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Abstract: In this paper, a distributed machine-learning strategy, i.e., federated learning (FL), is used
to enable the artificial intelligence (AI) model to be trained on dispersed data sources. The paper is
specifically meant to forecast cryptocurrency prices, where a long short-term memory (LSTM)-based
FL network is used. The proposed framework, i.e., F-LSTM utilizes FL, due to which different devices
are trained on distributed databases that protect the user privacy. Sensitive data is protected by staying
private and secure by sharing only model parameters (weights) with the central server. To assess
the effectiveness of F-LSTM, we ran different empirical simulations. Our findings demonstrate that
F-LSTM outperforms conventional approaches and machine learning techniques by achieving a loss
minimal of 2.3 × 10−4. Furthermore, the F-LSTM uses substantially less memory and roughly half the
CPU compared to a solely centralized approach. In comparison to a centralized model, the F-LSTM
requires significantly less time for training and computing. The use of both FL and LSTM networks
is responsible for the higher performance of our suggested model (F-LSTM). In terms of data privacy
and accuracy, F-LSTM addresses the shortcomings of conventional approaches and machine learning
models, and it has the potential to transform the field of cryptocurrency price prediction.
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1. Introduction

The nation’s economy is essential to contemporary society that impacts people’s lives in numerous
ways, such as employability, goods and service costs. The financial market is a crucial part of the
economy, where investors purchase and sell different financial instruments, including stocks, bonds
and cryptocurrencies [1]. Cryptocurrencies have become a popular investment choice for traders and
investors due to their astounding volatility and the possibility of making big returns. Cryptocurrencies
like Bitcoin and Ethereum have seen substantial price swings due to their decentralized nature and
constrained supply, providing chances for traders to profit from market moves. Many people have
been drawn to learn more about the world of cryptocurrencies as a way to diversify their investment
portfolios due to the appeal of large returns in a relatively short amount of time.

The financial market has various stakeholders, including traders, investors, regulators and financial
institutions. The cryptocurrency market is extremely dynamic, where market sentiments, news and
events are few variables that can affect cryptocurrency’s price. Since, the cryptocurrency prices are so
erratic, it is difficult to predict it with some degree of certainty [2]. As a result, traders and investors
frequently use methods including technical analysis, fundamental research and market trends to
forecast cryptocurrency prices. However, technical analysis and market trends are the foundation of
conventional methods for forecasting cryptocurrency values [3, 4]. To forecast the future trends of
cryptocurrency prices, the technical analysis examines historical market data, i.e., price and volume.
This strategy makes the assumption that previous market data can provide insight into potential
market developments. Traditional approaches have several shortcomings that reduce their accuracy,
and for instance, technical analysis does not take into consideration fundamental variables like news,
events and market sentiment that can impact cryptocurrency prices [5]. Similarly, market patterns can
unexpectedly shift, making predicting prices difficult. Thus, conventional approaches could not yield
accurate predictions, particularly in extremely volatile markets like the one for cryptocurrency.

Machine learning techniques can be used to increase the precision of price predictions for
cryptocurrencies [6–9]. Machine learning models analyze the historical market data (price and
volume) to forecast future trends and identify intricate data patterns that conventional approaches
could miss. Machine learning models do, however, have several drawbacks, such as overfitting and
data bias. The accuracy of predictions may be impacted by these restrictions, particularly if the
training data is sparse or biased. Deep learning techniques, particularly the LSTM model, have
demonstrated promise in predicting cryptocurrencies’ prices to overcome them [10, 11]. Traditional
machine learning models might be unable to capture the temporal dependencies in the data that the
LSTM model can do. LSTM model can also handle the high-dimensional, non-linear data that
characterizes financial markets. However, since LSTM models need a lot of training data, centralized
systems might not have it.

The aforementioned issues can be resolved using federated learning. It is also a remedy for the
issue of data privacy in centralized systems. Model training on decentralized data sources is made
possible using FL without compromising the data privacy [12]. In this, the model is trained using
local data sources, and only the model parameters (weights) (not the raw data) are shared. In order to
increase accuracy while maintaining data privacy, we present a federated learning-based LSTM model
for cryptocurrency price prediction in this study. The suggested approach addresses the shortcomings
of conventional and machine learning techniques while utilizing the benefits of LSTM models. With
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the LSTM models being trained locally on remote devices with incremental projections of data over
time, the models increase the accuracy and precision in local devices, and through the utilization of a
FL framework, the global model adapts to the incrementally learned weights. The proposed
framework provides a solution to higher optimization and privacy preservation. The modular
framework overall thus achieves a significant decrease in loss with time using simple FedAvg,
making the system efficient, optimized, privacy preserved and secured. The loss after global iterative
training is at the minimum of 2.3 × 10−4 without any data transfer to a centralized server.
Furthermore, the proposed model operates at an exceptionally low memory and CPU cost and gives
highly accurate predictions.

1.1. Research contributions

The following are the contributions of this paper.

• We proposed a unique Federated Learning-based LSTM model for cryptocurrency price
prediction that improves prediction accuracy and gives an almost negligible loss compared to
traditional and machine learning methods.
• A significant outcome of this paper on FL is the ability to train models on decentralized data

sources without compromising data privacy. The central server receives no raw data from the
proposed model, only its model parameters (weights). Increased model openness, accountability
and audibility are also made possible by the decentralized approach.
• Another significant contribution is that the suggested model can be expanded while retaining

a high level of accuracy to accommodate a large number of participants. The model may be
trained on many devices at once thanks to federated learning, which enables model training on
decentralized data sources. This strategy can shorten the training period, increase the model’s
accuracy and diversify the training data.
• The Proposed framework Federated Integrated LSTM model F-LSTM presents a highly efficient

system for forecasting prices without actually training on the original set of sequential data. The
Framework works in a dynamic environment for both discrete and sequential data forms.
Through the realization of the incremental learning technique, the model works in real-time for
continuously evolving data with a constant and steady loss of 2.3 × 10−4.

1.2. Organization

The arrangement of the paper is as follows. Section 2 defines the novelty in our proposed
framework. The relevant works in the area of price prediction are described in Section 3. Section 4
comprises the system Model and problem formulation for the same. The proposed F-LSTM
framework for cryptocurrency price predictions is presented in Section 5. The focus of Section 6 is on
the outcome and analysis of the suggested framework. The paper is concluded in Section 7.

2. Novelty

In this study, we present a novel sequential framework that deviates from the usual predictive
abilities connected with conventional LSTM models. We are not primarily concerned with making
predictions as is done in the past as presented in [13] and [14]. Instead, we suggest a novel strategy
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designed to give consumers a computationally effective substitute as described in [12], particularly for
local device training. Our system is specifically made to drastically cut down on overall computing
costs, outperforming current state-of-the-art models in this regard.

