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Introduction:Motor imagery electroencephalograph (MI-EEG) has attracted great

attention in constructing non-invasive brain-computer interfaces (BCIs) due to its

low-cost and convenience. However, only a few MI-EEG classification methods

have been recently been applied to BCIs, mainly because they su�ered from

sample variability across subjects. To address this issue, the cross-subject scenario

based on domain adaptation has been widely investigated. However, existing

methods often encounter problems such as redundant features and incorrect

pseudo-label predictions in the target domain.

Methods: To achieve high performance cross-subject MI-EEG classification, this

paper proposes a novel method called Dual Selections based Knowledge Transfer

Learning (DS-KTL). DS-KTL selects both discriminative features from the source

domain and corrects pseudo-labels from the target domain. The DS-KTL method

applies centroid alignment to the samples initially, and then adopts Riemannian

tangent space features for feature adaptation. During feature adaptation, dual

selections are performed with regularizations, which enhance the classification

performance during iterations.

Results and discussion: Empirical studies conducted on two benchmark MI-

EEG datasets demonstrate the feasibility and e�ectiveness of the proposed

method under multi-source to single-target and single-source to single-target

cross-subject strategies. The DS-KTL method achieves significant classification

performance improvement with similar e�ciency compared to state-of-the-art

methods. Ablation studies are also conducted to evaluate the characteristics and

parameters of the proposed DS-KTL method.

KEYWORDS

motor imagery, electroencephalograph, cross-subject, feature selection, domain

adaptation, noninvasive brain computer interface

1 Introduction

Electroencephalograph (EEG) based noninvasive brain-computer interfaces (BCIs) play

a significant role in neuroscience and cognitive science (Lebedev, 2014; Ramadan and

Vasilakos, 2017; Abiri et al., 2019). Common EEG-BCI paradigms include event-related

potential (ERP) (Wang et al., 2023b), steady-state visual evoked potential (SSVEP) (Schielke

and Krekelberg, 2022), and motor imagery (MI) (Brusini et al., 2021), which involve signal

processing and pattern recognition of EEG signals recorded during these paradigms. ERP

and SSVEP belong to passive stimulus paradigms, which can often cause visual fatigue and

have limited practical applications (Zhang et al., 2020a). In contrast to the aforementioned

paradigms, the MI paradigm adopts a subject-driven approach, where subjects imagine

self-generated limb movements across various scenarios and time durations. Therefore,

it finds wide applications in areas such as rehabilitation assistance and brain-controlled

games. During the process of MI, rhythmic modulation occurs in the sensorimotor cortical
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regions of the brain (Al-Saegh et al., 2021), commonly referred

to as sensorimotor cortical regions. This modulation is reflected

in the MI-EEG signals as power variations in specific frequency

bands (Tangwiriyasakul et al., 2013). Typically, frequency band

power variations occur in the contralateral sensorimotor cortical

regions. For example, left-hand MI leads to power suppression in

the right sensorimotor cortical regions, known as the event-related

desynchronization (ERD) phenomenon (Nam et al., 2011).

The phenomenon of ERD primarily manifests as a decrease

in power in the µ and β rhythms of MI-EEG signals (Ono et al.,

2013). Therefore, it is crucial to analyze the power variations

in these two rhythms of MI-EEG signals, extract appropriate

features, and classify patterns corresponding to the MI task

for building MI-BCI applications (Kevric and Subasi, 2017).

Since EEG signals are multivariate time series, spatial domain

features of MI-EEG signals are typically extracted for classification.

Commonly used spatial feature representation methods based on

the covariance matrix include common spatial patterns (CSP)

(Ang et al., 2012) and Riemannian tangent space (RTS) (Xu

et al., 2021). Classical methods for classifying spatial features

include linear discriminant analysis (LDA). However, due to the

nonlinear and non-stationary characteristics of EEG signals, the

underlying MI patterns embedded in multivariate time series

vary across different subjects and recording sessions (Wu et al.,

2022). Furthermore, the inconvenience of EEG signal acquisition

often makes it challenging to collect a sufficient number of

samples from individual subjects to train high-performance

classifiers. Additionally, the temporally varying and spatially

coupled characteristics of MI-EEG signals across subjects make

it difficult to directly use samples from different subjects to

construct classifiers (Khademi et al., 2023). Therefore, the flexible

individual-specific characteristics pose a significant challenge in

the application of MI-EEG signals. For instance, in practical MI-

BCI systems, labeled samples can only be obtained from existing

subjects, and it is not possible to access a sufficient number of

samples from newly arrived subjects.

To address this challenge, numerous transfer learning or

domain adaptation based methods (Kouw and Loog, 2019) have

been proposed to reduce the distribution divergence across subjects

and enable cross-subject MI-EEG classification. Existing cross-

subject MI-EEG classification methods can be generally divided

into three categories based on the approach used for adaptation:

sample alignment-based methods (Zanini et al., 2017; He and Wu,

2019; Zhang et al., 2021), feature adaptation based-methods (Zhang

and Wu, 2020a,b; Cai et al., 2022; Jiang et al., 2022; Luo, 2022), and

deep learning model-based methods (Zhao et al., 2020; Hong et al.,

2021; She et al., 2023). Sample alignment-based methods aim to

align the average covariance matrix of MI-EEG samples from each

subject to an identity matrix, thereby bringing the distribution of

multivariate time series closer. Feature adaptation-based methods

draw inspiration from the field of cross-domain image transfer

learning, where features are projected into the reproducing kernel

Hilbert space (RKHS), and kernel methods are employed to learn

domain-invariant features. The methods based on deep learning

models primarily utilize convolutional neural network (CNN) to

extract features from MI-EEG samples and incorporate feature

alignment or feature adversarial techniques during gradient descent

to achieve the learning of domain-invariant features. This ensures

the performance of cross-subject MI-EEG classification.

Formally, deep learning-based methods require high

computational resources and may not be suitable for constructing

practical MI-BCI applications (Altaheri et al., 2023). Therefore,

this study focuses on the first two categories of methods. Currently,

the majority of cross-subject MI-EEG classification methods

employ sample alignment as a preprocessing step. After aligning

the MI-EEG samples, subjects are designated as the source domain

and target domain, and the CSP or RTS spatial features are

extracted separately. Subsequently, a feature adaptation strategy is

developed for the spatial features, and the transformed domain-

invariant features are used for classification. In existing feature

adaptation methods, the primary consideration is given to the

marginal and conditional distributions of the source and target

domain features. To construct the conditional distribution of

the unlabeled target domain, the model trained on the source

domain is typically employed to predict pseudo-labels for the

target domain (Long et al., 2013). Additionally, to ensure the

stability of feature distribution during the iterative adaptation

process, regularization terms are often incorporated into the

optimization objective, ensuring the morphologies of features for

each class (Zhang et al., 2017). Common regularization techniques

include using the within-class scatter matrix to guarantee the

discriminability of the source domain, utilizing the Laplacian

matrix to preserve the locality of the target domain, and adopting

the l2-norm to regularize the transformation matrix during the

feature adaptation process.

Although present feature adaptation methods can achieve

promising performance in cross-subject MI-EEG classification, we

have observed that they still suffer from two drawbacks. First,

most of them heavily rely on the predicted pseudo-labels of the

target domain. Unfortunately, during the initial stages of domain

shift, the MI-EEG samples from the target domain could be

wrongly predicted, making it difficult to obtain an ideal conditional

distribution for adaptation. Secondly, the spatial features deployed

during the adaptation process may contain redundant components,

which can significantly impact the performance and efficiency

of feature adaptation. Thus, currently available methods lack

consideration for abnormal feature dimensions and wrongly

labeled samples in the target domain, which hampers the

performance of cross-subject MI-EEG classification. In addition,

the spatial feature of RTS suffers from extremely large dimensions

when the number of EEG recording channels is large, further

deteriorating the efficiency of iterative amendment of pseudo-labels

in the target domain.

Currently, in the development of online BCIs, using existing

subject datasets to construct cross-subject classification, there

are two main research branches: conventional feature adaptation

methods and adversarial deep learning models. The former

focuses on achieving domain-invariant feature representation

across different subjects, while the latter focuses on learningmodels

capable of extracting domain-invariant features. Each branch has

its own advantages and limitations. The conventional feature

adaptation methods primarily emphasize target optimization,

offering higher execution efficiency and lower cost requirements.

However, their performance is constrained by the limitations
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of feature representation. On the other hand, adversarial deep

learning models prioritize model training, and with an increasing

number of subjects, they exhibit higher performance. Nevertheless,

they are hindered by higher computational and storage costs,

making them less suitable for application in low-power wearable

EEG devices. To address the goal of constructing an online BCI on

wearable devices with limited storage capacity, this study focuses on

conventional feature adaptation methods. By employing superior

feature selection and representation techniques, as well as pseudo-

label selection, the purpose is to achieve higher performance in

terms of BCI classification.

To meet the aforementioned requirements, we propose DS-

KTL (short for Dual Selections based Knowledge Transfer

Learning), a novel solution that integrates supervised feature

selection and pseudo-label selection into the manifold regularized

feature adaptation. DS-KTL method aims to improve the

performance of cross-subject MI-EEG classification. Specifically,

DS-KTL iteratively obtains accurately pseudo-labels of the

unlabeled target domain under the selected discriminant feature

dimensions across the source domain and target domain.

The contributions of this work are summarized as follow:

1. Two steps of manifold embedded spatial feature selection

and pseudo-label selection with incremental confidence are

introduced for both source domain and target domain during

feature adaptation, resulting in excellent performance in cross-

subject MI-EEG classification.

2. A dual selections has been introduced to the manifold

regularized feature adaptation framework, which further

reduces the distribution discrepancy across subjects, and

automatically regularizes the abnormal feature dimensions and

pseudo-labels.

3. The proposed method is free from the dimensional explosion

problem, and the dimensions of the manifold embedded

spatial features can be tuned during real-world applications.

Meanwhile, extensive experiments on various benchmark

datasets are conducted to demonstrate the efficacy of the

proposed method.

The rest of this paper is organized as follows. Section 2 gives

a brief review of the most related work. In Section 3, we present

the details of the proposed method. Section 4 provides a series of

experimental results, and the discussion is given in Section 5. In

Section 6, we provide a conclusion of this paper.

2 Related works

In this section, we give a brief review of existing cross-subject

MI-EEG classification methods which can be generally grouped

into three categories.

