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1

Abstract

Semiclassical theories have proven to be a versatile tool in ultrafast strong field sci-
ence. In this thesis, the power of classical trajectory Monte Carlo (CTMC) and quantum
trajectory Monte Carlo (QTMC) simulations is celebrated by applying them in various
strong field ionization settings.

One question to be addressed concerns the way nonadiabaticity in the ionization
process manifests itself. It will be shown how the assumption of a vanishing initial
longitudinal momentum is the reason for the strong broadening of the initial time
spread claimed in a popular nonadiabatic theory. Moreover, it will become clear how
the broader time spread of this theory and the non-zero initial longitudinal momenta
of another widely applied nonadiabatic theory approximately compensate each other
during propagation for typically studied nonadiabatic parameters. However, param-
eters in the nonadiabatic but still experimentally relevant regime will be found where
this approximation breaks down and the two different theories lead to distinguishably
different momentum distributions at the detector after all, thus allowing to test which
theory describes the situation at the tunnel exit more accurately.

After having tunneled through the barrier formed by the laser and Coulomb poten-
tial, the electron does not necessarily leave the atom for good but can be captured in
a Rydberg state. A study of the intensity-dependence of the Rydberg yield will reveal,
among other things, nonadiabatic effects that can be used as an independent test of
nonadiabaticity in strong field ionization. Moreover, it will be shown that the duration
of the laser pulse can be used to control both the yield and principal quantum number
distribution of Rydberg atoms.

The highly enhanced and spatially inhomogeneous fields close to a nanostructure
are another setting in which atoms can be ionized. Here, the emergence of a promi-
nent higher energy structure (HES) in the spectrum of photoelectrons will be reported.
The narrow time-window in which the corresponding electrons are released suggests
a promising method for creating a localized source of electron pulses of attosecond
duration using tabletop laser technology. Having such potential applications in mind,
analytical expressions are derived to describe the electrons’ motion in the inhomo-
geneous field, thus being able to control the spectral position and width of the HES.
Moreover, a unifying theory will be developed in which the recently reported experi-
mental finding of a low-energy peak (LEP) can be understood to arise due to the same
mechanism as the theoretically predicted HES, despite those two effects having been
found in different energy regimes so far. This unifying theory will show how the well-
established experimental technique in which the LEP was reported, i.e. ionization di-
rectly from the nanotip rather than from atoms in its vicinity, should allow the realiza-
tion of a prominent and narrow peak at higher energies as it was theoretically described
in the framework of the HES.

Despite being much weaker, the spatial inhomogeneity of the Coulomb potential
can influence the photoelectron spectrum as well. It will be shown how the asymmet-
ric Coulomb potential of a tilted diatomic molecule introduces an asymmetry in the
photoelectron momentum distribution at the detector. The degree of asymmetry de-
pends on whether the electron is born at the up- or downfield atom. This information
is then used to quantify the ratio of ionization from the up- and downfield site from
experimental photoelectron momentum distributions.
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Kurzfassung

Semiklassische Theorien haben sich als vielfältiges Werkzeug in dem Forschungs-
bereich der ultrakurzen und starken Laserfelder herausgestellt. In der vorliegenden Ar-
beit wird die Leistungsfähigkeit von Monte Carlo Simulationen mit klassischen und
quantenmechanischen Trajektorien gefeiert, indem diese auf verschiedene Systeme
der Starkfeldionisation angewendet werden.

Eine der Fragen, die behandelt werden wird, betrifft die Art und Weise, in der
sich nichtadiabatische Effekte im Ionisationsprozess manifestieren. Es wird gezeigt
werden, wie die Annahme eines verschwindenden Anfangsimpulses der Grund für
die starke Verbreiterung der Startzeitenverteilung ist, welche in einer weitverbreiteten
nichtadiabatischen Theorie angegeben wird. Zudem wird klar werden, wie die breite-
re Startzeitenverteilung dieser Theorie und der nichtverschwindende Anfangsimpuls
einer anderen häufig angewandten nichtadiabatischen Theorie sich näherungsweise
während der Propagation kompensieren, wenn typische nichtadiabatische Parameter
verwendet werden. Es werden jedoch Parameter im nichtadiabatischen und dennoch
experimentell relevanten Bereich gefunden werden, wo diese Näherung versagt und
die zwei verschiedenen Theorien doch noch zu erkennbar verschiedenen Impulsver-
teilungen am Detektor führen. Dies erlaubt zu testen, welche Theorie die Situation am
Tunnelausgang genauer beschreibt.

Nachdem das Elektron durch die Barriere getunnelt ist, die Coulomb- und Laser-
potential formen, verlässt das Elektron das Atom nicht unbedingt endgültig, sondern
kann in einem Rydbergzustand gefangen werden. Die Untersuchung der Intensitäts-
abhängigkeit des Rydbergertrags wird unter anderem nichtadiabatische Effekte her-
vorbringen, die als unabhängiger Test von Nichtadiabatizität in der Starkfeldionisation
genutzt werden können. Zudem wird gezeigt, dass die Dauer des Laserpulses verwen-
det werden kann, um sowohl den Ertrag als auch die Verteilung der Hauptquantenzahl
der Rydbergatome zu kontrollieren.

Ein anderes System, in welchem Atome ionisiert werden können, sind die hochgra-
dig verstärkten und räumlich inhomogenen Felder nahe einer Nanostruktur. Hier wird
von dem Auftreten einer markanten Hochenergiestruktur (HES) berichtet werden. Das
schmale Zeitfenster, in welchem die zugehörigen Elektronen abgegeben werden, weist
auf eine vielversprechende Methode zur Erschaffung einer lokalisierten Quelle hin,
von der Elektronenpulse mit Pulsdauern im Attosekundenbereich ausgehen und in
welcher ausschließlich Technologie verwendet wird, die auf einen optischen Experi-
mentiertisch passt. Mit solchen Anwendungen im Hinterkopf werden analytische Aus-
drücke hergeleitet, um die Bewegung der Elektronen im inhomogenen Feld zu be-
schreiben und auf diese Weise die spektrale Position und Breite der HES zu kontrol-
lieren. Darüber hinaus wird eine verallgemeinernde Theorie entwickelt, in der der
kürzlich berichtete experimentelle Fund eines Niederenergiepeaks aufgrund dessel-
ben Mechanismus erscheint wie die theoretische vorhergesagte HES, obwohl die bei-
den Effekte bislang in verschiedenen Energiebereichen gefunden wurden. Diese ver-
allgemeinernde Theorie wird zeigen, wie die gut etablierte experimentelle Technik, mit
welcher die Niederenergiestruktur erzeugt wurde, d.h. Ionisation direkt von der Nano-
spitze statt von Atomen in deren Nähe, die Realisierung eines markanten und schma-
len Peaks bei hohen Energien ermöglicht, wie er zuvor nur theoretisch im Rahmen der
HES beschrieben wurde.

Auch wenn die räumliche Inhomogenität des Coulombpotentials viel schwächer
ist, kann auch sie das Photoelektronenspektrum beeinflussen. Es wird gezeigt werden,
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wie das asymmetrische Coulombpotential eines verkippten zweiatomigen Moleküls
eine Asymmetrie in der Elektronenimpulsverteilung am Detektor erzeugt. Der Grad
der Asymmetrie hängt davon ab, ob das Elektron das Molekül am Atom, das oben oder
unten im Laserpotential liegt, verlassen hat. Diese Information wird dann genutzt, um
das Verhältnis der Ionisation von den beiden Atomen, die oben oder unten im Laser-
potential liegen, aus experimentellen Photoelektronenimpulsverteilungen quantitativ
zu ermitteln.
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Recurring acronyms and abbreviations

ADK referring to the adiabatic theory developed by Ammosov, Delone,
and Krainov in [1]
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Bondar referring to the nonadiabatic theory of Bondar published in [2]

CEP carrier-envelope phase
CREI charge resonance enhanced ionization
CTMC classical trajectory Monte Carlo
CWP classical Wigner propagation

FTI frustrated tunneling ionization

HES higher energy structure
HHG high-harmonic generation

IR infrared

KER kinetic energy release

LEP low-energy peak
Li referring to the nonadiabatic theory of Li et al. published in [3]
LIED laser-induced electron diffraction

PPT referring to the nonadiabatic theory developed by Perelomov,
Popov and Terent’ev in [4, 5]

QTMC quantum trajectory Monte Carlo

SFA strong field approximation

TDSE time-dependent Schrödinger equation
TIPIS tunnel ionization in parabolic coordinates with induced dipole

and Stark shift, see [6] for details

XUV extreme ultraviolet

YI referring to the nonadiabatic theory of Yudin and Ivanov pub-
lished in [7]





CHAPTER

1
Introduction and thesis outline

“In science one tries to tell people, in such a way as to be understood by ev-
eryone, something that no one ever knew before. But in poetry, it’s the exact
opposite.”

— Paul Dirac

In 2018, half of the Nobel prize in physics was awarded to Gérard Mourou and Donna
Strickland ‘for their method of generating high-intensity, ultra-short optical pulses’ [8,
9]. This reminded us not only of the ingenuity that was needed to create a laser that was
both short-pulsed and of high intensity, but first and foremost it showed the relevance
and impact of this invention. On the one hand, the intensity is so high that it can
bend the Coulomb potential of an atom or molecule, making tunneling through the
resulting barrier possible, or enables multiple photons to be absorbed by the atom or
molecule [10]. On the other hand, the pulse duration of such lasers is at the time scale
of electron motion in atoms and molecules, thus making it possible to time-resolve
electron dynamics during and after ionization [11].

In the past decades, the methods to create short, intense laser pulses have been
further refined: Ever shorter pulses have been generated and nowadays not only fem-
tosecond but also attosecond pulses are routinely produced [11], high-harmonic gen-
eration (HHG) allows to create pulses over a wide range of wavelengths, and stabiliza-
tion of the carrier-envelope phase (CEP) was achieved [12, 13].

These and many further advancements went hand in hand with the development
of a wide variety of new applications. For example, control over the CEP allowed to
observe electron localization during chemical reactions [14] and even steer such pro-
cesses [15]. Another powerful technique is laser-induced electron diffraction (LIED),
in which electrons that tunnel out and then diffract from their parent ion carry the
fingerprint of the ionized orbital and the position of the nuclei [16–19]. Thus, the
molecule can ‘take a picture of itself’ [20]. Similarly, also HHG uses the return of the
tunnel-ionized electron to the parent ion for structural retrieval. Here, the electron
recombines with its parent ion and the resulting radiation can not only be used as a
light-source of smaller wavelengths but also contains information about the atomic or
molecular structure [21–25] and the tunneling process itself [26]. Moreover, the recent
finding that strong ultrashort laser pulses also lead to HHG radiation in solids [27] has
opened a whole new subfield of attosecond science, which promises to help gain so
far inaccessible information about electronic properties of a wide range of materials
[28–32].
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Many more techniques could be listed here which helped gain insights into the
quantum mechanical process of strong field ionization and the properties of atoms,
molecules, and solids. However, as with every physical technique, meaningful inter-
pretation of all of those observations is not possible without a theoretical model. In
the case of strong field attosecond physics, the highly nonlinear and typically non-
perturbative nature of the underlying processes makes this a non-trivial task. The main
problem originates from the fact that the Schrödinger equation cannot be solved ex-
actly for the superposed laser and Coulombic field [33]. Of course, the Schrödinger
equation can be solved numerically but even that usually only allows for a single-active
electron approximation and, moreover, often it is not clear how to analyze and inter-
pret such a ‘numerical experiment’.

Therefore, many models introducing various approximations have been developed
which allow for less numerically expensive calculations and, in particular, provide re-
sults that can be interpreted more intuitively. The strong field approximation (SFA)
has proven to be such a tool. In it, the time-dependent Schrödinger equation (TDSE)
is solved in an approximate way by applying a systematic perturbation theory in which
the Coulomb potential is typically completely neglected in the continuum [33, 34]. De-
spite such a crude approximation, this theoretical model has reproduced and helped
understand many strong field phenomena, such as HHG [35], above-threshold ioniza-
tion (ATI) [36, 37] or double-ionization [38]. One way to further simplify SFA calcula-
tions is to apply saddle point approximations when evaluating highly oscillatory inte-
grals, which reduces computational costs appreciably and lets the resulting quantum
paths be interpreted as the most likely trajectories [35].

This, however, is by far not the only model that allows for an intuitive interpretation
of strong field phenomena by means of trajectories. In fact, one of the first methods to
reveal that the return of the tunnel-ionized electron to the parent ion accounts for the
intriguing strong field phenomenon of HHG was an unsophisticated and yet power-
ful trajectory model, the aptly named ‘simple-man model’, which is also referred to as
the ‘three-step model’ [39]. In this one-dimensional model a classical trajectory de-
scribing the electron is started with zero initial velocity and the Coulomb potential of
the residual ion is not included during propagation. In this framework, the highest
kinetic energy a returning electron can have is 3.17 times the cycle-averaged kinetic
energy Up , which explains the cutoff of the HHG spectrum found at 3.17Up + Ip (with
Ip the ionization potential). Thus, we have already made the acquaintance with all
three steps of the ‘three-step model’: ionization, propagation, and recollision. Since
its initial success, the simple-man model has been applied to many other strong field
settings and has been developed further into ever more elaborate ways to describe the
post-ionization electron dynamics [40–42].

Obviously, one can easily extend the model and include the Coulomb potential of
the residual ion, even though one thus sacrifices analytical tractability. Another crucial
improvement of this model is the use of not only a single trajectory released at the field
maximum with zero velocity, which in the framework of quasistatic ionization theories
can be interpreted as the most likely trajectory, but employing a swarm of trajectories
with initial conditions that follow the probability distribution obtained from strong
field ionization rates [43, 44]. The statistical nature of the selection of initial conditions
along with the fact that the propagation is done classically by solving Newton’s equa-
tion of motion explains the name of these methods: classical trajectory Monte Carlo
simulations, often abbreviated as CTMC simulations.
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The strength of CTMC models lies in their full inclusion of the Coulomb poten-
tial, which e.g. the SFA does not have, and in the possibility to analyze trajectories,
which the numerical solution of the TDSE does not allow. These advantages have made
CTMC simulations a tool that has helped understand many effects in different areas of
strong field ionization in the past decades, among which are double-ionization [45–47],
Rydberg states [48–52] and Coulomb-related effects such as the low-energy structure
[53–55] or Coulomb focusing [43, 46], to mention but a few.

The power of CTMC simulations has grown with ever more accurate probability
distributions to describe the initial conditions of the electron at the tunnel exit. Espe-
cially going beyond using a quasistatic ionization theory and capturing nonadiabatic
effects has been of interest in recent years and is still under discussion [2, 3, 7, 56–61].

One effect that cannot be captured in the framework of purely classical trajecto-
ries, though, is the interference pattern the photoelectron distribution at the detector
exhibits. However, a method to include a semiclassical phase along the pathway of the
classical trajectory was introduced to overcome this shortcoming. Indeed, the resulting
model named ‘Quantum Trajectory Monte Carlo’ (QTMC) [62] and further refinements
[60] successfully reproduce key features of the photoelectron interference pattern [60,
63–68], thus having opened a wide range of new phenomena that can be explained by
trajectory-based Monte Carlo methods.

The work presented in this thesis celebrates the power of CTMC and QTMC by mak-
ing copious use of it and, in particular, by applying it to cases that are difficult or impos-
sible to describe in the framework of SFA. To highlight this point, let us briefly review
the main prerequisites for the application of the SFA [33]:

1. The field of the laser is so strong that multiphoton and tunnel ionization are the
dominant ionization processes.

2. The Coulomb potential of the residual ion has a negligibly small effect on the
dynamics in the continuum.

3. The dipole approximation can be applied which, in particular, requires a spa-
tially homogeneous description of the electric field.

Although there are adaptions of the SFA that introduce Coulomb corrections [69, 70],
they are just that: corrections. In processes where the Coulomb potential plays a key
role and needs to be included with high accuracy, this is often not sufficient and CTMC
and QTMC reveal their power. In chapter 4, this will become clear in the study of frus-
trated tunneling ionization and the herein created Rydberg states, which is an effect
that was first understood by that very method of CTMC [48]. Revisiting the research
done on the intensity dependence [49], it will be shown how Rydberg states can be
used to test nonadiabatic effects in a way that contrasts the commonly used methods
in that it does not depend on the momentum distribution and therefore does not in-
volve the issues of adiabatic or nonadiabatic calibration of the absolute intensity [71].
Moreover, section 4.3 will show how the pulse duration can be used to control the yield
and quantum number distribution of Rydberg states. As it will become clear that the
underlying effect depends sensitively on the Coulomb potential, this will be a case in
point for showing the importance of including the Coulomb potential during the prop-
agation process [72].

The versatility of CTMC will become even clearer in chapter 5, where it is applied to
inhomogeneous fields as they are typically created in the vicinity of a nanostructure.
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In this case, the electric field exhibits a strong spatial dependence and consequently
the dipole approximation breaks down and thus also the applicability of the SFA (see
point 3. in the above list). CTMC, in contrast, can fully include the inhomogeneity of
the electric field and with its help we will, for the first time, observe and understand
the emergence of a higher energy structure (HES) in the photoelectron spectrum [73,
74]. The fact that this accumulation of highly energetic electrons is observed in both
TDSE and CTMC simulations shows that the underlying mechanism can be captured
in the classical limit. This insight will lead us to a more general understanding of the
formation of peak structures in inhomogeneous fields and in the last section of this
chapter a theory will be developed to describe these features in a unified framework.
In particular, a peak structure that was observed independently by experimentalists
[75] in inhomogeneous fields and was named ‘low-energy peak’ due to its location in
the low-energy regime is found to be explained by that unified theory in which also the
appearance of the HES is understood.

Chapter 6 will then present a theory that allows to retrieve information about the
ionization site in a diatomic molecule. So far, such studies were restricted to ioniza-
tion from charged molecules with Coulomb explosion ensuing the ionization process.
Here, in contrast, a method is developed for the ionization of neutral molecules that
makes use of the deflection of the electron in the asymmetric Coulomb potential of
the tilted molecule. Since the degree of deflection depends strongly on which atom
that electron was ionized at, the resulting asymmetry in the photoelectron momen-
tum distribution at the detector can be mapped onto the ionization rates of the up-
and downfield atom in the molecule. Including the Coulomb potential as accurately
as possible is of utmost importance in this case, which serves as another example of a
system that can be described better by a CTMC or QTMC method than by SFA. In this
chapter, experimental data will prove that the mentioned deflection effect is indeed
visible. Comparing the resulting experimental asymmetry to the theoretically calcu-
lated one, the ionization rates at the different ionization sites can be determined from
experimentally obtained photoelectron momentum distributions. This direct appli-
cability to experimental data and the fact that the momentum distribution that is ob-
served at the detector exhibits strong interference fringes calls for using a QTMC rather
than a CTMC simulation in that case in order to model the experimental setting with
highest accuracy.

Speaking of accuracy in the description of the physical system leads us to the con-
tent of chapter 3, which will set the stage for the above-described applications by dis-
cussing nonadiabatic effects on the initial conditions at the tunnel exit. If the laser field
changes slowly when compared to the dynamics of the bound state, the bound state
can adapt adiabatically to the changing laser field. In this limit, quasistatic assump-
tions work very well. However, it is less clear how to describe the ionization process
theoretically when the laser field and thus also the potential barrier move faster and
nonadiabatic effects set in. Different nonadiabatic theories developed in the past give
seemingly contradictory answers to the question of how nonadiabaticity manifests it-
self at the tunnel exit. While one of the most popular theories claims a strong broaden-
ing of the ionization time spread and makes the case for zero longitudinal momentum
at the tunnel exit [7], another prominent nonadiabatic theory [3] shows that the ini-
tial longitudinal momentum is by far not negligible and arrives at a considerably less
broad time spread. Chapter 3 is devoted to resolving the confusion that has resulted
from these discrepancies by showing how these two major nonadiabatic theories relate
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to each other and by presenting a test that aims at finding out which theory describes
the situation at the tunnel exit more accurately by means of comparison with TDSE
simulations.

The thesis will be rounded off in chapter 7 by a short summary of the findings pre-
sented in this work along with some concluding remarks and an outlook on open ques-
tions and potential future work related to this thesis.





CHAPTER

2
Fundamental concepts

“If I have seen further, it is by standing on the shoulders of giants.”

— Isaac Newton

This chapter introduces various general concepts and the related nomenclature that
will be used and referred to throughout the thesis. Introductions to the more special-
ized subfields for which new results are presented in chapters 3 to 6 are found at the
beginning of the respective chapters.

2.1 Introduction to strong field ionization

2.1.1 From single to multiphoton ionization

In 1905, Einstein’s work on the photoelectric effect and the light quantum hypothe-
sis were published [76], thus revolutionizing the field of light-matter interaction. The
photoelectric effect as described by Einstein is characterized by the following features
[77]:

(a) For a given material, meaning a specific work function, there is a minimum fre-
quency of the incident radiation below which the photoelectrons will not be
emitted.

(b) At a fixed frequency of the incident light and for a given material, the photoelec-
tron rate is proportional to the intensity of the incident light.

(c) Above the minimum frequency described in (a), the maximal kinetic energy of
the photoelectron does not depend on the intensity of the incident light and is
described by Eki n,max = ħω− Ip , with Ip the ionization potential or work func-
tion.

Even though all experimental data available at that time could be explained in this
framework, the advent of lasers, in particular those with higher intensities, produced
results that contradicted these ‘laws’. The reason for this breakdown is that Einstein’s
photoelectric effect is built on the assumption of a single photon being absorbed. How-
ever, as theoretically postulated by Maria Göppert-Mayer in 1931 [78] even before the
first laser was built, and as verified experimentally in the early 1960s [79, 80], an elec-
tron can be ionized by the help of two photons. With the rise of ever more intense
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lasers, this concept was found to be more general with multiple photons bridging the
energy gap from the binding energy to the continuum. This process is depicted in the
top left panel of Fig. 2.1 and is sometimes referred to as the ‘vertical channel’. Concern-
ing the features listed above to describe photoionization, these have to be modified in
the following way:

(a’) Even below the minimum frequency for the onset of single-photon ionization,
multiple photons can provide the energy for the release if the intensity of the
incident laser is sufficiently high.

(b’) In the perturbative regime, the ionization rate scales like I nph with nph the num-
ber of photons absorbed [33]. Einstein’s single-photon ionization can be consid-
ered a special case of that, with nph = 1.

(c’) The maximal kinetic energy of the photoelectrons needs to be modified.

As for the last point, it was formulated in such a vague way on purpose since the
photoelectron spectrum in strong field ionization turned out to be more complicated
than one would think [81, 82] and warrants some more words than fit into the above
list. What one expected from the photoelectron spectrum was that it would follow
Eki n,max = n′

phħω− Ip , with n′
ph the minimal number of photons required to over-

come the ionization potential Ip . However, it was observed that far more photons can
be absorbed in the ionization process than are needed to overcome the ionization po-
tential, leading to higher maximal kinetic energies than had been predicted [81]. This
effect is nowadays called above-threshold ionization, short ATI, and manifests itself in
photoelectron spectra of several peaks that are separated by the photon energy ħω.
One observation that did not quite fit into the picture, though, was that as intensity in-
creases, the lowest order peaks are reduced and eventually suppressed [82, 83]. Later,
the explanation for this peak suppression was found in the shift of the atomic states’
energies in the presence of a laser field [84, 85]. The level-shift due to the dynamic stark
effect is given by the ponderomotive energy

Up = E 2
0

4ω2
, (2.1)

the cycle-averaged kinetic energy of the electron’s quiver motion in the laser field [86,
87], where E0 is the maximum field strength and ω the angular frequency of the laser
field. Consequently, the kinetic energy of the photoelectrons is given by

Eki n = nphħω− Ip −Up , (2.2)

with nph the number of actually absorbed photons. Seeing this equation one might
be wondering why the effect of the Stark shift was not recognized faster since it should
also shift all peaks from the expected position at nphħω− Ip by Up . This shift, though,
was not observed in the early experiments due to the long pulses utilized in those days
[82, 85, 88]. The long pulse duration entailed that the electron could leave the laser
focus before the intensity had decreased significantly. Upon leaving the focus, the gra-
dient force gave the electron energy of the amount of the ponderomotive potential.
Thus, the energy loss from the shift of the ionization potential was compensated and
the peaks appeared at nphħω− Ip after all, leaving the suppression of the lowest order
peaks the only conspicuous feature hinting at the Stark shift. Only when the pulses
became shorter did the peaks in the ATI spectrum shift by Up .
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Figure 2.1: Illustration of the different ionization channels in the strong field regime.
Top left panel: Multiphoton regime, Top right panel: Tunneling regime, Bottom panel:
Intermediate nonadiabatic regime.

2.1.2 Multiphoton versus tunneling ionization

Multiphoton ionization, or the ‘vertical channel’, is not the only way an electron can
leave an atom or molecule. If the ponderomotive energy Up is much larger than the
ionization potential, the electron can tunnel through the barrier that is formed by the
superposed atomic or molecular potential and the laser electric field [83]. This so-
called ‘horizontal channel’ is depicted in the top right panel of Fig. 2.1. Even though
the tunneling process seems to be distinctly different from the multiphoton ioniza-
tion channel, the seminal work by Keldysh [89] from 1965 showed that these mech-
anisms are closely related, being the two limiting cases of nonlinear photoionization
[90]. To quantify which laser and atomic parameters lead to ionization in which of
these regimes, Keldysh introduced the following parameter

γ= ω
√

2Ip

E0
=

√
Ip

2Up
. (2.3)

For γ¿ 1, we are in the adiabatic limit with tunneling as the dominant ionization pro-
cess, whereas γÀ 1 marks the multiphoton regime, often referred to as the deep non-
adiabatic regime. This also makes sense intuitively, as with a higher laser frequency
ω, hence a larger γ, fewer photons are required to overcome the ionization energy Ip

and multiphoton ionization is more likely. Conversely, for more intense fields, corre-
sponding to a smaller γ, the barrier width, which can be approximated by Ip /E0 when
assuming a triangular barrier, is smaller and the tunneling probability increases expo-
nentially [91]. From Fig. 2.1 it also becomes clear that in tunnel ionization the time
and direction of the electron’s liberation strongly depends on the instantaneous elec-
tric field, whereas multiphoton ionization is commonly assumed to happen indepen-
dently of the phase of the laser field since the electron is released over the top of the
potential well [7, 91].
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In the intermediate regime of γ' 1 the two ionization processes co-exist, ‘ready to
lend each other a helping hand’ [33], with the electron absorbing energy while moving
under the barrier, thus experiencing a narrower barrier and escaping more easily [92].
A pictorial description of this process can be found in the bottom panel of Fig. 2.1.
While this intermediate regime is of particular interest as many strong field experi-
ments are conducted in it, it is less straight-forward to describe the ionization process
theoretically here. In the past decades, this has resulted in a vivid discussion about
the nature of nonadiabaticity, particularly about how it affects when and at which ve-
locity the electron appears in the continuum. Although these questions were not only
addressed by CTMC and QTMC simulations [93, 94], they are of particular relevance
for these Monte Carlo calculations since this type of simulation relies on an accurate
description of initial conditions. Chapter 3 of this thesis contributes to the nonadiaba-
ticity discussion in the framework of CTMC by showing why two seemingly contradic-
tory and yet widely-used nonadiabatic theories for initial conditions give equivalent
momentum distributions at the detector over a wide range of parameters and how, af-
ter all, there are parameters at which one can distinguish which theory describes the
situation at the tunnel exit more accurately. As this requires a more exhaustive de-
scription of the intermediate nonadiabatic regime, a more detailed introduction into
this field is deferred to the beginning of chapter 3.

For the sake of completeness, I want to close this section with a brief word of cau-
tion concerning the applicability of the Keldysh parameter. Even though an extremely
low frequency, ω→ 0, or a significantly high intensity, I →∞, would technically result
in a small γ, the above mentioned concepts break down in these limits, as expounded
in [95].

2.1.3 Atomic units

As some equations in the previous section were already written in a unit system differ-
ent from the canonical SI units, it is high time we introduced this system of ‘atomic
units’, short ‘a.u.’. It is built on the introduction of four independent quantities in
atomic units given in Table 2.1.

atomic unit of mass me ≈ 9.1×10−31 kg electron mass

atomic unit of electric charge e ≈ 1.6×10−19 C
absolute value of electron
charge

atomic unit of action ħ ≈ 1.05×10−34 Js reduced Planck’s constant

atomic unit of permittivity 4πε0 ≈ 1.1×10−10 F/m
inverse of Coulomb’s
constant

Table 2.1: Fundamental atomic units.

Using these units in the context of atomic and molecular systems has many advan-
tages, not least because they render the electronic Schrödinger equation dimension-
less [96]. Moreover, many key atomic properties have values of order unity in atomic
units. For example, in the classical Bohr model of the hydrogen atom in its ground
state (with infinite nuclear mass), the electron moves on a circle of a radius of 1 a.u.
with an orbital velocity of 1 a.u., the electric field strength due to the nucleus is 1 a.u.,
and the ionization energy amounts to 1/2 a.u. [97]. The conversion of these derived
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atomic units into SI units, along with further quantities that are frequently used in the
context of strong field phenomena, are listed in Table 2.2.

Unless explicitly stated otherwise, atomic units will be used throughout this thesis,
frequently omitting ‘a.u.’.

Length a0 = 1 a.u. ≈ 0.529×10−10 m
Velocity 1 a.u. ≈ 2.1877×106 m/s
Energy Eh = 1 a.u. ≈ 4.359744×10−18 J
Time 1 a.u. ≈ 2.4188×10−17 s
Electric field Eh/(ea0) = 1 a.u. ≈ 0.51422×1012 V/m
Intensity for peak electric field at 1 a.u. ≈ 3.51×1016 W/cm2

Table 2.2: A selection of derived atomic units that are frequently used in strong field
ionization physics.

2.1.4 Basic equations

Throughout this thesis, except for chapter 5 about spatially inhomogeneous fields, a
laser pulse that is linearly polarized in the x-direction and that is defined as follows will
be used:

E(t ) = E0 cos(ωt +φC EP )cos2
(
ωt

2N

)
x̂. (2.4)

As already mentioned, E0 and ω are the maximal field strength and central angular
frequency of the laser, respectively. φC EP denotes the carrier-envelope phase (CEP),
which determines the absolute phase shift of the primary oscillation (first cosine func-
tion in eq. (2.4)) under the envelope (cos2 function in eq. (2.4))) and which is of par-
ticular importance in short pulses. Unless stated otherwise, φC EP = 0 is chosen. The
length of the pulse is encoded in the number of optical cycles N . At various points,
when the context is deemed sufficiently clear concerning the single dimension of the
laser pulse, the vector notation of the electric field may be omitted.

Closely related to the electric field, there is the vector potential A(t ), the negative
time derivative of which is the electric field E(t ):

− ∂A

∂t
= E(t ). (2.5)

The importance of the vector potential lies in the fact that if the Coulomb potential is
neglected during the propagation step, the translation invariance leads, according to
Nöther’s theorem, to the conservation of the canonical momentum p

p = ∂L

∂ṙ
= mṙ+qA = v−A = const, (2.6)

where L is the classical Lagrangian and it was used that, as the moving particle is an
electron, the mass is 1 a.u. and the charge q = −1 a.u.. Since the vector potential can
be set to zero after the pulse has passed, we can use the following relation

v(t f ) = v(t0)−A(t0), (2.7)

where t0 and t f are the times at which the electron is born in the continuum and arrives
at the detector, respectively.
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So far, only the laser field has been described. When propagating the electron after
the ionization step, we also have to take into account the Coulomb potential of the
residual ion, though:

V (r) =− 1p
r 2 +SC

. (2.8)

The softcore parameter SC is introduced for mere numerical reasons so as to smooth
the singularity. It was chosen to be SC = 0.01 in the calculations presented in this the-
sis, unless stated otherwise.

In addition, one can also take account of the dipole of the ion in the laser field [6,
98]:

VD (r, t ) =−αI
E(t ) · r

r 3
. (2.9)

This term describes the dipole that is induced due to the asymmetry in the charge dis-
tribution of the residual ion in the laser field and is characterized by the polarizability
αI .

2.2 Approximations

In the following, the most common, if often tacit, assumptions of theoretical strong
field physics [99] are presented, which are also applied throughout this thesis with only
a few exceptions that will be noted explicitly when relevant.

1. Dipole Approximation:
The underlying assumptions of the dipole approximation are that the length
scales of the atom and the electron excursion are small compared to the wave-
length of the laser and that the velocity of the electron is considerably smaller
than the speed of light [100, 101]. As a consequence, the vector potential can
be approximated to be spatially homogeneous and it is merely left with a time-
dependence, A(t ), which was already applied in the definitions presented in the
previous section. The lack of spatial dependence also implies that the magnetic
field component of the laser field vanishes due to the relation B = ∇×A(t ) = 0
[101]. The dipole approximation will break down in chapter 5 when we will be
dealing with inhomogeneous electric fields close to a nanostructure.

2. Depletion is neglected:
If the laser field is particularly strong or the pulse exceptionally long, ionization
may become saturated with no atoms left to be ionized [102]. As the laser pa-
rameters used in this thesis should not lead to such depletion, this effect is com-
pletely neglected.

3. Electron does not leave the laser focus:
Even though this point can be considered a special case of the dipole approxi-
mation, for historical reasons it is mentioned separately here. In the early days
of strong field ionization physics, pulse durations exceeded some hundreds of
femtoseconds and as a consequence the electron could leave the laser focus and
effects due to the gradient force at the focus margins had to be taken into account
[99], as illustrated above by the example of ATI in section 2.1.1. However, nowa-
days pulses typically are much shorter and this effect can be neglected [103].
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4. Non-relativistic approximation:
The onset of relativistic effects is expected to be observed when 2Up gets into the
regime of the rest energy of the electron, 2Up /c2 w 1, and is actually one way to
violate the dipole approximation [95, 101]. However, even for the smallest wave-
length used in this thesis, which is 400 nm, one would have to exceed an inten-
sity of I = 1019 W/cm2 to get into this relativistic regime. As the largest intensities
used in this thesis will be in the order of I = 1015 W/cm2, we can safely neglect
relativistic effects.

5. Clamped-nuclei approximation:
The nucleus in atoms is assumed to be fixed, positioned at the origin of the co-
ordinate system, since its mass is more than a thousand times larger than that of
the electron. Analogously, also the nuclei in molecules are approximated to stay
fixed at equilibrium internuclear distance during and after ionization.

In some special cases, which will be marked as such, the Coulomb potential will be ne-
glected to attain analytical estimates, making use of the relations presented in section
2.1.4 that contain the velocity and vector potential.

2.3 Classical and Quantum Trajectory Monte Carlo
(CTMC/QTMC) simulations

2.3.1 The trajectory picture

Considering that the release of the electron via strong field ionization is a process that
flies in the face of classical mechanics, as we have seen at the beginning of this chap-
ter, one may expect semiclassical models to be of little help. There are a large number
and diversity of features that can be captured in a classical or semiclassical picture [43,
45–55], though, and in one way or another many of these theories draw on a concept
that is commonly referred to as the three-step model [39]. Actually, as far as this the-
sis is concerned, we only need the first two steps of this model, namely ionization and
propagation. An important feature of many semiclassical models is that the propaga-
tion step is performed in a classical framework. Even though one should have to deal
with the dynamics of a complicated wavefunction in the propagation step, ‘the central
object in time-dependent quantum mechanics – the wavepacket – behaves very much
like a classical trajectory. Its center, both in position and momentum, is often well de-
scribed by a guiding classical trajectory, while its spatial width is simply a manifestation
of the Heisenberg uncertainty principle. In other words, the correspondence principle
between classical and quantum mechanics is fully operative in time-dependent quan-
tum mechanics, often even at low energies, in contrast with the correspondence prin-
ciple in time-independent quantum mechanics which is valid only at high quantum
numbers’ (David Tannor in his book on time-dependent quantum mechanics [104]).
This quantum-classical correspondence, often expressed in Ehrenfest’s theorem [105],
can be applied in typical strong field systems to approximate the electron’s motion in
the continuum as long as the electron does not return too close to the parent ion and
recombination becomes relevant [106–108].

The following two sections are devoted to introducing the classical and quantum
trajectory methods employed in the framework of this thesis and basically follow the
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above-mentioned concept of separation into an ionization and propagation step: The
ionization step is described by a statistical ensemble of trajectories mimicking the
quantum mechanical ionization rates (section 2.3.2), and the propagation step is im-
plemented as a classical propagation of these trajectories solving Newton’s equation
of motion where quantum features can be added by dragging a phase along (section
2.3.3). Note that in this thesis the term ‘semiclassical’ will be used in reference to
both the classical trajectory Monte Carlo (CTMC) and quantum trajectory Monte Carlo
(QTMC) method as in both cases the initial conditions are to mimic the quantum me-
chanical nature of the ionization process. Other authors, however, prefer to reserve
the term ‘semiclassical’ for methods that include a quantum-mechanically motivated
phase during propagation, such as is the case in QTMC, and refer to methods that don’t
exhibit this feature, such as CTMC, as ‘classical’.

2.3.2 The initial conditions

The term ‘Monte Carlo’ in the classical and quantum trajectory Monte Carlo methods
stems from the statistical nature of the first step in these simulations: In the ioniza-
tion step, an ensemble of trajectories is used to sample the probability distribution of
ionization times and initial momenta, which then also determine the initial spatial co-
ordinates. This part of setting the initial conditions is crucial and, as the subsequent
propagation step is deterministic, defines the quality of the final momentum distribu-
tion. Here, we summarize the derivation of the most frequently used probability distri-
bution, often referred to as ADK (short for Ammosov, Delone, and Krainov, the authors
of [1]) or KFR (short for Keldysh [89], Faisal [109], and Reiss [110]), in the quasistatic
limit, basically following Ref. [33]. At the end of this section also the tunnel exit, the
initial condition in space, and the implementation of the sampling will be discussed.

2.3.2.1 The adiabatic ionization rate

As expounded in sections 2.1.1 and 2.1.2, the ionization step in the typical strong field
regime cannot be captured in a classical theory but requires a (non-relativistic) quan-
tum mechanical description. Therefore one obviously starts with the Schrödinger equa-
tion

i
∂

∂t
|Ψ(t )〉 = Ĥ(t ) |Ψ(t )〉 =

( 1

2
p̂2 +V (r)︸ ︷︷ ︸

Ĥ0

+r ·E(t )︸ ︷︷ ︸
V̂L

)
|Ψ(t )〉 , (2.10)

where V (r) denotes the Coulomb potential, Ĥ0 the field-free Hamiltonian and the term
V̂L describes the interaction with the laser in the length gauge. Even though the choice
of the gauge is not of physical relevance at this point, it will be so later on when the
gauge invariance is broken due to approximations [111, 112]. Even though

|Ψ(t )〉 =−i
∫t

0
dt ′

(
e−i

∫t
t ′ Ĥ(t ′′)dt ′′

)
V̂L

(
t ′

)(
e−i

∫t ′
0 Ĥ0(t ′′)dt ′′

)
|Ψi 〉+e−∫t

0 Ĥ0(t ′′)dt ′′ |Ψi 〉 ,

(2.11)
with the initial state |Ψ(t = 0)〉 = |Ψi 〉, is an exact solution of eq. (2.10), evaluating the
operators in the exponential function is not analytically tractable [33]. However, we
can assign physical meaning to the individual terms which will set the stage for intro-
ducing some powerful approximations. From time 0 to t ′ the electron is bound in the
atomic or molecular potential and is only affected by the field-free operator Ĥ0. Then,
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at t ′ the laser field V̂L induces the electron to transition to the continuum, where the
evolution then continues from time t ′ to the time t the system is evaluated at. Now,
the key approximation of the strong field approximation (SFA) is made by neglecting
the Coulomb potential after the electron’s transition to the continuum. This entails
that the continuum operator is the Volkov operator Ĥe = 1

2 p̂2 + r ·E(t ), which can be
expressed analytically using the instantaneous energy e(t ′′) = (v(t )−A(t )+A(t ′′))2/2,
thus obtaining

e−i
∫t

t ′ Ĥe (t ′′)dt ′′ |v′〉 = e−i
∫t

t ′ e(t ′′)dt ′′ |v〉⇔ 〈v|e−i
∫t

t ′ Ĥe (t ′′)dt ′′ = e−i
∫t

t ′ e(t ′′)dt ′′ 〈v′| (2.12)

for the continuum states |v〉 and |v′〉, which are plane waves of velocities v = v(t ) and
v′ = v(t ′). Using this result and v′ = v−A(t )+A(t ′) , the transition amplitude to a Volkov
state of velocity v is given by

〈v|Ψ〉 =Ψ(v, t ) =−i
∫t

0
dt ′e−i 1

2

∫t
t ′ dt ′′(v−A(t )+A(t ′′))2 〈v−A(t )+A(t ′)|V̂L(t ′)|Ψi 〉e i Ip t ′ .

(2.13)
The last term of eq. (2.11) does not appear here since we assume that there is
no initial population in the continuum [33]. Moreover, we can see that the term
〈v−A(t )+A(t ′)|V̂L(t ′)|Ψi 〉 only contributes as a non-exponential prefactor. For the
sake of analytical tractability we content ourselves with exponential accuracy and
therefore work with

Ψ(v, t ) ∝
∫t

0
dt ′e−i S(v,t ,t ′), (2.14)

where

S(v, t , t ′) =
∫t

t ′
dt ′′

(
1

2

(
v(t )−A(t )+A(t ′′)

)2
)
− Ip t ′. (2.15)

As the exponent in the integral of eq. (2.14) is highly oscillatory, cancellation effects
appear when evaluating this integral and the saddle point approximation can be used
to find those parts that contribute significantly to this integral. The saddle point ts with
respect to t ′ is found by solving the following equation:

∂S(v, t , t ′)
∂t ′

∣∣∣∣
ts

=−1

2
(v(t )−A(t )+A(ts))2 − Ip = 0 (2.16)

and Ψ(v, t ) is then calculated as e−i S(v,t ,ts ). In the following, eq. (2.16) is solved for a
continuous wave that is linearly polarized in x-direction, E(t ) = Ex(t ) = E0 cos(ωt ), with
a vector potential A(t ) =−E0/ωsin(ωt ):

1

2

(
vx(t )+ E0

ω
sin(ωt )− E0

ω
sin(ωts)

)2

+ 1

2

(
v2
⊥(t )+2Ip

)= 0, (2.17)

where v⊥ =
√

v2
y + v2

z . Since the saddle point is complex, we write ts = t0 + i ti and as

we are interested in the time when the electron appears in the continuum, which we
assume to coincide with the time becoming real-valued, we set t = t0. Note that this as-
sumption also forces the ionization process to be instantaneous (in real time), which is
a controversial feature of the ionization process that has led to heated debates of what
some call the ‘tunneling time’ [91, 92, 113–118]. Moreover, a common approximation
in this step is to set v = 0. Even though this is motivated by that velocity having the
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largest transition amplitude, one has to be careful in particular about setting the veloc-
ity component along the polarization axis to zero, as - contrary to the belief of many
[7, 33, 119] - any assumption about vx is strongly intertwined with the ionization time
spread one obtains. This insight is at the heart of the discussion of nonadiabatic ef-
fects in chapter 3 and will be explained in more detail there. For now, though, we are
interested in slowly varying fields, in the adiabatic limit, where the mentioned effect is
small and v = 0 is set also here. Thus being interested in the most probable trajectory,
one then also sets t0 = 0, meaning ionization is assumed to happen at the peak of the
field where the field is strongest and the barrier is most suppressed. Applying various
trigonometric relations, one can separate eq. (2.17) into a real and an imaginary part.
The imaginary part can be solved by setting either ti = 0 or t0 = 0, where the latter is
chosen due to its physical meaningfulness, as has just been discussed. From the real
part of the equation we then obtain

sinh(ωti ) = ω

E0

√
2Ip = γ. (2.18)

In the adiabatic limit, for small ω, one can approximate this to be ωti = γ [33] and
ti = γ/ω = √

2Ip /E0 coincides with the Keldysh tunneling time [91]. One possible in-
terpretation of this is that for the electron to appear in the continuum with vx = 0 at
t = 0, it has to start tunneling at ts = i ti =

√
2Ip /E0. Using vx(i ti ) = vx(ts) = vx(t )−

Ax(t )+ Ax(ts) in the saddle point equation (eq. (2.16)), one obtains

1

2
(vx(i ti ))2 =−Ip ⇒ vx(i ti ) = i

√
2Ip . (2.19)

This imaginary momentum is decelerated to 0 at t = 0 (vx(0) = 0) [91]. Assuming a
constant deceleration a this leads to vx(0)− vx(i ti ) =−i

√
2Ip ≈−ats =−a · i ti . Using

ti =
√

2Ip /E0, a = E0 solves this equation and thus E0 can be interpreted as the driving
force of the deceleration. Thus, we have vx(t ′′) = E0t ′′ and using vx(t ′′) = vx(t )−Ax(t )+
Ax(t ′′) in the action integral of eq. (2.15) results in

S(v = 0, t = 0, t ′ = ts = i ti ) =
∫0

i ti

(
1

2

(
E0t ′′

)2
)

dt ′′− i Ip ti =−1

2
E 2

0
1

3
(i ti )3 − i Ip ti

= i
1

2
E 2

0
1

3

(√
2Ip /E0

)3
− i Ip

√
2Ip /E0 =− i

3

(2Ip )3/2

E0
.

