1, 0)) ∈ TA. For (x, y) ∈ {(1, 0), (2, 2)} the argument is simi-
larly straightforward. Finally, suppose that (x, y, z) ∈ L. Then x, y, z ∈ {0, 1}2, and
hence g(x), g(y), g(z) ∈ {(0, 1), (1, 0)}. Hence, the conjuncts L2(x1, x2, 1), L2(y1, y2, 1),
L2(z1, z2, 1) in the definition of LA2 are satisfied. Moreover, x+2 y +2 z = 0 implies that
g(x)1 +2 g(y)1 +2 g(z)1 = 0, and hence (g(x), g(y), g(z)) ∈ LA2 .

Let h : {0, 1, 2}2 → {0, 1, 2} be defined as

h(x, y) :=


0 if C3(x, y)
1 if C3(y, x)
2 if x = y.

We prove that h is a homomorphism from A to TL2. Let ((x1, x2), (y1, y2)) ∈ CA3 .
Then C3(x1, y1) and C3(y2, x2). If h(x1, x2) = 0, then C3(x1, x2), and hence C3(y2, y1),
and therefore h(y1, y2) = 1. Hence, (h(x1, x2), h(y1, y2)) ∈ C3. The verification if
h(x1, x2) ∈ {1, 2} is similarly straightforward. The proof that h preserves T is similar as
well. Finally, suppose that

((a1, b1), (a2, b2), (a3, b3)) ∈ LA2 .
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Then L(ai, bi, 1), for i ∈ {1, 2, 3}, implies that (ai, bi) ∈ {(0, 1), (1, 0)}, and hence
h(ai, bi) ∈ {0, 1}. Note that in this case h(ai, bi) = ai, and hence L2(a1, a2, a3) im-
plies that (h(a1, b1), h(a2, b2), h(a3, b3)) ∈ L.

Define the relational structures

TN := ({0, 1, 2};C3, T,N,N
∗),

DM := ({0, 1, 2};C3, C2,≤2)

where C2 := {(0, 1), (1, 0)} and N∗ = {(0, 0), (0, 1), (1, 1), (0, 2)} is the dual of the relation
N defined in (6.8). Zhuk ([104], Theorem 28) proved that

T N := Pol(TN) = 〈m〉 and DM := Pol(DM) = 〈m, p〉

where the operations m and p are defined as follows:

m(x, y, z) :=

(x ∧3 y) ∨3 (x ∧3 z) ∨3 (y ∧3 z) if |{x, y, z}| ≤ 2
x otherwise,

(6.11)

p(x, y, z) :=

x if |{x, y, z}| ≤ 2
x+3 1 otherwise.

(6.12)

Rather than proving that TN and DM pp-construct each other, we follow a different
strategy and directly work with the respective clones and minor preserving maps.

Proposition 6.2.21. The clones T N and DM are minor-equivalent.

Proof. Since DM contains T N , it suffices to find a minor-preserving map Ξ from DM to
T N . We first define a minor-preserving map ξ over DM(3), i.e., the set of all operations
of arity at most three in DM (see Claim 1). Then we extend ξ to a minor-preserving
map Ξ from DM to the clone of all operations on {0, 1, 2}, and finally we show that the
image of Ξ lies in T N (see Claim 2 and Claim 3).

Note that every binary operation of DM must be a projection: this follows by
induction over the generation process from the fact that DM = [m, p] is generated by m
and p, since any operation obtained from the ternary operations m and p by identifying
arguments is a projection. Moreover, every ternary operation of DM restricted to {0, 1}
must be either a projection or the ternary majority operation; again, this is easy to show
by induction over the generation process.

For i ∈ {1, 2}, we define ξ(pr2
i ) := pr2

i . Let f ∈ DM(3). Note that every operation
in DM preserves {0, 1}; if the restriction of f to {0, 1} is a projection to the i-th
argument, then we define ξ(f) := pr3

i . Suppose now that the restriction of f to {0, 1}
is a majority operation. Note that for b1, b2, b3 ∈ {0, 1, 2} and i ∈ {1, 2} we have
f(b1 +3 i, b2 +3 i, b3 +3 i) = f(b1, b2, b3) +3 i since f preserves C3. Hence, f is fully
determined by its values for (0, 1, 2) and on (0, 2, 1). Moreover, for every i ∈ {1, 2, 3}, let
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σi : {1, 2, 3} → {1, 2, 3} be the map that fixes i and permutes the remaining two elements.
For every f ∈ DM(3), there exists an i ∈ {1, 2, 3} such that f = fσi :

• If f(0, 1, 2) = f(0, 2, 1), then we have f = fσ1 and we define ξ(f) := m(x, y, z).
Note that m(x, y, z) = mσ1 .

• If f(0, 1, 2) = f(0, 2, 1) +3 1 = f(1, 0, 2), then we have f = fσ3 and we define
ξ(f) := m(z, y, x) = mσ2 .

• If f(0, 1, 2) = f(0, 2, 1) +3 2 = f(2, 1, 0), then we have f = fσ2 and we define
ξ(f) := m(y, x, z) = mσ3 .

For the sake of notation, let us define a map ν : {1, 2, 3} → {σ1, σ2, σ3} such that ν(1) = σ1,
ν(2) = σ3, and ν(3) = σ2. Note that, if f = fσi , then ξ(f) = mν(i).

Claim 1: The map ξ is minor-preserving. If f ∈ DM(3) is such that its restriction
to {0, 1} is a projection, then it can be easily checked that ξ(fπ) = ξ(f)π for every
π : {1, 2, 3} → {1, 2, 3}. Now let us consider the case where the restriction of f to {0, 1}
is the majority operation. If π : {1, 2, 3} → {1, 2, 3} in not injective, then π(j) = π(k) = i

for some i, j, k ∈ {1, 2, 3}; in this case, ξ(fπ) = pr3
i = ξ(f)π. Let us finally consider the

case where π is injective. If f ∈ DM(3) is such that f = fσi for some i ∈ {1, 2, 3}, then
first applying π we get fπ = fπ◦σi and then via ξ we get mπ◦ν(i). On the other side, if we
first apply ξ we get mν(i) which is mapped to mπ◦ν(i) by π.