2.1 Sample alignment methods

The idea of sample alignment of MI-EEG signals for the cross-

subject classification is derived from the domain generalization

(Zhou et al., 2022), which adjusts the sample distributions

of all subjects to a similar distribution. Since the statistical

information of MI-EEG samples is embedded in covariance

matrices, researchers have considered covariance matrix as the

sample distribution and performed alignment on the average

covariance matrix of all samples. The first method to align

covariance matrices on the Riemannian space was Riemannian

alignment (RA) (Zanini et al., 2017). RA aligns the covariance

matrices from all subjects to the average covariance of an

identity matrix, thereby reducing the distribution discrepancy

among subjects. The aligned covariance matrices can then be

classified using the minimum distance mean classifier. However,

due to the high time complexity of the Riemannian centroid

computation, researchers proposed the Euclidean alignment (EA)

method (He and Wu, 2019) to align samples based on the

Euclidean average of covariance matrices, which significantly

improve the computation efficiency. Instead of constructing the

classifier on the covariance matrices, EA aligns MI-EEG samples

while preserving their multivariate time-series form. To further

enhance MI-EEG classification, researchers extract spatial features

such as CSP or RTS from the aligned samples, providing flexible

for classification. More recently, researchers have built upon RA

and EA by extracting CSP features from sub-bands, revising

the alignment objective, and performing target alignment on

these features (SB-TA-CSP) (Zhang et al., 2021). This approach

has shown improved performance in cross-subject MI-EEG

classification.

2.2 Feature adaptation methods

The idea of feature alignment of CSP or RTS spatial features

for cross-subject MI-EEG classification is derived from the domain

adaptation. The first method introduced for aligning the marginal

distribution in cross-domain image classification is transfer

component analysis. Researchers aimed to align both the marginal

and conditional distributions in cross-domain image classification

and proposed methods such as joint distribution alignment (JDA)

(Long et al., 2013), joint probability distribution alignment (JPDA)

(Zhang and Wu, 2020a), and balanced distribution alignment

(BDA) (Wang et al., 2017) based on pseudo-labels from the target

domain. Recently, iterative distribution alignment methods were

developed by adding regularizations, such as joint geometrical

and statistical alignment (JGSA) (Zhang et al., 2017) and

selective pseudo-labeling (SPL) (Wang and Breckon, 2020). Other

researchers focused on subspace alignment and proposed methods

like correlation alignment (CROAL) (Sun et al., 2017). These

domain adaptation methods based on CSP or RTS spatial features

utilized kernel tricks during distribution alignment. Furthermore,

researchers have also developed the domain adaptation methods

specifically for cross-subject MI-EEG classification, including

manifold embedded knowledge transfer (MEKT) (Zhang and Wu,

2020b), manifold embedded transfer learning (METL) (Cai et al.,

2022), kernel based manifold domain adaptation (KMDA) (Jiang

et al., 2022), and feature weighting regularized joint probability

distribution adaptation (FWR-JPDA) (Luo, 2022). These methods

adapt the original CSP or RTS spatial features through complex

optimizations. However, the pseudo-labels from the target domain

often introduce errors during iterative distribution alignment
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process, which can deteriorate the performance of cross-subject

MI-EEG classification.

Generally, the CSP or RTS features are effective in decoupling

MI-EEG samples, and their efficient computation process and

lower feature dimension make them suitable for conditional

distribution alignment. Moreover, obtaining pseudo-labels

iteratively in conditional distribution alignment allows for the

continuous correction of incorrect labels in the target domain,

enabling the source domain-trained classifier to generalize

effectively to the target domain. Additionally, methods such as

MEKT, METL, KMDA, and FWR-JPDA incorporate regularization

techniques, such as manifold transformations, or feature structure

preservation to enhance generalization during feature adaptation.

However, mainstream feature adaptation methods rely on RTS

or CSP features, which include redundant features that are

considered together during the feature adaptation process, posing

challenges in domain adaptation. On the other hand, although

pseudo-labels based conditional distribution alignment improves

generalization, it becomes challenging to effectively align the

conditional distribution if a large number of erroneous pseudo-

labels are generated from the initial iterations, especially for

challenging MI-EEG samples. In summary, the performance of

feature adaptation is determined by the feature representation

in the source domain and the acquisition of pseudo-labels in the

target domain, which are the two key points our proposed method

aims to address.

2.3 Deep learning models

Domain adversarial methods represent another branch of

cross-subject MI-EEG classification based on deep learning models

(Chen et al., 2022). Initially applied to cross-domain image

classification, researchers empolyed domain adversarial neural

network (DANN) (Li et al., 2018) for this purpose. Recently,

deep learning models inspired by the DANN have been utilized

in cross-subject MI-EEG classification. One such model is the

deep representation based domain adaptation (DRDA) model

(Zhao et al., 2020), which optimizes three modules simultaneously:

feature extractor, classifier, and domain discriminator. By obtaining

domain-invariant deep representations, the DRDAmodel enhances

MI-EEG classification performance. To address differences in

sub-domain distributions among different MI classes, which the

DRDA model overlooks, researchers introduced the dynamic joint

DANN (DJDAN) model (Hong et al., 2021). The DJDAN model

incorporates multiple sub-domain discriminators for domain

adversarial learning. Furthermore, to improve the performance

of domain adversarial learning, researchers introduced the

Wasserstein distance to the DRDAN model (She et al., 2023),

resulting in significant performance improvements in cross-subject

MI-EEG classification. However, adversarial learning based on

deep neural networks requires substantial training time to achieve

subject-invariant features extracting models, which is impractical

in real-world MI-BCI scenarios. Therefore, our proposed method

focuses on sample alignment and feature adaptation, enabling

rapid adaptation to newly arrived subjects and facilitating real-time

online applications of MI-BCI systems.

3 The proposed method

In this section, we first provide the preprocessing steps

for sample alignment and spatial feature extraction. Then, we

introduce the method for selecting manifold embedded spatial

features. Next, we briefly introduce the widely used joint probability

distribution adaptation method and the manifold regularization

approach with pseudo-labels selection during selected spatial

feature adaption. Finally, we give the overview of the proposed

method and analyze its computational complexity.

3.1 Preliminaries

Based on transfer learning or domain adaptation (Kouw and

Loog, 2019), the formal mathematical definition of cross-subject

MI-EEG classification can be depicted as: Given a set of MI-EEG

signals extracted from m subjects, represented as Dm = {xi, yi}
n
i=1,

where each subject contains n samples. Among them, each EEG

sample is denoted as x ∈ Rch∗Ts, where ch represents the number

of EEG recording channels, Ts represents the number of sampling

points, and y represents the label of the corresponding MI task.

The objective is to select one subject with unlabeled samples as

the target domain Dt = {xi}
nt
i=1, and select partial or one subject

with labeled samples as the source domain Ds = {xi, yi}
ns
i=1. It

is assumed that the feature space is Xs = Xt , and label space is

Ls = Lt , but it contains the marginal probability Ps(xs) 6= Pt(xt),

and the conditional probability Ps(ys|xs) 6= Pt(yt|xt). The goal is

to perform the transfer learning or domain adaptation method to

train a classifier on the source domain to predict labels on the target

domain with minimal loss. Table 1 illustrates the frequently used

symbols and notations in the paper.

3.2 Centroid alignment and spatial feature
extraction

Recently, RA and EA based centroid alignment (CA) of

covariance matrix for the raw MI-EEG samples from each subject

has been recommended by the researchers (Zhang and Wu, 2020b;

Luo, 2022) to be a preprocessing step to narrow the distribution

discrepancy across subjects, since the covariance represents the

distribution characteristics of MI-EEG samples. Therefore, the first

step is to perform the centroid alignment. Firstly, the centroid is

represented by the arithmetic average of themth subject:

C̄=
1

n

n
∑

i=1

xix
T
i (1)

Then, the alignment procedure regards as a reference matrix to

align each MI-EEG sample from themth subject:

x̂i = C̄−
1
2 xi (2)

For each subject from Dm, a same alignment procedure is

performed by Equations 1 and 2. Finally, after alignment, we can
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TABLE 1 Frequently used symbols and notations in the paper.

Symbol Description Symbol Description

Dm Dataset ofm subjects n Number of samples of each subject

Ds Dataset of source domain C̄ Mean of covariance matrix

Dt Dataset of target domain M Riemannian covariance matrix

xi The i-th MI-EEG sample fs Feature set of source domain

x̂i Aligned i-th MI-EEG sample ft Feature set of target domain

yi Label of i-th MI-EEG sample c/C Class index of each MI task

v Embedded transformed vector I Identity matrix

p Manifold embedded projection α,β , γ Parameters of feature selection

J Degree matrix K Manifold embedded graph

V Auxiliary matrix to solve ℓ2,1 f ∗s Selected feature of source domain

L Laplacian matrix f ∗t Selected feature of target domain

φT Transferability of adaptation λ Parameter of adaptation

φD Discriminability of adaptation ωs Optimal source adaptation vector

ξ (·) Feature adaptation function ωt Optimal target adaptation vector

rs Constructed source label matrix rt Constructed target pseudo label matrix

Ps/Pt Normalized source /target label vector Qs/Qt Normalized source /target label matrix

Sw Within-class scatter matrix Sb Between-class scatter matrix

µ, η, σ Parameters of regularizations ρ Lagrangian multiplier

H Centering matrix for adaptation ℓ Loss function

u∗s Nearest source class prototype u∗t Optimal target class prototype

also compute the centroid of covariance for themth subject:

C̄′=
1

n

n
∑

i=1

x̂ix̂
T
i =

1

n

n
∑

i=1

C̄−
1
2 xix

T
i C̄

−
1
2 = C̄−

1
2 C̄C̄−

1
2 = I (3)

The result points out that the centroid of covariance for

each subject corresponds to the identity matrix, which represents

a similar samples distribution across m subjects. The centroid

of covariance, computed by Equation 2, is based on Euclidean

mean and can be easily extended to the log-Euclidean mean by

adding the log(·) operation. Furthermore, the covariance of MI-

EEG samples is a symmetric positive definite (SPD) matrix, which

can be viewed as a differential Riemannian manifold (Zanini et al.,

2017). Hence, the Riemannian mean can also be computed to

represent the centroid. Before introducing the Riemannian mean,

the Riemannian distance between two SPD matrices M1 and M2

can be defined as:

d(M1,M2) =
∥

∥log
(

M−1
1 M2

)∥

∥

F
(4)

where ‖•‖F denotes the Frobenius norm, and log(·) is the logarithm

form of eigenvalues that computed from M−1
1 M2. Based on

Riemannian distance, the Riemannian mean of n samples can be

computed as:

meanM = argmin
M

n
∑

i=1

d (M,Mi) (5)

The way in which the centroid is computed can influence the

alignment of MI-EEG samples and lead to varying performance

across different datasets and transfer strategies. Therefore, during

experiment, we will show the performance using different

mean computing of centroid alignment, and present excellent

results.

