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Abstract 
Background: Expression proteomics involves the global evaluation of 
protein abundances within a system. In turn, differential expression 
analysis can be used to investigate changes in protein abundance 
upon perturbation to such a system.

Methods: Here, we provide a workflow for the processing, analysis 
and interpretation of quantitative mass spectrometry-based 
expression proteomics data. This workflow utilizes open-source R 
software packages from the Bioconductor project and guides users 
end-to-end and step-by-step through every stage of the analyses. As a 
use-case we generated expression proteomics data from HEK293 cells 
with and without a treatment. Of note, the experiment included 
cellular proteins labelled using tandem mass tag (TMT) technology 
and secreted proteins quantified using label-free quantitation (LFQ).

Results: The workflow explains the software infrastructure before 
focusing on data import, pre-processing and quality control. This is 
done individually for TMT and LFQ datasets. The application of 
statistical differential expression analysis is demonstrated, followed by 
interpretation via gene ontology enrichment analysis.

Conclusions: A comprehensive workflow for the processing, analysis 
and interpretation of expression proteomics is presented. The 
workflow is a valuable resource for the proteomics community and 
specifically beginners who are at least familiar with R who wish to 
understand and make data-driven decisions with regards to their 
analyses.
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Introduction
Proteins are responsible for carrying out a multitude of biological tasks, implementing cellular functionality and
determining phenotype. Mass spectrometry (MS)-based expression proteomics allows protein abundance to be quanti-
fied and compared between samples. In turn, differential protein abundance can be used to explore how biological
systems respond to a perturbation. Many research groups have applied such methodologies to understand mechanisms of
disease, elucidate cellular responses to external stimuli, and discover diagnostic biomarkers (see Refs. 1–3 for recent
examples). As the potential of proteomics continues to be realised, there is a clear need for resources demonstrating how
to deal with expression proteomics data in a robust and standardised manner.

The data generated during an expression proteomics experiment are complex, and unfortunately there is no one-size-fits-
all method for the processing and analysis of such data. The reason for this is two-fold. Firstly, there are a wide range of
experimental methods that can be used to generate expression proteomics data. Researchers can analyse full-length
proteins (top-down proteomics) or complete an enzymatic digestion and analyse the resulting peptides. This proteolytic
digestion can be either partial (middle-down proteomics) or complete (bottom-up proteomics). The latter approach is
most commonly used as peptides have a more favourable ionisation capacity, predictable fragmentation patterns, and can
be separated via reversed phase liquid chromatography, ultimately making them more compatible with MS.4 Within
bottom-up proteomics, the relative quantitation of peptides can be determined using one of two approaches: (1) label-free
or (2) label-based quantitation. Moreover, the latter can be implemented with a number of different peptide labelling
chemistries, for example, using tandemmass tag (TMT), stable-isotope labelling by amino acids in cell culture (SILAC),
isobaric tags for relative and absolute quantitation (iTRAQ), among others.5 MS analysis can also be used in either data-
dependent or data-independent acquisition (DDA or DIA)mode.6,7 Although all of these experimental methods typically
result in a similar output, a matrix of quantitative values, the data are different andmust be treated as such. Secondly, data
processing is dependent upon the experimental goal and biological question being asked.

Here, we provide a step-by-step workflow for processing, analysing and interpreting expression proteomics data derived
from a bottom-up experiment using DDA and either LFQ or TMT label-based peptide quantitation. We outline how to
process the data starting from a peptide spectrum match (PSM)- or peptide- level .txt file. Such files are the outputs of
most major third party search software (e.g. Proteome Discoverer, MaxQuant, FragPipe). We begin with data import and
then guide users through the stages of data processing including data cleaning, quality control filtering, management of
missing values, imputation, and aggregation to protein-level. Finally, we finish with how to discover differentially
abundant proteins and carry out biological interpretation of the resulting data. The latter will be achieved through the
application of gene ontology (GO) enrichment analysis. Hence, users can expect to generate lists of proteins that are
significantly up- or downregulated in their system of interest, as well as the GO terms that are significantly over-
represented in these proteins.

Using the R statistical programming environment8 we make use of several state-of-the-art packages from the open-
source, open-development Bioconductor project9 to analyse use-case expression proteomics datasets10 from both LFQ
and label-based technologies.

Package installation
In this workflow we make use of open-source software from the R Bioconductor9 project. The Bioconductor initiative
provides R software packages dedicated to the processing of high-throughput complex biological data. Packages are
open-source, well-documented and benefit from an active community of developers. We recommend users to download
the RStudio integrated development environment (IDE) which provides a graphical interface to R programming
language.

Detailed instructions for the installation of Bioconductor packages are documented on the Bioconductor Installation
page. The main packages required for this workflow are installed using the code below.

if (!require("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}

BiocManager::install(c("QFeatures",
"ggplot2",
"stringr"
"NormalyzerDE",
"corrplot",
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"Biostrings",
"limma",
"impute",
"dplyr",
"tibble",
"org.Hs.eg.db",
"clusterProfiler",
"enrichplot"))

After installation, each package must be loaded before it can be used in the R session. This is achieved via the library
function. For example, to load theQFeatures package onewould typelibrary("QFeatures") after installation.
Here we load all packages included in this workflow.

library("QFeatures")
library("ggplot2")
library("stringr")
library("dplyr")
library("tibble")
library("NormalyzerDE")
library("corrplot")
library("Biostrings")
library("limma")
library("org.Hs.eg.db")
library("clusterProfiler")
library("enrichplot")

The use-case: exploring changes in protein abundance in HEK293 cells upon perturbation
As a use-case, we analyse two quantitative proteomics datasets derived from a single experiment. The aim of the
experiment was to reveal the differential abundance of proteins in HEK293 cells upon a particular treatment, the exact
details of which are anonymised for the purpose of this workflow. An outline of the experimental method is provided in
Figure 1.

Briefly, HEK293 cells were either (i) left untreated, or (ii) provided with the treatment of interest. These two conditions
are referred to as ‘control’ and ‘treated’, respectively. Each condition was evaluated in triplicate. At 96-hours post-
treatment, samples were collected and separated into cell pellet and supernatant fractions containing cellular and secreted
proteins, respectively. Both fractions were denatured, alkylated and digested to peptides using trypsin.

The supernatant fractions were de-salted and analysed over a two-hour gradient in an Orbitrap Fusion™ Lumos™
Tribrid™ mass spectrometer coupled to an UltiMate™ 3000 HPLC system (Thermo Fisher Scientific). LFQ was
achieved at the MS1 level based on signal intensities. Cell pellet fractions were labelled using TMT technology before
being pooled and subjected to high pH reversed-phase peptide fractionation giving a total of 8 fractions. As before, each
fractionwas analysed over a two-hour gradient in anOrbitrap Fusion™Lumos™Tribrid™mass spectrometer coupled to
an UltiMate™ 3000 HPLC system (Thermo Fisher Scientific). To improve the accuracy of the quantitation of TMT-
labelled peptides, synchronous precursor selection (SPS)-MS3 data acquisition was employed.11,12 Of note, TMT
labelling of cellular proteins was achieved using a single TMT6plex. Hence, this workflow will not include guidance
on multi-batch TMT effects or the use of internal reference scaling. For more information about the use of multiple
TMTplexes users are directed to Refs. 13, 14.

The cell pellet and supernatant datasets were handled independently and we take advantage of this to discuss the
processing of TMT-labelled and LFQ proteomics data. In both cases, the raw MS data were processed using Proteome
Discoverer v2.5 (Thermo Fisher Scientific). While the focus in the workflow presented below is differential protein
expression analysis, the data processing and quality control steps described here are applicable to any TMT or LFQ
proteomics dataset. Importantly, however, the experimental aim will influence data-guided decisions and the consider-
ations discussed here likely differ from those of spatial proteomics, for example.
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Downloading the data
The files required for this workflow can be found deposited to the ProteomeXchange Consortium via the PRIDE15,16

partner repository with the dataset identifier PXD041794, Zenodo at http://doi.org/10.5281/zenodo.7837375 and at
the Github repository https://github.com/CambridgeCentreForProteomics/f1000_expression_proteomics/. Users are
advised to download these files into their current working directory. In R the setwd function can be used to specify
a working directory, or if using RStudio one can use the Session -> Set Working Directory menu.

The infrastructure: QFeatures and SummarizedExperiments
To be able to conveniently track each step of this workflow, users should make use of the Quantitative features for mass
spectrometry, or QFeatures, Bioconductor package.17 Prior to utilising the QFeatures infrastructure, it is first
necessary to understand the structure of aSummarizedExperiment18 object asQFeatures objects are based on the
SummarizedExperiment class. A SummarizedExperiment, often referred to as an SE, is a data container and
S4 object comprised of three components: (1) the colData (column data) containing sample metadata, (2) the

Figure 1. A schematic summary of the experimental protocol used to generate the use-case data.
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rowData containing data features, and (3) the assay storing quantitation data, as illustrated in Figure 2. The sample
metadata includes annotations such as condition and replicate, and can be accessed using the colData function. Data
features, accessed via the rowData function, represent information derived from the identification search. Examples
include peptide sequence, master protein accession, and confidence scores. Finally, quantitative data is stored in the
assay slot. These three independent data structures are neatly stored within a single SummarizedExperiment
object.

A QFeatures object holds each level of quantitative proteomics data, namely (but not limited to) the PSM, peptide and
protein-level data. Each level of the data is stored as its own SummarizedExperiment within a single QFeatures
object. The lowest level data e.g. PSM, is first imported into a QFeatures object before aggregating upward towards
protein-level (Figure 3). During this process of aggregation, QFeatures maintains the hierarchical links between
quantitative levels whilst allowing easy access to all data levels for individual proteins of interest. This key aspect of
QFeatures will be exemplified throughout this workflow. Additional guidance on the use of QFeatures can be
found in Ref. 17. For visualisation of the data, all plots are generated using standard ggplot functionality, but could
equally be produced using base R.

Processing and analysing quantitative TMT data
First, we provide a workflow for the processing and quality control of quantitative TMT-labelled data. As outlined above,
the cell pellet fractions of triplicate control and treated HEK293 cells were labelled using a TMT6plex. Labelling was as
outlined in Table 1.

Identification search of raw data
The first processing step in any MS-based proteomics experiment involves an identification search using the raw data.
The aim of this search is to identify which peptide sequences, and therefore proteins, correspond to the raw spectra output
from the mass spectrometer. Several third-party software exist to facilitate identification searches of raw MS data but
ultimately the output of any search is a list of PSMs, peptides and protein identifications along with their corresponding
quantification data.

Figure 2. A graphic representation of the SummarizedExperiment (SE) object structure. Figure reproduced
from the SummarizedExperiment package18 vignette with permission.
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The use-case data presented here was processed using Proteome Discoverer 2.5 and additional information about this
search is provided in an appendix in the GitHub repository https://github.com/CambridgeCentreForProteomics/f1000_
expression_proteomics. Further, we provide template workflows for both the processing and consensus steps of the
Proteome Discoverer identification runs. It is also possible to determine several of the key parameter settings during the
preliminary data exploration. This step will be particularly important for those using publicly available data without
detailed knowledge of the identification search parameters. For now, we simply export the PSM-level .txt file from the
Proteome Discoverer output.

Importing data into R and creating a QFeatures object
Data cleaning, exploration and filtering at the PSM-level is performed in R using QFeatures. The function
readQFeatures is used to import the PSM-level .txt file. As the cell pellet TMT data we will use is derived from
one TMT6plex, only one PSM-level .txt file needs to be imported. This file should be stored within the users working
directory.

The columns containing quantitative data also need to be identified before import. To check the column names we use
names and read.delim (the equivalent for a .csv file would be read.csv). In the current experiment the order of
TMT labels was randomised in an attempt to minimise the effect of TMT channel leakage. For ease of grouping and
simplification of downstream visualisation, samples are re-ordered during the import step. This is done by creating a
vector containing the sample column names in their correct order. If samples are already in the desired order, the vector
can be created by simply indexing the quantitative columns.

Figure 3. A graphic representation of the QFeatures object structure showing the relationship between
assays. Figure modified from the QFeatures17 vignette with permission.

Table 1. TMT labelling strategy in the use-case experiment.

Sample name Condition Replicate Tag

S1 Treated 1 TMT128

S2 Treated 2 TMT127

S3 Treated 3 TMT131

S4 Control 1 TMT129

S5 Control 2 TMT126

S6 Control 3 TMT130
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## Locate the PSM .txt file
cp_psm <- "cell_pellet_tmt_results_psms.txt"

## Identify columns containing quantitative data
cp_psm %>%

read.delim() %>%
names()

## [1] "PSMs.Workflow.ID" "PSMs.Peptide.ID"
## [3] "Checked" "Tags"
## [5] "Confidence" "Identifying.Node.Type"
## [7] "Identifying.Node" "Search.ID"
## [9] "Identifying.Node.No" "PSM.Ambiguity"
## [11] "Sequence" "Annotated.Sequence"
## [13] "Modifications" "Number.of.Proteins"
## [15] "Master.Protein.Accessions" "Master.Protein.Descriptions"
## [17] "Protein.Accessions" "Protein.Descriptions"
## [19] "Number.of.Missed.Cleavages" "Charge"
## [21] "Original.Precursor.Charge" "Delta.Score"
## [23] "Delta.Cn" "Rank"
## [25] "Search.Engine.Rank" "Concatenated.Rank"
## [27] "mz.in.Da" "MHplus.in.Da"
## [29] "Theo.MHplus.in.Da" "Delta.M.in.ppm"
## [31] "Delta.mz.in.Da" "Ions.Matched"
## [33] "Matched.Ions" "Total.Ions"
## [35] "Intensity" "Activation.Type"
## [37] "NCE.in.Percent" "MS.Order"
## [39] "Isolation.Interference.in.Percent" "SPS.Mass.Matches.in.Percent"
## [41] "Average.Reporter.SN" "Ion.Inject.Time.in.ms"
## [43] "RT.in.min" "First.Scan"
## [45] "Last.Scan" "Master.Scans"
## [47] "Spectrum.File" "File.ID"
## [49] "Abundance.126" "Abundance.127"
## [51] "Abundance.128" "Abundance.129"
## [53] "Abundance.130" "Abundance.131"
## [55] "Quan.Info" "Peptides.Matched"
## [57] "XCorr" "Number.of.Protein.Groups"
## [59] "Percolator.q.Value" "Percolator.PEP"
## [61] "Percolator.SVMScore"

## Store location of quantitative columns in a vector in the desired order
abundance_ordered <- c("Abundance.128",

"Abundance.127",
"Abundance.131",
"Abundance.129",
"Abundance.126",
"Abundance.130")

Now that the necessary file and its quantitative data columns have been identified, we can pass this to the
readQFeatures function and provide these two pieces of information. We also specify that the file is tab-delimited
by including sep = “\t” (similarly you would use sep = “,” for a .csv file). Of note, the readQFeatures function
can also take fnames as an argument to specify a column to be used as the row names of the imported object. Whilst
previous QFeatures vignettes used the “Sequence” or “Annotated.Sequence” as row names, we advise against this
because of the presence of PSMs matched to the same peptide sequence with different modifications. In such cases,
multiple rows would have the same name forcing the readQFeatures function to output a “making assay row names
unique”message and add an identifying number to the end of each duplicated row name. These sequences would then be
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considered as unique during the aggregation of PSM to peptide, thus resulting in two independent peptide-level
quantitation values rather than one. Therefore, we do not pass a fnames argument and the row names automatically
become indices. Finally, we pass the name argument to indicate the type of data added.

## Create QFeatures
cp_qf <- readQFeatures(table = cp_psm,

ecol = abundance_ordered,
sep = "\t",
name = "psms_raw")

Accessing the QFeatures infrastructure
As outlined above, a QFeatures data object is a list of SummarizedExperiment objects. As such, an individual
SummarizedExperiment can be accessed using the standard double bracket nomenclature, as demonstrated in the
code chunk below.

## Index using position
cp_qf[[1]]

## class: SummarizedExperiment
## dim: 48832 6
## metadata(0):
## assays(1): ”

## rownames(48832): 1 2 … 48831 48832
## rowData names(55): PSMs.Workflow.ID PSMs.Peptide.ID … Percolator.PEP
## Percolator.SVMScore
## colnames(6): Abundance.128 Abundance.127 … Abundance.126
## Abundance.130
## colData names(0):

## Index using name
cp_qf[["psms_raw"]]

## class: SummarizedExperiment
## dim: 48832 6
## metadata(0):
## assays(1): ”

## rownames(48832): 1 2 … 48831 48832
## rowData names(55): PSMs.Workflow.ID PSMs.Peptide.ID … Percolator.PEP
## Percolator.SVMScore
## colnames(6): Abundance.128 Abundance.127 … Abundance.126
## Abundance.130
## colData names(0):

A summary of the data contained in the slots is printed to the screen. To retrieve therowData,colData orassay data
from a particular SummarizedExperiment within a QFeatures object users can make use of the rowData,
colData and assay functions. For plotting or data transformation it is necessary to convert to a data.frame or
tibble.

## Access feature information with rowData
## The output should be converted to data.frame/tibble for further processing
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
summarise(mean_intensity = mean(Intensity))
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## # A tibble: 1 x 1
## mean_intensity
## <dbl>
## 1 13281497.

Adding metadata
Having imported the data, each sample is first annotated with its TMT label, sample reference and condition. As this
information is experimental metadata, it is added to thecolData slot. It is also useful to clean up sample names such that
they are short, intuitive and informative. This is done by editing thecolnames. These stepsmay not always be necessary
depending upon the identification search output.

## Clean sample names
colnames(cp_qf[["psms_raw"]]) <- paste0("S", 1:6)

## Add sample info as colData to QFeatures object
cp_qf$label <- c("TMT128",

"TMT127",
"TMT131",
"TMT129",
"TMT126",
"TMT130")

cp_qf$sample <- paste0("S", 1:6)

cp_qf$condition <- rep(c("Treated", "Control"), each = 3)

## Verify
colData(cp_qf)

## DataFrame with 6 rows and 3 columns
## label sample condition
## <character> <character> <character>
## S1 TMT128 S1 Treated
## S2 TMT127 S2 Treated
## S3 TMT131 S3 Treated
## S4 TMT129 S4 Control
## S5 TMT126 S5 Control
## S6 TMT130 S6 Control

## Assign the colData to first assay as well
colData(cp_qf[["psms_raw"]]) <- colData(cp_qf)

Preliminary data exploration
As well as cleaning and annotating the data, it is always advisable to check that the import worked and that the data looks
as expected. Further, preliminary exploration of the data can provide an early sign of whether the experiment and
subsequent identification search were successful. Importantly, however, the names of key parameters will vary depend-
ing on the software used, and will likely change over time. Users will need to be aware of this and modify the code in this
workflow accordingly.