Since DM is defined on a set of cardinality three, the map ξ naturally extends to a
map Ξ from DM to the set of all operations on {0, 1, 2} as follows: for every f ∈ DM
of arity n and a1, . . . , an ∈ {0, 1, 2}, let f ′ be the ternary operation in DM defined by
f ′(x0, x1, x2) := f(xa1 , . . . , xan). Then let Ξ(f) be the n-ary operation on {0, 1, 2} that
maps (a1, . . . , an) to ξ(f ′)(0, 1, 2).

The map Ξ is minor-preserving by definition, so we are left with showing that
Ξ(f) ∈ T N for every f ∈ DM.

Claim 2: The operation Ξ(f) preserves C3 and T . Observe that, since |C3| = |T | = 3,
it is sufficient to prove the claim for ternary operations in DM; indeed, if f does not
preserve C3 or T , then there is a ternary minor of f that does not preserve C3 or T . If
g is a ternary operation in DM, then Ξ(g) = ξ(g) and therefore the claim holds since
ξ(g) ∈ T N by the definition of ξ.

Claim 3: Ξ(f) preserves N . It suffices to show that every four-variable minor of f
preserves N , because |N | = 4. Let g ∈ DM(4) and let (a1, b1), (a2, b2), (a3, b3), (a4, b4) ∈
N . We may suppose that if i, j ∈ {1, 2, 3, 4} are distinct, then (ai, bi) 6= (aj , bj). Indeed,
suppose that for i = 1 and j = 2 we have (ai, bi) = (aj , bj). Then let g′ be the ternary
minor of g defined by g′(x, y, z) := g(x, x, y, z), and note that(

Ξ(g)(a1, a2, a3, a4),Ξ(g)(b1, b2, b3, b4)
)

=
(
ξ(g′)(a1, a3, a4), ξ(g′)(b1, b3, b4)

)
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and we conclude that Ξ(g) preserves N since ξ(g′) ∈ T N . The argument for different
pairs of distinct elements i, j ∈ {1, 2, 3, 4} is similar. By permuting arguments of g, we
may therefore assume without loss of generality that(

(a1, b1), (a2, b2), (a3, b3), (a4, b4)
)

=
(
(0, 0), (1, 0), (1, 1), (1, 2)

)
.

Let g1, g2 ∈ DM be the ternary operations given by

g1(x0, x1, x2) := g(xa1 , xa2 , xa3 , xa4) = g(x0, x1, x1, x1)
and g2(x0, x1, x2) := g(xb1 , xb2 , xb3 , xb4) = g(x0, x0, x1, x2).

Since g1 must be a projection to the first or second argument we obtain

Ξ(g)(0, 1, 1, 1) = ξ(g1)(0, 1, 2) ∈ {0, 1}.

To show that (Ξ(g)(0, 1, 1, 1),Ξ(g)(0, 0, 1, 2)) ∈ N it therefore suffices to show that if
Ξ(g)(0, 1, 1, 1) = 0, then Ξ(g)(0, 0, 1, 2) = 0. Suppose that Ξ(g)(0, 1, 1, 1) = 0. Since
Ξ(g)(0, 1, 1, 1) = ξ(g1)(0, 1, 2) and ξ(g1) is a projection, we then must have ξ(g1) = pr3

1.
By the definition of ξ, this implies that g1 = pr3

1, hence g(0, 1, 1, 1) = 0.
Note that the restriction g′2 of g2 to {0, 1} is a projection or a majority operation.

Suppose for contradiction that g′2 is the second projection. Then g(0, 0, 1, 0) = g′2(0, 1, 0) =
1, but g(0, 1, 1, 1) = 0, a contradiction to the assumption that g preserves ≤. If g′2 to
{0, 1} is the third projection then g(0, 0, 0, 1) = g′2(0, 0, 1) = 1, which similarly leads to
a contradiction. If g′2 is the majority operation then g(0, 0, 1, 1) = g′2(0, 1, 1) = 1, again
leading to a contradiction. Hence, g′2 is must be the first projection. It follows that
Ξ(g)(0, 0, 1, 2) = ξ(g2)(0, 1, 2) = pr3

1(0, 1, 2) = 0.
The proof for N∗ is analogous.

Define the following relational structures

TD := ({0, 1, 2};C3, C2, T ),
D := ({0, 1, 2};C3, C2).

The following can be shown similarly as Proposition 6.2.20.

Proposition 6.2.22. The structures TD and D pp-construct each other.

Proof. Since TD is an expansion of D, it suffices to prove that D pp-constructs TD. Let A
be the pp-power of D with domain {0, 1, 2}2 and the same signature as TD; the relations
CA3 and TA are defined as in the proof of Proposition 6.2.20, and

CA2 := {(x, y) ∈ A2 | C2(x1, x2) ∧ C2(x1, y1) ∧ C2(x2, y2)}
= {((0, 1), (1, 0)), ((1, 0), (0, 1))}.
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Let g : {0, 1, 2} → {0, 1, 2}2 and h : {0, 1, 2}2 → {0, 1, 2} be as in the proof of Proposi-
tion 6.2.20. To verify that h is a homomorphism from A to TD, it suffices to prove that
h maps tuples in CA2 to tuples in C2, which is straightforward since (0, 1, 1, 0) ∈ CA2
is mapped to (0, 1) ∈ C2 and (1, 0, 0, 1) ∈ CA2 is mapped to (1, 0) ∈ C2. Conversely, g
is a homomorphism from TD to A. We have already shown that g preserves C3 and
T (see the proof of Proposition 6.2.20). Finally, (g(0), g(1)) = ((0, 1), (1, 0)) ∈ CA2 and
(g(1), g(0)) = ((1, 0), (0, 1)) ∈ CA2 .

We conclude this section with a description of the clones of self-dual operations that
collapse with the clone of all self-dual operations C3. Define

C0
3 := ({0, 1, 2};C3, {0})

and T := ({0, 1, 2};C3, T ).

Proposition 6.2.23. The structures C0
3, C3, and T pp-construct each other.

Proof. It follows from Theorem 3.1.10 and Proposition 6.2.13 that C0
3 and C3 pp-construct

each other. Since every relation of C0
3 has a pp-definition in T, it suffices to show that

C0
3 pp-constructs T. This can be shown as in Proposition 6.2.20.

6.2.4 Separations and final picture

We conclude this chapter proving that any two clones of self-dual operations whose
minor-equivalence was not proved in the previous section are in fact not minor-equivalent;
for every pair of self-dual clones C and D such that C �m D we present a minor condition
that holds in C but not in D. Interestingly, all but one of the conditions (i.e., the
condition gΣ3 from Theorem 6.2.25) that we use in this section were already presented
in Chapter 4.