(2.20)

Consequently, the probability of ionization at the peak of the laser field with velocity
v = 0 is

P ∝|Ψ(v = 0, t = 0)|2 =
∣∣∣e−i S(v=0,t=0,t ′=ts )

∣∣∣2 = exp

(
−2(2Ip )3/2

3E0

)
. (2.21)

Strictly speaking, this equation does not include any time-dependence. After all, we
not only assumed a slowly varying, quasistatic field but also set t0 = 0. However, what
is commonly done to sneak in a time-dependence is to assume that the field changes so
slowly that the system adapts adiabatically to the new field strength and that therefore
one can replace E0 by the absolute value of the instantaneous field, |E(t )|, in order to
approximate the time-dependence of the ionization rate in the adiabatic limit γ¿ 1.

In a similar fashion, one can also obtain a transverse velocity distribution – despite
the fact that v⊥ was set to zero above. The way this is done is motivated by eq. (2.17),
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where the term Ip + v2
⊥/2 is found. Replacing Ip in eq. (2.21) by that term results in a

velocity distribution

P ∝ exp

(
−2(2Ip + v⊥)3/2

3E0

)
. (2.22)

This can be interpreted as v⊥ 6= 0 decreasing the ionization probability due to an in-
crease of the ionization potential to Ip + v2

⊥/2. Being bound more deeply, the electron
has to penetrate a broader tunneling barrier and tunneling is less likely. As the veloc-
ities v⊥ that contribute significantly to the ionization are therefore relatively small, a
common simplification is

(
2Ip + v2

⊥
)3/2 = (2Ip )3/2

(
1+ v2

⊥
2Ip

)3/2

≈ (2Ip )3/2

(
1+ 3

2

v2
⊥

2Ip

)
, (2.23)

where in the last step the assumption v2
⊥/(2Ip ) ¿ 1 was used. The velocity dependence

can therefore be written as a Gaussian function that is multiplied to eq. (2.21)

P ∝ exp

(
−2(2Ip )3/2

3E0

)
·exp

(
−

√
2Ip

E0
v2
⊥

)
. (2.24)

2.3.2.2 The tunnel exit

Ionization rates, as the ones that were derived in the preceding section, can be used as
probability distributions for the initial times and momenta. To actually launch those
trajectories we also need to know where to start them, though. For one particular
trajectory in the ensemble, the tunnel exit is determined by the fixed ionization time
and initial momentum. However, despite being deterministic in the mentioned sense,
there is a variety of theories that give different prescriptions for how to calculate the
initial spatial coordinate for a trajectory with given ionization time and initial momen-
tum. In the following, a brief overview of the most common of these tunnel exit theo-
ries is given.

• The triangular barrier:
By far the most simple ansatz to calculate the tunnel exit is to assume that the
barrier formed by the superposed laser and Coulomb field can be approximated
by a triangle, as illustrated by the red lines in the left panel of Fig. 2.2. This cor-
responds to only taking account of the laser field, in terms of the shape of the
potential, and reducing the effect of the Coulomb potential to putting the elec-
tron at the correct binding energy −Ip . More formally, this concept is described
by a constant electric field and a short-range potential [33]. The width of this
barrier is Ip /E(t0), with E(t0) the electric field at the time the electron is born in
the continuum and, taking into account the direction into which the potential
is bent, the tunnel coordinate is given by x = −Ip /E(t0). Note that the concept
of the triangular barrier is the same as the one underlying the Keldysh tunneling
time and, as there the assumption is a static field, this description works best in
the adiabatic limit.

• The TIPIS-exit:
TIPIS is an acronym for ‘tunnel ionization in parabolic coordinates with induced
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Figure 2.2: Left panel: Pictorial description of the tunnel exit in the triangular bar-
rier and in the field-direction model (FDM). Right panel: Comparison of the different
tunnel exit theories. A similar figure is found in [120], where also further details con-
cerning the various tunnel exit theories are discussed. In both panels neon is ionized
(Ip = 21.56 eV, αN = 2.67, αI = 1.33). The field strength in the left panel is E0 = 0.05
and the wavelength in the right panel is λ = 800 nm. The field strength at which the
FDM curve ends corresponds to the apex of the barrier coinciding with the energy of
the ionization potential so that beyond this field strength the FDM obviously does not
give physically meaningful results.

dipole and Stark shift’ [6]. As the name suggests, the dipole and Stark shift are
included in the description of the potential and parabolic coordinates are used to
separate the Schrödinger equation of the superposed laser and Coulombic field
[121], using the approximation that the electron does not tunnel out too close
to the ion (rtunnel > 5 a.u.). This reduces the problem to one dimension and
allows for an analytical description of the tunnel exit, which is usually given in
the following approximate form [122]:

rtunnel =
Ip (t0)+

√
I 2

p (t0)+4β2E(t0)

2E(t0)
with β2 = 1−

√
2Ip (t0)

2
(2.25)

with the Stark shifted ionization potential Ip (t0) = Ip,0 + 1
2 (αN −αI )E 2(t0), where

αN and αI denote the polarizability of the atom and ion, respectively, and Ip,0

is the ionization potential in the absence of any shifts [98, 122]. Note that the
underlying assumption is still a quasistatic field and TIPIS should therefore be
most valid in the adiabatic regime. Also, as eq. (2.25) only provides the tunnel
radius, one has to calculate the coordinates from it by taking the instantaneous
field direction into account.

• Nonadiabatic tunnel exits:
Even though different nonadiabatic theories arrive at different results concern-
ing the ionization time spread and the initial longitudinal momentum (see chap-
ter 3 for details), they usually agree on the tunnel exit

rtunnel =
∣∣∣∣∣∣ E0

ω2
cos(ωt0)

1−
√

1+ ω2(2Ip + v2
⊥)

E 2(t0)

∣∣∣∣∣∣ . (2.26)

Note that here linear polarization and a field of E0 cos(ωt ) were assumed. As this
rendering of the equation following the notation in [3] may appear unusual to
those familiar with what is usually referred to as the PPT (short for Perelomov,
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Figure 2.3: Illustration of the concept behind a reject-sampling algorithm for sam-
pling initial conditions: Events are sampled uniformly in the X -Y -space. All events
with Yi > P (Xi ) (red dots) are rejected, all events with Yi ≤ P (Xi ) (green dots) are ac-
cepted.

Popov and Terent’ev, the authors of [4, 5]) tunnel exit, the equivalence of these
tunnel exits is shown in Appendix A.1.

• Some lesser-known tunnel exit equations:
In order to demonstrate that the above list is not exhaustive, the mention of two
additional ways to calculate the tunnel radius seems appropriate. The first is the
field-direction model [48], in which the equation −1/x −|E(t0)|x =−Ip is solved,
yielding

rtunnel =
Ip +

√
−4|E(t0)|+ I 2

p

2|E(t0)| . (2.27)

Per definition and as can be seen in the left panel of Fig. 2.2, this tunnel coor-
dinate is found directly on the superposed laser and Coulomb potential, at the
intersection with the horizontal line through the ionization potential, −Ip . A re-
lated approach can be taken for molecular potentials, where the situation gets far
more complicated due to the mutual distortion of the Coulomb potentials at dif-
ferent atomic sites. Using the point where the Ip -line intersects the superposed
laser and Coulombic potential as the tunnel exit, similar to the way it is done in
the field direction model from above, can sometimes help take into account the
special geometry of the molecular potential better [123].

A visual comparison of the different tunnel radii according to the above-mentioned
theories is shown in Fig. 2.2. One can see how the nonadiabatic theory differs from the
three other, adiabatic approaches at small field strengths (corresponding to a larger γ)
and converges to the triangular exit in the adiabatic limit of strong fields.

Even though the discrepancies seem minor, one has to bear in mind that directly at
the tunnel exit the Coulomb potential is largest. Therefore, many strong field ioniza-
tion features are highly sensitive to the choice of the tunnel exit [115, 120, 124, 125].

2.3.2.3 Implementation of the sampling process

The creation of initial conditions is done in two steps: First, the ionization time t0

and the initial momentum v0, which in the following are summarized in the variable
X = [t0, v0,x , v0,y , v0,z], are sampled according to a chosen probability distribution P (X),
e.g. the adiabatic rate given in eq. (2.22). Then, in the second step, the tunnel exit is
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calculated individually for each trajectory in the resulting ensemble {X1,X2, ...XN }, i.e.
for all Xi with i ∈ {1, ..,N }.

In principle, there are two ways to deal with the fact that the trajectories are
weighted according to the probability distribution P (X): One can sample trajectories
such that in each dimension of X the values are sampled according to a uniform dis-
tribution and the corresponding weights P (X) are stored during the propagation pro-
cess until the trajectories are evaluated at the detector, with their weights taken into
account only then. Alternatively, one can create the initial conditions such that the
ensemble of trajectories exhibits a distribution of initial conditions that fulfills P (X).

The way of uniform sampling turns out to be problematic because the probability
distribution we are dealing with usually peaks rather sharply around the field maxima
due to the exponential dependence on the field strength. Therefore, most trajectories
of the uniform distribution carry a small weight. As the computational cost of propa-
gating such a trajectory with negligible weight is about the same as for any other tra-
jectory, this approach is computationally expensive and becomes a real problem when
we include the phase using the QTMC method and need more trajectories to resolve
the interference pattern.

Conversely, sampling the trajectories such that the distribution of their initial con-
ditions already follows P (X), where then each trajectory has equal weight after the sam-
pling, is computationally less demanding since then only a few trajectories whose ini-
tial conditions correspond to a negligibly small P (X) have to be propagated [60].

As built-in pseudo-random number generators of most programming languages
only provide uniform or Gaussian distributions, some extra work has to be done to
sample initial conditions according to P (X) in this second way, though. Here, two op-
tions to solve this problem are shown, where the first one was used only for the adia-
batic results presented in chapter 4.2 and the second version was used in the remaining
parts of this thesis:

1. Sampling with Gaussian functions and correcting the weight:
As can be seen from eq. (2.24), the momenta perpendicular to the instantaneous
polarization approximately follow a Gaussian distribution in the adiabatic limit.
Even though it is less obvious, also the time spread can be approximated by
a Gaussian function. To see this feature analytically, one has to replace E0 by
E0 cos(ωt0) := E0 cos(φ) in the first exponential term of eq. (2.24) and expand the
exponent into a Taylor series in φ around 0 up to second order [71, 90]:

1

E(φ)
= 1

E0 ·cos(φ)
≈ 1

E0

(
1+ 1

2
φ2 +O

(
φ4))

⇒ P (φ) ≈ exp

(
− φ2

2σ2
φ

)
with σφ =

p
3 ·E0

25/4 · I 3/4
p

.
(2.28)

Since implementations of Gaussian distributed random numbers are readily
available, sampling this distribution can be realized in almost as simple a way
as sampling a uniform distribution. This distribution can then either be used
as an approximation, e.g. for quick calculations that aim at merely estimating
effects, or the weight of each trajectory can be corrected in the final evaluation
of the trajectories ‘at the detector’ according to the full eq. (2.22) or any other
probability distribution [106].
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2. Reject-sampling algorithm:
Another way to sample non-Gaussian probability distributions is a reject-sam-
pling algorithm. To that end, the maximum of the probability distribution P (X) is
normalized to 1 and N uniformly distributed random numbers Yi (i = {1, ...,N })
are generated in the interval [0,1]. Also, in each dimension of X, N uniformly
distributed random numbers are generated. Then, for each of the N resulting
tuples the condition

Yi < P (Xi ) (i = 1, ...,N ) (2.29)

is evaluated and if found ‘true’, the set of initial conditions Xi is accepted as a
trajectory, otherwise it is rejected and discarded. The concept of this reject-
sampling process is illustrated in Fig. 2.3 for a hypothetical one-dimensional dis-
tribution. In the limit of large N , the ensemble of trajectories that were accepted
in that process will have initial conditions X distributed according to P (X). In
practice, about 105-106 trajectories suffice to converge a CTMC calculation and
about 108 trajectories are required in QTMC simulations. Even though the above-
mentioned problem of the ionization time distribution peaking sharply around
the field extrema also affects the efficiency of the reject-sampling mechanism ad-
versely as it results in most trajectories being rejected, the numerical advantage
over sampling uniformly and doing book-counting of the weights after propaga-
tion lies in the fact that only the evaluation of eq. (2.29) and not a full numerical
propagation has to be done on those ‘non-contributing’ trajectories.

2.3.3 Propagation

2.3.3.1 Propagation in CTMC simulations

After the trajectories are sampled, they are propagated solving Newton’s equation of
motion in the superposed laser and atomic field,

r̈ =−E(t )−∇ (V (r)+VD (r)) =−E(t )−∇
(

−1√
r 2(t )+SC

−αI
E(t ) · r(t )

r 3(t )

)
, (2.30)

where the last term in the gradient describes the induced dipole of the residual ion in
the laser field, which is characterized by the polarizability αI [58, 124]. The softcore pa-
rameter SC is chosen to be 0.1 and its purpose lies in softening the Coulomb singular-
ity so as to avoid numerical complications. Note that here, in contrast to the situation
when solving the TDSE numerically [126, 127], the choice of the softcore parameter has
nothing to do with the ionization potential. Moreover, it is found that variation of the
softcore parameter does not significantly influence the CTMC result [106]. Therefore,
the choice of the exact value of SC is not relevant here.

The time integration of eq. (2.30) is done numerically using matlab’s ode45 func-
tion [128, 129]. This adaptive time-step explicit Runge-Kutta scheme is of fourth order
in calculation and of 5th order in error estimate. Each electron is propagated being
oblivious of the existence of the other trajectories. This single-active electron approach
makes the propagation processes of the individual trajectories independent of each
other, thus allowing for parallelized computation [60].

The numerical propagation is done till the end of the pulse. As the electron is ex-
posed to the long-range Coulomb potential even after the pulse is over, the propaga-
tion needs to continue, though. However, with the Coulomb potential exerting the
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Figure 2.4: Results of CTMC simulations with helium ionized by an 8-cycle laser pulse
with a central wavelength of λ = 800 nm and an intensity of I = 2 ·1014 W/cm2. Left
panel: 2D momentum distribution with Rydberg states filtered out and asymptotic
propagation performed as described in the text. The yield is given in arbitrary units
on a logarithmic scale in the colorbar. Right panel: Longitudinal momentum distri-
bution for various ways of propagating the electrons. In the case where no Coulomb
potential was included, no Rydberg states were filtered out and no asymptotic propa-
gation was performed as these steps are only physically meaningful with a Coulomb
potential included in the calculation.

only remaining force this can be done analytically. The classical mechanics of the hy-
perbolic motion uniquely determines the asymptotic momentum to be

pa = pa
pa(L×a)−a

1+p2
aL2

(2.31)

with L = r×p and a = p×L− r/r the conserved angular momentum and Runge-Lenz
vector, respectively [124]. The momentum p and position r at the end of the pulse
determine the absolute value, pa , of the asymptotic momentum

p2
a

2
= p2

2
− 1

r
. (2.32)

Obviously, these equations for the asymptotic propagation only lead to physically
meaningful results if the right-hand side of eq. (2.32) is positive, corresponding to a to-
tal energy that is positive at the end of the pulse. The fate of electrons with a negative
total energy, in contrast, is not to end up at the detector but to stay bound. More de-
tails on these Rydberg states can be found in chapter 4. For now, suffice it to say that
Rydberg electrons need to be filtered out when one is interested in the momentum dis-
tribution at the detector. As Rydberg electrons are naturally related to small momenta
p at the end of the pulse, this filtering leaves a characteristic dip in the momentum
distribution close to zero when looked at directly after the pulse has passed [49]. The
Coulomb potential that is taken account of in the asymptotic propagation leads to a
partial ‘mending’ of this ‘hole’, as can be seen by the exemplary calculation show in
Fig. 2.4.

All of the above procedures for the ionization and propagation of trajectories is
valid for atoms. The description of molecular processes requires modifications of the
presented concepts and equations, which will be dealt with in chapter 6.

2.3.3.2 Propagation in QTMC simulations

So far, the propagation step was completely classical and only the sampling step in-
cluded quantum mechanical information encoded in the ionization rates that are used
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as probability distributions of the initial conditions. However, using the concept of
Feynman’s quantum paths one can assign a phase to each trajectory that then changes
during propagation [62]. Taking this phase into account when evaluating the trajecto-
ries at the detector has shown to reproduce quantum mechanical interference features
[60, 62, 63, 65, 130–135].

The way the phase is introduced is based on the Feynman path integral formalism
under the assumption of the classical action being asymptotically large compared to
the quantum action ħ, which allows to evaluate the corresponding integrals in the sad-
dle point approximation [60]. In that classical limit, the probability transition ampli-
tude between two points in space-time, (r0,t0) and (r f ,t f ), corresponding to the tunnel
exit and the detector, respectively, can be written as [62]

〈r f |Usc |r0〉 =Ce i Scl (r0,r f ), (2.33)

where USC is the semiclassical propagator and C denotes a prefactor that is of sec-
ondary importance since our primary interest is in the phase [60]. This phase is deter-
mined by the classical action

Scl (r0,r f ) =
∫t f

t0

L dt =
∫t f

t0

(
pṙ−H(r,p)

)
dt (2.34)

with L denoting the Lagrangian and H being the classical Hamiltonian which, in length
gauge, reads

H(r,p) = p2

2
+E(r) · r− Z

r
. (2.35)

At the detector, we are interested in the final momentum rather than in the final po-
sition1 and, therefore, we need 〈p f |Usc |r0〉 rather than 〈r f |Usc |r0〉. Inserting a unity
operator, 〈p f |Usc |r0〉 =

∫
dr f 〈p f |r f 〉〈r f |Usc |r0〉, and using the momentum space rep-

resentation of the position eigenstate2, 〈p|r〉∝ e−i pr, we obtain

〈p f |Usc |r0〉∝ e i Scl (r0,r f )e−i p f r f . (2.36)

Equivalently, the new phase reads

φ′ = Scl (r0,r f )−p f r f =
∫t f

t0

(
pṙ−H(r,p)

)
dt −p f r f

=
∫t f

t0

(−ṗr−H(r,p)
)

dt +pr
∣∣∣t f

t0
−p f r f

=
∫t f

t0

(−ṗr−H(r,p)
)

dt −p0r0,

(2.37)

where in the last but one step integration by parts was employed:∫t f

t0

pṙdt = pr
∣∣∣t f

t0
−

∫t f

t0

ṗrdt . (2.38)

1More formally, one may argue that a full scattering process is characterized by p0 for t →−∞ and
p f for t → ∞, which would be described by 〈p f |Usc |p0〉. Analogously, the ‘half-scattering process’ of
ionization is described by 〈p f |Usc |r0〉 [60].

2The equation to obtain the eigenstates of the position operator is x̂ |x〉 = x |x〉. The equation for
the corresponding eigenfunction in momentum space consequently reads iħ ∂

∂p 〈p|x〉 = x 〈p|x〉, where

iħ ∂
∂p is the representation of the position operator in momentum space. The solution of this equation

is 〈p|x〉 = a ·e−i px/ħ with a constant a.
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Now, one can use

ṗr =−Er− Z

r
, (2.39)

which equals Newton’s equations of motion when derived with respect to the spatial
coordinates (ṗ =−E−∇Z /r ). Adding p2/2−Z /r to both sides of eq. (2.39) and applying
eq. (2.35) yields

ṗr+H(r,p) = p2

2
− 2Z

r
. (2.40)

Using this relation in eq. (2.37) gives

φ′ =−
∫t f

t0

(
p2

2
− 2Z

r

)
dt −p0r0. (2.41)

Including also the initial phase from the time evolution of the ground state, exp(i Ip t0),
we obtain the semiclassical phase [60]

φ=−
∫t f

t0

(
p2

2
− 2Z

r

)
dt −p0r0 + Ip t0, (2.42)

which, for a more general potential V (r), reads

φ=−
∫t f

t0

(
p2

2
+V (r)− r ·∇V (r)

)
dt −p0r0 + Ip t0. (2.43)

Each trajectory is assigned such a semiclassical phase. The evaluation at the detector
is then performed by binning the space of final momenta and summing up the trajec-
tories coherently in each bin:

RQT MC (p) =
∣∣∣∣∣∑

j

√
w j exp(iφ(t0, j ,v0, j ))

∣∣∣∣∣
2

. (2.44)

Note that the weight of each bin in CTMC, in contrast, is obtained by an incoherent
sum

RC T MC (p) =∑
j

w j . (2.45)

In practice, the fact that w j appears under a square root in eq. (2.44) is best accounted
for by directly sampling

p
w rather than w [60]. With the trajectories distributed that

way the weight of each bin is calculated as

RQT MC (p) =
∣∣∣∣∣∑

j
exp(iφ(t0, j ,v0, j ))

∣∣∣∣∣
2

. (2.46)

Note, though, that sampling
p

w instead of w is just one option to implement the
QTMC method. It seems also worth emphasizing that including the phase as it was
derived above does not change the probability distribution w , but w is still the same
probability distribution as the one used in CTMC simulations, in the most simple case
given by the ADK rate presented in eq. (2.24).

After this lengthy derivation, let us step back and think about how CTMC and QTMC
fit into the bigger picture. As we have seen, most clearly probably in the derivation
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of the adiabatic ionization rate in section 2.3.2.1, CTMC and QTMC use the quantum
mechanical information encoded in the transition amplitudes of the SFA to sample the
initial conditions at the tunnel exit. At this point, the transition to trajectories comes at
the expense of losing the quantum information of the propagation process, albeit ad-
vantageous in that it allows us to fully include the Coulomb force of the residual ion, as
well as other effects such as forces due to the induced dipole or electron-electron cor-
relation. However, including the semiclassical phase, thus making the CTMC a QTMC,
some quantum information interference can be captured after all. Even though QTMC
does not capture all features encoded in the full TDSE, the basic features in the interfer-
ence pattern of the momentum distribution are reproduced in QTMC and have helped
understand experimental results and TDSE outcomes better [60, 62, 63, 65, 130–135].
Of course, not all effects need the inclusion of the phase - e.g. the effects that will be
presented in chapters 3, 4, and 5 can be explained in the framework of CTMC simu-
lations. However, when comparing to experimental data in which interference effects
play a prominent role, as will be the case in chapter 6, including the phase becomes
important.





CHAPTER

3
Revisiting nonadiabatic effects on
initial conditions

“How wonderful that we have met with a paradox. Now we have some hope
of making progress."

— Niels Bohr

Overview of this chapter

The long-standing question of how nonadiabaticity manifests itself in strong field
ionization has brought up two seemingly contradictory effects. Firstly, that non-
adiabaticity leads to a strong broadening in the spread of ionization times, which
is obtained in a theory that assumes a vanishing initial longitudinal momentum
[7]. And secondly, non-zero longitudinal momenta at the tunnel exit are predicted
in a nonadiabatic theory which yields a narrower time spread [3].
In this chapter, it is shown that these findings about the ionization time spread
and the initial longitudinal momentum are not independent of each other but that
assumptions about the initial longitudinal momentum strongly influence the ion-
ization time distribution. Moreover, it will be found that the broader time spread
in one theory and the non-zero initial longitudinal momentum in the other theory
compensate each other during propagation leading to about the same longitudi-
nal momentum distribution at the detector to a good approximation for typically
studied nonadiabatic parameters. Thus, it is explained why both theories were so
successful so far in explaining nonadiabatic experiments despite their fundamen-
tally different predictions of initial conditions.
However, parameters in the nonadiabatic but still experimentally relevant regime
will be found where this approximation breaks down and the two different theories
lead to distinguishably different momentum distributions at the detector after all.
Comparison with numerical solutions of the time-dependent Schrödinger equa-
tion provides evidence for the theory with a non-zero initial longitudinal momen-
tum and narrow time spread to be the more accurate one.

3.1 Introduction to nonadiabatic theories

Before we dive into the intricacies of the different nonadiabatic effects described in the
overview above, we should acquaint ourselves with the basics of nonadiabatic theories.
As we have seen in chapter 2, the initial conditions are vital for the success of CTMC
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Figure 3.1: Normalized ionization probabilities P as a function of (a) the ionization
times t0, (b) the velocity along a direction transverse to the polarization axis, and (c)
parallel to it. In all cases helium is ionized at an intensity of I = 5 ·1013 W/cm2 and a
wavelength of λ = 800 nm with the time dependence of the field being a plain cosine
function (E0 cos(ωt )). The different theories used are specified in the legend, with YI
referring to the work of Yudin and Ivanov [7], Li using [3], PPT being described in [4, 5,
136], and the label ‘adiabatic’ uses the theory introduced in section 2.3.2.1. In (a) and
(c), the initial transverse momentum was set to zero and in (b) ionization at the peak
of the field (t0 = 0) was assumed. Note that the distribution of the initial longitudinal
momentum in (c) was obtained by calculating PLi (t0(vx,0)), where eq. (3.6) determines
the relation between t0 and vx,0. Also, the reason for not including velocity spreads
for the theory of YI in these plots is the fact that this theory does not give any such
distribution since it focuses solely on the time dependence of the ionization rate.

and QTMC simulations and it was shown how the ionization rate can be used as the
probability distribution describing these initial conditions. However, the derivation of
the ionization rate in section 2.3.2.1 assumed a static field and the time-dependence
was snuck into the equations by replacing the static field E0 by the time-dependent
field E(t ), the underlying assumption being that the potential changes so slowly that
the system adapts adiabatically to the changing field. This approximation is fully valid
only in the adiabatic limit of γ ¿ 1, though, and most strong field experiments are
performed at a wavelength of λ = 800 nm and an intensity of I = 1013 −1015 W/cm2.
When a typical target like helium (Ip = 0.9) is ionized under these conditions, this cor-
responds to a Keldysh parameter of γ= 0.45−4.5 and we are not in the adiabatic limit
anymore but in the intermediate nonadiabatic regime.

Different theories have tried to take into account that the system does not adapt
adiabatically because, loosely speaking, the barrier is moving while the electron is tun-
neling out. The first theory to tackle this nonadiabaticity problem was developed by
Perelomov, Popov, and Terent’ev (PPT) [4, 5] in 1966. They solved the Schrödinger
equation for an atomic potential described as V (x) = √

2Ipδ(x), which allowed them
to use a Green’s function ansatz. From the resulting wavefunction they calculated the
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current density. The integrals therein were evaluated by applying the method of steep-
est descent (also known as saddle point approximation) and it was averaged over one
laser cycle, thus obtaining an analytical expression for the corresponding ionization
rate [106]. Applying the short-range potential has the added benefit of being able to
apply the SFA and neglect the Coulomb potential during propagation. Therefore, this
theory gives the ionization rate in terms of the photoelectron momenta p after the laser
pulse has passed, i.e. ‘at the detector’. In exponential accuracy, it reads1

PPPT (p,γ) = exp

(
−2Ip

ω
h(γ)− 1

ω

(
p2

x

(
arcsinh(γ)− γ√

1+γ2

)
+ (p2

y +p2
z)arcsinh(γ)

))
(3.1)

with

h(γ) =
(
1+ 1

2γ2

)
arcsinh(γ)−

√
1+γ2

2γ
. (3.2)

After this theory had not been noticed much for about 30 years, the advent of stronger
and shorter laser pulses, the subsequent discovery of HHG from atoms along with the
explanation in the simple-man model and the establishment of CTMC simulations
have sparked new interest in this work and nonadiabatic descriptions in general. In
particular, improvements in the direction of a subcycle description have been attained,
i.e. not averaging the ionization rate over the laser cycle, most notably by Yudin and
Ivanov who derived a subcycle-resolved nonadiabatic ionization rate [7] that has been
widely applied in the past two decades [67, 137–145]. Starting with eq. (2.14) and using
the idea of evaluating the integrals via a saddle point approximation, i.e. by applying
eq. (2.16), the basic concept of this theory is the same as the one presented in section
2.3.2.1 for deriving the adiabatic ionization rate. Setting both the transverse and longi-
tudinal momentum to zero, justified by the fact that these are the most likely momenta
in linearly polarized light, but not setting the ionization time to zero in contrast to the
way the adiabatic theory was derived, Yudin and Ivanov arrive at the following time-
dependent ionization rate with subcycle resolution

PY I (t0,γ) = exp

(
−E 2

0 f 2(t0)

ω3
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)
(3.3)
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(3.4)

where in θ(t0) = ωt0 +kπ the integer k has to be chosen such that θ(t0) ∈ [−π/2,π,2],
and γ(t0) = γ/ f (t0) includes effects due to the envelope f . The most important fea-
ture of this time-dependent ionization rate is that it states that nonadiabaticity man-
ifests itself in a strong broadening of the ionization time spread. This can be seen in

1Note that Mur et al. rewrote the original PPT results presenting them in a more accessible way in
[136].
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Fig. 3.1 (a), which shows that the time distribution according to eq. (3.3) (dotted orange
line) is considerably broader than the distribution of the adiabatic ionization theory
(dash-dotted red line).

More recently, a nonadiabatic theory was published by Li et al. [3] which gives a
non-negligible longitudinal momentum at the tunnel exit. Just like in the derivation of
the adiabatic ionization rate in section 2.3.2.1 and just like it was done by Yudin and
Ivanov, this derivation builds again on eq. (2.14) and draws on the concept of eval-
uating the integrals via a saddle point approximation, i.e. applying eq. (2.16). Here,
however, no assumption about the initial longitudinal or transverse velocity is made,
which results in the following ionization rate

PLi (t0, v⊥,0) = ω2(2Ip )5/2

2E 4
0γ

2(t0, v⊥,0)
(
γ2(t0, v⊥,0)+cos2(ωt0)

)
cos2(ωt0)

×exp

(
− E 2

0

ω3

{(
sin2(ωt0)+γ2(t0, v⊥,0)+ 1

2

)
arcsinh(γ(t0, v⊥,0))

− 1

2
γ(t0, v⊥,0)

√
1+γ2(t0, v⊥,0)(1+2sin2(ωt0))

})
,

(3.5)

where γ(t0, v⊥,0) = ω
√

2Ip + v2
⊥,0/|E(t0)| with v⊥,0 denoting the initial transverse ve-

locity and where the electric field is assumed to be E(t ) = E0 cos(ωt ). Thus, envelope
effects are not inherently included and can only be accounted for in an approximate
fashion replacing E0 by E0 f (t ), analogously to the way it was done in the formulation of
Yudin and Ivanov. Therefore, one has to bear in mind that this ionization rate is most
accurate for long pulses and that deviations due to the approximate manner of ac-
counting for envelope effects may appear for short pulses. Looking at the time spread
of eq. (3.5) displayed in Fig. 3.1 (a) we can see that this ionization rate does not exhibit
the strong nonadiabatic broadening predicted by Yudin and Ivanov but has about the
same width as the adiabatic curve. Moreover, not having set the initial longitudinal
momentum to zero, this theory arrives at the following expression for this quantity

v||(t0, v⊥,0) = E0

ω
sin(ωt0)


√√√√1+

ω2(v2
⊥,0 +2Ip )

E 2
0 cos2(ωt0)

−1

 . (3.6)

Comparing panels (b) and (c) of Fig. 3.1 makes clear that in the intermediate nonadi-
abatic regime the initial longitudinal momentum spread2 of Li et al. has a width com-
parable to that of the initial transverse spread and is thus fundamentally different from
the initial longitudinal ‘spread’ of Yudin and Ivanov, which is a δ function at zero.

These findings of Yudin and Ivanov on the one hand and of Li et al. on the other
hand, and the fact that these results seem to contradict each other will be at the core

2Note that even though an ensemble of trajectories sampled in the framework of this theory exhibits
a distribution of initial longitudinal momenta, for fixed values of the ionization time and initial trans-
verse velocity the longitudinal momentum is deterministic. Therefore, the way a spread of initial lon-
gitudinal momenta is obtained is not by sampling e.g. the distribution displayed in Fig. 3.1 (c). Rather,
a distribution of ionization times and initial transverse velocities is obtained by sampling PLi (t0, v⊥,0)
(eq. (3.5)) and then each trajectory with initial condition (t0, v⊥,0) is assigned an initial longitudinal mo-
mentum according to eq. (3.6). Thus, the non-zero initial longitudinal momentum obtained here is con-
ceptually different from the artificially assumed spreads of this quantity that were introduced to match
experimental results in many a nonadiabatic theory [58, 59, 146–151].
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of the rest of this chapter. First, though, let us try to gain a more complete picture of
nonadiabatic theories by also looking at the transverse momentum at the tunnel exit.
From Fig. 3.1 (b) it can be seen that the transverse distribution is broader in the nonadi-
abatic cases (PPT and Li) than in the adiabatic limit. Moreover, this figure reveals that
even though the various nonadiabatic theories seem to disagree in terms of the initial
longitudinal momentum and the ionization time spread, the situation is much clearer
for the distribution of the transverse momenta, for which most common nonadiabatic
theories give identical results. Consequently, there is not much need for discussions
along these lines and therefore the initial transverse distribution will take a backseat in
this chapter.

Another quantity that is modified when taking nonadiabatic effects into account is
the tunnel exit, the initial spatial coordinate. As we have already seen in the right panel
of Fig. 2.2, the electron is born closer to the nucleus in nonadiabatic theories. This
effect can be understood by the pictorial description of the tunneling process in the
bottom panel of Fig. 2.1, where the energy gain under the barrier effectively reduces the
barrier width. Even though it may not be directly obvious due to different notations,
the tunnel exit derived in PPT [4, 5] on the one hand, which is commonly used when the
time-dependence of Yudin and Ivanov is applied, and by Li et. al on the other hand, are
identical, as is shown in Appendix A.1. Therefore, the subject of nonadiabatic tunnel
exits will not be addressed further here.

Note that all of the above-mentioned results are valid for linearly polarized light.
In elliptically polarized light further nonadiabatic effects are observed, for a more de-
tailed discussion of which the reader is referred to e.g. [58, 61, 136, 152, 153]. Here,
only one of the most prominent effects shall be mentioned, which is the shift of the
most likely initial transverse momentum. In the adiabatic limit, the initial transverse
momentum is centered around zero. Taking into account nonadiabatic effects in el-
liptically polarized light, however, the most probable initial transverse momentum is
shifted in the direction perpendicular to the electric field at the peak and inside the
plane of polarization, in the rotation direction of the field [154].

3.2 Description of the problem addressed in this chapter

As already indicated above, the predictions for the initial longitudinal momentum and
the ionization time spread as obtained by Yudin and Ivanov [7] and Li et al. [3], which
we will from now on frequently abbreviate as ‘YI’ and ‘Li’, respectively, are fundamen-
tally different. While YI sets the initial longitudinal momentum to zero due to its sup-
posed negligibility and obtains a strong broadening in the spread of ionization times,
Li derives a theory in which the initial longitudinal momentum is not negligible at all
and the ionization time spread is considerably more narrow.

These theories, of course, are not the only ones aiming at describing nonadiabatic
effects in strong field ionization. In this chapter, though, both YI and Li will serve as the
respective poster child of the works that claim or make use of a vanishing initial longi-
tudinal momentum and/or a broad time spread on the one hand, or make the case for
a non-zero initial longitudinal momentum distribution on the other hand. To briefly
illustrate that YI and Li are only the tip of the iceberg, let us briefly take stock of non-
adiabatic results and their applications: Even though there are not many who claim to
have found evidence for the longitudinal momentum to be zero at the tunnel exit [56],
a lot of theories claim that despite a non-zero initial longitudinal momentum being
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physically possible in principle, it can be set to zero if one is interested only in expo-
nential accuracy even in the nonadiabatic regime [7, 33]. And many a theory [94, 116,
143] and theoretical explanation [67, 137–145] was built on this assumption. Others, in
contrast, find evidence for and emphasize the non-negligible effect of not setting the
initial longitudinal momentum to zero [3, 58–61, 93, 146–151, 155, 156], some of which
[58, 59, 146–151] were criticized for introducing a longitudinal momentum spread at
the tunnel exit in a way that made calculations match experimental results but with-
out further physical justification [93, 119]. To add to the confusion, both YI and Li
succeed in explaining many experiments in the nonadiabatic regime [61, 67, 130, 137–
141] despite their strongly different initial conditions.

A vigilant reader may now ask if these issues might be resolved by the fact that the
longitudinal momentum at the detector depends not only on the longitudinal momen-
tum at the tunnel exit but also on the time-spread, as e.g. expressed in eq. (2.7). Thus,
this apt remark may continue, could not the larger time spread in YI compensate for
the lack of initial longitudinal momentum spread? The answer will be yes and no. Yes,
in the sense that in this chapter it will be shown that indeed the theories of YI and Li are
coupled in a way that predicts similar longitudinal momentum distributions at the de-
tector to an approximation that is applicable to parameters under which many typical
nonadiabatic strong field experiments are performed. And ‘No’ in that we will see that
this approximation breaks down for parameters that are not even exotic but should be
experimentally feasible and relevant.

Those who skipped the ‘No’ part of the preceding section or who are generally wary
of theorists warning against approximations breaking down in some seemingly arcane
regime may wonder why one should care to find out which theory is more accurate if
both lead to the same final result to a good approximation anyway. Besides the ob-
vious reason that answering this question sheds light on the nature of the tunneling
process (an argument which may not convince the pragmatic type of reader just de-
scribed), this question is also crucial for any experiment and theory where the highest
accuracy to describe the initial conditions at the tunnel exit is required, as it is e.g. the
case in attoclock experiments and their interpretation [92, 113–116, 118]. One theoret-
ical method where the answer to the question about the initial conditions after tunnel
ionization is of very obvious relevance is the recently proposed method of backpropa-
gation [116], which interprets the attoclock. There, electrons are propagated forwards
till the end of the pulse first by solving the TDSE numerically and are backpropagated
to the tunneling event classically afterward. The crucial question, though, is when to
stop the backpropagation [94], and using the condition of the trajectory having strictly
zero longitudinal velocity to reconstruct the instance of the electron’s birth in the con-
tinuum was employed but is still under discussion [157]. Moreover, even though the
final longitudinal momentum spread is found to be comparable for initial conditions
from YI and Li for a wide range of typical nonadiabatic parameters, other strong field
observables, such as HHG spectra or Rydberg state characteristics, may be more sen-
sitive to the described difference in initial conditions.

After this motivation, we now tackle the problem of the exact form of the spread of
the ionization time and of the longitudinal momentum at the tunnel exit.
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3.3 Relation between the nonadiabatic theories of
Yudin/Ivanov and Li

Both the theory presented in YI and Li invoke the saddle point equation

∂S

∂ts
= 1

2
(p+A(ts))2 =−Ip (3.7)

with the complex-valued saddle point ts , the vector potential A, and the canonical mo-
mentum p, where the latter is assumed to be conserved in the tunneling process and
is evaluated at the time t0 = Re{ts} at which the electron appears in the continuum
with initial velocity v0, p = v0 −A(t0). We will restrict our study to linearly polarized
light with the direction of polarization along the x-axis, as described in eq. (2.4). Up
to here, things follow the derivation of the adiabatic ionization rates in section 2.3.2.1.
The main difference in the nonadiabatic derivation is that the the time-dependence of
the carrier oscillation, E0 cos(ωt ), is used throughout3, instead of resorting to the ap-
proximation of a static field E0. Despite the basic approach being the same for YI and
Li, the derivations diverge at the point where assumptions are made about the initial
momenta.

In YI it is claimed that one can set both v⊥,0 and v||,0, the initial transverse and lon-
gitudinal momentum, to zero if one is interested only in exponential accuracy of the
time-dependent ionization rate. The resulting ionization rate exhibits the typical non-
adiabatic broadening that has already been shown in Fig. 3.1 (a) and seems to be widely
accepted as one of the central nonadiabatic features [158, 159]. As already pointed out,
the ionization distribution derived by Li et al. [3] also starts with eq. (3.7). Contrary
to YI, though, the real and imaginary part of the resulting saddle point equations are
then solved making no further assumptions regarding v||,0 or v⊥,0. Thus, an ionization
rate P (v⊥,0, t0) (see eq. (3.5)) is obtained and, in particular, an expression for the initial
longitudinal momentum (see eq. (3.6)), which is zero only for ionization directly at the
field extrema.

Given the strongly different ionization time distributions obtained from YI and Li
and given that the non-zero initial longitudinal momenta from Li are not negligible
even in the intermediate nonadiabatic regime (see e.g. Fig. 2 in [3]), one is probably
inclined to think that it should not be too difficult to find out which of the two theo-
ries describes experimental results more accurately. The fact that the discussion on the
way nonadiabaticity manifests itself has been going on for over a decade now [57, 160–
163] and that both theories were used successfully to explain experiments and TDSE
results [60, 61, 67, 130, 137–141] already shows that it is probably not so easy after all.
In the following, we show that the initial longitudinal velocity and the time spread are
coupled in a way that, under approximations valid for the parameters that were typi-
cally chosen in nonadiabatic studies so far, leads to almost the same final momentum
distribution.

First of all, we look for numerical evidence for this claim and perform CTMC sim-
ulations. Electrons with a total energy that is negative after the pulse has passed (Ryd-
berg states) are filtered out and an asymptotic propagation is performed as described

3The envelope f (t ) is not included explicitly in the derivation of either nonadiabatic theory, as al-
ready mentioned in section 3.1. However, for not too short pulses one can include the envelope to a good
approximation by replacing E0 by E0 · f (t ) in the final result. This procedure is also explicitly suggested
in YI and is commonly used to account for the envelope [2, 60].
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Figure 3.2: Left panel: Longitudinal momentum distribution at the detector obtained
from a CTMC simulation with initial conditions according to [4, 7] (YI) and [3] (Li),
where helium is ionized in a 5-cycle laser with I = 5 · 1013 W/cm2 and λ = 800 nm.
Right panel: Time-dependent longitudinal velocity for trajectories with P = 0.6, which
are born at t0,Y I = 6.14 a.u. and t0,Li = 2.61 a.u. according to Fig. 3.1 (a), and the initial
longitudinal momentum set to zero or described by eq. (3.6), respectively.

