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Abstract: In this paper, we analyze the global dynamics of an endemic mathematical model that
incorporates direct immunity by vaccination, as well as the shift from the asymptomatic to the
symptomatic group in complex networks. By analyzing the Jacobian matrix and constructing suitable
Lyapunov functionals, the stability of the disease-free equilibrium and the endemic equilibrium is
determined with respect to the basic reproduction number R0. Numerical simulations in scale-free and
Poisson network environments are presented. The results validate the correctness of our theoretical
analyses.
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1. Introduction

It is well known that many infectious diseases have an incubation period. For example, the average
incubation period of HIV is 8–9 years. SARS-CoV-2, which causes COVID-19, also has an incubation
period, and people infected by the disease appear as asymptomatic or symptomatic and are able to
infect susceptible individuals. To reduce the spread of COVID-19, vaccination is a commonly used
control measure. Thus, investigating the impact of vaccines on the dynamics of endemic diseases is
crucial.

Many endemic compartmental models for COVID-19 have been proposed to study the
transmission dynamics since its outbreak. For example, Ma et al. [1] proposed an SEIR-type epidemic
model that considers the contact distance between the susceptible individuals and the asymptomatic
or symptomatic infected individuals. They analyzed the stability of each equilibrium and obtained the
threshold values for population influx and contact distance. Simulation of the SARS-CoV-2 pandemic
in Germany has been performed with ordinary differential equations in MATLAB, as presented in [2].
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It revealed vaccination to be an effective means in the fight against the pandemic. Yuan et al. [3]
discussed an SEIIaHR model and obtained that the disease-free equilibrium (DFE) is globally
asymptotically stable if R0 < 1, and that the endemic equilibrium (EE) is uniformly persistent if
R0 > 1. Chen et al. [4] considered both the SEIR model and the SPEIQRD model incorporating two
control actions, i.e., vaccination and quarantine, to estimate the spread of the virus and control the
number of infected and dead people via controller tuning. Rakshit et al. [5] proposed an SIR model
with the asymptomatic and symptomatic groups. They simulated case data from the UK, USA and
India with their model. Guo et al. [6] proposed an SEIAQR model for COVID-19. By using the limit
system of the model and Lyapunov function method, they proved that COVID-19 would die out if the
basic reproduction number Rc ≤ 1, and that the disease is persistent if Rc > 1. Khoshnaw et al. [7]
discussed an SIUWR model for COVID-19, and some key computational simulations and sensitivity
analysis were investigated. Aguilar et al. [8] considered a mathematical model that takes
asymptomatic carriers into account. Peirlinck et al. [9] modeled the epidemiology of COVID-19 by
using an SEIIR model. Simulations indicated that encouraging increased hygiene, mandating the use
of face masks, restricting travel and maintaining distance could be the most successful strategies to
manage the impact of COVID-19 until vaccination and treatment could become available.

Since the mutation of single-stranded RNA viruses is relatively strong, such as those for HIV, HCV,
SARS, MERS-CoV, SARS-CoV-2 and so on, multi-strain models have also been intensively proposed
to study epidemic dynamics; for examples, see [10–14] and the references therein. Many authors
have discussed the stability of equilibria in their studies, which may help us determine the long-term
behaviors of disease dynamics.

The studies mentioned above mainly made homogeneous contact assumptions, i.e., that each
individual in the population has the same probability of contact with an infected individual. However,
the contact among people is heterogeneous in the real world. For this reason, the notion of complex
networks is incorporated. Many endemic models based on networks have been proposed. Huang et
al. [15] proposed a network-based SIQRS epidemic model. Sun et al. [16] constructed an SIS model
on networks. They studied the dynamics of the models, including the basic reproduction number and
the global asymptotic stability of the DFE and EE. Meng et al. [17] established an SEIRV model on
heterogeneous networks. In addition, they used the epidemic parameters in Wuhan, China for
numerical analysis. Lv et al. [18] proposed an SIVS epidemic model based on scale-free networks. Li
and Yousef [19] proposed a network-based SIR epidemic model with a saturated treatment function.
And, they obtained the threshold values R0 and R̂0. The global stability of equilibria strongly rely on
both of them. Besides, forward or backward bifurcation will occur at R0 = 1. Yao and Zhang [20]
developed a two-strain SIS model based on heterogeneous networks. They derived five different
threshold values, i.e., R0, R1, R2 , R12 and R21, which are closely related to the stability of equilibria.
Yang and Li [21] studied a two-strain SIS epidemic model based on complex networks. The DFE E0

is globally asymptotically stable if the basic reproduction number R0 < 1. Otherwise, there exists
either a unique strain 1-only or a strain 2-only boundary equilibrium. Cheng et al. [22] talked about a
network-based SIQS infectious disease model with a nonmonotonic incidence rate. Moreover,
endemic models with time delay in networks have also been established [23, 24].

As the virus mutates, individuals will become infected and remain asymptomatic. However, some
will become seriously ill and require medical attention. More and more people will get vaccinated
to prevent infection. Furthermore, the spread of the disease begins exhibiting more heterogeneity.
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To consider the impact of these features on the dynamics of disease transmission, motivated by the
above discussions, we propose an SEIR-type endemic model that incorporates direct immunity by
vaccination, as well as the conversion from the asymptomatic to the symptomatic group in complex
networks. Conditions for the extinction and permanence of the disease are investigated in this paper.

The rest of the paper is organized in the following way. In Section 2, we introduce the network
model. In Section 3, we investigate the dynamics of the proposed model. Section 4 is devoted to
numerical simulations to verify our theoretical results. Finally, we give the discussion in Section 5.

2. Models

As reported by the World Health Organization, COVID-19 affects different people in different
ways. Some infected people will be asymptomatic and recover without hospitalization, whereas some
will experience fever, coughing, difficulty breathing, shortness of breath, chest pain and other serious
symptoms. Both asymptomatic and symptomatic infected individuals are infectious. On average, it
takes 5–6 days from when someone is infected with the virus for symptoms to show. According to
these COVID-19 transmission characteristics, the total populations are divided into five
compartments, namely, the susceptible subclass (S ), the exposed subclass (E), the asymptomatic
infected subclass (Ia), the symptomatic infected subclass (I) and the removed subclass (R). The
transmission process for each individual is shown in Figure 1. Moreover, we make the following
assumptions:

1) All infected people have an incubation period. The incidence functions for the asymptomatic and
the symptomatic infected people are α1S Ia and α2S I, respectively.

2) The infected people have immunity to COVID-19 after rehabilitation and vaccination.
3) The asymptomatic infected people may become symptomatic or recover from the disease, which

is dependent on their physical fitness. We assume that the rate of transition from Ia to I is
proportional to their density with the scaling factor θ.

