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ABSTRACT  

This paper attempts to present and employ Runge-Kutta Method of fifth-order (RK5) and New 
Iterative Method for the numerical solution of metastatic cancer model which occur in two 
compartments of cancer environment. These methods have been proved to be powerful 
mathematical tools for various phenomena in biomathematics and it is extremely effective for 
linear and non-linear systems of differential equations. Our numerical experiments illustrate 
the effect of parameters 𝛽!, 𝛽"	𝑎𝑛𝑑	𝛽# on cancer models which are responsible for the spread 
or reduction of cancer cells through the boundary of an organ tissue. The results obtained are 
compared with analytical solutions and show that (RK5) and NIM are powerful numerical 
techniques to solve systems of differential equations. Finally, all computations and algorithms 
are implemented using MAPLE 18 software version. 
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1. Introduction   

Mathematical modeling is a prominent practice in almost all fields of pure and applied 
sciences. Modeling serves as a tool for researchers to formalize and quantitatively understand 
physical and chemical phenomena observed in reality via the language of mathematics 
(Rasmuson et al., 2014). It is with this concern that researchers and concerned individuals have 
actively worked on ways of understanding and proffering solutions over the past decades. In a 
recent study conducted by the United Nation (UN), it was revealed that by every year there are 
approximately 8.2 million cancer-related deaths worldwide. Metastasis is the major cause of 
cancer death which occurs when the disease reaches its lethal stage via the uncontrolled 
spreading of cancer cells to invade a nearby connective tissue and other key organs in the 
human body. The metastasizing primary tumor cells are not the only agents that drive the 
progression of metastasis. Instead, metastasis is a systematic process that involves the 
interaction of cancer cells among a community of various biochemical and cellular factors 
localized in the tumor microenvironment at both the primary and secondary tumor 
compartments (Cox et al., 2016). 
 Several scientists have worked on understanding the behaviors and development of the 
cancerous cells including (Hanin & Zaider, 2011; Lorenzo-Herrero et al., 2019; Liu et al., 
2016; Thakur & Rao, 2016 and Benzekry et al., 1970) and many have as well worked on 
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developing Mathematical models for understanding cancer cells with proposed cure 
parameters through surgery, Radiotherapy, chemotherapy etc. (see Dan et al., 2016; Pinho et 
al., 2011; Kolev et al., 2011). Moreover, the numerical solution of mathematical models by 
systems of ordinary differential equations has been widely studied in recent years. 
 Yen et al. (2018) used a remodeling extracellular matrix to obtain numerical solutions 
of the Metastatic Cancer model. The Quantitative Analysis of the Tumor/Metastasis system 
and its optimal therapeutic control was carried out by Sebastien et al. (2017), modelling and 
simulation of tumor development, treatment and control was presented by Bellomo & De 
Angelis (2003), Mathematical population dynamics models to describe the spread of 
metastatic cancer was considered by Daniel et al. (2011), while Nikos & Mastorakis (2016) 
presented numerical solution of mathematical models of cancer growth and optimal cancer 
therapy and to mention a few. 
  This study is concerned with metastatic cancer model tracking cancerous cells in two 
compartments; the first compartment encompasses proliferating cells which includes active 
cells that can grow rapidly to another compartment with the target tissue cells. We determine 
the equilibrium point and analyze the stability. Furthermore, to reduce computational time and 
length involved in calculating	𝐾𝑠 in Runge-Kutta and evaluation involved in New iterative 
method, we hereby formulate a three step Maple 18 software code for the numerical solutions 
of equation (1) with suitable initial conditions of parameters. 
 This paper is arranged as follows: In section 1, a brief introduction on Cancer 
metastasis was presented. In section 2, Mathematical modeling and metastatic cancer in two 
compartments was described, section 3 is majorly on equilibrium point and stability analysis 
of the metastatic model. Section 4 describes two numerical techniques employed and was 
discussed, in section 5, numerical experiment was demonstrated and finally, section 6 
presented numerical results tables, discussion and conclusion.  
 