Typically, we extract the spatial features from the aligned MI-

EEG samples for subsequent feature adaptation. The CSP and RTS

are two commonly used spatial features. Since CSP is a supervised

method and its dimensionality is influenced by the number of

channels, we select to use the RTS feature for the following feature

adaptation. Formally, the RTS feature projects the Riemannian SPD

matrixMi onto the tangent space surrounding the Riemannian SPD

M, and obtains the Euclidean tangent space vector, which can be

represented as:

f = upper(logM(MrefMiMref )) (6)

where upper(•) is upper triangular part extraction operator to

obtain the Euclidean tangent space vector fi ∈ R1∗
ch(ch+1)

2 for

Mi. For the datasets used in the experiment, Dataset 2a contains

ch = 22 that will produce 253-dimensional RTS features, and

Dataset 2b contains ch = 3 that will produce 6-dimensional RTS

features. During feature extraction, the reference matrix can be

defined as Mref = M−
1
2 to confirm the homomorphism of the

extracted Euclidean tangent space vector from the Riemannian

manifold.
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3.3 Manifold embedded spatial feature
selection

Researchers (Yan et al., 2021) have highlighted that the

presence of redundant features can hinder the feature adaptation

process. Therefore, prior to feature adaptation, we propose

using a supervised manifold embedded feature selection (MEFS)

method to select discriminative features for the following feature

adaptation. Our feature selection method is inspired by the

approach described in reference (Zhang et al., 2019), which aims

to construct a linear transformation of the original feature space

to approximate a low-dimensional embedded feature space. Since

the labeled samples are from the source domain, we utilize

these samples for feature selection, and select the same feature

dimensions for the unlabeled samples from the target domain.

Given the labeled samples of the RTS spatial feature vector

{fi, yi}
ns
i=1 ∈ Ds, and a low-dimensional embedded projection pwith

the transformed feature vector ν, the MEFS method aims to learn

the linear transformation f ν − p.

To ensure the supervised process, the labels y should be

incorporated as a regularization term in the projection p −

y. Additionally, the Laplacian regularization term Tr(pTLp) is

employed to preserve the structural properties of the embedded

features on the manifold. To perform the feature selection

within the linear approximation, the l2,1-norm is introduced to

automatically select representative features in the low-dimensional

manifold embedding. Ultimately, the objective of the MEFS can be

formulated as:

min
p,ν

∥

∥f ν − p
∥

∥

2

F
+ αTr(pTLp)+ β

∥

∥p− y
∥

∥

2

F
+ γ ‖ν‖2,1 (7)

where L = J − K is the Laplacian matrix of graph J. Graph J is

selected to be computed by the heat kernel, and K represents a

degree matrix (Belkin and Niyogi, 2004). The parameters α,β serve

as counterbalance parameters between the two regularizations,

while γ is the parameter associated with the l2,1-norm. It is

important to note that all parameters are fine-tuned in the

experiments conducted on different MI-EEG datasets.

Since the l2,1-norm is non-smooth, the objective of the MEFS

needs to be solved by an alternating minimization strategy. First,

we fixed the transformed feature vector ν, and then compute the

derivative of Equation 7 with respect to (w.r.t) p as follow:

(αL+ (β + 1)I)p = f ν + βy (8)

where L, I, f , ν, y are known, so the form of AX + XB = C(B = φ)

w.r.t Equation 8 can be easily solved using the Matlab function

lyap, and the analytical solution of the low-dimensional embedded

projection p̃ minimized can be secured. Next, we fixed the secured

p, and the derivative of Equation 7 w.r.t ν can be computed as:

min
ν

∥

∥f ν − p
∥

∥

2

F
+ γ ‖ν‖2,1 (9)

Since the Equation 9 is non-convex w.r.t the l2,1-norm, a

commonly used method is to introduce an auxiliary matrix V =













1
2‖ν1‖2

0 0

0 ... 0

0 0 1

2

∥

∥

∥

∥

∥

ν ch(ch+1)
2

∥

∥

∥

∥

∥

2













, and revisited Equation 9 to:

ν =
(

f Tf + γV
)−1

f Tp (10)

In the alternating minimization strategy, the aforementioned

solutions w.r.t 6= and p are iterated alternately until reaching the

preset maximum iterations or achieving minimum errors. For the

realized sparse feature vector, the representative of each dimension

is measured based on a supervised way. Hence, for any ∀i, the top-q

feature dimensions f si ∈ R1∗q are selected as the most discriminant

features for the subsequent feature adaptation. Regarding the RTS

features of the source domain and target domain, the selected RTS

features can be represented as f ∗s = {f ∗i , yi}
ns
i=1 ∈ Ds, f

∗
t = {f ∗i }

nt
i=1 ∈

Dt .

3.4 Joint probability distribution
adaptation

To facilitate the adaptation of the selected RTS features

between the source domain and target domain, the joint probability

distribution adaptation (JPDA) (Zhang and Wu, 2020a) is

commenced, which is widely used for feature adaptation in the

context of the MI-EEG signals (Zhang and Wu, 2020b; Luo,

2022). The JPDA method is derived from the TCA and JDA,

which confirms the intra-class transferability and discriminability

during adaptation. For the selected RTS features of f ∗s and f ∗t ,

the transferability across domains and the discriminability across

classes φD should be considered during the adaptation ξ (·):

ξ (f ∗s , f
∗
t ) = φT − λφD (11)

where λ is the trade-off parameter between two terms. Due to the

consideration of intra-class discriminability, we assume that for two

classes of MI, the transferability φT can be defined based on the

transformation vector ω = [ωs;ωt]:

φT =

2
∑

c=1

∥

∥

∥

∥

∥

∥

1

ncs

ncs
∑

i=1

ωT
s f

∗,c
s,i −

1

nct

nct
∑

j=1

ωT
t f

∗,c
t,j

∥

∥

∥

∥

∥

∥

2

F

(12)

where ncs and nct are the number of samples of class c for the

corresponding domains. The purpose of transferability φT is to

project the original feature vector to an embedded space based on

ω = [ωs;ωt]. Since the solver of JPDA needs the pseudo-labels of

the target domain, we follow the one-hot label matrix coding of the

JPDA method, and define the label matrix of source domain and

target domain as ys = [ys,1, ..., ys,ns ] and ỹt = [ỹt,1, ..., ỹt,nt ] for the

transferability φT .

Also, the discriminability φD can be clarified as:

φD =
∑

c 6=c′

2
∑

c′=1

∥

∥

∥

∥

∥

∥

∥

1

ncs

ncs
∑

i=1

ωT
s f

∗,c
s,i −

1

nc
′

t

nc
′

t
∑

j=1

ωT
t f

∗,c′

t,j

∥

∥

∥

∥

∥

∥

∥

2

F

(13)
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where c′ represents the class that different from c, and the

purpose of discriminability φD is to maximize the discriminability

among different classes. Similarly, we respectively defined the label

matrices for the discriminability for both source domain and

target domain. Specifically, the rs represents the combination of

c(c = 1, 2)-th column of the source labels, and we repeat 1

times to construct label matrices, while r̂t represents the 1 times

combination from the 1-th column to the 2-th column of pseudo

labels from the target domain. Notably, the rs is fixed from the

source domain labels ys during feature adaptation, while the r̂t is

iteratively updated during the pseudo labels ŷt selected from the

target domain.

To give a formally form of the transferability and

discriminability based on the maximum mean discrepancy

(MMD) (Chen et al., 2019), the objective of Equation 11 can be

depicted as:

min
ωs ,ωt

∥

∥

∥
ωT
s f

∗
s Ps − ωT

t f
∗
t Pt

∥

∥

∥

2

F
− λ

∥

∥

∥
ωT
s f

∗
s Qs − ωT

t f
∗
t Qt

∥

∥

∥

2

F
(14)

where Ps = ys/ns, Pt = ŷt/nt and Qs = rs/ns,Qt = r̂t/nt represent

the normalized one-hot label matrix.

3.5 Regularizations of feature adaptation

The JPDA method of Equation 14 is deprivation of

regularizations, which will cause overfitting during feature

adaptation. Followed by the regularizations of MEKT (Zhang and

Wu, 2020b) and JGSA (Zhang et al., 2017), we also added three

regularizations for the feature adaptation.

3.5.1 Discriminability of the source domain
Commonly, since the features from the source domain are

labeled, the discriminability of the source domain can be preserved

by the within-class and between-class scatter matrix:

min
ωs

Tr(ωT
s Swωs)

s.t.ωT
s Sbωs = I

(15)

Among them, the within-class scatter matrix Sw is defined as:

Sw =
∑2

c=1

∑ncs

i=1
(1− 1

/

ncs)(f
∗,c
s,i )

Tf ∗,cs,i (16)

And the between-class scatter matrix is Sb defined as:

Sb =
∑2

c=1
ns(f

∗,c
s,m − f ∗s,m)(f

∗,c
s,m − f ∗s,m)

T (17)

where f ∗,cs,m is the mean of features from class c, and f ∗s,m is the mean

of features from all classes.

3.5.2 Locality preservation of the target domain
However, the features from the target domain are non-labeled,

so we only launch the Laplacian regularization to preserve the

locality of the target domain like the MEFS process. It can be

given as:

min
ωt

Tr(ωT
t f

∗
t L(f

∗
t )

Tωt)

s.t.ωT
t f

∗
t H(f ∗t )

Tωt = I
(18)

where L is the normalized form from Equation 7, which can be

defined as L = I − J−1/2KJ−1/2. Moreover, the centering matrix

H = I− 1
nt
1nt , 1nt ∈ Rnt∗nt is used to limit the scaling effect during

feature adaptation (Belkin and Niyogi, 2003).

3.5.3 Regularization of the transformation vector
The similarity of the transformation vectors ω = [ωs;ωt]

respect to the source domain and target domain should be

regularized for a better generalization performance. To alleviate

the extreme values of such two transformation vectors, the

regularziation term of ωs and ωt should be added:

min
ωs ,ωt

(

‖ωt − ωs‖
2
F + ‖ωt‖

2
F

)

(19)

By adding the three regularizations, the Equation 14 can be

rewritten to:

min
ωs ,ωt

∥

∥ωT
s f

∗
s Ps − ωT

t f
∗
t Pt

∥

∥

2

F
− λ

∥

∥ωT
s f

∗
s Qs − ωT

t f
∗
t Qt

∥

∥

2

F
+

ηTr
(

ωT
s Swωs

)

+ µTr
(

ωT
t f

∗
t L(f

∗
t )

Tωt

)

+ σ
(

‖ωt − ωs‖
2
F + ‖ωt‖

2
F

)

s.t.ωT
s Sbωs = I,ωT

t f
∗
t H(f ∗t )

Tωt = I

(20)

where η,µ, σ are the counterbalance parameters across the three

regularizations, which are fine-tuned in the experiments for

different MI-EEG datasets.