## Check what information has been imported
cp_qf[["psms_raw"]] %>%

rowData() %>%
colnames()
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## [1] "PSMs.Workflow.ID" "PSMs.Peptide.ID"
## [3] "Checked" "Tags"
## [5] "Confidence" "Identifying.Node.Type"
## [7] "Identifying.Node" "Search.ID"
## [9] "Identifying.Node.No" "PSM.Ambiguity"
## [11] "Sequence" "Annotated.Sequence"
## [13] "Modifications" "Number.of.Proteins"
## [15] "Master.Protein.Accessions" "Master.Protein.Descriptions"
## [17] "Protein.Accessions" "Protein.Descriptions"
## [19] "Number.of.Missed.Cleavages" "Charge"
## [21] "Original.Precursor.Charge" "Delta.Score"
## [23] "Delta.Cn" "Rank"
## [25] "Search.Engine.Rank" "Concatenated.Rank"
## [27] "mz.in.Da" "MHplus.in.Da"
## [29] "Theo.MHplus.in.Da" "Delta.M.in.ppm"
## [31] "Delta.mz.in.Da" "Ions.Matched"
## [33] "Matched.Ions" "Total.Ions"
## [35] "Intensity" "Activation.Type"
## [37] "NCE.in.Percent" "MS.Order"
## [39] "Isolation.Interference.in.Percent" "SPS.Mass.Matches.in.Percent"
## [41] "Average.Reporter.SN" "Ion.Inject.Time.in.ms"
## [43] "RT.in.min" "First.Scan"
## [45] "Last.Scan" "Master.Scans"
## [47] "Spectrum.File" "File.ID"
## [49] "Quan.Info" "Peptides.Matched"
## [51] "XCorr" "Number.of.Protein.Groups"
## [53] "Percolator.q.Value" "Percolator.PEP"
## [55] "Percolator.SVMScore"

## Find out how many PSMs are in the data
cp_qf[["psms_raw"]] %>%

dim()

## [1] 48832 6

original_psms <- cp_qf[["psms_raw"]] %>%
nrow() %>%
as.numeric()

We can see that the original data includes 48832 PSMs across the 6 samples. It is also useful to make note of how many
peptides and proteins the raw PSMdata corresponds to, and to track howmanywe remove during the subsequent filtering
steps. This can be done by checking how many unique entries are located within the “Sequence” and “Master.Protein.
Accessions” for peptides and proteins, respectively. Of note, searching for unique peptide sequences means that the
number of peptides does not include duplicated sequences with different modifications.

## Find out how many peptides and master proteins are in the data
original_peps <- cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Sequence) %>%
unique() %>%
length() %>%
as.numeric()
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original_prots <- cp_qf[["psms_raw"]] %>%
rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()

print(c(original_peps, original_prots))

## [1] 25969 5040

Hence, the output of the identification search contains 48832 PSMs corresponding to 25969 peptide sequences and 5040
master proteins. Finally, we confirm that the identification search was carried out as expected. For this, we print
summaries of the key search parameters using thetable function for discrete parameters andsummary for those which
are continuous. This is also helpful for users who are analysing publicly available data and have limited knowledge about
the identification search parameters.

## Check missed cleavages
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Number.of.Missed.Cleavages) %>%
table()

## .
## 0 1 2
## 46164 2592 76

## Check precursor mass tolerance
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Delta.M.in.ppm) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.9300 -0.6000 0.3700 0.6447 1.3100 9.6700

## Check fragment mass tolerance
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Delta.mz.in.Da) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.0110400 -0.0004100 0.0002500 0.0006812 0.0010200 0.0135100

## Check PSM confidence allocations
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Confidence) %>%
table()
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## .
## High
## 48832

Experimental quality control checks
Experimental quality control of TMT-labelled quantitive proteomics data takes place in two steps: (1) assessment of the
raw mass spectrometry data, and (2) evaluation of TMT labelling efficiency.

Quality control of the raw mass spectrometry data
Having taken an initial look at the output of the identification search, it is possible to create some simple plots to inspect
the raw mass spectrometry data. Such plots are useful in revealing problems that may have occurred during the mass
spectrometry run but are far from extensive. Users who wish to carry out a more in-depth evaluation of the raw mass
spectrometry data may benefit from use of the Spectra Bioconductor package which allows for visualisation and
exploration of raw chromatograms and spectra, among other features.19

The first plot we generate looks at the delta precursor mass, that is the difference between observed and estimated
precursor mass, across retention time. Importantly, exploration of this raw data feature can only be done when using the
raw data prior to recalibration. For users of Proteome Discoverer, this means using the spectral files node rather than the
spectral files recalibration node.

## Generate scatter plot of mass accuracy
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = RT.in.min, y = Delta.M.in.ppm)) +
geom_point(size = 0.5, shape = 4) +
geom_hline(yintercept = 5, linetype = "dashed", color = "red") +
geom_hline(yintercept = -5, linetype = "dashed", color = "red") +
labs(x = "RT (min)", y = "Delta precursor mass (ppm)") +
scale_x_continuous(limits = c(0, 120), breaks = seq(0, 120, 20)) +
scale_y_continuous(limits = c(-10, 10), breaks = c(-10, -5, 0, 5, 10)) +
ggtitle("PSM retention time against delta precursor mass") +
theme_bw()
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Since we applied a precursor mass tolerance of 10 ppm during the identification search, all of the PSMs are within
�10 ppm. Ideally, however, we want the majority of the data to be within�5 ppm since smaller delta masses correspond
to a greater rate of correct peptide identifications. From the graph we have plotted we can see that indeed the majority of
PSMs are within�5 ppm. If users find that too many PSMs are outside of the desired�5 ppm, it is advisable to check the
calibration of the mass spectrometer.

The second quality control plot of raw data is that of MS2 ion inject time across the retention time gradient. Here, it is
desirable to achieve an averageMS2 injection time of 50 ms or less, although the exact target threshold will depend upon
the sample load. If the average ion inject time is longer than desired, then the ion transfer tube and/or front end optics of the
instrument may require cleaning.

## Generate scatter plot of ion inject time across retention time
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = RT.in.min, y = Ion.Inject.Time.in.ms)) +
geom_point(size = 0.5, shape = 4) +
geom_hline(yintercept = 50, linetype = "dashed", color = "red") +
labs(x = "RT (min)", y = "Ion inject time (ms)") +
scale_x_continuous(limits = c(0, 120), breaks = seq(0, 120, 20)) +
scale_y_continuous(limits = c(0, 60), breaks = seq(0, 60, 10)) +
ggtitle("PSM retention time against ion inject time") +
theme_bw()

From this plot we can see that whilst there is a high density of PSMs at low inject times, there are also many data points
found at the 50 ms threshold. This indicates that by increasing the time allowed for ions to accumulate in the ion trap, the
number of PSMs could also have been increased. Finally, we inspect the distribution of PSMs across both the ion injection
time and retention time by plotting histograms.

## Plot histogram of PSM ion inject time
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = Ion.Inject.Time.in.ms)) +
geom_histogram(binwidth = 1) +
labs(x = "Ion inject time (ms)", y = "Frequency") +
scale_x_continuous(limits = c(-0.5, 52.5), breaks = seq(0, 50, 5)) +
ggtitle("PSM frequency across ion injection time") +
theme_bw()
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## Plot histogram of PSM retention time
cp_qf[["psms_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = RT.in.min)) +
geom_histogram(binwidth = 1) +
labs(x = "RT (min)", y = "Frequency") +
scale_x_continuous(breaks = seq(0, 120, 20)) +
ggtitle("PSM frequency across retention time") +
theme_bw()

The four plots that we have generated look relatively standard with no obvious problems indicated. Therefore,
we continue by evaluating the quality of the processed data.
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Checking the efficiency of TMT labelling
The most fundamental data quality control step in a TMT experiment is to check the TMT labelling efficiency. TMT
labels react with amine groups present at the peptide N-terminus as well as the side chain of lysine (K) residues. Of note,
lysine residues can be TMT modified regardless of whether they are present at the C-terminus of a trypic peptide or
internally following miscleavage.

To evaluate the TMT labelling efficiency, a separate identification search of the raw data was completed with lysine
(K) and peptide N-termini TMT labels considered as dynamic modifications rather than static. No additional residues
(S or T) were evaluated for labelling in the search. This allows the search engine to assess the presence of both the
modified (TMT labelled) and unmodified (original) forms of each peptide. The relative proportions of modified and
unmodified peptides can then be used to calculate the TMT labelling efficiency. To demonstrate how to check for TMT
labelling efficiency, only two of the eight fractions were utilised for this search.

As we will only look at TMT efficiency at the PSM-level, here we upload the .txt file directly as a Summarized
Experiment rather than a QFeatures object. This is done using the readSummarizedExperiment function
and the same arguments as those in readQFeatures.

## Locate the PSM .txt file
tmt_psm <- "cell_pellet_tmt_efficiency_psms.txt"

## Identify columns containing quantitative data
tmt_psm %>%

read.delim() %>%
names()

## [1] "PSMs.Workflow.ID" "PSMs.Peptide.ID"
## [3] "Checked" "Tags"
## [5] "Confidence" "Identifying.Node.Type"
## [7] "Identifying.Node" "Search.ID"
## [9] "Identifying.Node.No" "PSM.Ambiguity"
## [11] "Sequence" "Annotated.Sequence"
## [13] "Modifications" "Number.of.Proteins"
## [15] "Master.Protein.Accessions" "Master.Protein.Descriptions"
## [17] "Protein.Accessions" "Protein.Descriptions"
## [19] "Number.of.Missed.Cleavages" "Charge"
## [21] "Original.Precursor.Charge" "Delta.Score"
## [23] "Delta.Cn" "Rank"
## [25] "Search.Engine.Rank" "Concatenated.Rank"
## [27] "mz.in.Da" "MHplus.in.Da"
## [29] "Theo.MHplus.in.Da" "Delta.M.in.ppm"
## [31] "Delta.mz.in.Da" "Ions.Matched"
## [33] "Matched.Ions" "Total.Ions"
## [35] "Intensity" "Activation.Type"
## [37] "NCE.in.Percent" "MS.Order"
## [39] "Isolation.Interference.in.Percent" "SPS.Mass.Matches.in.Percent"
## [41] "Average.Reporter.SN" "Ion.Inject.Time.in.ms"
## [43] "RT.in.min" "First.Scan"
## [45] "Last.Scan" "Master.Scans"
## [47] "Spectrum.File" "File.ID"
## [49] "Abundance.126" "Abundance.127"
## [51] "Abundance.128" "Abundance.129"
## [53] "Abundance.130" "Abundance.131"
## [55] "Quan.Info" "Peptides.Matched"
## [57] "XCorr" "Number.of.Protein.Groups"
## [59] "Contaminant" "Percolator.q.Value"
## [61] "Percolator.PEP" "Percolator.SVMScore"
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## Read in as a SummarizedExperiment
tmt_se <- readSummarizedExperiment(table = tmt_psm,

ecol = abundance_ordered,
sep = "\t")

## Clean sample names
colnames(tmt_se) <- paste0("S", 1:6)

## Add sample info as colData to QFeatures object
tmt_se$label <- c("TMT128",

"TMT127",
"TMT131",
"TMT129",
"TMT126",
"TMT130")

tmt_se$sample <- paste0("S", 1:6)

tmt_se$condition <- rep(c("Treated", "Control"), each = 3)

## Verify
colData(tmt_se)

## DataFrame with 6 rows and 3 columns
## label sample condition
## <character> <character> <character>
## S1 TMT128 S1 Treated
## S2 TMT127 S2 Treated
## S3 TMT131 S3 Treated
## S4 TMT129 S4 Control
## S5 TMT126 S5 Control
## S6 TMT130 S6 Control

Information about the presence of labels is stored within the ‘Modifications’ feature of the rowData. Using this
information, the TMT labelling efficiency of the experiment is calculated using the code chunks below. Users should alter
this code if TMTpro reagents are being used such that “TMT6plex” is replaced by “TMTpro”.

First we consider the efficiency of peptide N-termini TMT labelling.We use the grep function to identify PSMswhich are
annotated as having an N-Term TMT6plexmodification.We then calculate the number of PSMswith this annotation as a
proportion of the total number of PSMs.

## Count the total number of PSMs
tmt_total <- length(tmt_se)

## Count the number of PSMs with an N-terminal TMT modification
nterm_labelled_rows <- grep("N-Term\\(TMT6plex\\)",

rowData(tmt_se)$Modifications)
nterm_psms_labelled <- length(nterm_labelled_rows)

## Calculate N-terminal TMT labelling efficiency
efficiency_nterm <- (nterm_psms_labelled / tmt_total) * 100

efficiency_nterm %>%
round(digits = 1) %>%
print()

## [1] 96.8
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Secondly, we consider the TMT labelling efficiency of lysine (K) residues. As mentioned above, lysine residues can be
TMT labelled regardless of their position within a peptide. Hence, we here calculate lysine labelling efficiency on a per
lysine residue basis.

## Count the number of lysine TMT6plex modifications in the PSM data
k_tmt <- str_count(string = rowData(tmt_se)$Modifications,

pattern = "K[0-9]{1,2}\\(TMT6plex\\)") %>%
sum() %>%
as.numeric()

## Count the number of lysine residues in the PSM data
k_total <- str_count(string = rowData(tmt_se)$Sequence,

pattern = "K") %>%
sum() %>%
as.numeric()

## Determine the percentage of TMT labelled lysines
efficiency_k <- (k_tmt / k_total) * 100

efficiency_k %>%
round(digits = 1) %>%
print()

## [1] 98.5

Users should aim for an overall TMT labelling efficiency >90% in order to achieve reliable quantitation. In cases where
labelling efficiency is towards the lower end of the acceptable range, TMT labels should be set as dynamic modifications
during the final identification search, although this will increase the search space and time as well as influencing false
discovery rate (FDR) calculations. A summary of the current advice from Thermo Fisher is provided in Table 2. Where
labelling efficiency is calculated as being between categories, how to progress is ultimately decided by the user.

Since the use-case data has a sufficiently high TMT labelling efficiency, we can continue to use the output of the
identification search. This search considered TMT labelling of lysines as a static modification whilst N-terminal labelling
was kept as dynamic, to investigate the presence of protein N-terminal modifications.

Basic data cleaning
Being confident that the experiment and identification search were successful, we can now begin with some basic data
cleaning. However, we also want to keep a copy of the raw PSMdata. Therefore, we first create a second copy of the PSM
SummarizedExperiment, called “psms_filtered”, and add it to the QFeatures object. This is done using the
addAssay function. All changes made at the PSM-level will then only be applied to this second copy, so that we can
refer back to the original data if needed.

## Extract the "psms_raw" SummarizedExperiment
data_copy <- cp_qf[["psms_raw"]]

## Add copy of SummarizedExperiment
cp_qf <- addAssay(x = cp_qf,

y = data_copy,
name = "psms_filtered")

## Verify
cp_qf

Table 2. ThermoFisher search strategy recommendations based on TMT labelling efficiency.

N-term efficiency K efficiency Suggested search method

>98% >98% Both modifications as ’static’

85-95% >98% N-terminal modification ’dynamic’ and K modification ’static’

<84% <84% Data not suitable for quantitation
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## An instance of class QFeatures containing 2 assays:
## [1] psms_raw: SummarizedExperiment with 48832 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 48832 rows and 6 columns

Of note, manually adding an assay (or SummarizedExperiment) to the QFeatures object does not automat-
ically generate links between these assays. We will manually add the explicit links later, after we complete data
cleaning and filtering.

The cleaning steps included in this section are non-specific and should be applied to all quantitative proteomics datasets.
The names of key parameters will vary in data outputs from alternative third party software, however, and users should
remain aware of both terminology changes over time as well as the introduction of new filters. All data cleaning steps are
completed in the same way. We first determine how many rows, here PSMs, meet the conditions for removal. This is
achieved by using the dplyr::count function. The unwanted rows are removed using the filterFeatures
function. Since we only wish to apply the filters to the “psms_filtered” level, we specify this by using thei = argument. If
this argument is not used, filterFeatures will remove features from all assays within a QFeatures object.

Removing PSMs not matched to a master protein
The first common cleaning stepwe carry out is the removal of PSMs that have not been assigned to amaster protein during
the identification search. This can happen when the search software is unable to resolve conflicts caused by the presence
of the isobaric amino acids leucine and isoleucine. Before implementing the filter, it is useful to find out howmany PSMs
we expect to remove. This is easily done by using the dplyr::count on the master protein column. Any master
proteins that return TRUE will be removed by filtering. If this returns no TRUE values, users should move on to the next
filtering step without removing rows as this will introduce an error.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Master.Protein.Accessions == "")

## # A tibble: 2 x 2
## ‘Master.Protein.Accessions == ""‘ n
## <lgl> <int>
## 1 FALSE 48660
## 2 TRUE 172

For users who wish to explicitly track the process of data cleaning, the code chunk below demonstrates how to print a
message containing the number of features removed.

paste("Removing",
length(which(rowData(

cp_qf[["psms_filtered"]])$Master.Protein.Accessions == "")),
"PSMs without a master protein accession") %>%

message()

## Removing 172 PSMs without a master protein accession

This code could be adapted to each cleaning and filtering step. To maintain simplicity of this workflow, we will not print
explicit messages at each step. Instead, the decision to do so is left to the user.

## Remove PSMs without a master protein accession using filterFeatures
cp_qf <- cp_qf %>%

filterFeatures(~ !Master.Protein.Accessions == "",
i = "psms_filtered")

Removing PSMs matched to a contaminant protein
Next we remove PSMs corresponding to contaminant proteins. Such proteins can be introduced intentionally as reagents
during sample preparation, as is the case for digestive enzymes, or accidentally, as seenwith human keratins derived from
skin and hair. Since these proteins do not contribute to the biological question being asked and it is standard practice to
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remove them from the data. This is done by using a carefully curated, sample-specific contaminant database. Critically,
the database used for filtering should be the same one thatwas used during the identification search.Whilst it is possible to
remove contaminants using the filterFeatures function on a contaminants annotation column (as per the
QFeatures processing vignette), we demonstrate how to filter using only contaminant protein accessions for users
who do not have contaminant annotations within their identification data.

For this experiment, a contaminant database from Ref. 20 was used. The .fasta file for this database is available at the
Hao Group’s Github Repository for Protein Contaminant Libraries for DDA and DIA Proteomics and specifically can
be found at https://github.com/HaoGroup-ProtContLib/Protein-Contaminant-Libraries-for-DDA-and-DIA-Proteomics/
tree/main/Universal%20protein%20contaminant%20FASTA. Here, we import this file using the fasta.index
function from the Biostrings package.21 This function requires a file path to the .fasta file and then asks users to
specify the sequence type. In this case we have amino acid sequences so pass seqtype = "AA". The function returns a
data.frame with one row per FASTA entry. We then can extract the protein accessions from the fasta file. Users will
need to alter the below code according to the contaminant file used.

## Load Hao group .fasta file used in search
cont_fasta <- "220813_universal_protein_contaminants_Haogroup.fasta"
conts <- Biostrings::fasta.index(cont_fasta, seqtype = "AA")

## Extract only the protein accessions (not Cont_ at the start)
cont_acc <- regexpr("(?<=\\_).*?(?=\\|)", conts$desc, perl = TRUE) %>%

regmatches(conts$desc, .)

Nowwe have our contaminant list by accession number, we can identify and remove PSMswith any contaminant protein
within their “Protein.Accessions”. Importantly, filtering on “Protein.Accessions” ensures the removal of PSMs which
matched to a protein group containing a contaminant protein, even if the contaminant protein is not the group’s master
protein.

## Define function to find contaminants
find_cont <- function(se, cont_acc) {

cont_indices <- c()
for (i in 1:length(cont_acc)) {

cont_protein <- cont_acc[i]
cont_present <- grep(cont_protein, rowData(se)$Protein.Accessions)
output <- c(cont_present)
cont_indices <- append(cont_indices, output)

}
cont_psm_indices <- cont_indices

}

## Store row indices of PSMs matched to a contaminant-containing protein group
cont_psms <- find_cont(cp_qf[["psms_filtered"]], cont_acc)

## If we find contaminants, remove these rows from the data
if (length(cont_psms) > 0)

cp_qf[["psms_filtered"]] <- cp_qf[["psms_filtered"]][-cont_psms, ]

At this point, users can also remove any additional proteins which may not have been included in the contaminant
database. For example, users may wish to remove human trypsin (accession P35050) should it appear in their data.