2. Mathematical Modeling of Metastatic Cancer in Two Compartments  

Mathematical models have been used on several occasions as an abstract description of 
physical, biological and chemical phenomenon. In applied Mathematics, systems of 
differential equations are the most important tools in modeling metastatic cancer in two 
compartments. Understanding of the phenomenon, formulations of mathematical models with 
parameters of the situation and analysis of the metastatic model will further help to understand 
the behaviors of cancerous cells in the body of humans. Consider two-compartment metastatic 
cancer model Figure 1, the first compartment (A) houses the proliferating cells and the second 
compartment (B) encloses quiescent cells. Let be the number 𝑋 of arrested cells on the 
boundary of the tissue in compartment A and 𝑌 the number of cells that have invaded the target 
tissue in compartment B. Cancerous cells pass from compartment A to compartment B at the 
rate of 𝛽! in 𝑋. Also, cells die from compartment A at the rate of 𝛽" in 𝑋 and die from 
compartment B at the rate  𝛽# in	𝑌.  
                                     

 

Figure 1. Two Compartments Model for Metastatic in Cancer (CERD) 
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{
𝑑𝑋(𝑡)
𝑑𝑡

= −(𝛽" + 𝛽!)𝑋(𝑡)	
𝑑𝑌(𝑡)
𝑑𝑡

= 𝛽!𝑋(𝑡) − 𝛽#𝑌(𝑡)	 
 

(1) 

 
  subject to initial conditions 
 

0
X(0) = ω
Y(0) = φ		 (2) 

 
where  𝛽", 𝛽!, 𝛽# are constants, 𝛽", 𝛽!, 𝛽# > 0 and  𝜔,𝜑  are the initial numbers of cancerous 
cells in compartments A and B respectively. The size of the tumor,	𝑀 is defined as 
 

𝑀(𝑡) = 𝑋(𝑡) + 𝑌(𝑡)		 (3) 
  
 
3. Equilibrium Point and Stability Analysis   

The metastatic model given in equation (1) will have equilibrium point on			$%(')
$'

= $)(')
$'

= 0, 
so the equation will become: 
 

0 −
(β" + β!)X(t) = 0

β!𝑋(𝑡) − β#𝑌(𝑡) = 0 (4) 

  
 The point (0, 0) is clearly the equilibrium. We observe that	=𝑋(𝑡), 𝑌(𝑡)> = (0,0) 
 The Jacobian matrix as equation (4), can be written as follows;  
 

𝐽 =

⎝

⎛

𝜕𝑓"
𝜕𝑥
	
𝜕𝑓"
𝜕𝑦

𝜕𝑓!
𝜕𝑥

𝜕𝑓!
𝜕𝑥⎠

⎞ 

where                           
					𝑓" = −(𝛽" + 𝛽!)𝑋	
𝑓! = 𝛽!𝑋 − 𝛽#𝑌	

 
Implies, 

𝐽 = H
−(𝛽" + 𝛽!)	 0

𝛽! −𝛽#
I 

with characteristic equation,  
 

(𝜆 + 𝛽#)(𝜆 + 𝛽" + 𝛽!) = 0	

0 𝜆" = −𝛽#
𝜆! = −(𝛽" + 𝛽!)

 

 
are eigenvalues. Since 𝜆" and	𝜆! < 0, it implies the point (0, 0) is a saddle. 
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4. Description of Numerical Methods  

In this section, we present and employ two numerical techniques Runge-Kutta (RK5) and New 
Iterative Method proposed by Daftardar-Gejji & Jafari (2006) to solve the Metastatic cancer 
model in two compartments. 
 
4.1 Runge-Kutta fifth order (RK5) 
 
The Runge-Kutta method is an important method for obtaining the approximate solutions of 
ordinary differential equations. It is one of the most used methods by scientists and engineers. 
It was named for its creators Carl Runge (1856-1927), which the original idea for such 
formulas seems to be due and Wilhelm Kutta (Tamer, 2019), which the idea was used more 
effectively for first-order equations. It has been used extensively to obtain approximate 
numerical solutions of differential equations of first, second, and higher orders. It transforms 
second and higher orders into a system of equations of first order. In recent years, several 
authors have applied Runge-Kutta to solve ordinary differential equations such as direct 
explicit integrators of RK type for solving special fourth-order ordinary differential equations 
with an application by Mohammed & Murtaza (2016), Salih et al. (2016) presented fifth order 
Runge-Kutta-nystrom methods for solving linear second order oscillatory problems, Bazuaye 
(2018) proposed a new 4th order hybrid Runge-Kutta methods for solving initial value 
problems (IVP), authors (Constantin et al., 2019) applied of the Euler and Runge-Kutta 
generalized methods for FDE and symbolic packages in the analysis of some fractional 
attractors, Nizam et al. (2018) presented diagonally implicit Runge–Kutta type method for 
directly solving special fourth-order ordinary differential equations with ill-posed problem of 
a Beam on elastic foundation and Anthony et al. (2018) presented an analysis and comparative 
study of numerical solutions of initial value problems (IVP) in ordinary differential equations 
(ODE) with Euler and Runge Kutta methods. 
  In order to apply Runge-Kutta (RK5), we consider a weighted average of the slopes at 
v points very close to the current point i.e., it considers the Metastatic equation (1) at the grid 
point 𝑡* with 𝑣 as slopes: 
 