3.6 Pseudo labels selection of feature
adaptation

The solver of Equation 20 can be easily performed due to it is

convex. By introducing the Lagrangianmultiplier method to the s.t.

conditions, the solver of Equation 20 is represented as:

ℓ = Tr
(

ωT([f ∗s ; f
∗
t ](Amin − λAmax+ηB+ σC)[f ∗s ; f

∗
t ]

T

+µD) ω + ρ(I − ωTEω)
)

(21)

where Amin =

[

PsP
T
s −PsP

T
t

−PtP
T
s PtP

T
t

]

,Amax =

[

QsQ
T
s −QsQ

T
t

−QtQ
T
s QtQ

T
t

]

,B =

[

Sw 0

0 0

]

,C =

[

0 0

0 L

]

,D =

[

I −I

−I 2I

]

, and ρ is the parameter of Lagrangian operator with

E =

[

Sb 0

0 [f ∗s ; f
∗
t ]H[f ∗s ; f

∗
t ]

T

]

. By setting the derivative of ∂ℓ
∂ω

= 0,

the solution is:

([f ∗s ; f
∗
t ](Amin−λAmax+ηB+σC)[f ∗s ; f

∗
t ]

T+µD)ω = ρEω (22)

Equation 22 can be easily solved using the Matlab function eigs,

and the transformation matrix ω is obtained from the z trailing

eigenvectors, where z represents the dimension of embedded

feature space. For the original feature adaptation, the solver of

Equation 22 is computed iteratively, as the matrix should be

constructed based on the pseudo-labels of the target domain. To

obtain effective pseudo-labels, it is common practice to train an
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LDA/shrinkage LDA classifier on the transformed source domain

features u∗s = ωTf ∗s , and then use this classifier to generate pseudo-

labels for the transformed target domain features u∗t = ωTf ∗t .

Through iterative refinement, the accuracy of the pseudo-labels for

the target domain gradually improves over time.

Unfortunately, the nonlinear and non-stationary characteristics

of MI-EEG samples often lead to initial incorrect pseudo-label

predictions by the classifier trained on source domain during

the early iterations. This issue significantly affects the feature

adaptation process. Previous studies (Wang and Breckon, 2020;

Teng et al., 2022) have shown that gradually predicting pseudo-

labels from high-quality to low-quality samples yields better

results than directly predicting pseudo labels for all samples

from the target domain during the feature adaptation process.

Therefore, to ensure a well-performing iterative process of feature

adaptation, we employ a selective pseudo-labeling strategy. This

strategy involves selectively predicting pseudo-labels for target

domain samples during the iterative process. As the the classifier’s

confidence increases, more and more target domain samples are

correctly predicted.

To measure the confidence of the classifier, we first define the

nearest class prototype on the samples from the source domain:

ū
y
s =

∑ns
i=1 u

∗
s Iden(y, ys,i)

∑ns
i=1 Iden(y, ys,i)

, Iden(y, yi) =

{

1, y = yi
0, otherwise

(23)

Based on the nearest class prototype, the conditional probability

of the samples from the source domain can be computed as:

P(c|xt) =
e
−

∥

∥

∥
u∗t −ū

y
s

∥

∥

∥

∑2
c=1 e

−
∥

∥

∥
u∗t −ū

y
s

∥

∥

∥

(24)

Instead of using the LDA/shrinkage LDA classifier, based on the

conditional probability, the pseudo-labels of the target domain can

be easily obtained:

ỹt = argmax{P(c|xt)} (25)

Based on the pseudo labels for all samples ỹt from the target

domain, and the corresponding conditional probability P(ỹt|xt),

the dataset of the target domain of the first iteration can be

defined as D̃t = {ỹi, xi, P(ỹi|xi)}
nt
i=1. During iteration of feature

adaptation, we select a group of high confidence (high probability)

samples from the target domain to achieve the pseudo-labels. The

number of selected pseudo-labels is related within the number of

iterations T. For the ith iteration, the class-wise top mt = i ∗ nct
/

T

samples with the highest probability are selected from the target

domain for the next iteration. It is important to note that the

top selected pseudo-labeled samples are unified from each class,

thereby avoiding the risk of exclusively selecting samples from

the specific classes. Consequently, in the subsequent iterations of

feature adaptation, the f ∗t in solver Equation 25 is replaced by

the selected mt samples. It is worth noting that the nearest class

prototype conditional probability classifier is defined as a binary

classifier by Equation 23 to 25. For a scenario of n classes of MI-

EEG samples, we need to divide them into n ∗ (n − 1)/2 binary

classification tasks.

Input:MI-EEG signals dataset Dm = {xi, yi}
n
i=1 withm subjects;

Output: The results of each subject as the target domain D̃t =

{ỹi, xi, P(ỹi|xi)}
nt
i=1.

1: Setting parameters α,β , γ , q for feature selection

and λ, η,µ, σ , z,T for feature adaptation;

2: Compute the arithmetic average of covariance

matrices by Equation 1;

3: Align MI-EEG samples for each subject by Equation

2;

4: Extract spatial features for each subject by

Equation 6;

5: Select discriminative features for each subject by

solve Equation 7;

6: for k = 1, 2, ...,m do

7: MTS: Treat each subject Dk as the target

domain and the rest m − 1 subjects as the source

domain;

8: STS: Treat each subject Dk as the target

domain and another subject D′
k
as the source

domain;

9: According to each MTS/STS cross-subject MI-EEG

classification task, construct Amin,Amax,

10: B,C,D for Equation 22;

11: for i = 1, 2, ...,T do

12: Solve Equation 22, and construct ω as the z

trailing eigenvectors;

13: Compute the transformed features of source

domain u∗s and target domain u∗t ;

14: Compute the nearest class prototype of

source domain ū
y
s by Equation 23;

15: Compute the conditional probability of the

target domain P(c|xt) by Equation 24,

16: and the corresponding pseudo-labels ỹt;

17: Select the class-wise top mt = i ∗ nct
/

T, and

update f ∗t in Equation 22;

18: end

19: end

20: return ỹt , P(c|xt)

Algorithm 1. DS-KTL for cross-subject MI-EEG classification.

3.7 Overview of the proposed method

Based on the aforementioned descriptions, we provide a concise

overview of the proposed method, and the flow chart of the

proposed DS-KTL method is illustrated in Figure 1. Furthermore,

Algorithm 1 gives the pseudo-code of the proposed DS-KTL

method for cross-subject MI-EEG classification. The proposed DS-

KTL method consists of four steps: covariance alignment, feature

extraction, feature selection, and feature adaptation with pseudo-

label selection. Considering a total of n = ns + nt samples for

the cross-subject EEG classification, we utilize the big-O notation

to analyze the computational complexity.

Firstly, the covariance alignment consumes a time complexity

of O(n2) to compute the mean of covariance. Then, the feature

extraction requires a time complexity of O(n ∗ ch2) with respect
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FIGURE 1

The flow chart of the proposed DS-KTL method.

to the number of channels in MI-EEG signals. For the feature

selection, a time complexity of O(n2) is used to select a feature

dimension of D. During the feature adaptation for a total of T

iterations, the number of n′t samples have been selected as the

pseudo-labels, so the MMD is constructed by O((ns + n′t)
2), and

the regularizations of transferable and discriminability has a time

complexity of O(D(ns + n′t)), as well as the three regularizations.

Finally, the eigen-decomposition of Equation 22 takes a time

complexity of O(D2), and the nearest class prototype requires a

time complexity of O(2D) for the binary MI tasks. In conclusion,

the total theoretical computational complexity is:

O(n2 + n ∗ ch2 + T((ns + n′t)
2 + 3D(ns + n′t)+ D2 + 2D)) (26)

We can observe that the proposed DS-KTL method exhibits a

comparable time complexity when compared to the state-of-the-

art methods. The empirical efficiency will be further compared and

discussed in the experiments.

4 Experiments and results

4.1 Datasets

Twowidely used public benchmarkMI-EEG datasets have been

introduced to evaluate the proposed DS-KTL method. Figure 2

exhibits the experimental paradigm for the BCIIV-2a and BCIIV-2b

datasets. These two selected datasets shared a similar MI paradigm,

except for the different MI onset moment. The experiment

commenced with the appearance of a cross at the center of the

screen with a beep sound, which aimed to capture the subjects

attention. Afterwards, a cue of MI task prompt was presented to

the subject, and the subjects engaged in a 4-s MI process based on

the provided prompts. Following the completion of each MI task,

a rest period of 1.5 s was given before proceeding to the next task.

The details of theMI-EEG datasets are as follow (Tangermann et al.,

2012):

(1) BCI Competition IV dataset 2a (BCIIV-2a): Four MI tasks

of left hand (L), right hand (R), feet (F), and tongue (T) prompts

were presented to nine healthy subjects. During MI paradigm, an

EEG recording device with 22 electrodes and 250 Hz sampling

rate was applied for data collection. Two sessions, training

and testing, have been conducted with each session collect 288

samples. We selected the training session for cross-subject MI-EEG

classification, and each class contained 72 samples. We primarily

conducted MI-EEG classification experiments for (L vs. R) and (R

vs. T) tasks. Additionally, for the 4 MI tasks (L, R, F, and T) in this

dataset, we also provided experimental results on 4 ∗ (4− 1)/2 = 6

binary classification tasks: Task 1 (L vs. R), Task 2 (L vs. F), Task 3

(L vs. T), Task 4 (R vs. F), Task 5 (R vs. T), and Task 6 (F vs. T).

Due to article space limitations, the ablation study results are only

provided for Task 1 and Task 6.

(2) BCI Competition IV dataset 2b (BCIIV-2b): This dataset

also collects the MI-EEG signals from nine healthy subjects,

including left hand (L) and right hand (R) prompts. The

experimental setup consisted of 3 EEG electrodes, and the sampling

rate was set at 250 Hz. The data collection process was divided

into five sessions. The first two sessions contained 120 samples

each, while the remaining three periods contained either 160 or

120 samples each. Due to the limited number of electrodes in

the BCIIV-2b dataset, we selected the samples recorded during

the first three sessions for the cross-subject MI-EEG classification

experiment. This resulted in a total of 400 MI-EEG samples of each

subject (200 for L class and 200 for R class), with any excess samples

removed for some subjects.

Similarly, to ensure a fair comparison of the experimental

results, we selected the time intervals of [2.5, 6s] and

[3.5, 7s] respectively, for the BCIIV-2a and BCIIV-2b

datasets. Each sample in the datasets had a time series
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FIGURE 2

The paradigm of the motor imagery for BCIIV-2a and BCIIV-2b datasets. (A) BCIIV-2a dataset. (B) BCIIV-2b dataset.