Based on the above assumptions, we propose the following ordinary differential equation endemic
model of COVID-19, which incorporates direct immunity by vaccination and the shift from the
asymptomatic to symptomatic subclass:

S ′(t) =A − α1S Ia − α2S I − µS − νS ,

E′(t) =α1S Ia + α2S I − µE − η1E − η2E,

I′a(t) =η1E − θIa − µIa − µ1Ia − γ1Ia,

I′(t) =η2E + θIa − µI − µ2I − γ2I,

R′(t) =γ1Ia + γ2I + νS − µR.

(2.1)

System (2.1) is an SEIR-type endemic model with two different manifestations of infection in the
population. The parameter A is the recruitment rate of susceptible individuals, µ is the natural
mortality rate of all individuals, ν is the vaccination rate of susceptible individuals, α1 denotes the rate
of transmission of susceptible individuals to exposed individuals, as induced by asymptomatic
individuals, and α2 denotes the rate of transmission of susceptible individuals to exposed individuals,
as induced by symptomatic individuals. Exposed individuals can become asymptomatic at a rate of
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η1, or symptomatic at a rate of η2 due to their constitutions. Asymptomatic infected individuals will
become symptomatic infected individuals at a rate of θ. µ1 and µ2 are the fatality rates of the
asymptomatic and the symptomatic individuals, respectively. γ1 and γ2 are the recovery rates of
asymptomatic individuals and symptomatic individuals, respectively.

S E

Ia

I

R
A

η1

η2

γ1

γ2

θ

µ

µ

α1Ia + α2I

µ µ1

µ2µ

µ

ν

Figure 1. The transmission diagram for system (2.1).

To study the effects of contact heterogeneity on endemic dynamics, we view the entire population
as a social network, and each individual corresponds to a network node. Moreover, an edge connecting
two individuals denotes a potential contact between both. All nodes of the network are assigned to
different groups according to their degrees. Specifically, the kth group has a degree k for k ∈ Nn ≜
{1, 2, ..., n}, and n is the maximal degree. Let Nk be the number of all individuals that have a degree k.
Then, the total number of individuals is N = N1 + N2 + ... + Nn. To incorporate the property of contact
heterogeneity, we consider the network characterized by the degree distribution P(k), which is defined
as a randomly selected node with a degree k, i.e., P(k) = Nk/N. Based on system (2.1), we construct
the following network model with k subsystems for k ∈ Nn:



S ′k(t) =A − α1kS kΘ1 − α2kS kΘ2 − µS k − νS k,

E′k(t) =α1kS kΘ1 + α2kS kΘ2 − µEk − η1Ek − η2Ek,

J′k(t) =η1Ek − θJk − µJk − µ1Jk − γ1Jk,

I′k(t) =η2Ek + θJk − µIk − µ2Ik − γ2Ik,

R′k(t) =γ1Jk + γ2Ik + νS k − µRk,

(2.2)

where S k represents the number of susceptible individuals with degree k, and Ek represents the
number of exposed individuals with degree k. Jk and Ik are the numbers of asymptomatic and
symptomatic individuals with degree k, respectively. Rk is the number of recovered individuals with
degree k. The parameters for systems (2.1) and (2.2) have the same meanings. Nevertheless, there are
slightly different units after dimensionless transformation (see Table 1). And, the transmission
diagram for system (2.2) is shown in Figure 2.
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Table 1. The units of quantities in systems (2.1) and (2.2).

Quantities
Unit before
dimensionless transformation

Unit after
dimensionless transformation

S , E, Ia, I,R, Number of individuals Dimensionless
S k, Ek, Jk, Ik,Rk

A Number of individuals/time 1/time
α1, α2 1/(time × number of individuals) 1/time
µ, ν, η1, η2, θ, µ1, µ2, γ1, γ2 1/time 1/time

Sk Ek

Jk

Ik

Rk
A

η1

η2

γ1

γ2

θ

µ

µ

α1Θ1 + α2Θ2

µ µ1

µ2µ

µ

ν

Figure 2. The transmission diagram for system (2.2).

All subsystems of dynamics in system (2.2) are coupled by functions Θ1(t) and Θ2(t), which are
respectively defined by

Θ1(t) =
n∑

j=1

P( j|k)J j and Θ2(t) =
n∑

j=1

P( j|k)I j,

where P( j|k) represents the conditional possibility of a node with degree k connecting a node with
degree j. The possibility of a link connecting to a node with degree j is proportional to jP( j). Hence,
P( j|k) = jP( j)/⟨k⟩, where ⟨k⟩ =

∑n
j=1 jP( j) is the mean degree of the network [25]. Then,

Θ1 =

n∑
j=1

jP( j)J j

⟨k⟩
, Θ2 =

n∑
j=1

jP( j)I j

⟨k⟩
. (2.3)

In this paper, we study the endemic dynamics with the form of relations given by (2.3) for the
functions Θ1 and Θ2 in uncorrelated networks.

Since the first four equations in system (2.2) are independent of the variable state Rk(t), we can
simplify the model as follows:

S ′k(t) =A − α1kS kΘ1 − α2kS kΘ2 − µS k − νS k,

E′k(t) =α1kS kΘ1 + α2kS kΘ2 − µEk − η1Ek − η2Ek,

J′k(t) =η1Ek − θJk − µJk − µ1Jk − γ1Jk,

I′k(t) =η2Ek + θJk − µIk − µ2Ik − γ2Ik.

(2.4)
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3. Dynamics

Lemma 3.1. Let k ∈ Nn. For any initial data point S k(0), Ek(0), Jk(0), Ik(0) > 0, all of the solutions
(S k(t), Ek(t), Jk(t), Ik(t)) of system (2.4) are nonnegative for t > 0.

Proof. Assume, on the contrary, that at least one of the subclass values, i.e., S k(t), Ek(t), Jk(t), Ik(t),
is negative with the initial conditions S k(0), Ek(0), Jk(0), Ik(0) > 0 for k ∈ Nn. According to the
continuity, there exists a sufficiently small ε > 0 such that S k(t), Ek(t), Jk(t), Ik(t) ≥ 0 for t ∈ (0, ε)
and k ∈ Nn. Furthermore, there exist j ∈ Nn and the initial time t3 ≥ ε > 0 such that J j(t3) = 0 and
J′j(t3) < 0 or I j(t3) = 0 and I′j(t3) < 0. Otherwise, Jk(t), Ik(t) ≥ 0 for t > 0 and k ∈ Nn, which means that
there is no such t3. Similarly, there exist j ∈ Nn and the initial time points t1 and t2 such that S j(t1) = 0,
S ′j(t1) ≤ 0 and E j(t2) ≤ 0, E′j(t2) = 0 for t1, t2 ≥ ε > 0.