Our framework’s ability to strike a careful balance between maintaining the predictive power of
individual models and streamlining the training of a global model is one of its fundamental advances.
Notably, this optimization is accomplished without requiring repeated data access. In summary, while
we effectively adjust the weights of the global model, our architecture ensures that the predictions
made by individual models remain intact. This is done without having to access often and manipulate
huge amounts of data or keep up a centralized data repository.

The proposed framework is meticulously built to comply with the highest optimization
requirements, producing a worldwide model with remarkable precision as a result. Our method is
unique because it can do rid with the necessity for centralized data storage and comprehensive data
access. With the help of this special feature, distributed sequential learning will be able to explore
new and intriguing directions without having to make significant structural changes.

3. State-of-the-art works

This section discusses the related work carried out by researchers in the field of stock and
cryptocurrency price prediction. Numerous studies have explored different methodologies and
approaches to forecast prices, aiming to provide valuable insights for decision-making, risk
management and investment strategies. Traditional price prediction methods use machine learning
and deep learning methodologies to predict prices based on historical data. For instance,
reference [15] presented a transformer-based attention mechanism for stock price prediction. The
attention mechanism helps the model to focus on the most significant portions of the input sequence
when generating the output sequence. This results in the extraction of the most important features.
However, training such a framework requires huge computational resources and high training time.

Further, references [16] and [17] depicted frameworks developed on hybrid models, combining
multiple machine and deep learning techniques. The authors in [16] proposed a FinBERT-LSTM deep
learning-based stock price prediction model with news sentiment analysis. It gives an accuracy
of 0.9859 for the NASDAQ-100 index stock while giving a remarkably low mean absolute percentage
error of 0.014. However, this framework is overly dependent on the quality of the FinBERT model
and requires extensive parameter tuning for optimal results on varied datasets. On the other hand,
reference [17] proposed a hybrid model that encapsulates attention-based convolutional neural
network (CNN)-LSTM and XGBoost for stock price prediction. The hybrid nature of the model
improved robustness and generalizability. However, the working of their framework requires high
computing power, and the combination of the attention mechanism and XGBoost restricts the
interpretability of the framework to a certain extent.

Later, reference [12] presented a federated learning-enabled predictive analysis model to forecast
stock market trends. Federated learning-based random forest and support vector machine (SVM)
models are used in its development. Random forest gave a minimum squared error of 0.021, while the
SVM model, when deployed, gave a minimum squared error of 37.596. FL permits
privacy-preserving and distributed learning. This led to its ability to leverage diverse data sources.
However, using random forest and SVM leads to limited accuracy and a high error score. Better
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algorithms like LSTM or Bi-directional LSTM can boost the prediction accuracy and minimize the
loss. The authors of [18] presented a Bi-LSTM network to predict the price of Bitcoin. It is a
recurrent neural network consisting of two LSTM layers processing the input sequence in both
forward and backward directions to capture long-term dependencies in sequential data. The Bi-LSTM
Network captures dependencies in both forward and backward directions, resulting in a good RMSE.
However, it is likely to suffer from overfitting and cannot handle anomalies in the market [19].

Furthermore, reference [20] proposed an integrated approach using hybrid LSTM-ELM for Bitcoin
price forecasting. LSTM and ELM algorithms are combined to create a hybrid LSTM-ELM model
(Long Short-Term Memory - Extreme Learning Machine) to increase the precision of time-series
predictions. The model’s LSTM layer captures the temporal dependencies in the input sequence, and
the ELM layer is employed as a quick and effective way to train the network’s output layer. This
results in high accuracy (0.9397 and 0.9469 in two low volatility periods and 0.9328, 0.9004
and 0.9525 in three high volatility periods), along with minimal error due to the high effectiveness of
the hybrid model. However, this model is likely to suffer from overfitting due to its complexity and
requires a large amount of historical data to be trained effectively. After this, reference [21] presented
a CNN-LSTM Model for cryptocurrency price forecasting. The dual algorithm nature of this model
allows it to capture both short-term and long-term dependencies in the input data to maintain high
accuracy and precision. Another advantage of this model is that it can handle sequential and
non-sequential data. Additionally, the framework has been evaluated on a variety of evaluation
metrics. However, it proves to be very computationally expensive, and the effectiveness of predictions
may differ for varying cryptocurrencies. Finally, reference [22] gives an LSTM-based Bitcoin price
prediction framework. An optimized LSTM is used, which gives a phenomenally low error
of 288.5989. Another merit of using LSTM is that it can learn to forget or retain information
selectively. However, the naı̈ve LSTM model is not generalizable for other cryptocurrencies and
improved accuracy and lower error can be achieved if combined with other techniques.

There are some methods that can be used to predict stock market prices, which are described
by [13]. This study of deep learning frameworks concisely describes several deep learning
frameworks that can be used to predict stock market trends. Some of them are Large language models
(LLM), Time series forecasting, deep neural networks and feature engineering for identifying relevant
features. Reference [14] reviews a wide variety of machine learning and deep learning techniques for
predicting the stock market prices by utilizing the power of fundamental indicators such as PE ratio
and moving averages, which are effective in the long run but come with the factor of uncertainty to
forecast the price action with minimum loss.

In the relevant works mentioned above, different methods for price prediction employing machine
learning techniques were highlighted. However, these methods have inherent drawbacks and are
frequently insufficient for various reasons, including high computational demands, a lack of privacy
and centralization difficulties. We provide an LSTM-based decentralized, federated learning strategy
that eliminates several drawbacks. Our suggested model uses fewer computational resources and
achieves a smaller loss in time-series prediction tasks, making it a more effective and
privacy-preserving option. Overall, our suggested model overcomes many of the shortcomings of
previous approaches and provides a promising solution for time-series prediction applications.
Table 1 displays the relative comparison between the state-of-the-art works and the proposed work.

Electronic Research Archive Volume 31, Issue 10, 6525–6551.



6530

Table 1. Comparative analysis of the proposed framework with the existing state-of-the-art
schemes for cryptocurrency price prediction.

Authors Year Description Algorithms Used Merits Demerits
Ardakani
et al. [12]

2023 Uses SVM as a base model for identifying and
recognizing patterns while integrating the base
model with federated learning for decentralizing
the learning model

SVM integrated with
Federated Learning

Enables privacy-preserving;
can leverage diverse data
sources

Poor accuracy/loss

Jiang et al.
[13]

2021 Presents several state-of-the-art models and
frameworks that are proficient and widely used
in forecasting sequences and prices.