⎩
⎪
⎨

⎪
⎧ X+," = X+ + Q−(β" + β!)Rw-K-

.

-/"

UX+

Y+," = Y+ + VQβ!Rw-K-

.

-/"

UX+ − Qβ#Rw-K-

.

-/"

UY+W

	 

 

(5) 

 
with initial conditions 
 

0X+ = ω
Y+ = φ	 (6) 

 
where 

𝐾0 = ℎ𝑓 V𝑡* + 𝜖*ℎ, 𝑋* +R𝑎01𝐾1

02"

1/"

W	, 𝐾0 = ℎ𝑓 V𝑡* + 𝜖*ℎ, 𝑌* +R𝑎01𝐾1

02"

1/"

W 

 
and	𝜖" = 0, 𝑟 = 1,2, . . 𝑣,  𝜖!, 𝜖#, 𝜖3… . . , 𝜖4		𝑎𝑛𝑑	 	𝑎!1,…,𝑎442"	are parameters to be 
determined. 
 
After further simplification, one can construct a fifth order Runge-Kutta formula as follows: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ X+," = X+ +

1
192

(23K" + 125K# − 81K5 + 125K6)

K" = hf(t+, X+)

K! = hf Ht+ +
h
3
, X+ +

K"
3
I

K# = hf Ht+ +
2h
5
, X+ +

1
25
(4K" + 6K!)I

K3 = hf Ht+ + h, X+ +
1
4 (K" − 12K! + 15K#)I

K5 = hf Ht+ +
2h
3
, X+ +

1
81
(6K" + 90K! − 50K# + 8K3)I

K6 = hf Ht+ +
4h
5 , X+ +

1
75 (6K" + 36K! + 10K# + 8K3)I

	 

 

(7) 

Similarly, 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ Y+," = Y+ +

1
192

(23K" + 125K# − 81K5 + 125K6)

K" = hf(t+, Y+)

K! = hf Ht+ +
h
3
, Y+ +

K"
3
I

K# = hf Ht+ +
2h
5
, Y+ +

1
25
(4K" + 6K!)I

K3 = hf Ht+ + h, Y+ +
1
4 (K" − 12K! + 15K#)I

K5 = hf Ht+ +
2h
3
, Y+ +

1
81
(6K" + 90K! − 50K# + 8K3)I

K6 = hf Ht+ +
4h
5 , Y+ +

1
75 (6K" + 36K! + 10K# + 8K3)I

 

 

(8) 

The setback of the Runge-Kutta method is that it involves considerably more computational 
effort per step length. 

4.2 New Iterative Method (NIM) 
 
New Iterative Method (NIM) was proposed by Daftardar-Gejji & Jafari (2006). NIM is simple 
in its principles and easy to implement on computers using symbolic computation packages 
such as Maple. This method is better than numerical methods as it is free from rounding off 
errors and does not require large computer power. It has proven successful over other methods 
in many cases (see Bhalekar & Gejji, 2008; Zead & Ali, 2018; Aisha et al., 2018; Mohammad 
et al., 2018) and just to mention a few. 
Consider the following general functional equation; 
 

𝑥(𝑡̅) = 𝑓(𝑡̅) + 𝑁=𝑥(𝑡̅)>		 (9) 
 

where 𝑁 is a nonlinear operator from a Banach space 𝐵 → 	𝐵 and 𝑓 a known function 𝑥 =
(𝑥", 𝑥!, … , 𝑥7).	 
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We are looking for a solution 𝑋(𝑡) and 𝑌(𝑡) of equation (9) having the series form  
 

⎩
⎪
⎨

⎪
⎧𝑋(𝑡̅) =R𝑋*(𝑡̅)

8

*/9

𝑌(𝑡̅) = R𝑌*(𝑡̅)
8

*/9

			 (10) 