Case 1: t1 ≤ t2, t3. Here t2 and t3 may not exist, but t3 must exist. We have that
E j(t1), J j(t1), I j(t1), Θ1(t1), Θ2(t1) ≥ 0. Substituting t1 into the first equation of system (2.4) yields
S ′k(t1) = A > 0. Hence, this contradicts the hypothesis.

Case 2: t2 ≤ t1, t3. Here t1 and t3 may not exist, but t2 must exist. We have that
S j(t2), J j(t2), I j(t2), Θ1(t2), Θ2(t2) ≥ 0. Substituting t2 into the second equation of system (2.4) yields
E′j(t2) = α1 jS j(t2)Θ1(t2) + α2 jS j(t2)Θ2(t2) ≥ 0. Hence, this contradicts the hypothesis.

Case 3: t3 ≤ t1, t2. Here t1 and t2 may not exist, but t3 must exist. If J j(t3) = 0, we have that
S j(t3), E j(t3), I j(t3), Θ1(t3), Θ2(t3) ≥ 0. Substituting t3 into the third equation of system (2.4) yields
J′j(t3) = η1E j(t3) ≥ 0. Hence, this contradicts the hypothesis. If I j(t3) = 0, we have that
S j(t3), E j(t3), J j(t3), Θ1(t3), Θ2(t3) ≥ 0. Substituting t3 into the last equation of system (2.4) yields
I′(t3) = η2E j(t3) + θJ j(t3) ≥ 0. Hence, this contradicts the hypothesis.

Similarly, we can prove that S k(t) ≥ 0. This completes the proof.

Lemma 3.2. The solutions of (2.4) satisfy that 0 ≤ S k ≤
A
µ
, 0 ≤ Ek ≤

A
µ
, 0 ≤ Jk ≤

A
µ

and 0 ≤ Ik ≤
A
µ

for all k ∈ Nn.

Proof. Let Nk = S k + Ek + Jk + Ik for k ∈ Nn. Adding the equations in system (2.4), we obtain

N′k(t) = A − µNk − γ1Jk − γ2Ik − νS k − µ1Jk − µ2Ik

≤ A − µNk, k ∈ Nn.

By integration, it follows that

Nk(t) ≤ Nk(0)e−µt +
A
µ

(1 − e−µt), k ∈ Nn,

where Nk(0) represents the total population with degree k at time t = 0. Therefore,

lim sup
t→∞

(S k + Ek + Jk + Ik) ≤
A
µ
, k ∈ Nn.

This, together with Lemma 3.1, readily imply the lemma.

System (2.4) always has the DFE

P0 = (S 0
1, E

0
1, J

0
1 , I

0
1 , S

0
2, E

0
2, J

0
2 , I

0
2 , · · · , S

0
k , E

0
k , J

0
k , I

0
k , · · · , S

0
n, E

0
n, J

0
n , I

0
n),
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where

S 0
1 = S 0

2 = · · · = S 0
k = · · · = S 0

n =
A
µ + ν

,

E0
1 = E0

2 = · · · = E0
k = · · · = E0

n = 0,
J0

1 = J0
2 = · · · = J0

k = · · · = J0
n = 0,

I0
1 = I0

2 = · · · = I0
k = · · · = I0

n = 0.

Assume that there exists the EE

P∗ = (S ∗1, E
∗
1, J

∗
1, I
∗
1, S

∗
2, E

∗
2, J

∗
2, I
∗
2, · · · , S

∗
k, E

∗
k , J

∗
k , I
∗
k , · · · , S

∗
n, E

∗
n, J

∗
n, I
∗
n),

where 
A − α1kS ∗kΘ1 − α2kS ∗kΘ2 − µS ∗k − νS

∗
k = 0,

α1kS ∗kΘ1 + α2kS ∗kΘ2 − µE∗k − η1E∗k − η2E∗k = 0,
η1E∗k − θJ

∗
k − µJ∗k − µ1J∗k − γ1J∗k = 0,

η2E∗k + θJ
∗
k − µI

∗
k − µ2I∗k − γ2I∗k = 0,

(3.1)

k ∈ Nn. Solving system (3.1), we obtain that S ∗k, E
∗
k , J

∗
k and I∗k are functions with respect to Θ1 and Θ2

for k ∈ Nn, namely,

S ∗k =
A

k(α1Θ1 + α2Θ2) + µ + ν
, E∗k =

kA(α1Θ1 + α2Θ2)[
k(α1Θ1 + α2Θ2) + µ + ν

]
(η1 + η2 + µ)

, (3.2)

J∗k =
η1kA(α1Θ1 + α2Θ2)[

k(α1Θ1 + α2Θ2) + µ + ν
]
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

,

I∗k =
kA(α1Θ1 + α2Θ2)

[
(µ + µ1 + θ + γ1) η2 + η1θ

][
k(α1Θ1 + α2Θ2) + µ + ν

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

.

(3.3)

Substituting (3.3) into (2.3) gives

Θ1 =

n∑
j=1

jP( j)
⟨k⟩

η1kA(α1Θ1 + α2Θ2)[
k(α1Θ1 + α2Θ2) + µ + ν

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

, (3.4)

Θ2 =

n∑
j=1

jP( j)
⟨k⟩

kA(α1Θ1 + α2Θ2)
[
(µ + µ1 + θ + γ1) η2 + η1θ

][
k(α1Θ1 + α2Θ2) + µ + ν

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

. (3.5)

From (3.4) and (3.5), we observe

Θ2 =

[
(µ + µ1 + θ + γ1) η2 + η1θ

]
η1 (µ + µ2 + γ2)

Θ1. (3.6)

Noting (3.4)–(3.6), we define

f1(Θ1) =
n∑

j=1

jP( j)
⟨k⟩

η1kA
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
Θ1{

k
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
Θ1 + µ + ν

}
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

− Θ1, (3.7)
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f2(Θ2) =
n∑

j=1

jP( j)
⟨k⟩

kA
{
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

} [
(µ + µ1 + θ + γ1) η2 + η1θ

]
Θ2[

k
(
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

)
Θ2 + µ + ν

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− Θ2.
(3.8)

Then, (3.4) and (3.5) are respectively equivalent to

f1(Θ1) = 0, f2(Θ2) = 0. (3.9)

Clearly, Θ1 = 0 and Θ2 = 0 are solutions for (3.9), which correspond to the DFE P0. Assume that
there exist nontrivial solutions 0 < Θ1 < 1 and 0 < Θ2 < 1 for (3.9). Then, we consider derivatives for
the functions (3.7) and (3.8). Hence, we have

d2 f1

dΘ2
1

< 0,
d2 f2

dΘ2
2

< 0

for Θ1 > 0 and Θ2 > 0. Owing to f1(0) = 0 and f2(0) = 0, it is guaranteed that the equations given by
(3.9) have nontrivial solutions between 0 and 1 if

f ′1(0) > 0, f ′2(0) > 0, f1(1) < 1 and f2(1) < 1. (3.10)