ARIMA, LLM,
GARCH

Develops a concise
understanding of the
approaches that can be
used in a synergistic way to
predict market prices

The study of the
models is clear, but
use in a combined
manner is not
explained

An et al.
[14]

2022 Proposes various machine learning and deep
learning procedures to predict stock market price
actions.

Regression,
Classification

A concise approach for
versatile use of algorithms

No detailed
description of models

Zhang et
al. [15]

2022 Transformers used for learning the sequences
of the prices in the financial market data and
accurately regenerate the useful features and
patterns in the sequences.

Transformer Encoder-
based Attention
Network (TEANet)
framework

Effective feature capturing Computationally
expensive; high
training time

Halder
[16]

2022 Deep LSTM model integrated with pretrained
language model with the add-on of sentiment
analysis for reducing the randomness and
capable of capturing nuanced languages and
context specifications.

FinBERT-LSTM Good accuracy (0.9859);
two technologies

Overly dependence on
FinBERT; extensive
parameter tuning

Shi et al.
[17]

2021 Combines CNN-LSTM and XGBoost by
catching important portions of time series
data using an attention-based mechanism by
integrating a hybrid approach of CNN learning
and sequence learning patterns.

CNN-LSTM and
XGBoost hybrid
model

Robust; generalizable; able
to incorporate multiple
sources of data

Computationally
expensive; limited
model interpretability

Nithyakani
et al. [18]

2021 Uses Bi-LSTM model to capture both past and
future dependencies in the sequential data for
predicting the prices if Bitcoin

Bi-LSTM Captures dependencies in
both forward and backward
directions(past and future)

Overfitting; flawed
anomaly handling

Luo et al.
[20]

2022 Integrates LSTM with ELM machine learning
models for predictions and forecasting of input
sequences where the ELM algorithms enhance
the predictions made by LSTM

Hybrid LSTM-ELM high accuracy (0.9512);
effective model

Overfitting; requires a
large amount of data
for effective training

Livieris et
al. [21]

2021 Uses image representation of historical prices
of cryptocurrency for forecasting future prices
by integrating CNN with LSTM using a sliding
window approach by utilizing both spatial and
temporal features

CNN and LSTM minimal error (MAE is
0.005 and RMSE is 0.007)
& Precision; handles
both sequential and non-
sequential data

Computationally
expensive; tentative
overfitting

Ferdiansyah
et al. [22]

2019 Uses normal LSTM model for forecasting the
Bitcoin prices on the sequential data of Yahoo
Finance

LSTM Very low error (RMSE is
288.59); can selectively
forget or retain information

Generalizability issues

Proposed
framework

2023 F-LSTM: Federated Learning-based LSTM
Framework integrated with Incremental learning
on the sequential data for cryptocurrency price
prediction

Federated Learning-
based LSTM
framework

high precision; minimal
error(MSE is 0.0002);
decentralization; enhanced
privacy and security; high
generalizability of model

-

4. System model and problem formulation

This section presents the system model and problem formulation for the proposed F-LSTM model.
In the everlasting global economy of randomness and rapid changes, the most variably-correlated
factor for forecasting the trends of the current economy is the stock market trends. These trends
efficiently describe the economic situation of a country or a group of organizations by weighted
aggregation of independent factors regressed together. Many fellow researchers made great attempts
to forecast the trends of stock markets and have been successful to attain the closest accuracy possible
through the use of a heavily trained transformers model. This accuracy is attained at a heavy cost of
the vast utilization of computational resources embedded together for the training over the large
dataset. The proposed architecture aims to present an optimized solution by solving both the
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optimization and scalability problems of the previously trained models. In the proposed system, the
client-server is established as individual devices {C1, ...,Ci, ...,C j, ...,Cm} ∈ C where the client is
referred to as a diversified entity which can be described as an individual or an organization with
individual data consisting of respective stock market fluctuations upon a myriad number of stocks.
The set {T1, ...,Ti, ...,T j, ...,Tm} ∈ T represents the trends or fluctuations in the value of these stocks.
These trends are monitored by LSTM models, {L1, ..., Li, ..., L j, ..., Lm} ∈ L, which are deployed by
different investors or financial institutions.

Equations (4.1) and (4.2) represent a stock that can exhibit one or more trends.

∃Ci ∈ C
has
−−→ Ti ∈ T ⇔ Ci,Ti (4.1)

∃Ci
has
−−→ T2,T3, ....,T j ∈ T (4.2)

In Eqs (4.3) and (4.4), if a cryptocurrency exhibits a trend, it is categorized as an “active
cryptocurrency”; otherwise, it is a “dormant cryptocurrency”.

Ci ∩ Ti , ∅ → ActiveClient (4.3)

Ci ∩ Ti = ∅ → DormantClient (4.4)

Upon successful categorization of a cryptocurrency trend’s occurrence on a client-server, respective
clients are characterized as active or dormant. The LSTM model learns from the historical data and
makes forecasts upon the training from the input stock data, and the global FL model identifies the
active client weights and dormant client weights upon applying the Federated Averaging algorithm to
each client server transition.

The system uses FL to solve the problem of scalability. With federated learning, each LSTM model
at the edge node (investor or financial institution) is trained on its local data. The models then send
their learnings (model’s updated weights) to a central server, where they are aggregated to form a
global model weight. These global model weights are then sent back to the edge nodes to reset the
individually trained weights of the nodes, and the process iteratively optimizes the proposed approach.
Furthermore, this approach allows for training on a much larger dataset than what a single LSTM
model could handle, leading to more accurate and robust predictions.

The optimization problem is addressed by tuning the LSTM models and the FL process to maximize
the accuracy of the predictions while minimizing the computational and communication costs. This
involves optimizing the number of layers in the LSTM models, the number of iterations in the FL
process and the updated model weights.

5. The proposed framework

This section describes the proposed system model architecture Ψ (as shown in Figure 1) for
forecasting the prices of a particular cryptocurrency, Ethereum, upon training on the determined span
of years. The framework is divided into 3 distinct layers, i.e., data, AI and application layers. The
functionality of each layer is described as follows.
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5.1. Data layer

The data layer includes several financial markets {M1, ...,Mi, ...,M j, ...,Mm} ∈ M that can be used
to track market activity and record stock price fluctuations. These markets distribute real-time stock
prices, which the suggested framework (LSTM model) then uses to forecast the future occurrences of
trends. From the price data, it is to determine whether any significant price movement for the stocks
{S 1, ..., S i, ..., S j, ..., S m} ∈ S will occur and classify them as bullish (price likely to rise) or bearish
(price likely to fall). This is determined by whether or not the stock exhibits any specific trend
{T1, ...,Ti, ...,T j, ...,Tm} ∈ T in the price data. The data is captured in the form of a time series and is
further forwarded to the AI layer, which makes overall predictions. This is done through the FL
process, where the LSTM model is trained across multiple decentralized edge devices, each
corresponding to a particular financial market. The model learns from the local data on each device,
and the global model is updated by aggregating these local updates by the data available on the
local devices.