TABLE 2 The statistical information of two datasets for experiments.

Datasets Subjects Samples Channels Sampling points Classes

BCIIV-2a (L vs. R) 9 144 22 750 2

BCIIV-2a (F vs. T) 9 144 22 750 2

BCIIV-2b 9 400 3 750 2

consisting of 750 sampling points. Table 2 presents

the statistical information of the two datasets used in

the experiment.

4.2 Baseline methods

To validate the superiority of the proposed DS-KTL method,

we compare it with eight state-of-the-art (SOTA) methods. These

methods are recently proposed and popularly compared for the

cross-subject MI-EEG classification:

1. RA-MDM (Zanini et al., 2017): This method introduces

Riemannian alignment for the first time. It first computes the

covariance matrix of MI-EEG samples from each subject in the

Riemannian space and then aligns the Riemannian centroids to

the identity matrix. To classify the aligned covariance matrices,

the minimum distance of the Riemannian means (MDM)

classifier is used, assigning the class of a covariance matrix to

the class corresponding to the nearest Riemannian mean.

2. EA-CSP-LDA (He and Wu, 2019): This method introduces

Euclidean alignment for the first time. It directly computes

the Euclidean centroid of the covariance matrices of MI-EEG

samples from each subject. Subsequently, the MI-EEG samples

are aligned to the Euclidean centroid. To classify the MI-EEG

samples, CSP features are extracted, and an LDA classifier is used

for classification.

3. CA-CORAL (Sun et al., 2017): This method applies Euclidean-

based centroid alignment to align the MI-EEG samples from

each subject, followed by extracting CSP features from the

aligned MI-EEG samples. Finally, the CSP feature sets are

divided into source and target domains, and correlation

alignment (COLAR) is used to align the two domains on

subspaces with classification using an LDA classifier.

4. CA-JDA (Long et al., 2013): This method applies Euclidean-

based centroid alignment to align the MI-EEG samples from

each subject, followed by extracting CSP features from the

aligned MI-EEG samples. To align the conditional distribution,

the CSP feature set is divided into the source and target domains,

and the joint distribution adaptation (JDA) method is applied.

An LDA classifier is used to iteratively obtain pseudo-labels for

the target domain.

5. MEKT (Zhang andWu, 2020b): This method applies Euclidean-

based centroid alignment to align the MI-EEG samples from

each subject, followed by extracting RTS features from the

aligned MI-EEG samples. In the feature adaptation process, the

joint probability distribution adaptation method is employed.

The effective feature structure of the source and target domains

is preserved iteratively through within-class and between-class

scatter matrices, and pseudo-labels for the target domain are

obtained using a shrinkage LDA classifier.

6. METL (Cai et al., 2022): This method applies Euclidean-based

centroid alignment to align the MI-EEG samples from each

subject, followed by extracting RTS features from the aligned
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MI-EEG samples. In the feature adaptation process, the joint

probability distribution adaptation method is employed. The

effective feature structure of the source and target domains

is preserved iteratively through within-class and between-class

scatter matrices, and pseudo-labels for the target domain are

obtained using a shrinkage LDA classifier.

7. SB-TA-CSP (Zhang et al., 2021): This method first applies

multiple sub-band filters to perform band-pass filtering on the

MI-EEG samples from each subject. The source and target

domains are then divided, and the samples from the source

domain are aligned to the target domain for each filtering band.

After extracting CSP features, feature selection is performed

using minimum redundancy maximum relevance. Finally, an

LDA classifier is used to iteratively obtain pseudo-labels for the

target domain.

8. FWR-JPDA (Luo, 2022): This method applies Euclidean-

based centroid alignment to align the MI-EEG samples from

each subject, followed by extracting CSP features from the

aligned MI-EEG samples. To enhance the generalization of

feature adaptation, feature weighting regularized CSP features

are selected to construct the joint probability distribution

adaptation process. An eigenfeature regularized and extracted

classifier is used to iteratively obtain pseudo-labels for the target

domain.

Note that hyper-parameters of all baselines were set according

to the recommendations in their corresponding publications.

4.3 Experimental setups

Following the same settings of the references, we evaluated

the proposed DS-KTL method on two cross-subject classification

scenarios, single-source to single-target (STS), and multi-source to

single-target (MTS), respectively. For the nine subjects included

in the BCIIV-2a and BCIIV-2b datasets, the STS strategy involves

selecting one subject as the source domain and another subject as

the target domain for each cross-subjectMI-EEG classification task.

Consequently, the STS strategy generates a total of 9 ∗ 8 = 72 sub-

tasks. Conversely, the MTS strategy selects one subject as the target

domain and the remaining eight subjects as the source domain for

each task. This strategy generates a total of nine sub-tasks.

We adopt classification “Accuracy” on each test set as the

evaluation metric, which is widely used in existing references

(Zhang and Wu, 2020b; Luo, 2022):

Accuracy =

∣

∣x : x ∈ Dt ∧ ŷ(x) = y(x)
∣

∣

|x : x ∈ Dt|
(27)

where y(x) and ŷ(x) represent the ground truth and predicted

labels for the target domain, respectively. We reported the

average classification accuracy for each subject under the STS or

MTS strategy as the final result. Given the inclusion of various

parameters in the DS-KTL method, we employed a trial-and-error

strategy to search for the optimal parameter settings for each

dataset under the STS and MTS strategies. The default settings of

the parameters for feature selection were α = 1,β = 1, γ =

100, while the parameters for knowledge transfer learning were

η = 0.01,µ = 0.1, σ = 20. Other optimal parameter settings

TABLE 3 Optimal parameter settings of DS-KTL method.

MTS/STS strategy q λ z T

BCIIV-2a (L vs. R) 180/252 0.01/0.01 100/100 5/10

BCIIV-2a (F vs. T) 150/180 0.01/0.01 100/100 5/10

BCIIV-2b 5/5 0.1/0.1 10/10 5/10

are exhibited in Table 3, where q represents the selected number of

spatial features, λ denotes the counterbalance of JPDA, z indicates

the subspace dimension of JPDA, and T is the maximum number

of iterations. Additionally, we will discuss the parameter selections

of the proposed DS-KTL method during ablation study section.

4.4 Results

4.4.1 Performance of cross-subject classification
Tables 4–6 illustrate the cross-subject classification results on

BCIIV-2a (L vs. R), BCIIV-2a (F vs. T), and BCIIV-2b, respectively.

It is important to note that since the MEFS method involves a non-

convex optimization process, random results with slight differences

may be obtained during convergence. Therefore, we performed

ten times of the experiment and reported the best classification

results. For the STS strategy, each subject was treated as the target

domain, with the remaining each subject serving as the source

domain. The average classification accuracy was reported. Based

on the results in the tables, it can be determined that regardless

of the STS or MTS strategy, the Euclidean mean achieves the

highest average classification accuracy in centroid alignment for all

three classification tasks in BCIIV-2a and BCIIV-2b. The average

classification accuracy was higher compared to aligning the MI-

EEG samples with Riemannian mean or log-Euclidean mean.

Furthermore, the standard deviation of the Euclidean mean

is higher than that of the other two means, indicating greater

variability in classification accuracy across different subjects. By

examining the classification results for each subject, we can

conclude that the Euclidean mean significantly improves the

classification accuracy in cases with larger class separability.

However, the improvement is not substantial for cases with smaller

class separability, and in some subjects, there is a slight inhibitory

effect. Therefore, selecting the appropriate mean calculation

method for centroid alignment becomes crucial, depending on the

distribution of different MI-EEG datasets.

Specifically, subjects that exhibit high classification accuracy as

the target domain under the MTS strategy also tend to have high

accuracy when used as the source domain under the STS strategy.

For example, S1, S3, S8, and S9 in Table 4, S8 in Table 5, and S4 in

Table 6. These subjects consistently achieve stable accuracy as both

the source and target domains across different tasks and are often

referred to as “golden subjects” (Sun et al., 2022). They are well-

suited for classification applications in online MI-BCI scenarios.

Similarly, some subjects that pose challenges for classification show

unsatisfactory performance in both MTS and STS strategies, for

instance, S2, S5, and S6 in Tables 4, 5, as well as S2, S3, S7,

and S8 in Table 6. The sample sets of these subjects are not

suitable for online MI-BCI classification applications and should
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TABLE 4 Cross-subject classification results on BCIIV-2a (L vs. R).

Subjects STS-R STS-LE STS-E MTS-R MTS-LE MTS-E

S1 74.22 74.91 84.64 83.33 81.94 91.67

S2 53.47 53.65 52.60 54.17 53.47 55.56

S3 79.25 79.17 85.94 96.53 96.53 99.31

S4 64.93 64.67 66.23 72.22 75.00 78.47

S5 58.68 57.99 56.42 58.33 59.03 58.33

S6 63.80 63.63 63.89 66.06 66.67 70.14

S7 62.85 62.59 63.45 71.53 70.14 71.53

S8 88.02 88.37 92.80 93.75 92.36 95.14

S9 78.91 78.73 78.56 83.33 84.03 82.64

Average 69.35 69.30 71.61 75.47 75.46 78.09

Standard deviation 11.29 11.47 14.23 14.85 14.60 15.62

The approaches with the highest average accuracy are denoted as bold.

TABLE 5 Cross-subject classification results on BCIIV-2a (F vs. T).

Subjects STS-R STS-LE STS-E MTS-R MTS-LE MTS-E

S1 60.85 61.55 60.59 70.14 70.83 65.97

S2 46.88 46.18 55.73 36.11 34.72 45.83

S3 67.19 67.53 67.27 81.94 84.03 81.94

S4 60.76 60.33 61.02 67.36 66.67 69.44

S5 56.77 56.34 60.59 65.28 64.58 64.58

S6 45.83 46.27 49.83 45.83 45.83 48.61

S7 65.36 65.28 68.91 77.08 77.08 78.47

S8 70.92 71.01 81.08 91.67 93.75 95.14

S9 67.10 67.10 69.18 84.72 85.42 81.25

Average 60.18 60.18 63.80 68.90 69.21 70.14

Standard deviation 8.91 9.02 9.04 18.13 19.08 16.05

The approaches with the highest average accuracy are denoted as bold.

TABLE 6 Cross-subject classification results on BCIIV-2b.