Figure 3.3: Normalized ionization probability P as a function of ionization times t0

for the same parameters as those used in Fig. 3.1 and, again, the transverse momenta
were set to zero. The difference to Fig. 3.1 (a) is that the ionization time distributions
as obtained by Bondar [2] are added. Using p|| =−A(t0) (corresponding to v||(t0) = 0)
in doing so, we retrieve the time distribution given by YI and using p|| = v||(t0)− A(t0)
with v||(t0) according to eq. (3.6), we retrieve the time distribution of Li.
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in section 2.3.3.1. The results are displayed in the left panel of Fig. 3.2. For the calcu-
lations with YI the nonadiabatic initial transverse momentum spread and tunnel exit
given in [4, 5, 136] were used since YI only provides the time spread. Although the
calculations presented in Fig. 3.2 are done in the obviously nonadiabatic regime, with
the parameters being the same as in Fig. 3.1 and thus γ = 2.0, the two nonadiabatic
theories under consideration indeed give about the same final momentum distribu-
tion with discrepancies too minor to be expected to be seen in an experiment. In the
right panel of Fig. 3.2, the longitudinal velocity is plotted as a function of time for two
trajectories with initial conditions according to YI and Li which - despite the different
ionization time and initial velocity - both correspond to the same ionization probabil-
ity according to Fig. 3.1. Here, we can see intuitively how the broader time spread in
YI (corresponding to the dashed orange line of YI being born further away from t0 = 0
than the blue line of Li) compensates for the lack of initial longitudinal momentum
and can therefore result in the same final longitudinal momentum as Li. From these
trajectories it also becomes clear that compensation happens at the very beginning of
propagation.

To understand that this compensation is not due to a particular choice of laser and
atomic parameters but holds true over a wide range of parameters, it is instructive
to look at the nonadiabatic theory presented by Bondar [2]. Designed to generalize
the result of YI, this theory does not replace the canonical momentum p at all, also
not by p = v(t0)−A(t0) as is the case in Li. Moreover, Bondar neglects the Coulomb
potential during propagation and therefore the conserved canonical momentum p
equals the final velocity at the detector. Thus, Bondar obtains a probability distribution
P (v||, f , v⊥, f ).

Why is Bondar’s theory mentioned here when we are actually interested in under-
standing why YI and Li give about the same momentum distribution at the detector
over a wide range of nonadiabatic parameters? The reason lies in the fact that the
ionization time distributions of YI and Li can be obtained as special cases of the the-
ory presented by Bondar by replacing the canonical momentum by −A(t0) for YI or
v||(t0) − A(t0) with v||(t0) according to eq. (3.6) for Li, which is also seen in Fig. 3.3.
As these relations between the ionization time spread of Bondar and those of YI and
Li are not directly obvious, they are explained in Appendix A.2. The important con-
clusion from this finding is that YI and Li are two different ways of shifting the non-
adiabatic velocity spread at the detector into time and velocity spreads at the tunnel
exit. Or, more generally, that the different assumptions YI and Li make about the initial
longitudinal velocity strongly influence the time distribution and that, therefore, these
two quantities are strongly coupled. At this point it should also be emphasized that
this statement goes beyond the long-known effect the ionization time has on the lon-
gitudinal momentum at the detector, v||, f = v||(t0)− A(t0), when Coulomb effects are
neglected during propagation. Here, in contrast, the different assumptions about the
longitudinal momentum at the tunnel exit affect the ionization time distribution.

As for the distribution at the detector, the fact that the initial conditions of YI and Li
both lead to the final distribution of Bondar is the key to understanding why YI and Li
lead, to a good approximation, to the same final results. Since P (p||) according to Bon-
dar determines at which probability the final velocity v||, f = p|| is found at the detector,
independent of whether the replacement of that canonical momentum p|| with initial
conditions is done according to YI or Li, it is clear that for both theories we should find
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the same longitudinal velocity distribution at the detector under the given approxima-
tions.

In order to get a more intuitive picture of how this fixed momentum distribution at
the detector can be shifted into time and velocity spreads at the detector, some illus-
trative calculations are presented in the following. At the expense of introducing some
further approximations, it will become clear that even though the longitudinal veloc-
ity and time spread in Li are motivated physically, there are – in principle – infinitely
many ways to shift one particular momentum distribution at the detector to time and
velocity spreads at the tunnel exit:

Even though the full probability distribution given by Bondar in Ref. [2] for the mo-
mentum distribution at the detector includes many terms for which it is not immedi-
ately clear how they can be approximated, for illustrative purposes we assume that we
can approximate it by a Gaussian distribution of width σp :

P (p||) ≈ exp

(
−

p2
||

2σ2
p

)
. (3.8)

The main point this equation should convey is that there is a unique probability dis-
tribution for the longitudinal momentum at the detector, independent of how we in-
troduce ionization times or initial longitudinal velocities. This statement is also true, if
maybe less obvious, for the full expression given in [2].

Since the underlying assumption for the momentum distribution at the detector in
[2] is that the Coulomb potential can be neglected during propagation, which leads to
conservation of the canonical momentum p, the longitudinal velocity at time t is given
by v||(t0)+ A(t )− A(t0) and since A(t ) = 0 at the end of the pulse, the final velocity is

v||, f = p|| = v||(t0)− A(t0). (3.9)

Setting v||(t0) = 0, as it is done in YI [7], we obtain

v||, f ,Y I =−A(t0,Y I ) = E0

ω
sin(ωt0,Y I ) ≈ E0t0,Y I (3.10)

for the longitudinal momentum at the detector, where in the last step the underlying
assumption is that ionization happens close to the field maximum.
Conversely, using the non-zero velocity according to eq. (3.6), as obtained by Li, we get

v||, f ,Li =
E0 sin(ωt0,Li )

ω
(


√√√√1+ ω22Ip

E 2
0 cos2(ωt0,Li )

−1

+1)

= E0 sin(ωt0,Li )

ω

√√√√1+ ω22Ip

E 2
0 cos2(ωt0,Li )

≈ E0t0,Li

√
1+γ2 = E0t0,Liα

(3.11)

with α=√
1+γ2 and γ= ω

p
2Ip

E0
, where – again – ionization close to the field maximum

was assumed and hence sin(ωt0) ≈ωt0 and cos(ωt0) ≈ 1.
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Plugging eqs. (3.10) and (3.11) into eq. (3.8) we obtain a probability distribution for
the ionization times for YI and Li, respectively:

PY I (t0) ∝ exp

(
−E 2

0 t 2
0

2σ2
p

)
= exp

(
− t 2

0

2σ2
t0,Y I

)
,with σt0,Y I =

σp

E0
(3.12)

and

PLi (t0) ∝ exp

(
−E 2

0 t 2
0α

2

2σ2
p

)
= exp

(
− t 2

0

2σ2
t0,Li

)
,with σt0,Li =

σp

E0α
. (3.13)

From this we can conclude σt0,Li ·α=σt0,Y I . As α> 1 originates from the non-vanishing
initial longitudinal momentum, we can thus see how the non-vanishing initial longitu-
dinal momentum in Li leads to a smaller ionization time spread, with the effect becom-
ing larger as we venture into the deeper nonadiabatic regime since a larger γ results in
a larger α. Or, put the other way around, it shows how the lack of initial longitudi-
nal momentum in YI leads to a broadening of the ionization time spread. The above
derivation is instructive also in that we see that even though α is physically motivated
to be

√
1+γ2 in Li, in principle any real number greater or equal 1 could be inserted in-

stead. This would modify the ionization time spread and the longitudinal momenta at
the tunnel exit, but we would still obtain the probability distribution given by eq. (3.8).
This illustrates how much freedom a probability distribution for only the longitudinal
momenta at the detector gives in terms of the ionization time spread and the longitudi-
nal momenta at the tunnel exit. One may even consider starting all trajectories directly
at the field maximum (zero ionization time spread) and consequently use the momen-
tum spread σp at the detector directly for the longitudinal momentum distribution at
the tunnel exit. Extreme cases such as this make clear that not any arbitrary choice
of how to convert the momentum distribution at the detector to the ionization time
spread and longitudinal momenta at the tunnel exit is physically meaningful and that
we should try to find out which replacement is the most physical. Further reasons for
not replacing the canonical momentum arbitrarily will be seen in section 3.4, where
we will observe that the freedom of shifting the momentum spread to the ionization
time spread is restricted.

3.4 Distinguishing between the nonadiabatic theories at
the detector

In the preceding section, we have seen that Bondar gives a probability distribution
that prescribes the distribution of longitudinal momenta at the detector v||, f and that
the initial conditions of YI and Li can be derived as special cases of this theory, which
helped us understand why Li and YI agree so well at the detector despite their differ-
ent initial conditions. Moreover, the numerical example presented in Fig. 3.2, where
the Coulomb potential was fully included, shows that the underlying approximation of
Bondar, i.e. neglecting the Coulomb potential, works well. Under these circumstances,
one may consider looking for parameters at which YI and Li give discernible results at
the detector pointless.

In the following, however, we will see that it is possible after all and that the pa-
rameters that do the trick are experimentally feasible: Ionizing hydrogen with a laser
pulse at an intensity of I = 1 ·1014 W/cm2 and a wavelength of λ= 400 nm (γ= 2.1), the



46 CHAPTER 3: Revisiting nonadiabatic effects on initial conditions

Figure 3.4: Distribution of the final longitudinal momentum obtained from CTMC
simulations using Li and YI as well as from TDSE simulations for hydrogen ionized in
a 5-cycle pulse with an intensity of I = 1·1014 W/cm2 and a wavelength of λ= 400 nm.
The curves are normalized such that the areas under the TDSE and CTMC results are
identical. The TDSE result gives much better agreement with the CTMC result using Li
than with the CTMC result obtained with YI.

two nonadiabatic theories produce two distinguishable final longitudinal momentum
distributions, as is shown by the CTMC results in Fig. 3.4. Note that we are in the same
γ-regime as in the example presented in Fig. 3.2, where we had γ = 2.0. In Fig. 3.4,
the theory of YI leads to a sharp cut-off in the longitudinal momentum distribution,
whereas the theory of Li yields more of a Gaussian-like profile.

Now that we obtained two different results from the two nonadiabatic theories, the
obvious question is which one describes the physics of ionization more accurately. To
this end, TDSE simulations were performed by Igor Ivanov, the technical details of
which are described in [117, 164–166]. The result is shown in Fig. 3.4. As the TDSE
result exhibits quantum interference which manifests itself as oscillations that cannot
be captured in the CTMC calculations, we smooth the TDSE curve to guide the eye
by replacing the TDSE result at each longitudinal momentum value by the average of
all values that are found in a window that is centered at the respective momentum
and has a total width of 0.28 a.u. along the longitudinal momentum axis. The window
width was chosen in a way to smooth the oscillations while not being too broad to lose
information about the averaged curve.

Comparing the smoothed TDSE result to the CTMC data in Fig. 3.4, it can be seen
that the TDSE result exhibits the same Gaussian-like decay obtained in CTMC with the
theory of Li, rather than the sharp cut-off we get using the theory of YI. To make this
visual observation more quantitative, we look at the averaged absolute value of the dif-
ference between the smoothed TDSE and the CTMC results: the averaged deviation
between the smoothed TDSE and the CTMC result with YI in the range of [−1,+1] on
the momentum axis is 0.177 and thus more than twice as high as the averaged devi-
ation between the smoothed TDSE and the CTMC result with Li, which is 0.070. As
some may worry about the smoothing of the TDSE curve having biased that outcome,
also the deviation between the unsmoothed TDSE (solid purple line in Fig. 3.4) and the
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Figure 3.5: Normalized ionization probability P as a function of ionization time t0

for Li and YI, where for Li the initial transverse momentum was set to zero (YI sets the
initial transverse momentum to zero already in the derivation of the ionization rate).
The laser and atomic parameters are the same as in Fig. 3.4, except for the constant
envelope used here. In the lower part also the vector potential A(t0) is displayed as
a green line. Since P (t0) does not drop down to zero for YI, the maximal vector po-
tential A0 gets sampled to a non-negligible amount. This leads to a sharp cut-off in
the final longitudinal momentum distribution (orange histogram at the bottom right)
if one performs CTMC calculations without the Coulomb force during propagation.
The blue histogram, in contrast, was obtained in a CTMC simulation using the ini-
tial conditions according to Li (and again propagating without Coulomb potential). It
retrieves the final longitudinal momentum distribution predicted by Bondar. The rea-
son for the final distribution according to Li (blue histogram) having a tail that goes
beyond ±A0 is the non-zero initial longitudinal momentum.

CTMC with Li and YI, respectively, seem worth mentioning: The averaged4 deviation
between the TDSE and the CTMC result using Li is 0.1049, whereas the averaged devi-
ation between the TDSE and the CTMC result using YI amounts to 0.2102 and is thus
again about twice as large as for the CTMC with Li. We therefore find that the theory
of Li is closer to the TDSE result, making it a more accurate theory to describe the sit-
uation at the tunnel exit. This observation not only corroborates the non-negligible
longitudinal momenta at the tunnel exit, but it also implies that nonadiabaticity does
not necessarily manifest itself in a time spread that is significantly broader than pre-
dicted by quasistatic theories, contrary to what is claimed in YI (see e.g. Fig. 3.3).

The observation of different momentum distributions at the detector using YI and
Li obviously begs the question as to how this can be possible when we have just seen
in the previous section (3.3) that the ionization times and initial longitudinal momenta
can be obtained from the same theory (Bondar, [2]) which gives a unique probability
distribution P (v||, f ) for the final longitudinal momentum. One may think that this is
due to the Coulomb effect playing a non-negligible role in this process, but as we will
see this effect persists even without the Coulomb potential during propagation and the

4Note that averaged signifies that the the difference between TDSE and CTMC (=deviation) is cal-
culated for each longitudinal momentum value, added up and then divided by the total number of lon-
gitudinal momentum bins. Thus, the term ‘averaged’ has nothing to do with the smoothing procedure
described before.
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reason is far more fundamental revealing the limits of shifting the final momentum
spread arbitrarily to ionization time and initial longitudinal momentum distributions.

The key to understanding the different results obtained with Li and YI (Fig. 3.4) is
the ionization time distribution displayed in Fig. 3.5. Since P (t0) never drops down to
zero for YI, the maximal vector potential A0 (green line) gets sampled to an appreciable
amount leading to a considerable fraction of electrons ending up at |v||, f | = ±A0. This
results in a sharp cut-off at |v||, f | = ±A0 in the final momentum distribution (orange
histogram at the bottom right panel of Fig. 3.5) for YI if one performs CTMC calcula-
tions without the Coulomb force during propagation. Including the Coulomb potential
during propagation blurs this sharp line but does not destroy its basic characteristic,
as we have seen in Fig. 3.4.

One consequence of the YI theory is that with its zero initial longitudinal velocity
the resulting final momentum p|| is restricted to [−A0, A0] because we have to apply
p|| = −A(t0) (assuming no Coulomb potential). However, the final distribution given
by Bondar in [2] predicts a non-negligible probability P (p||) at |p||| > A0 at these spe-
cific parameters (The P (p||) predicted by Bondar at these parameters is shown as a light
blue histogram in the inset at the bottom of Fig. 3.5). Therefore, the initial conditions of
YI cannot retrieve P (p||) given by Bondar whereas Li can due to its non-zero initial lon-
gitudinal momentum. Actually, the light blue histogram at the bottom of Fig. 3.5 was
calculated with the initial conditions from Li and is identical to the final momentum
distribution predicted by Bondar. The reason for this is that, as mentioned above, Li’s
initial conditions can be obtained from Bondar’s final momentum distribution. And
after Coulomb-free propagation from the tunnel exit to the detector, Li’s initial condi-
tions directly result in Bondar’s final momentum distribution again.

The obvious question now is why the same arguments are not valid for YI. Also the
ionization time spread of YI can be obtained from Bondar’s probability distribution
P (v||, f ). This is done by setting v||, f =−A(t0) in P (v||, f ), corresponding to propagating
the momentum distribution from the detector without Coulomb potential back to the
tunnel exit, where the ensemble of trajectories exhibits zero momentum but a spread
of ionization times. Nonetheless, we have witnessed that reversing this process and
propagating these initial conditions from the tunnel exit to the detector, again neglect-
ing the Coulomb potential, we do not recover the final momentum distribution P (v||, f )
from which we started. Mathematically, this puzzling effect boils down to the following
question: Why is

(A): P (v||, f ) (3.14)

different from
(B): P (v||, f (t0(v||, f )))? (3.15)

In (B), t0(v||, f ) is the ionization time obtained from propagating a trajectory with v||, f

at the detector back to the tunnel exit via

v||, f (t0) = A0 sin(ωt0) ⇒ v−1
||, f (v||, f ) = t0(v||, f ) = 1

ω
arcsin

(
v||, f

A0

)
. (3.16)

Therefore, one may think that one should be able to modify expression (B) as follows
and obtain equality with expression (A):

P (v||, f (t0(v||, f ))) = P (v||, f (v−1
||, f (v||, f ))) = P (v||, f ). (3.17)

However, from eq. (3.16) we can see that, on the one hand, we have v−1
||, f : [−A0, A0] →

[−∞,∞]. On the other hand, we had P : [−A0−ζ, A0+ζ] → [0,1] with ζ> 0, meaning we
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Figure 3.6: From PBond ar (v||, f ) we can obtain PY I (t0) by replacing v||, f with
A0 sin(ωt0). This corresponds to backpropagation from the detector to the tunnel exit,
where the Coulomb potential is neglected. However, reversing this process and propa-
gating the electrons with ionization times that follow PY I (t0) without Coulomb to the
detector, i.e. applying v||, f = A0 sin(ωt0), we do not recover PBond ar (v||, f ). This is due to
the fact that PBond ar (v||, f ) has a non-zero probability for |v||, f | > A0 but no ionization
time t0 leads to such a |v||, f | > A0 when applying v||, f = A0 sin(ωt0). Mathematically,
the problem is found in the fact that in PBond ar (v||, f ) the domain of definition, i.e. the
range of values v||, f one can plug into PBond ar , goes beyond [−A0, A0]. In contrast, the
domain of definition for t0 = v−1

||, f = arcsin(v||, f /A0)/ω is restricted to v||, f ∈ [−A0, A0].

want to input |v||, f | > A0, which is not defined for the v−1
||, f function in eq. (3.16). Con-

sequently, the expressions (A) and (B) are different in their domain of definition, i.e. in
the range of values v||, f one can plug into them. To put it another way, eq. (3.17) does
not work because v−1

||, f as defined by eq. (3.16) is not defined for arguments (i.e. v||, f

values) outside of [−A0, A0], whereas P (v||, f ) (as given by Bondar in [2]) has P 6= 0 for
v||, f ∉ [−A0, A0]. An illustration of this line of reasoning is given in Fig. 3.6.

All of this shows that one cannot replace the canonical momentum arbitrarily by
ionization time and initial longitudinal momentum distributions, but that a physical
justification for it, just as it is the case in Li, is crucial. In particular, it reveals that
the assumption of a vanishing initial longitudinal momentum is not physical and can
produce misleading results ‘at the detector’.

3.5 Conclusion and Outlook

In conclusion, it was shown that the nonadiabatic broadening of the time spread de-
rived in YI is a direct consequence of setting the initial longitudinal momentum to zero.
More generally, we saw that the strong coupling of the ionization time spread and the
initial longitudinal momentum helps us understand why the theories of Li and YI, in
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spite of their fundamentally different initial conditions, lead to approximately the same
longitudinal momentum distribution at the detector if P (p||) is negligible for |p||| > A0

and if the Coulomb potential during propagation can be neglected. As these conditions
are widely met in strong field systems, we can now understand why the two nonadia-
batic theories with their contrasting initial conditions were both successfully used to
explain experiments in the nonadiabatic regime. This should account to some extent
for the confusing character the discussions about nonadiabatic effects sometimes as-
sume.

Despite the indistinguishability of the results obtained from the two theories in
a wide range of typical nonadiabatic parameters, laser and atomic parameters were
found that are still in the experimentally realizable and relevant regime for which the
mentioned approximations break down and the two nonadiabatic theories yield exper-
imentally distinguishable momentum distributions. The difference was understood
by P (p||) (as given by Bondar in [2]) having a non-negligible probability for |p||| > A0

at these parameters. Using the replacement of p|| = −A(t0), corresponding to a van-
ishing initial longitudinal momentum and thus shifting the spread completely to the
ionization times as done in YI, only |p||| ≤ A0 can be obtained when propagating this
initial condition to the detector again. Thus, P (p||) is not retrieved. Conversely, the use
of non-zero initial longitudinal momenta in Li allows to reproduce P (p||) (as given by
Bondar) and consequently, the momentum distribution at the detector obtained with
the initial conditions of YI and Li differs at the detector for these parameters.

In line with this explanation, a ‘numerical experiment’ in the form of a TDSE sim-
ulation showed good agreement with the theory of Li, which uses a non-zero initial
longitudinal momentum. With λ= 400 nm, I = 1·1014 W/cm2 and Ip = 0.5 a.u., the pa-
rameters of these calculations are in a regime that should be experimentally realizable.
Therefore, this system is proposed for experimental testing of nonadiabatic effects on
the initial conditions directly at the tunnel exit.

The strong evidence for the theory of Li being the more accurate one to describe
the situation at the tunnel exit motivates, as a next step, to refine this theory. As al-
ready mentioned in section 3.1, the derivation of said nonadiabatic theory assumes a
constant envelope. Consequently, envelope effects are so far accounted for only in an
approximate fashion by replacing E0 by E0 f (t ) in the final result, with f (t ) denoting
the envelope. In principle, however, the derivation should also allow to include the
envelope in the description of the field. It remains to be seen, though, whether analyt-
ical tractability can be maintained when fully including the envelope in the derivation
and if not, one will have to think about numerical ways to solve the relevant equations
efficiently.

Even though the Coulomb effect during propagation was not found to be the ma-
jor effect to decide which of the two ionization theories describes the situation at the
tunnel exit more accurately, it should be commented on briefly. The equivalence of YI
and Li described in section 3.3 assumed that the Coulomb field is neglected. One may
argue that, since the lack of initial longitudinal velocity is compensated by the ear-
lier/later birth of the electron in YI directly at the beginning of propagation (see right
panel of Fig. 3.2), the Coulomb effect can only be of relevance during that short time
before the compensation is done. However, especially during that early time after the
birth in the continuum the Coulomb potential matters due to the electron’s close loca-
tion to the parent ion. The reason the Coulomb potential has a negligible effect in the
parameter regime chosen in section 3.3 is mostly the fact that the low intensity leads to
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a rather large tunnel exit. A smaller tunnel exit is achieved mainly with a larger inten-
sity, which entails getting into the more adiabatic regime. Therefore, one usually does
not have a small tunnel exit in the nonadiabatic regime. Consequently, to make use of
the Coulomb potential to distinguish between the results of YI and Li one would need
to evaluate a quantity that exhibits strong sensitivity to the Coulomb potential directly
at the tunnel exit.





CHAPTER

4
Intensity and pulse duration
dependence of Rydberg states

“Problems worthy of attack prove their worth by fighting back."

— Piet Hein (Danish mathematician, 1905-1996)

Overview of this chapter

The investigation of Rydberg states that are created due to frustrated tunneling ion-
ization in strong field processes has helped explain many strong field phenomena
in the past decade. In this chapter, two new ways are presented for how to make
use of and control the creation of Rydberg states:
Firstly, in section 4.2, the intensity dependence of the fraction of electrons that
end up in a Rydberg state after strong field ionization with linearly polarized
light is investigated numerically and analytically [71]. It is found that including
the intensity-dependent distribution of ionization times and nonadiabatic effects
leads to a better understanding of experimental results. This suggests that Ryd-
berg yield measurements can be used as an independent test for nonadiabaticity
in strong field ionization. Furthermore, using classical trajectory Monte Carlo sim-
ulations it is observed that the intensity dependence of the Rydberg yield changes
with wavelength and that the previously observed power-law dependence breaks
down at longer wavelengths.
In the second part, in section 4.3, it will be shown how the duration of the laser
pulse can be used to control both the yield and principal quantum number distri-
bution of Rydberg atoms [72]. An intuitive explanation for the underlying mech-
anism is provided and a scaling law for the position of the peak in the quantum
number distribution on the pulse duration is derived. In particular, it will be-
come clear that low principal quantum numbers are less likely to ‘survive’ longer
pulses. This is relevant to studies and applications that rely on the principal quan-
tum number distribution of Rydberg atoms like the recently developed method of
creating coherent extreme-ultraviolet radiation from Rydberg atoms, in which the
occupation of low principal quantum numbers is crucial. Furthermore, it will be-
come clear that including the Coulomb potential during propagation is crucial for
the understanding of pulse duration effects of Rydberg states and cannot be ne-
glected as it was done so far in analytical descriptions of Rydberg states.
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4.1 Introduction to Rydberg states

The liberation of an electron in the process of strong field ionization via tunneling does
not necessarily lead to the electron leaving the atom for good [48, 49]. Rather, a consid-
erable fraction of atoms survives the laser pulse in neutral excited states [48], so-called
Rydberg states. The detection of excited neutral states in the multiphoton regime [167,
168] had been known long before the experiment of Ref. [48] presented neutral excited
states in the tunneling regime and had been explained in the framework of a purely
quantum mechanical picture as a stabilization process in multiphoton excitation. For
the experiment in the tunneling region [48], a new mechanism to explain the creation
of Rydberg states in this regime was required. As a consequence, the concept of ‘frus-
trated tunneling ionization’ (FTI) was born [48]. The idea behind FTI is based on the
semiclassical model of tunneling ionization and subsequent propagation of the elec-
tron in the superposed laser and Coulombic field. The low kinetic energy of some elec-
trons at the end of the laser pulse does not allow them to leave the Coulomb potential
but results in their capture in a Rydberg state.

The relevance of FTI already becomes clear by the observation that under typ-
ical strong field conditions 10-20% of tunnel ionized electrons are trapped in Ryd-
berg states [48], thus affecting many more electrons than other post-tunnel ionization
mechanisms such as high-harmonic generation (HHG) or double ionization by colli-
sion [169, 170]. FTI not only explains the significant reduction of ionization rates [48]
but can also be used to e.g. calibrate laser intensities [171], study nonadiabatic effects
[71], probe the spatial gradient of the ponderomotive potential in a focused laser beam
[172], or control the motion of neutral atoms in strong laser fields [170, 173].

There are some effects in strong field excitation, such as certain molecular effects
or oscillations due to channel-closings in multiphoton excitation, that can only be un-
derstood based on the time-dependent Schrödinger equation [174–177]. However, es-
pecially the effect of FTI has been found to be described well in models that treat the
propagation step and the capture in a Rydberg state classically [48–52, 178–180] and
CTMC simulations have proven to be a powerful tool in the study of Rydberg state cre-
ation by FTI.

As the electron in a Rydberg state forms a bound state, this situation is character-
ized by a total energy that is negative after the pulse has passed

E = v2

2
− 1

r
< 0. (4.1)

In CTMC simulations the Rydberg yield is computed by evaluating this relation at the
end of the pulse and calculating the ratio of the number of electrons in a Rydberg state
relative to the total number of electrons that have tunneled out of the atom. The Ryd-
berg yield strongly depends on the intensity and pulse duration of the laser pulse, as
has been pointed out before [48, 49]. In this chapter, we will continue the research
along these lines, which will lead to a better understanding of Rydberg state creation
via FTI and, in turn, give birth to completely new applications. For example, studying
the intensity dependence of Rydberg states will open up a new way to detect nonadia-
batic effects in strong field ionization [71], and the mechanism that is found to explain
the pulse duration dependence of the yield can also be used to control the distribution
of the principal quantum number of Rydberg states [72].
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4.2 Intensity dependence

The content of this section has been published in a similar way in Phys. Rev. A 98,
033415 (2018) and a corresponding correction in Phys. Rev. A 99, 019901(E) (2019) (see
Refs. [71, 181]). The copyrights of contents from those articles lie with the American
Physical Society.

Already the first experiment that detected Rydberg state creation in the tunneling
regime and introduced the concept of frustrated tunneling ionization (FTI) measured
the intensity dependence of Rydberg states [48]. The takeaway from this measurement
was that even though both the number of atoms in a neutral excited state (Rydberg
state) and the number of ionized atoms grow with increasing intensity, the relative
number of Rydberg states is smaller for higher intensities. Only a few months later an
analytical model was proposed in Ref. [49] to explain not only the dependence of the
Rydberg yield on the intensity but also on the wavelength and the pulse duration.

Below, we build on this work of Ref. [49] by including nonadiabatic effects, as well
as introducing further corrections and expansions to the intensity-dependence of this
theory. An analytical dependence of the Rydberg yield on intensity is presented that
agrees better with the experimental results in Ref. [48]. Additionally, wavelength de-
pendent effects in the intensity dependence are found which have not been predicted
before and should be experimentally measurable. As we will see, especially the inclu-
sion of nonadiabatic effects promises to be a new tool to study nonadiabaticity using
Rydberg states instead of the momentum distribution of ionized electrons at the de-
tector. This new approach to test nonadiabatic features does not depend on absolute
intensity calibration that other nonadiabaticity studies struggle with (for a discussion
see [154]).

4.2.1 Prior analytical estimates

In this section, the analytical tools that are developed and employed in Ref. [49] to
estimate the Rydberg yield are explained and reviewed before they are modified in the
following sections. The Rydberg yield, as defined in the present thesis, is the ratio of
the number N∗ of electrons which are captured in a Rydberg state and the number Nt

of all electrons which tunneled through the potential barrier1. The key idea behind the
analytical work in [49] is to assume a uniform distribution of electrons in the plane of
initial conditions (t0, v⊥,0) and to estimate the Rydberg yield to be proportional to the
area Σ∗ in this plane that contains those initial conditions that end up in a Rydberg
state divided by the area Σt containing all ionization events

N∗

Nt
∝ Σ∗

Σt
. (4.2)

In Fig. 4.1, we can observe the characteristic crescent-like shape of the Rydberg area
Σ∗ marked in shades of blue. In this plot, just as in the analytical estimate, we only
consider ionization in the central half-cycle for the sake of analytical tractability. To
estimate the area of the crescent it is instructive to look at the sketch in Fig. 4.2, where

1Note that in [49] the Rydberg yield is defined as the ratio N∗/N+, with N+ the number of finally
ionized atoms. Since Nt = N∗+N+, the two definitions coincide only in the limit of N∗ ¿ Nt . In the
corresponding analytical calculations in [49] we find a measure proportional to Nt in the denominator.
Therefore, the definition of N∗/Nt as Rydberg yield would have been more accurate also in [49].
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Figure 4.1: The total energy (see colorbar) at the end of the pulse for electrons ion-
ized at time t0 in the central half-cycle with initial transverse momentum v⊥,0, and
propagated in the superposed laser and Coulomb potential. All quantities are given in
atomic units. The laser pulse was chosen to have a wavelength of λ = 800 nm and 8
cycles for two different intensities I specified in the plots. Rydberg states have a total
energy that is negative (colored in shades of blue) and one can see how the Rydberg
area shrinks for larger intensities.

Figure 4.2: Illustration for why the crescent-like Rydberg area can be approximated
by the relative complement of two ellipses with equal height but different widths and
why, as a consequence, the Rydberg area can be approximated to scale linearly with ∆t
and ∆v⊥.

the crescent-shaped area is approximated by the relative complement of two ellipses
of equal height (i.e. along the v⊥,0-axis) but different widths (i.e. along the t0-axis). As
a consequence, we can assume that the crescent-shaped Rydberg area scales linearly
with ∆v and ∆t , the range of v⊥,0 and t0 as defined in Fig. 4.2, respectively. This should
become clear from the following calculation:

Acrescent = 1

4
(Alarge ellipse − Asmall ellipse)

= 1

4

∣∣π ·∆v⊥ · (t0,center − t0,mi n)−π ·∆v⊥ · (t0,center − t0,max)
∣∣

= π

4
· (t0,max − t0,mi n) ·∆v⊥ = π

4
·∆t ·∆v⊥.

(4.3)

Consequently, to estimate the Rydberg area it is sufficient to estimate the minimal
and maximal ionization times t0,mi n and t0,max when v⊥,0 = 0 and the initial velocities
v⊥,0,mi n and v⊥,0,max that lead to a Rydberg state. Determining those four boundaries
requires propagation in the superposed laser and Coulomb field. To keep this step an-
alytically tractable, the electron trajectory is calculated without the Coulomb potential,
which is further justified by the observation that including the Coulomb potential per-
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turbatively does not affect the intensity-dependence of the size of the Rydberg area2.
The Coulomb potential is only ‘turned on’ at the end of the pulse by means of eq. (4.1),
which contains the Coulomb potential and which is evaluated in the limit of setting the
total energy to 0. All in all, this results in the following estimate for the Rydberg area, as
given in [49]:

Σ∗ ∝∆φ ·∆v ≈ ω

E0

(
2

τ

)2/3

, (4.4)

where τ is the time at which the pulse has passed. As the center of the pulse is defined
to be at t = 0, 2τ equals the pulse duration τL .

What still remains to be done is to estimate the ionization area. In Ref. [49], this is
done by assuming that the ionization area scales linearly with the width of the distri-
bution of the initial transverse velocity. The transverse velocity is estimated to scale asp

E0 since the width of the Gaussian transverse velocity distribution of eq. (2.24) scales
as

p
E0

Σt ∝σv⊥ ∝
√

E0. (4.5)

Combining eq. (4.4) and (4.5), one then obtains

N∗

Nt
∝ Σ∗

Σt
∝ ω

E 3/2
0 τ2/3

. (4.6)

Another point worth mentioning concerns the interpretation of this result. Even
though Σ∗ ∝ 1/E0 agrees with the observation of the Rydberg area getting smaller with
increasing intensity in Fig. 4.1, at first glance this does not seem to tally with the exper-
imental observation of the number of neutral excited atoms increasing with increasing
intensity [48]. This seeming contradiction is resolved by the fact that eq. (4.2) only
holds in the relative sense, meaning under evaluation of the ratio rather than separate
evaluation of the nominator and the denominator. Details concerning this point are
presented in Appendix A.3.

4.2.2 Including the ionization time width

A vigilant reader may have noticed that in the estimation of Σt in eq. (4.5) only the
width of the velocity spread was used, while the width of the ionization time spread
was neglected. As the time width also depends strongly on the intensity, this shall be
rectified in this section, thus introducing the first modification to the result presented
in Ref. [49].

As we have already seen in eq. (2.28), the adiabatic ADK distribution for ionization
phases φ= w ·t0 [1, 182] can be approximated as a Gaussian function with an intensity-
dependent width σφ that is proportional to

p
E0. Consequently, we should set

Σt ∝σv⊥ ·σφ ∝
√

E0 ·
√

E0 = E0 =
p

I (4.7)

2In Ref. [49], the Coulomb force is taken account of in a perturbative manner by calculating the
change of the momentum due to the Coulomb force accrued along the path of a trajectory that is
propagated in only the laser field. However, the Coulomb correction cancels out in ∆φ = ω∆t since
it enters φl atest and φear l i est in the form of the exact same summand. For details see eqs. (10) to
(12) in [49], where Coulomb effects are hidden in the parameter λ, which is not the wavelength there:

φear l i est = ωt0< ≈ −λ− ω
E0

(
4
τL

)1/3
and φl atest = ωt0> ≈ −λ. Thus, in ∆φ = φl atest − φear l i est , the

Coulomb-correction contained in λ cancels out and only shifts the Rydberg area along the φ-axis but
does not affect its size.
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obtaining
N∗

Nt
∝ Σ∗

Σt
∝ I−1. (4.8)

This result enables a better understanding of the adiabatic CTMC simulation results
displayed in Fig. 4.3 where a power law fit to the intensity-dependent Rydberg yield
gives an exponent of −1.02. Note that even though the Coulomb effect is neglected
in the propagation in the analytical estimates made in this chapter, the Coulomb po-
tential is fully taken into account during propagation in the CTMC simulations. The
observation that the CTMC result and the analytical estimate agree so well shows us
that neglecting the Coulomb force during the propagation and the other approxima-
tions introduced above work well in the study of the intensity dependence of Rydberg
states.

4.2.3 Nonadiabatic effects

From the experiment reported in [48], the ratio N∗/Nt can be extracted for various
intensities. These values exhibit an intensity dependence that can be fitted very well
by a power law function a · I b with fitting parameters a and b. The fit yields

N∗

Nt
∝ I−0.86, (4.9)

displayed as a blue line in Fig. 4.3. So, even though taking into account the intensity-
dependent ionization phase width in the analytical estimation in the preceding sec-
tion, which shifted the power law exponent from b = −0.75 as obtained in [49] to
b = −1, was well captured by the adiabatic CTMC simulations giving b = −1.02, we
still do not fully understand the experimental result of b = −0.86 in this framework.
However, when looking at the adiabaticity parameter γ=ω

√
2Ip /E0 [89], we find that

– for the intensity regime of I = 1.4 · 1014 − 1015 W/cm2 at λ = 800 nm and Ip = 0.9 –
γ ranges from 0.5 to 1.2. This is the typical strong field ionization regime where the
relevance of nonadiabatic effects is still under debate [57, 154, 161, 163].

We now show that nonadiabatic effects can be observed in Rydberg yield measure-
ments from the power-law dependence alone. This eliminates the concerns about in-
tensity calibration that have haunted prior experiments attempting to observe non-
adiabatic effects by measuring electron momenta distributions [57, 154]. At this point,
it seems important to emphasize that the factor correcting for the decay of neutral ex-
cited atoms into metastable states, which had to be applied in [48] to match theoretical
and experimental results, does not depend on the intensity. Therefore it only affects
the prefactor of the power law, but not its exponent, which makes the anyway high
robustness of the exponent of a power law fit even less subject to issues arising from
calibration of the absolute intensity.

In Fig. 4.3, CTMC simulation results are shown where on the one hand the non-
adiabatic ionization theory described by Li et al. [3] (Li) was used and, on the other
hand, the time spread by Yudin and Ivanov [7] (YI) combined with the transverse veloc-
ity spread of PPT3. A power law fit to the resulting intensity-dependent Rydberg yield

3The YI/PPT version, in short labeled as YI, was implemented using the theory of Bondar [2] where
the final longitudinal momentum was replaced such that the ionization time distribution of YI was ob-
tained (see chapter 3 for details). The initial transverse momentum distribution of Bondar matches that
of PPT, which is shown in Fig. A.1 in Appendix A.1 for the two intensities that limit the intensity range
considered in this chapter.
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Figure 4.3: Rydberg yield for the parameters found in [48]: I = 1.4 ·1014−1015 W/cm2,
the FWHM of the pulse envelope is 30 fs, λ = 800 nm, a helium atom with Ip = 0.9
is ionized. The experimental yield (blue dots) was extracted from [48]. The adiabatic
CTMC simulation (red diamonds) was performed using the ADK distribution [1, 182]
and the nonadiabatic simulations are based on [4, 7] (YI, purple stars) and [3] (Li,
green squares), respectively. The power law used for fitting is described by N∗/Nt =
a · I b with b given in the legend. The fitting results are represented by lines. Note that
the lower absolute values of the experimental yields are due to the decay of the excited
states which is not accounted for here (for details see [48]). The correction factor that
takes account of this effect and was applied in [48] for comparison between theory
and experiment is found to be independent of the laser intensity. Therefore, it affects
only the prefactor of the power law (and thus the offset on a log-log scale), but not the
power law exponent (corresponding to the slope in the log-log plot) we are interested
in here. For better visual comparison of the experimental result with the simulation
data, the dashed blue line shows the experimental data artificially shifted closer to the
simulation data.

gives an exponent of −0.86 and −0.85 for YI and Li, respectively. The good agreement
between Li and YI is not surprising given the compensation effects that were described
in chapter 3.3. More importantly, both nonadiabatic results are in much better quan-
titative agreement with the experimental value of b =−0.86 than the adiabatic model.

Qualitatively, the nonadiabatic effect on the intensity dependence of the Rydberg
yield observed here can be explained by the width in the distributions of the starting
velocity and the ionization phase, which both increase more slowly with increasing
intensity in the nonadiabatic case than in the adiabatic one. The slower growth with
intensity can be understood qualitatively by the nonadiabatic broadening of the distri-
butions of initial conditions at lower intensities, which makes these spreads of initial
conditions drop less fast with decreasing intensity than in the adiabatic case. This shal-
lower intensity dependence affects the denominator of the Rydberg yield, resulting in
a less negative exponent in the power law.

In order to estimate the extent of the nonadiabatic effect quantitatively, we first
evaluate how the spread of initial transverse velocities changes with intensity. Since the
theory of Li and PPT agree in their description of the initial transverse velocity to a very
good approximation (see e.g. the comparison in Fig. 3.1 (b) or in Fig. A.1 in Appendix
A.1), we do not have to worry about which nonadiabatic theory to choose. We will
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Figure 4.4: Left panel: cy (γ) as given in [136] with the respective power law fits in the
γ-regime defined by the parameters listed in Fig. 4.3. Right panel: Fit to the standard
deviation σt0 of the ionization time spread as they are obtained from Gaussian fits to
the theory of Refs. [4, 58, 136] (orange, PPT) and of Ref. [7] (green, YI). A power law fit
A ·E B

0 was performed with the resulting exponents shown in the legend. For compari-
son, also the adiabatic case is shown which scales as

p
E0 according to eq. (2.28).

work with PPT here as it is easier to handle analytically. The transverse width of PPT
is given in eq. (3.1) or equivalently in [136], where in the latter we find the notation
σv⊥ =√

ω/(2cy ) for the width of the transverse velocity distribution with

cy = τ0 = sinh−1(γ), (4.10)

which in the adiabatic limit, γ¿ 1, reduces to

cy = τ0 ≈ γ∝ 1/E0 ∝ I−0.5 ⇒σv⊥ ∝ E 0.5
0 ∝ I 0.25 (4.11)

in accordance with eq. (4.5). For the nonadiabatic regime used here we fit a power law
to eq. (4.10) (see left panel of Fig. 4.4) and obtain cy ∝ γ0.84 and thus

σv⊥ ∝ γ−0.84/2 ∝ E 0.84/2
0 ∝ I 0.84/4. (4.12)

Concerning the second quantity of interest, the ionization time spread, the nonadi-
abatic effects described in YI and Li are different from each other, where in the latter we
also saw effects on the initial longitudinal velocity spread (see ch. 3). In the following,
we use the theory of YI rather than the theory of Li to describe nonadiabaticity. The
reason for this choice is found in the fact that in the theory of Li the non-zero longitu-
dinal velocity plays a crucial role. However, this quantity is not included in the model
we use here, which focuses solely on the ionization time and initial transverse velocity
spread. In chapter 3 we have seen that over a wide range of nonadiabatic parameters
the lack of initial longitudinal momentum in YI is compensated to a good approxima-
tion by a broader ionization time spread and therefore yields almost identical results
for the final longitudinal momentum spread as Li. This approximation is also valid at
the parameters used in this chapter and, therefore, we use YI to estimate the extent of
nonadiabatic effects here even though we found in chapter 3 that Li can be considered
a more general nonadiabatic theory than YI.