Several third party softwares also have the option to directly annotate which fasta file (here, the human proteome or
contaminant database) a PSM is derived from. In such cases, filtering can be simplified by removing PSMs annotated as
contaminants in the output file.

Removing PSMs which lack quantitative data
Now that we are left with only PSMs matched to proteins of interest, we filter out PSMs which cannot be used
for quantitation. This includes some PSMs which lack quantitative information altogether. In outputs derived from
Proteome Discoverer this information is included in the “Quan.Info” column where PSMs are annotated as having
“NoQuanLabels”. For users who have considered both lysine andN-terminal TMT labels as static modifications, the data
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should not contain any PSMs without quantitative information. However, since the use-case data was derived from a
search in which N-terminal TMTmodifications were dynamic, the data does include this annotation. Users are reminded
that column names are typically software-specific as the “Quan.Info” column is found only in outputs derived from
Proteome Discoverer. However, the majority of alternative third party softwares will have an equivalent column
containing the same information.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Quan.Info == "NoQuanLabels")

## # A tibble: 2 x 2
## ‘Quan.Info == "NoQuanLabels"‘ n
## <lgl> <int>
## 1 FALSE 47241
## 2 TRUE 228

## Drop these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ !Quan.Info == "NoQuanLabels",
i = "psms_filtered")

This point in the workflow is a good time to check whether there are any other annotations within the “Quan.Info”
column. For example, if there are any PSMswhich have been “ExcludedByMethod”, this indicates that a PSM-level filter
was applied in ProteomeDiscoverer during the identification search. If this is the case, users should determinewhich filter
has been applied to the data and decidewhether to remove the PSMswhichwere “ExcludedByMethod” (thereby applying
the pre-set threshold) or leave them in (disregard the threshold).

## Are there any remaining annotations in the Quan.Info column?
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Quan.Info) %>%
table()

## .
##
## 47241

In the above code chunk we see there are no remaining annotations in the “Quan.Info” column so we can continue.

Removing PSMs which are not unique to a protein
The next step is to consider which PSMs are to be used for quantitation. There are two ways in which a PSM can be
considered as unique. The first and most pure form of uniqueness comes from a PSM corresponding to a single protein
only. This results in the PSM being allocated to one protein and one protein group. However, it is common to expand the
definition of unique to include PSMs that map to multiple proteins within a single protein group. That is PSMs which are
allocated to more than one protein but only one protein group. This distinction is ultimately up to the user. By contrast,
PSMs corresponding to razor and shared peptides are linked to multiple proteins across multiple protein groups. In this
workflow, the final grouping of peptides to proteins will be done based on master protein accession. Therefore,
differential expression analysis will be based on protein groups, and we here consider unique as any PSM linked to
only one protein group. This means removing PSMs where “Number.of.Protein.Groups” is not equal to 1.

In the below code chunk we count the number of PSMs linked to more than 1 protein group.
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## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Number.of.Protein.Groups != 1)

## # A tibble: 2 x 2
## ‘Number.of.Protein.Groups != 1‘ n
## <lgl> <int>
## 1 FALSE 44501
## 2 TRUE 2740

We again use the filterFeatures function to retain PSMs linked to only 1 protein group and discard any PSMs
linked to more 1 group.

## Remove these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ Number.of.Protein.Groups == 1,
i = "psms_filtered")

Additional considerations regarding protein isoforms

Users searching against a database that includes protein isoforms must take extra caution when defining ‘unique’ PSMs.
A PSM that corresponds to a single protein when data is searched against the proteome without isoforms may correspond
to multiple proteins once additional isoforms are included. As a result, PSMs or peptides that were previously mapped to
one protein and one protein group could instead be mapped to multiple proteins and one protein group. These PSMs
would be filtered out by defining ‘unique’ as corresponding to only one protein and one protein group, but would be
retained if the definition was expanded to multiple proteins and one protein group. Users should be aware of these
possibilities and select their filtering strategy based on the biological question of interest.

Removing PSMs that are not rank 1
Another filter that is important for quantitation is that of PSM rank. Since individual spectra can have multiple candidate
peptide matches, Proteome Discoverer uses a scoring algorithm to determine the probability of a PSM being incorrect.
Once each candidate PSM has been given a score, the one with the lowest score (lowest probability of being incorrect) is
allocated rank 1. The PSMwith the second lowest probability of being incorrect is rank 2, and so on. For the analysis, we
only want rank 1 PSMs to be retained.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Rank != 1)

## # A tibble: 2 x 2
## ‘Rank != 1‘ n
## <lgl> <int>
## 1 FALSE 43426
## 2 TRUE 1075

## Drop these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ Rank == 1,
i = "psms_filtered")

The majority of search engines, including SequestHT, also provide their own PSM rank. To be conservative and ensure
accurate quantitation, we also only retain PSMs that have a search engine rank of 1.
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## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Search.Engine.Rank != 1)

## # A tibble: 2 x 2
## ‘Search.Engine.Rank != 1‘ n
## <lgl> <int>
## 1 FALSE 43153
## 2 TRUE 273

## Drop these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ Search.Engine.Rank == 1,
i = "psms_filtered")

Removing ambiguous PSMs
Finally, we retain only unambiguous PSMs. Since there are several candidate peptides for each spectra, Proteome
Discoverer allocates each PSM a level of ambiguity to indicate whether it was possible to determine a definite PSM or
whether one had to be selected from a number of candidates. The allocation of PSM ambiguity takes place during the
process of protein grouping and the definitions of each ambiguity assignment are given below in Table 3.

Importantly, depending upon the software being used, output files may already have excluded some of these categories. It
is still good to check before proceeding with the data.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(PSM.Ambiguity != "Unambiguous")

## # A tibble: 1 x 2
## ‘PSM.Ambiguity != "Unambiguous"‘ n
## <lgl> <int>
## 1 FALSE 43153

## No PSMs to remove so proceed

Assessing the impact of non-specific data cleaning
Now that we have finished the non-specific data cleaning, we can pause and check to see what this has done to the data.
We determine the number and proportion of PSMs, peptides, and proteins lost from the original dataset.

Table 3. Definitions of PSM ambiguity categories based on Proteome Discoverer outputs.

PSM category Definition

Unambiguous The only candidate PSM

Selected PSM was selected from a group of candidates

Rejected PSM was rejected from a group of candidates

Ambiguous Two or more candidate PSMs could not be distinguished

Unconsidered PSM was not considered suitable
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## Determine number and proportion of PSMs removed
psms_remaining <- cp_qf[["psms_filtered"]] %>%

nrow() %>%
as.numeric()

psms_removed <- original_psms - psms_remaining
psms_removed_prop <- ((psms_removed / original_psms) * 100) %>%

round(digits = 2)

## Determine number and proportion of peptides removed
peps_remaining <- cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Sequence) %>%
unique() %>%
length() %>%
as.numeric()

peps_removed <- original_peps - peps_remaining
peps_removed_prop <- ((peps_removed / original_peps) * 100) %>%

round(digits = 2)

## Determine number and proportion of proteins removed
prots_remaining <- cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()

prots_removed <- original_prots - prots_remaining
prots_removed_prop <- ((prots_removed / original_prots) * 100) %>%

round(digits = 2)

## Print as a table
data.frame("Feature" = c("PSMs",

"Peptides",
"Proteins"),

"Number lost" = c(psms_removed,
peps_removed,
prots_removed),

"Percentage lost" = c(psms_removed_prop,
peps_removed_prop,
prots_removed_prop))

## Feature Number.lost Percentage.lost
## 1 PSMs 5679 11.63
## 2 Peptides 1565 6.03
## 3 Proteins 452 8.97

PSM quality control filtering
The next step is to take a look at the data and make informed decisions about in-depth filtering. Here, we focus on three
key quality control filters for TMT data: 1) average reporter ion signal-to-noise (S/N) ratio, 2) percentage co-isolation
interference, and 3) percentage SPS mass match. It is possible to set thresholds for these three parameters during the
identification search. However, specifying thresholds prior to exploring the data could lead to unnecessarily excessive
data exclusion or the retention of poor quality PSMs.We suggest that users set the thresholds for all three aforementioned
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filters to 0 during the identification search, thus allowingmaximum flexibility during data processing. In all cases, quality
control filtering represents a trade-off between ensuring high quality data and losing potentially informative data. This
means that the thresholds used for such filtering will likely depend upon the initial quality of the data and the number of
PSMs, as well as the experimental goal being stringent or exploratory.

Quality control: Average reporter ion signal-to-noise
Intensity measurements derived from a small number of ions tend to be more variable and less accurate. Therefore,
reporter ion spectra with peaks generated from a small number of ions should be filtered out to ensure accurate
quantitation and avoid stochastic ion effects. When using an orbitrap analyser, as was the case in the collection of the
use-case data, the number of ions is proportional to the S/N value of a peak. Hence, the average reporter ion S/N ratio can
be used to filter out quantification based on too few ions.

To determine an appropriate reporter ion S/N threshold we need to understand the original, unfiltered data. Here, we print
a summary of the average reporter S/N before plotting a simple histogram to visualise the data. The default threshold for
average reporter ion S/Nwhen filtering within ProteomeDiscoverer is 10, or 1 on the base-10 logarithmic scale displayed
here. We include a line to show where this threshold would be on the data distribution.

## Get summary information
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Average.Reporter.SN) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
## 0.3 84.2 215.8 321.8 450.3 3008.2 140

## Plot histogram of reporter ion signal-to-noise
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = log10(Average.Reporter.SN))) +
geom_histogram(binwidth = 0.05) +
geom_vline(xintercept = 1, linetype = "dashed", color = "red") +
labs(x = "log10(average reporter SN)", y = "Frequency") +
ggtitle("Average reporter ion S/N") +
theme_bw()
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From the distribution of the data it is clear that applying such a threshold would not result in dramatic data loss. Whilst we
could set a higher threshold for more stringent analysis, this would lead to unnecessary data loss. Therefore, we keep
PSMs with an average reporter ion S/N threshold of 10 or more. We also remove PSMs that have an NA value for their
average reporter ion S/N since their quality cannot be guaranteed. This is done by including na.rm = TRUE.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Average.Reporter.SN < 10)

## # A tibble: 3 x 2
## ‘Average.Reporter.SN < 10‘ n
## <lgl> <int>
## 1 FALSE 42066
## 2 TRUE 947
## 3 NA 140

## Drop these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ Average.Reporter.SN >= 10,
na.rm = TRUE,
i = "psms_filtered")

Quality control: Isolation interference
Asecond data-dependent quality control parameter which should be considered is the isolation interference. The first type
of interference that occurs during a TMT experiment is reporter ion interference, also known as cross-label isotopic
impurity. This type of interference arises frommanufacturing-level impurities and experimental error. The former should
be reduced somewhat by the inclusion of lot-specific correction factors in the search set-up and users should ensure that
these corrections are applied. In Proteome Discoverer this means setting “Apply Quan Value Corrections” to “TRUE”
within the reporter ions quantifier node. The second form of interference is co-isolation interference which occurs during
the MS run when multiple labelled precursor peptides are co-isolated in a single data acquisition window. Following
fragmentation of the co-isolated peptides, this results in an MS2 or MS3 reporter ion peak (depending upon the
experimental design) derived from multiple precursor peptides. Hence, co-isolation interference leads to inaccurate
quantitation of the identified peptide. This problem is reduced by filtering out PSMs with a high percentage isolation
interference value. As was the case for reporter ion S/N, Proteome Discoverer has a suggested default threshold for
isolation interference - 50% for MS2 experiments and 75% for SPS-MS3 experiments.

Again, we get a summary and visualise the data using the code chunk below.

## Get summary information
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Isolation.Interference.in.Percent) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 8.385 12.637 21.053 84.379

## Plot histogram of co-isolation interference
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = Isolation.Interference.in.Percent)) +
geom_histogram(binwidth = 2) +
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geom_vline(xintercept = 75, linetype = "dashed", color = "red") +
labs(x = "Isolation inteference (%)", y = "Frequency") +
ggtitle("Co-isolation interference %") +
theme_bw()

Looking at the data, very few PSMs have an isolation interference above the suggested threshold, and henceminimal data
will be lost. Again, we choose to apply the standard threshold with the understanding that decreasing the threshold would
result in greater data loss. Importantly, we are able to apply relatively standard thresholds here as the preliminary
exploration did not expose any problems with the experimental data (in terms of labelling or MS analysis). If users have
reason to believe the data is of poorer quality then more stringent thresholding should be considered.

## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(Isolation.Interference.in.Percent > 75)

## # A tibble: 2 x 2
## ‘Isolation.Interference.in.Percent > 75‘ n
## <lgl> <int>
## 1 FALSE 42007
## 2 TRUE 59

## Remove these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ Isolation.Interference.in.Percent <= 75,
na.rm = TRUE,
i = "psms_filtered")

Quality control: SPS mass match
The final quality control filter that we will apply is a percentage SPS mass match threshold. SPS mass match is a metric
which has been introduced by Proteome Discoverer versions 2.3 and above to quantify the percentage of SPS-MS3
fragments that can still be explicitly traced back to the precursor peptide. This parameter is of particular importance given
that quantitation is based on the SPS-MS3 spectra. Unfortunately, the SPS Mass Match percentage is currently only a
feature of Proteome Discoverer (2.3 and above) and will not be available to users of other third party software.
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We follow the same format as before to investigate the SPSMassMatch (%) distribution of the data. The default threshold
within Proteome Discoverer is a SPS Mass Match above 65%. In reality, since SPS Mass Match is only reported to the
nearest 10%, removing PSMs annotated with a value below 65% means removing those with 60% or less. Hence, only
PSMs with 70% SPSMass Match or above would be retained. We can see howmany PSMs would be lost based on such
thresholds using the code chunk below.

## Get summary information
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(SPS.Mass.Matches.in.Percent) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 50.00 70.00 64.31 80.00 100.00

## Plot histogram of SPS mass match %
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = SPS.Mass.Matches.in.Percent)) +
geom_histogram(binwidth = 10) +
geom_vline(xintercept = 65, linetype = "dashed", color = "red") +
labs(x = "SPS mass matches (%)", y = "Frequency") +
scale_x_continuous(breaks = seq(0, 100, 10)) +
ggtitle("SPS mass match %") +
theme_bw()

From the summary and histogram we can see that the distribution of SPSMass Matches is much less skewed than that of
average reporter ion S/N or isolation interference. This means that whilst the application of thresholds on average reporter
ion S/N and isolation interference led to minimal data loss, attempting to impose a threshold on SPS Mass Match
represents a much greater trade-off between data quality and quantity. For simplicity, here we choose to use the standard
threshold of 65%.
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## Find out how many PSMs we expect to lose
cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
dplyr::count(SPS.Mass.Matches.in.Percent < 65)

## # A tibble: 2 x 2
## ‘SPS.Mass.Matches.in.Percent < 65‘ n
## <lgl> <int>
## 1 FALSE 21697
## 2 TRUE 20310

## Drop these rows from the data
cp_qf <- cp_qf %>%

filterFeatures(~ SPS.Mass.Matches.in.Percent >= 65,
na.rm = TRUE,
i = "psms_filtered")

Assessing the impact of data-specific filtering
As we did after the non-specific cleaning steps, we check to see how many PSMs, peptides and proteins have been
removed throughout the in-depth data-specific filtering.

## Summarize the effect of data-specific filtering

## Determine the number and proportion of PSMs removed
psms_remaining_2 <- cp_qf[["psms_filtered"]] %>%

nrow() %>%
as.numeric()

psms_removed_2 <- psms_remaining - psms_remaining_2
psms_removed_prop_2 <- ((psms_removed_2 / original_psms) * 100) %>%

round(digits = 2)

## Determine number and proportion of peptides removed
peps_remaining_2 <- rowData(cp_qf[["psms_filtered"]])$Sequence %>%

unique() %>%
length() %>%
as.numeric()

peps_removed_2 <- peps_remaining - peps_remaining_2
peps_removed_prop_2 <- ((peps_removed_2 / original_peps) * 100) %>%

round(digits = 2)

## Determine number and proportion of proteins removed
prots_remaining_2 <- cp_qf[["psms_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()

prots_removed_2 <- prots_remaining - prots_remaining_2
prots_removed_prop_2 <- ((prots_removed_2 / original_prots) * 100) %>%

round(digits = 2)
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## Print as a table
data.frame("Feature" = c("PSMs",

"Peptides",
"Proteins"),

"Number lost" = c(psms_removed_2,
peps_removed_2,
prots_removed_2),

"Percentage lost" = c(psms_removed_prop_2,
peps_removed_prop_2,
prots_removed_prop_2))

## Feature Number.lost Percentage.lost
## 1 PSMs 21456 43.94
## 2 Peptides 10162 39.13
## 3 Proteins 1299 25.77

Managing missing data
Having finished the data cleaning at the PSM-level, the final step is to deal with missing data. Missing values represent a
common challenge in quantitative proteomics and there is no consensuswithin the literature on how this challenge should
be addressed. Indeed, missing values fall into different categories based on the reason they were generated, and each
category is best dealt with in a different way. There are three main categories of missing data: missing completely at
random (MCAR), missing at random (MAR) and missing not at random (MNAR). Within proteomics, values which are
MCAR arise due to technical variation or stochastic fluctuations and emerge in a uniform, intensity-independent
distribution. Examples include values for peptides which cannot be consistently identified or are unable to be efficiently
ionised. By contrast, MNAR values are expected to occur in an intensity-dependent manner due to the presence of
peptides at abundances below the limit of detection.17,22,23 In many cases this is due to the biological condition being
evaluated, for example the cell type or treatment applied.

To simplify this process, we consider the management of missing data in three steps. The first step is to determine the
presence and pattern of missing values within the data. Next, we filter out data which exceed the desired proportion of
missing values. This includes removing PSMs with a greater number of missing values across samples than we deem
acceptable, as well as whole samples in cases where the proportion of missing values is substantially higher than the
average. Finally, imputation can be used to replace any remaining NA values within the dataset. This final step is optional
and can equally be done prior to filtering if the user wishes to impute all missing values without removing any PSMs,
although this is not recommended. Further, whilst it is possible to complete such steps at the peptide- or protein-level, we
advise management of missing values at the lowest data level to minimise the effect of implicit imputation during
aggregation.

Exploring the presence of missing values
First, to determine the presence of missing values in the PSM-level data we use the nNA function within the QFeatures
infrastructure. This function will return the absolute number and percentage of missing values both per sample and as an
average. Importantly, alternative third-party software may output missing values in formats other than NA, such as zero,
or infinite. In such cases, missing values can be converted directly into NA values through use of the zeroIsNA or
infIsNA functions within the QFeatures infrastructure.

## Determine whether there are any NA values in the data
cp_qf[["psms_filtered"]] %>%

assay() %>%
anyNA()

## [1] TRUE
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## Determine the amount and distribution of NA values in the data
cp_qf[["psms_filtered"]] %>%

nNA()

## $nNA
## DataFrame with 1 row and 2 columns

## nNA pNA
## <integer> <numeric>
## 1 4 0.00307262
##
## $nNArows
## DataFrame with 21697 rows and 3 columns
## name nNA pNA
## <character> <integer> <numeric>
## 1 13 0 0
## 2 20 0 0
## 3 25 0 0
## 4 26 0 0
## 5 29 0 0
## ... ... ... ...
## 21693 48786 0 0
## 21694 48792 0 0
## 21695 48797 0 0
## 21696 48810 0 0
## 21697 48819 0 0
##
## $nNAcols
## DataFrame with 6 rows and 3 columns
## name nNA pNA
## <character> <integer> <numeric>
## 1 S1 0 0.00000000
## 2 S2 2 0.00921786
## 3 S3 0 0.00000000
## 4 S4 1 0.00460893
## 5 S5 1 0.00460893
## 6 S6 0 0.00000000

We can see that the data only contains 0.003%missing values, corresponding to 4 NA values. This low proportion is due
to a combination of the TMT labelling strategy and the stringent PSM quality control filtering. In particular, co-isolation
interference when using TMT labels often results in very low quantification values for peptides which should actually be
missing or ‘NA’. Nevertheless, we continue and check for sample-specific bias in the distribution of NAs by plotting a
simple histogram. We also use colour to indicate the condition of each sample as to check for condition-specific bias.