Combining (3.10) with (3.7) and (3.8) implies that

d f1

dΘ1

∣∣∣∣∣
Θ1=0
=

n∑
k=1

kP(k)
⟨k⟩

kA
[
α1η1 (µ + µ2 + γ2) + α2η2 (µ + µ1 + θ + γ1) + α2η1θ

]
(µ + ν) (µ + µ2 + γ2) (η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1

=
⟨k2⟩

⟨k⟩
A

[
α1η1 (µ + µ2 + γ2) + α2η2 (µ + µ1 + θ + γ1) + α2η1θ

]
(µ + ν) (µ + µ2 + γ2) (η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1,

d f2

dΘ2

∣∣∣∣∣
Θ2=0
=

n∑
k=1

kP(k)
⟨k⟩

kA
[
α1η1 (µ + µ2 + γ2) + α2η2 (µ + µ1 + θ + γ1) + α2η1θ

]
(µ + ν) (η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− 1

=
⟨k2⟩

⟨k⟩
A

[
α1η1 (µ + µ2 + γ2) + α2η2 (µ + µ1 + θ + γ1) + α2η1θ

]
(µ + ν) (µ + µ2 + γ2) (η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1,

f1(1) =
n∑

k=1

kP(k)
⟨k⟩

η1kA
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
{
k
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
+ µ + ν

}
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1

<

n∑
k=1

kP(k)
⟨k⟩

η1A
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
[
α1 + α2

(µ+µ1+θ+γ1)η2+η1θ

η1(µ+µ2+γ2)

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1

=

n∑
k=1

kP(k)
⟨k⟩

η1A
(η1 + η2 + µ) (µ + µ1 + θ + γ1)

− 1

=
η1A

(η1 + η2 + µ) (µ + µ1 + θ + γ1)
− 1
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and

f2(1) =
n∑

k=1

kP(k)
⟨k⟩

kA
{
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

} [
(µ + µ1 + θ + γ1) η2 + η1θ

][
k
(
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

)
+ µ + ν

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− 1

<

n∑
k=1

kP(k)
⟨k⟩

A
{
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

} [
(µ + µ1 + θ + γ1) η2 + η1θ

]{
α1

η1(µ+µ2+γ2)
[(µ+µ1+θ+γ1)η2+η1θ] + α2

}
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− 1

=

n∑
k=1

kP(k)
⟨k⟩

A
[
(µ + µ1 + θ + γ1) η2 + η1θ

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− 1

=
A

[
(µ + µ1 + θ + γ1) η2 + η1θ

]
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)

− 1.

Define the basic reproduction number of system (2.4) as

R0 =
⟨k2⟩

⟨k⟩
A

[
α1η1 (µ + µ2 + γ2) + α2η2 (µ + µ1 + θ + γ1) + α2η1θ

]
(µ + ν) (µ + µ2 + γ2) (η1 + η2 + µ) (µ + µ1 + θ + γ1)

.

Hence, there exists a unique positive EE P∗ with 0 < Θ1 < 1 and 0 < Θ2 < 1 for system (2.4) if

R0 > 1 and A ≤ A0,

where

A0 = min
{

(η1 + η2 + µ) (µ + µ1 + θ + γ1)
η1

,
(η1 + η2 + µ) (µ + µ1 + θ + γ1) (µ + µ2 + γ2)[

(µ + µ1 + θ + γ1) η2 + η1θ
] }

.

Remark 3.1. There always exists a DFE P0 for system (2.4). Besides, given that lim
Θ1→+∞

f1(Θ1) =

lim
Θ2→+∞

f2(Θ2) = −∞, and considering the continuity of functions f1(Θ1) and f2(Θ2), there exist solutions

Θ1 > 0 and Θ2 > 0 for (3.9) if and only if R0 > 1. Namely, system (2.4) has a unique positive EE P∗ if
and only if R0 > 1.

Theorem 3.1. The DFE P0 for system (2.4) is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.
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Proof. The Jacobian matrix for system (2.4) is

−a · · · 0 0 · · · 0 −α1S 0
1

P(1)
⟨k⟩ · · · −α1S 0

1
nP(n)
⟨k⟩ −α2S 0

1
P(1)
⟨k⟩ · · · −α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · −a 0 · · · 0 −α1nS 0
n

P(1)
⟨k⟩ · · · −α1nS 0

n
nP(n)
⟨k⟩ −α2nS 0

n
P(1)
⟨k⟩ · · · −α2nS 0

n
nP(n)
⟨k⟩

0 · · · 0 −b · · · 0 α1S 0
1

P(1)
⟨k⟩ · · · α1S 0

1
nP(n)
⟨k⟩ α2S 0

1
P(1)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · −b α1nS 0
n

P(1)
⟨k⟩ · · · α1nS 0

n
nP(n)
⟨k⟩ α2nS 0

n
P(1)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

0 · · · 0 η1 · · · 0 −c · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · η1 0 · · · −c 0 · · · 0
0 · · · 0 η2 · · · 0 θ · · · 0 −d · · · 0
...
. . .

...
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · η2 0 · · · θ 0 · · · −d


4n×4n

,

(3.11)
where a = µ + ν, b = µ + η1 + η2, c = µ + µ1 + γ1 + θ, d = µ + µ2 + γ2, k ∈ Nn. Obviously, there are n
eigenvalues equaling to −µ − ν for the matrix (3.11), and the remaining eigenvalues are determined by

−b · · · 0 α1S 0
1

P(1)
⟨k⟩ · · · α1S 0

1
nP(n)
⟨k⟩ α2S 0

1
P(1)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · −b α1nS 0
n

P(1)
⟨k⟩ · · · α1nS 0

n
nP(n)
⟨k⟩ α2nS 0

n
P(1)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

η1 · · · 0 −c · · · 0 0 · · · 0
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · η1 0 · · · −c 0 · · · 0
η2 · · · 0 θ · · · 0 −d · · · 0
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · η2 0 · · · θ 0 · · · −d


3n×3n

, (3.12)

k ∈ Nn. For (3.12), we add the column 2n + 1, multiplied by −α1
α2

, to column n + 1; column 2n + 2,
multiplied by −α1

α2
, to column n+2 · · · ; and column 3n, multiplied by −α1

α2
, to column 2n. Hence, (3.12)

becomes 

−b · · · 0 0 · · · 0 α2S 0
1

P(1)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · −b 0 · · · 0 α2nS 0
n

P(1)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

η1 · · · 0 −c · · · 0 0 · · · 0
...
. . .