The right panel of Fig. 4.4 shows how the ionization time spread of YI changes sig-
nificantly less with intensity than in the adiabatic case. One feature of the YI-curve
that may seem unexpected at first glance is that the width does not grow monotoni-
cally with increasing intensity but that there is a minimum around E0 ≈ 0.08 a.u.. This
can be understood as follows: In the adiabatic limit the ionization time width decreases



4.2. Intensity dependence 61

monotonically when the field strength becomes smaller. Smaller intensities, however,
are related to the more nonadiabatic regime where nonadiabatic broadening of the
ionization time distribution is found. As this nonadiabatic broadening is strong in YI,
it dominates at small intensities, resulting in the curve going up for E0 <∼ 0.08 a.u. in the
right panel of Fig. 4.4. Despite the resulting minimum, we perform a power law fit to
the field strength dependence of the ionization time spread of YI since it still reflects
the fact that the nonadiabatic curve has a much more shallow intensity dependence
than the adiabatic case. The resulting power law exponent is 0.15 and combining this
with the result from eq. (4.12) we obtain

N∗

Nt
∝ 1/I 0.5

I 0.84/4+0.15/2
= I−0.79, (4.13)

At this point, it seems important to highlight that the aim of the estimate in eq. (4.13) is
not to attain a perfect match with the power law exponent of the CTMC simulation, but
to qualitatively understand the CTMC simulation result. Even though the exponents
do not match perfectly, we can learn from the above analysis that the main reason for
the strong nonadiabatic effect lies in the much shallower intensity-dependence of the
ionization time spread in the nonadiabatic case.

In the right panel of Fig. 4.4 the time-dependence as it was introduced into PPT in
[58] is also included since this approach was used when the results shown here were
originally published in [71, 181]. In the following, it is explained why in this thesis the
nonadiabatic theory of YI is used instead. As outlined in the introduction to chapter 3,
the PPT result is cycle-averaged and does not include instantaneous time-dependence.
Even though the way the time-dependence is included into PPT in [58] worked well in
the context it was applied to there, the right panel of Fig. 4.4 reveals that in the pa-
rameter regime used here, the theory of PPT and YI strongly differ in the ionization
time spread. Since YI, in contrast to PPT, is designed to include instantaneous time-
dependence, applying this theory of YI here seems more appropriate. This argument
is corroborated by the nonadiabatic simulation results with YI yielding a power law
exponent of b = −0.86 that matches the experimental result of b = −0.86 better than
the exponent of b =−0.95 [71, 181] obtained in the simulation with PPT with the time-
dependence included following [58].

The results presented in this section do not only highlight the relevance of taking
account of nonadiabatic effects, but it also shows in what way FTI can be used to in-
vestigate the initial conditions at the tunnel exit. In particular, as the discussed effects
concern the denominator of the Rydberg yield and thus the total number of tunneled
electrons, they are not only relevant for Rydberg related studies but for tunnel ioniza-
tion in general. For example, the slower growth of the momentum width with intensity
when applying nonadiabatic theories as compared to adiabatic theories can also be
seen in the data presented in [154, 161].

The nonadiabatic observation made here now opens the door to use this effect for
testing nonadiabaticity in a way that complements the tests employing momentum
distributions. The latter is the way nonadiabaticity is usually studied: The quantity un-
der scrutiny is typically the width of the momentum distribution [3, 57, 93, 154, 161,
183], which differs in adiabatic and nonadiabatic theories. The problem with this ap-
proach is that the momentum distribution is sensitive to the exact absolute value of the
intensity. And this intensity is difficult to measure and is usually calibrated a posteriori
by applying either an adiabatic or nonadiabatic theory on the photoelectron momen-
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Figure 4.5: Intensity-dependent Rydberg yield at λ = 1200 nm (all other parameters
are chosen as listed in Fig. 4.3). Purple dashed line: The adiabatic power law with
b = −1 (see eq. (4.8)). Red diamonds: Adiabatic CTMC simulation data with power
law fit (orange line) to it. Blue dashed-dotted line: Estimation by solving eq. (4.18) and
(4.20) exactly, Green dotted line: Approximation given by eq. (4.33).

tum distribution, finding different intensity values depending on which framework is
chosen. So, the theory under test is already used for calibration, which is certainly
problematic [154]. Here, in contrast, we do not look at the momentum distribution of
ionized electrons at all but study only the Rydberg yield. In this study of Rydberg states
we are not interested in total but only in relative intensities, which can be controlled
and measured independently of the mentioned calibration issues. Therefore, Rydberg
states can be used for testing nonadiabaticity effects independent of the absolute in-
tensity, thus complementing the way nonadiabaticity is tested using momentum dis-
tributions.

4.2.4 Wavelength correction

For a wavelength of λ = 800 nm the estimation of a power law with exponent b = −1
matched the adiabatic simulation results rather well (see Fig. 4.3, b =−1.02 for the adi-
abatic CTMC simulations). Even though eq. (4.6) contains ω, the exponent of the power
law of the intensity dependence in this adiabatic theory is wavelength-independent and
we would expect the same power law scaling with about b =−1 to hold for larger wave-
lengths as well – or even better since the system would be more adiabatic. However,
the Rydberg yield from adiabatic CTMC simulations at λ = 1200 nm shows a faster
drop with intensity, which is reflected in the more negative exponent of b = −1.16 in
the power law fit (red diamonds with orange line in Fig. 4.5). For larger wavelengths,
the drop increases even faster with increasing intensity. In the following, a theory is
derived that explains this effect and that allows to make predictions about observing
this effect in experimental data as well.

As expounded in section 4.2.1, we need the maximal initial transverse velocity
v⊥,0,max and the range ∆φ of ionization phases (at v⊥,0 = 0) for estimating the area
of initial events in the v⊥,0 −φ plane which end up in a Rydberg state. The Coulomb
force is neglected during propagation, as explained in section 4.2.1, and therefore we
only use the Coulomb potential at the end of the pulse for the evaluation of eq. (4.1).
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Moreover, the tunnel exit is set to xe = 0. The position and velocity at a time τ just when
the pulse has passed are then approximated by

x(τ) ≈ E0

ω2
cos(φ)− E0

ω
sin(φ) ·τ (4.14)

y(τ) ≈ v⊥,0 ·τ (4.15)

vx =−E0

ω
sin(φ) (4.16)

v⊥ = v⊥,0, (4.17)

where a CEP of π was assumed (see Appendix A.4 for an explanation) and τ= τL/2 is the
time at the end of the pulse because τL denotes the pulse duration and the ionization
phase of φ= 0 is defined to correspond to ionization at the central field extremum.The
detailed derivation of these equations along with an explanation of the approximations
applied here are given in Appendix A.4. The important point about these equations is
that they differ from the ones used in [49] in that they include the term E0

ω2 cos(φ) in
x(τ). The wavelength effect in the intensity dependence that is derived in the following
arises from this discrepancy. Therefore, the mentioned effect is weakened for longer
pulses where the second term in x(τ) dominates and the term E0

ω2 cos(φ) is less relevant.
For the calculation of v⊥,0,max , we can plug eqs. (4.14) and (4.15) into eq. (4.1) in

the limit of E = 0 and set φ= 0

E =
v2
⊥,0,max

2
− 1√

E 2
0

ω4 + v2
⊥,0,max ·τ2

= 0. (4.18)

Analogously, we set v⊥,0 = 0 in the calculation of φear l i est in eq. (4.1), which leads to:

1

2

(
E0

ω

)2

· sin2 (φear l i est )− 1
E0
ω2 cos(φear l i est )− E0

ω
sin(φear l i est ) ·τ

= 0. (4.19)

This expression can be approximated by

1

2

(
E0

ω

)2

·φ2
ear l i est −

1
E0
ω2 − E0

ω φear l i est ·τ
= 0 (4.20)

since φear l i est < 0.1 for the parameters used here. Equations (4.18) and (4.20) can be
solved analytically for v⊥,0,max and φear l i est , respectively. The solutions are

v⊥,0,max =

√√√√−E 2
0

ω4 + E 4
0

ω8·h +h

3τ2
(4.21)

with

h =
(
−E 6

0 +6ω6
(
9τ4ω6 +

√
−3E 6

0τ
4 +81τ8ω12

))1/3
/ω4 (4.22)

and

|φear l i est | =
1+ g + 1

g

3τω
(4.23)
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with

g = E 3
0/

(
E 9

0 −27E 6
0τ

2ω6 +3
√
−6E 15

0 τ2ω6 +81E 12
0 τ4ω12

)1/3
. (4.24)

As before, the Rydberg yield is then estimated by plugging these results into

N∗

Nt
∝ |φear l i est | · |v⊥,0,max |

E0
. (4.25)

The resulting intensity dependence at λ = 1200 nm can be seen in Fig. 4.5 (blue line),
a power law fit to which gives an exponent of b = −1.15. This analytical derivation
matches the simulation data (red diamonds), yielding b = −1.16, very well. As the
lengthy, full analytical solutions of (4.18) and (4.20) given above do not allow for a
deeper understanding of which parameters dominate this wavelength effect in the in-
tensity dependence, an approximation for them is derived in the next paragraph.

The idea is to plug the approximate and simpler results v⊥,0,∗ = (2/τ)1/3 and φ∗ =
−(2

τ

)1/3 · ω
E0

from [49] into the Coulomb term of eq. (4.1) but not into its kinetic energy
term. For v⊥,0,max , this means

v2
⊥,0,max

2
− 1√

E 2
0

ω4 + v2
⊥,0,∗ ·τ2

≈ 0 ⇒ v⊥,0,max ≈
p

2(
E 2

0
ω4 +22/3 ·τ4/3

)1/4
. (4.26)

And for the phase we obtain

1

2

(
E0

ω

)2

·φ2 − 1
E0
ω2 − E0

ω
φ∗ ·τ

≈ 0, (4.27)

from which follows

|φear l i est | ≈
ω/E0 ·

p
2√

E0
ω2 − E0

ω

(
−(2

τ

)1/3 · ω
E0

)
τ

= ω/E0 ·
p

2√
E0
ω2 +21/3 ·τ2/3

. (4.28)

Setting m = E0
ω2 and n = 21/3 ·τ2/3, the Rydberg yield can be expressed as follows:

N∗

Nt
∝ Σ∗

Σt
= |v⊥,0,max | · |φear l i est |

E0
(4.29)

=
p

2(
m2 +n2

)1/4
·
p

2 ·ω/E0

(m +n)1/2
· 1

E0
(4.30)

= 2ω

E 2
0 ·

p
n ·

(
1+ m2

n2

)1/4 ·pn · (1+ m
n

)1/2
(4.31)

≈ 2ω

E 2
0 ·

p
n ·pn · (1+ 1

2
m
n

) (4.32)

∝ ω

21/3 ·E 2
0 ·τ2/3

(
1+ E0

24/3·ω2·τ2/3

) , (4.33)

where eq. (4.32) is expanded in a Taylor series around m/n ≈ 0 neglecting terms with
O (m2/n2). This expansion to first order seems reasonable since for the studied pa-
rameter regime m < n holds true. For the case of λ = 1200 nm, the approximation is
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plotted in Fig. 4.5 (green line) and a power law fit to it gives an exponent of b =−1.12.
This approximation makes clear that for large wavelengths and small pulse durations
the Rydberg yield as a function of intensity is less well described by a power law than
for small wavelengths and longer pulses. It bears repeating that this discrepancy be-
tween the description in [49] and the one derived above stems from the fact that here
the term E0

ω2 cos(φ) is included in the equation of motion whereas it is omitted in [49].

4.2.5 Conclusion and Discussion

In conclusion, it was found that taking account of the ionization time width into the an-
alytical model describing the intensity dependence of the power law explains adiabatic
CTMC simulations more accurately. In a next step, it became clear that nonadiabatic
CTMC simulations match the experimental results better. The less negative power law
exponent in the nonadiabatic case could be understood by the shallower intensity de-
pendence of the spread of the initial transverse momentum and, in particular, of the
ionization times. As the two mentioned corrections affect the denominator of the Ryd-
berg ratio and thus the total number of electrons that tunneled out of the atom, these
insights and approximations can be used beyond studies of Rydberg atoms when one
is interested in the intensity dependence of tunnel ionization in a more general con-
text. Moreover, we saw that the power law intensity dependence observed for infrared
light breaks down for longer wavelengths. This correction is based on and highlights
the importance of including the offset term E0/ω2 cos(φ) in the approximation of the
position of an electron that is driven by a laser field.

All in all, these results show new ways to use Rydberg atoms for retrieving informa-
tion about the tunneling and propagation step in strong field ionization processes. In
particular, measuring the Rydberg yield can be used as an independent test for non-
adiabatic effects in strong field ionization. So far, the question of the importance of
nonadiabatic effects in strong field ionization was addressed by investigating photo-
electron momenta distributions [57, 61, 154, 161]. These investigations, however, have
proved to be inconclusive, with some experiments confirming adiabatic assumptions
[57, 161] and others pointing to relevance of nonadiabatic effects under typical strong
field ionization conditions [61, 154]. As we have seen here, the intensity dependence of
the Rydberg yield can be described by a power law, with nonadiabaticity affecting the
exponent. Since the absolute value of intensity is therefore not important, the results
do not depend on the calibration procedure which has been a serious issue in prior
studies [154].

Thinking about pushing the nonadiabatic study of Rydberg states presented above
deeper into the nonadiabatic regime, we need to be aware of the fact that multipho-
ton excitation effects become relevant and a description that is restricted to the tun-
neling picture is insufficient. As a consequence, CTMC simulations are expected to
fall short when penetrating deeper into the nonadiabatic regime. For example, the
yield of strong field excited atoms exhibits modulations in the vicinity of channel-
closings in the multiphoton regime [184], which cannot be captured in the framework
of CTMC. While adapting the SFA allows for a unified description of strong field exci-
tation in the multiphoton and tunneling regime [184], this ansatz fails to include the
Coulomb potential during propagation. This may not be a problem in cases where
the Coulomb potential has a negligible effect on the observed quantity and can be
treated perturbatively, but will be problematic in e.g. studying pulse duration effects
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where the Coulomb potential plays a key role, as we will see shortly in section 4.3. A
future challenge therefore seems to lie in finding a trajectory-based method that cap-
tures strong field excitation effects in the multiphoton regime while at the same time
including Coulomb effects during propagation.

4.3 Pulse duration dependence

As the title suggests, this section deals with the pulse duration dependence of Rydberg
states. Just like the intensity in the previous section, also the pulse duration affects the
Rydberg yield. To those who read the previous section carefully this might not even
come as a surprise since eq. (4.6) already predicted a drop of the Rydberg yield with
increasing pulse duration, which was qualitatively corroborated by the experimental
observations in Ref. [48]. However, the mechanism that led to this relation in Ref. [49]
neglected the Coulomb potential during propagation. In the following we will see that,
even though we arrive at a similar law to describe the decrease of the Rydberg yield
with increasing pulse duration, the Coulomb potential is vital in the explanation of
pulse duration effects on Rydberg states and that the underlying mechanism cannot
be captured in a model with Coulomb-free propagation. It will thus become clear that
the mechanism for the pulse duration dependence identified here is fundamentally
different from the one suggested in [49].

Moreover, it will be found that the pulse duration changes the distribution of the
principal quantum numbers of Rydberg states. So far, the principal quantum number
populations are generally believed to be determined primarily by the field strength and
wavelength, shifting to higher values for larger intensities and longer wavelengths of
the laser pulse [176, 177, 185, 186]. Here, in contrast, it will be shown that the pulse
duration offers an independent control knob, which allows to increase the relative
occupation of low quantum number states without affecting other properties of the
pulse. Understanding and controlling the principal quantum numbers is relevant as
this quantity is crucial in characterizing excited neutral atoms, e.g. in terms of their life-
time before decaying into metastable states [48]. In the past decade, the distribution
of principal quantum numbers has helped understand the stability of excited states
under the influence of a second laser pulse [170, 171], ionization channels and their
closings [184, 187] as well as the effect of spatial gradients in the laser field [188].

Most recently, a new source of coherent extreme-ultraviolet light emission was de-
monstrated [189] based on Rydberg states created by FTI. In this radiation scheme,
atoms are coherently excited into a Rydberg state ΨR by the interaction with the in-
coming laser field. There can then be a spatial overlap of this excited state ΨR (r) with
the ground state Ψ0(r) and this superposition state can emit coherent extreme ultravi-
olet (XUV) light. One may interpret the radiation as due to the beating of the Rydberg
state ΨR and the ground state Ψ0 (for an illustration of the mechanism, see Fig. 1a in
[189]). This novel technique is expected to find applications in imaging with nanome-
ter resolution, next-generation lithography for high precision circuit manufacturing,
and ultrafast spectroscopy [190]. Interestingly, this new XUV light source relies on Ryd-
berg states that occupy low principal quantum numbers [189]. Therefore, the insights
gained about the control of the quantum number distribution via the pulse duration
should prove helpful in tuning the XUV radiation scheme. Even though an adapted
strong field approximation (SFA) model was developed and successfully applied to
explain certain features of the mentioned XUV radiation [191], this description can-
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not capture the Coulomb-dependent pulse duration effect presented here. Employing
CTMC simulations, which fully include the Coulomb potential during propagation, the
importance of using short pulses for the newly developed XUV scheme is revealed by
showing that the excited states of small principal quantum numbers, which contribute
significantly to that radiation scheme, cease to be a Rydberg state first when the pulse
duration is increased.

More generally and beyond the specific application to the XUV radiation scheme,
the mechanism that is identified to explain both the depletion of small quantum num-
bers and the overall reduction of the Rydberg yield with longer pulses will teach us
more about fundamental post-ionization dynamics: We will see a counter-intuitive ef-
fect at work, with deeply bound Rydberg states being less likely to survive longer pulses
than loosely bound Rydberg states due to the electron’s interaction with the Coulomb
potential.

4.3.1 A primer on principal quantum numbers of Rydberg states

In this section, the way principal quantum numbers of Rydberg states have been com-
monly dealt with so far is explained in a brief summary. The basic idea behind intro-
ducing principal numbers of Rydberg states is Bohr’s model. Since the Rydberg elec-
tron’s motion can be well described by a classical Kepler orbit around the parent ion
after the laser pulse has passed, one can assign a principal quantum number to that
Rydberg state in the following way [49, 179],

Energy =−0.5

n2
(4.34)

where the factor of 0.5 is the Rydberg constant in atomic units. In addition, invoking
the Virial theorem gives the following relations for the time-averaged kinetic energy
〈T 〉 and potential energy 〈U 〉 for the motion in a Coulomb potential

〈T 〉 =−1

2
〈U 〉

⇒ 〈T 〉+〈U 〉 = 1

2
〈U 〉 =−0.5

〈r 〉 =−0.5

n2

⇒ n =
√

〈r 〉,

(4.35)

where for the last equality in the second line the total average energy 〈T 〉+〈U 〉 was set
equal to eq. (4.34). Assuming that the average position 〈r 〉 can be approximated by the
quiver amplitude E0/ω2 of the electron in the laser field the most probable principal
quantum number is estimated to be

n ≈
p

E0

ω
, (4.36)

which is found in [49, 176].

4.3.2 Simulation results for the principal quantum number
distribution

The relation given in eq. (4.36) states that the principal quantum number of Rydberg
states increases with laser intensity and wavelength, which is in line with prior results
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Figure 4.6: Left panel: Distribution of principal quantum numbers for various pulse
durations specified by the number of cycles N in the legend. The maximal yield of each
distribution is normalized to 1. The result was obtained for ionization of hydrogen at
a laser intensity of I = 1.5 ·1014 W/cm2 and a central wavelength of λ= 800 nm. Right
panel: Position of the peak in the distribution of the principal quantum number vs.
pulse duration for ionization of hydrogen at two different laser parameters that are
specified in the legend. The lines represent fits according to eq. (4.42).

[48, 176, 177, 185, 186]. However, no dependence on the pulse duration is mentioned.
As can be seen in Fig. 4.6, though, CTMC simulations reveal that the distribution of
principal quantum numbers also depends on the pulse duration. These results make
clear that the quantum number distribution in general and its peak in particular shift
to larger n for longer pulse durations. The fit to the peak position presented in the right
panel of Fig. 4.6 shows that the growth of the peak position of the principal quantum
number distribution can be well described by a function that scales like

p
N , where N

is the total number of cycles in the laser pulse.

4.3.3 Physical interpretation of the pulse duration effect

Before trying to understand the reason for that particular scaling, we want to obtain a
qualitative and intuitive understanding for the growth of n with increasing pulse dura-
tion. To this end, we look at Fig. 4.7 showing the dependence of the final energy on the
ionization time t0 and initial transverse velocity v⊥,0 at the tunnel exit, where the final
energy was converted into the principal quantum number n according to eq. (4.34).
The Rydberg area, the area in the plane of initial conditions (t0, v⊥,0) that corresponds
to electron capture into a Rydberg state, is crescent-shaped, in accordance with the
findings presented in section 4.2 (see e.g. Fig. 4.1). At the inner edge of the crescent,
we find those initial conditions that lead to Rydberg states of small principal quantum
numbers, with n increasing towards the outer edge of the crescent. This makes sense
as the earlier and thus farther away from the field maximum the electron is born, the
more it is accelerated by the laser field4. Consequently, at the outer edge of the crescent
we find electrons with a relatively large kinetic energy due to acceleration in the laser
field and/or due to a large initial transverse velocity. Thus, the total energy is higher
(less negative) here, corresponding to larger principal quantum numbers.

More importantly, Fig. 4.7 reveals that the position of the quantum numbers in
the crescent does not change significantly with pulse duration, but that for increas-

4This can be seen, for example, from eq. (2.7), where, for a quick estimate, we can approximate
A(t0) ≈ −E0/ωsin(ωt0) ≈ −E0t0. Assuming vx (t0) ≈ 0, the longitudinal momentum at the detector is
vx (t f ) ≈−A(t0) ≈ E0t0.
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Figure 4.7: Map of the principal quantum number n depending on the ionization time
t0 and the initial transverse velocity v⊥,0. Initial conditions which do not end up in a
Rydberg state (positive total energy, E > 0) are marked in gray. The pulse duration is
given by the number of cycles N . The increasing pulse duration leads to the crescent-
shaped Rydberg area waning from the inside.

Figure 4.8: Same as Fig. 4.7, except for the constant envelope of the pulse used here.
Even though there are minor differences to Fig. 4.7, the basic features persist. This re-
veals that the total time the electron spends in the laser field, rather than the different
shapes of the envelope that different pulse durations imply, is responsible for the ‘wan-
ing of the moon’ with increasing pulse duration.

ing pulse duration the inner part of the crescent no longer comprises a Rydberg state.
With increasing pulse duration, the small principal quantum numbers thus cease to
be part of the Rydberg area, which matches our observation made in Fig. 4.6 about
the principal quantum number distribution shifting to larger values for longer pulses.
Moreover, the smaller overall size of the Rydberg area for longer pulses is in agreement
with previous findings on Rydberg yield exhibiting a decline for increasing pulse dura-
tions [48, 49, 192]. Nevertheless, we will see shortly that the underlying mechanism we
identify is different from the one that has explained this effect so far [49].

4.3.4 Testing the effect of the envelope shape

To conclusively establish whether the loss of Rydberg electrons for longer pulses is
caused by the longer time the electron spends in the laser field or by the different
shapes of the envelope that the different pulse durations imply, additional simulations
are performed. Replacing the cos2-term in eq. (2.4) by a heaviside step function in the
interval [−N /2, N /2] ·2π/ω, we get almost the same crescents as the ones obtained us-
ing the full envelope (compare Figs. 4.7 and 4.8), with significant discrepancies only
for very small pulse durations in the regime of N ≤ 4. This shows that the reason for
the loss of low quantum number Rydberg states with longer pulse durations is the long
time the electrons spend in the laser field rather than a particular envelope shape.
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4.3.5 Analysis of trajectories

Even though the plots of the Rydberg areas in Figs. 4.7 and 4.8 gave us some idea of the
effect the pulse duration has on Rydberg states, it did not tell us why these effects are
observed. To address this question, a closer look at trajectories with initial conditions
around the inner edge of the crescent is enlightening. Fig. 4.9 shows such exemplary
trajectories from around the inner edge of the crescent for two different pulse dura-
tions – one that still allows the electron to end up in a Rydberg state (N = 16) and one
that doesn’t do so any more (N = 17). A constant envelope is used since it simplifies
the following considerations without a loss of generality, as just discussed. In the cen-
tral panel of Fig. 4.9, we can see that during the first optical cycles the electron is –
on cycle average – driven away from the residual ion and comes closer to it later on,
approximately following a parabola-like curve.

How can we understand that the electron is – on cycle average – moving along a
parabola-like curve? Loosely speaking, this is due to two competing effects: On the
one hand, the laser field drives the electron away from the parent ion and, on the other
hand, the Coulomb force of the residual ion has an attractive effect on the electron.
For a deeper understanding, let us look at the bottom panel of Fig. 4.9, from which
it becomes clear that the oscillation of the electron’s position around a parabola-like
curve is directly linked to the approximately linear function with positive slope that
the velocity vx(t ) follows on cycle average. As we will see, the positive slope of this
linear function is entirely due to the pull of the Coulomb potential in the direction
of the residual ion. If the electron were driven merely by the laser field and were not
influenced by the Coulomb potential, then the velocity of the electron would be given
by

vx(t ) =−E0

ω
(sin(ωt )− sin(ωt0)) (4.37)

for a constant envelope5. This function oscillates around the mean value of
E0/ωsin(ωt0), which can be approximated by E0t0 and is thus negative for ionization
times before the peak of the optical cycle, which is the time regime in which Rydberg
electrons are typically born (the negative ionization time of Rydberg states can also be
seen from Figs. 4.7 and 4.8). This negative offset in the velocity, when only consid-
ering the laser field and neglecting the Coulomb potential, explains why the electron
is initially – on cycle average – slightly driven away from the residual ion (see center
panel of Fig. 4.9). Now, as one can see in the central panel of Fig. 4.9, even though the
change of the ‘mean’ position – the position of the electron in the x-direction that the
electron oscillates around (green line) – is vital in the understanding of the electron’s
return, it changes rather slowly. Consequently, as the Coulomb force merely depends
on the electron’s position, the Coulomb force averaged over one optical cycle also does
not change quickly and can be considered almost constant. A constant force, which
is proportional to a constant acceleration, then leads to a linearly changing velocity,
which agrees with what we observe numerically. The slope of this linear function is
positive since the Coulomb potential exerts an attractive force on the electron. The
linearly scaling velocity, in turn, leads to the cycle-averaged elongation following an
approximate parabola, which tallies with the numerically obtained result (see central

5This equation differs from eq. 4.16 in the sign of the prefactor because here we use a CEP of 0,
whereas for eq. 4.16 a CEP of π was used, which is explained in Appendix A.4.
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Figure 4.9: Data for trajectories released at t0 =−6.4 with v⊥,0 = 0.09 from a hydrogen
atom and propagated in a laser field with I = 1.5·1014 W/cm2 and λ= 800 nm that has
a constant envelope with a total number of cycles N = 16 and N = 17, respectively. The
fact that the electron experiences only about half of the respective numbers of optical
cycles is due to the electron being born in the central cycle. Top panel: Coordinates
x and r⊥ = √

y2 + z2. Central and bottom panel: Position x and velocity vx along
the polarization axis as a function of propagation time, respectively. After the pulse is
over, the respective trajectory is displayed in a lighter shade (i.e. orange and light-blue)
of the color it had while the pulse was still on (i.e. red and dark blue).

and bottom panel of Fig. 4.9). At this point, one may be wondering why consider-
ing the cycle-averaged trajectory should be sufficient. Concerning that question, the
reader is referred to Refs. [193, 194], which provide a detailed elaboration on the power
of cycle-averaged descriptions of post-ionization dynamics, in particular in the context
of including Coulomb effects during propagation.

The observation that the averaged position approximately follows a parabola now
helps us explain why certain initial conditions lead to a Rydberg state for a short pulse
but not for a longer one: If a critical number of optical cycles (N = 16 in Fig. 4.9) is
exceeded, the electron comes back so close to the ion that it ‘recollides’ gaining a lot of
kinetic energy and therefore does not end up in a Rydberg state. In the return process,
the cycle-averaged motion described approximately by the parabola is more relevant
than the amplitude of the oscillation which strongly depends on the envelope. Thus,
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Figure 4.10: The dots represent the Rydberg yield R numerically obtained in CTMC
simulations as a function of the pulse duration, encoded in the number of cycles N ,
for ionization from a hydrogen atom in a laser field as defined by eq. (2.4) at a central
wavelength of λ= 800 nm for three different intensities that are specified in the legend.
The solid lines represent the fit results using the function given in eq. (4.38), where the
crucial fitting parameter b is given in the legend.

we can now understand why we found in section 4.3.4 that the time the electron spends
in the laser field is the relevant parameter rather than the different shapes of the enve-
lope.

4.3.6 Dependence of the Rydberg yield on pulse duration

The described effect of the electron being ‘scattered out’ for too long pulses and the
consequently shrinking Rydberg area leads to the Rydberg yield decreasing with in-
creasing pulse duration. In order to give a more quantitative description, CTMC sim-
ulations are performed for various intensities and the Rydberg yield R, defined as the
number N∗ of electrons that end up in a Rydberg state divided by the number Nt of
all electrons that tunneled out of the atom, is plotted as a function of pulse duration
in Fig. 4.10. The Rydberg yield as a function of the pulse duration, τL = 2τ, which is
encoded in the number of cycles N , is fitted by

R(N ) = a ·N b + c (4.38)

with fitting parameters a, b, and c. In all cases, b ≈ −0.5 is found, corresponding to
R ∝ τ−0.5

L .
To better understand this finding, we assume that the crescent-shaped Rydberg

area in the central cycle of the pulse is proportional to the number of Rydberg states
(just as in section 4.2 and in Ref. [49]). As also shown in section 4.2, the size of the
crescent-shaped Rydberg area can be assumed to be proportional to the boundaries of
the area in the t0 direction (see eq. (4.3) and Fig. 4.2):

R ∝ (t0,max − t0,mi n), (4.39)

where t0,mi n is the earliest ionization time that leads to a Rydberg state and that can
safely be assumed to be independent of the pulse duration (see e.g. Fig. 4.7). t0,max de-
fines the pulse duration dependent maximal initial time that leads to a Rydberg state.

When the pulse duration reaches its critical length, the total area under the vx

curve, which corresponds to the position of the electron, becomes approximately zero
(see central and bottom panel in Fig. 4.9). This entails that the electron gets into the
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Figure 4.11: Linear fit to the minima of vx (see e.g. the bottom panel of Fig. 4.9) ob-
tained for ionization from hydrogen at a laser intensity of I = 3.0 ·1014 W/cm2, a cen-
tral wavelength of λ = 800 nm, and an initial transverse velocity v⊥,0 = 0.15 a.u. for
different ionization times t0. The pulse duration differs in each case and is chosen in a
way that one optical cycle more would cause a strong Coulomb interaction that would
accelerate the electron such that it would not be captured in a Rydberg state.

immediate vicinity of the residual ion and is strongly accelerated, gaining enough en-
ergy in the scattering process to leave the atom for good. In Fig. 4.11, linear fits to the
minima of vx (in analogy to the green line in the bottom panel of Fig. 4.9) are shown
for different ionization times in the central cycle at a fixed intensity, wavelength, and
initial transverse velocity. The parameter that is varied is the pulse duration, which is
chosen in each case as the maximal pulse duration, Nmax , that will still lead to a Ryd-
berg state, meaning one additional optical cycle would bring the electron so close to
the ion that the Coulomb potential would strongly accelerate the electron such that it
would not be captured in a Rydberg state. From Fig. 4.11 we can see that the differ-
ent ionization times mainly affect the slope of these lines6 but both the offset and the
range of vx , ∆vx , are almost constant with variations below 1% for the offset and below
15% for ∆vx from the respective mean value. Therefore, the following approximation
is done

∆vx ≈ const = d(t0,max) ·Nmax(t0,max), (4.40)

where d is the slope of vx . Furthermore, we find numerically for the dependence of
t0,max on the slope d that we can fit it nicely to a function

t0,max = p ·dβ+q (4.41)

with fitting parameters p, q , and β (Fig. 4.12). In particular, we find similar values for
β for the different laser parameter sets shown in Fig. 4.12 (which are the same laser
parameters as in Fig. 4.10 that we try to understand): β≈ 0.6.

How can we understand this result? As has already been discussed in the context
of the explanation of the approximately parabola-shaped elongation, the electron is,
on cycle average, exposed to an approximately constant force that pulls it closer to

6Note that the different slopes of the linear cycle-averaged velocity curve correspond to different
curvature radii of the parabola-like function the position is oscillating around. A steeper velocity slope
corresponds to a smaller curvature radius of the parabola-like position curve and thus means the elec-
tron returns to the parent ion in fewer optical cycles. Also see Fig. 4.13, from which the relation between
ionization time, parabola curvature and the maximal pulse duration that still leads to a Rydberg state
becomes clear.



74 CHAPTER 4: Intensity and pulse duration dependence of Rydberg states

Figure 4.12: Left panel: The markers represent slopes of the linear fits to the minima of
vx (see e.g. Fig. 4.11) versus the maximal ionization times that still lead to the electron
ending up in a Rydberg state for different intensities specified in the legend. A laser
with a central wavelength of λ= 800 nm was used for ionization of hydrogen, and the
trajectories were started at an initial transverse velocity of v⊥,0 = 0.15 Note that, as in
Fig. 4.11, the maximal pulse durations Nmax that still lead to a Rydberg state were cho-
sen for each point separately and thus vary in the plot. Nmax grows as t0,M ax becomes
more negative, as indicated by the arrow. The solid lines represent the corresponding
fit of eq. (4.41) to the data, with the crucial fitting parameter β given in the legend.
Right panel: Sketch showing how one can understand that a 1/t 2

0 scaling can locally
be approximated by a t 2

0 scaling.

the ion. This Coulomb force is represented as the slope d in eq. (4.40) and it obviously
depends on how far the electron is away from the ion on average. The drift momentum
imposed by the laser field is E0/ω · sin(ωt0) ≈ E0t0 and can be used as a quantifier for
how far away from the residual ion the electron is pushed on cycle average. So, the
Coulomb force, which scales as−1/r 2 with distance r , can be assumed to scale as−1/t 2

0
with the ionization time, meaning d ∝ 1/t 2

0 . This seems to contradict our finding of
d ∝ t 1/0.6

0,max ≈ t 2
0,max from the fit at first glance. However, as one can understand by

the sketch in the right panel of Fig. 4.12, the approximate 1/t 2
0 drop of the Coulomb

force can be further approximated around the typical values of t0, i.e. slightly negative
values, by a function that scales like a parabola t 2

0 .
Thus, we have seen that in order to quantify how the Rydberg yield decreases with

increasing pulse duration it is sufficient to quantify how fast the inner edge of the Ryd-
berg area, i.e. the maximal ionization time that still leads to a Rydberg state, is shifted
further away from the field maximum. We have learned that ionization closer to the
field maximum leads to a steeper slope in the cycle-averaged linear velocity curve, cor-
responding to a smaller curvature radius the position is oscillating around and result-
ing in a return to the parent ion after fewer optical cycles. This was understood by
ionization times further away from the field maximum leading to a larger drift by the
laser field and hence the Coulomb force pulling the electron back more slowly.

4.3.7 Comparison to other models

Even though the scaling of R ∝ τ−1/2
L is not dramatically different from prior results [48,

49], which gave a τ−2/3
L dependence, it offers a completely different explanation for the

underlying mechanism. Prior treatments neglected the Coulomb potential, which was
viewed as a higher-order correction, during propagation [49, 180]. Only after the pulse
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was over, the Coulomb potential was accounted for by including it when checking if
the total energy was negative [49]7. Our analysis, however, shows that including the
Coulomb potential during propagation is vital in explaining that for sufficiently long
pulses the electron is driven back to the parent ion, which leads to ionization. Without
the Coulomb potential, the electron that can potentially form a Rydberg state (and is
therefore born before the peak of the laser field) would be, on cycle average, monoton-
ically driven away from the residual ion. Consequently, the electron would never, on
cycle average, slowly move back to the ion and strongly interact with its Coulomb po-
tential when a critical pulse duration is exceeded. Yet even sophisticated models like
the modified SFA [191] that explains many features of the mentioned newly developed
XUV radiation scheme [189] do not include the Coulomb effect during propagation
and thus do not take this effect of ‘ionization through scattering’ into account and, as
a consequence, cannot capture the pulse duration effects described here.

Furthermore, the analysis in Ref. [49] builds on the assumption that the ‘outer edge’
of the Rydberg area, corresponding to minimal ionization times and maximal trans-
verse velocities, is affected by the pulse duration and the Rydberg area ‘shrinks from
the outside’. The outer edge of the Rydberg area defines the limit E = 0 when check-
ing if the total energy E is negative according to eq. (4.1). Therefore, focusing on E = 0
seems intuitively reasonable as close to this limit we find the most loosely bound Ryd-
berg states, which one would intuitively (if wrongly) expect to be least stable and to
survive only short pulses. In section 4.2, we have successfully applied this criterion of
E = 0 in the intensity dependence study. The pulse duration, in contrast, barely af-
fects this outer edge of the Rydberg area but makes the Rydberg crescent wane from
the inner edge, as we have seen above, e.g. in Fig. 4.7. Thus, the deeply bound Rydberg
states found at the inner edge only survive short pulses, whereas the loosely bound
Rydberg states close to the outer edge (corresponding to E = 0) stay bound even for
longer pulses. This counter-intuitive effect of loosely bound Rydberg states being more
stable against pulse duration changes can only be explained in a model that includes
the above-described effect of the electron returning to the parent ion and being ac-
celerated in a scattering process. All of this highlights the importance of including
the Coulomb effect when studying the pulse duration dependence of Rydberg states,
which is further backed by the study by Dubois et al. that was published most recently
in [195] (sec. IV. therein).

4.3.8 Dependence of the principal quantum number distribution on
pulse duration

The observation that the inner edge of the crescent scatters out first when the pulse du-
ration increases is also crucial for understanding the effect of the pulse duration on the
principal quantum number distribution (Fig. 4.6). The Rydberg states that are found at
this inner edge have a more negative energy, corresponding to smaller quantum num-
bers. The fact that these smaller principal quantum numbers cease to be a Rydberg
state first when the pulse duration increases is in agreement with the principal quan-
tum number distribution shifting to larger n for longer pulses (see Fig. 4.6). To under-
stand why the pulse duration affects small and large quantum numbers differently, it
is instructive to look at two trajectories for the same initial transverse velocity but dif-

7Even though in Ref. [49] the Coulomb potential was accounted for in a perturbative manner, the
effect cancels out in this description, as was explained in section 4.2.1.
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ferent ionization times, where the smaller principal quantum number corresponds to
an ionization time that is closer to the field maximum (t0 = 0), being found at the in-
ner edge of the crescent. Fig. 4.13 shows such a comparison and we can see that being
born closer to t0 = 0, the electron moves along a smaller parabola-shaped curve. This
is mainly due to the smaller vector potential of the laser field closer to the field maxi-
mum. Therefore, the acceleration by the laser field driving the electron away from the
ion is weaker and the Coulomb potential pulls the electron back faster. Consequently,
the critical number of optical cycles for which the electron recollides with the parent
ion and ceases to be a Rydberg state is smaller for initial conditions corresponding to
smaller principal quantum numbers.

To make these findings more quantitative, we look again at the right panel of Fig. 4.6.
As indicated by the lines in this plot, we find that the principal quantum number n
peaks at values npeak that can be fitted by the following function

npeak = A+B
p

N (4.42)

with fitting parameters A and B . We can understand that the increase can be described
by such a

p
N -scaling by looking at the parabola that x oscillates around (e.g. in Fig. 4.9

or 4.13). As mentioned before, we expect n ≈p〈r 〉 (see eq. (4.35)). Similarly to section
4.3.6, we are again interested in Nmax , the maximal number of cycles in the pulse that
still leads to a Rydberg state (e.g. Nmax = 16 in Fig. 4.9) since it is directly linked to the
zero-crossing of the parabola and its value depends strongly on the initial conditions
(t0, v⊥,0). We find that Nmax depends linearly on the extreme value of the parabola,
which we call xmax . This relation will be explained in the next paragraph, but now let
us first look at the consequence: Since xmax depends linearly on Nmax , also the mean
elongation 〈x〉 of the parabola depends approximately linearly on Nmax , hence 〈x〉 de-
pends linearly on Nmax . Also the motion transverse to the polarization axis happens
along a parabola and an analogous line of reasoning can be applied here and we find
that 〈r⊥〉 depends linearly on Nmax . Therefore, we obtain n ≈ p〈r 〉 ≈

√
〈x〉2 +〈r⊥〉2,

which then depends linearly on
p

Nmax . As the maximal number of cycles Nmax de-
fines the inner edge of the crescent and also the most likely n value, we can replace
Nmax by N and obtain eq. (4.42).

Now, back to the question of how we can understand that numerically it is found
that the maximal number of optical cycles Nmax that the pulse can have for a specific
initial condition so that the electron still ends up in a Rydberg state depends linearly
on the maximal elongation xmax of the parabola that we fit to the x(t ) curve. Let us
assume that the approximate parabola which x oscillates around returns to x = 0 after
propagation for about Nmax/2 cycles, which should become clear from Fig. 4.13 and
from the fact that for x close to zero the recollision is increasingly likely8. In Fig. 4.13
we see that the maximal value xmax is found after a propagation time of about Nmax/4.
If we define the parabola fit function as x f i t (t ) = d · (e − t )2 + f with fitting parameters
d , e, and f , then we realize that e ≈ Nmax/4 and f ≈ xmax . So, mathematically the
question is why we find approximately that e depends linearly on f . As we can see in
Fig. 4.13, the parabolas for different t0 are noticeably similar directly after ionization.
In terms of the parabolic fit function, we can therefore write

x f i t (0) = de2 + f = P1 ≈ const

x ′
f i t (0) =−2de = P2 ≈ const

(4.43)

8Note that we assume that the electron is born in the central cycle and that thus the pulse is on only
for about Nmax /2 cycles after ionization.
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Figure 4.13: Position x vs. propagation time t for trajectories ionized from hydrogen
in a laser field of an intensity I = 1.5·1014 W/cm2 and a central wavelength λ= 800 nm
with an initial transverse velocity v⊥,0 = 0.15 for two different ionization times t0 and
correspondingly two different pulse durations, which are chosen such that a pulse du-
ration of one optical cycle more would have led to the electron not ending up in a Ryd-
berg state anymore. The dashed lines show a parabolic fit through the value that x
oscillates around.

and thus it follows

f = P1 −de2 = P1 +P2/2 ·e, (4.44)

which means that f depends linearly on e and which tallies with our numerical obser-
vations described above.

Thus, similar to the analysis in section 4.3.6, we have used that an ionization time
close to the field maximum leads to an earlier return to the parent ion. Instead of quan-
tifying this in terms of a steeper slope of the cycle-averaged linear velocity curve as in
section 4.3.6, here we used that, correspondingly, the parabola-like curve the position
oscillates around has a smaller curvature radius. Focusing on the position allowed us
to make a connection to the principal quantum number via n = p〈r 〉. Consequently,
we could quantify approximately how an ionization time closer to the field maximum –
corresponding to a smaller parabola and hence a smaller n – can only lead to a Rydberg
state for shorter pulses.

4.3.9 Conclusion and Discussion

In summary, using CTMC simulations it was found that an increase in the pulse du-
ration of the laser shifts the principal quantum number n of Rydberg states to larger
values and that this increase scales approximately like the square root of the pulse du-
ration. Moreover, we observed a decrease in the fraction of electrons that end up in a
Rydberg state with increasing pulse duration. We could understand this general drop
of the Rydberg yield by finding that the attractive Coulomb potential slowly drives the
electron back to the parent ion. If the propagation is too long, the electron gets so close
to the parent ion that the strong interaction causes a significant acceleration prevent-
ing the electron from forming a Rydberg state. We have seen that electrons ending up
in Rydberg states of small quantum numbers return to the parent ion more quickly and
are thus ‘scattered out’ already for shorter pulse durations. This explains the shift of the
principal quantum number distribution to larger quantum numbers for longer pulse
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durations. As the mechanism that explains these pulse duration effects stands in con-
trast to the mechanism found in a model that neglects the Coulomb force during the
propagation in the laser field [49], the results presented here show that the Coulomb
force has important consequences for the yield and quantum number distribution of
Rydberg states.