The Atoms

We show that there are four smallest clones of self-dual operations that, again with
respect to �m, are larger than P3 (see Figure 6.3). Let us define the following clones:

L3 := Pol({0, 1, 2};C3, L3) (see (6.7))
T L2 := Pol({0, 1, 2};C3, T, L2) (see (6.9) and (6.10))
T N := Pol({0, 1, 2};C3, T,N,N

∗) (see (6.8) and (6.10))
W := Pol({0, 1, 2};C3, R

=
3 ) (see (6.2)).

The minority operation that returns x whenever |{x, y, z}| = 3 is denoted by ‘plus’.
The binary operation ⊕ is defined to be (x, y) 7→ 2(x + y) mod 3. It is known that
T L2 = 〈plus〉 and that L3 = 〈⊕〉 (see [104], Theorem 28). Recall that W = 〈∨3〉 and
T N = 〈m〉, see (6.4) and (6.11) respectively.
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L3 6|= T L2 6|= T N 6|= W 6|=
L3 |= Σ2 Σ2 ΣM
T L2 |= Minority Minority Minority
T N |= QNU(3) QNU(3) QNU(3)
W |= WNU(3) Σ2 Σ2

Figure 6.2: The minor conditions that show that the clones L3, T L3, T N , and W are
pairwise incomparable.

Proposition 6.2.24. The clones L3, T L2, T N , and W are pairwise incomparable with
respect to �m.

Proof. We use the minor conditions as specified in Figure 6.2. We claim that Σ2 holds in
L3 and in W but not in T L2 and T N . Clearly, the operation ⊕ in L3 and the operation
∨3 in W are binary symmetric. Every binary symmetric operation f that preserves {0, 1}
does not preserve the relation T , because f(0, 1) = f(1, 0) = a ∈ {0, 1} and (a, a) /∈ T .
Note that all operations in T L2 or in T N preserve {0, 1}.

It is easy to check that the operation (x, y, z) 7→ x⊕ (y ⊕ z) ∈ L3 is a quasi Mal’cev
operation. But any Mal’cev operation f does not preserve the relation R=

3 becausef(0, 1, 1)
f(1, 1, 1)
f(1, 1, 0)

 =

0
1
0

 /∈ R=
3 .

which shows that W does not satisfy the Mal’cev condition ΣM.
Note that T L2 = 〈plus〉 satisfies the quasi minority condition but L3, T N , and W

do not. To see this, let f be a quasi minority operation f . Then f does not preserve L3
because f(0, 0, 1)

f(0, 1, 0)
f(0, 2, 2)

 =

1
1
0

 /∈ L3.

Moreover, f does not preserve N because(
f(0, 1, 1)
f(0, 0, 2)

)
=
(

0
2

)
/∈ N.

Finally, we have already seen that W does not have a quasi minority operation because
every quasi minority operation is a particular quasi Mal’cev operation.

The clone T N = 〈m〉 (see (6.11)) satisfies QNU(3) since m is a quasi majority
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operation. However, any quasi majority operation f does not preserve L3 asf(0, 0, 1)
f(0, 1, 0)
f(0, 2, 2)

 =

0
0
2

 /∈ L3,

does not preserve L2 as f(0, 0, 1)
f(0, 1, 1)
f(0, 1, 0)

 =

0
1
0

 /∈ L2,

and does not preserve R=
3 as f(0, 0, 1)

f(0, 1, 1)
f(0, 1, 0)

 =

0
1
0

 /∈ R=
3 ,

which shows that L3, T L2, and W do not satisfy QNU(3). Note that WNU(3) holds in
W since W contains (x, y, z) 7→ x ∨3 (y ∨3 z). Suppose that there exists a ternary weak
near unanimity operation w ∈ L3. Thenw(0, 1, 1)

w(1, 0, 1)
w(2, 2, 1)

 =

aa
b

 .
Note that (a, a, b) ∈ L3 implies that a = b. It follows that(

w(0, 1, 1)
w(1, 2, 2)

)
=
(
a

a

)
/∈ C3

which is a contradiction.

Separations in the Wings

In the lattice of clones of self-dual operations the clone W is the smallest clone in the left
wing. The clone Q := Pol(Q), where Q is the structure introduced in Section 6.2.2, is the
unique smallest clone that properly contains W and lies in the left wing (see Figure 6.1).
We now show that the aforementioned clones are not minor-equivalent. In order to prove
the separation in Theorem 6.2.25, we will use a minor condition which we call guarded
3-cyclic, and denote by gΣ3. Note that, among the minor conditions that we will use to
prove separations in the lattice ↓C3, the minor condition gΣ3 is the only one that did
not appear in Chapter 4 (see Figure 4.2).

Theorem 6.2.25. There is no minor-preserving map from Q to W.
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Proof. It is known ([104], Theorem 29) that Q contains the operation r4 defined as
follows.

r4(x, y, z, t) :=

x ∨3 y ∨3 z if |{x, y, z}| ≤ 2
t otherwise.

Note that r4 satisfies the following minor condition, which we call guarded 3-cyclic (gΣ3)

f(x1, x2, x3, y) ≈ f(x2, x3, x1, y), and (6.13)
f(x, x, x, y) ≈ f(x, x, x, x). (6.14)

Suppose for contradiction that these identities can be satisfied by an operation f ∈
Pol(W). Let a ∈ {0, 1, 2} be such that f(0, 1, 2, 0) = a. Since f preserves C3 we have
f(1, 2, 0, 1) = a +3 1. By (6.13) we have f(0, 1, 2, 1) = a +3 1. But then f does not
preserve R=

3 , because

f

0 0 0 1
0 1 2 0
0 1 2 1

 =

 0
a

a+3 1

 /∈ R=
3 .

Proposition 6.2.26. The minor condition QJ(4) holds in M∞ but not in Q.

Proof. Zhuk ([104], Theorem 30) proved thatM∞ contains the following operation

f∞π (x, y, z) :=

x ∨3 (y ∧3 z) if |{x, y, z}| ≤ 2
x otherwise.