Subjects STS-R STS-LE STS-E MTS-R MTS-LE MTS-E

S1 70.53 70.59 70.09 72.75 72.75 73.00

S2 57.66 57.34 57.87 57.75 56.75 59.75

S3 58.13 57.75 57.50 58.75 58.75 60.00

S4 86.63 86.50 87.06 91.00 91.25 92.75

S5 73.06 73.09 71.41 75.50 75.25 71.00

S6 68.94 69.37 69.53 70.50 70.75 71.50

S7 69.31 69.31 68.56 69.00 69.25 67.25

S8 66.50 65.78 66.75 67.50 67.75 67.25

S9 68.53 66.50 67.47 71.75 72.00 72.25

Average 68.81 68.47 68.47 70.50 70.50 70.53

Standard deviation 8.53 8.68 8.62 9.77 9.98 9.70

The approaches with the highest average accuracy are denoted as bold.

be discarded during offline testing. It is worth noting that some

subjects exhibit performance degradation from the MTS strategy

to the STS strategy, for example, S4 and S7 in Tables 4, 5, and

S5, S6, and S9 in Table 6. This indicates that the sample sets of

these subjects are not suitable for cross-subject scenarios and often

rely on the separability of other subjects’ sample sets to achieve
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outstanding performance under the MTS strategy. Therefore, these

subjects should be avoided when training the source domain model

for constructing online MI-BCI, and “golden subjects” should be

selected instead.

4.4.2 Compared with SOTA methods
To compare the classification results between the proposed

method and the SOTAmethods, Table 7 illustrates the comparative

results based on the MTS strategy, while Table 8 illustrates the

comparative results based on the STS strategy. For the FWR-JPDA

method, we maintained the same early stopping strategy with

T = 3 iterations to ensure a fair comparison during the MTS/STS

strategy for the three cross-subject MI-EEG classification tasks. As

the METL and SB-TA-CSP methods only conducted experiments

on the BCIIV-2a (L vs. R) task without open-source codes, we

only compared these two methods on the BCIIV-2a (L vs. R) task.

The approaches with the highest and the second-highest average

accuracy are denoted as bold and underlined, respectively, in the

listed results in both tables.

Based on the results presented in Table 7, it can be deduced that

our DS-KTL method achieved the best classification performance

for both the BCIIV-2a (L vs. R) and BCIIV-2b tasks. However,

it slightly underperfored compared to the FWR-JPDA method on

the BCIIV-2a (F vs. T) task. Overall, our method achieved the

highest average classification performance across the three tasks

under the MTS strategy. Similarly, as observed from Table 8, our

method demonstrated the best classification performance for both

the BCIIV-2a (L vs. R) and BCIIV-2a (F vs. T) tasks, while slightly

underperforming compared to the FWR-JPDA method for the

BCIIV-2b task. Overall, our method also achieved the highest

average classification performance across the three datasets under

the STS strategy.

As a common practice (Zhang and Wu, 2020b; Mishuhina and

Jiang, 2021), dividing n classes into n∗(n−1)/2 binary classification

tasks is a basic strategy. In our DS-TKL method, since the pseudo-

label selection classifier is only applicable to binary classification

problems, to compare the FOUR-class classification results, we

divided the four MI tasks (L, R, F, and T) in the BCIIV-2a dataset

into six binary classification tasks: Task 1 (L vs. R), Task 2 (L vs.

F), Task 3 (L vs. T), Task 4 (R vs. F), Task 5 (R vs. T), and Task

6 (F vs. T). Due to space limitations, we only present the average

classification results for the six binary tasks in Tables 9, 10, other

results and ablation studies are given for two representative tasks

of Task 1 and Task 6. It should be noted that the “Average” and

“Standard Deviation” in Tables 9, 10 are derived from the average

values and standard deviations of the six tasks in each column.

According to the experimental settings, the MTS strategy

produces a total of nine cross-subject tasks, and we present the

average classification results for each subject as the target domain

among Task 1 to Task 6 in Table 10. The MTS strategy generates

9 ∗ 8 = 72 cross-subject classification tasks in total. For each

subject acting as the target domain, the remaining eight subjects

serve as the source domains. The classification accuracies obtained

from these eight source domains are averaged to calculate the

average classification accuracy of the target domain under the STS

strategy. Table 9 provides the average classification results for each

subject as the target domain among Task 1 to Task 6. From the

results in the tables, it can be observed that our DS-KTL method

consistently outperforms the two compared SOTA methods under

both the MTS and STS strategies. The average classification

accuracy under the STS strategy significantly improves across

the six tasks, while the improvement in average classification

accuracy under the MTS strategy is less pronounced. Moreover, the

standard deviation of the six classification tasks is comparable to

the SOTA methods, indicating that the algorithm exhibits similar

generalization performance across different tasks and possesses

good robustness.

4.4.3 Feature visualization
In addition to quantitative comparisons of accuracy, we also

provide qualitative comparisons of feature visualization between

different methods. For visualization, we select Subject 1 as the

target domain when using the MTS strategy on the BCIIV-2a (L

vs. R) task. During the feature adaptation process, we visualize

the features of the two MI classes (left hand MI task represented

by class 1 and right hand MI task represented by class 2) in

both the source and target domains. To facilitate visualization,

we reduce the feature dimensions to 2 using the t-SNE tool

(Van der Maaten and Hinton, 2008). Figure 3 presents the feature

visualization comparison between our DS-KTL method and three

SOTA methods. In the figure, class 1 of the source domain

is represented by green dots, class 2 of the source domain is

represented by blue dots, class 1 of the target domain is represented

by orange dots, and class 2 of the target domain is represented by

red dots.

Based on the observations from Figure 3, we can deduce

that centroid alignment aligns the covariance of samples from

different subjects, whitening them into similar distributions

and reducing the distribution discrepancy across subjects. In

contrast, classical methods such as CA-CORAL and MEKT do

not differentiate between the source and target domain samples.

However, after feature adaptation, the model trained on the

source domain can effectively discriminate different classes in

the target domain, providing accurate pseudo-labels to ensure

classification accuracy. On the other hand, the FWR-JPDA method

achieves sample separation between the source and target domains

through dual regularizations while simultaneously maintaining

the similarity of sample distributions. Consequently, it can

successfully apply the model trained from the source domain to

the target domain. Also, our DS-KTLmethod selects discriminative

features and samples with correct pseudo labels for adaptation,

achieving samples separation between the source and target

domains, too.

Formally, cross-domain adaptation requires training the

classifier on the source domain to ensure its high generalization

performance on the target domain. The visualization shown

in Figure 3 presents the t-SNE reduction of features to two

dimensions, which illustrates the distribution of the source and

target domains. The classifier trained on the original higher-

dimensional features exhibits separability among different classes,

which may not be directly discernible in the reduced feature space.

In cross-subject MI-EEG classification, for a classifier trained on
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TABLE 7 Comparison of the proposed method and the baseline methods on MTS strategy.

Methods BCIIV-2a (L vs. R) BCIIV-2a (F vs. T) BCIIV-2b Average

RA-MDM 72.07 (9.88) 66.28 (17.25) 69.69 (9.70) 69.35

EA-CSP-LDA 73.53 (15.96) 66.90 (16.41) 69.56 (9.43) 70.00

CA-CORAL 72.38 (13.38) 66.82 (16.60) 68.36 (9.42) 69.19

CA-JDA 74.15 (15.77) 67.44 (15.48) 69.19 (9.54) 70.26

MEKT 76.54 (16.72) 70.29 (15.23) 69.42 (9.72) 70.08

METL 76.00 (16.14) – – –

SB-TA-CSP 75.15 (13.52) – – –

FWR-JPDA 77.24 (14.74) 70.91 (13.70) 70.14 (8.89) 72.76

DS-KTL(proposed) 78.09 (15.62) 70.14 (16.05) 70.53 (9.70) 72.92

TABLE 8 Comparison of the proposed method and the baseline methods on STS strategy.

Methods BCIIV-2a (L vs. R) BCIIV-2a (F vs. T) BCIIV-2b Average

RA-MDM 66.60 (12.60) 59.74 (19.62) 67.28 (9.39) 64.54

EA-CSP-LDA 65.00 (14.06) 59.69 (14.26) 67.49 (9.08) 64.06

CA-CORAL 67.26 (13.34) 59.64 (14.32) 67.50 (9.05) 64.80

CA-JDA 66.59 (15.28) 59.92 (14.28) 67.48 (9.14) 64.66

MEKT 68.73 (15.73) 60.11 (7.85) 66.17 (8.10) 65.00

METL 69.06 (15.50) – – –

SB-TA-CSP 68.76 (9.61) – – –

FWR-JPDA 67.48 (15.23) 65.67 (12.68) 68.59 (9.34) 67.25

DS-KTL(proposed) 71.61 (14.23) 63.80 (9.04) 68.47 (8.62) 67.96

TABLE 9 Six binary classification tasks on BCIIV-2a compared within the STS strategy.

Tasks MEKT FWR-JPDA DS-TKL (proposed)

Task 1 68.73 (15.73) 67.48 (15.23) 71.61 (14.23)

Task 2 64.10 (8.93) 65.05 (16.92) 68.34 (12.28)

Task 3 70.88 (11.62) 73.18 (16.56) 76.71 (13.99)

Task 4 63.97 (8.42) 60.88 (19.33) 65.84 (12.55)

Task 5 69.12 (9.66) 69.48 (18.63) 73.22 (13.17)

Task 6 60.11 (7.85) 65.67 (12.68) 63.80 (9.04)

Average 66.15 66.96 69.92

Standard deviation 4.08 4.19 4.83

The approaches with the highest average accuracy are denoted as bold.

the source domain to achieve high accuracy on the target domain,

it is necessary to ensure similarity in the distribution of the two

domains’ reduced feature sets. In Figure 3, a higher similarity in

the distribution of the source and target domains is observed for

the METK method and our DS-KTL method, compared to the

CA-CORAL and FWR-JPDA methods. Furthermore, as shown in

the sample distribution in Figure 3D, our DS-KTL method, which

incorporates feature selection, shows a distribution of selected

features that is closer to both domains compared to the METK

method. Although it achieves a lower distance in differentiating

the two domains, it effectively enables the classifier trained on the

source domain to have good generalization performance on the

target domain.

However, Figure 3 only presents the distribution of the source

and target domains, without clear discrimination of samples for

each class. In order to demonstrate the ability to discriminate

different classes in a new subject, we selected Subject 8 as the

target domain in the MTS strategy of Dataset 2a (L vs. R) dataset.

To this end, we visualized the distribution of left hand and right

hand samples in a two-dimensional feature space using the t-SNE

tool. The resulting samples distribution is depicted in Figure 4.

From the results shown in Figure 4, it can be observed that all
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TABLE 10 Six binary classification tasks on BCIIV-2a compared within the MTS strategy.