The insights gained in the study of pulse duration effects allow us to not only un-
derstand but also control the distribution of principal quantum numbers, which will
prove helpful in studies and applications that are based on this distribution, such as
those presented in Refs. [170, 171, 184, 187–189, 196, 197]. Interestingly, the effect
of the longer pulse duration ionizing Rydberg states of low principal quantum num-
ber reported in this work is similar to the effect reported in recent studies that used
a second laser pulse to investigate the stability of Rydberg atoms [170, 171] since also
the use of a second laser pulse leads to ionization of Rydberg states of low principal
quantum numbers. Thinking in terms of control of the principal quantum number of
Rydberg states the study presented in this chapter might prove helpful as modifying
the pulse duration might be easier to implement than installing a second laser pulse
in certain systems. One particular application for which the control of the quantum
number distribution is vital is the recently developed scheme that uses radiation from
Rydberg excited states created via FTI to generate coherent XUV emission [189]. As the
XUV emission yield is larger if Rydberg states with low principal quantum numbers are
populated, choosing a short pulse duration is vital here since we have seen that the low
principal quantum number states are the ones affected most severely when the pulse
duration becomes longer.

Stepping back and considering this chapter about Rydberg states as a whole, one
open question seems to be why the intensity dependence in section 4.2 gave rea-
sonable results in a model that neglected the Coulomb potential during propagation
whereas in the pulse duration dependence in section 4.3 including the Coulomb po-
tential was indispensable. The key to resolve this problem lies in the observation that
the Rydberg area decreases from the ‘outside’ for increasing intensity and from the ’in-
side’ for increasing pulse duration. In other words, the initial conditions that lead to
Rydberg states for only small intensities or only short pulse durations have an energy
that is close to zero or deeply negative, respectively. Thus, as the Rydberg states which
cease to be a Rydberg state upon increasing the intensity are loosely bound anyway,
the recollision mechanism is not the dominant process that leads to the decrease in
Rydberg states and neglecting the Coulomb potential during propagation worked well.
This stands in contrast to the deeply bound Rydberg states that cease to be a Rydberg
state when the pulse duration increases because of the above-explained return to and
rescattering at the parent ion.



CHAPTER

5
Emergence of a Higher Energy
Structure in inhomogeneous fields

“One sometimes finds what one is not looking for."

— Alexander Fleming (Nobel Prize Laureate in 1945)

Overview of this chapter

This chapter reports on the emergence of a prominent higher energy peak [73] in the spec-
trum of photoelectrons that were ionized from the gas phase in a laser pulse with time-
varying spatial dependence as it is typically found in the vicinity of a nanostructure. The
higher energy structure (HES) originates from direct electrons released in a narrow time-
window and is separated from all other ionization events, with its location and width highly
dependent on the strength of the spatial inhomogeneity. Hence, the HES can be used as a
sensitive tool for near-field characterization in the “intermediate regime”, where the elec-
tron’s quiver amplitude is comparable to the field’s decay length. Moreover, the large ac-
cumulation of electrons with tuneable energy suggests a promising method for creating a
localized source of electron pulses of attosecond duration using tabletop laser technology.
In section 5.3, closed-form expressions are derived [74] to describe the movement in this
“intermediate regime”, which is notoriously difficult to describe analytically. These de-
scriptions will help us understand how the spectral position and width of the HES depends
on the inhomogeneity of the field and thus how to control the parameters to obtain a spec-
trally narrow electron pulse of tunable energy.
In section 5.4, it will be shown that the recently reported experimental finding of a low en-
ergy peak (LEP) can be understood in the same theoretical framework as the theoretically
predicted emergence of the HES. Even though the two peaks were observed in different
energy regimes, and despite the LEP being detected for electrons that were released from
a nanotip whereas the HES was found for electrons ionized from a gas that is placed in
the vicinity of a nanotip, a single mechanism that causes the peak formation is identified.
Based on this mechanism, a more general analytical model is derived to describe the en-
ergy upshift electrons experience in inhomogeneous electric fields. It will also explain the
experimentally observed linear scaling of the peak energy of the LEP with the intensity of
the incident laser pulse. Moreover, parameters are found at which electrons ionized di-
rectly from a nanostructure, the setting in which the LEP was found, form a prominent and
narrow peak at higher energies as it was described in the framework of the HES. As ioniza-
tion from the tip is experimentally better established than ionization from the gas phase
near a nanostructure, this should pave the way for the experimental realization of almost
monoenergetic electron beams of attosecond duration as they are predicted for the HES in
the gas phase.
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5.1 Introduction to inhomogeneous fields in the vicinity
of a nanostructure

5.1.1 Introduction to nano-attophysics

In this chapter, we will leave the regime of ‘pure’ strong field attosecond science that
focuses on lasers and atoms and include nanostructures that enhance the fields and
introduce a spatial inhomogeneity. Of course, also ionizing ‘just’ atoms introduces an
inhomogeneity via the Coulomb potential that cannot always be neglected, as we have
seen in the previous chapter and which will also play a crucial role in chapter 6. In this
chapter, however, the dominant inhomogeneity is produced by a nanostructure and
thus much more extreme resulting in completely different effects.

‘Traditional’ nano-optics, i.e. using electromagnetic fields that are neither particu-
larly strong nor short-pulsed, describes optical phenomena that arise at the nanometer
scale [198]. This involves using solid state structures that are of nanometer size or at
least exhibit edges and protrusions at this scale. These scales cannot be spatially re-
solved by typical wavelengths of several hundred nanometers, due to the diffraction
limit [198]

∆x ≥ 1

2∆kx
. (5.1)

Now, the clue and mathematical trick that the field of nano-optics is based on and that
facilitates subwavelength resolution after all is the fact that we can increase the spread
in kx beyond k as long as we make sure that the relation

k =
√

k2
x +k2

y +k2
z (5.2)

is fulfilled. Choosing for example kz to be imaginary, thus finding k2
z < 0, we can afford

kx > k and still satisfy eq. (5.2). However, having an imaginary kz results in an expo-
nentially decaying field exp(−|kz |z) in the positive z-direction, commonly referred to
as an evanescent wave. In the opposite z-direction, the field would grow exponentially,
which is unphysical and cannot be true. If, however, we are not in an infinitely ex-
tended space but at a surface between two different media, then the exponential decay
can exist in one half-space while in the other half-space the other material and refrac-
tive index result in a different solution that does not necessarily lead to the exponential
growth [198].

This principle of achieving subwavelength spatial resolution by introducing an
imaginary wavevector and thus an evanescent wave has led to many powerful tools
and applications in the field of nano-optics [199–206]. Prominent examples include
scanning near-field optical microscopy (SNOM) [207], tip-enhanced Raman scattering
(TERS) [208–210], photon scanning tunneling microscopy (PSTM) [211, 212] or total
internal reflection fluorescence (TIRF) microscopy [213, 214], to mention but a few.
The interest in nano-optics has certainly been boosted by the miniaturization and inte-
gration of electronic circuits for the computer industry [198] and nano-optics is there-
fore relevant beyond the realms of basic research with many applications in e.g. opto-
or microelectronics [215–217].

Although nano-optics is a well-researched and mature field on its own, its merger
with ultrafast strong fields is relatively new. This ‘marriage’ is interesting on (at least)
two counts: Firstly, the local field enhancement that is found near nanostructures al-
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lows the incident laser beam to have a relatively small intensity which – after enhance-
ment – is in the typical strong field intensity regime [162]. And secondly, when the
high spatial resolution of nano-optics teams up with the high temporal resolution of
ultrashort pulses, the resulting system becomes a promising contender in the quest of
achieving higher spatio-temporal resolution [218, 219].

Analyzing the electron dynamics in strongly enhanced, short-pulsed near-fields
has allowed to characterize the near-field with subcycle resolution [220–222], which
– in turn – opened up new perspectives to control electron dynamics in such near-
fields and thus to create new electron sources. The extreme localization of electrons in
space and time allows to use nanostructures illuminated by short pulses as femtosec-
ond electron sources with outstanding beam qualities [223–226]. The highly coherent
electron pulses from nanotips are, for example, exploited in studies of fundamental
matter-wave quantum optics [226–228] or are used in exploring implementations of
time-resolved point-projection microscopy (PPM), in which magnification is achieved
by placing a field emission tip close to a specimen [229–231].

Speaking of coherent emission, one obvious question that arises is whether high-
harmonic generation (HHG) in a system containing a nanostructure is possible and
can be used as a coherent source of e.g. XUV light, which is discussed and reviewed in
the following since it played an important role and shaped the field of nano-attosecond
science in the past decade. At this point, it is crucial to distinguish between the two
main paths that were chosen when trying to attain HHG using nanostructures:

(i) HHG using electrons that were released from atoms or molecules in a gas that is
located close to a nanostructure and therefore feels the near-field of it.

(ii) HHG using electrons that were emitted directly from the nanotip.

Concerning mechanism (i), there was an early experiment in 2008 that claimed to have
produced HHG light from argon atoms that were placed in the strongly enhanced field
in between a bow-tie structure [232]. While indeed XUV radiation had been produced,
the origin of the radiation remained contentious [233–235] and it is now generally be-
lieved that is was atomic line emission (ALE), rather than HHG, that was the underly-
ing mechanism that produced the radiation [236, 237]. Even though the produced XUV
light can be used in applications where spatial and temporal coherence are not essen-
tial, for example in implementations of near-field XUV lithography [236], the incoher-
ent nature of the dominant ALE process clearly distinguishes it from a coherent HHG
source. Despite many attempts to produce HHG at yields and repetition rates that are
comparable to those achieved from the gas phase in homogeneous strong fields, so far
this aim was not attained [238]. On the upside, though, the quest for HHG from atoms
or molecules in the vicinity of a nanostructure has sparked further experimental and
theoretical results along these lines [239–249], which helped develop the field of nano-
attophysics.

Similarly, also the second category of attempts, (ii), which tried to produce HHG
by emitting electrons directly from the nanotip, proved futile. Even though theoretical
works made optimistic predictions about the feasibility of that method [250], as of yet
no ‘direct HHG’ from metal tips, or any other nanostructure for that matter, has been
reported [226]. The following estimate presented in Ref. [226] makes the problem with
this approach to produce HHG clear: The surface of a typical nanotip consists of about
103-104 atoms. In contrast, the number of gas atoms in the laser focus is of the order of
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1010. Thus, on a nanostructure surface the number of potential emitters is too low to
lead to a reasonable HHG yield via strong field emission and recollision.

In the midst of all of these vain attempts to generate HHG employing nanostruc-
tures, a silver lining appeared in the horizon. In 2016, the very group who set the dis-
cussion about HHG with nanostructures off with their contentious results in 2008 [232]
achieved HHG radiation employing solid tips that are made of monocrystalline sap-
phire surrounded by a gold thin-film layer [251]. The underlying mechanism, though,
is not found in either of the two categories presented above but coherent XUV light is
created by means of inter- and intraband processes. This mechanism is the one that is
also used to describe the HHG radiation from bulk solids and it does not involve pho-
toemission but the radiation promotes the electron from the valence to the conduction
band. Anharmonic oscillations and recombination then lead to intra- and interband
radiation, respectively [27, 28, 252–257]. The main difference between HHG from bulk
solids and this experiment therefore stems from the enhancement of the incident laser
field at the metal-sapphire nanostructure in the latter. This enhancement was further
improved upon by Vampa et al., who used a nanoantenna array of gold embedded
in a layer of silicon [258]. The nanoantenna array produces localized surface plas-
mons and thus complements the experiment reported in Ref. [251] in which surface
plasmon-polaritons enhanced the field [259]. Using localized surface plasmons has
the advantage that the geometry of the nanoarray can be adapted to engineer e.g. the
polarization of the harmonic beam [258].

Also, even though processes (i) and (ii) have not led to satisfactory HHG produc-
tion, the theoretical studies that emerged around this discussion made clear that the
strong field enhancement and field inhomogeneity near a nanostructure significantly
influence the electrons’ post-ionization dynamics [243, 244, 260] thus also affecting
processes like double ionization [47]. Most directly, though, the effect of the nano-
structure on an ionized electron can be observed by analyzing the photoelectron mo-
mentum spectrum: Shifts and suppression of peaks in the photoelectron spectrum
and the extension of the rescattering cutoffs have been reported in the presence of a
nanostructure [162, 218, 221, 261–264]. These effects were suggested to be used for the
characterization of both the incident laser pulse, especially the carrier-envelope phase,
and the near-field of the nanostructure [162, 218, 222, 263, 265].

The effect of the inhomogeneity on the photoelectron momentum spectrum will
also be at the center of the discussions in this chapter. We will see how photoemission
of atoms that are placed in the vicinity of a nanostructure is followed by electron dy-
namics that is characterized by acceleration due to the inhomogeneous field and how
the resulting high-energetic electrons accumulate in a peak that we will name ‘higher
energy structure’ (HES) [73, 74]. Moreover, we will realize that the motion of photoelec-
trons released directly from the tip bears great similarity to the dynamics underlying
the HES and that it can be captured in the same theoretical framework.

5.1.2 Mathematical description of inhomogeneous fields

In the following, common theoretical models to describe the electric field in the vicin-
ity of a nanostructure upon irradiation with a laser pulse are reviewed and discussed,
thus setting the stage for the calculations that will be performed later in this chapter.
Even though the nanostructures employed in nano-attophysics rarely are close to per-
fect spheres in free space and even though in certain cases taking into account the
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exact geometry of the nanostructure matters [266–268], the electric fields near the na-
nostructure are often found to be well approximated by that of a sphere. Typically, the
minimal radius of curvature of the nanotip’s apex or of the protruding edges in more
elaborate nanogeometries determines the size of the corresponding sphere in the the-
oretical model [198]. The electric field close to a dielectric sphere in a quasi-static ap-
proximation is a common example in undergraduate physics courses on theoretical
electrodynamics [269, 270] and we will now see that this system does not only serve as
a nice pedagogical tool to introduce the expansion in Legendre polynomials but that
the result can help us model real-life nanosystems. For a sphere of radius R and dielec-
tric constant εs positioned at the origin in a medium with εm = 1, the electric field at
position r reads [271, 272]

E(r) =


3

εs +2
Ei if |~r | < R,

Ei + 3r̂(r̂ ·p)−p

|r|3 if |~r | > R,
(5.3)

where r̂ is the unit vector in space and Ei denotes the spatially homogeneous incident
field that is assumed to change so slowly that the system can adapt adiabatically to the
change. The dipole moment p is given by

p = R3 εs −1

εs +2
Ei . (5.4)

As becomes clear from eq. (5.3), the electric field close to the sphere exhibits a strong
spatial inhomogeneity. The maximal field strength is obtained directly at the surface
of the sphere at the poles along the polarization direction of the incident field. The
corresponding field enhancement is [238]∣∣∣∣E(r = R êx)

Ei

∣∣∣∣= ∣∣∣∣1+2
εs −1

εs +2

∣∣∣∣ , (5.5)

where linear polarization in x-direction was assumed. For a gold sphere at λ= 720 nm
the dielectric constant is εs =−16.41+1.38i [238] and the field enhancement amounts
to 3.4, corresponding to an intensity enhancement by a factor of 11.6. Even though that
may appear to be a large enhancement already, compared to other nanostructures it
is considered relatively low [273] and typical enhancement factors can be one or two
orders of magnitude larger [241, 267]. For a more intuitive understanding of the en-
hancement and inhomogeneity it is instructive to be aware of the fact that the second
line of eq. (5.3) is the superposition of the incident field Ei and the general expression
for an electric field of a dipole with dipole moment p. Here the dipole moment, as ex-
pressed by eq. (5.4), is induced by displacement of charges in the dielectric sphere by
dint of the exposure to the incoming electric field. The resulting local positive charge
surplus at one pole of the sphere and the concomitant local negative charge surplus at
the other pole lead to the mentioned dipole.

The underlying assumption so far was that the charges follow the incident field in-
stantaneously. However, the collective electronic response of the medium leads to a
phase shift between the incident and the induced field at typically used parameters
[221, 226, 274, 275]. The retardation does not only depend on the nanostructure’s ma-
terial but also on its geometry. As a consequence, the absolute phase profile of the re-
sulting near-field cannot be directly determined from the incident pulse. In principle,
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Figure 5.1: Electric field close to a sphere of a radius of 200 a.u. (= 10.6 nm) in the
polarization direction. The maximal induced field strength (at the poles, x = −R, y =
z = 0) is E = 0.15 a.u. and the incident field is Ei = 0.01 a.u., corresponding to an en-
hancement factor of 15 (corresponding to e.g. ε=−2.5 in eq. (5.5)). Left panel: 2D plot
with the x-axis being parallel to the polarization axis of the incident light and r⊥ de-
noting the direction perpendicular to it. One can see that the inhomogeneity is mainly
found along the polarization axis of the incident light and is smaller perpendicular to
it. Right panel: Three cuts through the field profile with constant r⊥ values that are
highlighted as lines in the corresponding color in the left panel.
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Figure 5.2: Left panel: Exponential and linear approximation at x = x0 to the induced
part of the field presented in Fig. 5.1 (with r⊥ = 0). Right panel: Sketch showing the
notation presented in eq. (5.7), which is used to describe the ionization of gas atoms
located at x = 0. The near-field is approximated by a linear function with a slope of 2β
in that point x = 0 and E0 is defined as the field strength an atom is exposed to at this
position.

the superposition of the incident and phase-shifted, enhanced induced field can lead
to a complicated temporal pulse profile. Usually, though, the induced field dominates
the resulting near-field and the resulting total field bears strong resemblance with the
temporal profile of the incident field up to the mentioned phase shift, as numerical
simulations show [221, 275].

As Fig. 5.1 shows, the inhomogeneity in the vicinity of a nanostructure is most pro-
nounced along the polarization axis and is relatively small in the direction perpendic-
ular to it. Therefore, it is common to theoretically model the movement of the ionized
electron in a one-dimensional system along the polarization axis [75, 219, 222, 238,
241, 246, 248, 273, 276–281].
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Furthermore, a common way to approximate the spatial decay of the induced
dipole field is to use an exponential function

E(x) = E(0)e−|x|/l f , (5.6)

as it is done in the example shown in the left panel of Fig. 5.2. Note that the field that
is approximated here does not contain the incident field. Neglecting the ‘small offset’
of the incident field is usually a good approximation as it is significantly weaker than
the enhanced field of the induced dipole, particularly in the regime where the inhomo-
geneity is strong and where the relevant effects that we are interested in here happen.
Therefore, eq. (5.6) is often used to describe the full near-field close to a nanostructure.
The scale at which the exponential function decays is determined by the constant l f .
In the example presented in Fig. 5.1 and the left panel of Fig. 5.2, l f = 100 a.u. was used.
This decay length is thus in the same order of magnitude as the size of the nanostruc-
ture (R = 200 a.u.) – a relation which is often used to estimate the decay length of the
near-field [238].

The exponential approximation for the field close to a nanostructure is frequently
applied [75, 219, 222, 273]. In some cases, however, even further approximations are
used and only the linear term in the Taylor expansion of the exponential field is taken
into account, thus making the equations easier to handle numerically and also analyt-
ically [238, 241, 246, 248, 276–281]. In sections 5.2 and 5.3 of this chapter, such a linear
approximation will be used in the following notation:

E(x, t ) = E0(1+2βx) f (t )cos(ωt +φC EP ), (5.7)

where φC EP is the carrier-envelope phase (CEP) and f (t ) = cos2
(
ωt
2N

)
describes the

pulse envelope, with N being the number of optical cycles in the pulse. This notation
assumes a shift of the system along the x-axis as compared to the notation presented in
Fig. 5.1 and the left panel of Fig. 5.2 such that now x = 0 does not determine the center
of the nanostructure anymore but is a point in its near-field at which we find a field
strength E0. At this point in space, atoms to be ionized are positioned and here the
slope of the linear approximation matches the actual near-field drop, as is depicted in
the sketch in the right panel of Fig. 5.2. This linear approximation does not only allow
TDSE simulations of inhomogeneous fields with reasonable computational effort but
will also open the door to an analytical description of the electron’s movement in the
inhomogeneous field, as we will see in section 5.3.

The linear approximation brings about one important restriction though: If the
term (1 + 2βx) changes sign due to sufficiently large negative values of x, the force
that acts on the electron also changes its sign, which is unphysical. The parameters
in this chapter ensure that this zero-crossing does not happen, mainly by choosing
short pulses. One may, of course, argue that also close to the mentioned zero-crossing
the linear approximation gets increasingly worse and does not reflect the actual inho-
mogeneity very well any more. While it is true that indeed the linear approximation
becomes increasingly worse close to the sign change of (1+2βx), the pulse envelope is
usually already reduced considerably when the electron gets into that regime and the
main acceleration effects due to the inhomogeneous nature of the near-field happen
around the central cycle when the pulse envelope is maximal, as we will see. A more
exhaustive discussion about the extent to which the linear approximation captures the
effects observed in the more accurate description of the exponentially decaying field
will follow in section 5.4.
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Figure 5.3: The different inhomogeneity regimes are defined by the different ratios of
the decay length l f of the near-field and the quiver amplitude of the electron lq . The
figure follows the ideas presented in Fig. 1 in [282].

5.1.3 Three different inhomogeneity regimes

When talking about electrons moving in the near-field of a nanostructure, driven by a
short laser pulse, it has proven helpful to introduce the following parameter in order
to quantify how much of the inhomogeneity is explored by the electron, and at what
relative time scales [218]:

δ= decay length of the electric field

quiver amplitude of the electron
= l f

lq
= l f ω

2

E0
. (5.8)

Here, l f is the decay length we became acquainted with in eq. (5.6) and the quiver am-
plitude is estimated by the amplitude E0/ω2 of an electron moving in a homogeneous
field with maximal field strength E0 and angular frequency ω.

As illustrated in Fig. 5.3, for δ À 1 the electron explores so little of the near-field
while the pulse is on that it sees an almost homogeneous field. This is easy to describe
since we can draw on the physics developed in plain strong fields without nanostruc-
tures, but at the same time we cannot expect any interesting new effects due to the
spatial structure of the near-field here.

In the opposite limit of small δ, the electron sees so much of the inhomogeneity
within a fraction of an optical cycle that it leaves the inhomogeneity almost immedi-
ately. As the escape from the near-field happens on a subcycle time scale, the near-
field itself can be described by a quasistatic approximation to explain the results in this
regime [218, 283].

In the intermediate regime of δ≈ 1, the decay length of the near-field is of the same
order as the quiver amplitude and the electron explores a considerable part of the in-
homogeneous spatial profile during multiple oscillatory cycles. According to Ref. [238]
‘the other two regimes are most desirable’ (i.e. δ ¿ 1 and δ À 1) since the intermedi-
ate regime of δ ≈ 1 ‘requires extensive modeling’. In this chapter, we will venture into
this less understood intermediate regime and find that it is indeed a nontrivial task to
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describe systems at such parameters theoretically. In particular, finding an analytical
description will pose a genuine challenge. However, our efforts will be well-rewarded
as we will see new effects arise in this regime.

5.2 Emergence of a higher energy structure

The content of this section has been published in a similar way in Phys. Rev. Letters
119, 053204 (2017) (see Ref. [73]). The copyright of content from said article lies with
the American Physical Society.

5.2.1 Choosing the parameters

As already announced in the previous section, the regime in which we will work in this
chapter is the intermediate δ-regime, where the electron explores a lot of the inhomo-
geneity of a nanostructure’s near-field while the pulse is on. According to eq. (5.8) we
have three control knobs to adjust the δ parameter.

The first parameter is the field strength and we choose it to correspond to an in-
tensity of I = 1 ·1014 W/cm2. Note that this intensity neither defines the maximum in-
tensity of the incident nor the enhanced field but describes the intensity that the atom
is exposed to when placed in the vicinity of the nanostructure (see the right panel of
Fig. 5.2). For the time being, we will use the linear approximation of the near-field pre-
sented in eq. (5.7), meaning the atom we ionize from is defined to be found at x = 0 and
E0 is the field strength it experiences there. The choice of I = 1·1014 W/cm2 is therefore
motivated by the ionization potential of atoms typically used in strong field ionization
and leads to ionization in the tunneling regime, which we will be able to quantify after
having set the wavelength in the next paragraph.

The wavelength λ is the second parameter and rather than working at the typical
800 nm produced by the ubiquitous Ti:sapphire laser, a wavelength of λ= 2 µm is cho-
sen here. Extending the wavelengths used for strong field ionization experiments into
this mid-infrared (mid-IR) regime is a relatively recent development [284–287]. The
larger excursion amplitude the electron has at larger wavelengths should lead to a sys-
tem in which spatial inhomogeneities due to the Coulomb potential should be partic-
ularly small. Thus, one may think, if such a mid-IR field is spatially homogeneous, it
should be a perfect system for applying the strong field approximation. However, as
the discovery and explanation of the low energy structure (LES) in the mid-IR range
has shown, the small spatial dependence introduced by the 1/r Coulomb potential
can lead to surprising and clearly experimentally measurable effects at these wave-
lengths. This unexpected finding stimulated a great amount of experimental [55, 286,
288–290] and theoretical work [53, 55, 290–294], and highlighted the dramatic impact
that even a small spatial inhomogeneity in force can have on electron dynamics after
strong field ionization. In the following we will go one step further and, while still work-
ing in the mid-IR, add a significantly stronger inhomogeneity to the system by means
of a nanostructure. As we will see, this leads again to another interesting feature in the
photoelectron momentum spectrum. A wavelength in the mid-IR in combination with
nanostructures has the advantage of enabling the electron to explore a lot of the inho-
mogeneity while still using nanostructures that do not need to be too small. Working
in the mid-IR has the added benefit that at an intensity of I = 1 ·1014 W/cm2 we are in
the tunneling regime, e.g. we have γ= 0.4 if we ionize hydrogen. Thus, we can apply an
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adiabatic ionization theory as described in chapter 2.3.2.1 and as often referred to as
ADK. This makes things easier to describe analytically and, moreover, we do not need
to worry about nonadiabatic effects as they were e.g. described in chapter 3 but can
focus on studying effects originating from the spatial field inhomogeneity.

The third and last parameter to tune is the decay length l f of the nanostructure.
For δ to be in the intermediate regime, we choose two different decay lengths of l f =
8.8 nm = 167 a.u. and l f = 13.2 nm = 250 a.u., corresponding to δ = 1.62 and 2.43,
respectively. Since the decay length can be estimated to be in the same order of magni-
tude as the extent of the nanostructure [238], this implies the use of a nanostructure of
a size as it is readily available for such experiments [162, 218, 220]. With δ∝ l f /λ2, we
can understand the advantage of using a rather long wavelength, in the mid-IR, even
better now as it allows us to employ larger decay lengths and hence larger nanostruc-
tures that are fabricated more easily, while still being in the intermediate δ-regime. As
we want to apply the linear approximation given in eq. (5.7), the decay length needs
to be converted to the inhomogeneity parameter β using β = 1/(2l f ), which yields
β= 0.002 and β= 0.003 for the above-mentioned values.

5.2.2 Simulations

Using the linearly approximated near-field described by eq. (5.7), TDSE simulations,
run by Jose Pérez-Hernández, and CTMC simulations are performed. The number of
optical cycles is chosen to be N = 2 and the CEP, denoted by φC EP in eq. (5.7), is set to π.
Note that even though TDSE and CTMC simulations are solved in a three-dimensional
framework, the one-dimensional approximation of the near-field implies that the fol-
lowing calculations should match experimental results best for those electrons whose
direction of propagation is along the direction of the polarization of the incident elec-
tric field. Such electrons can be isolated experimentally by measuring electrons emit-
ted within a narrow cone around the polarization axis. The 3D-TDSE is considered in
the length gauge,

i
∂Ψ(r, t )

∂t
= HΨ(r, t ) =

(
−∇2

2
+V (r )+Vl (r, t )

)
Ψ(r, t ), (5.9)

and is solved following the method described in [262], where V (r ) is the atomic
Coulomb potential and Vl (r, t ) = −∫r dr′E(r′, t ) represents the interaction with the
laser field given in eq. (5.7). The single active electron approximation is applied, us-
ing the potentials given in [295] and starting from the ground-state wave function.

Figure 5.4 shows photoelectron momentum spectra for hydrogen, helium, and ar-
gon atoms obtained in the 3D-TDSE simulations just described for two different decay
lengths, l f = 8.8 nm (β= 0.003) and l f = 13.2 nm (β= 0.002). As expected, the electron
yield from helium is significantly lower than from hydrogen and argon due to a higher
ionization potential. What is far more interesting here, though, is that in each case the
electrons accumulate around a prominent peak, which we call Higher Energy Structure
(HES) as it goes beyond two times the ponderomotive potential Up (here: Up = 37 eV),
which would be the classical limit for direct electrons in homogeneous fields.

Prior theoretical work using inhomogeneous fields in the infrared regime [246, 262,
276] found a large enhancement in electron yield forming an extended high energy
tail. This enhancement resulted in a substantial extension in the maximum cutoff en-
ergy, well above the usual 10Up cutoff for rescattered electrons [296, 297]. The HES
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Figure 5.4: 3D-TDSE photoelectron spectra for hydrogen, helium, and argon atoms
generated by laser pulses described in eq. (5.7) for different values of the inhomogeneity
parameter β. The laser intensity at the atom is I = 1 · 1014 W/cm2 (corresponding to
E0 = 0.0534 a.u.), the wavelength is λ= 2 µm, the number of cycles N = 2, and the CEP
is set to φC EP =π.

emerging here, in contrast, is found near 2Up and rather than extending a plateau it is
characterized by a prominent hump. The location near 2Up also hints at the electrons
comprising the HES being direct electrons [82, 298, 299], i.e. no significant interaction
with the Coulomb potential of the ion has occurred and rather than returning close to
the parent ion and being deflected the electrons get to the detector ‘directly’. The ‘di-
rect’ nature of the HES electrons is also corroborated by CTMC simulations in which
the Coulomb potential is turned off and which still yield the HES.

At first glance, the higher energy structure may look like a resonance. However, as
becomes clear from Fig. 5.4, its location is independent of the atomic species and is
mainly determined by the inhomogeneity of the near-field instead. This dependence
on the inhomogeneity will be analyzed in depth in section 5.3.

To gain a better understanding of the origin of the HES, CTMC simulations are per-
formed as well. Single trajectories are launched at a starting phase ϕ0 = ωt0, with ve-
locity v⊥,0 perpendicular to the laser polarization direction. The probability distribu-
tion of these initial conditions at the tunnel exit is described by the Ammosov-Delone-
Krainov (ADK) formula given in eq. (2.24), which is typically used to model strong field
ionization in the tunneling limit. The tunnel exit radius is obtained using parabolic co-
ordinates, as described by eq. (2.25). Note that the ionization step in the CTMC simula-
tion, in which the initial conditions are determined, is the same as in a homogeneous
field. In the propagation step, in contrast, the inhomogeneity of the electric field is
taken account of by using the electric field of eq. (5.7) in the equation of motion given
in eq. (2.30).

Figure 5.5 shows the electron yield as a function of energy resulting from such
CTMC simulations. As can be seen, the prominent higher energy peak starting around
40 eV that is observed in the TDSE simulation (blue curve) is well reproduced by the
CTMC result. The surprising accuracy of the adiabatic ADK approximation is due to the
large wavelength of the laser light, which results in a Keldysh adiabaticity parameter of
γ = 0.4, well within the tunnel ionization regime. The figure also includes the photo-
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Figure 5.5: Histogram of the photoelectron yield as a function of the final kinetic en-
ergy obtained in a CTMC calculation for hydrogen with the same laser parameters as
given in Fig. 5.4 for two different values of β, where β = 0 corresponds to a homoge-
neous field. The blue line shows the photoelectron yield obtained in a 3D-TDSE calcu-
lation for the same parameters and equals the dark blue curve in Fig. 5.4.

Figure 5.6: Kinetic energy of photoelectrons as a function of the ionization phase from
a CTMC calculation for hydrogen for the same homogeneous (β = 0) and inhomoge-
neous (β= 0.002) electric fields as used in Figs. 5.4 and 5.5. Each dot corresponds to a
single trajectory. For visual guidance, the time-dependence of the homogeneous field
is plotted in the background in gray in arbitrary units.
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electron energy distribution in the absence of field inhomogeneity (β= 0), which peaks
close to zero energy. This stands in contrast to the distribution obtained with β= 0.002,
which peaks around 40 eV. Thus, we can see how the field inhomogeneity significantly
accelerates a large fraction of the electrons.

Figure 5.6 establishes the physical origin of the HES further by comparing the final
electron kinetic energy as a function of ionization time, t0, for homogeneous and in-
homogeneous fields. By far the most dramatic influence of the spatial inhomogeneity
occurs in the central cycle, corresponding to the maximum probability of ionization,
along the direction of increasing field. As Fig. 5.6 shows, field inhomogeneity causes
electrons ionized near the laser field maximum to get accelerated to over 30 eV, whereas
these same electrons have much smaller energies in homogeneous fields. In fact, the
electrons ionized near the peak by homogeneous fields are known to have low final
energies (see also Fig. 5.5), thereby contributing to Rydberg states [180] and the zero
energy structure [55, 286, 287]. This also suggests, in agreement with prior findings
[242], a depletion of long trajectory contributions to high harmonic generation in in-
homogeneous fields, since these trajectories are made up of electrons ionized shortly
after the peak of the laser field. Importantly, in addition to accelerating, the field in-
homogeneity also significantly narrows the electron energy distribution, leading to a
well-defined peak observed in CTMC and TDSE simulations (see Fig. 5.5). This can
be understood from Fig. 5.6, in which we can see that the inhomogeneity has a huge
effect on the electrons ionized directly at the center of the pulse but a comparatively
low effect on the electrons ionized before or after the central peak thus leading to an
accumulation of electrons in a narrow energy regime.

Moreover, we can see that even though a few electrons are also ionized in the non-
central half-cycles, they are distinctly separated in energy from the ionization events
in the central half-cycle. A better understanding of this separation will be obtained in
the framework of the unifying theory presented in section 5.4.

Based on the above analysis, the appearance of a HES should coincide with a deple-
tion of low energy electrons, which get accelerated by the field inhomogeneity. This de-
pletion can be clearly observed in Fig. 5.7, which shows 3D-TDSE simulations of elec-
tron momentum distributions for hydrogen for homogeneous and inhomogeneous
electric fields. The high energy electrons with positive (negative) momentum along
the x-axis come from a narrow time window before (after) the peak of the laser pulse.
This narrow time window is a feature of the tunnel ionization regime, which is charac-
terized by a strong exponential dependence in ionization probability on the laser field
strength. The striking accumulation of electrons near kx = 2 a.u., combined with the
knowledge that these electrons come from a narrow time window, given by the low-γ
tunnel ionization regime, suggests a new method for producing tightly focused elec-
tron beams of subfemtosecond duration.

Moreover, CTMC simulations show that the photoelectron spectrum obtained with
inhomogeneous fields strongly depends on whether the electron is born when the elec-
tric field has a positive or a negative sign. For short pulses this results in a strong CEP
dependence. This effect is at the center of the unifying theory that will be developed in
section 5.4 and the discussion of CEP effects is therefore deferred to this later section.
It seems to be worth mentioning already now, though, that the strong CEP dependence
of the HES can be used as a tool to characterize the near-field. Strong influence of the
CEP on the photoelectron momentum distribution has been reported for electrons re-
leased from a nanotip [162, 218, 261, 263]. The HES can play a similar role in measuring
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Figure 5.7: Two-dimensional electron momentum distributions (kx ,kr ) (x: along po-
larization axis, r: perpendicular to it) obtained in 3D-TDSE simulations for hydrogen
at the laser parameters given in Fig. 5.4 for three different inhomogeneity parameters
β, where β= 0 corresponds to a homogeneous field.

Figure 5.8: CTMC simulations of the HES for different laser intensities, for a fixed spa-
tial inhomogeneity of β = 0.002 using hydrogen and with all other parameters as de-
scribed above (see e.g. the caption of Fig. 5.4). Increasing the laser intensity broadens
the peak and shifts it to higher energies.

the CEP in a system that ionizes the gas-phase.

In terms of characterizing the near-field, it seems worth mentioning that the spec-
tral position and width of the HES also strongly depend on the field strength and in-
homogeneity parameter β, as can be seen from Fig. 5.8 and 5.9, respectively. There-
fore, the HES promises to be suited for characterizing the field enhancement and de-
cay length of the near-field, which in turn gives information about material properties
and the geometry of the nanostructure.

Let us conclude this section with a short recap: We have seen a prominent higher
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Figure 5.9: Histograms of the final electron energy shows the accumulation of electrons
at higher energies in an inhomogeneous field, where the inhomogeneity is quantified
by the parameter β given in the legend. The intensity is chosen to be I = 1·1014 W/cm2,
the central wavelength is λ = 2 µm in a 2-cycle pulse (N = 2) with a CEP of φC EP = π

in helium (Ip = 0.9 a.u.).

energy peak emerge in the ‘intermediate’ regime where the spatial decay length, lF , of
the electric fields is comparable to the electron quiver amplitude. The sensitive de-
pendence of the location and width of the HES on the intensity, field decay length, and
CEP suggests a new precise tool for near-field characterization. Finally, the fact that the
prominent higher energy peak comes from a narrow time window, well within a single
half-cycle of the laser pulse, may be used to create localized sources of monoenergetic
electron beams of sub-femtosecond duration. Such sources would take the techniques
of classical electron diffraction into the attosecond domain, enabling the investigation
of dynamic changes of electron distribution in complex systems, such as nanostruc-
tures and biological molecules [300, 301].

5.3 Analysis and optimization of the higher energy
structure

The content of this section has been published in a similar way in Phys. Rev. A 97,
023420 (2018) (see Ref. [74]). The copyright of content from said article lies with the
American Physical Society.

In the previous section, we have witnessed the emergence of a higher energy structure
(HES) due to a spatial inhomogeneity in the laser electric field. For practical applica-
tions, such as the characterization of near-fields or the creation of almost monoen-
ergetic electron beams with tuneable energies, further insight into the nature of this
higher energy structure is needed.

In Fig. 5.9 the HES is displayed for four different degrees of inhomogeneity. The
energy at which this peak is located turns out to be very sensitive to the inhomogene-
ity of the field. This allows to tune the energy around which the electrons accumulate
by varying the geometry of the nanostructure. In addition, it is important for certain
applications to have a narrow energy distribution in the HES peak in order to generate
ultrashort and nearly monoenergetic electron beams. So at which inhomogeneity does
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the HES peak appear at minimal width? Both issues, the position and width of the HES
peak, were only touched on qualitatively in the previous section. However, a deeper
and, in particular, analytic understanding for the dependence of the HES on field in-
homogeneity is still missing but is vital in order to tailor the parameters for potential
applications. The presence of inhomogeneous electric fields considerably complicates
the equations of motion, making tractable analytic approximations difficult, especially
in the intermediate δ-regime.

In this section, two different ways to describe the movement of the electron in the
inhomogeneous electric field in closed-form analytical approximations are presented
[74]. Based on these descriptions a simple scaling law for the location of the HES peak
will be derived and a scheme for tuning the width of the peak will be given, both of
which will prove useful in optimizing the nanostructure size or geometry for creating
the HES in experimental settings [74].

The comparison between TDSE and CTMC simulations in the previous section (see
Fig. 5.5) revealed that the sizeable gain in electron energy can be explained classically
by the movement of the electron in the inhomogeneous field. Consequently, it is suffi-
cient to solve Newton’s equation of motion

r̈(t ) =−E(x, t )− r

r 3
(5.10)

in order to investigate the HES further. Moreover, we will neglect the Coulomb force,
which is usually a good approximation in strong field ionization anyway and here in
particular as the inhomogeneity of the electric field is significantly stronger than the
inhomogeneity of the Coulomb field. This approximation will also be validated later by
comparing CTMC simulations with and without the Coulomb potential included (see
Fig. 5.13). Neglecting the Coulomb force, the motion along the different coordinates
decouples, with non-trivial motion being driven by the laser electric field along the
x-direction:

ẍ(t ) =−E0 f (t )cos(ωt +φC EP ) · (1+2βx) (5.11)

with the envelope f (t ) = cos2
(
ωt
2N

)
. Thus, we also neglect the spread of transverse ve-

locities, which approximately stays constant during propagation as it is not influenced
by the inhomogeneity of the laser field and would not modify the shape of the higher
energy structure in a significant way as the corresponding velocities are much smaller
than those along the direction of polarization.

In the following, two different ways are suggested to describe the motion of the
electron in the inhomogeneous field analytically. The first way draws on Mathieu dif-
ferential equations having an exact solution [279, 302, 303] and the second path follows
a perturbative approach.

5.3.1 Analytical approximation via Mathieu equations

The differential equation presented in eq. (5.11) is easier to handle after a coordinate
transformation in which the x-coordinate is shifted such that the position-dependent
potential is centered around zero. The shift xM = x +1/(2β) does the trick and yields

ẍM (t ) =−E0 f (t )cos(ωt +φC EP ) · (2βxM ). (5.12)

For a slowly varying envelope relative to the laser frequency, or 1/(2N ) ¿ 1, we can ne-
glect the time-dependence in the envelope, f (t ), when solving the equation of motion.
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In this case, the solution is given by Mathieu functions [302]. Using initial conditions
of xM (t0) = −Ip /E(x = 0, t0)+ 1/(2β) and ẋM (t0) = 0 at the time of ionization t0 (with
t0 = 0 corresponding to ionization at the center of the pulse) the solution to equation
(5.12) under the described approximations reads

xM (t ) ≈
(
M ′

C (η0)MS(η)−MC (η)M ′
S(η0)

)
D

2βE0
(
M ′

C (η0)MS(η0)−MC (η0)M ′
S(η0)

) , (5.13)

where η0 = (0,α,ζ0) and η = (0,α,ζ) denote the three arguments of the even and odd
Mathieu functions, MC and MS (respectively), as they are defined in Mathematica [304]

and where α=−4βE0

ω2 , ζ= 1
2 (φC EP +ωt ), ζ0 = 1

2 (φC EP +ωt0), and D is defined as

D =
(
E0 −2βIp sec2

(
ωt0

2N

)
sec(φC EP +ωt0)

)
. (5.14)

Moreover, the prime denotes the derivative of the Mathieu function with respect to
time, which can, just as the Mathieu functions themselves, be evaluated with the help
of standard libraries.

5.3.1.1 Analytical approximation for the acceleration and thus the
inhomogeneous field

Plugging this solution xM of the Mathieu equation into the original differential equa-
tion with no envelope approximations (eq. (5.12)), we obtain an expression for the ac-
celeration

aappr ox(t ) =−E0 f (t )cos(ωt +φC EP ) · (2βxM (t ))

= aM (t ) · f (t ).
(5.15)

The same result can be obtained by calculating the second derivative of xM and multi-
plying it by the pulse envelope, which is shown by the expression in the second line of
eq. (5.15), where aM denotes the second order time derivative of eq. (5.13).