Note that the operations t0, t1, t2, t3, t4 given by

t0(x, y, z) := f∞π (x, x, x) t2(x, y, z) := f∞π (x, z, z) t4(x, y, z) := f∞π (z, z, z)
t1(x, y, z) := f∞π (x, y, z) t3(x, y, z) := f∞π (z, x, y)

witness thatM∞ satisfies QJ(4); in particular, we have

t1(x, y, x) = f∞π (x, y, x) = x ∨3 (y ∧3 x) = x

t2(x, y, x) = f∞π (x, x, x) = x

t3(x, y, x) = f∞π (x, x, y) = x ∨3 (x ∧3 y) = x

t1(x, z, z) = f∞π (x, z, z) = f∞π (x, z, z) = t2(x, z, z)
t2(x, x, z) = f∞π (x, z, z) = f∞π (z, x, x) = t3(x, x, z).

We claim that Q does not satisfy QJ(4). Since Q has a minor-preserving map to R,
it suffices to prove that the clone R does not satisfy QJ(4). From Theorem 4.2.8 it
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follows that every finite structure with a finite relational signature whose polymorphism
clone satisfies QJ(n) for some n also satisfies QNU(n) for some n ≥ 3. Suppose for
contradiction that R contains a quasi near unanimity operation t of arity n ≥ 3. If n = 3
we have t(0, 1, 0)

t(1, 0, 0)
t(1, 1, 0)

 =

0
0
1

 /∈ R⇒2 .

For k > 3, note that t(0, . . . , 0, 1, 0)
t(1, . . . , 1, 0, 0)
t(1, . . . , 1, 1, 0)

 =

 0
a1
1

 .
Since we assumed that t ∈ Pol(R), we obtain that a1 = 1. We repeat the same reasoning
k − 4 times: each time we consider the matrix Mi, for 2 ≤ i ≤ k − 3, where the first
k − i − 1 columns are equal to (0, 1, 1), the (k − i)-th column is equal to (1, 0, 1), and
the last i columns are equal to (0, 0, 0). Note that every column of Mi is an element of
R⇒2 . By letting t act row-wise in Mi, we get the chain of equalities a2 = · · · = ak−3 = 1.
Finally we get t(0, 1, 0, . . . , 0)

t(1, 0, 0, . . . , 0)
t(1, 1, 0, . . . , 0)

 =

 0
0

ak−3

 /∈ R⇒2 ,

a contradiction.

Recall that from Theorem 6.2.7 it follows that R and Q are minor-equivalent and
from Theorem 6.2.11 that B∞π∞ collapses withM∞. It follows thatM∞ is the unique
smallest element that properly contains Q in Figure 6.3.

We will now show all the clones B3
k and Mk, for k ≥ 2, are pairwise distinct. If

t ∈ An, we denote by Two(t) the set of all entries of t that appear at least twice. For
every n ≥ 3, let fnπ : {0, 1, 2}n+1 → {0, 1, 2} be the operation defined as follows

fnπ (x1, . . . , xn+1) :=


x1 if Two(x1, . . . , xn+1) = {0, 1, 2},
a ∨3 b if Two(x1, . . . , xn+1) = {a, b},
a if Two(x1, . . . , xn+1) = {a}.

It is known that fnπ ∈ B3
n and fnπ ∈Mn ([104], Theorem 29).

Proposition 6.2.27. Let n ≥ 2. The minor condition QNU(n + 1) holds in B3
n and

Mn, but does not hold in B3
n+1 andMn+1.

107



Proof. If n ≥ 3, then B3
n andMn contain the quasi near unanimity operation fnπ , which

is a witness for B3
n |= QNU(n + 1) and Mn |= QNU(n + 1). If n = 2, then note that

m ∈ B3
n and m ∈Mn (where m is defined in (6.11)) and that m is a majority operation.

It is easy to see that every quasi near unanimity operation of arity n ≥ 3 does not
preserve Bn, so QNU(n) does not hold in B3

n and inMn.

Let f∞0 : {0, 1, 2}3 → {0, 1, 2} be defined by f∞0 (x, y, x) = x∨3 y, and by f∞0 (x, y, z) =
x otherwise. It is known that f∞0 ∈ B3

n for every n ≥ 2 ([104], Theorem 29).

Proposition 6.2.28. The minor condition QHM(3) holds in B3
∞, but not in M2.

Proof. For x, y, z ∈ {0, 1, 2}, define

p0(x, y, z) := f∞0 (x, x, x)
p1(x, y, z) := f∞0 (x, z, y)
p2(x, y, z) := f∞0 (z, x, y)
p3(x, y, z) := f∞0 (z, z, z).

Then p0, p1, p2, p3 witness that B3
∞ satisfies QHM(3): in particular, we have

p1(x, x, y) = f∞0 (x, y, x) = x ∨3 y = f∞0 (y, x, y) = p2(x, y, y).

Note that ≤2 ∈ Inv(M2) and therefore the same argument as in Proposition 5.3.7 can be
used to show that QHM(3) does not hold inM2.

This implies that for all k, l ≥ 2, there is no minor-preserving map from B3
k toMl,

because B3
∞ ⊆ B3

k andMl ⊆M2.

The Final Picture

We conclude this chapter by collecting all the results presented in this section into a single
theorem that accomplishes the goal we set ourselves at the beginning of this section: a
complete description of ↓C3.

Theorem 6.2.29. The lattice ↓C3 of clones of self-dual operations factored by minor-
equivalence and ordered by the existence of minor-preserving maps, is a countably infinite
lattice, and is exactly of the form as described in Figure 6.3.

Proof. We use the minor conditions as indicated in the table of Figure 6.4. In Propo-
sition 6.2.27 and Proposition 6.2.28 we proved that the clones Mn and B3

n, for n ∈
{2, 3, . . . ,∞}, form two descending chains as displayed in Figure 6.4. The restriction of
this table to the clones L3, T L2, T , and T has already been described in Figure 6.2. We
now describe how to extend this table to the remaining clones W , D := Pol(D), Q,Mn,
B3
n, and C3.
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C3

L3

Q
W

P3

T N

D

T L2

B3
2

B3
3

B3
4

B3
5

B3
∞

M2

M3

M4

M5

M∞

Figure 6.3: The lattice of clones of self-dual operations up to minor-equivalence.

The clone D = Pol({0, 1, 2};C3, C2) contains T N and T L2, and therefore contains
the minority operation plus and the majority operation m. It does not satisfy Σ2 because
idempotent operations on {0, 1, 2} that satisfy Σ2 cannot preserve C2.