...
...

. . .
...

...
. . .

...

0 · · · η1 0 · · · −c 0 · · · 0
η2 · · · 0 θ + α1

α2
d · · · 0 −d · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · η2 0 · · · θ + α1
α2

d 0 · · · −d


3n×3n

, (3.13)
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k ∈ Nn. For (3.13), we add the row n + 1, multiplied by α1d+α2θ
α2c , to row 2n + 1; row n + 2, multiplied by

α1d+α2θ
α2c , to row 2n + 2; · · · and row 2n, multiplied by α1d+α2θ

α2c , to row 3n. Then, (3.13) is converted to

−b · · · 0 0 · · · 0 α2S 0
1

P(1)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...
. . .

...
...

. . .
...

0 · · · −b 0 · · · 0 α2nS 0
n

P(1)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

η1 · · · 0 −c · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · η1 0 · · · −c 0 · · · 0
α1d+α2θ
α2c η1 + η2 · · · 0 0 · · · 0 −d · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · ·
α1d+α2θ
α2c η1 + η2 0 · · · 0 0 · · · −d


3n×3n

, (3.14)

k ∈ Nn. For (3.14), we add the column n + 1, multiplied by η1
c , to column 1; column n + 2, multiplied

by η1
c , to column 2; · · · and column 2n, multiplied by η1

c , to column n. Then, (3.14) is converted to

−b · · · 0 0 · · · 0 α2S 0
1

P(1)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

...
. . .

...
...
. . .

...
...

. . .
...

0 · · · −b 0 · · · 0 α2nS 0
n

P(1)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

0 · · · 0 −c · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · −c 0 · · · 0
α1d+α2θ
α2c η1 + η2 · · · 0 0 · · · 0 −d · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · ·
α1d+α2θ
α2c η1 + η2 0 · · · 0 0 · · · −d


3n×3n

, (3.15)

k ∈ Nn. Obviously, there are n eigenvalues equaling to −µ − ν1 − γ1 − θ for (3.15). The remaining
eigenvalues are determined by

−b 0 · · · 0 α2S 0
1

P(1)
⟨k⟩ α2S 0

1
2P(2)
⟨k⟩ · · · α2S 0

1
nP(n)
⟨k⟩

0 −b · · · 0 α22S 0
2

P(1)
⟨k⟩ α22S 0

2
2P(2)
⟨k⟩ · · · α22S 0

2
nP(n)
⟨k⟩

...
...

. . .
...

...
...

. . .
...

0 0 · · · −b α2nS 0
n

P(1)
⟨k⟩ α2nS 0

n
2P(2)
⟨k⟩ · · · α2nS 0

n
nP(n)
⟨k⟩

α1d+α2θ
α2c η1 + η2 0 · · · 0 −d 0 · · · 0

0 α1d+α2θ
α2c η1 + η2 · · · 0 0 −d · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · ·
α1d+α2θ
α2c η1 + η2 0 0 · · · −d


2n×2n

,

(3.16)
k ∈ Nn. For (3.16), we add the column n + 2, multiplied by − P(1)

2P(2) , to column n + 1; column n + 3,
multiplied by −2P(2)

3P(3) , to column n + 2; · · · and column 2n, multiplied by − (n−1)P(n−1)
nP(n) , to column 2n − 1.
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Then, (3.16) is converted to

−b 0 · · · 0 0 0 · · · α2S 0
1

nP(n)
⟨k⟩

0 −b · · · 0 0 0 · · · α22S 0
2

nP(n)
⟨k⟩

...
...

. . .
...

...
...
. . .

...

0 0 · · · −b 0 0 · · · α2nS 0
n

nP(n)
⟨k⟩

α1d+α2θ
α2c η1 + η2 0 · · · 0 −d 0 · · · 0

0 α1d+α2θ
α2c η1 + η2 · · · 0 P(1)

2P(2)d −d · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · ·
α1d+α2θ
α2c η1 + η2 0 0 · · · −d


2n×2n

, (3.17)

k ∈ Nn. For (3.17), we add the row 1, multiplied by (α1d+α2θ)η1+α2cη2
α2bc , to row n + 1; row 2, multiplied by

(α1d+α2θ)η1+α2cη2
α2bc , to row n + 2; · · · and row n, multiplied by (α1d+α2θ)η1+α2cη2

α2bc , to row 2n. Then, (3.17) is
converted to 

−b 0 · · · 0 0 0 · · · α2S 0
1

nP(n)
⟨k⟩

0 −b · · · 0 0 0 · · · α22S 0
1

nP(n)
⟨k⟩

...
...
. . .

...
...

...
. . .

...

0 0 · · · −b 0 0 · · · α2nS 0
n

nP(n)
⟨k⟩

0 0 · · · 0 −d 0 · · ·
(α1d+α2θ)η1+α2cη2

bc S 0
1

nP(n)
⟨k⟩

0 0 · · · 0 P(1)
2P(2)d −d · · ·

(α1d+α2θ)η1+α2cη2
bc 2S 0

2
nP(n)
⟨k⟩

...
...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · −d + (α1d+α2θ)η1+α2cη2
bc 2S 0

n
nP(n)
⟨k⟩


2n×2n

, (3.18)

k ∈ Nn. Obviously, there are n eigenvalues equaling to −µ−η1−η2 for (3.18); the remaining eigenvalues
are determined by 

−d 0 · · ·
(α1d+α2θ)η1+α2cη2

bc S 0
1

nP(n)
⟨k⟩

P(1)
2P(2)d −d · · ·

(α1d+α2θ)η1+α2cη2
bc 2S 0

2
nP(n)
⟨k⟩

...
...
. . .

...

0 0 · · · −d + (α1d+α2θ)η1+α2cη2
bc 2S 0

n
nP(n)
⟨k⟩


n×n

, (3.19)

k ∈ Nn. For (3.19), we add the row 1, multiplied by P(1)
2P(2) , to row 2; row 2, multiplied by 2P(2)

3P(3) , to row 3;
· · · and row n − 1, multiplied by (n−1)P(n−1)

nP(n) , to row n. Hence, (3.19) is converted to


−d 0 · · ·

(α1d+α2θ)η1+α2cη2
bc S 0

1
nP(n)
⟨k⟩

0 −d · · ·
(α1d+α2θ)η1+α2cη2

bc

(
P(1)
⟨k⟩ S 0

1 +
2P(2)
⟨k⟩ S 0

2

)
nP(n)
2P(2)

...
...
. . .

...