 
The nonlinear operator 𝑁 can be decomposed as; 
 

	

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁QR𝑋*(𝑡̅)

8

*/9

U = 𝑁(X9) +Rm𝑁VR𝑋1

*

1/9

W− 𝑁VR𝑋1

*2"

1/9

Wn
8

*/"

	𝑁 QR𝑌*(𝑡̅)
8

*/9

U = 𝑁(Y9) +Rm𝑁VR𝑌1

*

1/9

W− 𝑁VR𝑌1

*2"

1/9

Wn
8

*/"

			 (11) 

  
From equations (10) and (11), equation (9) is equivalent to 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
R𝑋* = 𝑓(𝑡) +
8

*/9

𝑁(𝑋9) +Rm𝑁VR𝑋1

*

1/9

W − 𝑁VR𝑋1

*2"

1/9

Wn
8

*/"

	R𝑌* = 𝑓(𝑡) +
8

*/9

𝑁(𝑌9) +Rm𝑁VR𝑌1

*

1/9

W− 𝑁VR𝑌1

*2"

1/9

Wn
8

*/"

		 (12) 

  
We define the recurrence relation: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑋9 = 𝑓,
𝑋" = 𝑁(𝑋9),

𝑋:," = 𝑁(𝑋9 + 𝑋" +⋯+ 𝑋:) − 𝑁(𝑋9 + 𝑋" +⋯+ 𝑋:2")
𝑌9 = 𝑓,

𝑌" = 𝑁(𝑌9),
𝑌:," = 𝑁(𝑌9 + 𝑌" +⋯+ 𝑌:) − 𝑁(𝑌9 + 𝑌" +⋯+ 𝑌:2")

𝑚 = 1,2,3, …

					 (13) 

 
 then, 

q
(𝑋9 + 𝑋" +⋯+ 𝑋:,") = 𝑁(𝑋9 + 𝑋" +⋯+ 𝑋:),
(𝑌9 + 𝑌" +⋯+ 𝑌:,") = 𝑁(𝑌9 + 𝑌" +⋯+ 𝑌:),

𝑚 = 1,2, …
 

 and  
 

⎩
⎪
⎨

⎪
⎧R𝑋* = 𝑓(𝑡) + 𝑁QR𝑋*

8

*/9

U
8

*/9

R𝑌* = 𝑓(𝑡) + 𝑁QR𝑌*

8

*/9

U
8

*/9

					 (14) 

 
The 𝑘 −term approximate solution of (9) and (10) is given by; 
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0
𝑥(𝑡) = 𝑥9 + 𝑥" + 𝑥!…+ 𝑥;2"
𝑦(𝑡) = 𝑦9 + 𝑦" + 𝑦!…+ 𝑦;2"

		 (15) 

  
5. Computational Experiments  

In this section, we present and employ an algorithm scheme based on two numerical techniques 
discussed in section four. The behaviors and effects of three parameters β1, β2 and β3 are 
investigated at three different cases beginning with an initial condition guess of X (0) = 1 and 
Y (0) = 1. All the numerical computations are executed in MAPLE 18 software and the test 
parameter values used for the numerical simulation are stated in Table 1, Table 2 and Table 3.  
 

Table 1. Description of Parameters in the Model (Case1) 

Parameter Symbol Value Unit 
Per Capital Death Rate Cells from A in X 𝛽!	 0.001 Daily 
Per Capital Movement of Cancerous Cells from A to B 𝛽"	 0.005 Daily 
Per Capital Death Rate Cells from B in Y 𝛽#	 0.008 Daily 

 

Table 2. Description of Parameters in the Model (Case 2) 

Parameter Symbol Value Unit 
Per Capital Death Rate Cells from A in X 𝛽!	 0.007 Weekly 
Per Capital Movement of Cancerous Cells from A to B 𝛽"	 0.035 Weekly 
Per Capital Death Rate Cells from B in Y 𝛽#	 0.056 Weekly 

 
Table 3. Description of Parameters in the Model (Case 3) 

Parameter Symbol Value Unit 
Per Capital Death Rate Cells from A in X 𝛽!	 0.030 Monthly 
Per Capital Movement of Cancerous Cells from A to B 𝛽"	 0.150 Monthly 
Per Capital Death Rate Cells from B in Y 𝛽#	 0.240 Monthly 