## Plot histogram to visualize the distribution of NAs
nNA(cp_qf[["psms_filtered"]])$nNAcols %>%

as_tibble() %>%
mutate(Condition = rep(c("Treated", "Control"), each = 3)) %>%
ggplot(aes(x = name, y = pNA, group = Condition, fill = Condition)) +
geom_bar(stat = "identity", position = "dodge") +
geom_hline(yintercept = 0.002, linetype = "dashed", color = "red") +
labs(x = "Sample", y = "Missing values (%)") +
theme_bw()
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The percentage of missing values is sufficiently low that none of the samples need be removed. Further, there is no
sample- or condition-specific bias in the data. We can get more information about the PSMs with NA values using the
code below.

## Find out the range of missing values per PSM
nNA(cp_qf[["psms_filtered"]])$nNArows$nNA %>%

table()

## .
## 0 1
## 21693 4

From this output we can see that the maximum number of NA values per PSM is one. This information is useful to know
as it may inform the filtering strategy in the next step.

## Get indices of rows which contain NA
rows_with_na_indices <- which(nNA(cp_qf[["psms_filtered"]])$nNArows$nNA != 0)

## Subset rows with NA
rows_with_na <- cp_qf[["psms_filtered"]][rows_with_na_indices, ]

## Inspect rows with NA
assay(rows_with_na)

## S1 S2 S3 S4 S5 S6
## 12087 11.0 17.0 13.3 22.1 NA 30.6
## 30824 45.0 NA 43.1 66.7 69.7 62.1
## 30846 34.3 NA 47.9 56.8 65.5 57.2
## 44791 22.8 28.7 19.6 NA 3.8 12.2
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Filtering out missing values
First we apply some standard filtering. Typically, it is desirable to remove features, here PSMs, with greater than 20%
missing values. We can do this using the filterNA function in QFeatures, as outlined below. We pass the function
theSummarizedExperiment and use thepNA= argument to specify themaximumproportion ofNAvalues to allow.

## Check how many PSMs we will remove
nNA(cp_qf[["psms_filtered"]])$nNArows %>%

as_tibble() %>%
dplyr::count(pNA >= 20)

## # A tibble: 1 x 2
## ‘pNA >= 20‘ n
## <lgl> <int>
## 1 FALSE 21697

Although the use-case data does not contain any PSMs with >20% missing values, we demonstrate how to apply the
desired filter below.

## Remove PSMs with more than 20 % (0.2) NA values
cp_qf <- cp_qf %>%

filterNA(pNA = 0.2,
i = "psms_filtered")

Since previous exploration of missing data did not reveal any sample with an excessive number of NA values, we do not
need to remove any samples from the analysis.

Although not covered here, users may wish to carry out condition-specific filtering in cases where the exploration of
missing values revealed a condition- specific bias, or where the experimental question requires. This would be the case,
for example, if one condition was transfected to express proteins of interest whilst the control condition lacked these
proteins. Filtering of both conditions together could, therefore, lead to the removal of proteins of interest.

Imputation (optional)
The final step is to consider whether to impute the remaining missing values within the data. Imputation refers to the
replacement of missing values with probable values. Since imputation requires complex assumptions and can have
substantial effects on downstream statistical analysis, we here choose to skip imputation. This is reasonable given that we
only have 3 missing values at the PSM-level, and that some of these will likely be removed by aggregation. A more
in-depth discussion of imputation will be provided below in the LFQ workflow.

Summary of PSM data cleaning
Thus far we have checked that the experimental data we are using is of high quality by visualising the raw data and
calculating TMT labelling efficiency. We then carried out non-specific data cleaning, data-specific filtering steps and
management of missing data. Here, we present a combined summary of these PSM processing steps.

## Determine final number of PSMs, peptides and master proteins
psms_final <- cp_qf[["psms_filtered"]] %>%

nrow() %>%
as.numeric()

psms_removed_total <- original_psms - psms_final
psms_removed_total_prop <- ((psms_removed_total / original_psms) * 100) %>%

round(digits = 2)

peps_final <- cp_qf[["psms_filtered"]] %>%
rowData() %>%
as_tibble() %>%
pull(Sequence) %>%
unique() %>%
length() %>%
as.numeric()
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peps_removed_total <- original_peps - peps_final
peps_removed_total_prop <- ((peps_removed_total / original_peps) * 100) %>%

round(digits = 2)

prots_final <- cp_qf[["psms_filtered"]] %>%
rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()

prots_removed_total <- original_prots - prots_final
prots_removed_total_prop <- ((prots_removed_total / original_prots) * 100) %>%

round(digits = 2)

## Print as table
data.frame("Feature" = c("PSMs",

"Peptides",
"Proteins"),

"Number lost" = c(psms_removed_total,
peps_removed_total,
prots_removed_total),

"Percentage lost" = c(psms_removed_total_prop,
peps_removed_total_prop,
prots_removed_total_prop),

"Number remaining" = c(psms_final,
peps_final,
prots_final))

## Feature Number.lost Percentage.lost Number.remaining
## 1 PSMs 27135 55.57 21697
## 2 Peptides 11727 45.16 14242
## 3 Proteins 1751 34.74 3289

Logarithmic transformation of quantitative data
Once satisfied that the PSM-level data is clean and of high quality, the PSM-level quantitative data is log transformed.
log2 transformation is a standard step when dealing with quantitative proteomics data since protein abundances are
dramatically skewed towards zero. Such a skewed distribution is to be expected given that themajority of cellular proteins
present at any one time are of relatively low abundance, whilst only a few highly abundant proteins exist. To perform the
logarithmic transformation and generate normally distributed data we pass the PSM-level data in the QFeatures object
to the logTransform function, as per the below code chunk.

## log2 transform quantitative data
cp_qf <- logTransform(object = cp_qf,

base = 2,
i = "psms_filtered",
name = "log_psms")

## Verify
cp_qf

## An instance of class QFeatures containing 3 assays:
## [1] psms_raw: SummarizedExperiment with 48832 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 21697 rows and 6 columns
## [3] log_psms: SummarizedExperiment with 21697 rows and 6 columns
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Aggregation of PSMs to proteins
For the aggregation itself we use theaggregateFeatures function and provide the base level fromwhich wewish to
aggregate, the log PSM-level data in this case.We also tell the function which column to aggregate, which is specified by
the fcol argument. We will first aggregate from PSM to peptide to create explicit QFeatures links. This means
grouping by PSM “Sequence”.

As well as grouping PSMs according to their peptide sequence, the quantitative values for each PSM must be
aggregated into a single peptide-level value. The default aggregation method within aggregateFeatures is the
robustSummary function from the MsCoreUtils package.19 This method is a form of robust regression and is
described in detail elsewhere.24 Nevertheless, the user must decide which aggregation method is most appropriate for
their data and biological question. Further, an understanding of the selected method is critical given that aggregation is a
form of implicit imputation and has substantial effects on the downstream data. Indeed, aggregation methods have
different ways of dealing with missing data, either by removal or propagation. Options of aggregation methods within
the aggregateFeatures function include MsCoreUtils::medianPolish, MsCoreUtils::robustSummary,
base::colMeans,base::colSums, andmatrixStats::colMedians. Users should also be aware that some
methods have specific input requirements. For example, robustSummary assumes that intensities have already been
log transformed.

Aggregating using robust summarisation
Here, we userobustSummary to aggregate fromPSM to peptide-level. Thismethod is currently considered to be state-
of-the-art as it is more robust against outliers than other aggregation methods.24,25 We also include na.rm = TRUE to
exclude any NA values prior to completing the summarisation.

## Aggregate PSM to peptide
cp_qf <- aggregateFeatures(cp_qf,

i = "log_psms",
fcol = "Sequence",
name = "log_peptides",
fun = MsCoreUtils::robustSummary,
na.rm = TRUE)

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

## Verify
cp_qf

## An instance of class QFeatures containing 4 assays:
## [1] psms_raw: SummarizedExperiment with 48832 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 21697 rows and 6 columns
## [3] log_psms: SummarizedExperiment with 21697 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 14242 rows and 6 columns

We are now left with a QFeatures object holding the PSM and peptide-level data in their own
SummarizedExperiments. Importantly, an explicit link has been maintained between the two levels and this makes
it possible to gain information about all PSMs that were aggregated into a peptide.

Considerations for aggregating non-imputed data
If users did not impute prior to aggregation, NA values within the PSM-level data may have propagated into NaN values.
This is because peptides only supported by PSMs containing missing values would not have any quantitative value to
which a sum or median function, for example, can be applied. Therefore, we check for NaN and convert back to NA
values to facilitate compatibility with downstream processing.
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## Confirm the presence of NaN
assay(cp_qf[["log_peptides"]]) %>%

is.nan() %>%
table()

## .
## FALSE
## 85452

## Replace NaN with NA
assay(cp_qf[["log_peptides"]])[is.nan(assay(cp_qf[["log_peptides"]]))] <- NA

Next, using the same approach as above, we use the aggregateFeatures function to assemble the peptides into
proteins. As before, we must pass several arguments to the function. Namely, the QFeatures object i.e. cp_qf, the
data level we wish to aggregation from i.e. log_peptides, the column of the rowData defining how to aggregate
the features i.e. by "Master.Protein.Accessions" and a name for the new data level e.g."log_proteins".
We again choose to userobustSummary as our aggregationmethod andwe pass na.rm= TRUE to ignore NA values.
Users can type ?aggregateFeatures to see more information. Users should be aware that peptides are grouped by
their master protein accession and, therefore, downstream differential expression analysis will consider protein groups
rather than individual proteins.

## Aggregate peptides to protein
cp_qf <- aggregateFeatures(cp_qf,

i = "log_peptides",
fcol = "Master.Protein.Accessions",
name = "log_proteins",
fun = MsCoreUtils::robustSummary,
na.rm = TRUE)

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

## Verify
cp_qf

## An instance of class QFeatures containing 5 assays:
## [1] psms_raw: SummarizedExperiment with 48832 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 21697 rows and 6 columns
## [3] log_psms: SummarizedExperiment with 21697 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 14242 rows and 6 columns
## [5] log_proteins: SummarizedExperiment with 3289 rows and 6 columns

Following aggregation, we have a total of 3289 proteins remaining within the data.

Normalisation of quantitative data
After transforming the data, we normalise the protein-level abundances. Normalization is a process of correction whereby
quantitative data is returned to its original, or ‘normal’, state. In expression proteomics, the aim of post-acquisition data
normalization is to minimise the biases that arises due to experimental error and technological variation. Specifically, the
removal of randomvariation and batch effects will allow samples to be aligned prior to downstream analysis. Importantly,
however, users must also be aware of any normalization that has taken place within their sample preparation, as this will
ultimately influence the presence of differentially abundant proteins downstream. An extensive review on normalization
strategies, both experimental and computational, is provided in Ref. 26.

Unfortunately, there is not currently a single normalization method which performs best for all quantitative proteomics
datasets. Within the Bioconductor packages, however, exists NormalyzerDE, a tool for evaluating different
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normalisation methods.27 By passing a SummarizedExperiment object to the normalyzer function it is possible
to generate a report comparing common normalisation strategies, such as total intensity (TI), median intensity (MedI),
average intensity (AI), quantile (from the preprocessCore package),28 NormFinder (NM),29 Variance Stabilising
Normalization (VSN, from the vsn package),30 Robust Linear Regression (RLR), and LOESS (from the limma
package).31 A number of qualitative and quantitative evaluation measures are provided within the report, including total
intensity, Pooled intragroup Coefficient of Variation (PCV), Pooled intragroup Median Absolute Deviation (PMDA),
CV-intensity plots, MA-plots, Pearson and Spearman correlation.

Normalyzer accepts intensity data in a raw format, prior to log transformation. Therefore, we first generate a protein-
level SummarizedExperiment from our PSM-level data prior to transformation.

## Aggregate from PSM directly to protein
cp_qf <- aggregateFeatures(cp_qf,

i = "psms_filtered",
fcol = "Master.Protein.Accessions",
name = "proteins_direct",
fun = MsCoreUtils::robustSummary,
na.rm = TRUE)

Hence, we will use the “proteins_direct” SummarizedExperiment here and the function will do the log2 transfor-
mation for us. A second important consideration is that missing values must be denoted ‘NA’, not zero, NaN or infinite.
We can pass the SummarizedExperiment containing the protein data to the normalyzer function. With this, we
provide a name for the report and the directory in which to save the report. The normalyzer function also expects two
pieces of information, the sample name and corresponding experimental group. We previously annotated the data with
this information through the sample and condition columns of the colData, so we tell the normalyzer function to
look here.

## Generate normalyzer report
normalyzer(jobName = "normalyzer",

experimentObj = cp_qf[["proteins_direct"]],
sampleColName = "sample",
groupColName = "condition",
outputDir = ".")

The function will take a few minutes to run, particularly if there are many samples. Once complete, the report can be
accessed as a .pdf file containing plots such as those displayed in Figure 4.

Figure 4. Example of plots generatedby thenormalyzer tool andprovided in the .pdf report.Boxplots (top) and
scatterplots (bottom) are two of the evaluation measures within the normalyzer report. Samples are grouped
based on their condition to provide users with an easy way to evaluate the suitability of different normalization
methods for their data. The log2 data can be used as a reference to compare the data pre- and post-normalization.
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Since the normalyzer report did not indicate any superior normalisation method in this case, we will apply a center
median approach here. To do this, we pass the log transformed protein-level data to the normalize function in
QFeatures. We specify the method of normalisation that we wish to apply i.e. method = "center.median"
and name the new data level e.g. name = "log_norm_proteins". Of note, for users who wish to apply VSN
normalisation the raw protein data must be passed (prior to any log transformation) as the log transformation is done
internally when specify method = "vsn". All other methods require users to explicitly perform log transformation on
their data before use. More details can be found in the QFeatures documentation, please type help("normalize,
QFeatures-method").

## normalize the log transformed peptide data
cp_qf <- normalize(cp_qf,

i = "log_proteins",
name = "log_norm_proteins",
method = "center.median")

## Verify
cp_qf

## An instance of class QFeatures containing 7 assays:
## [1] psms_raw: SummarizedExperiment with 48832 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 21697 rows and 6 columns
## [3] log_psms: SummarizedExperiment with 21697 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 14242 rows and 6 columns
## [5] log_proteins: SummarizedExperiment with 3289 rows and 6 columns
## [6] proteins_direct: SummarizedExperiment with 3289 rows and 6 columns
## [7] log_norm_proteins: SummarizedExperiment with 3289 rows and 6 columns

To evaluate the effect of normalisation we plot a simple boxplot.

## Evaluate the effect of data normalization
pre_norm <- cp_qf[["log_proteins"]] %>%

assay() %>%
longFormat() %>%
mutate(Condition = ifelse(colname %in% c("S1", "S2", "S3"),

"Treated", "Control")) %>%
ggplot(aes(x = colname, y = value, fill = Condition)) +
geom_boxplot() +
labs(x = "Sample", y = "log2(abundance)", title = "Pre-normalization") +
theme_bw()

post_norm <- cp_qf[["log_norm_proteins"]] %>%
assay() %>%
longFormat() %>%
mutate(Condition = ifelse(colname %in% c("S1", "S2", "S3"),

"Treated", "Control")) %>%
ggplot(aes(x = colname, y = value, fill = Condition)) +
geom_boxplot() +
labs(x = "Sample", y = "log2(abundance)", title = "Post-normalization") +
theme_bw()

(pre_norm + theme(legend.position = "none")) +
post_norm & plot_layout(guides = "collect")
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We can now generate a density plot to help us visualise what the process of log transformation and normalisation has done
to the data. This is done using the plotDensities function from the limma package.

## visualize the process of log transformation and normalization
par(mfrow = c(1, 3))

cp_qf[["psms_filtered"]] %>%
assay() %>%
plotDensities(legend = "topright",

main = "Raw PSMs")

cp_qf[["log_psms"]] %>%
assay() %>%
plotDensities(legend = FALSE,

main = "log2(PSMs)")

cp_qf[["log_norm_proteins"]] %>%
assay() %>%
plotDensities(legend = FALSE,

main = "log2(norm proteins)")

Page 39 of 84

F1000Research 2023, 12:1402 Last updated: 18 DEC 2023



Exploration of data using QFeatures links
Creating assay links
After completing all data pre-processing, we now add explicit links between our final protein-level data and the rawPSM-
level data which we created as an untouched copy. This allows us to investigate all data corresponding to the final
proteins, including the data that has since been removed. To do this, we use the addAssayLinks function,
demonstrated below. We can check that the assay links have been generated correctly by passing our QFeatures
object to the AssayLink function along with the assay of interest (i =).

## Add assay links from log_norm_proteins to psms_raw
cp_qf <- addAssayLink(object = cp_qf,

from = "psms_raw",
to = "log_norm_proteins",
varFrom = "Master.Protein.Accessions",
varTo = "Master.Protein.Accessions")

## Verify
assayLink(cp_qf,

i = "log_norm_proteins")

## AssayLink for assay <log_norm_proteins>
## [from:psms_raw|fcol:Master.Protein.Accessions|hits:42678]

Visualising aggregation
One of the characteristic attributes of the QFeatures infrastructure is that explicit links have been maintained
throughout the aggregation process. This means that we can now access all data corresponding to a protein, its component
peptides and PSMs. One way to do this is through the use of the subsetByFeature function which will return a new
QFeatures object containing data for the desired feature across all levels. For example, if wewish to subset information
about the protein “Q01581”, that is hydroxymethylglutaryl-CoA synthase, we could use the following code:

## Subset all data linked to the protein with accession Q01581
Q01581 <- subsetByFeature(cp_qf, "Q01581")

## Verify
Q01581

## An instance of class QFeatures containing 7 assays:
## [1] psms_raw: SummarizedExperiment with 42 rows and 6 columns
## [2] psms_filtered: SummarizedExperiment with 27 rows and 6 columns
## [3] log_psms: SummarizedExperiment with 27 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 15 rows and 6 columns
## [5] log_proteins: SummarizedExperiment with 1 rows and 6 columns
## [6] proteins_direct: SummarizedExperiment with 1 rows and 6 columns
## [7] log_norm_proteins: SummarizedExperiment with 1 rows and 6 columns

We find that in this data the protein Q01581 has 15 peptides and 27 supporting its identification and quantitation.We also
see that the original data prior to processing contained 42 PSMs in support of this protein.

Further, we can visualise the process of aggregation that has led to the protein-level abundance data for Q01581,
as demonstrated below. Of note, this plot shows the protein data prior to normalisation.