Fig. 5.10 compares the approximation of the acceleration according to eq. (5.15)
with the full numerical solution of eq. (5.11) for two different ionization times. The
agreement between the numerical result and the analytical approximation is surpris-
ingly good, given that only a two-cycle (N = 2) pulse is used. An even better agreement
should be expected for longer pulses, where the slowly-varying envelope assumption is
more valid. At this point, it seems important to emphasize that even though we neglect
the envelope in solving the differential equation assuming a slowly varying envelope in
eq. (5.13), envelope effects are included later on in refining the approximation by plug-
ging xM back into the original differential equation containing the envelope, which
should also become clear by the relation given in the second line of eq. (5.15).

Also, note that eq. (5.15) serves as a closed-form approximate analytic expression
for the time-dependent force experienced by the electron following ionization or the
inhomogeneous field strength (the latter is obtained by multiplying the acceleration
by -1). Up till now, due to the spatial field inhomogeneity, force and field could only
be calculated by numerically solving the equation of motion (eq. (5.11)) first. Having a
closed-form expression for force and field at our hands now, paves the way for further
investigations of inhomogeneous fields.
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Figure 5.10: Full numerical solution of eq. (5.12) for the acceleration a (dashed blue
line) compared to the approximate analytical solution (solid orange line) according
to eq. (5.15) as a function of time for two different ionization times, t0 = 0 (left panel)
and t0 =−16 a.u. (right panel). As approximately 96% of all electrons forming the HES
should be launched between about t0 =−16 a.u. and t0 = 16 a.u., the good agreement
between the depicted curves shows that this approximation should yield good results
for all relevant trajectories. The depicted quantities are given in atomic units. The
parameters are chosen as before in Fig. 5.9 and the inhomogeneity is given by β= 0.002.
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Figure 5.11: Numerical solution for the velocity v (dashed blue line, solution of
eq. (5.11)) compared to the approximate analytical solution for the first part of prop-
agation (solid orange line, eq. (5.18)) and for the second part of propagation (dotted
red line, eq. (5.21)) as a function of time for two different ionization times t0 = 0 (left
panel) and t0 = −16 a.u. (right panel). The depicted quantities are given in atomic
units. All parameters were chosen to be the same as those in Fig. 5.10 and as before
(see e.g. caption of Fig. 5.9). The initial conditions for eq. (5.21) were chosen at time
t∗ = π/ω, one half-cycle away from the center of the pulse. The dashed gray vertical
and horizontal lines mark the parameters t∗ and v∗, respectively.

5.3.1.2 Analytical approximation for the velocity

The acceleration approximation invoking the analytical solution of Mathieu’s equation
has worked out quite nicely. However, for the velocity things turn out to be not equally
easy. Since the velocity at the end of the pulse determines the final energy of elec-
trons forming the HES, an analytical description of the velocity would be of great help,
though. This motivates us to take on the velocity description as well.

A first approximation of the velocity is to merely derive the approximation of the
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position according to eq. (5.13) with respect to time, which yields

vM (t ) =ω

(
M ′

C (η0)M ′
S(η)−M ′

C (η)M ′
S(η0)

)
D

2βE0
(
M ′

C (η0)MS(η0)−MC (η0)M ′
S(η0)

) (5.16)

following the same notation as in eq. (5.13). As this result poorly matches the numeri-
cal solution for the velocity, further refinement is needed. To this end, we approximate
the velocity by integrating the acceleration we obtained in eq. (5.15), using integration
by parts and dropping the terms that contain higher order derivatives of the envelope
f (t ), assuming a slowly-varying envelope:

vappr ox1(t ) =
∫t

t0

aM (t ′) · f (t ′)d t ′

= [
vM (t ′) · f (t ′)

]t
t0
−

∫t

t0

vM (t ′) · d

d t ′
f (t ′)d t ′

≈ [
vM (t ′) · f (t ′)

]t
t0
−

∫t

t0

(vM · f (t ′)) · d

d t ′
f (t ′)d t ′

= [
vM (t ′) · f (t ′)

]t
t0
−

([
xM (t ′) · f (t ′) · d

d t ′
f (t ′)

]t

t0

−V

)
,

(5.17)

where, for further improvement of the approximation, in the third line vM was replaced
by vM · f as the latter is the lowest order approximation (first summand in lines 2 to 4)

of vappr ox1. Moreover, V denotes
∫

xM (t ′)
(

f (t ′) · d 2

d t ′2 f (t ′)+
(

d
d t ′ f (t ′)

)2
)

d t ′, which we

drop assuming a slowly-varying envelope. As a result, we obtain the following approx-
imation for the velocity of the electron

vappr ox1(t ) =
[

vM (t ′) · f (t ′)−xM (t ′) · f (t ′) · d

d t ′
f (t ′)

]t

t0

. (5.18)

The result of this approximation is depicted as a solid orange line in Fig. 5.11 for two
different ionization times t0 = 0 (left panel) and t0 = −16 a.u. (right panel). We find
that this approximation matches the numerical solution of eq. (5.11) (dashed blue line)
nicely in the first half of propagation, but deviates considerably in the second half. The
reason for this is the breakdown of the slowly-varying envelope assumption for short-
cycle pulses. Our assumptions work well near the center of the pulse envelope where
the time derivative is small but breaks down for sufficiently short pulses later on, as
the derivative of f (t ) becomes larger. To take account of this, we include the time-
dependence of the pulse envelope at later times in electron propagation but drop the
primary oscillation of the laser field, so as to keep the equation analytically tractable:

ẍend (t ) =−E∗ · (2βxend (t )) ·cos2(ω∗t ) (5.19)

with initial conditions v∗ = ẋend (t∗) = vappr ox1(t∗) and x∗ = xend (t∗) = xM (t∗)−1/(2β),
where t∗ is chosen as the time where the first part of the solution vappr ox1 starts to
deviate considerably from the numerical solution of eq. (5.11). E∗ is chosen such that
the solutions vappr ox1 and vend match at t∗ and, consequently, is given by

E∗ =−aM (t∗) f (t∗)/(2βxend (t∗)cos2(ω∗t∗)) (5.20)
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with aM denoting the second time derivative of xM and ω∗ is determined by the fre-
quency of the envelope given by ω/(2N ). The solution xend of eq. (5.19) is again ob-
tained by employing the Mathieu functions and this solution for the electron’s position
can be easily derived with respect to time, vend = d/d t xend , thus obtaining the follow-
ing approximation for the velocity of the electron at the end of the pulse:

vend (t ) =
(−v∗MC (ζ0)+ω∗x∗M ′

C (ζ0)
) ·M ′

S(ζ)+MC (ζ) · (v∗MS(ζ0)−ω∗x∗M ′
S(ζ0)

)
M ′

c (ζ0)MS(ζ0)−MC (ζ0)M ′
S(ζ0)

,

(5.21)
where ζ denotes the following three arguments of the respective Mathieu function(
βE∗

ω∗2 ,− βE∗

2ω∗2 ,ω∗t
)

and analogously ζ0 replaces
(
βE∗

ω∗2 ,− βE∗

2ω∗2 ,ω∗t∗
)
. As Fig. 5.11 shows,

this approximate solution (dotted red line) matches well the second part of the elec-
tron’s propagation in the laser field and, in particular, it also allows us to calculate the
final kinetic energy at the end of the pulse. Hence we find that an analytic approx-
imation given by eq. (5.21), where the explicit time-dependence of the laser field is
approximated by the pulse envelope, gives an accurate estimate for the final electron
energy independent of the ionization time, even though it may deviate considerably
from the exact solution during the propagation.

5.3.2 Analytical approximation using a perturbative approach

Although using Mathieu equations worked nicely to approximate the acceleration and
thus the inhomogeneous field itself and even though an approximation for the velocity
at the end of the pulse was obtained in that framework as well, the latter required a
two-step approach and is rather cumbersome to handle. Therefore, in the following,
a perturbative model is presented for the analytical description of the velocity which
will provide a more direct access to the β-dependence of the final velocity. The starting
point for this approach is the differential equation presented in eq. (5.11), which is
written out fully here again for easier reading

ẍ(t ) =−E0 cos2
(
ωt

2N

)
cos(ωt +φC EP ) · (1+2βx). (5.22)

The first step, or zeroth order step if you will, is to integrate the homogeneous part of
the equation to obtain the zeroth order solution for the velocity:

v0(t ) =
∫t

t0

(
−E0 cos2

(
ωt

2N

)
cos(ωt +φC EP )

)
dt . (5.23)

One more integration step yields the zeroth order position, where the offset is deter-
mined by the tunnel exit xtunnel :

x0(t ) =
∫t

t0

v0(t )d t +xtunnel . (5.24)

Using this result for the position in the RHS of eq. (5.22) one can calculate the first order
velocity:

v1(t ) =
∫t

t0

(
−E0 cos2

(
ωt

2N

)
cos(ωt +φC EP ) ·x0(t )

)
dt . (5.25)

And then, we can put it together as follows

vappr ox,per tur b(t ) = v0(t )+2βv1(t ) (5.26)
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Figure 5.12: Numerical solution for the velocity v (dashed blue line, solution of
eq. (5.11)) compared to the perturbative analytical solution of first order (solid green
line, eq. (5.26)). The depicted quantities are given in atomic units. The parameters are
chosen as before in Fig. 5.9, with β = 0.002 here. The ionization time is chosen to be
t0 = 0 (left panel, corresponding to ionization at the center of the pulse) and t0 = −16
(right panel).

since the underlying assumption of the perturbative ansatz was that we can express
the position as x(t ) = ∑∞

i (2β)i xi (t ) and thus the velocity should have the form v(t ) =∑∞
i (2β)i vi (t ), where we went only up to first order here. The comparison with the

numerical solution shows very good agreement for different ionization times, as can
be seen from Fig. 5.12.

While the above equations look neat and innocuous enough, one needs to keep in
mind that despite all the integrals being analytically tractable, the analytical expres-
sions of those terms are lengthy and not as easy to handle as one would hope. To make
this point clearer the solutions for x0 and v0 are written out here, and the even more
unwieldy expression for v1 is given in appendix A.5:

v0(t ) =− E0

4
(−1+N 2

)
ω

{
2(−1+N 2)sin(φC EP +ωt )+2N 2 sin

(
φC EP + (−1+N )ωt

N

)
−2

(−1+N 2)sin(φC EP +ωt0)−2N 2 sin

(
φC EP + (−1+N )ωt0

N

)}
,

(5.27)

x0(t ) = xtunnel −
E0

4
(−1+N 2

)
ω

{
2(−1+N 2)(−cos(φC EP +ωt )+cos(φC EP +ωt0))

ω

+
N 2(1+N )(−cos

(
φC EP + (−1+N )ωt

N

)
+cos

(
φC EP + (−1+N )ωt0

N

)
)

(−1+N )ω

+
(−1+N )N 2(−cos

(
φC EP + (1+N )ωt

N

)
+cos

(
φC EP + (1+N )ωt0

N

)
)

(1+N )ω

−2(−1+N 2)(t − t0)sin
(
φC EP +ωt0

)−N (1+N )(t − t0)sin

(
φC EP + (−1+N )ωt0

N

)
− (−1+N )N (t − t0)sin

(
φC EP + (1+N )ωt0

N

)}
.

(5.28)



100 CHAPTER 5: Emergence of a Higher Energy Structure in inhomogeneous fields

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆● numerical with Coulomb

▲ numerical w/o Coulomb

■ anal. approx. (Mathieu)

◆ anal. approx. (perturb.)

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
β

0.5

1.0

1.5

2.0

2.5

v(tend) [a.u.]

● ●
● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

■ ■ ■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■

■

■

◆ ◆ ◆ ◆ ◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

● numerical with Coulomb

▲ numerical w/o Coulomb

■ anal. approx. (Mathieu)
◆ anal. approx. (perturb.)

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
β

20

40

60

80

Ekin(tend)[eV]

Figure 5.13: Final velocity (left panel) and kinetic energy (right panel) as a function of
the inhomogeneity parameter β for an electron that is released at t0 = 0 (center of the
pulse, corresponding to the time of most likely ionization) and the remaining param-
eters are chosen as before in Fig. 5.9. One can clearly see the linear dependence of the
final velocity and equivalently the quadratic dependence of the final kinetic energy on
β.

5.3.3 Spectral position of the HES

Having obtained analytical descriptions of the velocity during any time during propa-
gation and thus also at the end of the pulse, we can use this as a tool to estimate how
the HES, its spectral position and width, depends on the inhomogeneity parameter β.

Concerning the spectral position of the peak, we look at those trajectories that were
released at the center of the pulse, at t0 = 0, where the ionization probability is maxi-
mal. Fig. 5.13 shows the final velocity and the kinetic energy calculated from this cen-
tral trajectory as a function of the inhomogeneity parameter β obtained from four dif-
ferent calculations. The two numerical results with and without the Coulomb potential
included were obtained from numerically solving eq. (5.10) and (5.11), respectively, for
initial conditions t0 = 0, v0 = 0 and a TIPIS tunnel exit according to eq. (2.25). Compar-
ing these results we can see that they hardly differ, with maximal deviations of 2.2 eV
in the kinetic energy plot, which reassures us that neglecting the Coulomb potential
approximates the system well.

Moreover, we can see from Fig. 5.13 that both the estimate for the final velocity ob-
tained using Mathieu functions (see section 5.3.1.2) and with a perturbative ansatz (see
section 5.3.2) show good agreement with the numerical solution not only for the case
of β = 0.002 that was used to test those approximations before but over a wider range
of β. The perturbative approximation matches the numerical particularly well and, as
we will see shortly, this can be used to further describe the inhomogeneity dependence
of the peak position.

From the data depicted in the left panel of Fig. 5.13, we can already guess that the
scaling of the final velocity as a function of field inhomogeneity, β, has a linear depen-
dence. To investigate this further, we perform a power law fit AβB with fitting parame-
ters A and B on the numerical solution of eq. (5.11) for the final electron velocity (blue
triangles in Fig. 5.13). Note that this power law is consistent with the fact that for β= 0,
the case of a homogeneous field, we expect that an electron launched at the center of
the pulse will end up with a negligibly small velocity. We find that such a power law fit
gives B = 1.01, which substantiates the assumption of a linear dependence of the final
velocity on the inhomogeneity parameter.

The insights gained from the analytical approximations in the previous sections
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can now help us understand this linear scaling of the final velocity, or equivalently the
quadratic scaling of the spectral position of the peak. In fact, the perturbative approach
has the linear scaling already encoded in its description of the velocity: Taking another
look at the equations in section 5.3.2, we can see that neither v0 nor v1 contains any β-
dependence and the inhomogeneity enters eq. (5.26) only by the obvious factor of β in
front of v1. Thus, the linear dependence of the final velocity on β can be seen directly
from eq. (5.26).

However, we should keep in mind that this prefactor of β in front of v1 is part of the
perturbative approach up to first order by design, and going to higher orders would in-
troduce higher order β prefactors. Thus, rather than explaining the linear dependence
of the numerically obtained final velocity on β as being due to the linear prefactor of
β in eq. (5.26) we should say that the fact of a perturbative approach of first order in β

describing the velocity so well concurs with the numerically observed linear scaling of
the final velocity with β.

With that said, we are still looking for an intuitive physical explanation for why the
final velocity grows with β, and does so in a linear fashion. To this end, we first take
a look at how the acceleration a(t ) depends on β, keeping in mind that the final ve-
locity corresponds to the area under this curve. As the top panel in Fig. 5.14 shows,
the zeros of a(t ) are scarcely affected by β and the inhomogeneity mainly influences
the amplitude of the oscillation in between. As the ‘second hump’, the curve between
the two zeros (around t ≈ 125 a.u.), bears a strong resemblance to a sine function, the
area under this half-cycle part of the curve approximately scales linearly with the am-
plitude. (For an intuitive understanding of this concept one may think of the integral
over a half-cycle sine function with amplitude C ,

∫π
0 C sin(x)d x =C ·2, which obviously

depends linearly on the amplitude C .)
Fig. 5.15 shows that indeed the final velocity scales linearly with the amplitude of

the ‘second hump’, the minimum of the acceleration ami n , which determines the area
under the second hump and thus the final velocity

v(tend ) ∝ ami n . (5.29)

Looking at eq. (5.12), it is clear that the acceleration is proportional to the inhomo-
geneity β at times where the position is independent of β. At the time where the ac-
celeration is minimal (and the position is around its maximum), the position is indeed
approximately independent of the inhomogeneity parameter as becomes clear from
the bottom panel of Fig. 5.14. Therefore, we can use the relation

ami n ∝β (5.30)

and combining this with eq. (5.29) we can infer the approximate proportionality

v(tend ) ∝β (5.31)

or equivalently

Eki n(tend ) ∝β2, (5.32)

which confirms above findings. Thus, we have seen that the linear dependence of the
final velocity on β is due to the amplitude of the acceleration curve approximately scal-
ing linearly with β.
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Figure 5.14: Top panel: The numerical solution for a(t ) according to eq. (5.11) for three
different β values where all the other parameters were chosen as in Fig. 5.9. The area
under this curve, which equals the electron’s final velocity, is influenced by β mainly
via the amplitude of the oscillations in a(t ). Central and bottom panel: Same as the
top panel but with velocity v (central panel) and position x (bottom panel) instead
of the acceleration a. The parameters were chosen as before in Fig. 5.9. All depicted
quantities are given in atomic units.
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Figure 5.15: The final (t = tend ) electron velocity as a function of the absolute value
of the amplitude ami n of a(t ) according to the numerical solution of eq. (5.11). The
straight line represents a linear fit which confirms that the final velocity can be ap-
proximated to depend linearly on ami n .

5.3.4 Spectral width of the HES

As Fig. 5.9 already revealed in a qualitative fashion, not only the center of the HES
but also its width strongly depends on the inhomogeneity parameter β. Reducing the
HES width is potentially of great importance when using the HES in the creation of
near monoenergetic electron beams. For the determination of the energy at which the
HES peak is centered in section 5.3.3, we had a closer look at trajectories of electrons
launched at the center of the pulse t0 = 0 as here the ionization probability is largest. To
estimate the width of the peak, it is relevant to describe how different ionization times
lead to different final energies. A minimized peak width is attained when the different
ionization times lead to a range of final energies as small as possible.

The distribution of ionization times in the adiabatic ionization rate can be approx-
imated by a Gaussian function, as derived in eq. (2.28). Its standard deviation

σ=
√

3E0

25/2I 3/2
p

1

ω
(5.33)

helps us estimate the width of the time span in which the majority of trajectories are
launched. We analyze electrons that are launched at t0 =−σ and t0 =+σ in order to be
able to quantify how deviating from t0 = 0 changes the final energy. It is worth repeat-
ing that we want a deviation from t0 = 0 to have the least effect on the final energy in
order to minimize the HES peak width.

The central plot in Fig. 5.16 shows the final energy for the three mentioned ioniza-
tion times over a range of inhomogeneity parameters. Here, the three curves intersect
at about β ≈ 0.002. Note that the fact that all three curves intersect in one point does
not imply that the peak is infinitely sharp. As Fig. 5.9 shows for the case of β = 0.002,
even though the peak is narrow, it has finite width. The evaluation of the final en-
ergy of trajectories starting at t0 = ±σ does not provide us with a reasonable measure
for the absolute width of the HES, it merely tells us at which inhomogeneity different
ionization times have the least effect on the final energy, which should be the very in-
homogeneity at which the HES width is minimized.

So, how can we understand that the HES peak width does not depend monoton-
ically on β but that there is an inhomogeneity at which the width is minimized? To



104 CHAPTER 5: Emergence of a Higher Energy Structure in inhomogeneous fields

Figure 5.16: The final kinetic energy (central panel), the acceleration (upper panels)
and the velocity (lower panels) as a function of time according to the numerical so-
lution of eq. (5.11). The electrons are launched at t0 = 0 (dotted green lines), t0 = −σ

(dashed blue lines), and t0 =+σ (solid red lines). Note that velocity, acceleration, and
time are given in atomic units, whereas the kinetic energy in the central panel is given
in electron volts (eV). Both panels on the left show results for β= 0.002, whereas on the
right-hand side β= 0.003 was used. In the central panel the final energy is shown over
a large range of inhomogeneities. The HES peak width is assumed to be minimal at the
inhomogeneity for which ionization before or after the center of the pulse has the least
effect on the final kinetic energy, which is the case for β≈ 0.002 here.
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Figure 5.17: Scheme for estimating graphically the β value which minimizes the HES
peak width. It is found at the intersection of the dashed orange line representing the
initial additional positive area Apos of the head start trajectory and the solid blue
curve, which represents the additional negative area Aneg the head start trajectory ac-
crues later on. Here, both curves intersect at β≈ 0.002. For details see appendix A.6.
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Figure 5.18: Difference of the final energy of two trajectories born at t0 = 8 and t0 =−8
(blue curve) or t0 = 16 and t0 = −16 (orange curve). The minimum of the (absolute
value of the) energy difference, given by the zero-crossing, can be used as an estimate
for the β yielding the narrowest HES. The figure shows that this zero-crossing has a
negligible dependence on the choice of ionization times.

answer this question, it is instructive to look at the acceleration and velocity during
propagation for electrons launched at t0 = 0 and t0 =±σ. For β= 0.002, these quanti-
ties are depicted in the left panel of Fig. 5.16. Now, it is easy to see that the head start
of the electron released at t0 =−σ will initially add a positive area (marked in orange)
under the acceleration curve as compared to the trajectory launched at t0 =+σ. How-
ever, later on this head start trajectory also gains an additional negative area (light blue
shaded area) under the second hump. In the case of β = 0.002, which optimizes the
peak width, the additional positive area and the additional negative area cancel out
each other and the total area under the acceleration curve and thus the final veloc-
ity is the same for all three trajectories. So we can understand the appearance of the
minimal peak width as due to cancellation of two competing effects: Electrons ionized
earlier will be initially accelerated more, but will experience greater deceleration later
on in the pulse.

For other inhomogeneities either the initial orange head start area or the blue neg-
ative area will dominate and different ionization times will lead to more different final
velocities. This can be seen in the example of β = 0.003, which is shown in the right
panel of Fig. 5.16. Here, the positive area due to the head start of the electron launched
at t0 = −σ as compared to the one launched at t0 = +σ, shaded in orange, is of ap-
proximately the same size as it was the case for β = 0.002. In contrast, the difference
in the negative area under the second hump of the acceleration curve (shaded in blue)
has grown with β. As a consequence, the overall area under the acceleration curve for
t0 =−σ is more negative than it is for t0 =+σ and, thus, the latter ends up at a smaller
kinetic energy.

The same concept can be used for arbitrary inhomogeneities: The initial orange
head start area adding a positive area, Apos , can be approximated to be independent
of β, represented by the dashed orange horizontal line in Fig. 5.17. The negative area,
Aneg , under the second hump is shown by a linearly growing solid blue curve in Fig. 5.17
(for details concerning this figure see appendix A.6). The minimum width of HES oc-
curs where the dashed orange and the solid blue curve intersect, near β≈ 0.002, signi-
fying the convergence in energy of trajectories starting at different ionization times.

Having established the origin of the minimum peak width, we want to proceed
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from the visual approach above to a more quantitative way to determine the β that
minimizes the width. To this end, we employ the perturbative model introduced in
section 5.3.2. As one argument in the expression for the velocity is the initial time t0,
we change the notation from v(t ) to v(t0, t ). We are now interested in how different
initial times lead to different final energies, where – again – we want to minimize that
difference in order to obtain a minimal peak width. The difference in energy for two
different ionization times t0,1 and t0,2 can be written as

∆E = 1

2

(
v0(t0,1, t f )+βv1(t0,1, t f )

)2 − 1

2

(
v0(t0,2, t f )+βv1(t0,2, t f )

)2

= 1

2

(
v2

0(t0,1, t f )− v2
0(t0,2, t f )+β2 (

v2
1(t0,1, t f )− v2

1(t0,2, t f )
)

+2β
(
v0(t0,1, t f ) · v1(t0,1, t f )− v0(t0,2, t f ) · v1(t0,2, t f )

))
= a +bβ+ cβ2,

(5.34)

where t f denotes the time when the pulse has passed and

a = 1

2

(
v2

0(t0,1, t f )− v2
0(t0,2, t f )

)
b = v0(t0,1, t f ) · v1(t0,1, t f )− v0(t0,2, t f ) · v1(t0,2, t f )

c = 1

2

(
v2

1(t0,1, t f )− v2
1(t0,2, t f )

)
.

(5.35)

∆E(β) is a parabola and we are interested in the minimum of its absolute value, i.e. the
zero-crossing, which is found at

βminimal peak width =− b

2c
±

√(
b

2c

)2

− a

c
. (5.36)

Fig. 5.18 shows two parabolas for the cases of {t0,1 = +σ = +8, t0,2 = −σ = −8} and
{t0,1 = 2σ = 16, t0,2 = −2σ = −16}. The symmetric choice of ionization times results in
A(t0,1) =−A(t0,2) and therefore |v0(t0,1, t f )| = |v0(t0,2, t f )|, which gives a = 0 and finally

βminimal peak width = b
c . For the two parabolas depicted in Fig. 5.18, we find

βminimal peak width = 0.00237 for {t0,1 =+σ, t0,2 =−σ}

βminimal peak width = 0.00240 for {t0,1 =+2σ, t0,2 =−2σ}.
(5.37)

Thus, we can see that our approach of finding the inhomogeneity which leads to the
minimum peak width is not particularly sensitive to the choice of ionization times.
Also, we get about the same result as obtained from numerically solving the equations
of motion and looking at the intersection of energies for different ionization times in
Fig. 5.16, which gave β≈ 0.002.

5.3.5 Summary of the analysis of the HES

In this section, we have seen that describing the electron’s motion in an inhomoge-
neous laser field in the intermediate regime of δ≈ 1, which is known to be notoriously
difficult to handle mathematically [238], is not only possible numerically but that also
analytical approximations can be attained and even allow to estimate relevant quanti-
ties such as the spectral position and width of the HES.
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Observing numerically that the inhomogeneity of the laser field dominates over
the inhomogeneity of the Coulomb potential of the ionized atom, we could neglect the
Coulomb potential in the equation of motion. Making use of the pulse envelope vary-
ing more slowly than the primary oscillation of the laser field, the equations of motions
could be reduced to Mathieu differential equations that can be solved analytically. In-
cluding the shape of the envelope perturbatively after solving the Mathieu differential
equation, a closed-form expression for the acceleration was found. This serves also
as an analytical description of the inhomogeneous field that the electron experiences,
which otherwise needs to be computed numerically.

Although the ansatz of Mathieu equations also led to an analytical description of
the velocity of the electron, it was found that a perturbative approach yields better
agreement with the numerical solution. The fact that the perturbative ansatz up to
first order is sufficient to describe the electron’s velocity in the inhomogeneous field,
i.e. it has the form v0 +βv1, also helped us derive a simple scaling law stating that the
final velocity of an electron born at the center of the pulse scales linearly with the inho-
mogeneity and, equivalently, that the spectral position of the HES peak scales quadrat-
ically with β.

Moreover, it was found that there is an inhomogeneity at which the width of the
HES peak is minimal and a scheme to estimate this optimal inhomogeneity based on
the analytical descriptions of the velocity was presented.

Being able to estimate the dependence of both the spectral width and position of
the HES on the inhomogeneity should help tune the parameters to realize the HES
experimentally and to control, for example, the spectrum of potentially resulting fem-
tosecond electron beams.

5.4 Unifying effects in strong inhomogeneous fields in
the intermediate regime

Only briefly after the emergence of the HES was discovered, the appearance of another
peak was reported in the spectrum of electrons that move in the inhomogeneous field
of a nanostructure [75]. The latter was named ‘low-energy peak’ (LEP) and, as the name
suggests, was found at rather low energies of about 1 eV, whereas the HES was located
at about 40 to 80 eV. Additionally, the HES was produced in a system where electrons
are ionized from a gas target that is placed in the inhomogeneous field of a nanotip,
whereas the LEP is formed of electrons that are released directly from the surface of a
nanotip. Moreover, the HES was a theoretical prediction while the LEP was measured
experimentally.

Given the diametrically opposed nature and naming of the HES and LEP, one may
wonder why we should bother to compare them to each other at all. The objections
insinuated by such a question are further supported by the fact that the publication
which reported on the LEP [75] does not even mention the HES. However, both the LEP
and HES emerged in the intermediate regime of δ& 1 and in both cases the electron’s
motion in the inhomogeneous laser field was claimed to cause the accumulation of
electrons in the respective peaks. From what we have learned about the HES above, we
should therefore expect that similar effects are at play.

Indeed, we will see that even though the two peaks were observed in different en-
ergy regimes, we can identify one mechanism in which both observations are explained.
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We thus unify the theories behind LEP and HES, finding that LEP and HES are two
manifestations of the same energy upshift due to propagation in an inhomogeneous
field. It will then become clear that the sole difference between HES and LEP is that in
the setting in which the HES was observed the electrons initially move towards the na-
nostructure whereas the electrons that form the LEP leave the nanostructure directly
after liberation. Even though this difference leads to a slightly larger energy gain of
electrons that initially approach the nanotip than of those directly leaving it, we find
that this effect is small and does not explain why the LEP was found at much lower
energies, of about 1 eV, than the HES, which was found to peak at around 40 to 80 eV.
Rather, we establish that the underlying dynamics are the same and that the main rea-
son for the different final energies is the different parameters that were chosen in the
observation of the HES and LEP. This insight is of particular interest as it allows us to
propose a modification of the setting in which the low energy peak (LEP) was experi-
mentally observed such that it leads to a photoelectron distribution at energies as high
and as spectrally confined as it was observed in the HES. This promises the still out-
standing experimental realization of almost monoenergetic electron bunches as they
were described in the framework of the HES.

5.4.1 An intuitive model for the energy upshift observed in the HES

As a first step, we need to understand why electrons experience an energy upshift at all
when moving in inhomogeneous fields. Even though the analysis of the HES in section
5.3 already provided some insights into how one can describe the electron movement
mathematically and we understood how the spectral position and width changes with
the inhomogeneity of the field, a simple and physically intuitive model for why the
electrons accumulate in a prominent peak was not given in the previous section, or
any other publication for that matter.

For a better understanding of the upshift mechanism, we look at the dynamics of an
electron in a typical inhomogeneous field that leads to a HES, presented in Fig. 5.19. It
is important to note that we now use an exponential description of the inhomogeneous
field

E(x, t ) = E0 cos

(
ωt

2N

)2

cos(ωt +φC EP )exp

(
− x

l f

)
(5.38)

and not the linear approximation of it (see eq. (5.7)) anymore. Thus, we do not need
to worry about zero-crossings of the (1+ 2βx) term and can include longer pulses in
our study as well. Moreover, in order to make things easier mathematically, we focus
on the field-decay along the positive x-axis rather than having the field decay along
the negative x-axis as was the case before (see e.g. Fig. 5.2). This entails that the final
velocity vx is positive rather than negative now (compare e.g. Fig. 5.12 and 5.19) and
that a CEP of π (at which the HES was observed in the linearly approximated field)
needs to be converted to a CEP of 0. The advantage of moving to the positive x-axis is
that we do not have to deal with evaluating the absolute value of x in the exponential
term (see eq. (5.6)) and the concomitant mathematical problems.

Now, to understand the energy upshift due to the movement in the inhomoge-
neous field, we first look at the acceleration curve of an exemplary trajectory plotted in
Fig. 5.19. After all, the area under this curve determines the final velocity. For an elec-
tron born at the center of the pulse and propagated in a homogeneous field (case not
shown in Fig. 5.19), the acceleration curve would oscillate symmetrically around zero
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(when neglecting envelope effects) leading to equally large positive and negative areas
and thus to zero velocity at the end of the pulse [39, 305]. The spatial inhomogeneity,
in contrast, introduces an asymmetry in the acceleration curve, which we can evaluate
better by splitting the pulse in half-cycles (see the striped background in Fig. 5.19) and
looking closer at the acceleration amplitudes of varying height that lead to a non-zero
area under the acceleration curve in the individual half-cycles.

At the beginning of the propagation, it is very clear that in each half-cycle (corre-
sponding to one stripe) the amplitude is larger for the acceleration with a positive sign
than for the one with a negative sign because for the positive sign the electron is closer
to the nanotip. As a consequence, we gain ‘positive area’ under the acceleration curve
and thus positive final velocity in each of these early half-cycles1. Later on, however,
the electron has already gained so much energy that it does not change the sign of its
velocity anymore and is only leaving the tip. Then, in the half-cycles highlighted in
white, where the negative acceleration comes prior to the positive one, we have an en-
ergy loss since here the negative acceleration is larger than the positive acceleration.
In the blue half-cycles, though, where the positive acceleration part comes first, we
still gain energy. Now, the key to understanding the overall energy upshift is that the
loss during the white half-cycle is always smaller than the gain in the neighboring blue
half-cycle and consequently there is an energy gain during one full optical cycle. This
effect is due to the fact that the velocity during the white half-cycle is moving around
its minimum. Consequently, the distance gained during that half-cycle is smaller and
the difference in the amplitudes of a < 0 and a > 0 is much smaller than in the blue
half-cycle where the velocity is around its maximum and the gain in distance and thus
the difference of the amplitudes at a > 0 and a < 0 is larger.

Consequently, we can understand the energy upshift as due to the asymmetry which
the inhomogeneous field introduces in the acceleration curve such that we obtain a
non-zero total area under it even for electrons ionized at the center of the pulse. Even
though there are half-cycles in which we lose a little energy, the half-cycles in which
we gain energy (blue stripes in the background) always dominate. And in the begin-
ning, while the electron has gained so little energy that it still oscillates back and forth
and approaches the tip in the white half-cycles we even have an energy gain in ev-
ery half-cycle, which explains the particularly fast energy gain at the beginning of the
propagation.

5.4.2 Unified model for HES and LEP

An important point in the above mechanism is that it does not only explain the energy
upshift in the setting that was employed in [73] for the HES, which was used in Fig. 5.19,
but equally explains the energy upshift at the parameters that led to the LEP [75]. This
should become clear from Fig. 5.20, in which the parameters were chosen to coincide
with those used for the experimental realization of the LEP [75]. Even though these
parameters differ considerably from those in Fig. 5.19, which are in the regime where
the HES was predicted theoretically, the overall shape of the curves does not greatly
differ. The main reason for the strong resemblance of the curves in Fig. 5.19 (HES) and
Fig. 5.20 (LEP) is the fact that both are in the intermediate δ-regime.

1For an illustration of this concept, see the top panel of Fig. 5.24, where the green quarter-cycle area
contributes positively and the red quarter-cycle area negatively, yielding a total positive area for that
half-cycle.
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Figure 5.19: Acceleration a, velocity v, position x as a function of time t , and the ex-
ponential decay factor exp(−x/l f ) for an electron released from an atom in an electric
field as described by eq. (5.38) at the center of a 12 cycles pulse with λ= 2 µm, C EP = 0,
l f = 750 a.u. and where the atom is exposed to a maximal intensity of I = 1·1014 W/cm2

(‘HES setting’). The numbered red dots are plotted at every half-cycle of the laser pulse
for visual guidance.

In terms of the mechanism outlined in section 5.4.1, which explained the gain of
kinetic energy in the inhomogeneous field by the asymmetry of the field and thus ac-
celeration amplitudes, there is one major difference between Fig. 5.19 and Fig. 5.20,
though. In the framework of the HES (Fig. 5.19), the electron is ionized from atoms
placed in the vicinity of a nanostructure and the electron initially moves towards the
nanotip, thus initially exploring fields that are even higher than during the ionization
process. Consequently, these electrons gain more energy than in the LEP case, where
the electrons are ionized directly from the nanostructure and initially move away from
the tip. Even though electrons that initially leave the nanostructure gain less energy
than electrons initially approaching the nanostructure, they are still upshifted consid-
erably in energy due to the mechanism explained in section 5.4.1.

In a setting where the initial movement both towards and away from the tip is al-
lowed, one may think of HES and LEP as two manifestations of the same energy up-
shift that are found in neighboring half-cycles, where the higher energy upshift (HES)
is found in the half-cycle in which the electron initially moves towards the tip and
the lower energy upshift (LEP) is found in the half-cycle in which the electron ini-
tially leaves the tip. This is illustrated in Fig. 5.21, from which it should also become
clear that one can switch between HES and LEP in one fixed half-cycle by changing the
carrier-envelope phase by π.

Even though the electrons ionized in the ‘LEP half-cycle’ (orange dots in Fig. 5.21)
and the ‘HES half-cycle’ (blue dots) end up at different energies, it becomes clear from
Fig. 5.21 that the energy difference due to the opposed initial directions of the electron
is not several orders of magnitude but only a factor of about 3. This is important to
note since the fact that the LEP was experimentally observed at about 1 eV [75] and the
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Figure 5.20: Acceleration a, velocity v, position x as a function of time t , and the ex-
ponential decay factor exp(−x/l f ) for a trajectory ionized from a nanotip in an elec-
tric field as described by eq. (5.38) at the center of a 12 cycles pulse with λ = 1.8 µm,
C EP =π, l f = 85 a.u. where the maximal (enhanced) intensity is I = 6.05 ·1012 W/cm2

(corresponding to an incident intensity of I0,i nc = 2 ·1011 W/cm2 and a field enhance-
ment factor of 5.5). The numbered red dots are plotted at every half-cycle of the laser
pulse for visual guidance. The mechanism underlying the energy gain in the inho-
mogeneous field is the same as in the HES case since the only difference to Fig. 5.19 is
the initial movement in the opposite direction, which only leads to a slightly weaker
energy gain, particularly in the first half-cycles. The reason for that slightly weaker en-
ergy gain is that the maximal field strength the electron sees is higher in case of initial
movement towards the tip (compare the plots of exp(−x/l f ) in Fig. 5.19 and Fig. 5.20
for that).
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Figure 5.21: Final kinetic energy as a function of ionization time for electrons ionized
at a maximal intensity of I = 1 · 1014 W/cm2. The decay length of the field is l f =
500 a.u., the wavelength is λ = 2 µm, the pulse has N = 24 cycles and CEP= 0. The
equation for the inhomogeneous electric field is given by eq. (5.38). For visual guidance
the field strength of the incident homogeneous laser pulse is plotted in the background
in arbitrary units for the time window in which ionization happens.
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HES was theoretically calculated at 40 eV up to 120 eV [73], might create the illusion of
a large energy gap between those two effects. Most of this large difference in energies
in [75] and [73], though, is due to the choice of disparate parameters: For the HES in
[73], an enhanced intensity of I = 1 · 1014 W/cm2 and an inhomogeneity parameter
corresponding to a decay length of about l f = 170−500 a.u. and a wavelength of λ =
2 µm was used, whereas the experimental observation of the LEP was made at I =
1 ·1012 W/cm2, l f = 85 a.u. and λ= 1.8 µm [75].

Thus, there are two effects that explain the energy difference of the HES reported
in [73] and the LEP in [75]: First, in [73], the electron initially moves towards the tip
and sees a larger maximal electric field, which accounts only for about a factor of 2-3
to energies of electrons that directly leave the tip, as it is the case in [75]. Second, the
choice of laser and nanotip parameters differs significantly, which accounts for most
of the discrepancy in energy. These parameters we can change, though. And as the
mechanism of energy gain is in principle the same, independent of the initial direction
of the electron, we should be able to create confined photoelectron distributions also
at high energies for electrons ionized directly from the nanotip, which initially leave
the nanotip, if we choose our parameters appropriately.

Fig. 5.22 shows that indeed such parameters exist. The top panel depicts CTMC
simulation results for ionization directly from the nanotip where we follow the model
applied in [75] using the one-dimensional exponentially decaying field of eq. (5.6). The
ionization probability is described by the Fowler-Nordheimer tunneling formula [218,
220, 306], which gives the ionization current from the tip (with exponential accuracy)
as

J (t ) ∝ exp

(
−2(2W )3/2

3E(t )

)
, (5.39)

where W denotes the work function of the nanotip. Comparing this function to the
adiabatic ionization rate for the gas phase (see eq. (2.21)), we can see that it is iden-
tical save for the ionization potential Ip which is replaced by the work function W .
Following Ref. [307], we only allow electrons to be born during half-cycles of negative
field strength, as only then the field drives the electrons from the inside towards the
surface of the nanotip and allows ionization (assuming that only emission in positive
x-direction is possible). Moreover, we model the electrons to be born at the surface
of the tip with zero initial velocity and rescattering at the tip is implemented as elastic
scattering with a reflection coefficient of 1 [75, 307].

In the top panel of Fig. 5.22, the lowest peak reproduces the LEP peak at about 1 eV
that was reported in [75]. However, at other intensities, wavelengths and decay lengths
the peak is shifted to higher energies, while still being spectrally confined. In particular,
we can even reach energies as high as they were so far only reported for the HES, while
now being produced in a LEP setting, i.e. by ionization from a tip and not from the gas
phase in the vicinity of the tip.

To get a better understanding of the spectra shown in the top panel of Fig. 5.22, it
is instructive to analyze in which part of the laser pulse the electrons are born. Such
an analysis is presented in Fig. 5.23, where the electrons are color-coded according
to having been rescattered at the nanostructure (green dots) and not having under-
gone rescattering (purple dots). From this it becomes clear that the high energetic
long tails of the electron distributions in Fig. 5.22 are due to rescattering events and
that the prominent peak that arises in the spectral electron distribution is formed by
direct electrons, which is in agreement with the findings in [75] and in line with the
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Figure 5.22: Top panel: Final kinetic energy of photoelectrons ionized directly from a
nanostructure for various laser and nanostructure parameters specified in the legend,
where a 48 cycle pulse was used. The peak at small energies (blue) reproduces the ex-
perimental result reported in [75] and is found at about 1 eV. These simulations also
show how we can obtain considerably higher energies in the same setup when choos-
ing other parameters. The electrons that form the tail are from rescattering events,
which becomes clear from Fig. 5.23. Bottom panel: Velocity as a function of time for
a trajectory ionized at the center of the pulse at the surface of the nanostructure with
zero initial velocity for the same parameters as in the top panel. The dashed lines are
analytical approximations according to eq. (5.45).

mechanism outlined in section 5.4.1 where the energy gain is due to movement in the
inhomogeneous fields and not rescattering.

Obviously, the question of experimental realizability arises at this point. There is
reason to be optimistic that the parameters that led to the high-energetic peaks in the
top panel of Fig. 5.22 can indeed be used experimentally, mainly since similar param-
eters have been used before. Not only the LEP around 1 eV has already been mea-
sured [75] but also a sharp peak at about 10 eV has already been experimentally re-
alized [141] where enhanced field strengths and decay lengths were applied that are
in the regime used for the high-energetic peaks in the top panel of Fig. 5.22. In [141],
though, a wavelength of λ= 800 nm is used and going to longer wavelengths at similar
intensities promises to lead to higher absolute photoelectron energies that are in the
regime of energies as they were predicted for the HES in [73] and as they are found in
the top panel of Fig. 5.22. Using a setting where the electrons are released directly from
the nanostructure should be easier to implement experimentally than ionization from
atoms in the vicinity of the nanostructure. The latter was the setting in which the HES
was predicted theoretically (see section 5.2 and [73]) but has the disadvantage that the
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Figure 5.23: Final kinetic energies of photoelectrons as a function of ionization times
for the parameters specified below each panel, corresponding to the results shown in
Fig. 5.22. Even though in all cases the same number of optical cycles (N = 48) was
chosen, the part of the pulse which contributes significantly to ionization differs de-
pending on the laser intensity.
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theoretically assumed precise location of the atoms in the inhomogeneous field is dif-
ficult to realize experimentally and the spread of the atoms would probably result in a
broadening of the HES. With ionization directly from the nanotip, in contrast, the ini-
tial position of the electron after ionization can be controlled better and is locally more
confined, consequently reducing blurring effects.