5.2. Artificial intelligence layer

The AI layer consists of multiple LSTM models {L1, ..., Li, ..., L j, ..., Lm} ∈ L, each corresponding
to a specific financial market within the set {M1, ...,Mi, ...,M j, ...,Mm} ∈ M. These LSTM models are
utilized to predict stock price trends and movements for each stock {S 1, ..., S i, ..., S j, ..., S m} ∈ S in the
respective financial market. The stocks are distributed among the set of clients
{C1, ...,Ci, ...,C j, ...,Cm} ∈ C. Each client has LSTM models Li ∈ L integrated within the system.
These models are trained on a particular stock S i ∈ S tuned to identify the trend Ti ∈ T in the data.
Further the respective weights {W1, ...,Wi, ...,W j, ...,Wm} ∈ W of each model are sent to the global
server for aggregation and sent back to a cluster of distributed clients. In a bullish trend, the stock
price is expected to rise, while in a bearish trend, it is expected to fall. Equations (5.1) and (5.2)
represent the LSTM model’s capability to classify a stock’s trend based on the time-series data.

LS T M(Li)→ S i ∩ Ti , ∅ → Bullish (5.1)

LS T M(Li)→ S i ∩ Ti = ∅ → Bearish (5.2)

The LSTM models are trained using federated learning. The learning process takes place across a
cluster of decentralized edge devices, each corresponding to a specific financial market. Each LSTM
model learns from the local time-series data, after which the weight updates are aggregated to form the
global model weights. These global model weights are then sent back to the local LSTM cluster edges,
leading to an improved second round of learning. This process continues in iterative cycles, leading to
progressively more accurate predictions over time. The AI Layer thus not only performs the predictive
analysis but also ensures the preservation of privacy along with scaling the model over distributed
systems and optimizing the performance throughout each iteration by the use of FL systems. The FL
approach enables the AI layer to handle large-scale data from multiple financial markets without the
need for centralization, making it a powerful tool for predicting stock market trends.

5.2.1. Dataset description

The dataset used to train the F-LSTM model is obtained from the Yahoo Finance API, which
provides large-scale historical data of many organizations and global market trends [23]. It
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conventionally comprises of 7 attributes Open, High, Low, Close, Volume, Dividend, S tock S plit.
The time frame length taken is 1825 time series points for model training. In the proposed system,
numerous trends and fluctuations occur over a period of time {T1, ...,Ti, ...,T j, ...,Tm} ∈ T and these
trends are recognized by the formulated model.

5.2.2. Dataset preprocessing

First, we store the multivariate time-series data δ in cloud storage and subsequently load it for
preprocessing to enhance training accuracy and prediction outcomes. Initially, the data is normalized
to a standard range, typically between 0 and 1, to manage outliers and ensure the model can handle
extreme values effectively. The mathematical representation of normalization is described as follows.

δ→ (x, y)→ (
x

xmax
, y) (5.3)

Equation (5.3) represents the mapping and scaling of data, where x is the variable used to denote
the tensors comprising values of the multivariate time-series data, and y is the variable used to denote
the label or target variable. The data is configured in a way such that a multivariate base LSTM model
can be designed to make accurate and precise predictions. This is done by parsing the data comprising
attributes Open, High, Low, Close and Volume into a multi-dimensional Numpy array with all the
respective attributes taken into consideration.

Partitioning the
data for Training 

Standard Scaler
Normalisation on
Training Section

Client Side Data

Partitioning the
Data for Testing

Standard Scaler
Normalisation on
Testing Section

Server Side Data

Transfer to LSTM CelllProcessed Data for Both
Centralised and

Decentralised Server 

Sequential Data Partition 

For Decetralised Training 

Sequential Data Partition

For Centralised Training 

Using Z-Score

Using Z-Score

RAW 
INPUT 
DATA

LSTM CELL
FOR

PREDICTIONS 

Figure 2. Data preprocessing.

The Numpy array is then scaled and normalized for better performance and optimized computation
while training. The scaled data is divided into a training set (80% of the data) and a test set (20%
of the data). It is also ensured that the test data includes a certain number of previous time steps
(defined by sequence length, set to 50) before the start of the test period. In the proposed model, FL is
integrated, which means that each LSTM model learns from its local batch of data. After local training,
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the models’ updates are sent to a central server where aggregation for computing the global weights is
performed. These calculated global weights are then sent back to each local LSTM model, enhancing
the subsequent learning cycle. This iterative process progressively refines the model’s predictions over
successive cycles. The entire flow of data preprocessing is shown in Figure 2.

5.2.3. Model motivation

The inability of conventional and machine learning methods to effectively predict the extremely
volatile and non-linear cryptocurrency market is the primary motivation behind the development of a
F-LSTM model for price prediction. The traditional approaches are based on historical data and
stationary state assumptions, which are not always valid in the complicated and volatile
cryptocurrency market. Similarly, because machine learning models are trained using centralized data
sources that might not accurately reflect the variety of the market, they are susceptible to bias and
overfitting. Furthermore, privacy issues are a crucial problem when predicting cryptocurrency prices
because centralized data sources may put sensitive information at risk. Therefore, a decentralized and
safe method of cryptocurrency price prediction is required, one that guarantees high accuracy while
protecting the privacy of sensitive data. Furthermore, privacy issues are a crucial problem when
predicting cryptocurrency prices because centralized data sources may put sensitive information at
risk. Therefore, a decentralized and safe method of cryptocurrency price prediction is required, one
that guarantees high accuracy while protecting the privacy of sensitive data.

These issues are resolved by F-LSTM framework, which enables the historical pattern learning
algorithm in a multimodal environment. The algorithms are made intact to adapt with increments of
data shards into the local client repository and learn over time. The framework thus identifies the
effective sequential patterns in the data and combines local models’ individual understanding to tune
and optimize the global model. The global model thus learns better than individual clusters and
generates an optimized solution. This solution as a whole is considered to be the versatile answer for
application-based software who are destined to learn on a large chunk of data and have to evolve on
the newly available data continually. Thus, considering all the constraints for satisfying evolutionary
incremental learning along with preservation of the individual data characteristic F-LSTM framework,
proves to be an efficient approach for building optimized software.