0 0 · · · −d + (α1d+α2θ)η1+α2cη2
bc

∑n
k=1

(
kS 0

k
kP(k)
⟨k⟩

)


n×n

, (3.20)

k ∈ Nn. Clearly, there are n − 1 eigenvalues equaling to −µ − µ2 − γ2 for (3.20), and the last eigenvalue
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is given by

λ = − d +
(α1d + α2θ)η1 + α2cη2

bc

n∑
k=1

(
kS 0

k
kP(k)
⟨k⟩

)
= − d +

(α2θ + α1d)η1 + α2cη2

bc
A
µ + ν

⟨k2⟩

⟨k⟩

= − (µ + µ2 + γ2) +
[α2θ + α1(µ + µ2 + γ2)]η1 + α2(µ + µ1 + γ1 + θ)η2

(µ + µ1 + γ1 + θ)(µ + η1 + η2)
A
µ + ν

⟨k2⟩

⟨k⟩

=(µ + µ2 + γ2)
{

A[α1(µ + µ2 + γ2)η1 + α2(µ + µ1 + γ1 + θ)η2 + α2η1θ]
(µ + µ1 + γ1 + θ)(µ + η1 + η2)(µ + µ2 + γ2)(µ + ν)

⟨k2⟩

⟨k⟩
− 1

}
=(µ + µ2 + γ2)(R0 − 1).

Hence, all eigenvalues are negative if R0 < 1, and there exists a positive eigenvalue if R0 > 1.
Therefore, the DFE P0 for system (2.4) is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.

Remark 3.2. Define

A∗ =
⟨k⟩
⟨k2⟩

(µ + ν) (µ + µ2 + γ2) (η1 + η2 + µ) (µ + µ1 + θ + γ1)[
α1η1 (µ + µ2 + γ2) + α2 (µ + µ1 + θ + γ1) η2 + α2η1θ

] .
Then, from Theorem 3.3, we can derive the threshold-type dynamics of the DFE of system (2.4) with

respect to A∗, namely, the DFE is locally asymptotically stable if A < A∗, and unstable if A > A∗.

Theorem 3.2. Let

Ag = min
{

(µ + ν)(µ + µ1 + γ1)⟨k⟩
α1⟨k2⟩

,
(µ + ν)(µ + µ2 + γ2)⟨k⟩

α2⟨k2⟩

}
.

If A ≤ Ag, then the DFE P0 for system (2.4) is globally asymptotically stable.

Proof. Let h(x) = x − 1 − ln x. It is easy to verify that the function h(x) is nonnegative. We define the
Lyapunov function

V =
1
⟨k⟩

n∑
k=1

kP(k)
[
S 0

kh
(
S k

S 0
k

)
+ Ek

]
+ Θ1 + Θ2, k ∈ Nn.

Obviously, V ≥ 0, and the equality holds if and only if Ek = Jk = Ik = 0 and S k =
A
µ+ν

for k ∈ Nn.
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Differentiating V with respect to t, we derive

V ′(t) =
1
⟨k⟩

n∑
k=1

kP(k)
[(

1 −
S 0

k

S k

)
S ′k + E′k

]
+ Θ′1 + Θ

′
2

=
1
⟨k⟩

n∑
k=1

kP(k)
[
A − µS k − νS k − µEk − µJk − µ1Jk − γ1Jk − µIk − µ2Ik − γ2Ik

−
S 0

k

S k
(A − α1kS kΘ1 − α2kS kΘ2 − µS k − νS k)

]
=

1
⟨k⟩

n∑
k=1

kP(k)A
(
2 −

S k

S 0
k

−
S 0

k

S k

)
+ α1S 0

k
⟨k2⟩

⟨k⟩
Θ1 + α2S 0

k
⟨k2⟩

⟨k⟩
Θ2 −

1
⟨k⟩

n∑
k=1

kP(k)µEk

− (µ + µ1 + γ1)Θ1 − (µ + µ2 + γ2)Θ2

=
1
⟨k⟩

n∑
k=1

kP(k)A
(
2 −

S k

S 0
k

−
S 0

k

S k

)
+

[
α1A
µ + ν

⟨k2⟩

⟨k⟩
− (µ + µ1 + γ1)

]
Θ1

+

[
α2A
µ + ν

⟨k2⟩

⟨k⟩
− (µ + µ2 + γ2)

]
Θ2 −

1
⟨k⟩

n∑
k=1

kP(k)µEk.

Then, V ′(t) ≤ 0 is guaranteed if A ≤ Ag, and the equality holds if and only if Ek = Jk = Ik = 0 and
S k =

A
µ+ν

, k ∈ Nn. Hence, by LaSalle’s invariance principle [26], P0 is globally asymptotically stable.
This completes the proof.

Remark 3.3. Note that A < A∗ ⇔ R0 < 1. A direct computation yields A∗ > Ag. Then, we have

A ≤ Ag ⇒ R0 < 1, R0 < 1⇏ A ≤ Ag.

Hence, condition A ≤ Ag is stronger than condition R0 < 1.

For the global asymptotic stability of EE, we assume that

α1 = α2, µ1 = µ2, γ1 = γ2. (3.21)

Consequently, system (2.4) becomes
S ′k(t) = A − αkS kΘ − µS k − νS k,

E′k(t) = αkS kΘ − µEk − ηEk,

L′k(t) = ηEk − µLk − µ1Lk − γ1Lk,

(3.22)

where α = α1 = α2, η = η1 + η2, Θ = Θ1 + Θ2, Lk = Ik + Jk. And, the invariant set for system (3.22) is

Ω̃ =

{
(S k, Ek, Lk) ∈ R3n

+ : 0 ≤ S k + Ek + Lk ≤
A
µ
, k ∈ Nn

}
.

The EE of system (3.22) is P̃∗ = (S ∗k, E
∗
k , L

∗
k), k ∈ Nn, where

S ∗k =
A

αkΘ + µ + ν
, E∗k =

AαkΘ
(µ + η)(αkΘ + µ + ν)

, L∗k =
AηαkΘ

(µ + η)(µ + µ1 + γ1)(αkΘ + µ + ν)
.
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Owing to (3.21), we obtain the basic reproduction number

R0 =
⟨k2⟩

⟨k⟩
Aαη

(µ + ν) (µ + µ1 + γ1) (η + µ)
.

Theorem 3.3. The EE P̃∗ of system (3.22) is globally asymptotically stable in Ω̃ if R0 > 1 and the
matrix

(
αkk′P(k′)
⟨k⟩

)
n×n
, k = 1, 2, · · · , n, k′ = 1, 2, · · · , n is irreducible.

Proof. Define

Vk(t) = S ∗kh
(
S k

S ∗k

)
+ E∗kh

(
Ek

E∗k

)
+
µ + η

η
L∗kh

(
Lk

L∗k

)
.