 
In order to examine and obtain numerical solutions for equation (1) using the parameters given 
in Tables 1 to 3. We develop an algorithm using Runge-Kutta (RK5) discussed in 4.1 as follow: 
 

Restart:  
𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 26;	

Step 1: 
𝑓 ≔ (𝑡, 𝑥) → −(𝛽! + 𝛽") ∗ 𝑥 ; 
𝑔 ≔ (𝑡, 𝑦, 𝑥) → (𝛽") ∗ 𝑥 − (𝛽#) ∗ 𝑦; 
𝑡[0] ≔ 0;	
𝑥[0] ≔ 1.0; 	𝑦[0] ≔ 1.0;	
ℎ[0] ≔ 0.1;	
𝛽! ≔ [0.001,0.007,0.0030];	
𝛽" ≔ [0.005,0.0035,0.0150];	
𝛽# ≔ [0.008,0.0056,0.0240];	

Step 2: 
𝑓𝑜𝑟	𝑛	𝑓𝑟𝑜𝑚	1	𝑡𝑜	10	𝑑𝑜	
𝑡[𝑛] ≔ 𝑛 ∗ ℎ:	
𝑘1 ≔ 𝑓(𝑡[𝑛 − 1], 𝑥[𝑛 − 1]);	

𝑘2 ≔ 𝑓 H𝑡[𝑛 − 1] +
ℎ
3 , 𝑥

[𝑛 − 1] +
ℎ
3 ∗ 𝑘1I ;	

𝑘3 ≔ 𝑓 H𝑡[𝑛 − 1] +
2 ∗ ℎ
5 , 𝑥[𝑛 − 1] +

1
25 ∗ (4 ∗ 𝑘1 + 6 ∗ 𝑘2I ;	
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𝑘4 ≔ 𝑓 H𝑡[𝑛 − 1] + ℎ, 𝑥[𝑛 − 1] +
1
4 ∗ (𝑘1 − 12 ∗ 𝑘2 + 15 ∗ 𝑘3)I ;	

𝑘5 ≔ 𝑓 H𝑡[𝑛 − 1] +
2 ∗ ℎ
3 , 𝑥[𝑛 − 1] +

1
81 ∗ (6 ∗ 𝑘1 + 90 ∗ 𝑘2 − 50 ∗ 𝑘3 + 8 ∗ 𝑘4)I ;	

𝑘6 ≔ 𝑓 H𝑡[𝑛 − 1] +
4 ∗ ℎ
5 , 𝑥[𝑛 − 1] +

1
75 ∗ (6 ∗ 𝑘1 + 36 ∗ 𝑘2 + 10 ∗ 𝑘3 + 8 ∗ 𝑘4)I ;	

𝑥[𝑛] ≔ 𝑥[𝑛 − 1] +
ℎ
192 ∗

(23 ∗ 𝑘1 + 125 ∗ 𝑘3 − 81 ∗ 𝑘5 + 125 ∗ 𝑘6);	
od; 

Step 3: 
𝑓𝑜𝑟	𝑛	𝑓𝑟𝑜𝑚	1	𝑡𝑜	10	𝑑𝑜	
𝑡[𝑛] ≔ 𝑛 ∗ ℎ:	
𝑘1 ≔ 𝑓(𝑡[𝑛 − 1], 𝑦[𝑛 − 1]):	

𝑘2 ≔ 𝑓 H𝑡[𝑛 − 1] +
ℎ
3 , 𝑦

[𝑛 − 1] +
ℎ
3 ∗ 𝑘1I:	

𝑘3 ≔ 𝑓 H𝑡[𝑛 − 1] +
2 ∗ ℎ
5 , 𝑦[𝑛 − 1] +

1
25 ∗ (4 ∗ 𝑘1 + 6 ∗ 𝑘2I:	

𝑘4 ≔ 𝑓 H𝑡[𝑛 − 1] + ℎ, 𝑦[𝑛 − 1] +
1
4 ∗ (𝑘1 − 12 ∗ 𝑘2 + 15 ∗ 𝑘3)I:	

𝑘5 ≔ 𝑓 H𝑡[𝑛 − 1] +
2 ∗ ℎ
3 , 𝑦[𝑛 − 1] +

1
81 ∗ (6 ∗ 𝑘1 + 90 ∗ 𝑘2 − 50 ∗ 𝑘3 + 8 ∗ 𝑘4)I:	