The clone Q contains W and therefore contains a binary symmetric operation and a
ternary weak near unanimity operation. Moreover, the proof of Theorem 6.2.25 shows
that Q satisfies gΣ3, which is not satisfied by W. Moreover, Q does not satisfy QJ(4),
which is satisfied byMn and B3

n for all n ∈ {2, 3, . . . ,∞} (Proposition 6.2.26).
The cloneMn, for each n ∈ {2, 3, . . . ,∞}, contains Q and therefore satisfies QNU(3),

Σ2, and gΣ3. It does not satisfy QHM(3) as we have seen in Proposition 6.2.28. For each
n ∈ {2, 3, . . . ,∞}, the clone B3

n containsMn, but satisfies the additional minor condition
QHM(3). It is straightforward to verify that any minority operation on {0, 1, 2} does not
preserve the relation B2, so B3

n does not satisfy the minority condition. The clone C3
contains all the clones discussed so far; since each of these clones does not satisfy some
minor condition discussed so far, it follows that C3 does not have a minor-preserving map
to any of these clones.
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L3 6|= T L2 6|= T N 6|= W 6|= D 6|= Q 6|= Mn 6|= B3
n 6|=

L3 |= Σ2 Σ2 ΣM Σ2 ΣM ΣM ΣM
T L2 |= Minority Minority Minority Minority Minority Minority
T N |= QNU(3) QNU(3) QNU(3) QNU(3) QNU(3) QNU(3)
W |= WNU(3) Σ2 Σ2 Σ2
D |= QNU(3) QNU(3) Minority Minority Minority Minority Minority
Q |= WNU(3) Σ2 Σ2 gΣ3 Σ2
Mn |= WNU(3) Σ2 Σ2 gΣ3 Σ2 QJ(4)
B3

n |= WNU(3) Σ2 Σ2 gΣ3 Σ2 QJ(4) QHM(3)
C3 |= Minority Σ2 Minority Minority Σ2 Minority Minority Minority

Figure 6.4: The minor conditions that justify that the existence of a minor-preserving
map orders the clones of self-dual operations as depicted in Figure 6.3.
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Chapter 7
Conclusion

As we have already pointed out in Chapter 1, the study of the pp-constructability poset
can be approached from different perspectives and different research communities may
ask questions that differ according to their focus. For this reason, there are several
directions that this line of research could take. In Chapter 3, we already proposed some
open problems concerning mainly the posets P3 and Pfin. We therefore conclude this
dissertation by recalling some problems we consider most relevant and by proposing some
new ones. The aim is to suggest a possible direction of research that may hopefully be
fruitful and lead to a better understanding of clones over finite sets and, as a byproduct,
of the pp-constructability poset.

In Section 3.2 we proved that Pfin is a semilattice. We ask the following:

Question 7.0.1. Is Pfin a lattice?

In Section 3.3.2 we gave an overview of what is the current status on la recherche of
the submaximal elements of Pfin. In this scenario, we ask the following question which is
clearly in symbiosis with Conjecture 3.3.20.

Problem 7.0.2. Find a set ΓTS of finite relational structures such that, for every finite
relational structure A, either

• A pp-constructs some structure in ΓTS, or

• Pol(A) |= TS(n), for every n ≥ 2.

The set {A | A ∈ ΓTS} ∪ {B2} is therefore a candidate for being the set of all
submaximal elements of Pfin.

Problem 7.0.3. Find all the submaximal elements of Pfin.

In Section 3.3.3 we pointed out that determining the cardinality of P3 and Pfin is
still an open problem and conjectured that both the mentioned posets are countably
infinite. It follows from the observation we made at the end of Section 3.3.3, based on
the results in [2] and [33], that we can focus on the following problem.
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Problem 7.0.4. Describe the following posets:

• ↓B2
∗ := {A | A is a clone over {0, 1, 2} and A �m B2},

• ↓B2 := {A | A is a clone over a finite set and A �m B2}.

In Section 3.2.5, we discussed the connection between minimal Taylor clones over
an n-element set and the atoms of Pn. As already mentioned in the conclusion of
Section 3.2.5, the author of the dissertation together with Barto and Zhuk found a
complete classification (yet unpublished) of the atoms of P3, based on Theorem 3.2.26.
We would like to stress that such a classification refines [34] by providing a concrete list
of the hardest tractable CSPs over a three-element set. However, we do not yet have an
answer to the following:

Question 7.0.5. Is every atom of P3 of the form A where A = Clo(A) and A is a
finitely related algebra? Is it true also for every atom of Pn, for every n > 3?

Turning our attention back to Mal’cev conditions, we conclude this chapter asking a
question with a flavour of classic universal algebra; the following open problem already
appeared in [27]. Given two strong linear Mal’cev conditions Γ and Σ, we say that Γ
implies Σ, denoted Γ⇒ Σ, if C |= Γ implies that C |= Σ for all idempotent clones C over
some finite set (see Chapter 4).

Question 7.0.6. Is the following problem decidable?

Input: two strong linear Mal’cev conditions Γ and Σ.
Output: Does Γ⇒ Σ hold?

The same question could be asked for general clones, i.e., without assuming that we
only consider clones over finite sets.

112



Bibliography

[1] Foto N. Afrati and Stavros S. Cosmadakis. Expressiveness of restricted recursive
queries (extended abstract). In David S. Johnson, editor, Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA, pages 113–126. ACM, 1989. doi:10.1145/73007.73018.

[2] Erhard Aichinger, Peter Mayr, and Ralph Mckenzie. On the number of finite
algebraic structures. Journal of the European Mathematical Society, 16, 03 2011.
doi:10.4171/JEMS/472.

[3] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert
Vollmer. The complexity of satisfiability problems: Refining Schaefer’s theorem.
Journal of Computer and System Sciences, 75(4):245–254, 2009.

[4] K. A. Baker and A. F. Pixley. Polynomial interpolation and the Chinese remainder
theorem for algebraic systems. Mathematische Zeitschrift, 143:165–174, 1974.

[5] L. Barto. The Constraint Satisfaction Problem and Universal Algebra. The Bulletin
of Symbolic Logic, 21(3):319–337, 2015.

[6] Libor Barto. The dichotomy for conservative Constraint Satisfaction Problems
revisited. In Proceedings of the Symposium on Logic in Computer Science (LICS),
Toronto, Canada, 2011.