Hence, Vk ≥ 0, and the equality holds if and only if S k = S ∗k, Ek = E∗k and Lk = L∗k. Differentiating
Vk, we obtain

V ′k(t) =
(
1 −

S ∗k
S k

)
S ′k +

(
1 −

E∗k
Ek

)
E′k +

µ + η

η

(
1 −

L∗k
Lk

)
L′k

=

(
1 −

S ∗k
S k

)
(A − αkS kΘ − µS k − νS k) +

(
1 −

E∗k
Ek

)
(αkS kΘ − µEk − ηEk)

+
µ + η

η

(
1 −

L∗k
Lk

)
(ηEk − µLk − µ1Lk − γ1Lk)

=

(
1 −

S ∗k
S k

)
(αkS ∗kΘ

∗ + µS ∗k + νS
∗
k − αkS kΘ − µS k − νS k) +

(
1 −

E∗k
Ek

)
(αkS kΘ −

αkS ∗kΘ
∗

E∗k
Ek)

+
µ + η

η

(
1 −

L∗k
Lk

) (
ηEk −

E∗k
L∗k

Lk

)
=S ∗k(µ + ν)(1 −

S k

S ∗k
)
(
1 −

S ∗k
S k

)
+

(
1 −

S ∗k
S k

)
(αkS ∗kΘ

∗ − αkS kΘ) +
(
1 −

E∗k
Ek

) (
αkS kΘ −

αkS ∗kΘ
∗

E∗k
Ek

)
+
αkS ∗kΘ

∗

ηE∗k

(
1 −

L∗k
Lk

) (
ηEk −

ηE∗k
L∗k

Lk

)
=S ∗k(µ + ν)

(
2 −

S k

S ∗k
−

S ∗k
S k

)
+ αk

[
3S ∗kΘ

∗ −
(S ∗k)2Θ∗

S k
+ S ∗kΘ −

S kE∗kΘ
Ek

−
Lk

L∗k
S ∗kΘ

∗ −
L∗kEk

LkE∗k
S ∗kΘ

∗

]
=S ∗k(µ + ν)

(
2 −

S k

S ∗k
−

S ∗k
S k

)
+ αkS ∗k

n∑
k′=1

k′P(k′)L∗k′
⟨k⟩

(
3 −

S ∗k
S k
+

Lk′

L∗k′
−

S kE∗k Lk′

S ∗kEkL∗k′
−

Lk

L∗k
−

L∗kEk

LkE∗k

)
.

Let akk′ = αkS ∗k
∑n

k′=1
k′P(k′)L∗k′
⟨k⟩ , Gk(Lk) = − Lk

L∗k
+ ln Lk

L∗k
and H(x) = −h(x) = 1 + ln x − x. We have

Fkk′ = Gk(Lk) −Gk′(Lk′) + H
(
S ∗k
S k

)
+ H

(
EkL∗k
E∗k Lk

)
+ H

(
S kLk′E∗k
S ∗kL∗k′Ek

)
≤ Gk(Lk) −Gk′(Lk′).

Therefore, akk′ , Gk, Fkk′ and Vk satisfy the assumptions of Theorem 3.1 and Corollary 3.3 in
Ref. [27]. For the Lyapunov function V∗ =

∑n
k=1 ckVk, we have that dV∗

dt ≤ 0 for
(S 1, E1, L1, S 2, E2, L2, · · · , S n, En, Ln) ∈ Ω̃. We can show that the only compact invariant set dV∗

dt = 0 is
a singleton P̃∗. By LaSalle’s invariance principle, we conclude that P̃∗ is globally asymptotically
stable in Ω̃ if R0 > 1. This completes the proof.
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Remark 3.4. According to Theorem 3.5, the EE will be persistent if R0 > 1 and the matrix
(
αkk′P(k′)
⟨k⟩

)
n×n

is irreducible for k, k′ ∈ Nn. To compare the threshold-type dynamics with respect to the reproduction
number, we further need the irreducible assumption. This restriction is just a technical requirement in
computation.

4. Simulations

In this section, we present numerical simulations to verify our theoretical results. We set the initial
values S k(0) ∈ (0.5, 0.6), Ek(0) ∈ (0, 0.1), Jk(0) ∈ (0, 0.1) and Ik(0) ∈ (0, 0.1) for k ∈ Nn in all
simulations. We consider a scale-free network with a degree distribution of P(k) = (γ − 1)mγ−1k−γ,
where m is the smallest degree of node in a scale-free network; γ stands for the power law exponent.
Here, we applied m = 2, γ = 3 and Nn = {1, 2, · · · , 100}. Consequently, we obtained that ⟨k⟩ = 6.5399
and ⟨k2⟩ = 20.7495.
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Figure 3. Time evolution of S k(t), Ek(t), Ik(t) and Jk(t) for k = 20, 40, 60, 80, 100 with a fixed
recruitment rate.

In Figure 3, the parameters were selected as A = 0.02, µ1 = 0.01, µ2 = 0.02, η1 = 0.4, η2 = 0.2,
γ1 = 0.4, γ2 = 0.6, ν = 0.01, α1 = 0.02, α2 = 0.04, θ = 0.02 and µ = 0.01. Subsequently, we have
that R0 = 0.1666 < 1, and it follows from Theorem 3.1, i.e., that the DFE is locally asymptotically
stable. Moreover, according to Theorem 3.2, we have that Ag = 0.0993, which implies that A < Ag.
This means that the DFE is globally asymptotically stable according to our theoretical analysis. From
Figure 3, it can be seen that S k(t)→ S 0

k(t) = 1, and Ek(t), Jk(t), Ik(t), Θ1(t), Θ2(t)→ 0 as t → ∞, where
k = 20, 40, 60, 80, 100, respectively. This supports the stability of the DFE.
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Figure 4. Time evolution of S k(t), Ek(t), Ik(t) and Jk(t) for k = 20, 40, 60, 80, 100 with a fixed
recruitment rate.
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Figure 5. Time evolution of S k(t), Ek(t), Ik(t) and Jk(t) for k = 20, 40, 60, 80, 100 with
randomly selected recruitment rates.
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In Figure 4, the parameters were selected as A = 0.02, µ1 = µ2 = 0.01, η1 = 0.4, η2 = 0.2,
γ1 = γ2 = 0.4, ν = 0.01, α1 = α2 = 0.2, θ = 0.02 and µ = 0.01. Subsequently, we have that
R0 = 1.4861 > 1, and it follows from Theorem 3.3 that the endemic equilibrium P̃∗ of system (3.22) is
globally asymptotically stable. Namely, the disease will be endemic. Figure 4 shows that S k(t), Ek(t),
Jk(t), Ik(t), Θ1(t) and Θ2(t) will persist for a sufficiently large t, where k = 20, 40, 60, 80, 100. This
supports the stability of the EE.