𝑘6 ≔ 𝑓 H𝑡[𝑛 − 1] +
4. ℎ
5 , 𝑦[𝑛 − 1] +

1
75 ∗ (6 ∗ 𝑘1 + 36 ∗ 𝑘2 + 10 ∗ 𝑘3 + 8 ∗ 𝑘4)I:	

𝑦[𝑛] ≔ 𝑦[𝑛 − 1] +
ℎ
192 ∗

(23. 𝑘1 + 125 ∗ 𝑘3 − 81 ∗ 𝑘5 + 125 ∗ 𝑘6):	
od; 
 
Output  (see Table 4, Table 5 and Table 6  for Case 1, Case 2 and Case 3  respectively) 

 
We also obtain approximate solutions using New Iterative Method discussed in section 4.2 as 
follows: 
 
Case 1:   	𝛽" = 0.001, 𝛽! = 0.005, 					𝛽# = 0.008 
 

𝑋(𝑡) = q
1 − 0.006𝑡 + 0.000018𝑡! 	− 3.6 × 102<𝑡# +
							5.4 × 102""𝑡3 +−6.48 × 102"3𝑡5 +
	6.48 × 102"=𝑡6 − 5.5543 × 102!9𝑡=

 

 

(16) 

𝑌(𝑡) = q
1	 − 0.003𝑡 − 0.000003𝑡! + 3.8 × 102<𝑡# −
				1.21 × 102"9𝑡3 + 2.476 × 102"#𝑡5						
−3.8413 × 102"6𝑡6 + 	4.853 × 102">𝑡=

	 (17) 

 
Case 2:  	𝛽" = 0.007, 𝛽! = 0.035, 	𝛽# = 0.056 
 

𝑋(𝑡) = q
1 − 0.042𝑡 + 0.000882𝑡! − 1.2348 × 1025𝑡# +
1.29654 × 102=𝑡3 − 1.0891 × 102>𝑡5 +							
7.62366 × 102"!𝑡6 − 4.574193 × 102"3𝑡=

													 (18) 

 

𝑌(𝑡) = q
1 − 0.021𝑡 − 0.000147𝑡! + 	1.3034 × 1025𝑡#
−2.90521 × 102=𝑡3 + 4.16141 × 102>𝑡5					

−4.5192903 × 102""𝑡6 + 3.996615 × 102"#𝑡=
										          (19) 

Case 3:  𝛽" = 0.030, 𝛽! = 0.150, 	𝛽# = 0.240 
 

𝑋(𝑡) = q
1 − 0.180𝑡 + 0.0162𝑡! 	− 2.916 × 102#𝑡# +
					4.374 × 1025𝑡3 − 1.57464 × 1026𝑡5			

4.72392 × 102<𝑡6 − 1.214722286 × 102>𝑡=
		                        (20) 
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𝑌(𝑡) = q
1 − 0.090𝑡 − 0.0027𝑡! + 1.026 × 102#𝑡# −
		9.8010 × 1025𝑡3 + 6.061668 × 1026𝑡5						

−2.800332 × 102=𝑡6 + 1.061340686 × 102<𝑡=
	  (21) 

 

5.1      Numerical results 

Table 4, Table 5 and Table 6 show the decrease in cancer compartments A and B (X(t) and 
Y(t)) as the rate of β1, β2 and β3 increases on a daily, weekly and monthly basis. The role and 
significant of relationship in increase the parameters values β1, β2 and β3 are great reduction in 
cancer tumor within the compartment A and B. Thus, increases in values of β1, β2 and β3 (daily, 
weekly and monthly) are responsible for the reductions in cancer tumor in the two 
compartments under study. Furthermore Figure 2, Figure 3 and Figure 4 depict the absolute 
errors performance which indicate that new iterative method (NIM) solutions are better and 
closer to analytical solutions compared to Runge-Kutta method (RK5). 