[7] Libor Barto. Finitely related algebras in congruence distributive varieties have near
unanimity terms. Canadian Journal of Mathematics, 65(1):3–21, 2013.

[8] Libor Barto. Finitely related algebras in congruence modular varieties have few
subpowers. Journal of the European Mathematical Society, 20(6):1439–1471, 2018.

[9] Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, and Dmitriy Zhuk.
Minimal Taylor algebras as a common framework for the three algebraic approaches
to the CSP. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.

[10] Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach
to promise constraint satisfaction. J. ACM, 68(4), jul 2021. doi:10.1145/3457606.

113

https://doi.org/10.1145/73007.73018
https://doi.org/10.4171/JEMS/472
https://doi.org/10.1145/3457606


[11] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width.
In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 595–603, 2009.

[12] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms and the
constraint satisfaction problem. Logical Methods in Computer Science, 8/1(07):1–
26, 2012.

[13] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local
consistency methods. Journal of the ACM, 61(1):3:1–3:19, 2014.

[14] Libor Barto and Marcin Kozik. Absorption in Universal Algebra and CSP. In
The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of
Dagstuhl Follow-Ups, pages 45–77, 2017.

[15] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs
with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and
Hell). SIAM Journal on Computing, 38(5), 2009.

[16] Libor Barto, Marcin Kozik, and David Stanovsky. Mal’tsev conditions, lack of
absorption, and solvability. Algebra universalis, 74(1):185–206, 2015.

[17] Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use
them. In The Constraint Satisfaction Problem: Complexity and Approximability,
pages 1–44. 2017.

[18] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections.
Israel Journal of Mathematics, 223(1):363–398, 2018.

[19] Wolfram Bentz and Luís Sequeira. Taylor’s modularity conjecture holds for linear
idempotent varieties. Algebra Universalis, 71:101–107, 2014. URL: https://doi.
org/10.1007/s00012-014-0273-4.

[20] Clifford Bergman. Universal Algebra: Fundamentals and Selected Topics. CRC
Press, 2012.

[21] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings
of the Cambridge Philosophical Society, 31(4):433–454, 1935.

[22] Garrett Birkhoff. Lattice Theory. American Mathematical Society Colloquium
Publications, 25, American Mathematical Society, 1984. Corrected reprint of the
1967 third edition.

[23] Manuel Bodirsky. Cores of countably categorical structures. Logical Methods in
Computer Science, 3(1):1–16, 2007.

114

https://doi.org/10.1007/s00012-014-0273-4
https://doi.org/10.1007/s00012-014-0273-4


[24] Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cam-
bridge University Press, 2021.

[25] Manuel Bodirsky, Antoine Mottet, Miroslav Olšák, Jakub Opršal, Michael Pinsker,
and Ross Willard. ω-categorical structures avoiding height 1 identities. Transactions
of the American Mathematical Society, 374(1):327–350, 2021.

[26] Manuel Bodirsky and Florian Starke. Maximal digraphs with respect to primitive
positive constructibility. Combinatorica, 2022. doi:https://doi.org/10.1007/
s00493-022-4918-1.

[27] Manuel Bodirsky, Florian Starke, and Albert Vucaj. Smooth digraphs modulo primi-
tive positive constructability and cyclic loop conditions. International Journal of Al-
gebra and Computation, 31(05):929–967, 2021. doi:10.1142/S0218196721500442.

[28] Manuel Bodirsky and Albert Vucaj. Two-element structures modulo primitive
positive constructability. Algebra universalis, 81(2):20, 2020. doi:10.1007/
s00012-020-0647-8.

[29] Manuel Bodirsky, Albert Vucaj, and Dmitriy Zhuk. The lattice of clones of
self-dual operations collapsed, 2021. URL: https://arxiv.org/abs/2109.01371,
doi:10.48550/ARXIV.2109.01371.

[30] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory
for Post algebras, part I and II. Cybernetics, 5:243–539, 1969.

[31] Zarathustra Brady. Examples, counterexamples, and structure in bounded width
algebras, 2019. ArXiv:1909.05901.

[32] Zarathustra Brady. Notes on CSPs and polymorphisms, 2022. URL: https:
//arxiv.org/abs/2210.07383.

[33] Andrei A. Bulatov. On the number of finite mal’tsev algebras. In Contributions to
general algebra (Velké Karlovice, 1999/Dresden, 2000), Heyn, Klagenfur, volume 13,
page 41–54, 2001.

[34] Andrei A. Bulatov. A dichotomy theorem for constraints on a three-element set.
In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 649–658, 2002.

[35] Andrei A. Bulatov. Bounded relational width. Manuscript, 2009.

[36] Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. Journal of
Computer and System Sciences, 82(2):347–356, 2016. doi:https://doi.org/10.
1016/j.jcss.2015.07.004.

115

https://doi.org/https://doi.org/10.1007/s00493-022-4918-1
https://doi.org/https://doi.org/10.1007/s00493-022-4918-1
https://doi.org/10.1142/S0218196721500442
https://doi.org/10.1007/s00012-020-0647-8
https://doi.org/10.1007/s00012-020-0647-8
https://arxiv.org/abs/2109.01371
https://doi.org/10.48550/ARXIV.2109.01371
https://arxiv.org/abs/2210.07383
https://arxiv.org/abs/2210.07383
https://doi.org/https://doi.org/10.1016/j.jcss.2015.07.004
https://doi.org/https://doi.org/10.1016/j.jcss.2015.07.004


[37] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 319–330, 2017.

[38] Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Classifying the
complexity of constraints using finite algebras. SIAM Journal on Computing,
34:720–742, 2005.

[39] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel.
Structure and importance of logspace-mod class. Mathematical systems theory,
25(3):223–237, 1992.

[40] Stanley N. Burris and Hanamantagouda P. Sankappanavar. A Course in Universal
Algebra. Springer Verlag, Berlin, 1981.

[41] Catarina Carvalho and Andrei Krokhin. On algebras with many symmetric opera-
tions. International Journal of Algebra and Computation, 26(05):1019–1031, 2016.
doi:10.1142/S0218196716500429.

[42] Béla Csákány. All minimal clones on the three-element set. Acta Cybern., 6:227–238,
1984.