In Figures 5 and 6, we consider the different recruitment rates in groups with different degrees. Let
Ak be the recruitment rate of the group with degree k. The parameters were selected to be the same as
those applied in Figures 3, and Ak was randomly selected in (0, Ag] for k ∈ Nn, where Ag = 0.0993.
The simulation results are shown in Figures 5. It can be seen that S k(t) will persist, and Ek(t), Jk(t),
Ik(t), Θ1(t), Θ2(t) → 0 for a sufficiently large t and k = 20, 40, 60, 80, 100. Therefore, it seems that, as
long as all values of Ak are below the threshold for k ∈ Nn, the disease will die out.
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Figure 6. Time evolution of S k(t), Ek(t), Ik(t) and Jk(t) for k = 20, 40, 60, 80, 100 with
randomly selected recruitment rates.

In Figures 6, the parameters were selected to be the same as those applied in Figures 4 and Ak was
randomly chosen in (A∗, A0] for k ∈ Nn, where A∗ = 0.0135 and A0 = 0.6710. It can be seen that S k(t),
Ek(t), Jk(t), Ik(t), Θ1(t) and Θ2(t) will persist for a sufficiently large t, where k = 20, 40, 60, 80, 100.
Therefore, it seems that, as long as all values of Ak are above the threshold for k ∈ Nn, the disease will
also be endemic.

In Figures 7 and 8, we show the time evolution diagrams for Θ1 and Θ2 with respect to t under
two different population influx patterns, i.e., the fixed population inflow and the random population
influx. The fixed population influx pattern means that the recruitment rates of different groups with
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different degrees are the same, while the random population influx pattern means that the recruitment
rates of different groups are different. We applied random values to depict random recruitment rates in
the simulations. Note that the stability of the DFE and EE depends on the strength of the relationship
between the recruitment rate and threshold values Ag and A∗. Therefore, once the other parameters are
fixed, we can obtain the value ranges for A and Ak, k ∈ Nn by taking Ag and A∗ into account. Figure 7
(left) (Figure 8 (left)) indicates that, if A ≤ Ag (Ak ≤ Ag, k ∈ Nn), the disease will be extinct, and Figure
5 (right) (Figure 8 (right)) indicates, that if A > Ag (Ak > A∗, k ∈ Nn), the disease will be endemic. This
is in line with our expectations.
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Figure 7. Time evolution of Θ1(t) and Θ2(t) with a fixed recruitment rate.
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Figure 8. Time evolution of Θ1(t) and Θ2(t) with randomly selected recruitment rates.

In Figures 9 and 10, we consider the impact of the network structure on the dynamics, and the
parameters were fixed as A = 0.1, µ1 = µ2 = 0.01, η1 = 0.4, η2 = 0.2, γ1 = γ2 = 0.4, ν = 0.01,
α1 = α2 = 0.02, θ = 0.02 and µ = 0.01. In Figure 9, we consider scale-free networks with the degree
distribution P(k) = (γ − 1)mγ−1k−γ for k ∈ Nn, m = 2 and γ = 2.1, 2.3, 2.5, 2.7, 2.9, respectively.
In Figure 10, we consider Poisson networks with the degree distribution P(k) = e−cck/k! for k ∈ Nn

and c = 3, 6, 9, 12, 15, respectively. Obviously, we can observe that Θ1(t) and Θ2(t) tend to 0 for a
sufficiently large t when γ is large in Figure 9. In contrast, Θ1(t) and Θ2(t) approach 0 for a sufficiently
large t when c is small in Figure 10. In summary, the network structure does affect the spreading
dynamics.
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Figure 9. Time evolution of Θ1(t) and Θ2(t) in scale-free networks with degree distribution
P(k) = (γ − 1)mγ−1k−γ for k ∈ Nn, m = 2 and γ = 2.1, 2.3, 2.5, 2.7, 2.9.
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Figure 10. Time evolution of Θ1(t) and Θ2(t) in Poisson networks with degree distribution
P(k) = e−cck/k! for k ∈ Nn and c = 3, 6, 9, 12, 15.

5. Conclusions

Complex networks, such as completely random networks [28], small-world networks [29] and scale-
free and Poisson networks [30], have been frequently used to model the spread of an epidemic disease.
Affected by occupation and geographical location, the contact among the population cannot always
be modeled as a uniform collision for COVID-19; also, the epidemic disease transmission is usually
heterogeneous. In order to investigate the effect of contact heterogeneity, we proposed an endemic
mathematical model that incorporates direct immunity by vaccination, as well as the shift from the
asymptomatic to the symptomatic subclass, by applying the idea of a compartmental model in a scale-
free network. With the help of eigenvalues of the Jacobian matrix, the Lyapunov function method and
LaSalle’s invariance principle, we evaluated the dynamics of the proposed model. The results were
obtained as follows:
• If R0 < 1 or A < A∗, the DFE is locally asymptotically stable.
• If A ≤ Ag, the DFE is globally asymptotically stable.
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• If R0 > 1 and the matrix
(
αkk′P(k′)
⟨k⟩

)
n×n

, k = 1, 2, · · · , n, k′ = 1, 2, · · · , n is irreducible, then the EE
of (2.4) with α1 = α2, µ1 = µ2 and γ1 = γ2 is globally asymptotically stable.

In the past years, ordinary differential equation compartmental models have been widely applied to
describe the spread of COVID-19 (see [1–9] for example). Taking contact heterogeneity into account,
we have generalized the results of the dynamics for the ordinary differential equations to the
networks. We also performed simulations to validate our theoretical results. In the simulations, we
mainly show two different scenarios, namely, disease persistence and disease disappearance. So, we
selected two different sets of data to simulate. Moreover, we found that different subgroups with
different degrees may have different recruitment rates. Again, we selected two more different sets of
data to simulate. Based on the result presented in this paper, we know that the recruitment is crucial.
Hence, the investigation of the recruitment rates in different groups is an important direction that is
significant to better connect with reality.

The paper indicates that the disease may be under control if R0 < 1. So, we can adjust the values
of parameters to reduce the value of R0. However, some values of parameters, including the natural
mortality rate, transmission rate, recovery rate, disease mortality rate, incubation period duration and
the rate of shift from the asymptomatic to the symptomatic group, are inherent attributes of diseases
or nature that cannot be changed in the short term. Once these values are determined, we can control
the spread of the disease by adjusting the value of the vaccination rate ν and/or the recruitment rate
A. From the result of this paper, we see that accelerating vaccination and reducing travel and contact
are appropriate strategies for controlling the spread of the disease. Our study can give theoretical
perspective that can facilitate understanding of the transmission mechanism for COVID-19, and the
result may provide some reasonable suggestions that can be used by the policy-makers to control the
disease.
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