  
Table 4.  Metastatic cancer model case one (Daily) 

𝒕	 Solution 𝑿(𝒕)	 𝒀(𝒕)	

0 
Analytical 1.00000000000000000000000000 1.00000000000000000000000000 

RK5 1.00000000000000000000000000 1.00000000000000000000000000 
NIM 1.00000000000000000000000000 1.00000000000000000000000000 

0.1 
Analytical 0.99940017996400539935206479 0.99969997003798790247561594 

RK5 0.99940017996396293718651949 0.99969997003815141566850136 
NIM 0.99940017996400539764326788 0.99969997003798790134598432 

 
0.2 

 

Analytical 0.99880071971208637926814649 0.99939988030380647920742176 
RK5 0.99880071971192882361680150 0.99939988030441344551013892 
NIM 0.99880071971208637876452318 0.99939988030380647790543278 

0.3 
Analytical 0.99820161902843724258322706 0.99909973102502050138807297 

RK5 0.99820161902810903084532146 0.99909973102628546534664013 
NIM 0.99820161902843724123879546 0.99909973102502050118459876 

0.4 
Analytical 0.99760287769738173671332983 0.99879952242890493385138476 

RK5 0.99760287769684260942440716 0.99879952243098378642310122 
NIM 0.99760287769738173549854327 0.99879952242890493229875634 

0.5 
Analytical 0.99700449550337297601206623 0.99849925474244523150170606 

RK5 0.99700449550259628890424001 0.99849925474544165540798818 
NIM 0.99700449550337296349818743 0.99849925474244522974256782 

0.6 
Analytical 0.99640647223099336417375465 0.99819892819233763546745165 

RK5 0.99640647222996447783285338 0.99819892819630925439313517 
NIM 0.99640647223099336342578168 0.99819892819233763540156743 

0.7 
Analytical 0.99580880766495451668308341 0.99789854300498946897903367 

RK5 0.99580880766366926375613406 0.99789854300995370089374658 
NIM 0.99580880766495451668321789 0.99789854300498946897875422 

0.8 
Analytical 0.99521150159009718331129000 0.99759809940651943297143818 

RK5 0.99521150158856041321782121 0.99759809941245904784839459 
NIM 0.99521150159009718331119764 0.99759809940651943297139764 

0.9 
Analytical 0.99461455379139117065882874 0.99729759762275790141168878 

RK5 0.99461455378961537175950719 0.99729759762962628361902184 
NIM 0.99461455379139117065875426 0.99729759762275790141167993 

1.0 
Analytical 0.99401796405393526474449877 0.99699703787924721635144237 

RK5 0.99401796405193926392063688 0.99699703788697333199093918 
NIM 0.99401796405393526474449324 0.99699703787924721635144199 

 
  



Iyanda et. al., Malaysian Journal of Computing, 6 (1): 758-771, 2021 
 
  

767 
 

Table 5.  Metastatic cancer model case two (Weekly) 

𝒕	 Solution 𝑿(𝒕)	 𝒀(𝒕)	
 
0 
 

Analytical 1.00000000000000000000000000 1.00000000000000000000000000 
RK5 1.00000000000000000000000000 1.00000000000000000000000000 
NIM 1.00000000000000000000000000 1.00000000000000000000000000 

0.1 
Analytical 0.99580880766495451668308341 0.99789854300498946897903360 

RK5 0.99580880766351980467455044 0.99789854301053204000954323 
NIM 0.99580880766495451564327687 0.99789854300498946765439873 

 
0.2 

 

Analytical 0.99163518142309837737705028 0.99579422380849516498624080 
RK5 0.99163518142011170470679095 0.99579422382010202195873630 
NIM 0.99163518142309837696587321 0.99579422380849516376543298 

0.3 
Analytical 0.98747904765155645020861434 0.99368711957485927565972481 

RK5 0.98747904764863572014408875 0.99368711958634924878773844 
NIM 0.98747904765155645016751387 0.99368711957485927436254287 

 
0.4 

 

Analytical 0.98334033303602123324120735 0.99157730678109081388513521 
RK5 0.98334033303436692574645740 0.99157730678781770351579470 
NIM 0.98334033303602123311563897 0.99157730678109081304387651 

0.5 
Analytical 0.97921896456945958818954521 0.98946486122177863408153413 

RK5 0.97921896456899545098655533 0.98946486122395604924123558 
NIM 0.97921896456945958817864393 0.98946486122177863407664532 

0.6 
Analytical 0.97511486955082489446193668 0.98734985801397250818145691 

RK5 0.97511486952469804340389589 0.98734985811719928695057607 
NIM 0.97511486955082489446065437 0.98734985801397250818134876 

0.7 
Analytical 0.97102797558377460081269877 0.98523237160203245854940534 

RK5 0.97102797487644298930950730 0.98523237439374461910455163 
NIM 0.97102797558377460081268974 0.98523237160203245854940516 