[43] Béla Csákány. Minimal clones. Algebra Universalis, 54(1):73–89, 2005.

[44] Víctor Dalmau. Linear datalog and bounded path duality of relational structures.
Logical Methods in Computer Science, 1(1), 2005.

[45] Alan Day. A characterization of modularity for congruence lattices of algebras.
Canad. Math. Bull., 12:327–350, 1969.

[46] J. Demetrovics and L. Hannak. The cardinality of selfdual closed classes in k-valued
logics. MTA SzTAKI Közlemenyek, 23:8–17, 1979.

[47] László Egri, Benoît Larose, and Pascal Tesson. Symmetric datalog and constraint
satisfaction problems in logspace. In Proceedings of LICS, pages 193–202, 2007.

[48] László Egri, Benoît Larose, and Pascal Tesson. Directed st-connectivity is not
expressible in symmetric datalog. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, pages 172–183, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[49] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog and group
theory. SIAM Journal on Computing, 28:57–104, 1999.

116

https://doi.org/10.1142/S0218196716500429


[50] Ralph Freese and Ralph McKenzie. Commutator Theory for Congruence Modular
Varieties. LMS, Lecture Notes (125), Cambridge University Press, 1987.

[51] O.C. Garcia and W. Taylor. The Lattice of Interpretability Types of Varieties.
Memoirs of the American Mathematical Society Series. American Mathematical
Society, 2005. URL: https://books.google.de/books?id=2ESoPwAACAAJ.

[52] Michael Garey and David Johnson. A guide to NP-completeness. CSLI Press,
Stanford, 1978.

[53] David Geiger. Closed systems of functions and predicates. Pacific Journal of
Mathematics, 27:95–100, 1968.

[54] Pierre Gillibert, J. Jonušas, and Michael Pinsker. Pseudo-loop conditions. Bulletin
of the London Mathematical Society, 51(5):917–936, 2019.

[55] H. Peter Gumm. Congruence modularity is permutability composed with distribu-
tivity. Archiv der Mathematik, 36(1):569–576, 1981.

[56] J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis,
pages 8–12, 1973.

[57] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of
Combinatorial Theory, Series B, 48:92–110, 1990.

[58] David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of
Contemporary Mathematics. American Mathematical Society, 1988.

[59] Neil Immerman. Nondeterministic space is closed under complementation. Mathe-
matical systems theory, 17(5):935–938, 1988.

[60] S. V. Jablonskij. On functional completeness in the three-valued calculus. Dokl.
Akad. Nauk SSSR, 95(2):1153–1155, 1954. (in Russian).

[61] Yu. I. Janov and A. A. Mučnik. On the existence of k-valued closed classes that
have no bases. Dokl. Akad. Nauk SSSR, 127:44–46, 1959.

[62] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185–204, 1998.

[63] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

[64] Bjarni Jónsson. On the representation of lattices. Mathematica Scandinavica,
1(2):193–206, 1953.

[65] Bjarni Jónsson. Algebras whose congruence lattices are distributive. Mathematica
Scandinavica, 21:110–121, 1967.

117

https://books.google.de/books?id=2ESoPwAACAAJ


[66] J. Jovanović, P. Marković, R. McKenzie, and M. Moore. Optimal strong Mal’cev
conditions for congruence meet-semidistributivity in locally finite varieties. Algebra
Universalis, 76:305–325, 2016.

[67] Alexandr Kazda. n-permutability and linear Datalog implies symmetric Datalog.
Logical Methods in Computer Science, 14(2), 2018. doi:10.23638/LMCS-14(2:
3)2018.

[68] Alexandr Kazda, Marcin Kozik, Ralph McKenzie, and Matthew Moore. Absorption
and directed Jónsson terms. Outstanding Contributions to Logic, 16:203–220, 2018.

[69] Keith A. Kearnes and Emil W. Kiss. The Shape of Congruence Lattices, volume 222
(1046) of Memoirs of the American Mathematical Society. American Mathematical
Society, 2013.

[70] Keith A. Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong Mal’cev
conditions for omitting type 1 in locally finite varieties. Algebra Universalis,
72(1):91–100, 2015.

[71] Keith A. Kearnes and Ágnes Szendrei. Clones of algebras with parallelogram terms.
International Journal of Algebra and Computation, 22(1), 2012.

[72] Keith A. Kearnes and Ágnes Szendrei. The relationship between two commutators.
International Journal of Algebra and Computation, 8(4)(1), 2012.

[73] Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations
of several Maltsev conditions. Algebra universalis, 73(3):205–224, 2015. doi:
10.1007/s00012-015-0327-2.

[74] Richard E. Ladner. On the structure of polynomial time reducibility. Journal of
the ACM, 22(1):155–171, 1975.

[75] Benoît Larose and Pascal Tesson. Universal algebra and hardness results for
constraint satisfaction problems. Theoretical Computer Science, 410(18):1629–1647,
2009.

[76] Dietlinde Lau. Function Algebras on Finite Sets. Springer, 2006.

[77] A. I. Mal’tsev. On the general theory of algebraic systems. Matematicheskii Sbornik
(Novaja Serija), 35(77)(1):3–20, 1954.

[78] Sergey S. Marchenkov. On closed classes of self-dual functions of many-valued logic.
Probl. Kibernetiki, 40:261–266, 1983. (in Russian).

[79] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric
operations. Algebra Universalis, 59(3), 2008.

118

https://doi.org/10.23638/LMCS-14(2:3)2018
https://doi.org/10.23638/LMCS-14(2:3)2018
https://doi.org/10.1007/s00012-015-0327-2
https://doi.org/10.1007/s00012-015-0327-2


[80] W. D. Neumann. On Mal’cev conditions. J. Aus. Math. Soc., 17(3), 1974.

[81] Miroslav Olšák. The weakest nontrivial idempotent equations. Bulletin of the
London Mathematical Society, 49(6):1028–1047, 2017. URL: http://dx.doi.org/
10.1112/blms.12097, doi:10.1112/blms.12097.

[82] Miroslav Olšák. Loop conditions for strongly connected digraphs. International Jour-
nal of Algebra and Computation, October 2019. doi:10.1142/S0218196720500083.

[83] Miroslav Olšák. Loop conditions. Algebra Universalis, 81(2):569–576, 2020. URL:
https://doi.org/10.1007/s00012-019-0631-3.