## Define conditions
treament <- c("S1", "S2", "S3")
control <- c("S4", "S5", "S6")

## Plot abundance distributions across samples at PSM, peptide and protein-level
Q01581[, , c("log_psms", "log_peptides", "log_proteins")] %>%

longFormat() %>%
as_tibble() %>%
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mutate(assay_order = factor(
assay,
levels = c("log_psms", "log_peptides", "log_proteins"),
labels = c("PSMs", "Peptides", "Protein")),
condition = ifelse(colname %in% control, "control", "treatment")) %>%

ggplot(aes(x = colname, y = value, colour = assay)) +
geom_point(size = 3) +
geom_line(aes(group = rowname)) +
scale_x_discrete(limits = paste0("S", 1:6)) +
facet_wrap(~assay_order) +
labs(x = "Sample", y = "Abundance") +
ggtitle("log2 Q01581 abundance profiles") +
theme_bw()

Determining PSM and peptide support
Another benefit of the explicit links maintained within a QFeatures object is the ease at which we can determine
PSM and peptide support per protein. When applying the aggregateFeatures function a column, termed ".n", is
created within the rowData of the new SummarizedExperiment. This column indicates how many lower-level
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features were aggregated into each new higher-level feature. Hence, ".n" in the peptide-level data represents howmany
PSMs were aggregated into a peptide, whilst in the protein-level data it tells us how many peptides were grouped into a
master protein. For ease of plotting, we will use the "proteins_direct" data generated above. Since this data was
generated via direct aggregation of PSM to protein, ".n" this will tell us PSM support per protein. We plot these data as
simple histograms.

## Plot PSM support per protein - .n in the proteins_direct SE
psm_per_protein <- cp_qf[["proteins_direct"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = .n)) +
geom_histogram(binwidth = 1, boundary = 0.5) +
labs(x = "PSM support (shown up to 20)",

y = "Frequency") +
scale_x_continuous(expand = c(0, 0),

limits = c(0, 20.5),
breaks = seq(1, 20, 1)) +

scale_y_continuous(expand = c(0, 0),
limits = c(0, 1000),
breaks = seq(0, 1000, 100)) +

ggtitle("PSM support per protein") +
theme_bw()

## Plot peptide support per protein - .n in the proteins SE
peptide_per_protein <- cp_qf[["log_proteins"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = .n)) +
geom_histogram(binwidth = 1, boundary = 0.5) +
labs(x = "Peptide support (shown up to 20)",

y = "Frequency") +
scale_x_continuous(expand = c(0, 0),

limits = c(0, 20.5),
breaks = seq(1, 20, 1)) +

scale_y_continuous(expand = c(0, 0),
limits = c(0, 1100),
breaks = seq(0, 1100, 100)) +

ggtitle("Peptide support per protein") +
theme_bw()

psm_per_protein + peptide_per_protein
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At this point, users may wish to include additional quality control filtering based on PSM and/or peptide support per
protein. Given the extensive quality control filtering already applied in this workflow, we decide not to remove additional
proteins based on PSM or peptide support.

Data export
Finally, we save the protein-level data and export the QFeatures object into an .rda file so that we can re-load it later
at convenience.

## Save protein-level SE
cp_proteins <- cp_qf[["log_norm_proteins"]]

## Export the final TMT QFeatures object
save(cp_qf, file = "cp_qf.rda")

Label-free data processing workflow
Having discussed the processing of quantitative TMT-labelled data, we now move on to consider that of label-free
quantitative (LFQ) data. As described previously, the cell culture supernatant fractions of triplicate control and treated
HEK293 cells were kept label-free. As such, each sample was analysed using an independent mass spectrometry run
without pre-fractionation. Again, a two-hour gradient in an Orbitrap Lumos Tribrid mass spectrometer coupled to an
UltiMate 3000 HPLC system was applied. Given that much of the TMT pre-processing workflow also applies to label-
free data, we only discuss steps which are different to those previously described. Readers are advised to refer to the TMT
processing workflow for a more in-depth explanation of any shared steps.

Identification search using Proteome Discoverer
As was the case for TMT labelled cell pellets, raw LFQ data from supernatant samples was searched using
Proteome Discoverer 2.5. The GitHub repository associated with this manuscript can be found at https://github.com/
CambridgeCentreForProteomics/f1000_expression_proteomics which contains the identification search along with an
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additional explanation of key parameters in an appendix. To begin processing LFQ data, users should export a peptide-
level .txt file from the results of their identification search.

Data import, housekeeping and exploration
Unlike the TMT-labelled use-case data which was processed from the PSM-level, the label-free use-case data can only be
considered from the peptide-level up. This is because a retention time alignment algorithm (equivalent to match between
runs) was applied to the PSM-level data. This means that peptides can be identified in samples even without a
corresponding PSM, simply by sharing feature information across runs.

Importing data into a QFeatures object
We locate the PeptideGroups .txt file and upload this into a QFeatures data container in the same way as before.
Since the samples are already stored in the correct order, we simply identify the quantitative columns by their indices.

## Locate the PeptideGroups .txt file
sn_peptide <- "supernatant_lfq_results_peptides.txt"

## Identify columns containing quantitative data
sn_peptide %>%

read.delim() %>%
names()

## [1] "Peptide.Groups.Peptide.Group.ID"
## [2] "Checked"
## [3] "Tags"
## [4] "Confidence"
## [5] "PSM.Ambiguity"
## [6] "Sequence"
## [7] "Modifications"
## [8] "Modifications.all.possible.sites"
## [9] "Qvality.PEP"
## [10] "Qvality.q.value"
## [11] "SVM_Score"
## [12] "Number.of.Protein.Groups"
## [13] "Number.of.Proteins"
## [14] "Number.of.PSMs"
## [15] "Master.Protein.Accessions"
## [16] "Master.Protein.Descriptions"
## [17] "Protein.Accessions"
## [18] "Number.of.Missed.Cleavages"
## [19] "Theo.MHplus.in.Da"
## [20] "Sequence.Length"
## [21] "Abundance.F1.Sample"
## [22] "Abundance.F2.Sample"
## [23] "Abundance.F3.Sample"
## [24] "Abundance.F4.Sample"
## [25] "Abundance.F5.Sample"
## [26] "Abundance.F6.Sample"
## [27] "Abundances.Count.F1.Sample"
## [28] "Abundances.Count.F2.Sample"
## [29] "Abundances.Count.F3.Sample"
## [30] "Abundances.Count.F4.Sample"
## [31] "Abundances.Count.F5.Sample"
## [32] "Abundances.Count.F6.Sample"
## [33] "Quan.Info"
## [34] "Found.in.File.in.F1"
## [35] "Found.in.File.in.F2"
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## [36] "Found.in.File.in.F3"
## [37] "Found.in.File.in.F4"
## [38] "Found.in.File.in.F5"
## [39] "Found.in.File.in.F6"
## [40] "Found.in.Sample.in.S1.F1.Sample"
## [41] "Found.in.Sample.in.S2.F2.Sample"
## [42] "Found.in.Sample.in.S3.F3.Sample"
## [43] "Found.in.Sample.in.S4.F4.Sample"
## [44] "Found.in.Sample.in.S5.F5.Sample"
## [45] "Found.in.Sample.in.S6.F6.Sample"
## [46] "Found.in.Sample.Group.in.S1.F1.Sample"
## [47] "Found.in.Sample.Group.in.S2.F2.Sample"
## [48] "Found.in.Sample.Group.in.S3.F3.Sample"
## [49] "Found.in.Sample.Group.in.S4.F4.Sample"
## [50] "Found.in.Sample.Group.in.S5.F5.Sample"
## [51] "Found.in.Sample.Group.in.S6.F6.Sample"
## [52] "Confidence.by.Search.Engine.Sequest.HT"
## [53] "Charge.by.Search.Engine.Sequest.HT"
## [54] "Delta.Score.by.Search.Engine.Sequest.HT"
## [55] "Delta.Cn.by.Search.Engine.Sequest.HT"
## [56] "Rank.by.Search.Engine.Sequest.HT"
## [57] "Search.Engine.Rank.by.Search.Engine.Sequest.HT"
## [58] "Concatenated.Rank.by.Search.Engine.Sequest.HT"
## [59] "mz.in.Da.by.Search.Engine.Sequest.HT"
## [60] "Delta.M.in.ppm.by.Search.Engine.Sequest.HT"
## [61] "Delta.mz.in.Da.by.Search.Engine.Sequest.HT"
## [62] "RT.in.min.by.Search.Engine.Sequest.HT"
## [63] "Percolator.q.Value.by.Search.Engine.Sequest.HT"
## [64] "Percolator.PEP.by.Search.Engine.Sequest.HT"
## [65] "Percolator.SVMScore.by.Search.Engine.Sequest.HT"
## [66] "XCorr.by.Search.Engine.Sequest.HT"
## [67] "Top.Apex.RT.in.min"

In the code chunk below, we again use the readQFeatures function to import our data into R and create a
QFeatures object. We find the abundance data is located in columns 21 to 26 and thus pass this to ecol. After import
we annotate the colData.

## Create QFeatures object
sn_qf <- readQFeatures(table = sn_peptide,

ecol = 21:26,
sep = "\t",
name = "peptides_raw")

## Clean sample names
colnames(sn_qf[["peptides_raw"]]) <- paste0("S", 1:6)

## Annotate samples
sn_qf$sample <- paste0("S", 1:6)

sn_qf$condition <- rep(c("Treated", "Control"), each = 3)

## Verify and allocate colData to initial SummarizedExperiment
colData(sn_qf)
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## DataFrame with 6 rows and 2 columns
## sample condition
## <character> <character>
## S1 S1 Treated
## S2 S2 Treated
## S3 S3 Treated
## S4 S4 Control
## S5 S5 Control
## S6 S6 Control

colData(sn_qf[["peptides_raw"]]) <- colData(sn_qf)

Preliminary data exploration
Next, we check the names of the features within the peptide-levelrowData. These features differ from those found at the
PSM-level and users should be aware that they have reduced post-search control over the quality of PSMs included in the
peptide quantitation, andwhich method of aggregation is used to define these. ProteomeDiscoverer uses the sum of PSM
quantitative values to calculate peptide-level values. Other third-party softwares may use different methods.

## Find out what information was imported
sn_qf[["peptides_raw"]] %>%

rowData() %>%
colnames()

## [1] "Peptide.Groups.Peptide.Group.ID"
## [2] "Checked"
## [3] "Tags"
## [4] "Confidence"
## [5] "PSM.Ambiguity"
## [6] "Sequence"
## [7] "Modifications"
## [8] "Modifications.all.possible.sites"
## [9] "Qvality.PEP"
## [10] "Qvality.q.value"
## [11] "SVM_Score"
## [12] "Number.of.Protein.Groups"
## [13] "Number.of.Proteins"
## [14] "Number.of.PSMs"
## [15] "Master.Protein.Accessions"
## [16] "Master.Protein.Descriptions"
## [17] "Protein.Accessions"
## [18] "Number.of.Missed.Cleavages"
## [19] "Theo.MHplus.in.Da"
## [20] "Sequence.Length"
## [21] "Abundances.Count.F1.Sample"
## [22] "Abundances.Count.F2.Sample"
## [23] "Abundances.Count.F3.Sample"
## [24] "Abundances.Count.F4.Sample"
## [25] "Abundances.Count.F5.Sample"
## [26] "Abundances.Count.F6.Sample"
## [27] "Quan.Info"
## [28] "Found.in.File.in.F1"
## [29] "Found.in.File.in.F2"
## [30] "Found.in.File.in.F3"
## [31] "Found.in.File.in.F4"
## [32] "Found.in.File.in.F5"
## [33] "Found.in.File.in.F6"
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## [34] "Found.in.Sample.in.S1.F1.Sample"
## [35] "Found.in.Sample.in.S2.F2.Sample"
## [36] "Found.in.Sample.in.S3.F3.Sample"
## [37] "Found.in.Sample.in.S4.F4.Sample"
## [38] "Found.in.Sample.in.S5.F5.Sample"
## [39] "Found.in.Sample.in.S6.F6.Sample"
## [40] "Found.in.Sample.Group.in.S1.F1.Sample"
## [41] "Found.in.Sample.Group.in.S2.F2.Sample"
## [42] "Found.in.Sample.Group.in.S3.F3.Sample"
## [43] "Found.in.Sample.Group.in.S4.F4.Sample"
## [44] "Found.in.Sample.Group.in.S5.F5.Sample"
## [45] "Found.in.Sample.Group.in.S6.F6.Sample"
## [46] "Confidence.by.Search.Engine.Sequest.HT"
## [47] "Charge.by.Search.Engine.Sequest.HT"
## [48] "Delta.Score.by.Search.Engine.Sequest.HT"
## [49] "Delta.Cn.by.Search.Engine.Sequest.HT"
## [50] "Rank.by.Search.Engine.Sequest.HT"
## [51] "Search.Engine.Rank.by.Search.Engine.Sequest.HT"
## [52] "Concatenated.Rank.by.Search.Engine.Sequest.HT"
## [53] "mz.in.Da.by.Search.Engine.Sequest.HT"
## [54] "Delta.M.in.ppm.by.Search.Engine.Sequest.HT"
## [55] "Delta.mz.in.Da.by.Search.Engine.Sequest.HT"
## [56] "RT.in.min.by.Search.Engine.Sequest.HT"
## [57] "Percolator.q.Value.by.Search.Engine.Sequest.HT"
## [58] "Percolator.PEP.by.Search.Engine.Sequest.HT"
## [59] "Percolator.SVMScore.by.Search.Engine.Sequest.HT"
## [60] "XCorr.by.Search.Engine.Sequest.HT"
## [61] "Top.Apex.RT.in.min"

We also determine the number of PSMs, peptides and proteins represented within the initial data. Since identical peptide
sequences with different modifications are stored as separate entities, the output of dim will not tell us the number of
peptides. Instead, we need to consider only unique peptide sequence entries, as demonstrated in the code chunk below.

## Determine the number of PSMs
original_psms <- sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Number.of.PSMs) %>%
sum()

## Determine the number of peptides
original_peps <- sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Sequence) %>%
unique() %>%
length() %>%
as.numeric()

## Determine the number of proteins
original_prots <- sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()
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## View
original_psms

## [1] 144302

original_peps

## [1] 20312

original_prots

## [1] 3941

Thus, the search identified 144302 PSMs corresponding to 20312 peptides and 3941 proteins. Finally, we take a look at
some of the key parameters applied during the identification search. This is an important verification step, particularly for
those using publicly available data with limited access to parameter settings.

## Check missed cleavages
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Number.of.Missed.Cleavages) %>%
table()

## .
## 0 1 2
## 22055 1248 72

## Check precursor mass tolerance
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Delta.M.in.ppm.by.Search.Engine.Sequest.HT) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -9.9600 -0.2500 0.1500 0.6576 0.6900 9.9900

## Check fragment mass tolerance
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Delta.mz.in.Da.by.Search.Engine.Sequest.HT) %>%
summary()

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.0113400 -0.0001400 0.0000900 0.0006618 0.0004800 0.0142300
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## Check peptide confidence allocations
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
pull(Confidence) %>%
table()

## .
## High
## 23375

The preliminary data is as expected so we continue on to evaluate the quality of the raw data.

Experimental quality control checks
Quality control of the raw mass spectrometry data
To briefly assess the quality of the raw mass spectrometry data from which the search results were derived, we create
simple plots. In contrast to the previous PSM processing workflow, we do not have access to information about ion
injection times from the peptide-level file. However, we can still look at the peptide delta mass across retention time, as
well as the frequency of peptides across the retention time gradient.

## Plot scatter plot of mass accuracy
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = RT.in.min.by.Search.Engine.Sequest.HT,

y = Delta.M.in.ppm.by.Search.Engine.Sequest.HT)) +
geom_point(size = 0.5, shape = 4) +
geom_hline(yintercept = 5, linetype = "dashed", color = "red") +
geom_hline(yintercept = -5, linetype = "dashed", color = "red") +
labs(x = "RT (min)", y = "Delta precursor mass (ppm)") +
scale_x_continuous(limits = c(0, 120), breaks = seq(0, 120, 20)) +
scale_y_continuous(limits = c(-10, 10), breaks = c(-10, -5, 0, 5, 10)) +
ggtitle("Peptide retention time against delta precursor mass") +
theme_bw()
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## Plot histogram of peptide retention time
sn_qf[["peptides_raw"]] %>%

rowData() %>%
as_tibble() %>%
ggplot(aes(x = RT.in.min.by.Search.Engine.Sequest.HT)) +
geom_histogram(binwidth = 1) +
labs(x = "RT (min)", y = "Frequency") +
scale_x_continuous(breaks = seq(0, 120, 20)) +
ggtitle("Peptide frequency across retention time") +
theme_bw()

For a more in-depth discussion of these plots users should refer back to the TMT processing workflow. Since neither plot
indicates any major problems with the MS runs, we continue on to basic data cleaning.

Basic data cleaning
As discussed in detail above, there are several basic data cleaning stepswhich are non-specific and should be applied to all
quantitative datasets, regardless of the quantitation method or data level (PSM, peptide or protein). These steps are as
follows:

1. Removal of features without a master protein accession

2. Removal of features corresponding to protein groups which contain a contaminant

3. Removal of features without quantitative data

4. (Optional) Removal of features which are not unique to a protein group

5. Removal of features not allocated rank 1 during the identification search

6. Removal of features not annotated as unambiguous

In addition to these standard steps, LFQ data should be filtered to remove peptides that were not quantified based on a
monoisotopic peak. Themonoisotopic peak is that which comprises themost abundant natural isotope of each constituent
element. For bottom-up proteomics, this typically translates to the peptides containing carbon-12 and nitrogen-14.When
the different isotopes are well resolved, the monoisotopic peak usually provides the most accurate measurement.
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Before we remove any data, we first create a second copy of the originalSummarizedExperiment, as to retain a copy
of the raw data for reference. As before we use the addAssay function.

## Add second copy of data to be filtered
data_copy <- sn_qf[["peptides_raw"]]

sn_qf <- addAssay(x = sn_qf,
y = data_copy,
name = "peptides_filtered")

## Verify
sn_qf

## An instance of class QFeatures containing 2 assays:
## [1] peptides_raw: SummarizedExperiment with 23375 rows and 6 columns
## [2] peptides_filtered: SummarizedExperiment with 23375 rows and 6 columns

Here, cleaning is done is two steps. The first is the removal of contaminant proteins using the self-defined find_cont
function. Refer back to the TMT processing workflow for more details.

## Store row indices of peptides matched to a contaminant-containing protein group
cont_peptides <- find_cont(sn_qf[["peptides_filtered"]], cont_acc)

## Remove these rows from the data
if (length(cont_peptides) > 0)

sn_qf[["peptides_filtered"]] <- sn_qf[["peptides_filtered"]][-cont_peptides, ]

Second, we carry out all remaining cleaning using the filterFeatures function as before.

sn_qf <- sn_qf %>%
filterFeatures(~ !Master.Protein.Accessions == "",

i = "peptides_filtered") %>%
filterFeatures(~ !Quan.Info == "NoQuanValues",

i ="peptides_filtered") %>%
filterFeatures(~ !Quan.Info == "NoneMonoisotopic",

i = "peptides_filtered") %>%
filterFeatures(~ Number.of.Protein.Groups == 1,

i = "peptides_filtered") %>%
filterFeatures(~ Rank.by.Search.Engine.Sequest.HT == 1,

i = "peptides_filtered") %>%
filterFeatures(~ PSM.Ambiguity == "Unambiguous",

i = "peptides_filtered")

As before, we check to see whether additional annotations remain within the “Quan.Info” column.

## Check for remaining annotations
sn_qf[["peptides_filtered"]] %>%

rowData %>%
as_tibble() %>%
pull(Quan.Info) %>%
table()

## .
##
## 17999
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Assessing the impact of non-specific data cleaning
As in the previous example, we assess the impact that cleaning has had on the data. Specifically, we determine the number
and proportion of PSMs, peptides and proteins lost. Again, when we refer to the number of peptides we only consider
unique peptide sequences, not those that differ in their modifications.