Furthermore, we analyzed [24], which was a study that used a model based on long short-term
memory to forecast energy consumption in order to improve prediction performance, and [14], where
an empirical study was done on two cases of pork prices and soybean futures prices, and 12
comparative prediction models were developed based on random forest (RF), LSTM and multilayer
perceptron (MLP). These studies demonstrated the strengths of LSTM for price prediction and hence,
we were motivated to develop the proposed framework on the LSTM algorithm due to the several
reasons that are stated below.

• Capturing long-term dependencies: The purpose of LSTM networks is to identify long-distance
dependencies in sequential data. The capacity of LSTM to capture long-term patterns is vital in
cryptocurrency markets, as prices are affected by previous patterns and occurrences.
• Handling temporal dynamics: Prices for cryptocurrencies display complex temporal dynamics,

including seasonality and volatile swings. Since LSTM is so efficient at modeling and adjusting
to such temporal fluctuations, it is appropriate for situations found in dynamic markets.
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• Memory cell: A dedicated memory cell in the LSTM can store and spread data over a long period
of time. For the purpose of recalling historical pricing trends and putting them into forecasts, this
feature is crucial.
• Sequence-to-sequence learning: Sequence-to-sequence learning is supported by LSTM,

enabling it to forecast future sequences using existing price sequences as input. This is crucial
for forecasting full price trajectories rather than just specific price points.
• Robust to noisy data: Cryptocurrency data can have outliers and sharp spikes, making it noisy.

LSTM can learn to weed out irrelevant data and concentrate on the underlying patterns while
being robust to noisy input.
• Adaptability: LSTM models are flexible and rapidly respond to shifting market circumstances.

In the rapidly changing and highly volatile world of cryptocurrency, adaptation is essential.

5.2.4. Model development

The proposed F-LSTM model ψ is built upon a sequence-to-sequence architecture (as shown in
Figure 3), with the input tensor’s size determined by the training data’s shape which is described in
Eq (5.4).

nneurons = xtrain.shape[1] × xtrain.shape[2]. (5.4)

The initial tensor, of size calculated from the Eq (5.4), is first passed through the LSTM block
with nneurons neurons, where nneurons is the product of the second and third dimensions of the training
data. The second dimension denotes the number of data points in the training sample, and the third
dimension denotes the number of independent variables considered for the training of the ψ model.

Input Layer

LSTM Cell

Kernel Size: 5 × 1000
Recurrent Kernel: 250 × 1000

Bias: 1000
Activation Function: TanH 

LSTM Cell

Kernel Size: 5 × 1000
Recurrent Kernel: 250 × 1000

Bias: 1000
Activation Function: TanH 

Dense Layer
Kernel Size: 250 × 5

Bias: 5

Dense Layer
Kernel Size: 5 × 1

Bias: 1
Output

Input shape:

Z×50×5

Figure 3. LSTM model architecture.

Each LSTM unit computes the current cell state ct and the current hidden state ht as follows:
1) Forget gate ( ft): Determines what information the cell state should forget.

ft = σ(W f · [ht−1, xt] + b f ) (5.5)

2) Input gate (it): Determines what new information the cell state should store.

it = σ(Wi · [ht−1, xt] + bi) (5.6)
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3) Cell state (C̃t): A candidate value for the cell state.

C̃t = tanh(WC · [ht−1, xt] + bC) (5.7)

4) Update of the cell state (ct): Update the old cell state ct−1 into the new cell state ct.

ct = ft ∗ ct−1 + it ∗ C̃t (5.8)

5) Output gate (ot): Determines what the next hidden state should be.

ot = σ(Wo · [ht−1, xt] + bo) (5.9)

6) Update of the hidden state (ht): Update the old hidden state ht−1 into the new hidden state ht.

ht = ot ∗ tanh(ct) (5.10)

Here, σ denotes the sigmoid function, and ∗ denotes element-wise multiplication. The weight
matrices W f , Wi, WC and Wo, and the bias vectors b f , bi, bC and bo are iteratively updated and are
relaxed to learn throughout the training of the model as an overall. In a neural network, a dense
layer represents a matrix-vector multiplication. The values in the matrix are the trainable parameters
(weights) that get updated during backpropagation. A conventional neural network layer l is denoted
as follows.

• x[l] as the input to layer l
• W [l] as the weights of layer l
• b[l] as the bias of layer l
• g[l] as the activation function of layer l

The output after computation of the respective layer l is shown in Eq (5.11)

z[l] = W [l] · x[l] + b[l] (5.11)
h[l] = g[l](z[l]) (5.12)

Following the LSTM layers, the model introduces a fully connected (Dense) layer with five neurons.
This dense layer performs the weighted computation of inputs attained from the output of the previous
LSTM layers. The model culminates in an output Dense layer with a single neuron. The output of this
neuron is the prediction of the model. The model overall is a regression model to forecast the single
next value in the sequence of the time series.

The model structure is defined, and at the later stages, it is compiled with the Adam optimizer and
the evaluation metrics, i.e., the Mean Squared Error (MSE) as the loss function. The Adam optimizer
is an extension to stochastic gradient descent that adapts learning rates for each weight in the model,
improving the classic stochastic gradient descent. The MSE loss function is considered to be the most
appropriate for regression problems and measures the average of the squares of the errors, i.e., the
average squared difference between the estimated values and the actual value. To further enhance
privacy preservation and data efficiency, the tuned LSTM model is augmented with an FL approach.
Instead of the traditional way where data is sent to a centralized location, the FL approach allows
for the model training to happen on the client devices themselves, therefore keeping the data local.
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This approach is highly beneficial in scenarios where the data is sensitive or massive, which makes it
challenging to centralize, and a crucial factor of privacy preservation is in need. The integration of FL
with the LSTM model follows specific steps.

1) Initialization - A global LSTM model is initialized on the server, and its weights are shared with
all the client devices.

2) Local Training - Each client device trains the received model on its local data. This training
includes the forward pass, backward pass and weight updates, which are all performed locally.

3) Model Aggregation - After local training, each client sends their model updates (i.e., the
changes in weights and biases) to the server. Importantly, the raw data never leaves the client’s device,
maintaining data privacy.

4) Global Update - The server aggregates the received updates from all clients and updates the
global model. The aggregation can be a simple averaging or a more sophisticated method depending
on the use case. The updated global model is then shared with all the clients, and the process repeats.

The crucial part of FL is the aggregation of the model updates on the server. The most common
aggregation method is Federated Averaging (FedAvg), which is simply the weighted average of the
model updates from all clients. Given K clients, where each client k has a weight update ∆Wk and a
bias update ∆bk, the global weight and bias update ∆W and ∆b can be calculated as follows.