Tasks MEKT FWR-JPDA DS-TKL (proposed)

Task 1 76.00 (17.61) 77.01 (12.91) 78.09 (15.62)

Task 2 73.07 (15.43) 75.69 (13.35) 74.23 (16.47)

Task 3 81.10 (16.99) 80.56 (15.59) 80.86 (17.32)

Task 4 72.99 (15.50) 74.07 (14.99) 73.23 (17.39)

Task 5 79.94 (15.58) 78.47 (17.22) 79.01 (18.71)

Task 6 69.98 (7.73) 70.06 (15.76) 70.53 (9.70)

Average 75.51 75.98 75.99

Standard deviation 4.34 3.66 3.94

The approaches with the highest average accuracy are denoted as bold.

FIGURE 3

Feature visualization compared with the SOTA for the Subject 1 as the target domain when using MTS strategy on BCIIV-2a dataset. (A) CA-CORAL.

(B) MEKT. (C) FWR-JPDA. (D) DS-KTL (proposed).

four algorithms demonstrate good discrimination between the

left hand and right hand classes. Specifically, our proposed DS-

KTL method exhibits the best discrimination ability, effectively

distinguishing between the two classes with a relatively uniform

feature distribution. The sample distribution of CA-CORAL and

FWR-JPDA methods appear to be uneven. The CA-CORAL
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FIGURE 4

Feature visualization compared with the SOTA for the left hand and right hand classes of Subject 8 as the target domain when using MTS strategy on

BCIIV-2a dataset. (A) CA-CORAL. (B) MEKT. (C) FWR-JPDA. (D) DS-KTL (proposed).

method exhibits closely located features for two classes, leading to

classification difficulties, while the FWR-JPDA method encounters

issues with mixed class distributions, with some right hand

samples appearing in the left hand distribution and vice versa.

Although MEKT also supports favorable feature distribution, it

contains two left hand samples in the right hand distribution,

which reduces the classification accuracy. The feature selection and

pseudo-labels selection employed in our proposed DS-KTLmethod

effectively identify outlier points from other classes in the sample

distribution, thereby enhancing the performance of cross-subject

MI-EEG classification.

4.4.4 E�ciency
Efficiency is another crucial metric for evaluating cross-subject

MI-EEG classification methods, as it determines their suitability

for constructing online MI-BCI systems. To facilitate efficiency

comparison, Tables 11, 12 present the time complexity comparison

for six cross-subject MI-EEG classification tasks under the MTS

and STS strategies, respectively. For each dataset, we report the

average runtime for nine subjects, representing the average time

consumption for the nine tasks under the MTS strategy and the

72 tasks under the STS strategy. Based on the results in Tables 11,

12, it can be ascertained that classical sample alignment and feature

adaptation methods exhibit lower time complexity. These methods

do not involve the iterative process of obtaining pseudo-labels

and achieve only limited classification performance by aligning the

marginal distribution or subspace obtained from the target domain.

The JDA method was the first to employ pseudo-labels from

the target domain to obtain conditional distribution for feature

adaptation, resulting in higher time complexity. When comparing

the BCIIV-2a and BCIIV-2b datasets, it becomes evident that the

larger number of samples leads to increased time consumption

during iterations. In contrast, the MEKT/FWR-JPDA/DS-KTL

methods rely on the JPDA method, which exhibit lower time

complexity and require fewer iterations while ensuring alignment
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TABLE 11 Time complexity comparison for the MTS strategy (unit:s).

Methods BCIIV-2a (L vs. R) BCIIV-2a (F vs. T) BCIIV-2b Average

RA-MDM 0.99 0.98 0.57 0.85

EA-CSP-LDA 0.56 0.57 0.58 0.57

CA-CORAL 0.56 0.56 0.50 0.54

CA-JDA 7.27 7.04 71.80 28.70

MEKT 0.49 0.44 0.79 0.57

FWR-JPDA 0.96 0.88 6.30 2.71

DS-KTL (proposed) 1.47 1.57 19.50 7.51

TABLE 12 Time complexity comparison for the STS strategy (unit:s).

Methods BCIIV-2a (L vs. R) BCIIV-2a (F vs. T) BCIIV-2b Average

RA-MDM 0.192 0.19 0.12 0.17

EA-CSP-LDA 0.088 0.086 0.081 0.085

CA-CORAL 0.086 0.089 0.084 0.086

CA-JDA 0.40 0.44 1.89 0.91

MEKT 0.34 0.34 0.24 0.31

FWR-JPDA 0.089 0.084 0.18 0.12

DS-KTL (proposed) 0.34 0.30 0.29 0.31

of conditional distribution to achieve decent performance. Overall,

whether under the MTS or STS strategy, our DS-KTL method

demonstrates a similar order of time complexity as SOTAmethods.

The time consumption of DS-KTL primarily arises from manifold

embedded spatial feature selection. Under theMTS strategy, feature

selection takes place in the source domain, and considering the

BCIIV-2b dataset with 400 ∗ 8 = 3, 200 samples, it requiring

more time for selection. In contrast, for the smaller BCIIV-2a

dataset and STS strategy, the time complexity of feature selection

is not high. Our DS-KTL method showcases comparative efficiency

compared to SOTA methods, as the selected pseudo-labels with

high probability help decrease the time complexity during iterative

feature adaptation.

4.5 Ablation study

To validate the feasibility and effectiveness of our DS-KTL

method, we have conducted three ablation studies to assess

its characteristics.

4.5.1 Performance of di�erent selections
Our DS-KTL method incorporates dual selections during

feature adaptation. To validate the impact of these dual selections

on the performance of cross-subject MI-EEG classification, we

conducted ablation studies by removing the selections on the

three MI-EEG classification tasks under the MTS/STS strategy. The

ablation studies included the following scenarios: (1) with/without

(w/o) dual selections; (2) w/o feature selection; (3) w/o pseudo label

selection; (4) with dual selections. Figure 5 illustrates the results of

ablation studies, allowing for performance comparison among the

different selection scenarios.

Based on the results depicted in Figure 5, we can finalized

that, except for the Dataset 2a (F vs. T) task under the MTS

strategy, our proposed DS-KTL outperforms the three “without

selection” settings in the other five tasks. When comparing feature

selection and pseudo-label selection, the former demonstrates

superior performance improvement, particularly for Dataset 2a,

which possesses higher-dimensional spatial features. Manifold

embedded feature selection allows for the extraction of more

discriminative feature combinations, resulting in higher accuracy

in cross-subjectMI-EEG classification. Furthermore, using pseudo-

labels selection alone shows minimal impact on performance

improvement and may even hinder classification performance,

especially in the Dataset 2a (L vs. R) and Dataset 2b tasks

under the MTS strategy when compared to the case without

selection. However, by integrating dual selections, our proposed

DS-KTL method exhibits substantial enhancement in classification

performance. Therefore, we can conclude a verdict that the dual

selection processes complement each other and are indispensable

components of our method.

In the MTS strategy, only the “Dataset 2a (F vs. T)”

classification task shows “w/o pseudo label selection” exceeding

our proposed method. This is because the “feet vs. tongues” class

in MI itself is inherently difficult to distinguish, resulting in lower

recognition accuracy. Therefore, in the initially domain adaptation

phase, the target subject generates more wrongly labeled pseudo

labels, which decreases the accuracy of domain adaptation. In

summary, the pseudo label selection strategy used in this study is

not suitable for difficult-to-classify classes, as the erroneous samples

generated by the target subject will hinder the overall accuracy.
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FIGURE 5

Ablation studies for the performance comparison of di�erent selections. (A) MTS strategy. (B) STS strategy.

TABLE 13 Ablation studies compared of each subject as the target domain under STS strategy.

Target BCIIV 2a (L vs. R) BCIIV 2a (F vs. T) BCIIV 2b

Subject w/o PLS w/o FS DS w/o PLS w/o FS DS w/o PLS w/o FS DS

S1 75.87 79.77 79.60 58.94 60.42 61.20 67.91 70.94 69.78

S2 51.48 54.69 54.08 47.05 55.03 55.30 57.03 57.38 57.88

S3 83.16 85.42 85.33 67.01 68.06 69.62 57.28 57.34 57.63

S4 66.23 67.71 67.71 58.68 59.90 59.20 82.56 86.03 87.38

S5 53.65 57.03 57.64 56.68 61.02 60.68 69.14 71.75 72.16

S6 64.24 63.19 63.11 51.39 50.09 48.70 68.31 69.16 69.72

S7 61.72 66.84 66.06 60.85 69.27 68.84 62.41 68.94 68.75

S8 86.72 90.19 90.19 73.78 77.78 78.13 65.09 66.78 66.81

S9 72.48 78.21 77.95 63.02 69.36 70.83 68.94 66.78 67.31

In fact, for the STS strategy, the feature selection and pseudo-

label selection shows differences across different subjects. To

validate the variations of such two selections under the STS strategy,

we have conducted the experimental results of the ablation study

for each subject as the target domain in Table 13. The results will

instruct us in identifying the specific subjects’ outcomes regarding

feature selection and pseudo-label selection. In Table 13, “w/o

PLS” refers to “without pseudo label selection,” “w/o FS” refers

to “without feature selection,” and “DS” stands for the proposed

“dual selection.” For each subject considered as the target domain,

the table provides the average classification accuracy when the

remaining 8 subjects are used as the source domain.

From the results in Table 13, we observed that pseudo-label

selection contributes more to the improvement in recognition

accuracy compared to feature selection. When both are combined

as dual selection, some specific subjects show improvements in

accuracy, for example, S5 in Dataset 2a (L vs. R), S1, S3, S8, and S9

in Dataset 2a (F vs. T), and S4, S5, and S9 in Dataset 2b. However,

it is important to note that, dual selection, which combines feature

selection with pseudo-label selection, can suppress the accuracy of

certain subjects, for instance, S2, S7, and S9 in Dataset 2a (L vs. R),

S4, S5, and S6 in Dataset 2a (F vs. T), and S1 and S7 in Dataset

2b. Overall, from the average values in Figure 5B, we can see that

there is not much difference in average accuracy between “w/o FS”

and “DS” in the STS strategy, indicating performance differences

on specific subjects.

For the results presented in Table 13 under the STS strategy,

we conducted t-test statistical hypothesis tests to examine whether

each subject, when serving as the target domain, exhibited a

significant improvement in MI-EEG classification accuracy. Using

our proposedDS-KTL (DS) as the baseline, we performed statistical

hypothesis tests for “w/o PLS vs. DS” and “w/o FS vs. DS”. When

the test results in p <0.1, p <0.05, and p <0.01, the corresponding

subjects are marked with ∗, ∗∗, and ∗∗∗, respectively. Table 14
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TABLE 14 T-test statistical hypothesis results with corresponding p-values for each subject under the STS strategy.