## Determine number of PSMs, peptides and proteins remaining
psms_remaining <- sn_qf[["peptides_filtered"]] %>%

rowData() %>%
as_tibble() %>%
pull(Number.of.PSMs) %>%
sum()

peps_remaining <- sn_qf[["peptides_filtered"]] %>%
rowData() %>%
as_tibble() %>%
pull(Sequence) %>%
unique() %>%
length() %>%
as.numeric()

prots_remaining <- sn_qf[["peptides_filtered"]] %>%
rowData() %>%
as_tibble() %>%
pull(Master.Protein.Accessions) %>%
unique() %>%
length() %>%
as.numeric()

## Determine the number of proportion of PSMs, peptides and proteins removed
psms_removed <- original_psms - psms_remaining
psms_removed_prop <- ((psms_removed /original_psms) * 100) %>%

round(digits = 2)

peps_removed <- original_peps - peps_remaining
peps_removed_prop <- ((peps_removed / original_peps) * 100) %>%

round(digits = 2)

prots_removed <- original_prots - prots_remaining
prots_removed_prop <- ((prots_removed / original_prots) * 100) %>%

round(digits = 2)

## Present in a table
data.frame("Feature" = c("PSMs",

"Peptides",
"Proteins"),

"Number lost" = c(psms_removed,
peps_removed,
prots_removed),

"Percentage lost" = c(psms_removed_prop,
peps_removed_prop,
prots_removed_prop),

"Number remaining" = c(psms_remaining,
peps_remaining,
prots_remaining))
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## Feature Number.lost Percentage.lost Number.remaining
## 1 PSMs 28140 19.50 116162
## 2 Peptides 3767 18.55 16545
## 3 Proteins 690 17.51 3251

Peptide quality control filtering
When extracting data from the peptide-level .txt file rather than aggregating up from a PSM file, additional parameters
exist within the peptide rowData. Such parameters include Quality PEP, Quality q-value, and SVM score, as well as
similar scoring parameters provided by the search engine. Although we will not complete additional filtering based on
these parameters in this workflow, users may wish to explore this option.

Managing missing data
Having cleaned the peptide-level data we now move onto the management of missing data. This is of particular
importance for LFQ workflows where the missing value challenge is amplified by intrinsic variability between
independent MS runs. As before, the management of missing data can be divided into three steps: 1) exploring the
presence and distribution of missing values, (2) filtering out missing values, and (3) optional imputation.

Exploring the presence of missing values
The aim of the first step is to determine howmanymissing values are present within the data, and how they are distributed
between samples and/or conditions.

## Are there any NA values within the peptide data?
sn_qf[["peptides_filtered"]] %>%

assay() %>%
anyNA()

## [1] TRUE

## How many NA values are there within the peptide data?
sn_qf[["peptides_filtered"]] %>%

nNA()

## $nNA
## DataFrame with 1 row and 2 columns
## nNA pNA
## <integer> <numeric>
## 1 15863 14.6888
##
## $nNArows
## DataFrame with 17999 rows and 3 columns
## name nNA pNA
## <character> <integer> <numeric>
## 1 1 4 66.6667
## 2 2 1 16.6667
## 3 3 0 0.0000
## 4 4 1 16.6667
## 5 5 0 0.0000
## ... ... ... ...
## 17995 23371 0 0
## 17996 23372 0 0
## 17997 23373 0 0
## 17998 23374 0 0
## 17999 23375 0 0
##
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## $nNAcols
## DataFrame with 6 rows and 3 columns
## name nNA pNA
## <character> <integer> <numeric>
## 1 S1 3699 20.5511
## 2 S2 1945 10.8062
## 3 S3 2048 11.3784
## 4 S4 3674 20.4122
## 5 S5 2673 14.8508
## 6 S6 1824 10.1339

As expected, the LFQ data contains a higher proportion of missing values as compared to the TMT-labelled data. There
are 15863 missing (NA) values within the data, which corresponds to 15%.We check for sample- and condition-specific
biases in the distribution of these NA values.

## Plot histogram to visualize sample-specific distribution of NAs
nNA(sn_qf[["peptides_filtered"]])$nNAcols %>%

as_tibble() %>%
mutate(Condition = rep(c("Treated", "Control"), each = 3)) %>%
ggplot(aes(x = name, y = pNA, group = Condition, fill = Condition)) +
geom_bar(stat = "identity") +
geom_hline(yintercept = 14.7, linetype = "dashed", color = "red") +
labs(x = "Sample", y = "Missing values (%)") +
theme_bw()

Whilst S1 and S4 have a slightly higher proportion of missing values, all of the samples are within an acceptable range to
continue. Again, there is no evidence of a condition-specific bias in the data.

Filtering out missing values
We next filter out features, here peptides, which comprise 20% or more missing values.
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## Check how many peptides we will remove
which(nNA(sn_qf[["peptides_filtered"]])$nNArows$pNA >= 20) %>%

length()

## [1] 4364

## Remove peptides with 2 or more NA values
sn_qf <- sn_qf %>%

filterNA(pNA = 0.2,
i = "peptides_filtered")

Imputation (optional)
Finally, we check how many missing values remain in the data before making a decision as to whether imputation is
required.

nNA(sn_qf[["peptides_filtered"]])$nNA

## DataFrame with 1 row and 2 columns
## nNA pNA
## <integer> <numeric>
## 1 2452 2.99719

There are 2452missing values remaining. The presence of proteins with single or low peptide support means that some of
these NA values will likely be propagated upward during aggregation. Whilst NA values were traditionally problematic
during the application of downstream statistical methods, there are now a number of algorithms that allow statistics to be
completed on data containing missing values. For example, the MSqRob224,25,32 package facilitates statistical differ-
ential expression analysis on datasets without the need for imputation and functions within the QFeatures infrastruc-
ture. Nevertheless, for the purpose of demonstration, we here choose to impute the raw intensity data.

As eluded to above, the most appropriate method to determine such probable values is dependent upon why the value is
missing, that is whether it is MCAR or MNAR. Although the optimal imputation method is specific to each dataset, left-
censored methods (e.g. minimal value approaches, limit of detection) have proven favorable for data with a high
proportion of MNAR values whilst hot deck methods (e.g. k-nearest neighbours, random forest, maximum likelihood
methods) are more appropriate when the majority of missing data is MCAR [e.g. Refs. 23, 33]. Within the QFeatures
infrastructure imputation is carried out by passing the data to the impute function, please see ?impute for more
information. To see which imputation methods are supported by this function we use the following code:

## Find out available imputation methods
MsCoreUtils::imputeMethods()

## [1] "bpca" "knn" "QRILC" "MLE" "MLE2" "MinDet" "MinProb"
## [8] "min" "zero" "mixed" "nbavg" "with" "RF" "none"

Unfortunately, it is very challenging to determine the reason(s) behind missing data, and in most cases experiments
contain a mixture of MCAR and MNAR. For LFQ data where little is know about the cause of missing values it is
advisable to usemethods optimised forMCAR. Here wewill use the baseline k-nearest neighbours (k-NN) imputation on
the raw peptide intensities. Of note, users whowish to utilise an alternative imputationmethod should checkwhether their
selected method has a requirement for normality. If the method requires data to display a normal distribution, users must
log2 transform the data prior to imputation.

## Impute missing values using kNN
sn_qf <- impute(sn_qf,

method = "knn",
i = "peptides_filtered",
name = "peptides_imputed")
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Following imputationwe check to ensure that the distribution of the data has not dramatically changed. To do sowe create
a density plot of the data pre- and post-imputation.

## visualise the impact of imputation
par(mfrow = c(1, 2))

sn_qf[["peptides_filtered"]] %>%
assay() %>%
log2() %>%
plotDensities(main = "Pre-imputation",

legend = FALSE)

sn_qf[["peptides_imputed"]] %>%
assay() %>%
log2() %>%
plotDensities(main = "Post-imputation",

legend = "topright")

From this plot the change in the data appears to be minimal. We can further validate this by comparing the summary
statistics of the data pre- and post-imputation.

## Determine the impact of imputation on summary statistics
pre_imputation_summary <- sn_qf[["peptides_filtered"]] %>%

assay() %>%
longFormat() %>%
group_by(colname) %>%
summarise(sum_intensity = sum(value, na.rm = TRUE),

max_intensity = max(value, na.rm = TRUE),
median_intensity = median(value, na.rm = TRUE))

post_imputation_summary <- sn_qf[["peptides_imputed"]] %>%
assay() %>%
longFormat() %>%
group_by(colname) %>%
summarise(sum_intensity = sum(value, na.rm = TRUE),

max_intensity = max(value, na.rm = TRUE),
median_intensity = median(value, na.rm = TRUE))

print(pre_imputation_summary)
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## # A tibble: 6 x 4
## colname sum_intensity max_intensity median_intensity
## <chr> <dbl> <dbl> <dbl>
## 1 S1 98919496611. 1477162278. 1948794.
## 2 S2 155722262777. 1678988256. 3553168.
## 3 S3 145509803642. 1804842981. 3251578.
## 4 S4 94892286529. 1087946291. 1873948.
## 5 S5 121590387110. 1307181986 2503109
## 6 S6 143538084562. 1608003894. 3282077.

print(post_imputation_summary)

## # A tibble: 6 x 4
## colname sum_intensity max_intensity median_intensity
## <chr> <dbl> <dbl> <dbl>
## 1 S1 99811359317. 1477162278. 1812200.
## 2 S2 156124619343. 1678988256. 3478920.
## 3 S3 145754574641. 1804842981. 3201591
## 4 S4 96201734159. 1087946291. 1720642.
## 5 S5 122113590867. 1307181986 2440628.
## 6 S6 143994721088. 1608003894. 3199278.

Comparison of the two tables reveals minimal change within the data. However, we find that S1 and S4 display greater
differences between pre- and post-imputation statistics because of the higher number of missing values which required
imputation.

Logarithmic transformation of quantitative data
In the following code chunk we log2 transform the peptide-level data to generate a near-normal distribution within the
quantitative data. This is necessary prior to the use of robustSummary aggregation.

## log2 transform the quantitative data
sn_qf <- logTransform(object = sn_qf,

base = 2,
i = "peptides_imputed",
name = "log_peptides")

## Verify
sn_qf

## An instance of class QFeatures containing 4 assays:
## [1] peptides_raw: SummarizedExperiment with 23375 rows and 6 columns
## [2] peptides_filtered: SummarizedExperiment with 13635 rows and 6 columns
## [3] peptides_imputed: SummarizedExperiment with 13635 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 13635 rows and 6 columns

Aggregation of peptide to protein
Now that we are happy with the peptide-level data, we aggregate upward to proteins using the aggregateFeatures
function.

## Aggregate peptide to protein
sn_qf <- aggregateFeatures(sn_qf,

i = "log_peptides",
fcol = "Master.Protein.Accessions",
name = "log_proteins",
fun = MsCoreUtils::robustSummary,
na.rm = TRUE)
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## Your row data contain missing values. Please read the relevant
## section(s) in the aggregateFeatures manual page regarding the effects
## of missing values on data aggregation.

## Verify
sn_qf

## An instance of class QFeatures containing 5 assays:
## [1] peptides_raw: SummarizedExperiment with 23375 rows and 6 columns
## [2] peptides_filtered: SummarizedExperiment with 13635 rows and 6 columns
## [3] peptides_imputed: SummarizedExperiment with 13635 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 13635 rows and 6 columns
## [5] log_proteins: SummarizedExperiment with 2837 rows and 6 columns

Normalisation of quantitative data
Finally, we complete the data processing by normalising quantitation between samples. This is done using the "center.
median" method via the normalize function.

## normalize protein-level quantitation data
sn_qf <- normalize(sn_qf,

i = "log_proteins",
name = "log_norm_proteins",
method = "center.median")

## Verify
sn_qf

## An instance of class QFeatures containing 6 assays:
## [1] peptides_raw: SummarizedExperiment with 23375 rows and 6 columns
## [2] peptides_filtered: SummarizedExperiment with 13635 rows and 6 columns
## [3] peptides_imputed: SummarizedExperiment with 13635 rows and 6 columns
## [4] log_peptides: SummarizedExperiment with 13635 rows and 6 columns
## [5] log_proteins: SummarizedExperiment with 2837 rows and 6 columns
## [6] log_norm_proteins: SummarizedExperiment with 2837 rows and 6 columns

The final dataset is comprised of 2837 proteins. We will save the protein-level SummarizedExperiment file as well
as exporting the final QFeatures object.

## Save protein-level SE
sn_proteins <- sn_qf[["log_norm_proteins"]]

## Export TMT final QFeatures object
save(sn_qf, file = "sn_qf.rda")

Exploration of protein data
Having described the processing steps for quantitative proteomics data, we next demonstrate how to explore the protein-
level data prior to statistical analysis. For this wewill utilise the TMT-labelled cell pellet dataset since it contains a greater
number of proteins.

Correlation plots
Wewill first generate correlation plots between pairs of samples. To do this we use the corrplot package to calculate
and plot the Pearson’s correlation coefficient between each sample pair. The cor function within the corrplot
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packagewill create a correlationmatrix but requires adata.frame,matrix or avector of class numeric as input.
To convert the QFeatures assay data into a data.frame we use the as.data.frame function.

## Convert TMT CP protein assay into a dataframe
prot_df <- cp_qf[["log_norm_proteins"]] %>%

assay() %>%
as.data.frame()

## Calculate a correlation matrix between samples
corr_matrix <- cor(prot_df,

method = "pearson",
use = "pairwise.complete.obs")

print(corr_matrix)

## S1 S2 S3 S4 S5 S6
## S1 1.0000000 0.9863382 0.9927432 0.9447089 0.9627190 0.9628944
## S2 0.9863382 1.0000000 0.9886960 0.9206049 0.9535162 0.9501522
## S3 0.9927432 0.9886960 1.0000000 0.9344640 0.9551061 0.9548680
## S4 0.9447089 0.9206049 0.9344640 1.0000000 0.9822722 0.9867422
## S5 0.9627190 0.9535162 0.9551061 0.9822722 1.0000000 0.9928376
## S6 0.9628944 0.9501522 0.9548680 0.9867422 0.9928376 1.0000000

Now we can visualise the correlation data using pairwise scatter plots and a correlation heat map.

## Plot correlation between two samples - S1 and S2 used as example
prot_df %>%

ggplot(aes(x = `S1`, y = `S2`)) +
geom_point(colour = "grey45", size = 0.5) +
geom_abline(intercept = 0, slope = 1) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
axis.title.x = element_text(size = 15, vjust = -2),
axis.title.y = element_text(size = 15, vjust = 3),
axis.text.x = element_text(size = 12, vjust = -1),
axis.text.y = element_text(size = 12),
axis.line = element_line(linewidth = 0.5, colour = "black"),
plot.margin = margin(10, 10, 10, 10)) +

xlim(-7.5, 5) +
ylim(-7.5, 5) +
labs(x = "log2(abundance S1)", y = "log2(abundance S2)") +
coord_fixed(ratio = 1)
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## Create colour palette for continuum
col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF",

"#77AADD", "#4477AA"))

## Plot all pairwise correlations
prot_df %>%

cor(method = "pearson",
use = "pairwise.complete.obs") %>%

corrplot(method = "color",
col = col(200),
type = "upper",
addCoef.col = "white",
diag = FALSE,
tl.col = "black",
tl.srt = 45,
outline = TRUE)
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From these plots we can see that all replicate pairs have a Pearson’s correlation coefficient >0.98 whilst the correlation
between pairs of control and treated samples is somewhat lower. Users may interpret this information as an early
indication that some proteins may be differentially abundant between the two groups.

Of note, whilst correlation is widely applied as a measure of reproducibility, users are reminded that correlation
coefficients alone are not informative of reproducibility.34,35 This is especially true for expression proteomics data in
which high correlation values are likely due to the majority of proteins remaining at similar levels regardless of cellular
perturbation. Users are directed to Ref. 36 for additional information regarding how to determine the calculation of
experimental reproducibility.

Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality reduction method which aims to simplify complex datasets and
facilitate the visualisation of multi-dimensional data. Here we use the prcomp function from the stats package to
perform the PCA. Since PCA does not accept missing values and we did not impute the TMT data, the filterNA
function can be used to remove any missing values that may be present in the protein-level data. We then extract and
transpose the assay data before passing it to the prcomp function to carry out PCA.

## Carry out principal component analysis
prot_pca <- cp_qf[["log_norm_proteins"]] %>%

filterNA() %>%
assay() %>%
t() %>%
prcomp(scale = TRUE, center = TRUE)

We can get an idea of the outcome of the PCA by running the summary function on the results of the PCA.

## Get a summary of the PCA
summary(prot_pca)

## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 42.4845 26.7522 18.1650 15.15893 14.44395 5.474e-14
## Proportion of Variance 0.5488 0.2176 0.1003 0.06987 0.06343 0.000e+00
## Cumulative Proportion 0.5488 0.7664 0.8667 0.93657 1.00000 1.000e+00

Finally, we create a PCA plot. For additional PCA exploration and visualization tools users are directed to the
factoextra package.

## Generate dataframe of each sample's PCA results
pca_df <- as.data.frame(prot_pca$x)

## Annotate samples with their corresponding condition
pca_df$condition <- cp_qf[["psms_raw"]]$condition

## Generate a PCA plot using PC1 and PC2
pca_df %>%

ggplot(aes(x = PC1, y = PC2, colour = condition)) +
geom_point(size = 4) +
scale_color_brewer(palette = "Set2") +
labs(colour = "Condition") +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_vline(xintercept = 0, linetype = "dashed") +
guides(colour = guide_legend(override.aes = list(size = 3))) +
labs(x = "PC1 (42.5 %)", y = "PC2 (26.8 %)") +
ggtitle("Protein-level PCA plot") +
xlim(-100, 100) +
ylim(-100, 100) +
coord_fixed(ratio = 1) +
theme_bw()
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Exploring potential batch effects
Before carrying out differential expression analysis, it is first necessary to explore the presence of batch effects within the
data. Batch effects are derived from non-biological factors which impact the experimental data. These include reagents,
instrumentation, personnel and laboratory conditions. In most cases the increased variation caused by batch effects will
lead to reduced downstream statistical power. On the other hand, if correlated with the experimental sub- groups, batch
effects can also lead to confounded results and the incorrect biological interpretation of differential expression.37

Given that the use-case data was derived from a small experiment with only six samples and a single TMTplex,
there are minimal batch effects to explore here. For users analysing larger experiments completed over long period of
time, across several laboratories/individuals, or usingmultiple TMTplex reagents, it is advisable to annotate the PCA plot
with all potential batch factors. If data is found to cluster based on any of these factors, batch effects should be
incorporated into downstream analyses. For example, users can apply the removeBatchEffect function from the
limma package.

Discovery and biological interpretation of differentially abundant proteins
The last section of thisworkflow demonstrates how to gain biological insights from the resulting list of proteins. Againwe
will utilise the TMT-labelled cell pellet data, although the process would be exactly the same for the LFQ supernatant
protein list. Users are reminded that although referred to as differential ‘expression’ analysis, abundance is determined by
both protein synthesis and degradation.

Extracting and organising protein-level data
We first extract the protein-levelSummarizedExperiment from the cell pellet TMTQFeatures object and specify
the study factors. Here we are interested in discovering differences between conditions, control and treated. As well as
assigning these conditions to each sample, we can define the control group as the reference level such that differential
abundance is reported relative to the control. This means that when we get the results of the statistical analysis,
‘upregulated’ will refer to increased abundance in treated cells relative to control controls.