∆W =
1
K

K∑
k=1

∆Wk (5.13)

∆b =
1
K

K∑
k=1

∆bk (5.14)

The global model parameters (weights) are then updated using these averaged updates.

W = W + ∆W (5.15)
b = b + ∆b (5.16)

The notable factor while performing the computation in a real-time environment is the averaging can
be weighted based on the number of samples each client has. Clients with more data would contribute
more to the global model update. The FL process, including Federated Averaging, is done iteratively
over multiple rounds until the model performance converges. This ensures that the model learns from
the entire distributed data while keeping the data local to each client. The integration of FL into the
LSTM model allows for efficient learning from distributed data sources while respecting the privacy of
the data owners. The model training can be seen as a cooperative effort, where each client contributes
to the learning process, thus enabling the model to learn from a more diverse and representative dataset.

The procedure is repeated iteratively over time to attain minimum loss from the predictions as
described in the Algorithm 1.
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Algorithm 1 FL-LSTM (FL with LSTM)
1: procedure FL-LSTM (W, b)
2: Preprocess the input data using a standard scaler method
3: Let X be the input data
4: Compute the mean for each feature:
5: µ = 1

N

∑N
i=1 Xi

6: Compute the standard deviation for each feature:

7: σ =
√

1
N

∑N
i=1(Xi − µ)2

8: Scale the input data:
9: Xscaled =

X−µ
σ

10: Initialize the LSTM model with multiple LSTM layers:
11: model = Sequential ()
12: model.add (LSTM (units, return sequences = True))
13: . . .

14: model.add (LSTM (units, return sequences = False))
15: model.add (Dense (output size))
16: for each round r do
17: Select K clients at random
18: for each client k in K do
19: Initialize Wk, bk ← W, b
20: Compute ∆Wk,∆bk from client’s preprocessed data using LSTM
21: Send ∆Wk,∆bk to server
22: end for
23: Server updates W, b as W ← W −

∑
k ∆Wk, b← b −

∑
k ∆bk

24: end for
25: end procedure

5.3. Application layer

To provide real-time price predictions for the cryptocurrency, Ethereum, the application layer of
the system architecture for the F-LSTM model, is essential. The model gets continuous data streams
from various sources, such as exchange APIs and market data providers, at this layer, assuring the
availability of up-to-date information. The LSTM model, trained using FL strategies, makes use of
the combined intelligence of numerous participants while preserving the security and privacy of the
data. The algorithm dynamically changes its forecasts as fresh pricing data comes in, allowing users
to make wise trading and investment decisions. Once the price predictions are generated in real-time,
the application layer facilitates further data analysis. This analysis can involve various techniques
such as statistical analysis, pattern recognition and anomaly detection to extract meaningful insights
and identify potential market trends. Traders and investors can utilize these insights to understand the
market dynamics, evaluate risk factors and make informed decisions regarding their cryptocurrency
portfolios. By integrating the LSTM model with the analysis capabilities at the application layer, users
gain a comprehensive understanding of the cryptocurrency market, enabling them to optimize their
trading strategies and potentially maximize their returns on investments in cryptocurrencies.
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6. Results and discussions

In this section, we discuss the performance analysis of the proposed framework using different
evaluation metrics, such as training loss, validation loss, resource utilization and computation time. A
detailed result analysis is as follows.

6.1. Experimental setup and simulation parameters

The work on the proposed framework is done on a Python-based development environment,
Jupyter Notebooks. Various APIs and functionalities from different libraries were used to develop the
framework. The Yahoo Finance API, yfinance (), is used to get the historical and real-time data
of cryptocurrencies. Two important functionalities in use to develop the framework
are sklearn.preprocessing.RobustScaler () and tensorflow.keras.callbacks.EarlyStopping (),
sklearn.preprocessing.RobustScaler () is used to scale features using statistics that are robust to
outliers. This ensures precise standardization of the data tensorflow.keras.callbacks.EarlyStopping ()
is used to stop training when a monitored metric has stopped improving; this stops the wastage of
computational resources. Some other libraries used were numpy, pandas and seaborn.

LSTM networks are employed in deep learning, a type of recurrent neural network (RNN) that can
learn long-term dependencies, particularly in tasks involving sequence prediction. It has several
hyperparameters that need to be set optimally for ideal results. LSTMs have a variety of applications,
like price prediction, sentiment analysis, language modeling, speech recognition and video analysis.
The application based on this paper is allied to price prediction for cryptocurrencies. The following
sections highlight the use of the proposed F-LSTM model and its behavior using different
performance parameters like loss, computation time, performance under different optimizers and
memory utilization.

6.2. Performance analysis

6.2.1. Loss for F-LSTM

The loss measure refers to a statistic used to express the difference between the model’s anticipated
prices and the actual prices that were actually observed. The loss measure is used to gauge how well
the LSTM model is doing in terms of its ability to predict outcomes. The LSTM model’s performance
on the training data—the dataset used to train the model—is measured by its training loss. A low
training loss indicates the LSTM model is successfully picking up on and recognizing the patterns
in the training set. On the other hand, An LSTM model’s validation loss reflects how effectively it
generalizes to data that it hasn’t encountered during training. It is calculated using a distinct dataset
from the training data called the validation dataset. The validation loss is a measure of the model’s
predicted performance on fresh or untested data. It helps in determining whether the model is capable
of capturing fundamental data patterns without having to memorize the training samples. Figure 4
compares loss to validation Loss while training the model. In Figure 4, the x-axis indicates the measure
of loss and the y-axis indicates the number of epochs during training. As depicted in Figure 4, loss and
validation loss decrease with the increase in epochs. After robust training, the loss and validation loss
converge well, which shows less over-fitting and a good model. The model, which is developed for
the whole data set, is trained for a total of 50 epochs. The loss and validation loss start converging
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well after 10 epochs. By the end of 50 epochs, they have almost identical values, indicating minimal
over-fitting in the trained model. The layers and the number of neurons have been aptly defined before
training the model, due to which the model has been sufficiently trained, leading to minimal or no
over-fitting. Another reason for such a minute level of over-fitting is that the model has been trained
up to the right number of epochs.
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Figure 4. F-LSTM model loss.