[84] Jakub Opršal. Taylor’s modularity conjecture and related problems for idempotent
varieties. Order, 35(3):433–460, Nov 2018.

[85] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[86] Alden F. Pixley. Distributivity and permutability of congruence relations in
equational classes of algebras. Proc. Am. Math. Soc., 14, 1963.

[87] Alden F. Pixley. Local mal’cev conditions. Canad. Math. Bull., 15:559–568, 1972.

[88] Sergei V. Polin. Identities in congruence lattices of universal algebras. Mat. Zametki,
22:443–451, 1977. (in Russian).

[89] Reinhard Pöschel. A general galois theory for operations and relations and concrete
characterization of related algebraic structures. Tech Report of Akademie der
Wissenschaften der DDR, 1980.

[90] Reinhard Pöschel and Lev A. Kalužnin. Funktionen- und Relationenalgebren.
Deutscher Verlag der Wissenschaften, 1979.

[91] Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematics Studies, 5, 1941.

[92] Ivo G. Rosenberg. La structure des fonctions de plusieurs variables sur un ensemble
fini. C. R. Acad. Sci., Paris, 260:3817–3819, 1965.

[93] Ivo G. Rosenberg. Minimal clones I: the five types. Lectures in Universal Algebra
(Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, 43:405–427, 1986.

[94] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., USA,
2006.

[95] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 216–226, 1978.

119

http://dx.doi.org/10.1112/blms.12097
http://dx.doi.org/10.1112/blms.12097
https://doi.org/10.1112/blms.12097
https://doi.org/10.1142/S0218196720500083
https://doi.org/10.1007/s00012-019-0631-3


[96] Luís Sequeira. Maltsev Filters. PhD thesis, University of Lisbon, Portugal, 2001.

[97] Mark H. Siggers. A strong Mal’cev condition for varieties omitting the unary type.
Algebra Universalis, 64(1):15–20, 2010.

[98] Róbert Szelepcsény. The method of forced enumeration for nondeterministic
automata. Acta Inf., 26(3):279–284, 1988.

[99] Ágnes Szendrei. Clones in universal algebra. Séminaire de Mathématiques
Supérieures. Les Presses de l’Université de Montréal, 1986.

[100] Alfred Tarski. A remark on functionally free algebras. Annals of Mathematics,
47:163, 1946.

[101] Walter Taylor. Varieties obeying homotopy laws. Canadian Journal of Mathematics,
29:498–527, 1977.

[102] Rudolf Wille. Kongruenzklassengeometrien. Springer, Berlin, 113:559–568, 1970.

[103] Dmitriy Zhuk. The predicate method to construct the post lattice. Discrete
Mathematics and Applications, 21(3):329–344, 2011. URL: https://doi.org/10.
1515/dma.2011.022, doi:doi:10.1515/dma.2011.022.

[104] Dmitriy Zhuk. The lattice of all clones of self-dual functions in three-valued logic.
Multiple-Valued Logic and Soft Computing, 24(1-4):251–316, 2015.

[105] Dmitriy Zhuk. Key (critical) relations preserved by a weak near-unanimity function.
Algebra Universalis, 77:191–235, 2017.

[106] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 331–342, 2017.

[107] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5), 2020.
doi:10.1145/3402029.

[108] Dmitriy Zhuk. Strong Subalgebras and the Constraint Satisfaction Problem. J.
Multiple Valued Log. Soft Comput., 36(4-5):455–504, 2021.

120

https://doi.org/10.1515/dma.2011.022
https://doi.org/10.1515/dma.2011.022
https://doi.org/doi:10.1515/dma.2011.022
https://doi.org/10.1145/3402029


List of Figures

3.1 The meet-semilattice Pfin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The digraph S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 An overview of the results presented in Section 3.3.1. . . . . . . . . . . . . 42
3.4 The structure K := (K;R,S). . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The Hasse diagram of the lattices D1, D2, M3, and N5. . . . . . . . . . . 51
4.2 The geography of linear Mal’cev conditions. . . . . . . . . . . . . . . . . . 60

5.1 Post’s Lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The structure B≤ pp-constructs B≤2 . The red edges connect elements in

B2; the blue edges connect elements in ≤2. . . . . . . . . . . . . . . . . . 65
5.3 The lattice P2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 The lattice P2 split according to Theorem 5.4.2. . . . . . . . . . . . . . . 72

6.1 The lattice of clones of self-dual operations ordered by inclusion. . . . . . 85
6.2 The minor conditions that show that the clones L3, T L3, T N , and W are

pairwise incomparable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 The lattice of clones of self-dual operations up to minor-equivalence. . . . 109
6.4 The minor conditions that justify that the existence of a minor-preserving

map orders the clones of self-dual operations as depicted in Figure 6.3. . . 110

121



122



Funding

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 681988, CSP-Infinity).



124



I herewith declare that I have produced this thesis without the prohibited assistance
of third parties and without making use of aids other than those specified; notions taken
over directly or indirectly from other sources have been identified as such. This thesis
has not previously been presented in identical or similar form to any other German or
foreign examination board.

Albert Vucaj
Dresden, 16 März 2023


	Introduction
	Preliminaries
	Universal algebra
	Algebras
	Clones
	Reducts and expansions

	Structures and relational clones
	The Inv-Pol Galois connection
	CSP in a nutshell
	Reductions that preserve the complexity of CSPs

	The pp-constructability poset
	The wonderland of reflections
	Primitive positive constructions
	Minor-preserving maps
	Reflections

	The shape of Pfin
	The top element
	The unique coatom
	The bottom element
	No atoms
	Minimal Taylor clones

	Open problems
	Loop-conditions and splitting-theorems
	Submaximal elements
	Cardinality


	The geography of linear Mal'cev conditions
	Mal'cev filters
	Filters of varieties omitting lattices

	Congruence identities
	Congruence n-permutability
	Congruence meet-semidistributivity
	Congruence join-semidistributivity
	Congruence modularity
	Congruence distributivity
	Congruence arithmeticity

	Linear Mal'cev conditions ordered by strength

	Description of P2
	Post's lattice
	Collapses
	Separations
	The lattice P2

	Clones over a three-element set 
	Submaximal elements of P3
	Clones of self-dual operations
	A continuum of clones up to homomorphic equivalence
	The decrease of cardinality up to minor-equivalence
	Other collapses
	Separations and final picture


	Conclusion
	List of Figures
	Funding