## Extract protein-level data and associated colData
cp_proteins <- cp_qf[["log_norm_proteins"]]
colData(cp_proteins) <- colData(cp_qf[["log_norm_proteins"]])

## Create factor of interest
cp_proteins$condition <- factor(cp_proteins$condition)

Page 62 of 84

F1000Research 2023, 12:1402 Last updated: 18 DEC 2023

https://rdrr.io/bioc/limma/man/removeBatchEffect.html


## Check which level of the factor is the reference level and correct
cp_proteins$condition

## [1] Treated Treated Treated Control Control Control
## Levels: Control Treated

cp_proteins$condition <- relevel(cp_proteins$condition, ref = "Control")

Differential expression analysis using limma
Bioconductor contains several packages dedicated to the statistical analysis of proteomics data. For example, MSstats
and MSstatsTMT can be used to determine differential protein expression within both DDA and DIA datasets for LFQ
and TMT, respectively.38,39 Of note, MSstatsTMT includes additional functionality for dealing with larger, multi-
plexed TMT experiments. For LFQ experiments, proDA, prolfqua and MSqRob2 can be utilised, among others.32,40

Here, we will use the limma package.41 limma is widely used for the analysis of large omics datasets and has several
models that allow differential abundance to be assessed in multifactorial experiments. This is useful because it allows
multiple factors, including TMTplex, to be integrated into the model itself, thus minimising the effects of confounding
factors. In this example we will apply limma’s empirical Bayes moderated t-test, a method that is appropriate for small
sample sizes.31

We first use the model.matrix function to create a matrix in which each of the samples are annotated based on the
factors we wish to model, here the condition group. This ultimately defines the ‘design’ of the model, that is how the
samples are distributed between the groups of interest. We then fit a linear model to the abundance data of each protein by
passing the data andmodel designmatrix to the lmFit function. Finally, we update the estimated standard error for each
model coefficient using the eBayes function. This function borrows information across features, here proteins, to shift the
per-protein variance estimates towards an expected value based on the variance estimates of other proteins with similar
mean intensity. This empirical Bayes technique has been shown to reduce the number of false positives for proteins with
small variances as well as increase the power of detection for differentially abundant proteins with larger variances.42

Further, we use the trend = TRUE argument when passing the eBayes function so that an intensity-dependent trend
can be fitted to the prior variances. For more information about the limma trend method users are directed to Ref. 43.

## Design a matrix containing all of the factors we wish to model the effects of
model_design <- model.matrix(~ cp_proteins$condition)

## Verify
print(model_design)

## (Intercept) cp_proteins$conditionTreated
## 1 1 1
## 2 1 1
## 3 1 1
## 4 1 0
## 5 1 0
## 6 1 0
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$‘cp_proteins$condition‘
## [1] "contr.treatment"

## Create a linear model using this design
fitted_lm <- cp_proteins %>%

assay() %>%
lmFit(design = model_design)
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## Update the model based on Limma eBayes algorithm
fitted_lm <- eBayes(fit = fitted_lm,

trend = TRUE)

## Save results of the test
limma_results <- topTable(fit = fitted_lm,

coef = "cp_proteins$conditionTreated",
adjust.method = "BH",
number = Inf) %>%

rownames_to_column("Protein") %>%
as_tibble() %>%
mutate(TP = grepl("ups", Protein))

Having applied themodel to the data, we need to verify that thismodelwas appropriate and that the statistical assumptions
were met. To do this we first generate an SA plot using the plotSA function within limma. An SA plot shows the log2
residual standard deviation (sigma) against log average abundance and is a simple way to visualise the trend that has been
fitted to the data.

## Plot residual SD against average log abundance
plotSA(fitted_lm,

xlab = "Average log2(abundance)",
ylab = "log2(sigma)",
cex = 0.5)

The residual standard deviation is a measure of model accuracy and is most easily conceptualised as a measurement of
how far from the model prediction each data point lies. The smaller the residual standard deviation, the closer the fit
between the model and observed data.

Next we will plot a p-value histogram. Importantly, this histogram shows the distribution of p-values prior to any
multiple hypothesis test correction or FDR control. This means plotting the P.value variable, not the adj.P.Val.

## Plot histogram of raw p-values
limma_results %>%

ggplot(aes(x = P.Value)) +
geom_histogram(binwidth = 0.025) +
labs(x = "P-value", y = "Frequency") +
ggtitle("P-value distribution following Limma eBayes trend model") +
theme_bw()
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The figure displayed shows an anti-conservative p-value distribution. The flat distribution across the base of the graph
represents the non-significant p-values spread uniformly between 0 and 1, whilst the peak close to 0 contains significant
p-values, along with some false positives. For a more thorough explanation of interpreting p-value distributions,
including why your data may not produce an anti-conservative distribution if your statistical model is inappropriate,
please see Ref. 44. Now, having applied the statistical model and verified it’s suitability, we take an initial look at the
outputs.

## Look at limma results table
head(limma_results)

## # A tibble: 6x8
## Protein logFC AveExpr t P.Value adj.P.Val B TP
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 Q9C0G0 2.97 -0.814 33.7 1.81e-10 0.000000596 14.1 FALSE
## 2 Q01581 1.50 0.588 28.4 7.87e-10 0.00000129 13.0 FALSE
## 3 P15104 1.32 1.36 23.7 3.69e- 9 0.00000404 11.7 FALSE
## 4 Q9UK41 1.46 -1.49 22.0 7.05e- 9 0.00000553 11.1 FALSE
## 5 P37268 1.32 -0.678 21.1 9.80e- 9 0.00000553 10.8 FALSE
## 6 P04183 1.29 0.939 21.1 1.01e- 8 0.00000553 10.8 FALSE

The results table contains several important pieces of information. Each master protein is represented by its accession
number and has an associated log2 fold change, that is the log2 difference inmean abundance between conditions, as well
as a log2 mean expression across all six samples, termed AveExpr. Since we carried out an empirical Bayes moderated
t-test, each protein also has a moderated t-statistic and associated p-value. The moderated t-statistic can be interpreted in
the same way as a standard t-statistic. Each protein also has an adjusted p-value which accounts for multiple hypothesis
testing to control the overall FDR. The default method for multiple hypothesis corrections within the topTable
function that we applied is the Benjamini and Hochberg (BH) adjustment,45 although we could have specified an
alternative. Finally, the B-statistic represents the log-odds that a protein is differentially abundant between the two
conditions, and the data is presented in descending order with those with the highest log-odds of differential abundance at
the top.

We can add annotations to this results table based on the user-defined significance thresholds. In the literature, for
stringent analyses an FDR-adjusted p-value threshold of 0.01 is most frequently used, or 0.05 for exploratory analyses.
Ultimately these thresholds are arbitrary and set by the user. The addition of a log-fold change (logFC) threshold is at the
users discretion and can be useful to determine significant results of biological relevance. When using a TMT labelling
strategy the co-isolation interference can lead to substantial and uneven ratio compression, thus it is not recommended to
apply a fold change threshold here.
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## Add direction of log fold change relative to control
limma_results$direction <- ifelse(limma_results$logFC > 0,

"up", "down") %>%
as.factor()

## Add significance thresholds
limma_results$significance <- ifelse(limma_results$adj.P.Val < 0.01,

"sig", "not.sig") %>%
as.factor()

## Verify
str(limma_results)

## tibble [3,289 x 10] (S3: tbl_df/tbl/data.frame)
## $ Protein : chr [1:3289] "Q9C0G0" "Q01581" "P15104" "Q9UK41" …

## $ logFC : num [1:3289] 2.97 1.5 1.32 1.46 1.32 …

## $ AveExpr : num [1:3289] -0.814 0.588 1.359 -1.489 -0.678 …

## $ t : num [1:3289] 33.7 28.4 23.7 22 21.1 …

## $ P.Value : num [1:3289] 1.81e-10 7.87e-10 3.69e-09 7.05e-09 9.80e-09 …

## $ adj.P.Val : num [1:3289] 5.96e-07 1.29e-06 4.04e-06 5.53e-06 5.53e-06 …

## $ B : num [1:3289] 14.1 13 11.7 11.1 10.8 …

## $ TP : logi [1:3289] FALSE FALSE FALSE FALSE FALSE FALSE …

## $ direction : Factor w/ 2 levels "down","up": 2 2 2 2 2 2 2 1 1 2 …

## $ significance : Factor w/ 2 levels "not.sig","sig": 2 2 2 2 2 2 2 2 2 2 …

In the next code chunk, we use the decideTests function to determine how many proteins are significantly up- and
down- regulated in the treated compared to control HEK293 cells.We tell this function to classify the significance of each
t-statistic based on aBH-adjusted p-value of 0.01. If we had not usedTMT labels andwished to include a logFC threshold,
we could have included lfc = as an argument. The function will then output a numerical matrix containing either -1,
0, or 1 for each protein in each condition, where a value of -1 indicates significant downregulation, 0 not significant and
1 significant upregulation. To simplify interpretation, we print a summary of this matrix.

## Get a summary of statistically significant results
fitted_lm %>%

decideTests(adjust.method = "BH",
p.value = 0.01) %>%

summary()

## (Intercept) cp_proteins$conditionTreated
## Down 1448 395
## NotSig 414 2569
## Up 1427 325

From this table we can see that 395 proteins were downregulated in treated HEK293 cells compared to the control group
whilst 325were upregulated. Given that no logFC threshold was applied some of the significant differences in abundance
may be small. Further, these results mean little without any information about which proteins these were and what roles
they play within the cell. We subset the significant proteins so that we can investigate them further.

## Subset proteins that show significantly different abundance
sig_proteins <- subset(limma_results,

adj.P.Val <= 0.01)

length(sig_proteins$Protein)

## [1] 720
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Visualising differentially abundant proteins
Before looking deeper into which proteins have differential abundance, we first create some simple plots to visualise the
results. Volcano plots andMAplots are two of the common visualisations used in this instance.When plotting the former,
users are advised to plot raw p-values rather than their derivative BH-adjusted p-values. Point colours can be used to
indicate significance based on BH-adjusted p-values, as is shown in the code chunk below.

## Generate a volcano plot
limma_results %>%

ggplot(aes(x = logFC, y = -log10(P.Value))) +
geom_point(aes(colour = significance:direction), size = 0.5) +
scale_color_manual(
values = c("black", "black", "deepskyblue", "red"), name = "",
labels = c("Downregulated insignificant",

"Upregulated insignificant",
"Downregulated significant",
"Upregulated significant")) +

theme(axis.title.x = element_text(size = 15, vjust = -2),
axis.title.y = element_text(size = 15, vjust = 2),
axis.text.x = element_text(size = 12, vjust = -1),
axis.text.y = element_text(size = 12),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
axis.line = element_line(linewidth = 0.5, colour = "black"),
plot.margin = margin(10, 10, 10, 10),
legend.position = c(0.25, 0.9)) +

labs(x = "log2(FC)", y = "-log10(p-value)") +
xlim(-3.1, 3.1)
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## Generate MA plot
limma_results %>%

ggplot(aes(x = AveExpr, y = logFC)) +
geom_point(aes(colour = significance:direction), size = 0.5) +
scale_color_manual(
values = c("black", "black", "deepskyblue", "red"), name = "",
labels = c("Downregulated insignificant",

"Upregulated insignificant",
"Downregulated significant",
"Upregulated significant")) +

theme(axis.title.x = element_text(size = 15, vjust = -2),
axis.title.y = element_text(size = 15, vjust = 2),
axis.text.x = element_text(size = 12, vjust = -1),
axis.text.y = element_text(size = 12),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
axis.line = element_line(linewidth = 0.5, colour = "black"),
plot.margin = margin(10, 10, 10, 10),

legend.position = c(0.25, 0.9)) +
xlab("log2(mean abundance)") +
ylab("log2(FC)") +
xlim(-5, 3.5)

Gene Ontology enrichment analysis
The final step in the processing workflow is to apply Gene Ontology (GO) enrichment analyses to gain a biological
understanding of the proteins which were either up or downregulated in HEK293 cells upon treatment. GO terms provide
descriptions for genes and their corresponding proteins in the form of Molecular Functions (MF), Biological Processes
(BP) andCellular Components (CC). By carrying out GO enrichment analysis we can determinewhether the frequency of
any of these terms is higher than expected in the proteins of interest compared to all of the proteins which were detected.
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Such results can indicate whether proteins that were increased or decreased in abundance in treated HEK293 cells
represent particular cellular locations, biological pathways or cellular functions.

Although GO enrichment analysis can be carried out online using websites such as GOrilla46 or PantherDB,47,48 we
advise against this due to a lack of traceability and reproducibility. Instead, readers are advised to make use of GO
enrichment packages within the Bioconductor infrastructure. Many such packages exist, including topGO,49

GOfuncR,50 andclusterProfiler.51 Here wewill useenrichGO function in theclusterProfiler package.

First, we subset the accessions of proteins that we consider to be significantly up or downregulated. These will be our
proteins of interest.

## Subset significantly upregulated and downregulated proteins
sig_up <- limma_results %>%

filter(direction == "up") %>%
filter(significance == "sig") %>%
pull(Protein)

sig_down <- limma_results %>%
filter(direction == "down") %>%
filter(significance == "sig") %>%
pull(Protein)

Next, we input the UniProt IDs of up and downregulated proteins into the GO enrichment analyses, as demonstrated
below. Importantly, we provide the protein list of interest as the foreground and a list of all proteins identified within the
study as the background, or ‘universe’. The keyType argument is used to tell the function that our protein accessions are in
UniProt format. This allows mapping from UniProt ID back to a database containing the entire human genome (org.
Hs.eg.db). We also inform the function which GO categories we wish to consider, here “ALL”, meaning BP, MF
and CC.

As well as the information outlined above, there is the opportunity for users to specify various thresholds for statistical
significance. These include thresholds on original and adjusted p-values (using the pvalueCutoff argument) as well
as q-values (via the qvalueCutoff argument). Although many papers often use ‘q- value’ to mean ‘BH-adjusted
p-value’, the two are not always the same and users should be explicit about the statistical thresholds that they have
applied. For exploratory purposes we will use the standard BH method for FDR control and set p-value, BH-adjusted
p-value, and q-value thresholds of 0.05.

## Search for enriched GO terms within upregulated proteins
ego_up <- enrichGO(gene = sig_up,

universe = limma_results$Protein,
OrgDb = org.Hs.eg.db,
keyType = "UNIPROT",
ont = "ALL",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = TRUE)

## Check results
ego_up

## #
## # over-representation test
## #
## #…@organism Homo sapiens
## #…@ontology GOALL
## #…@keytype UNIPROT
## #…@gene chr [1:325] "Q9C0G0" "Q01581" "P15104" "Q9UK41" "P37268" "P04183"

"Q9UHI8" …

## #…pvalues adjusted by ’BH’ with cutoff <0.05
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## #…2 enriched terms found
## ’data.frame’: 2 obs. of 10 variables:
## $ ONTOLOGY : chr "CC" "CC"
## $ ID : chr "GO:0005758" "GO:0031970"
## $ Description : chr "mitochondrial intermembrane space" "organelle envelope

lumen"
## $ GeneRatio : chr "15/319" "15/319"
## $ BgRatio : chr "45/3228" "49/3228"
## $ pvalue : num 1.32e-05 4.18e-05
## $ p.adjust : num 0.00507 0.008
## $ qvalue : num 0.00506 0.00798
## $ genelD : chr "CHCHD2/TIMM9/AK2/TIMM8B/COA4/COA6/MIX23/TIMM8A/DIABLO/

TIMM13/TIMM10/TRIAP1/CYCS/COX17/CAT"
## $ Count : int 15 15
## #…Citation
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu,

X Bo, and G Yu.
## clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
## The Innovation. 2021, 2(3):100141

Wecan see from the results that there are 2 significantly enriched terms associatedwith the upregulated proteins. Next, we
take a look at the downregulated proteins.

## Search for enriched GO terms within downregulated proteins
ego_down <- enrichGO(gene = sig_down,

universe = limma_results$Protein,
OrgDb = org.Hs.eg.db,
keyType = "UNIPROT",
ont = "ALL",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = TRUE)

## Check results
ego_down

## #
## # over-representation test
## #
## #…@organism Homo sapiens
## #…@ontology GOALL
## #…@keytype UNIPROT
## #…@gene chr [1:395] "Q53EL6" "P08243" "P35716" "Q92878" "P26583" "Q92522"

"O43657" …

## #…pvalues adjusted by ’BH’ with cutoff <0.05
## #…69 enriched terms found
## ’data.frame’: 69 obs. of 10 variables:
## $ ONTOLOGY : chr "BP" "BP" "BP" "BP" …

## $ ID : Chr "GO:0006310" "GO:0006520" "GO:0000725" "GO:0006302" …

## $ Description : chr "DNA recombination" "amino acid metabolic process"
"recombinational repair" "double-strand break repair" …

## $ GeneRatio : chr "36/378" "35/378" "22/378" "31/378" …

## $ BgRatio : chr "94/3166" "112/3166" "55/3166" "98/3166" …

## $ pvalue : num 2.27e-11 2.48e-08 8.41e-08 1.20e-07 1.01e-06 …

## $ p.adjust : num 5.66e-08 3.09e-05 7.00e-05 7.48e-05 5.06e-04 …

## $ qvalue : num 5.37e-08 2.93e-05 6.63e-05 7.09e-05 4.80e-04 …

Page 70 of 84

F1000Research 2023, 12:1402 Last updated: 18 DEC 2023



## $ genelD : chr "RAD50/HMGB2/H1-10/RADX/MRE11/H1-0/H1-2/ZMYND8/HMGB3/MCM5/
NUCKS1/RAD21/PRKDC/SFPQ/MCM4/XRCC6/H1-3/MCM7/TFRC/XRCC"| __truncated__ "ASNS/
PHGDH/SDSL/SARS1/YARS1/AARS2/HMGCL/IARS2/GARS1/AARS1/HIBADH/PYCR1/MCCC2/
ACADSB/DHFR/MARS1/SLC25A12/ETFA/PS"| __truncated__ "RADX/MRE11/ZMYND8/MCM5/
NUCKS1/RAD21/SFPQ/MCM4/XRCC6/MCM7/XRCC5/PPP4R2/POGZ/YY1/MCM3/MCM2/VPS72/
PARP1/BRD8/MCM6/FUS/RECQL" "RAD50/HMGB2/RADX/MRE11/DEK/ZMYND8/MCM5/NUCKS1/
RAD21/PRKDC/TP53/SFPQ/SMARCC2/MCM4/XRCC6/HPF1/MCM7/XRCC5/HMGB1/PP"|
__truncated__ …

## $ Count : int 36 35 22 31 20 56 57 18 14 56 …

## # …Citation
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu,

X Bo, and G Yu.
## clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
## The Innovation. 2021, 2(3):100141

The downregulated proteins contain 69 significantly enriched GO terms. There are many ways in which users can
represent these results visually. Here, we create a barplot using the barplot function from the enrichplot
package.52 Users are directed to the vignette of the enrichplot package for additional visualisation options and
guidance. We plot the first 10 GO terms i.e. the 10 GO terms with the greatest enrichment.

## Plot the results
barplot(ego_down,

x = "Count",
showCategory = 10,
font.size = 12,
label_format = 28,
colorBy = "p.adjust")
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Writing and exporting data
Finally, we export the results of our statistical analyses as .csv files.

## Save results of Limma statistics
write.csv(gene_results, file = "all_limma_results.csv")

## Save subsets of upregulated and downregulated proteins
write.csv(sig_upregulated, file = "upregulated_results.csv")
write.csv(sig_downregulated, file = "downregulated_results.csv"))

## Save results of GO enrichment
write.csv(ego_up, file = "upregulated_go_enrichment.csv")
write.csv(ego_down, file = "downregulated_go_enrichment.csv")

Users can also use the ggsave function to export any of the figures generated.