6.2.2. Comparison of computation time between F-LSTM and LSTM

The amount of time needed to complete calculations and activities connected to developing, testing
or generating forecasts using LSTM cryptocurrency price prediction models is referred to as
computation time. It shows how long the underlying hardware and software took to do the necessary
computations. Figure 5 shows the comparison of the computation time between the model developed
for the whole data set and the client models used for federated learning, while, Figure 6 shows the
prediction accuracy of the proposed framework. In Figure 5, the x-axis indicates the 2 different types
of models and the y-axis indicates the computation time in seconds. In Figure 6, the x-axis indicates
the timeline, and the y-axis indicates the actual price and prediction price for training and testing
periods. Figure 5 clearly shows that the computation time utilized by the client models portrayed blue
bar is significantly less than the computation time utilized by the model trained on the whole data set,
represented by the green bar. It is also clear that the actual and predicted prices are almost similar,
implying that the model has a high accuracy.

This is due to the distribution of data for the training of the local models. The time frame of the
data used for the development of local models is 1 year for each client, whereas, the time frame of
the data used to train the model trained on the whole data set is 5 years. More data would lead to a
higher computation time, whereas fewer data would lead to a lower computation time. This makes
FL a better and more efficient approach than the traditional one, as it saves computational time and
resources. Hence, In federated learning, training is preferred as it is decentralized and carried out on
client devices, allowing numerous devices to execute model updates in parallel. On the other hand,
typical training involves training on the full dataset on a single machine, which can be slower due to
the sequential processing of the data.
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Figure 6. Prediction accuracy.

Another crucial element affecting the calculation time comparison between LSTM and F-LSTM,
in addition to the data distribution and training durations, is the model update procedure. The
communication overhead between the central server and clients is minimized with F-LSTM since
model updates take place locally on client devices. This more efficient communication is particularly
useful when working with clients with poor or limited connectivity. Traditional LSTM, on the other
hand, uses centralized model updates and trains the entire model on a single machine. When working
with huge datasets, this centralized processing can result in significant communication overhead.
Additionally, the decentralized nature of F-LSTM enables asynchronous updates, allowing clients to
update their models and speeding up training independently. These nuances in the update mechanism
contribute to F-LSTM’s superior computation time efficiency, making it a favorable choice for
scenarios where efficient decentralized processing is imperative.
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6.2.3. Performance under different optimizers

Optimizers are algorithms or methods used to modify the LSTM model’s parameters (weights)
while it is being trained. An optimizer’s goal is to reduce the selected loss function by iteratively
changing the model’s parameters (weights) in accordance with the loss’s gradients with respect to those
weights. Figures 7 and 8 show the training and validation loss curve under different optimizers while
training the proposed framework. In Figures 7 and 8, the x-axis represents the number of epochs and
the y-axis denotes the measure of loss. The different colored curves are for the different optimizers.
The different optimizers used are SGD, ADAGrad, RMSProp, Nadam and Adam. Adam gives the
lowest loss and was used in the proposed framework.

On the basis of the gradients’ average first and second moments, Adam changes the learning rate for
each weight and bias parameter. Due to this, Adam is able to adjust the learning rate for each parameter,
which results in faster convergence and better generalization. SGD is a basic optimizer that modifies
the weights in accordance with the gradient of the loss function, but it has a slow convergence rate and
is prone to local minima. Similar to Adam, Adagrad adjusts the learning rate for each parameter, but
over time, it accumulates the square of the gradients, which may result in an excessively rapid decrease
in the learning rate. The learning rate is also regulated by RMSProp, but it does so using a moving
average of the squared gradients. Adam performs well for the proposed model for price prediction
because it adapts the learning rate on a per-parameter basis, which leads to faster convergence and
better generalization than other optimization algorithms.
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Figure 7. Loss for training under different optimizers.
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Figure 8. Validation loss for training under different optimizers.

6.2.4. Comparison of CPU utilization between F-LSTM and LSTM

CPU utilization refers to the metric used to quantify how much the central processing unit (CPU)
is used when the model-related computations are carried out. It calculates the proportion of time the
CPU is used to do LSTM model-related operations, such as training, evaluating, or making predictions.
Figure 9(a)–(f) show the comparison of the CPU utilization between the model developed for the whole
data set and the local models used for federated learning. In the figures, the x-axis indicates the time
intervals and the y-axis indicates the CPU utilization. It is evident that the local models trained for
FL utilize significantly less computation power than the model trained on the whole data. The CPU
utilization for training the client models is almost half of the CPU utilization during normal training.

In contrast to a normal centralized training situation, the client models in FL often execute a small
amount of computation. This is a way that each client can undergo training using a smaller subset
of the data rather than the complete dataset when employing federated learning. The quantity of data
transport and processing required is lowered since the client models submit only their updated model
parameters (weights) to the central server as opposed to providing the whole dataset. Additionally,
before sending the model weights to the central server, FL involves compressing them. As a result, the
amount of data provided is smaller, which also lowers the computational demands on the client models.
Hence, FL training uses only a fraction of the computational resources used during normal training.
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Figure 9. Performance of resource utilization for clients and normally trained model.

The resource utilization in traditional centralized training is significantly high, at about 74%. This
is expected given that all computations, model updates and data processing are done on a single
system, which takes a lot of resources. On the other hand, the FL method shows much greater
resource efficiency. For the training of the 5 client models, roughly about 34% of the CPU resources
were utilized. This significant decrease in resource use is a direct result of FL’s decentralized
structure. Through localized model updates on each client’s own data, FL enables parallel processing
and decreased resource requirements for each client. This fits with the fundamental ideas of
distributed computing when analyzed theoretically. FL makes use of the parallelism that comes with
training many models over distributed nodes, which leads to greater efficiency in resource
management. This finding strongly suggests that the FL method is more resource-efficient than
conventional centralized training. It not only lessens the pressure on individual devices but also
highlights the possibility for large computational cost reductions, which makes FL an appealing
option, particularly in situations where resource limitations are an issue. Thus, the results from
Figure 9 offer strong support in proving that the FL scheme outperforms conventional training in
terms of resource utilization.

6.2.5. Comparison of memory utilization between F-LSTM and LSTM

In the context of LSTM cryptocurrency price prediction models, the term memory utilization
refers to the metric used to evaluate how much memory or memory resources were used during model
training, evaluation or prediction. The memory needs of the LSTM model and related calculations are
quantified. Figure 10 shows the comparison of the memory utilization between the model developed
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for the whole data set and the local models used for federated learning. In the figures, the x-axis
indicates the different models and the y-axis represents the memory utilization. It is evident that the
local models trained for FL utilize significantly less memory than the model trained on the whole
data, as their file sizes are significantly smaller.

As FL uses a distributed training approach that involves training multiple models on different
subsets of the data rather than one model on the entire dataset, client models trained for FL
significantly use less memory and have smaller file sizes than models trained on the entire dataset. A
small portion of what would be needed to train a centralized model is used by each client device to
train its model. In comparison to the centralized model that would be trained on the entire dataset, this
leads to smaller models that utilize less memory and have smaller file sizes. Furthermore, FL models
are often created to be compact and optimized for client devices with low resource requirements.