Thus, it seems expedient to use the setting in which the low energy peak was ob-
served to produce electron distributions as they were theoretically predicted for the
high energy structure, where the seeming contradiction due to the different names is
resolved by the fact that both effects have the same underlying mechanism for the en-
ergy upshift in the inhomogeneous field but have so far been investigated at strongly
different parameter sets.

5.4.3 A new analytical description of the energy upshift

Based on the cycle-averaged model that was described qualitatively above, we can now
also derive a quantitative analytical description for the energy that an electron gains
while moving in an inhomogeneous field. Following the same basic idea as the one
underlying the explanation of Figures 5.19 and 5.20, we can calculate the change of
velocity v during every half-cycle by calculating the change of the area under the ac-
celeration curve in the corresponding half-cycle:

ẍ = ∆v

∆t
= |A1|− |A2|

T /2
(5.40)

with A1 and A2 being the area under the acceleration curve in the first and second
half of the half-cycle under consideration, respectively (see top panel of Fig. 5.24 for
a visualization). Denoting g (x) = exp(−x/l f ) and using

∫T /4
0 E0 cos(ωt )dt = E0/ω, we

can thus approximate:

ẍ = |A1|− |A2|
T /2

=
1
ω (|E0,1|− |E0,2|)

π/ω
= (|E0,1|− |E0,2|)

π
= E0∆g

π
= E0∆x

πl f
. (5.41)

In the second equality in eq. (5.41), the assumption is that the amplitude of the accel-
eration curve in the half-cycle of interest determines the area. This ‘local’ amplitude of
the acceleration curve can easily be expressed by the amplitudes of the field strength,
E0,1 and E0,2. In the last step in eq. (5.41), a local linear approximation to the expo-
nentially decaying field was assumed (see central panel of Fig. 5.24), where ∆x is the
local amplitude of the oscillation, which depends on the local value of the electric field
E0,l oc

∆x = E0,l oc /ω2 = E0 exp
(−x/l f

)
/ω2 (5.42)

and also 1/l f , the absolute value of the slope of the local linear approximation, varies
locally:

1

l f
→ 1

l f
exp

(−x/l f
)

, (5.43)

which corresponds to the derivative of g (x) with respect to x. Plugging eqs. (5.42) and
(5.43) into eq. (5.41) we obtain

ẍ = E0
(
E0 exp(−x/l f )/ω2

)
πl f exp(x/l f )

= E 2
0 exp

(−2x/l f
)

l f πω2
. (5.44)
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Figure 5.24: Top panel: The half-cycle averaged velocity change is calculated as the dif-
ference of the areas under two adjacent quarter-cycles of the acceleration curve. Cen-
tral panel: This illustration of the local linear approximation shows how the difference
in the acceleration amplitudes (≈ E0 ·∆g ) and the slope of the corresponding local lin-
ear approximation depend on the position of the electron and, in turn, on the oscil-
lation amplitude ∆x. The absolute value of the slope can be approximated to be 1/l f

at x = 0, but becomes smaller for increasing distance x from the nanotip according
to eq. (5.43). Bottom panel: Visualization of how the linear approximation overesti-
mates ∆g and thus the difference between the acceleration amplitudes in subsequent
quarter-cycles, leading to an overestimation of the energy the electron gains in the in-
homogeneous field. The effect is most pronounced for large intensities, where a local
linear approximation for one half-cycle fails since the electron’s oscillation amplitude
is too large.
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This differential equation is analytically solvable:

xappr ox = l f log

(
cosh

(
E0t

l f
p

πω

))

⇒ vappr ox = dxappr ox

dt
= l f

1

cosh
(

E0t
l f
p

πω

) sinh

(
E0t

l f
p

πω

)
E0

l f
p

πω
=

E0 tanh
(

E0t
l f
p

πω

)
p

πω

⇒ Eki n,appr ox =
v2

appr ox

2
=

E 2
0 tanh2

(
E0t

l f
p

πω

)
2πω2

.

(5.45)
The validity of the approximation can be seen in the bottom panel of Fig. 5.22. Note,
though, that the model is restricted to the applicability of the ‘linear local approxima-
tion’, which implies that the electric field the electron experiences within one half-cycle
can be well approximated by a linear function. The breakdown of this assumption will
be further addressed in section 5.4.4.

Also, even though this cycle-averaged description is a powerful and simple estimate
of how the electron’s velocity, and thus energy, changes while moving in the inhomo-
geneous field, it does not resolve the subcycle dynamics and is thus also insensitive to,
for example, variations in the ionization time. However, crucial properties of the peak,
such as its width, depend strongly on how different ionization times lead to different
energies, as we have seen in the analysis of the HES width in section 5.3.4. This moti-
vates the derivation of an analytical approximation for the subcycle dynamics, which
will be done in the following subsection. It seems important to emphasize already now,
though, that the cycle-averaged nature of the above description also leads to the fact
that eq. (5.45) does not capture the difference between the electrons that are ionized at
a positive or negative sign of the electric field. This difference may be included in the
model by using the maximal field strength the electron sees during propagation rather
than the field strength during ionization for E0.

5.4.3.1 An analytical description including subcycle effects

One way to include subcycle effects is found in combining the cycle-averaged descrip-
tion derived in the preceding section with the perturbative model derived in section
5.3.2. The perturbative model in its pure form worked well in section 5.3.2, where the
short pulse duration allowed to describe the inhomogeneous field by a linear model.
Now, however, we use longer pulses and a more accurate approximation of the in-
homogeneous field by applying the exponential description of eq. (5.38) is required.
Technically, we could approximate this by the linear model again, of course, in order to
apply the perturbative approach, which would then read

vper tur b(t ) = v0(t )− 1

l f
v1(t ). (5.46)

Note that this is the same perturbative ansatz as in eq. (5.26), the only difference be-
ing the notation of −1/l f corresponding to 2β in eq. (5.26). Therefore, this linear ap-
proximation of the exponential case also has the same problem as the linear ansatz in
eq. (5.26): We need to avoid the zero crossing of (1−x/l f ), which requires short pulses.

One way to make use of the perturbative approach that is based on the linear
approximation after all is to realize that eq. (5.46) can be improved upon by adapt-
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Figure 5.25: Velocity as a function of time for an electron. The maximal enhanced
intensity of the electric field is I = 1 · 1014 W/cm2 at the position where the electron
is released, the wavelength is λ = 2 µm, φC EP = π, and the decay length of the field
is l f = 750 a.u.. The number of optical cycles is N = 20 and the electron is born at
the center of the pulse at t0 = 0. The local perturbative solution according to eq. (5.47)
(solid purple line) matches the numerical solution (solid dark blue line) well in the first
few cycles, but diverges considerably later on. One can see that neglecting the envelope,
i.e. using eqs. (5.50) to (5.52) (dashed pink line), gives a similarly good approximation.
Note that even though the approximation vsi mpl e according to eq. (5.49) (dash-dotted
turquoise line) gives a better overall agreement with the numerical solution, the local
perturbative model describes the subcycle dynamics more accurately in the first few
cycles. Moreover, for other parameters the local perturbative model can also be the
more accurate approximation for the final velocity than vsi mpl e as becomes clear from
Fig. 5.26.

ing the field strength in the zeroth order terms. This is done by replacing E0 by
E0 exp(−xappr ox(t )/l f ) in the zeroth order terms x0 and v0, where xappr ox is the cycle-
averaged approximation according to eq. (5.45). We are thus taking into account that
the maximal field strength the electron sees during one particular half-cycle decays
with increasing distance from the nanostructure. As the zeroth order term x0 is also
used in the calculation of the first order velocity, this modification introduces a factor
of exp(−xappr ox(t )/l f ) also in the first order velocity v1, leading to

vper tur b,i mpr oved (t ) =
(

v0(t )− 1

l f
v1(t )

)
·e−xappr ox (t )/l f . (5.47)

In the following, this model is called the local perturbative model since it corresponds
to the slope of the linear approximation being adapted locally. This can be seen from
comparing the prefactor of v1 in eq. (5.46) and (5.47) realizing that

1

l f
→ 1

l f
e−xappr ox (t )/l f (5.48)

was applied, which corresponds to the local linear approximation presented in
eq. (5.43) of the previous section (also see the central panel of Fig. 5.24 for a visualiza-



5.4. Unifying effects in strong inhomogeneous fields 119

Figure 5.26: Velocity as a function of time. The maximal enhanced intensity of the
electric field is I = 1 · 1014 W/cm2 at the position where the electron is released, the
wavelength is λ = 2 µm, φC EP = π, and the decay length of the field is l f = 1600 a.u..
The number of optical cycles is N = 8 and the electron is born at times t0 specified in
the legend. Here, the subcycle dynamics is resolved better with the local perturbative
approach (‘loc. pert.’, eq. (5.47)) than with the approximation according to eq. (5.49)
(‘vsi mpl e ’). This is the case over a wide range of t0, which are chosen to be t0 =±σ= 8
(see eq. (5.33)) and t0 = 0.

tion and eq. (5.41) for the derivation). In contrast to eq. (5.43), the position is directly
estimated by the cycle-averaged position xappr ox described in eq. (5.45) here. With
increasing distance from the nanostructure, the slope of the local linear function gets
progressively shallower and we do not need to worry about the zero-crossing of this
local linear function.

An exemplary velocity curve approximated by eq. (5.47) is shown as a solid pur-
ple line in Fig. 5.25, where we can see that it matches the numerical solution (solid
dark blue line) well in the first few cycles but deviates later on. At the point where the
approximation starts to deviate, however, the approximation is already close to the ve-
locity the full numerical solution converges to. Therefore, one may still use the pertur-
bative approach of eq. (5.47) to estimate the final velocity by evaluating it at the point
where it diverges e.g. from the cycle-averaged velocity vappr ox given in eq. (5.45).

In Fig. 5.25 we find another approximation, which in that case matches the numer-
ical solution better at the end of the pulse. It is described by

vsi mpl e = v0(t )e−xappr ox (t )/l f + vappr ox . (5.49)

Here, the first term equals the first term of eq. (5.47) but the second term is replaced
by vappr ox (eq. (5.45)), based on the assumption that vappr ox approximates the final
velocity well. Note that even though the approximation vsi mpl e according to eq. (5.49)
(dash-dotted turquoise line) gives a better overall agreement with the numerical solu-
tion in Fig. 5.25, the local perturbative model describes the subcycle dynamics more
accurately in the first few cycles. Moreover, for other parameters the local perturbative
model can also be the more accurate approximation than vsi mpl e . Fig. 5.26 presents
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a case where the local perturbative model according to eq. (5.47) approximates the
numerical solution better than eq. (5.49) over a wide range of ionization times t0. In
particular, this figure shows how the effect of the different ionization times on the fi-
nal velocity can be approximated in the subcycle models, which is vital in studying the
width of the resulting peak in the photoelectron spectrum, as we learned in section
5.3.4.

The fact that with the exponentially decaying field we are now able to use longer
pulses than in the linear approximation in sections 5.2 and 5.3 opens the door to ne-
glecting envelope effects. This has the advantage that the lengthy, albeit analytical,
expressions of the perturbative approach from section 5.3.2 can be reduced to a more
convenient size. Neglecting the envelope we obtain the following expressions:

v0(t ) =−
∫t

t0

E0 cos(ωt ′+φC EP )d t ′ = E0(sin(ωt0 +φC EP )− sin(ωt +φC EP ))

ω
(5.50)

x0(t ) =
∫t

t0

v0(t ′)d t ′

=−E0(cos(ωt0 +φC EP )−cos(ωt +φC EP ))

ω2
+ E0 sin(ωt0 +φC EP )(t − t0)

ω

(5.51)

v1(t ) =−
∫t

t0

E0 cos(ωt ′+φC EP )x0(t ′)d t ′

= E 2
0

4ω3

(
2ω(t0 − t )+4sin(ω(t − t0))

+2ω(t0 − t )(cos(ω(t0 − t ))−cos(2φC EP +ω(t0 + t )))

+ sin(2(φC EP +ωt0))− sin(2(φC EP +ωt ))
)
.

(5.52)

Comparing this version of v1 with the unwieldy expression in appendix A.5 shows that
neglecting the envelope significantly reduces the length of this term. The dashed pink
line in Fig. 5.25 shows how using eqs. (5.50) to (5.52) in the local perturbative approach
given in eq. (5.47) is a reasonable approximation which starts deviating from the nu-
merical solution at about the same point as the local perturbative solution with the
envelope included.

5.4.4 Explaining the experimentally observed linear intensity
scaling

In the framework of the cycle-averaged approximation introduced in section 5.4.3 we
can now also understand directly the linear scaling of the energy of the LEP with in-
tensity reported in [75]. As can be seen from the approximate description in eq. (5.45),
the final energy should scale as E 2

0 since tanh → 1 for large t . Note that this state-
ment differs from the widely known effect that the cycle-averaged kinetic energy of an
electron in a homogeneous field scales with E 2

0 . In homogeneous fields this statement
pertains to the quiver motion during propagation whereas the statement made here
for the inhomogeneous fields concerns the final energy at the end of the pulse for an
electron born at the center of the pulse. Such an electron has zero energy at the end
of propagation in a homogeneous laser pulse, but undergoes an energy upshift in an
inhomogeneous field due to the mechanism that is qualitatively described in section
5.4.1 and mathematically captured in eq. (5.45).
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Figure 5.27: Final photoelectron energy as a function of the incident laser inten-
sity (note that the enhanced intensity is significantly larger). The experimental data
and the linear fit to it were extracted from [75]. The analytical result is described by
eq. (5.45) where a field enhancement factor of 5 was assumed, which lies in the regime
estimated in [75].

The theoretically predicted linear scaling of the final energy with intensity was in-
deed observed in the experiment of the LEP in [75] for not too large intensities. The
experimental results are depicted in Fig. 5.27 along with the linear fit done in [75] and
the estimation according to eq. (5.45), which matches the experimental result nicely.
Moreover, we can understand intuitively why the experiment in [75] exhibits a break-
down of the linear scaling for larger intensities: The local linear approximation over
one half-cycle overestimates the amplitude of ∆g and thus overestimates the energy
gain (see bottom panel of Fig. 5.24). This effect becomes stronger with increasing os-
cillation amplitudes ∆x, which we get for larger E0, and explains why our model over-
estimates the spectral position of the peak for large intensities.

Furthermore, from the visualization in Fig. 5.24 it becomes clear that the break-
down of the linear scaling with intensity also marks the regime where the electron
explores very different parts of the inhomogeneous fields during one half-cycle and
where changes during one half-cycle are so strong that they cannot be approximated
linearly and the cycle-averaged approach fails. This makes clear that the approximate
description derived in section 5.4.3 is restricted to δ-parameters in the intermediate
regime. Thus, we can also understand the seemingly odd feature of eq. (5.45) according
to which the final energy depends only on E0 and ω but not on l f . The decay length l f

only determines how fast the final velocity is reached in this approximation. However,
via the δ-parameter, E0 and ω implicitly contain (approximate) information about l f ,
which explains why the approximation of eq. (5.45) works so well to describe the final
energy, as we have seen e.g. in Fig. 5.22. In this figure, all combinations of the strongly
different intensities, wavelengths and decay lengths correspond to a δ-parameter of
about 4.

5.4.5 Conclusion and Outlook

This last section 5.4 in the chapter on inhomogeneous fields was devoted to showing
that the seemingly different effects dubbed low-energy peak (LEP) and higher energy



122 CHAPTER 5: Emergence of a Higher Energy Structure in inhomogeneous fields

structure (HES) can be understood in one unified theory in which the different ob-
served peaks emerge because of an upshift in energy due to the motion of the electron
in the inhomogeneous field. In both the LEP and HES setting the asymmetric ampli-
tude profile of the acceleration curve, introduced by the inhomogeneity of the field,
leads to a systematic energy gain in the inhomogeneous field. Two reasons for the HES
having appeared at high energies in [73] and the LEP having been measured at low
energies in [75] were identified: First, the LEP was measured in a spectrum of photo-
electrons that were released directly from the nanotip leading to an initial movement
away from the tip, towards smaller field strengths. In contrast, the HES was predicted
in a setting where the electrons are ionized from an atom in the near-field of a nanotip
with the electron initially approaching the nanostructure. The higher maximum field
the electron therefore sees in the HES setting than in the LEP setting accounts for a
factor of the order of two to three in the final energy. The more important reason for
the different energy scales at which the HES and LEP were reported previously, though,
is the fact that vastly different intensities and decay lengths were chosen in the corre-
sponding publications.

As for both the HES and LEP the combination of intensity, decay length, and wave-
length was nonetheless in the same intermediate δ-regime, we have seen that the over-
all dynamics is the same at the different energy scales and can be described by the same
theory. Closed-form expressions were derived to describe the cycle-averaged energy
gain in the inhomogeneous field, which also explain the linear scaling of the spectral
position of the peak with intensity that was reported for the experimentally observed
LEP.

Unifying the electron dynamics for high and low energies on the one hand, and for
the different settings of electrons being released directly from the nanotip and from
the gas phase on the other hand, paves the way of experimentally realizing the favor-
able features that have been theoretically predicted for the HES [73, 74]. One problem
with realizing the HES in the way it was described in sections 5.2 and 5.3 is the fact that
the ionization happened from the gas phase. While our theoretical model allowed us
to neatly place the atom at a clearly defined position thus experiencing a well-defined
field strength and decay length, a real system would not allow such precise atom loca-
tion. Rather, one would need to employ an atomic beam with a finite spread in space.
The atoms in that beam would consequently be exposed to different field strengths
and slopes thereof, which would lead to blurring and thus broadening of the HES peak.
Now, however, we have seen that we can use the LEP setting, i.e. ionization from the tip,
to create spectrally narrow peaks at energies as formerly only reported for the HES (top
panel of Fig. 5.22). The advantage of using ionization from a tip is not only that it is a
well-established experimental technique but, more importantly, that here the electron
position upon ionization and thus the field strength and decay length the electron ex-
periences after its birth in the continuum are more clearly defined and controllable and
can be kept almost constant for a large ensemble of photoelectrons. Thus, we can be
optimistic about the experimental realization of creating almost monoenergetic elec-
tron beams of tuneable energy in the higher-energetic regime using inhomogeneous
fields.



CHAPTER

6
Tracking the ionization site in a
neutral diatomic molecule

“A diatomic molecule is a molecule with one atom too many."

— Arthur Leonard Schawlow (Nobel Prize Laureate in 1981)

Overview of this chapter

Coulomb explosion has proven to be a powerful technique to investigate the effect
of ionization enhancement and to track the ionization site in molecules. However,
this technique does not allow to determine the ionization site in neutral homonu-
clear molecules. Here, a new method is proposed for quantitatively retrieving the
ratio of ionization happening at the up- and downfield atomic site in a neutral di-
atomic molecule from experimental data by means of comparison with numerical
simulations. The key mechanism is based on the deflection of the electron in the
asymmetric Coulomb potential of a tilted diatomic molecule, which introduces an
asymmetry in the final photoelectron momentum distribution. As the degree of
asymmetry depends on whether the electron is born at the up- or downfield atom
and as the ionization site ratio can be controlled in trajectory-based simulations,
this information can be used to quantify the ratio of ionization from the up- and
downfield site from experimental photoelectron momentum distributions.

6.1 Goals and challenges in describing molecular effects

After having studied the effect of field inhomogeneities as they are typically found in
the vicinity of a nanostructure in the previous chapter, this chapter deals with inho-
mogeneities that arise in a more natural way: the inhomogeneities of the molecular
potential. Despite of, and maybe even because of, the inhomogeneities in molecular
systems not being as extreme as near nanostructures, we will find that describing the
resulting effects is a challenging task and requires numerical treatment.

As we have seen, for instance in chapter 3, already superposing an atomic Coulomb
potential and a homogeneous laser field is challenging to describe theoretically. Enter-
ing the regimes of molecules, however, we have to handle far more degrees of freedoms
that play a role at different time scales: The rotational degree of freedom is relevant on
the picosecond timescale, vibrational freedoms are observed on a femtosecond scale
and the electronic movement happens on the attosecond scale [308]. Even in seem-
ingly benign diatomic molecules the symmetry of molecular orbitals [309–314], the
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possibility to dissociate into atomic fragments [315–318], and variable internuclear dis-
tances [319–321] already complicate matters considerably. This makes it all the more
surprising that molecular targets in strong field ionization have been studied from the
early days on [322–330] – beginning in the late 1980s. Even though we are still dis-
cussing the description of the ionization process in the hydrogen atom (see chapter
3 or Refs. [116, 117, 331, 332]), strong field ionization is already employed as a tool to
understand molecular effects better [308, 333, 334]. For example, in Ref. [335] strong
field holography [336–338] is used to resolve the difference of the nuclear dynamics of
H2 and D2 with subangstrom spatial and subcycle temporal resolution. Other publica-
tions helped understand how the phase of the electron depends on the atomic site the
electron is born at [130, 339].

The key to success in investigating molecular systems with strong field pulses is of-
ten based on a concept one may describe as the ‘molecule taking a selfie’ [20], i.e. the
very electron that was ionized can, on its way to the detector, return (close) to the re-
maining molecular ion. Thus, information about the molecule itself is encoded in the
ionized electron. Among these ‘self-interrogating’ techniques, methods referred to as
laser-induced electron diffraction (LIED) [16–19] and photoelectron holography [336–
338] have been particularly successful in recovering information about the molecular
structure and dynamics [130, 131, 339–348]. Similarly, high-harmonic generation spec-
tra from molecules contain information about the molecule the electron has accrued
before recombination, i.e. during ionization and propagation [310, 311, 349–353].

Despite all of this success in dealing with molecules, even nature’s simplest
molecule, H+

2 , isn’t fully understood yet [308]. A great deal of the problems arising in
the context of molecules is due to the difficulties in modeling molecules theoretically.
The additional degrees of freedom of a molecule are difficult to capture by numerical
solutions of the TDSE [354–356] and this method is therefore usually only used for ei-
ther very small molecules like H+

2 or in proof-of-principle calculations with model or-
bitals [357, 358]. Resorting to other popular techniques such as SFA and CTMC using
ADK rates often yields surprisingly good results for a large variety of molecules [357,
359–367] but does not make things less contentious. For example, the molecular ex-
pansion of SFA (MO-SFA) including Stark corrections [98] predicts a maximized ion-
ization rate for a CO molecule when the laser field points in the C-O direction whereas
the molecular expansion of ADK (MO-ADK) that includes Stark corrections [368, 369]
predicts such a maximum for the laser field being directed in the O-C direction [370].
An experiment devised to test these predictions indicated that double ionization of CO
is more likely to occur when the laser field is pointing from C to O [371] and that more
generally the linear Stark effect plays a minor role in this system.

The importance of taking account of traits of the molecular orbital one is ionizing
from, e.g. its symmetry [309–314], makes information from quantum chemistry cal-
culations beneficial for many theoretical models. But, again, while including orbital
information is relatively straight forward in the atomic case and can, for example, be
described in a method called partial Fourier transform [372], it is less clear how to ex-
pand this theory for the molecular case [131, 373–375]. Therefore, even though theory
was able to make experimentally validated predictions about molecular effects (see
e.g. [319, 326, 376, 377] or [378–381]), it seems even more vital for molecular theories
than for atomic theories to be backed up by experimental results, which is the path we
also chose for the present chapter.
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Figure 6.1: Illustration of a diatomic potential for alignment of the internuclear axis
along the polarization axis. The horizontal gray lines represent the linearly Stark-
shifted ionization potential (see e.g. eq. (1) and Fig. 2 in [384] or Fig. 1(c) and the equa-
tions on p. 043002-4 in [123]). The ionization barrier for the upper well is considerably
narrowed by the influence of the lower well, which can lead to ionization enhance-
ment, provided electron localization at the upfield atom is significant. However, the
force F of the electric field can drive the electron towards the downfield well, which is
expected to play a role if the electron position adapts adiabatically to the laser field
and which would result in the downfield atom to be the dominant ionization site.

6.2 The problem of tracking the ionization site in a
molecule

This chapter is devoted to answering the question at which atomic site in a molecule
the electron is born. More precisely, we are interested in the ratio at which the electrons
are born from the upfield and downfield atom, where upfield and downfield refer to the
atom where the potential is heightened or lowered due to the laser field, respectively.
Knowledge about the site the electron is born at is not only vital in understanding the
tunneling process in molecules itself but is relevant for theoretically modeling, and
thus the analysis and interpretation, of molecular imaging techniques [382] such as
molecular orbital tomography [21, 383], photoelectron holography [336–338], or laser-
induced electron diffraction (LIED) [16–19].

This problem of identifying the tunneling site in molecules is usually addressed in
the context of an effect called charge resonance enhanced ionization (CREI), some-
times also referred to as ionization enhancement. Therefore some introductory words
on this effect seem warranted.

The experimentally observed effect of ionization being larger when the molecular
axis of a diatomic molecule is aligned along the polarization axis of the electric field
when compared to the perpendicular orientation [322, 385] was explained by Codling
et al. in 1989 [326]. They proposed a mechanism in which the internuclear barrier is
suppressed for certain internuclear distances. Thus, the barrier that an electron lo-
cated in the upfield well has to tunnel through is narrower than the barrier in perpen-
dicular orientation and ionization is enhanced (see Fig. 6.1). Even though this model
was introduced decades ago, doubts about its validity haunted physicists for a long
time [318, 386] and only recently various major breakthroughs were obtained in this
debate [123, 374, 382, 387–391]. The dominant tool in the study of CREI is the mecha-
nism of Coulomb explosion since the enhancement depends strongly on the internu-
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Figure 6.2: Left panel: Equipotential lines of the Coulomb potential of a N2 molecule
tilted by 45◦ against the polarization axis under the influence of a constant electric
field (E0 = 0.061 a.u. ↔ I = 1.3 ·1014 W/cm2). Right panel: Cuts through the potential
surface of the left panel parallel to the polarization axis through the upfield atom (or-
ange line, also marked in the left panel) or downfield atom (green line), respectively.
The horizontal dashed lines in the right panel represent the linearly Stark-shifted ion-
ization potential (similar to the dashed gray lines in Fig. 6.1).

clear distance which can be easily determined from the kinetic energy release (KER)
during Coulomb explosion by invoking Coulomb’s law telling us that the KER is in-
versely proportional to the distance between the atoms at the time of defragmentation
[392].

While more and more experiments have validated that there are indeed internu-
clear distances at which ionization is enhanced, the underlying mechanism remains
under debate [378, 379, 393]. One path to understanding the ionization mechanism
in molecules better is the determination of the tunneling site and recent studies along
this line have provided strong evidence for the suppressed upfield barrier at certain
internuclear distances leading to the enhancement [123, 374, 382, 387–391]. An im-
portant step was achieved in Ref. [391], where the dominance of ionization from the
upfield atom in an ionization enhancement setting was measured. This experiment
relied again on the mechanism of Coulomb explosion and could distinguish between
the ionization ratios from the up- and downfield atom by making use of the fact that
the ionization of ArXe+ happened at the Ar atom. Thus, this method is not only re-
stricted to doubly charged ionization products but also requires a diatomic molecule
of different atomic species.

Ionization enhancement is explained by the idea that the electron is born at the
upfield atom, escaping through the lowered internuclear barrier, as can be seen from
the sketch in Fig. 6.1 of a molecule whose internuclear axis is parallel to the polar-
ization axis. However, as also becomes clear from this sketch, the field should drive
the electron cloud towards the downfield atom. This effect plays a role if the electron
position adapts to the laser field adiabatically, which is expected to happen if the in-
ternuclear distance is small and the laser field changes relatively slowly. Therefore, for
the electron to escape over the suppressed internuclear barrier, the potential barrier
is required to move sufficiently fast to allow trapping of the electron in the upper well
in the first place [319, 333, 377, 384, 394–396]. Since this effect only happens at inter-
nuclear distances that lead to ionization enhancement, studying it does not provide
information on what atomic site the electron is born at when the molecule is found at
other internuclear distances.

Obviously, things are further complicated if the molecular axis is tilted with respect
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to the laser polarization axis (see Fig. 6.2). Such a system will be discussed in the fol-
lowing: A neutral N2 molecule that is tilted against the laser polarization axis by 45
degrees is (single) ionized. This setup equals the one described in [339], the experi-
mental data of which will be used for comparison later on. This system does not result
in defragmentation via Coulomb explosion, which is usually drawn on when investi-
gating the atomic site at which the electron is born in a molecule. Even though a re-
cently proposed method for the determination of the tunneling site [382] does not use
the concept of Coulomb explosion and could be applied to neutral molecules, it does
not allow quantitative insights into the likelihood of electrons being ionized from the
two different atomic sites. Below, we develop an approach to quantize ionization rates
from the up- and downfield site in the tilted diatomic molecule.

6.3 A new method for tracking the ionization site in a
molecule

6.3.1 Experimental results

The fact that electrons that are born at the two different atomic sites and should thus
explore different Coulombic potentials, which in addition are asymmetric with respect
to the polarization axis of the laser, is expected to lead to an asymmetry of the photo-
electron momentum distribution at the detector. However, looking at the experimen-
tally detected photoelectron momentum distribution of a tilted N2 molecule in Fig. 6.3
no asymmetry is visible, to the bare eye, in the holographic fringes. The effect only
becomes perceptible when averaging over the vz-values for each vx in the following
way

vz,mean(vx(i )) =
∑n

j=1 w(i , j )vz( j )∑n
j=1 w(i , j )

, (6.1)

where w(i , j ) is the momentum distribution at the detector in the i th bin of vx and the
j th bin of vz . This quantity, as directly extracted from the experimental data shown
in Fig. 6.3, is plotted as a blue line in Fig. 6.4 and we can see that it exhibits an asym-
metry, meaning it is not a horizontal line located at vz,mean = 0. Surprisingly, also the
cases of 0◦, 90◦, and even the orientation-averaged curve show an asymmetry. Theo-
retically, one would expect the photoelectron momentum distribution in these cases to
be symmetric resulting in a (almost) horizontal line at vz,mean = 0, which is observed in
QTMC simulations of these systems. The fact that the asymmetry found in these three
experimental systems where one would expect no asymmetry (0◦, 90◦, and orientation-
averaged) is about the same in all of these cases points to a systematic tilt of the exper-
imental setting, which needs to be corrected. This is done following the idea that was
already successfully applied in Ref. [339], where these data sets were previously used,
by subtracting the orientation-averaged case from the 45-degree case. The corrected
curve is shown in green in Fig. 6.4 and in the following will be referred to as the experi-
mental curve. This curve can also be found as a bold green line in Fig. 6.6.

We can see that for vx < 0 the mean value vz,mean(vx) is mostly negative for that
curve, whereas for vx > 0 this quantity is found primarily in the positive regime. This
effect will be further explained in section 6.3.3 on the basis of QTMC simulations, the
details of which will be given first in section 6.3.2.
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Figure 6.3: Experimental 2D photoelectron momentum distribution for the 45◦ case.
The data was previously published in [339].

Figure 6.4: vz,mean as a function of vx calculated by applying eq. (6.1) to the experi-
mental data published in [339] and shown in Fig. 6.4 for the case of 45◦. One can see
that not only the 45◦ data (blue curve) exhibits an asymmetry in vz,mean but also the
orientations of 0◦, 90◦, and the orientation-averaged curve are asymmetric (i.e. they
are not a flat curve at vz,mean = 0). As the asymmetry is about the same in all of these
three cases for which one would expect no asymmetry (i.e. 0◦, 90◦ and averaged ori-
entation), this effect is interpreted as due to a systematic tilt in the experimental setup
that needs to be corrected for. This is done by subtracting the orientation-averaged
curve from the curve for 45◦ (green line).
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6.3.2 Performing molecular QTMC simulations

To understand the asymmetry observed in the experimental data, Quantum Trajec-
tory Monte Carlo (QTMC) simulations are performed [62], where the corrections pro-
posed in [60] and the phase depending on the atomic positions with respect to the
polarization direction introduced in [130] are included. The peak intensity is set to
I = 1.3 ·1014 W/cm2 and the wavelength is 800 nm, just as in the experiment [339, 397].

As we want to compare our results directly to experimental results now, assuming a
constant intensity, as we have done up till now, is not sufficient but we have to take into
account that there is a spatial variation of the intensity in the focal volume. This inten-
sity profile is commonly described by a Lorentzian along the laser beam axis, which for
the sake of consistency with the nomenclature of cylindrical coordinates we will set to
z for the following derivation, and by a Gaussian profile in ρ, the distance perpendicu-
lar to the beam axis [398]. It reads

I (ρ, z) = I0

(
w0

w(z)

)2

exp

(
− 2ρ2

w 2(z)

)
, (6.2)

where I0 denotes the maximal intensity in the focus and w(z) = w0

√
1+ (z/z0)2 is the z-

dependent waist with the minimal waist w0 and with z0 =πw 2
0/λ denoting the Rayleigh

range. The rate of electrons generated within the focal volume is given by [399]

dN

dt
=

∫
d3r R(I (ρ, z)), (6.3)

where R(I ) = d4N /(d3r dt ) denotes the number of electrons generated per volume and
time at the constant intensity I . In order to transform the integral in eq. (6.3) into an
integral over intensity, we need the contour surface of constant intensity I , a visualiza-
tion of which can be found in Fig. 1a in [400]. More specifically, we need the volume
between two intensity surface shells with constant intensities I and I +d I [401]

VFV (I , I0) =πz0w 2
0

[
4

3

(
I0 − I

I

)1/2

+ 2

9

(
I0 − I

I

)3/2

− 4

3
tan−1

(
I0 − I

I

)1/2
]

. (6.4)

Thus, we can transform eq. (6.3) into an integral over intensity [400, 402]

dN

dt
=

∫
R(I (ρ, z))d3r =

∫
R(I )dV (I , I0) =

∫I0

0
R(I )

∣∣∣∣∂VFV

∂I
(I , I0)

∣∣∣∣dI , (6.5)

where we can use eq. (6.4) to obtain∣∣∣∣∂VFV

∂I
(I , I0)

∣∣∣∣= πz0w 2
0

3

2I + I0

I 5/2

√
I0 − I . (6.6)

Consequently, the relative weight of each intensity is given by [130, 402]

2I + I0

I 5/2

√
I0 − I . (6.7)

This is implemented as follows: Prior to the sampling process described in chapter
2.3.2, intensities are sampled according to eq. (6.7) using a reject-sampling algorithm.
For each intensity a batch of trajectories (typically 500 trajectories) is sampled such
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Figure 6.5: 2D momentum distribution obtained in a QTMC simulation as described
in section 6.3.2 for the case of an ionization site ratio of q = 0.6 (as defined in eq. 6.8).
The color bar is given on a logarithmic scale.

that the initial times and momenta follow a probability distribution which treats this
specific intensity as the maximal intensity.

Furthermore, in order to take into account that the shape of the molecular orbital
changes the probability distribution of the initial transverse momentum, we modify
the probability distribution by a prefactor obtained in a partial Fourier transform [372]
analogously to the way it is described in [131]. The molecular orbital that is needed for
this method was computed in the STO-6G Gaussian basis with the restricted Hartree-
Fock (RHF) method using the quantum chemistry package GAMESS [403]. In the ba-
sis set name, STO stands for ’Slater Type Orbitals’ and 6G signifies that each atomic
Slater-type orbital is represented by six Gaussian basis functions. The accuracy of
the RHF/STO-6G calculation is supported by the fact that the ionization potential,
computed according to Koopmans’ theorem [404] as minus the energy of the highest-
occupied molecular orbital, is 0.57 a.u. = 15.5 eV. This value is very close to the experi-
mentally observed ionization potential of 15.6 eV [405].

The laser is polarized along the x-axis and is six cycles long under a cos2-envelope
(see eq. (2.4)). The ionization potential is chosen to be Ip = 15.6 eV [339, 405]. Since we
are in the intermediate nonadiabatic regime (γ= 0.9994), the nonadiabatic ionization
theory of Li et al. [3] is used to describe the initial conditions at the tunnel exit (for
details also see chapter 3). The Coulomb potential used during propagation is the same
as the one described in the supplementary of [339] and in [130], where the positive
charge that the molecule has after ionization is distributed equally between the two
atomic centers. However, we do not adapt the internuclear distance as it was done in
[339] to obtain a more pronounced effect of the phase offset studied there but stick to
the physical distance of 2 a.u. [406, 407].

As can be seen from Fig. 6.2 and as already mentioned, one of the main challenges
is that the tunneling barrier is not only modified by the laser field but also by the
Coulomb potential from the other nucleus. From the bottom panel of Fig. 6.2 one can
see that the mutual distortion of the Coulomb wells is so weak at the tunnel exit that
it is a good approximation to employ the atomic theory of Ref. [3] with the unshifted
ionization potential of Ip = 15.6 eV to calculate the initial spatial conditions. Subse-
quently, as this theory assumes an atom placed at the origin, we merely shift this result
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Figure 6.6: vz,mean as a function of vx . The green line represents the values extracted
from the experimental data. The ensemble of curves was obtained from QTMC simula-
tions over a range of ionization ratios q, which is specified by the color of the curve (see
colorbar). The theoretical curve that matches the experimental data best according to
the comparison of the asymmetry parameter a (see Fig. 6.9) is printed in bold with a
dotted black line on top of it. In both the theoretical and experimental evaluation the
photoelectron momentum distribution was restricted to vz ∈ [−1,1] and vx ∈ [−1,1].

by the central position of the respective atom the electron is born at. Thus, we calculate
the tunnel exits.

In contrast, the tunnel width that mainly determines the tunneling probability is
strongly affected by the internuclear Coulomb distortion and we cannot simply em-
ploy an atomic ionization theory that does not properly account for this effect when
calculating the rates. Since solving this problem of the ratio of ionization from the up-
and downfield well is the aim of this work, we scan through different ionization ratios.
This will lead to different degrees of asymmetry, which can then be compared to the
asymmetry obtained from the experiment. To this end, we define the ratio q of ioniza-
tion from the two different sites as

q = #up−#down

#up+#down
, (6.8)

where #up and #down are the number of electrons born upfield and downfield, re-
spectively. The limits of q =−1 and q =+1 therefore correspond to the electrons being
born exclusively downfield or upfield, respectively. Note that the two different atoms
change being the up- and downfield atom several times during the pulse as the sign of
the electric field changes.

A sample momentum distribution obtained in the described QTMC simulation can
be found in Fig. 6.5.

6.3.3 Explanation for the asymmetry via trajectory analysis

Fig. 6.6 shows vz,mean(vx) of QTMC results over a range of ionization ratios q specified
in the colorbar. The evaluation of the final momentum distribution was done in the
same way as in the experiment, which also does integration over vy that is limited to
an out-of-plane angle of θ < 10◦ before calculating vz,mean(vx) [339]. The vz,mean(vx)
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Figure 6.7: Top panel: Field strength and vector potential in the pulse. Quarter cycles
with decreasing absolute field strength are highlighted in green, whereas increasing
absolute field strengths are orange. Bottom left panels: Field > 0 and the final veloc-
ity is positive. The electrons fly around the parent molecular ion and accrue much
asymmetric Coulomb deflection. Bottom right panels: Field < 0 but the final velocity is
again positive because the same sign of the vector potential A is chosen. The electrons
fly directly to the detector and are less deflected by the asymmetric Coulomb potential.
Note that these trajectories were calculated with an oversized molecule for illustrative
purposes. For an accurate calculation with trajectories of the real system see Fig. 6.8
and Table 6.1.
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curves in Fig. 6.6 exhibit a clear pattern: The more electrons are released from the up-
field atom (redder on the colorbar), the more positive vz,mean is for vx < 0 and the
more negative for vx > 0. If the majority of electrons are born at the downfield atom,
qualitatively the same effect is observed with the signs of vz,mean reversed.

How can we understand this effect? Analyzing the QTMC trajectories, the deflec-
tion of the trajectories in the asymmetric Coulomb potential is identified as the origin
of the asymmetry in vz,mean(vx). Fig. 6.7 displays an illustration of the mechanism
that is explained in the following. Note that these trajectories were calculated with an
oversized molecule for illustrative purposes and a quantitative description with trajec-
tories that are propagated in the system with the correct parameters is deferred to the
subsequent paragraph.

Without loss of generality, we focus on those electrons that end up at vx > 0. They
were born at a time when the vector potential, A, was negative (which is true under
the assumption that the trajectories under consideration do not interact strongly with
the Coulomb potential). As the depiction of the pulse in the top panel of Fig. 6.7 shows,
this can happen at a positive field strength that is decreasing (green stripes) or at a neg-
ative field strength whose absolute value is increasing (orange stripes). The four lower
panels each show two trajectories with a transverse velocity of opposite sign but same
absolute value. In all cases, the absolute value of the transverse velocity is reduced
during propagation due to general Coulomb focusing. However, we are interested only
in the asymmetric deflection due to the asymmetric Coulomb potential which is ob-
tained as the sum of the change in vz during propagation of both of those trajectories
with opposite signs, denoted ∆vz .

In the left half of the lower panels (green, corresponding to a positive field strength
that is decreasing) the asymmetric deflection ∆vz of electrons born at the upfield atom
is negative due to the pull from the downfield atom. Vice versa, if the electron is born
at the downfield atom, the overall deflection is positive. Alternatively, one can under-
stand the sign of the overall deflection ∆vz by checking whether the electron is born
below or above the center of charge along the z-axis, which leads to ∆vz > 0 or ∆vz < 0,
respectively. For vx > 0, a deflection of ∆vz > 0 for electrons born at the downfield
atom and of ∆vz < 0 for electrons born at the upfield atom is also in line with the signs
of vz,mean(vx) observed in Fig. 6.6.

But what about the trajectories born when the field strength is inverted? Then, the
atom that was formerly the downfield atom is the upfield one, and vice versa. Conse-
quently, also the signs of the overall deflections ∆vz are inverted: positive for a birth
at the upfield atom and negative for a start at the downfield atom (see right (orange)
bottom panels of Fig. 6.7). However, since in the case of the absolute value of the field
strength increasing (orange) the electrons directly leave the parent ion, the asymmet-
ric deflection is weaker than in the case when the electron goes around the parent ion
(green). Therefore, even though the overall deflections ∆vz have opposite signs in ad-
jacent quarter-cycles with the same sign of A, they do not compensate each other as
the deflection in the ‘green’ quarter-cycles dominates since in these cases the electron
goes around the parent ion and is affected by the asymmetric Coulomb potential more
strongly than in the ‘orange’ quarter-cycles. An analogous line of reasoning can be ap-
plied to vx < 0, where the signs of the deflections need to be swapped. This explains
qualitatively the asymmetric shifts observed in Fig. 6.6.

To also get a more quantitative impression of the asymmetry of the electron’s de-
flection, let us take a look at the trajectories depicted in Fig. 6.8. Here, the laser and
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t0 vz,0
upfield (u) /
downfield (d)

final vz d vz
∆vz (d vz summed up
separately for u and d)

4 0.3 u 0.090 -0.210
d 0.152 -0.148 u: -0.210 + 0.176 = -0.034

-0.3 u -0.124 0.176 d: -0.148 + 0.163 = +0.015
d -0.137 0.163

t0 vz,0
upfield (u) /
downfield (d)

final vz d vz
∆vz (d vz summed up
separately for u and d)

-4 0.3 u 0.205 -0.095
d 0.244 -0.056 u: -0.095 + 0.072 = -0.023

-0.3 u -0.228 0.072 d: -0.056 + 0.062 = +0.006
d -0.238 0.062

Table 6.1: Changes of ∆vz for the trajectories depicted in Fig. 6.8. For t0 = 4 the elec-
trons go around the molecular ion and end up at vx > 0. For t0 = −4 the electrons
fly directly to the detector and end up at vx < 0. The corresponding trajectories are
displayed in Fig. 6.8.

atomic parameters applied in the simulations shown in Fig. 6.6 are used. The scenar-
ios depicted in Fig. 6.8 differ from each other in the following parameters. Electrons
are either released ...