0.8 
Analytical 0.96695821057539315198225655 0.98311247576244654390241015 

RK5 0.96695820842988353541323728 0.98311248425093019642898531 
NIM 0.96695821057539315198225612 0.98311247576244654390241000 

0.9 
Analytical 0.96290550273492026779732032 0.98099024360861729312261800 

RK5 0.96290549859889097667386382 0.98099026001627097349847267 
NIM 0.96290550273492026779732011 0.98099024360861729312261723 

1.0 
Analytical 0.95886978057248455229795042 0.97886574759561698068506712 

RK5 0.95886977407390677103871351 0.97886577345036668138659161 
NIM 0.95886978057248455229795012 0.97886574759561698068506699 

 
 

Table 6.  Metastatic cancer model case three (Monthly) 

𝒕	 Solution 𝑿(𝒕)	 𝒀(𝒕)	
 
0 
 

Analytical 1.00000000000000000000000000 1.00000000000000000000000000 
RK5 1.00000000000000000000000000 1.00000000000000000000000000 
NIM 1.00000000000000000000000000 1.00000000000000000000000000 

0.1 
Analytical 0.98216103235830071800053830 0.99097401625888782473843321 

RK5 0.98216103217113505840029871 0.99097401699950183315591036 
NIM 0.98216103235830071800487321 0.99097401625888782472994172 

 
0.2 

 

Analytical 0.96464029348312303004387875 0.98190005309155045825869202 
RK5 0.96464029334064855620889717 0.98190005369259671441295810 
NIM 0.96464029348312303003278543 0.98190005309155045825794872 

0.3 
Analytical 0.94743210650179829953811593 0.97278392253768715122545317 

RK5 0.94743210647481974686336798 0.97278392269563028537744645 
NIM 0.94743210650179829953765387 0.97278392253768714895287312 

 
0.4 

 

Analytical 0.93053089581120573174655787 0.96363121542495510375758467 
RK5 0.93053089024673168684722868 0.96363123721805507589072702 
NIM 0.93053089581120573174578451 0.96363121542495510369726571 

0.5 
Analytical 0.91393118527122818674735355 0.95444730810233419357703613 

RK5 0.91393116908893608335507746 0.95444737234481506869612957 
NIM 0.91393118527122818674694724 0.95444730810233419356937652 
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0.6 
Analytical 0.89762759643043487568903354 0.94523736898727966396173859 

RK5 0.89762757289090110616620838 0.94523746446329400585370479 
NIM 0.89762759643043487568857231 0.94523736898727966389126732 

0.7 
Analytical 0.88161484678341604601365513 0.93600636493155201620971761 

RK5 0.88161482205811448384652669 0.93600646853602467077975201 
NIM 0.88161484678341604601359472 0.93600636493155201620856823 

0.8 
Analytical 0.86588774805920501684056355 0.92675906741048896212946878 

RK5 0.86588772744479558966498443 0.92675915836061994255688748 
NIM 0.86588774805920501684055982 0.92675906741048896212946735 

0.9 
Analytical 0.85044120454023299827718764 0.91750005854036300331713985 

RK5 0.85044119035389544159357999 0.91750012656977279593404420 
NIM 0.85044120454023299827717563 0.91750005854036300331713865 

1.0 
Analytical 0.83527021141127202131238497 0.90823373692834993945233532 

RK5 0.83527020253709670230735855 0.90823378463125630132647220 
NIM 0.83527021141127202131237998 0.90823373692834993945233456 

 

 
Figure 2.  Depict the absolute error for Table 4  𝑋(𝑡) and 𝑌(𝑡)) 

 

 
Figure 3.  Depict the absolute error for Table 5  𝑋(𝑡) and 𝑌(𝑡)) 
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Figure 4.  Depict the absolute error for Table 6 𝑋(𝑡) and	𝑌(𝑡)) 

 
6.      Conclusion   
 
This study compared the Runge-Kutta method of fifth-order (RK5) with New Iterative Method 
(NIM) for the numerical solutions of metastatic cancer models which occur in two 
compartments of cancer cells. A numerical solution obtained shows that increase in parameters 
β1, β2 and β3 leads to decrease in spreading of cancer tumor in the two apartments. Finally, the 
results are more realistic compare with analytical solutions and from the computational 
viewpoint, the New Iterative Method (NIM) is easy to utilize and less error obtained (Figure 
2, Figure 3 and Figure 4) compare to Runge-Kutta Method of fifth-order (RK5) method. 
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