Discussion and conclusion
Expression proteomics is becoming an increasingly important tool in modern molecular biology. As more researchers
participate in expression proteomics, either by collecting data or accessing data collected by others, there is a need for
clear illustration(s) of how to deal with such complex data.

Existing bottom-up proteomics workflows for differential expression analysis either provide pipelines with limited user
control and flexibility (e.g., MSstats and MSstatsTMT38,39), can only be applied to specific data formats (e.g.,
Proteus which is limited to input from MaxQuant53), or provide very limited commentary. The latter directly
contributes to a problematic disconnect between researchers and their data whereby the users do not understand if or
why each step is necessary for their given dataset and biological question. This can prevent researchers from refining a
workflow to fit their specific needs. Finally, the majority of proteomics workflows utilise data.frame or tibble
structures which limits their traceability, as is the case for protti, promor and prolfqua.54–56

The workflow presented here outlines in completion how to process, analyse and interpret LFQ and TMT expression
proteomics data derived from a bottom-up DDA experiment. Critically, we emphasize quality control and data-guided
decisions with an extensive explanation of all key steps and how they may differ in various scenarios (e.g., the
quantitation method, instrumentation and biological question). Our workflow takes advantage of the relatively recent
QFeatures infrastructure to ensure explicit and transparent data pre-processing as well as to provide an easy way for
users to trace back through their analyses. These features are particularly important for beginnerswhowish to gain a better
understanding of their data and how it changes throughout this workflow.

No single workflow can demonstrate the processing, analysis and interpretation of all proteomics data. Our workflow is
currently suitable for DDA datasets with label-free or TMT-based quantitation. We do not include examples of
experiments that combine data from multiple TMTplexes, although the code provided could easily be expanded to
include such a scenario. This workflow provides an in-depth user-friendly pipeline for both new and experienced
proteomics data analysts.

Session information and getting help
The workflows provided involve use of functions from many different R/Bioconductor packages. The sessionInfo
function provides an easy way to summarize all packages and corresponding their versions used to generate this
document. Should software updates lead to the generation of errors or different results to those demonstrated here, such
changes should be easily traced.

## Print session information
sessionInfo()

## R version 4.3.0 (2023-04-21)
## Platform: x86_64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.4
##
## Matrix products: default
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## BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/
libRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/
libRlapack.dylib; LAPACK version 3.11.0

##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
##
## time zone: Europe/London
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] patchwork_1.1.2 enrichplot_1.20.0
## [3] clusterProfiler_4.8.1 org.Hs.eg.db_3.17.0
## [5] AnnotationDbi_1.62.1 limma_3.56.2
## [7] Biostrings_2.68.1 XVector_0.40.0
## [9] corrplot_0.92 NormalyserDE_1.18.0
## [11] tibble_3.2.1 dplyr_1.1.2
## [13] stringr_1.5.0 ggplot2_3.4.2
## [15] QFeatures_1.10.0 MultiAssayExperiment_1.26.0
## [17] SummarizedExperiment_1.30.2 Biobase_2.60.0
## [19] GenomicRanges_1.52.0 GenomeInfoDb_1.36.0
## [21] IRanges_2.34.0 S4Vectors_0.38.1
## [23] BiocGenerics_0.46.0 MatrixGenerics_1.12.2
## [25] matrixStats_1.0.0
##
## loaded via a namespace (and not attached):
## [1] splines_4.3.0 bitops_1.0-7 ggplotify_0.1.0
## [4] cellranger_1.1.0 polyclip_1.10-4 preprocessCore_1.62.1
## [7] rpart_4.1.19 lifecycle_1.0.3 lattice_0.21-8
## [10] MASS_7.3-60 backports_1.4.1 magrittr_2.0.3
## [13] Hmisc_5.1-0 rmarkdown_2.22 yaml_2.3.7
## [16] sp_1.6-1 cowplot_1.1.1 MsCoreUtils_1.12.0
## [19] DBI_1.1.3 RColorBrewer_1.1-3 abind_1.4-5
## [22] zlibbioc_1.46.0 purrr_1.0.1 AnnotationFilter_1.24.0
## [25] ggraph_2.1.0 RCurl_1.98-1.12 yulab.utils_0.0.6
## [28] nnet_7.3-19 tweenr_2.0.2 sandwich_3.0-2
## [31] git2r_0.32.0 GenomeInfoDbData_1.2.10 ggrepel_0.9.3
## [34] tidytree_0.4.2 terra_1.7-37 nortest_1.0-4
## [37] codetools_0.2-19 DelayedArray_0.26.3 DOSE_3.26.1
## [40] ggforce_0.4.1 tidyselect_1.2.0 RcmdrMisc_2.7-2
## [43] aplot_0.1.10 raster_3.6-20 farver_2.1.1
## [46] viridis_0.6.3 base64enc_0.1-3 jsonlite_1.8.5
## [49] e1071_1.7-13 tidygraph_1.2.3 Formula_1.2-5
## [52] tools_4.3.0 treeio_1.24.1 Rcpp_1.0.10
## [55] glue_1.6.2 BiocBaseUtils_1.2.0 gridExtra_2.3
## [58] xfun_0.39 qvalue_2.32.0 usethis_2.2.0
## [61] withr_2.5.0 BiocManager_1.30.21 fastmap_1.1.1
## [64] fansi_1.0.4 digest_0.6.31 R6_2.5.1
## [67] gridGraphics_0.5-1 colorspace_2.1-0 GO.db_3.17.0
## [70] RSQLite_2.3.1 utf8_1.2.3 tidyr_1.3.0
## [73] generics_0.1.3 data.table_1.14.8 class_7.3-22
## [76] graphlayouts_1.0.0 httr_1.4.6 htmlwidgets_1.6.2
## [79] S4Arrays_1.0.4 scatterpie_0.2.1 pkgconfig_2.0.3
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## [82] gtable_0.3.3 blob_1.2.4 impute_1.74.1
## [85] shadowtext_0.1.2 htmltools_0.5.5 carData_3.0-5
## [88] bookdown_0.34 fgsea_1.26.0 ProtGenerics_1.32.0
## [91] clue_0.3-64 scales_1.2.1 png_0.1-8
## [94] ggfun_0.1.0 knitr_1.43 rstudioapi_0.14
## [97] reshape2_1.4.4 nlme_3.1-162 checkmate_2.2.0
## [100] proxy_0.4-27 cachem_1.0.8 zoo_1.8-12
## [103] parallel_4.3.0 HDO.db_0.99.1 foreign_0.8-84
## [106] pillar_1.9.0 grid_4.3.0 vctrs_0.6.3
## [109] car_3.1-2 cluster_2.1.4 htmlTable_2.4.1
## [112] evaluate_0.21 cli_3.6.1 compiler_4.3.0
## [115] rlang_1.1.1 crayon_1.5.2 labeling_0.4.2
## [118] plyr_1.8.8 forcats_1.0.0 fs_1.6.2
## [121] stringi_1.7.12 viridisLite_0.4.2 BiocParallel_1.34.2
## [124] munsell_0.5.0 lazyeval_0.2.2 GOSemSim_2.26.0
## [127] Matrix_1.5-4.1 hms_1.1.3 bit64_4.0.5
## [130] KEGGREST_1.40.0 haven_2.5.2 igraph_1.5.0
## [133] memoise_2.0.1 BiocWorkflowTools_1.26.0 ggtree_3.8.0
## [136] fastmatch_1.1-3 bit_4.0.5 readxl_1.4.2
## [139] downloader_0.4 gson_0.1.0 ape_5.7-1

Users are advised to update R itself as well as packages as required. Bioconductor packages can be updated using the
BiocManager::install() function, as shown below.

if (!require("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")

}
BiocManager::install()

Author contributions
C. H. conceptualisation, investigation, methodology, project administration, software, validation, writing – original draft
preparation, review and editing; C. S. D. software and writing - review and editing; T. K. methodology, supervision,
software, writing - review and editing; K. S. L. funding acquisition, supervision, writing - review and editing; L. M. B.
conceptualisation, methodology, supervision, writing - review and editing.

Data availability
This workflow is written in the R statistical programming language and uses freely available open-source software
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Amit Kumar Yadav   
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The article by Hutchings et al titled "A Bioconductor Workflow for Processing, Evaluating, and 
Interpreting Expression Proteomics Data" provides a detailed overview tutorial of the 
interpretation of quantitative proteomics data through R environment using TMT and LFQ 
workflows as examples. 
 
Major comments:

The use of open-source tools ensures transparency and reproducibility. The open-source R 
software packages from the Bioconductor project also add credibility to the workflow.

1. 

The workflow described is comprehensive and is a good tutorial for analysis. The article 
describes the comprehensive workflow with R commands, covering data import, quality 
control, differential expression analysis, and gene ontology enrichment analysis. This 
approach ensures a holistic understanding of expression proteomics.

2. 

The described use-case examples from TMT and LFQ provides practical relevance and 
enhances the applicability of the workflow.

3. 

The target audience is for beginners who are also familiar with R. It may also be helpful to 
optionally provide shiny app (for GUI based application) that biologists who are unfamiliar 
with CLI, can also use.

4. 

Minor Comments:
This article deals with Proteome Discoverer output. Maybe inclusion of MaxQuant or other 
workflows may add to it reach.

1. 

The difference between razor and shared peptides is not clear. Perhaps rephrasing would 
help a newcomer to proteomics.

2. 

Page 40, (Under section Visualising Aggregation) “…15 peptides and 27 supporting…”. Did 
the author mean 27 PSMs? It is missing in the sentence. Please clarify if these were peptides 
or PSMs?

3. 

PCA is not considered fit when there are lot of missing values as in LFQ analysis. Should 
these be removed before PCA?

4. 

Authors have conflated modified and non-modified forms of the same peptides during 
analysis. This may not be able to detect modified changes if differential in nature.

5. 
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Perhaps “quantitative proteomics” is a more appropriate term than “Expression 
proteomics”.

6. 

The article appears to be a valuable contribution to the field of quantitative proteomics, especially 
for R users, providing a comprehensive and user-friendly workflow.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: quantitative proteomics, bioinformatics, computational biology, proteome 
informatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 27 November 2023
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The authors provide the full description of a R-based workflow applied to quantitative proteomics 
data analysis (TMT and label-free data). It makes use of QFeature objects, a structure that is very 
well suited for bottom-up proteomics data analysis. I think that this is a very nice step-by-step 
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tutorial for MS-based proteomics data analysis with R for people who start in the field and have 
limited coding skills. Beyond its educational aspect, it provides the backbones of a data analysis 
pipeline that can be modified and published alongside any manuscript that includes MS-based 
proteomics data analysis. 
 
The manuscript is very well written, and the authors provide very clear and detailed instructions 
on how to use the workflow. The figures are also very clear and informative. They present the 
data, detail what quality control to perform to assess if the data are suitable for statistical analysis. 
This workflow contains a lot of useful QC plots and checks that are often overlooked, including 
TMT labelling efficiency calculation. It makes it a good step-by-step guide on how to analyze TMT-
labelled bottom-up data. I really like the description on how to double check quality metrics such 
as S/N and isolation interference to adapt them to the data. 
 
The raw data is available in PRIDE and all the fasta files and the Proteome Discoverer output files 
are in Zenodo. The code is in a github repository. I easily found all the data associated with this 
manuscript. 
 
Major comments:

It should be made clear that this script is tailored for Proteome Discoverer outputs (and 
maybe even for a given version of Proteome Discoverer). For most of the 
plotting/filtering/analysis steps, changing input would only require adapting the column 
names/headers, and most of the time it is very well discussed by the authors. Nevertheless, 
right now this script is only adapted to Proteome Discoverer outputs and this should be 
made clear in the abstract and the introduction, as well as the discussion. 
 

1. 

Aggregation of PSM quantification values to peptides and proteins: 
 
Here, the authors choose to aggregate all PSM intensities corresponding to the same 
sequence (stripped of its modifications). I would aggregate the PSM quantities per 
peptidoform (sequence + localized modifications) since two ions can have the same 
sequence but with modifications that are differentially regulated between the conditions 
compared. This should be mentioned. 
 

2. 

For the GO-term enrichment: only the majority protein accessions are reported in the 
output of the limma analysis. So there is only one gene per feature. How do you make sure 
that it is the most representative annotation for a given protein group? I am fully aware that 
this issue is ignored by the community (for lack of alternative strategy), and that most of the 
time people just pick one accession per group for GO-term enrichment analysis. So, I am 
not asking the authors to find a solution. Nevertheless, it would be nice to mention that the 
output of the enrichment will depend on what accession is picked per group.

3. 

Minor comments:
I would remove contaminants before estimation of TMT labelling efficiency. 
 

1. 

I find the paragraph “Additional considerations regarding protein isoforms” unclear. The 
authors should rephrase sentences such as this one: “PSMs or peptides that were previously 
mapped to one protein and one protein group could instead be mapped to multiple 
proteins and one protein group.” Maybe they should use the term “canonical protein” to be 
more precise? 

2. 
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In any cases, the issue of peptide uniqueness does not depend only on the presence of 
isoforms in the fasta file but also on the strategy that was chosen for protein inference. I 
agree with the authors that people should precisely describe what peptides/PSMs were 
used for quantification, and it is good to mention it. Nevertheless, this level of detail on 
general MS-based proteomics concept may not be necessary here. (So the entire paragraph 
on isoforms could maybe be removed, especially since isoforms are not mentioned later). 
 
In the paragraph “Removing PSMs that are not rank 1”: 
 
I think that the “PSM category” that is discussed a bit later is specific of Proteome 
Discoverer. Some search engines report PSMs of equal score (this would correspond to the 
“pretty rank” in Mascot). I don’t think that all this should necessarily be discussed in this 
manuscript, but I insist on the fact that the workflow is tuned for Proteome Discoverer 
output and this should be made clear in the introduction/abstract. 
 

3. 

In the paragraph “Managing missing data” for the TMT: 
 
the authors mention MCAR, MAR, and MNAR, but do they all apply here? I would expect 
TMT-labelled data to mostly have missing values due to ions being under the limit of 
detection because when an ion is fragmented, the reporter ions used for relative 
quantification are often all detected. Isn’t it the case? 
Knowing this should restrict the choice for a more suited strategy of replacement of missing 
values. 
 
Still on missing values: page 33, it is stated that “Typically, it is desirable to remove features, 
here PSMs, with greater than 20% missing values”. Why this number? Is this accepted by the 
entire community? (this comment also applies to the same step in the LFQ analysis. 
 
Regarding missing value replacement (discussion on LFQ, page 55): it is really nice to 
provide references of strategies applied to replacement of missing values. It is indeed a 
tricky decision to make (how to replace? Should we replace?) and there is no one-size-fits-
them-all method. Why do you choose to replace at peptide level and not protein level? 
 

4. 

Page 38: what do the authors mean by “report did not indicate any superior normalization 
method”? How would we know what normalization method works best? This point is 
because I am curious, not to correct any obvious mistake. It is great to try out different 
normalization strategies, but I don’t really see how to pick one based on the boxplots of 
normalized intensities (Figure 4). 
 

5. 

The authors normalize the data after protein aggregation and not at the PSM level. Is this 
general practice? Wouldn’t it make sense to normalize before aggregation? 
 

6. 

Page 44; “Data import, housekeeping and exploration”: 
 
the authors mention that LFQ analysis cannot be performed at PSM level but has to be done 
at peptide level. I think that this is dependent on the software tool that is used, and this may 
be specific of Proteome Discoverer. Match between run is performed at the ion level, but 

7. 
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the intensity retrieved at this step can be reported at PSM level. I think that this is the case 
in MaxQuant “evidence.txt” tables, if I am not mistaken. 
 
Page 63: DEqMS could be mentioned since it is specifically developed for proteomics 
statistical analysis. (DOI: 10.1074/mcp.TIR119.001646) 
 

8. 

This is more of a naïve question regarding using Limma in this context: does it make sense 
to model the variance depending on intensity after missing value replacement? I know that 
this manuscript may not be the place to discuss this, but I would be interested to know what 
the authors’ opinion is on this question. 
 

9. 

Additional suggestions (only suggestions that may totally be ignored/dismissed by the 
authors if they don’t think that they’ll improve their manuscript): 
The data is available in PRIDE (PXD041794), but the information necessary to match TMT 
channel/sample to conditions/replicates is only available in the associated paper. It would 
be great to add the Table 1 of the manuscript and a link to the zenodo repository in PRIDE 
alongside the data. An even better solution would be to provide the metadata in the SDRF-
Proteomics format (https://www.nature.com/articles/s41467-021-26111-3; there is a GUI to 
generate these files now: https://lessdrf.streamlit.app/). This would facilitate data reuse and 
transparency.

10. 

Small comments / typos:
Page 3, in the code at the bottom of the page: the “,” is missing after “stringr”. 
 

○

Paragraph "Assessing the impact of non-specific data cleaning”, in the table (and other 
similar tables or mentions of number of protein groups and peptide stripped sequences): 
“proteins” should be replaced by “protein groups” since this is what is actually counted. If 
the authors wanted to be more precise, they could also specify that the “peptides” 
correspond to peptide sequences stripped of all modifications. 
 

○

Bar plot of missing value proportion page 32: what does the red dashed line correspond to? 
 

○

Page 37, when running the function `normalizer`, I got an error “No RT column specified 
(column named 'RT') or option not specified Skipping RT normalization.” And could not get 
the expected report. I am not familiar with the tool and did not investigate further. 
 

○

I don’t think that “softwares” can be used. There is no “s” at the end. 
 

○

Page 51: “cleaning is done is two steps” should be “cleaning is done in two steps” 
 

○

Page 54: in the bar plot of missing value count, what is the dashed red line? 
 

○

Page 55: “If the method requires data to display a normal distribution, users must log2 
transform the data prior to imputation.” -> is there a reason to perform missing values 
replacement before log transformation? If not, this step could be moved to after log 
transform? 
 

○

Page 66: “If we had not used TMT labels and wished to include a logFC threshold, we could 
have included lfc = as an argument”. The characters of “lfc = as” are in a different police, I 

○
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think that this is a bit unclear since the “as” should be regular text. Also, maybe you could 
explain “have included lfc = followed by the minimum absolute log2-transformed fold 
change”.   
 
Page 72: “summarize all packages and corresponding their versions used to generate” -> 
the sentence does not seem correct to me.

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work on MS-based proteomics data analysis and computational mass 
spectrometry.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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The article entitled "A Bioconductor workflow for processing, evaluating, and interpreting 
expression proteomics data" regards a full and comprehensive workflow for performing not only 
qualitative but also quantitative proteomics analysis. 
 
The manuscript is very well written and describes in detail the whole workflow for quantifying 
proteomics data. The authors focused on the LFQ analysis and TMT (for labeled datasets). 
However, this workflow relies on the results from a search engine that will provide the identified 
peptides. On this manuscript the authors used results from Proteome Discoverer. 
 
I recommended the publication, but I would like to pinpoint some minor comments: 
 
a) Although the authors mentioned the quantitation analyses by using TMT for labeled datasets, 
why they didn't show the analysis by using SILAC, once it uses XIC (the same strategy used by 
LFQ)? 
 
b) The authors used Proteome Discoverer as search engine, and the provided a template to import 
the results into the workflow. They could also provide other templates to turn this workflow more 
versatile, such as FragPipe, Patternlab for Proteomics, etc.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I have experience in proteomics analyses (qualitative and quantitative); XL-MS 
analysis. I also develop software for identifying and quantifying proteomics datasets.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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