Memory Utilisation 
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Figure 10. Memory utilization comparison.

6.2.6. Comparison with other FL schemes

Federated learning has emerged as a pivotal paradigm in the field of distributed learning for
training models across decentralized clusters of nodes and updating model parameters in an optimized
way. Within this realm of distributed learning, the three prominent averaging algorithms for updating
global model weights are FedAvg, FedSGD and FedDyn, These schemes propose unique alignment
for updating and averaging the client weights for global model learning. The respected schemes can
be understood as follows.

1) FedAvg: The central server calculates the weighted average of the received updates from all the
selected devices. Each update is weighted by the number of data samples that the device used for
training. Devices with larger datasets contribute more significantly to the global model. The mean
average percentage error while training the global model using FedAvg is 1.34% (as shown in
Figure 11).
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2) FedSGD: The averaging is done exactly the same as that of FedAvg but while updating the global
model, that is done using the aggregated gradients. This update is performed using the stochastic
gradient descent (SGD) algorithm or its variants, where a learning rate controls the step size of the
update. The mean average percentage error while training the global model using FedSGD is 12.55%.

3) FedDyn: Instead of sending gradients or model updates directly, devices in FedDyn share
information about the dynamics or changes in their local models. This information might include
parameters like momentum, velocity or other relevant statistics. These Dynamics are used instead of
the weights of the models for global model updation. The mean average percentage error while
training the global model using FedDyn is 12.04%.

The wide difference in losses that occurred is particularly because of the notion in which the
algorithm is applied. As for sequential learning parameters, the FedAvg performs better than others
because of the weighted aggregation of client servers paired up with Adam optimizer, which catalyzes
the process of finding the minima for the cost function while training the model.
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Figure 11. Comparison between different FL schemes.

6.2.7. Error measures

Assessing the effectiveness and reliability of any machine learning or statistical model requires
measuring its prediction accuracy with high precision. Hence, researchers rely on error measures
such as loss measures or performance metrics in their analysis. By quantifying the variance between
actual values and predicted ones these metrics enable us to assess how accurate and reliable a given
model’s performance is getting over time. After training the global model for 10 epochs, the F-LSTM
model was evaluated using three error measures which are, Median Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and Median Absolute Percentage Error (MDAPE). The model’s
Median Absolute Error (MAE) score is 91.98 percent, which means that on average, the predictions
differ marginally from the measured data. This shows that the model performs fairly well in terms of
absolute error.
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The model’s ability for precise prediction improves with decreasing MAE. The Mean Absolute
Percentage Error (MAPE) of 6.23 percent shows that the model’s predictions often deviate from the
actual values by about that percent. This portrays that, given the size of the target variable, the model’s
performance is fairly accurate. A lower MAPE indicates that the model is more capable of making
accurate predictions. The Median Absolute Percentage Error (MDAPE) of the model is 5.1 percent.
This demonstrates the model’s accuracy since a lower MDAPE implies greater prediction precision.
The model’s consistency in producing predictions that are close to the actual values illustrates both
its dependability and its effectiveness. The model’s effectiveness is demonstrated by the excellent
results it produces after training on only 10 epochs. The model exhibits a streamlined and resource-
efficient learning procedure by successfully resolving dependencies through small-batch training on
the complete dataset for a limited number of epochs.

7. Conclusions and future works

In conclusion, this study marks a substantial advancement in the field of predicting cryptocurrency
prices. Our innovative method completely transforms the predictive analytics environment in this
dynamic and privacy-sensitive field by integrating LSTM with FL. Our approach takes advantage of
the distributed data-gathering capabilities of FL to improve the pattern recognition performance of
LSTM by collecting data from decentralized nodes while adhering to tight privacy measures. Without
the requirement for centralization, this combination produces a richer dataset, which leads to
remarkable efficiency throughout the training stage. Our methodology proves its ability to deliver
extremely accurate cryptocurrency price projections, with training loss converging to an amazing
minimum of 2 × 10−4 and validation loss resting at an amazing 2.3 × 10−4.

Our federated integrated LSTM model also complies with current edge computing trends, making
it more than just an advance in cryptocurrency price prediction. It improves operational efficiency
and, more importantly, satisfies the fundamental principles of data privacy and security by executing
computations closer to the sources of the data. As we shift our attention to a comparison with
traditional approaches, like LSTM, ARIMA and GARCH models (all evaluated on the same dataset),
the findings highlight the significant advantages of our strategy. Our approach not only performs
admirably in terms of loss reduction, but it also demonstrates fantastic computing efficiency. It is
crucial to understand the broader implications of our findings by looking beyond the metrics. Our
approach gives traders, investors and financial analysts a strong tool to help them make judgments at a
time when cryptocurrencies are having an increasing impact on financial markets. Furthermore, our
focus on preserving data security and privacy in the age of data-driven finance is further demonstrated
by our commitment to the federated method. Our study paves the way for more accurate, effective and
privacy-respecting cryptocurrency price projections as we look into the future. It claims to
revolutionize financial decision-making by providing a way to more trustworthy insights and
well-informed actions in the intricate and constantly changing world of the cryptocurrency markets.

We are resolutely devoted to improving our F-LSTM framework on numerous fronts in future
works, hoping to deliver solid answers and insights in the field of cryptocurrency price prediction in
order to address the research deficiencies found in our current study. First, in order to give the model
the dynamic versatility needed to thrive in the constantly shifting real-time cryptocurrency
environment, we intend to optimize its integration with reinforcement learning. The accuracy and

Electronic Research Archive Volume 31, Issue 10, 6525–6551.
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responsiveness of cryptocurrency price projections will be improved by this improvement, which will
enable our framework to take proactive actions in reaction to market swings. Second, we want to
extend the F-LSTM schema’s range of applications by using it with different cryptocurrencies,
offering a sectorial and application-centric viewpoint. We seek to increase our understanding of how
various cryptocurrencies behave and react to comparable prediction approaches by analyzing a variety
of digital assets, each with its own distinct market dynamics. This will eventually lead to more
specialized predictive models. Finally, we are looking into how split learning and lightweight
encryption techniques can be applied to the analysis of cryptocurrency price data. Split learning has
the potential to improve data security and privacy, particularly in a field where data protection is
crucial. Also, applying lightweight encryption to the trained weight can enhance the security and
privacy measures of the proposed work. This study demonstrates our dedication to increasing
cryptocurrency markets’ accuracy and data security by taking a diverse approach to comprehend
better and forecast the prices of digital assets.
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