• ... from the up- or downfield atom.

• ... at a transverse velocity vz,0 =−0.3 or vz,0 = 0.3.

• ... at t0 =−4 (before the peak of the pulse, increasing positive field strength) or at
t0 = 4 (after the peak, decreasing positive field strength).

The resulting 23 = 8 combinations are depicted as trajectories of different colors in
Fig. 6.8. One can directly see from the insets vz(t ) that for the trajectory that goes
around the parent ion (upper panel) the Coulomb deflection is much larger than when
the electron directly leaves the ion (lower panel). The quantitative change of vz for a
single trajectory from the birth in the continuum till after the pulse has passed, de-
noted d vz , is listed in Table 6.1. From these values the following can be seen: The
asymmetry in the deflection, expressed as ∆vz in the last column, is larger (in absolute
values) when the electron has to go around the molecular ion (t0 = 4) than when it di-
rectly leaves it (t0 =−4). This is the case for birth at both the up- and downfield atom
and thus corroborates the qualitative arguments for the asymmetric deflection given
above.

6.3.4 Comparison of theoretical and experimental results to identify
the ionization site

In order to describe the asymmetry observed in the experiment and in the QTMC sim-
ulations quantitatively, we define the asymmetry parameter a as follows

a =
∑m

i=1 sign(vx(i )) · vz,mean(vx(i ))

m
. (6.9)
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d

u

d

u

Figure 6.8: Trajectories for different scenarios showing that the asymmetric deflection
is larger when the electron goes around the parent ion (top panel) than when it directly
leaves the molecule (bottom panel). The quantitative description of the deflection is
given in Tab. 6.1 and commented on in section 6.3.3. All depicted quantities are given
in atomic units.

The multiplication with the sign of vx enables us to distinguish between the corre-
sponding vz,mean curves rising or falling for increasing vx and leads to a unique map-
ping between q and a. This quantity is calculated, on the one hand, for the range of
ionization ratios in the QTMC simulation and, on the other hand, for the single experi-
mental data set. The results are depicted in Fig. 6.9. Comparing the experimental value
of a = 0.0031 with the theoretical curve now allows us to estimate the ionization ratio
q of the up- and downfield atom in the experiment. The value obtained is q =−0.377,
which means that for every 100 electrons born downfield 45 electrons are born upfield.
Thus, this result indicates that ionization from the downfield well is favored. According
to the introductory discussion in section 6.2 (also see Fig. 6.1), this hints at an adiabatic
adaption of the electron location as the electric field changes sign.
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Figure 6.9: Asymmetry parameter a according to eq. (6.9) as a function of the ioniza-
tion site ratio q according to eq. (6.8). The colors of the theoretically obtained dots are
chosen according to the color-coding for q in the colorbar of Fig. 6.6. The experimental
value is plotted as a larger green dot.

6.4 Conclusion and Outlook

To conclude, it was found that the experimental photoelectron momentum distribu-
tion of electrons ionized from a neutral diatomic nitrogen molecule that is tilted by
45◦ against the laser polarization direction exhibits an asymmetry. QTMC simulations
reproduced this asymmetry and revealed that the extent and sign of the asymmetry de-
pend strongly on the fraction of atoms born at the up- and downfield atom. Trajectory
analysis made clear that the asymmetry of the momentum distribution is due to the
asymmetric Coulomb potential that the electron explores on its way to the detector.

Sweeping over the ionization ratio in QTMC simulations, we obtained a unique
map of the ionization site ratio onto the asymmetry parameter. Locating the experi-
mental asymmetry parameter on this theoretical map allows to estimate the ratio at
which the electrons were released from the up- and downfield well from the experi-
mental data. The result indicates that ionization from the downfield well is favored in
the studied system. Asymmetries like the one described here can be expected to be
observed in any system that exhibits a notable asymmetry in the molecular potential
with respect to the axis of polarization direction and thus to have a wide range of ap-
plications. The method presented here stands out in that it tracks the ionization site
for single ionization of neutral molecules, where the technique of analyzing Coulomb
explosion, that has so far been used to track ionization sites in diatomic molecules, is
not applicable.

As the asymmetry in the momentum distribution is due to the asymmetry in the
Coulomb potential, this work also stands in line with those recent publications that
highlight the importance of including the Coulomb effect as accurately as possible
when theoretically describing holographic effects [65, 135, 408–412]. In particular, this
study is a case in point for the strength of QTMC simulations over using SFA theories.
As highest accuracy is required in terms of the Coulomb potential here, it is not suf-
ficient to include the Coulomb potential perturbatively as it is, for example, done in
Coulomb-corrected SFA theories [69, 70].
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Improvement of the theory presented in this chapter could be achieved by higher
accuracy in the theoretical description of the diatomic model. For example, it is not
clear whether it is a good approximation to distribute the ionic charge evenly to the
two atomic centers after ionization. Even though the model of even charge distribu-
tion has been successfully applied in the theoretical interpretation of the very experi-
mental data that are again used here, in the TDSE simulations presented in (the sup-
plementary of) [339] and the QTMC simulations in [130], a deeper study along these
lines seems warranted, in particular if the theory is applied to other molecular systems.

Speaking of other systems, it seems important to emphasize that the theory pre-
sented in this chapter can be applied to other molecules and laser parameters as well.
A larger bond length of the molecule would be expected to lead to a more pronounced
asymmetry in the photoelectron momentum distribution, as long as the underlying
assumptions of our model are satisfied. However, one should keep in mind that a
larger bond length might change the whole underlying process, for example, of how
the remaining positive charge is distributed to the ionic cores. Varying the bond length
would be interesting in particular in that one might observe the transition from the
electron being primarily born at the downfield atom to the electron being localized at
the upfield well. Whereas dominant ionization from the downfield atom is expected in
small molecules in which adiabatic adaption of the electron position plays a dominant
role, as it was found to be the case for the N2 molecule presented in this chapter, the
electron can be localized at the upfield well in larger molecules due to nonadiabatic
effects that are crucial in the phenomenon of ionization enhancement (CREI).





CHAPTER

7
Conclusions and Outlook

“The whole strenuous intellectual work of an industrious research worker
would appear, after all, in vain and hopeless, if he were not occasionally
through some striking facts to find that he had, at the end of all his criss-
cross journeys, at last accomplished at least one step which was conclusively
nearer the truth."

— Max Planck in his Nobel Lecture in 1920

At the end of this thesis we can look back on a ‘journey’ through a variety of ways to
apply trajectory-based models in strong field ionization. Let us take the time to reca-
pitulate what we have learned on our ‘exploration’ – especially for future ventures into
these realms.

We have ‘departed’ from the question that haunts every trajectory Monte Carlo
method: What probability distribution should the initial conditions of the trajectories
follow? Focusing on nonadiabatic effects, we have revisited two popular theories that
describe how nonadiabaticity manifests itself at the tunnel exit in a seemingly contra-
dictory way. While one popular nonadiabatic theory claims a strong broadening of the
ionization time spread and assumes zero longitudinal momentum at the tunnel exit
[7] (YI), another prominent nonadiabatic theory [3] (Li) shows that the initial longitu-
dinal momentum is by far not negligible and arrives at a significantly less broad time
spread. The confusion about these discrepancies was resolved in chapter 3 by show-
ing that the nonadiabatic broadening of the time spread derived in YI [7] is a direct
consequence of setting the initial longitudinal momentum to zero. More generally, we
saw that the strong coupling of the ionization time spread and the initial longitudinal
momentum leads to the theories of Li and YI, in spite of their fundamentally different
initial conditions, to end up at approximately the same longitudinal momentum dis-
tribution at the detector in an approximation that is valid for common experimental
set-ups using 800 nm light. Thus, we can now understand why the two nonadiabatic
theories with their contrasting initial conditions were both successfully used to explain
experiments in the nonadiabatic regime. This should account to some extent for the
confusing character the discussions about nonadiabatic effects sometimes assumed.

Despite the indistinguishability of the results obtained from the two theories in
a wide range of typical nonadiabatic parameters, laser and atomic parameters were
found that are still in the experimentally realizable and relevant regime for which the
mentioned approximations break down and the two nonadiabatic theories yield clearly
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distinguishable momentum distributions. Comparing TDSE simulations to the CTMC
results obtained with the initial conditions of Li and YI gave much better agreement
with the theory of Li [3]. The open question is whether experimental data can back this
result. At this point, one ’take home’ message is that any assumption about the initial
longitudinal momentum directly and significantly affects the ionization time spread
and that it is, therefore, important to physically motivate the choice of the initial lon-
gitudinal momentum.

Our journey then continued in the field of Rydberg state creation by frustrated tun-
nel ionization. Here, we picked up on the study of the intensity dependence of the Ryd-
berg yield described in [49] and found that including (i) the intensity-dependent distri-
bution of ionization times and (ii) nonadiabatic effects leads to a better understanding
of experimental results. The latter point suggests that Rydberg states can be used to
test nonadiabatic effects in a way that contrasts the commonly used methods for non-
adiabaticity tests in that it does not use the momentum distribution at the detector. As
the nonadiabatic effects can be observed in the slope of the power-law scaling of the
intensity dependence of the Rydberg yield alone, this eliminates the concerns about
the calibration of the absolute intensity that have haunted prior experiments attempt-
ing to observe nonadiabatic effects by measuring electron momenta distributions [57,
154].

Moreover, we have seen how an increase of the pulse duration shifts the princi-
pal quantum number distribution of Rydberg states to larger values and reduces the
overall Rydberg yield. These effects could be understood by the observation that the
electrons that potentially end up in a Rydberg state are slowly driven back to the par-
ent ion by the attractive Coulomb potential. When the pulse duration exceeds a critical
value, the electron gets so close to the ion that it gains too much kinetic energy in the
interaction with the ionic potential to be a Rydberg state. As this critical pulse dura-
tion is smaller for more deeply bound Rydberg states (corresponding to small n), low
principal quantum numbers are less likely to ‘survive’ longer pulses. This is relevant
to studies and applications that rely on the principal quantum number distribution
of Rydberg atoms like the recently developed method of creating coherent extreme-
ultraviolet radiation from Rydberg atoms, in which the occupation of low principal
quantum numbers is crucial [189]. Also, this study is a case in point for showing the
importance of including the Coulomb potential during the propagation process [72].
In particular, the mechanism presented here, which relies on the Coulomb potential,
stands in contrast to prior explanations of the Rydberg yield dropping with increasing
pulse duration which neglected the Coulomb potential during propagation.

The next stop on our journey were laser fields with a time-varying spatial depen-
dence as it is typically found in the vicinity of nanostructures. We have seen the emer-
gence of a prominent higher energy structure (HES) in the spectrum of photoelectrons
that were ionized from the gas phase in such an inhomogeneous laser field. The laser
and tip parameters were chosen to be in the ‘intermediate regime’ where the electron’s
quiver amplitude is of the same order as the decay length of the nearfield and the
electron dynamics is therefore difficult to describe theoretically. Trajectory-analysis
revealed that the electrons comprising the HES are born within a narrow time win-
dow and may therefore be used to create localized sources of monoenergetic electron
beams of sub-femtosecond duration. Having such applications in mind, analytical ex-
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pressions to describe the electrons’ motion in the inhomogeneous field were derived.
From this we have learned how the spectral position and width of the HES depend on
the inhomogeneity parameter of the nearfield and can thus be optimized.

Moreover, we have seen that the recently reported experimental finding of a low
energy peak (LEP) [75] can be understood in the same theoretical framework as the
theoretically predicted emergence of the HES. Even though the two peaks were ob-
served in different energy regimes, and despite the LEP being detected for electrons
that were released from a nanotip whereas the HES was found for electrons ionized
from a gas that is placed in the vicinity of a nanotip, a single mechanism that causes
the peak formation was identified. Based on this mechanism, a more general analytical
model was derived to describe the energy upshift that electrons experience in inhomo-
geneous electric fields. This theoretical description also explained the experimentally
observed linear scaling of the peak energy of the LEP with the intensity of the incident
laser pulse.

In particular, parameters were found at which electrons ionized directly from a na-
nostructure, the setting in which the LEP was found, form a prominent and narrow
peak at higher energies as it was described in the framework of the HES. As ionization
from the tip is experimentally better established than ionization from the gas phase
near a nanostructure, this should pave the way for the experimental realization of
almost monoenergetic electron beams of sub-femtosecond duration as they are pre-
dicted for the HES in the gas phase.

The last part of our journey led us into the realms of molecules. A new method was
proposed for quantitatively retrieving the ratio of ionization happening at the up- and
downfield atomic site. So far, such studies were restricted to ionization from charged
molecules with Coulomb explosion ensuing the ionization process. Here, in contrast,
a method was developed for the ionization of neutral molecules that makes use of the
deflection of the electron in the asymmetric Coulomb potential of the tilted molecule,
which introduces an asymmetry in the photoelectron momentum distribution at the
detector. As the degree of asymmetry depends on whether the electron is born at the
up- or downfield atom and as the ionization site ratio can be controlled in QTMC sim-
ulations, this asymmetry information can be used to quantify the relative ionization
probabilities from the up- and downfield site from experimental photoelectron mo-
mentum distributions.

The site from which the electron is ionized also gives insights into the time scale on
which the electronic distribution within the molecule adapts to the changing electric
field. Therefore, one particularly interesting direction for future work is the variation
of the bond length. Varying the bond length one might observe the transition from the
electron being primarily born at the downfield atom to the electron being localized at
the upfield well. Whereas dominant ionization from the downfield atom is expected in
small molecules in which adiabatic adaption of the electron position plays a dominant
role, as it was the case for the N2 molecule in this work, the electron can be local-
ized at the upfield well in larger molecules due to nonadiabatic effects that are crucial
in the phenomenon of ionization enhancement (CREI). In particular when changing
the bond length, but not only then, the way the ionic charge is distributed among the
atomic sites in the theoretical model needs to be reconsidered.
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The molecular system also served as a case in point to show that including the
Coulomb potential as accurately as possible is of utmost importance. Therefore, mod-
eling this system using CTMC/QTMC simulations should be favored over SFA ap-
proaches in which Coulomb effects can, at best, be included perturbatively [69, 70].
Similarly, the relevance of fully including the Coulomb potential during propagation
was relevant in the study of the pulse duration effects on Rydberg states presented in
section 4.3. Speaking of the advantages of CTMC/QTMC over SFA simulations, we have
come full circle to the motivation given in the introduction in chapter 1, where on page
11 the prerequisites for the application of SFA were listed. In addition to the spatial
inhomogeneity of the atomic or molecular Coulomb potential, we have also seen the
third point in said list being violated: In chapter 5, the strong inhomogeneity of the
electric field in the vicinity of a nanostructure also revealed the power of a trajectory-
based method such as CTMC in which the field inhomogeneity can be fully included
in the equation of motion.

Considering the SFA prerequisites further, also the first point in the list on page
11, stating that the laser field should be strong enough for multiphoton or tunnel ion-
ization to be the dominant ionization process, seems worth some consideration. Af-
ter all, the flourishing field of streaking [413–421] often uses pump pulses that are of
high frequency and low intensity resulting in single-photon ionization being the dom-
inant liberation mechanism. The weakness of the high-frequency pump pulse ensures
a negligible effect on the post-ionization dynamics, which is dominated by a second
laser pulse, the probe pulse, that is stronger and of lower frequency. Scanning the de-
lay between the two pulses has proven to be a powerful tool in the study of ionization
delays. Modeling single-photon ionization semiclassically, in particular in combina-
tion with the stronger probe pulse, is far less common and mature than strong field
ionization in attosecond science [422]. Nonetheless, semiclassical models provide sev-
eral advantages over the numerical solution of the TDSE also here. Among those, the
most notable is probably the insight which trajectory analysis allows into the streak-
ing process, into the origin of and different contributions to the measured streaking
delay [414, 423]. Moreover, the lower computational cost of semiclassical models rel-
ative to numerical solutions of the TDSE is becoming increasingly important as the
field of attosecond spectroscopy, which until recently was dominated by experiments
performed on rare gas atoms and metal surfaces [66, 424], is moving increasingly to-
wards molecules [422]. In the following, a semiclassical method to simulate attosecond
streaking experiments which is particularly suited to include information about the
molecular potential is briefly summarized. In the framework of my PhD studies I was
involved in work with and on this ‘Classical Wigner Propagation’ (CWP) method which
is the brainchild of Dr. Tomáš Zimmermann and details about which can be found in
Ref. [422].

The CWP method treats the ionization step quantum mechanically followed by
classical propagation in the infrared probe field. The two key advantages of this method
over other semiclassical approaches such as CTMC or QTMC are found in (i) the fully
quantum mechanical treatment of the ionization step, where the weakness of the pump
field allows to use perturbation theory and (ii) the description of the wavepacket by a
Wigner quasi-probability distribution [422]. The latter serves as a distribution to sam-
ple initial conditions for trajectories and is not only a proper phase-space density dis-
tribution with well-defined classical limit of the dynamics but – even when propagated
classically – it also incorporates (some) quantum effects through interference of pos-
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itive and negative weights. Moreover, this method allows to include the electrostatic
potential of the atomic or molecular ion, computed from the one-electron density ma-
trix obtained in quantum chemistry calculations for the respective system.

As the electrostatic potential plays a crucial role in streaking delays [414, 425–429], a
future model to simulate streaking experiments may combine the electrostatic atomic
or molecular potential obtained from quantum chemistry calculations during propa-
gation with a CTMC model for describing the initial conditions. Using CTMC instead
of CWP for sampling the initial conditions would not only be easier to implement but
would have the added benefit of a straight-forward trajectory analysis, which is more
involved in the CWP due to the negative weights trajectories can have. Then, how-
ever, we need to think about appropriate initial conditions for the CTMC simulations.
Even though models to describe such a weak(er) field single-photon ionization process
in CTMC simulations have been developed and successfully applied in the past [274,
414, 418, 430], they are far less tested against experiments than it is the case for strong
field ionization processes, and consequently may need to be adapted. For example,
it is not clear where and with momenta in which direction to start. While [414, 418]
just start with momenta in random directions, in [274, 430, 431] the initial momenta
are chosen according to a cosine distribution. Moreover, using molecules we need to
think about the atomic site at which to start the trajectories. In the CWP method, in-
formation about the ionization site was obtained from the Wigner function. In CTMC,
in contrast, such information has to be included indirectly, e.g. from studies similar to
the one presented in chapter 6 about the ionization site ratios in a molecule.

Dealing with more complicated molecular structures and nanostructures while still
trying to answer basic questions in atomic systems has not only been a feature of this
PhD thesis but is a more general attribute of ultrafast strong field physics. Hopefully,
this thesis has shown that CTMC and QTMC simulations are a powerful and versatile
tool that can contribute to discussions in many facets of this field.
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A
Appendix

A.1 Tunnel exits and transverse momentum spreads in
nonadiabatic theories

Here, it is shown that the tunnel exit obtained by Perelomov, Popov and Terent’ev (PPT)
[4, 5] or Mur et al. [136] is the same as the one obtained in the theory of Li et al. [3]. The
reason for this is that – as becomes most clear in chapter 3 – all nonadiabatic theories
discussed in this work follow the same basic tools in their derivations (imaginary time
and saddle point method). As the results in PPT/Mur and Li for the tunnel exit look
different in notation, we show here that the equations are actually the same.
In PPT/Mur, the tunnel radius is given as
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Using the trigonometric relation
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which is valid for −1 < a < 1, we can recast this into
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Introducing instantaneous time-dependence, E0 → E0 cos(ωt0) and γ → γ(t0, v⊥) =
ω

√
Ip+v2

⊥
E0 cos(ωt0) , this matches the result from Li et al. [3]
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∣∣∣∣ E0

ω2
cos(ωt0)(1−

√
1+γ2(t0, v⊥))

∣∣∣∣ . (A.4)
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Figure A.1: Normalized ionization probability as a function of the initial transverse
velocity. The three inner curves correspond to an intensity of I = 1.6 ·1014 W/cm2 and
the three outer curves were obtained for an intensity of I = 1 · 1015 W/cm2. In both
cases helium was ionized at λ= 800 nm. The initial longitudinal momentum and the
ionization time were set to zero if these quantities appear in the respective theories.

Similarly, also the transverse momentum distribution is approximately identical
for the theories of PPT, Li and Bondar [2]. This becomes clear from Fig. A.1, where the
distribution of the initial transverse velocity is shown for two different intensities. The
two intensities were chosen to correspond to the minimum and maximum intensity of
the intensity range that is considered in chapter 4.2.

A.2 Ionization time spreads of Yudin/Ivanov and Li as
special cases of the theory of Bondar

In the following, the statement used in section 3.3 claiming that the distribution of ion-
ization times presented by Yudin/Ivanov (YI) [7] and Li [3] can be obtained as special
cases of the theory derived by Bondar [2] is shown.

Concerning YI, it can be referred directly to Ref. [2] by Bondar, where it is stated
explicitly in the comment below eq. (16) that the result of YI is retrieved from the re-
sults in [2] by setting v|| at the tunnel exit to 0, meaning the canonical momentum is
expressed as p|| = −A(t0). The only point one has to keep in mind when looking at
Ref. [2] is that Bondar denotes the canonical momentum as k. Therefore, when it is
written in eq. (16) in Ref. [2] that the transformation k|| → k||− A(t ) is done and then
k = 0 is set to zero, this corresponds to k|| =−A(t ) and thus to v||,0 = v⊥,0 = 0, as in YI.

Moreover, Li [3] is a special case of [2] for the assumption of p|| = v||(t0)− A(t0) as
will become clear in the following. Even though both Li and Bondar use the saddle
point equation and calculate the action

S(p, ts) =
∫tr

ts

d t

(
1

2
(p+A(t ))2 + Ip

)
(A.5)

and then the ionization probability

P ∝ exp(−2Im{S}) (A.6)

in the same way, the final equations and also intermediate results found in these two
references look so different that it is not immediately obvious that just plugging in p|| =
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v||(t0)− A(t0) into Ref. [2] one obtains the result of Ref. [3]. On closer inspection, one
can see that the differences mainly stem from the different trigonometric relations that
are used to calculate the real and imaginary part of the saddle point ts = t0 + i ti . In the
following, it will be shown that starting from the result presented in eq. (6) in [2],

ωts = arcsin


 p||√

2Ip
+ i

√√√√ p2
⊥

2Ip
+1

 ·γ

 , (A.7)

we obtain the same relations for ti , t0 and v||(t0) (and thus p||) as the ones presented
in Li [3] when using p|| = v||(t0)− A(t0). Due to Li [3] and Bondar [2] using the same
relations for S and P (see eq. (A.5) and (A.6)) this suffices for showing that the ionization
time distribution of [3] is a special case of [2].
Using γ=√

2Ip
ω
E0

and p⊥ = v⊥,0, we can rearrange eq. (A.7) as follows

sin(ωts) =

 p||√
2Ip

+ i

√√√√v2
⊥,0

2Ip
+1

 ·
√

2Ip
ω

E0
(A.8)

⇒ sin(ωt0) ·cosh(ωti )+ i ·cos(ωt0)sinh(ωti ) = ω

E0
p||+ i

√√√√v2
⊥,0

2Ip
+1

√
2Ip

ω

E0
(A.9)

where in the last step the trigonometric relation sin(a+b) = sin(a)cos(b)+cos(a)sin(b)
along with sin(i x) = i sinh(x) and cos(i x) = cosh(x) were applied. Now, we can extract
the real and imaginary part of this equation:

sin(ωt0) ·cosh(ωti ) = ω

E0
p|| (A.10)

cos(ωt0)sinh(ωti ) =
√√√√v2

⊥,0

2Ip
+1

√
2Ip

ω

E0
(A.11)

So far, this is simply Bondar’s intermediate result from eq. (A.7) recast. Now, the as-
sumption that is used in Li [3] is introduced, which is p|| = v||(t0)− A(t0) with A(t0) =
−E0

ω
sin(ωt0). For the real part we obtain

sin(ωt0) ·cosh(ωti ) = ω

E0

(
v||(t0)+ E0

ω
sin(ωt0)

)
(A.12)

⇒v||(t0) = E0

ω
sin(ωt0) ·cosh(ωti )− E0

ω
sin(ωt0) (A.13)

⇒v||(t0) = E0

ω
sin(ωt0)(cosh(ωti )−1). (A.14)

And the imaginary part (eq. (A.11)) can be rewritten as

sinh(ωti ) =
ω

√
v2
⊥,0 +2Ip

E0 cos(ωt0)
. (A.15)

Combining eq. (A.14) and (A.15) and using cosh2−sinh2 = 1, we obtain the same lon-
gitudinal momentum at the tunnel exit, v||,Li (t0), as given in eq. (5) in [3]:

cosh2(ωti )− sinh2(ωti ) = 1 (A.16)
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⇒
(

v||(t0)
ω

E0 sin(ωt0)
+1

)2

−
ω2(v2

⊥,0 +2Ip )

E 2
0 cos2(ωt0)

= 1 (A.17)

⇒v||(t0)
ω

E0 sin(ωt0)
+1 =

√√√√1+
ω2(v2

⊥,0 +2Ip )

E 2
0 cos2(ωt0)

(A.18)

⇒v||(t0) = E0

ω
sin(ωt0)


√√√√1+

ω2(v2
⊥,0 +2Ip )

E 2
0 cos2(ωt0)

−1

= v||,Li (t0). (A.19)

In Li, t0 and ti are not directly expressed in terms of E0, Ip and w , but as eqs. (A.15)
and (A.19) agree with eqs. (4) and (5) in Li ([3]), respectively, this should suffice to re-
assure us that t0 and ti relate to E0, Ip and w in the same way as in Li. In addition, we
have also retrieved v||,Li (t0) of Li from Bondar, and thus also p|| = v||(t0)− A(t0) of Li.
Consequently, using these results in eqs. (A.5) and (A.6), which are used not only in
Bondar but also in Li, the ionization time distribution of Li is obtained.

A.3 Interpretation of the intensity dependence of the
Rydberg yield

In the following, we resolve the confusion that may arises from the fact that the Ryd-
berg area is observed to become smaller with increasing intensity (see Fig. 4.1 and also
e.g. eq. (4.4)) while it is experimentally observed in [48] that the number of Rydberg
states is increasing with increasing intensity. The key to understanding these seem-
ingly contradictory features lies in the correct interpretation of eq. (4.2). The argu-
ments presented in the following use the result of eq. (4.6) but are equally valid for the
modifications of this equation derived in sections 4.2.2 to 4.2.4.

The confusion arises from eq. (4.2) implicitly suggesting that N∗ ∝Σ∗ and Nt ∝Σt ,
which is not true. Eq. (4.2) only holds in the relative sense, meaning under evaluation of
the ratio rather than separate evaluation of the nominator and the denominator. If one
is interested in the total number of atoms that are ionized or end up in a Rydberg state,
respectively, the intensity-dependent ionization rate has to be accounted for properly,
e.g. by the adiabatic factor exp(−2(2Ip )3/2/(3E0)) (see eq.(2.21)):

Nt (E0) ∝ exp
− 2(2Ip )3/2

3E0 Σt (E0) ∝ exp
− 2(2Ip )3/2

3E0
√

E0

N∗(E0) ∝ exp
− 2(2Ip )3/2

3E0 Σ∗(E0) ∝ exp
− 2(2Ip )3/2

3E0
1

E0
.

(A.20)

Therefore, the dominant contribution to the total number of electrons captured in a
Rydberg state comes from the intensity-dependent ionization rate factor, which is in-
creasing with increasing intensity. Thus we can understand why with increasing in-
tensity the area Σ∗ ∝ 1/E0 decreases despite the experimentally observed increase of
Rydberg atoms. In the ratio N∗/Nt , the prefactor exp(−2(2Ip )3/2/(3E0)) cancels out
and therefore we do not need to care about it. This concept is illustrated in Fig. A.2 and
further explained in the corresponding caption.
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Figure A.2: Illustration of the difference between the area concept, which is applied
in this work, and estimating total numbers of events. The unlabeled x-axes repre-
sent the initial conditions at which the electrons are born, t0 and v⊥,0, which are ab-
stractly represented in a single dimension for the sake of simplicity here. The depicted
Gaussian-like curves show the ionization rate and the striped rectangular curves show
the initial conditions that lead to a Rydberg state. Note that in all depictions above
(area and total number concept) we are interested in the areas under the Gaussian
and rectangular-like curves shown, not the curves themselves. In the area concept, the
different ionization rates at different intensities is not accounted for. This is illustrated
as equal heights of all curves in the upper panel. Here, only the widths of the curves
matter. As Σ∗ ∝ 1/E0, the Rydberg area decreases with increasing intensity. However,
when one is interested in the total number of electrons that ever tunneled out (Nt ) or
that end up in Rydberg states (N∗) separately, one has to also account for the ioniza-
tion rate increasing severely with increasing intensity, e.g. by weighting the height with
exp(−2(2Ip )3/2/(3E0)). Since the ratio of N∗ and Nt is evaluated at each intensity in-
dividually, the height does not matter when we are interested in N∗/Nt because that
weighting factor cancels out and N∗/Nt equals the ratio Σ∗/Σt .

A.4 Equations of motion in the Coulomb-free electric
field

In the following, an analytical description of the motion of an electron in a laser field
without Coulomb potential is derived. We only consider the motion along the direction
of polarization. In addition, approximations as they proved helpful in the context of
studying the intensity dependence of Rydberg states in section 4.2.4 are included. The
starting point is the following equation of motion:

∂2x

∂t 2
=−E(t ) =−E0 f (t )cos(ωt +π) = E0 f (t )cos(ωt ). (A.21)

where f (t ) denotes the envelope of the laser field. The choice of setting the CEP to
π introduces a minus sign and is made here because thus the position x at the end
of the pulse will be obviously positive for typical t0 that lead to Rydberg states (i.e. t0

slightly negative) and in the evaluation of r = |x| in eq. (4.19) we can directly insert x
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without having to change signs in order to obtain the absolute value |x|. Otherwise
the different sign in the prefactor has no bearing on the calculations in section 4.2.4.
Integrating eq. (A.21) once, the velocity is obtained as follows

ẋ(t ) = E0

∫t

t0

dt ′ f (t ′)cos(ωt ′)

= E0

[
f (t ′)

sin(ωt ′)
ω

]t

t0

−
∫t

t0

dt ′
∂ f (t ′)
∂t ′︸ ︷︷ ︸
≈0

sin(ωt ′)
ω


≈ E0

ω

(
f (t )sin(ωt )− f (t0)sin(ωt0)

)
,

(A.22)

where in the second step the derivative of the envelope was neglected, which is justi-
fied in the application in section 4.2.4 as the pulse duration is rather long (30 fs) and
consequently the envelope changes significantly more slowly than the primary oscil-
lation of the field. Evaluating this result at t = τ, i.e. after the pulse has passed, we can
use f (τ) = 0. Moreover, assuming ionization in the central cycle we can approximate
f (t0) ≈ 1 and thus obtain eq. (4.16)

vx(τ) ≈−E0

ω
sin(ωt0). (A.23)

Integrating once more with respect to time gives the position

x(t ) ≈ E0

ω

∫t

t0

dt ′
(

f (t ′)sin(ωt ′)− f (t0)sin(ωt0)
)

≈ E0

ω

{[
− f (t ′)

cos(ωt ′)
ω

]t

t0

−
∫t

t0

dt ′
(
− ∂ f (t ′)

∂t ′︸ ︷︷ ︸
≈0

cos(ωt ′)
ω

)
− f (t0)sin(ωt0)(t − t0)

}

≈ E0

ω

{
− f (t )

cos(ωt )

ω
+ f (t0)︸ ︷︷ ︸

≈1

cos(ωt0)

ω
− f (t0)︸ ︷︷ ︸

≈1

sin(ωt0)(t − t0)

}

≈ E0

ω2

(
cos(ωt0)− f (t )cos(ωt )

)− E0

ω
sin(ωt0)(t − t0).

(A.24)
Evaluating eq. (A.24) at t = τ= τL/2, at the time the pulse has passed, we have f (τ) = 0
and thus

x(τ) ≈ E0

ω2
cos(ωt0)− E0

ω
sin(ωt0)τ, (A.25)

where in the last term the approximation (τ− t0) ≈ τ was applied because of τ À t0.
Setting φ=ωt0, this result equals eq. (4.14).

A.5 Term v1 in the perturbative approach

Here, the term v1 of the perturbative approach presented in section 5.3.2 is written out
in order to show that even though eq. 5.26 does look benign, the terms used in it, such
as v1, can be unwieldy. Note that, for the sake of brevity, φC EP was replaced by φ.

v1(t ) =−E0

(
E0

(
(2N +1)sin

(
ωt
N

)+ sin
(
2φ+ (

2+ 1
N

)
ωt

))
N 3

16(N +1)2(2N +1)ω3
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−
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cos

(
φ+ (N+1)ωt0

N

)
(N −1)2 + (N +1)2 cos

(
φ+ (N−1)ωt0

N

))
sin

(
φ+ (N−1)ωt

N

)
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−
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(
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N

)
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16(N +1)3ω3
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(
ωt
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+
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A.6 Graphically estimating β for minimal HES width
(details of Fig. 5.17)

In the following it is explained how the curves presented in Fig. 5.17 were obtained.
Note, however, that even though the intersection of the blue and orange curve in
Fig. 5.17 allows a graphical estimate for the β that leads to a minimal peak width, the
quantitative method using the perturbative approach, presented in section 5.3.4, is
recommended to be used for quantitative estimates of the β that leads to a minimized
HES width. The purpose of Fig. 5.17 is to visualize the compensation effect presented
in Fig. 5.16 and the way the exact numbers of that figure are obtained is of secondary
relevance and are presented in the following for the mere sake of completeness.

The initial additional positive area Apos of the head start trajectory, marked in or-
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ange in Fig. 5.16, can be approximated to be independent of β as the acceleration (and
consequently the field strength) is rather shallow around t = 0 and, in particular, the
field strength at the center of the pulse at the position of the atom is E0 per definition
and thus also independent of β. Apos can therefore be estimated by assuming a rect-
angle of a width in time of 2σ. The rectangle’s height can be estimated by |a(0)| = E0.

The negative area, Aneg , under the second hump is depicted by a solid blue curve
in Fig. 5.17. It grows linearly with β because |ami n | ∝ β (see eq. (5.30)). Thus, in order
to estimate the negative area Aneg under the second hump we do a trick similar to
the one done to estimate the β dependence of the energy at which the HES peak is
centered (see section 5.3.3): As the zeros of the acceleration are scarcely affected by β

and as the function looks close to something like a sine or cosine, we can assume that
the area scales linearly with the minimum ami n of the curve: Aneg ∝ |(at0=−σ(tmi n)−
at0=+σ(tmi n))|. We also need to determine the prefactor Ar e f , which determines the
slope:

Aneg = Ar e f |ami n,t0=−σ(tmi n)−ami n,t0=+σ(tmi n)|. (A.26)

As this equation calculates just the difference between the full area under the second
hump for t0 = −σ and the full area under the second hump for t0 = +σ, this prefac-
tor can be determined by the knowledge about the area under the second hump for
a single ionization time. We choose t0 = 0 as for this case we can use eq. (5.18) and
eq. (5.21) (velocity estimate from Mathieu functions) to determine the area under the
second hump immediately as |vend (tz,1)−v Appr ox,1(tz,2)| where tz,1/2 denote the limits
in time of the negative hump, the zeros of a(t ). Thus, we obtain

Ar e f ≈
|vend (tz,1)− v Appr ox,1(tz,2)|

|at0=0(tmi n)| . (A.27)

Now, the inhomogeneity at which the additional positive area Apos of the head start
trajectory (dashed orange line) and the additional negative Area Aneg (solid blue line)
intersect, should be a good estimate for the inhomogeneity leading to a minimal width
in energy of the HES peak. In the case shown in Fig. 5.17, this graphical method gives
β≈ 0.0019 for the optimal inhomogeneity, which agrees well with β≈ 0.002 that we got
from solving eq. (5.11) numerically for t0 = 0,±σ for various β (see central panel in Fig.
5.16).
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[197] J. Venzke, R. Reiff, Z. Xue, A. Jaroń-Becker, and A. Becker. “Angular momentum
distribution in Rydberg states excited by a strong laser pulse”. Physical Review
A 98.4 (2018), p. 043434.

[198] L. Novotny and B. Hecht. Principles of nano-optics. Cambridge university press,
2012.

[199] E. Betzig and J. K. Trautman. “Near-field optics: microscopy, spectroscopy, and
surface modification beyond the diffraction limit”. Science 257.5067 (1992),
p. 189.

[200] S. Lal, S. Link, and N. J. Halas. “Nano-optics from sensing to waveguiding”. Na-
ture Photonics 1.11 (2007), p. 641.

[201] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin. “Nano-optics of surface
plasmon polaritons”. Physics Reports 408.3-4 (2005), p. 131.

[202] X. Zhang and Z. Liu. “Superlenses to overcome the diffraction limit”. Nature
Materials 7.6 (2008), p. 435.

[203] S. C. Kehr, R. G. McQuaid, L. Ortmann, T. Kämpfe, F. Kuschewski, D. Lang, J.
Döring, J. M. Gregg, and L. M. Eng. “A local superlens”. ACS Photonics 3.1 (2015),
p. 20.

[204] A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R.
Pollard, V. Podolskiy, and A. Zayats. “Plasmonic nanorod metamaterials for
biosensing”. Nature Materials 8.11 (2009), p. 867.

[205] V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng. “Plas-
monic nanorod antenna array: Analysis in reflection and transmission”. The
Journal of Physical Chemistry C 120.22 (2016), p. 12178.

[206] S. Kawata, M. Ohtsu, and M. Irie. Nano-optics. Vol. 84. Springer, 2012.

[207] P. Bazylewski, S. Ezugwu, and G. Fanchini. “A review of three-dimensional
scanning near-field optical microscopy (3D-SNOM) and its applications in
nanoscale light management”. Applied Sciences 7.10 (2017), p. 973.

[208] E. Bailo and V. Deckert. “Tip-enhanced Raman scattering”. Chemical Society Re-
views 37.5 (2008), p. 921.

http://www.osapublishing.org/abstract.cfm?URI=FiO-2018-JW3A.54
http://www.osapublishing.org/abstract.cfm?URI=FiO-2018-JW3A.54


BIBLIOGRAPHY 169

[209] R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi. “Nanoscale chemical analysis
by tip-enhanced Raman spectroscopy”. Chemical Physics Letters 318.1-3 (2000),
p. 131.

[210] A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny. “High-resolution near-
field Raman microscopy of single-walled carbon nanotubes”. Physical Review
Letters 90.9 (2003), p. 095503.

[211] R. C. Reddick, R. Warmack, D. Chilcott, S. Sharp, and T. Ferrell. “Photon scan-
ning tunneling microscopy”. Review of Scientific Instruments 61.12 (1990),
p. 3669.

[212] T. Ferrell, S. Sharp, and R. Warmack. “Progress in photon scanning tunneling
microscopy (PSTM)”. Ultramicroscopy 42 (1992), p. 408.

[213] H. Schneckenburger. “Total internal reflection fluorescence microscopy: tech-
nical innovations and novel applications”. Current Opinion in Biotechnology
16.1 (2005), p. 13.

[214] D. Axelrod. “Total internal reflection fluorescence microscopy in cell biology”.
Traffic 2.11 (2001), p. 764.

[215] M. Grundmann. Nano-optoelectronics: concepts, physics and devices. Springer
Science & Business Media, 2002.

[216] W. M. Duncan. “Near-field scanning optical microscope for microelectronic
materials and devices”. Journal of Vacuum Science & Technology A: Vacuum,
Surfaces, and Films 14.3 (1996), p. 1914.

[217] G. S. Shekhawat and V. P. Dravid. “Nanoscale imaging of buried structures via
scanning near-field ultrasound holography”. Science 310.5745 (2005), p. 89.

[218] G. Herink, D. Solli, M. Gulde, and C. Ropers. “Field-driven photoemission from
nanostructures quenches the quiver motion”. Nature 483.7388 (2012), p. 190.

[219] F. Süßmann, S. L. Stebbings, S. Zherebtsov, S. H. Chew, M. I. Stockman, E. Rühl,
U. Kleineberg, T. Fennel, and M. F. Kling. “Attosecond nanophysics”. Attosecond
and XUV Physics: Ultrafast Dynamics and Spectroscopy (2014), p. 421.

[220] M. Krüger, M. Schenk, P. Hommelhoff, G. Wachter, C. Lemell, and J. Burgdörfer.
“Interaction of ultrashort laser pulses with metal nanotips: a model system for
strong-field phenomena”. New Journal of Physics 14.8 (2012), p. 085019.

[221] M. Krüger, S. Thomas, M. Förster, and P. Hommelhoff. “Self-probing of metal
nanotips by rescattered electrons reveals the nano-optical near-field”. Journal
of Physics B: Atomic, Molecular and Optical Physics 47.12 (2014), p. 124022.

[222] B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. Okell, K. Win-
tersperger, S. Zherebtsov, A. Guggenmos, et al. “Attosecond nanoscale near-
field sampling”. Nature Communications 7 (2016), p. 11717.

[223] P. Hommelhoff, C. Kealhofer, and M. A. Kasevich. “Ultrafast electron pulses
from a tungsten tip triggered by low-power femtosecond laser pulses”. Physical
Review Letters 97.24 (2006), p. 247402.

[224] P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman,
and M. A. Kasevich. “Extreme localization of electrons in space and time”. Ul-
tramicroscopy 109.5 (2009), p. 423.



170 BIBLIOGRAPHY

[225] J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß,
and C. Lienau. “Ultrafast electron emission from a sharp metal nanotaper
driven by adiabatic nanofocusing of surface plasmons”. Nano Letters 15.7
(2015), p. 4685.

[226] M. Krüger, C. Lemell, G. Wachter, J. Burgdörfer, and P. Hommelhoff. “Attosec-
ond physics phenomena at nanometric tips”. Journal of Physics B: Atomic,
Molecular and Optical Physics 51.17 (2018), p. 172001.

[227] E. Jones, M. Becker, J. Luiten, and H. Batelaan. “Laser control of electron matter
waves”. Laser & Photonics Reviews 10.2 (2016), p. 214.

[228] M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl,
J. Harris, R. Byer, and P. Hommelhoff. “Optical gating and streaking of free
electrons with sub-optical cycle precision”. Nature Communications 8 (2017),
p. 14342.

[229] E. Quinonez, J. Handali, and B. Barwick. “Femtosecond photoelectron point
projection microscope”. Review of Scientific Instruments 84.10 (2013), p. 103710.

[230] A. Bainbridge, C. Barlow Myers, and W. Bryan. “Femtosecond few- to single-
electron point-projection microscopy for nanoscale dynamic imaging”. Struc-
tural Dynamics 3.2 (2016), p. 023612.

[231] M. Muller, V. Kravtsov, A. Paarmann, M. B. Raschke, and R. Ernstorfer. “Nanofo-
cused plasmon-driven sub-10 fs electron point source”. ACS Photonics 3.4
(2016), p. 611.

[232] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim. “High-harmonic gener-
ation by resonant plasmon field enhancement”. Nature 453.7196 (2008), p. 757.

[233] M. Sivis, M. Duwe, B. Abel, and C. Ropers. “Nanostructure-enhanced atomic
line emission”. Nature 485.7397 (2012), E1.

[234] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim. “Kim et al. reply”. Na-
ture 485.7397 (2012), E1.

[235] N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M.
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