BCIIV-2a (L vs. R) BCIIV-2a (F vs. T) BCIIV 2b

w/o PLS vs. DS p-value w/o PLS vs. DS p-value w/o PLS vs. DS p-value

S1∗ 0.097 S2∗ 0.084 S1∗ 0.074

S2∗ 0.088 S5∗∗∗ 0.0013 S4∗∗ 0.022

S5∗ 0.099 S7∗ 0.073 S5∗∗∗ 0.001

S7∗ 0.070 S9∗∗ 0.033 S7∗∗∗ 0.0098

w/o FS vs. DS p-value w/o FS vs. DS p-value w/o FS vs. DS p-value

– – S6∗∗ 0.030 S1∗∗ 0.040

– – S9∗ 0.095 – –

provides the t-test statistical hypothesis results with corresponding

p-values for each subject under the STS strategy.

According to Table 14, it can be observed that, compared to

not using pseudo-labels selection (w/o PLS), our proposed DS-KTL

method exhibits significant performance improvements on subjects

S1, S2, S5, and S7 in Dataset 2a (L vs. R), as well as on subjects

S2, S5, S7, and S9 in Dataset 2a (F vs. T), and subjects S1, S4, S5,

and S7 in Dataset 2b. Regarding not using feature selection (w/o

FS), significant performance improvements are only observed on

subjects S2, S5 in Dataset 2a (F vs. T), and subject S1 in Dataset 2b.

Overall, our proposed DS-KTL method demonstrates significant

performance improvements compared to w/o PLS on 12 out of

27 subjects in Dataset 2a and 2b, while compared to w/o FS, it

shows significant performance improvements on only three out

of 27 subjects. Thus, the effect of pseudo-labels selection is more

pronounced under the STS strategy, whereas the improvement

from feature selection is limited.

4.5.2 Number of selected features
The aforementioned ablation study has confirmed that

manifold embedded feature selection is capable of selecting spatial

features that are more advantageous for cross-subject MI-EEG

classification. To further validate the optimal range of feature

dimension selection, we assessed the impact of different numbers

of feature selections on classification performance. We performed

experiments on selected features number of q = 1, 2, .., 253 and q =

1, 2, , 6 for BCIIV-2a and BCIIV-2b datasets, respectively. Figure 6

illustrates the influence of different numbers of feature selection

on the final classification accuracy under the MTS/STS strategy.

The average accuracy and standard deviation of cross-subject MI-

EEG classification were provided for each feature number. Since

the BCIIV-2a dataset had more results available, and there was not

a significant difference when increased or decreased less number of

features, we presented the results every five features, providing∼50

showcase results. It is worth noting that due to the variation in the

selected feature numbers, the dimension for feature adaptation in

KTL was set as z = q, following the experimental setup.

From the results in Figure 6, it can be determined that both the

MTS and STS strategies are insufficient to achieve high recognition

accuracy when the selected number of features is small, especially

for q < 5. As the number of selected features increased, the

classification accuracy gradually stabilized with little variation.

The standard deviation of the classification performance remained

around 10 when selecting different numbers of features for different

datasets. Overall, selecting a smaller number of features already

provides high classification accuracy for MTS and STS tasks on

the BCIIV-2a dataset (q < 50). Usually, redundant features may

cause negative transfer during feature adaptation, and selecting

discriminative features with appropriate number could reduce time

complexity. For the BCIIV-2b dataset, excellent performance could

already be achieved with q = 2, while both MTS and STS strategies

achieved optimal performance at q = 5, following a similar pattern

to the BCIIV-2a dataset.

Moreover, in the MTS approach, we considered S − 1 subjects

as a single entity, thus allowing only a fixed number q of selected

features. However, in the STS approach, we should determine

the optimal feature dimensions selection for each source subject.

Through experiments, we presented the experimental results of the

optimal feature selection for each source subject on each target

subject in Figure 7. The number in the figures is the selected

number of features when achieveing the best classification accuracy

with respect to the specific source subject and target subject.

From the results in Figure 7, we can observe that under the STS

strategy, different source subjects have different optimal selected

features of number q when serving as the source domain. In

cases where there is high feature discriminability, the optimal

accuracy corresponds to a lower number of selected features. On

the other hand, for more challenging classification scenarios, a

higher number of feature dimensions is required to achieve the

optimal accuracy. Figures 7A,B show that the majority of source

subjects in Dataset 2a require fewer than 100 feature dimensions

to achieve the optimal accuracy. The results depicted in Figure 7C

also indicate that the majority of source subjects select fewer than

6 dimensions in Dataset 2b to achieve the optimal accuracy. This

further demonstrates the feasibility of feature selection, as selecting

a dimensionality lower than the maximum number of features

yields the best classification accuracy.

4.5.3 Parameters sensitivity
According to the proposed DS-KTL method, three sets

of parameters have been introduced: α,β , γ in the feature

selection, λ, z,T in the feature adaptation, and η,µ, σ in the
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FIGURE 6

Ablation studies for the performance comparison for di�erent numbers of feature selection. (A) BCIIV-2a under MTS strategy. (B) BCIIV-2a under STS

strategy. (C) BCIIV-2b.

FIGURE 7

Optimal number of selected features for each source subject and target subject under STS strategy. (A) BCIIV-2a (L vs. R). (B) BCIIV-2a (F vs. T). (C)

BCIIV-2b.

regularizations during knowledge transfer learning. Tomeasure the

parameter sensitivity, we conducted ablation studies for each set of

parameters. In each experiment, we maintained the default settings

of the other remaining parameters introduced in Section 4.3 and

Table 3, and tuned the specific parameter under consideration for

the cross-subject MI-EEG classification of the six tasks.

In the first experiment, we tuned each parameter of α,β , γ

within a range of {0.001, 0.01, 0.1, 1, 10, 100, 1, 000} while keeping

the other two parameters at their default settings. Figure 8

illustrates the results of parameters sensitivity experiment for

manifold embedded features selection. From Figure 8, it can be

observed that the manifold embedded spatial feature selection

method is not highly sensitive to parameter settings. Different

parameter ranges have minimal impact on the selection of

discriminative features. This demonstrates good robustness across

different datasets and MTS/STS strategies, making it suitable for

constructing MI-BCI applications in practical scenarios.

For the second experiment, we focused on the parameterse

used in the JPDA method, which is employed in our DS-KTL

method for feature adaptation. These parameters include λ to

counterbalance transferability and discriminability, z to determine

the subspace for alignment, and T for iteratively predicting

pseudo-labels. In this experiment, we tuned λ within a range of

{0.001, 0.01, 0.1, 1, 10, 100, 1, 000}. Besides, z was tuned within a

range of {1, 2, 3, 4, 5, 10, 20, 50, 100, 150}, and T was tuned within

a range of {1, 5, 10, 15, 20}. Figure 9 illustrates the the results of

parameters sensitivity experiment for feature adaptation.

Based on the observations from Figure 9, it can be inferred

that during the iterative process of feature adaptation,

transferability takes higher precedence over discriminability.

This prioritization leads to higher average classification accuracy

when λ < 1. As λ continues to increase, it leads to a decline

in classification performance. Furthermore, a higher dimension

of subspace is preferred, as an increase in z improves the

average classification performance. However, it is important

to note that higher dimensions require more time during

the iteration process. While they ensure better performance,

efficiency decreases accordingly. Based on the experimental

results across the six MI-EEG classification tasks, selecting

a dimension of z = 10 strikes a good balance between
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FIGURE 8

Parameters sensitivity of manifold embedded features selection. (A) α. (B) β. (C) γ .

FIGURE 9

Parameters sensitivity of feature adaptation. (A) λ. (B) z. (C) T.

performance and efficiency. Additionally, the experimental

results regarding the number of iterations indicate that higher

iteration counts have minimal impact on the final results.

Due to the adoption of the early stopping strategy in our

DS-KTL method, higher iteration counts do not necessarily

result in improved performance. Instead, they lead to higher

time complexity.

For the third experiment, we tuned each parameter η,µ, σ

wihtin a range of {0.001, 0.01, 0.1, 1, 10, 100, 1, 000} while keeping

the other two parameters at their default settings. Figure 10

illustrates the results of parameters sensitivity experiment for

the regularizations during knowledge transfer learning. From

Figure 10, it can be concluded that setting smaller values

for the regularizations related to the discriminability of the

source domain and the locality preservation of the target

domain ensures higher average classification accuracy. On

the other hand, assigning larger parameter values leads to

a rapid decline in classification performance. However, for

the regularization of the transformation vector, the average

classification accuracy initially increases and then decreases as the

parameters increase. The highest classification accuracy is achieved

at σ=10. This pattern mainly occurs because the values of the

transformation vector significantly differ in magnitude from the

other regularizations, necessitating higher parameter values for

appropriate adjustment.

5 Discussion

5.1 Superiority

In cross-subject MI-EEG classification, effectively representing

time-varying and spatially coupled sample distributions is crucial as

it plays a decisive role in reducing the data distribution discrepancy

between the source and target domains (Liu et al., 2023; She et al.,

2023). Currently, CSP and RTS have been applied for feature

representation (He and Wu, 2019; Cai et al., 2022), while feature

adaptation is employed to minimize the distribution discrepancy.

Recently, the introduction of conditional distribution in feature

adaptation is an innovative step (Long et al., 2013; Zhang and

Wu, 2020b), but the lack of knowledge about the labels in the

target domain limits us to using pseudo-labels, leading to error

accumulation during the iterative process (Wang and Breckon,

2020; Yue et al., 2021). Additionally, the redundant spatial feature

representation is not well-suited for minimizing the distribution

discrepancy between the source and target domains (Ren et al.,

2022). In this study, the proposed dual selection addresses the

aforementioned issues by utilizing supervised MEFS for selecting

appropriate features and assuming their superiority in the target

domain. Experimental results demonstrate that spatial feature

selection indeed improves the performance of domain adaptation,

except for the Dataset 2a (F vs. T) task (see Figure 5).
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FIGURE 10

Parameters sensitivity of regularizations during knowledge transfer learning. (A) η. (B) µ. (C) σ .

For feature selection, commonly used methods include mutual

information and computational intelligence methods (Kumar et al.,

2017; Kirar and Agrawal, 2020; Luo, 2023), which may suffer from

suboptimal feature selection or uncertainty during iterations. In

our feature selection method, MEFS, based on the experimental

results, we could reduce the number of features to about half their

original number. This enhances discriminability during the feature

adaptation process and improves efficiency (see Figure 6). Pseudo-

label selection for the target domain has been mainly applied

in cross-domain tasks (Li et al., 2023; Wang and Zhang, 2023).

In our approach, we employ this strategy and combine it with

spatial feature selection, which leads to improved cross-subject MI-

EEG classification performance (see Figure 5). Furthermore, the

experiments also demonstrate that label distribution discrepancy

caused by cross-subject variations can lead to performance

degradation when relying solely on pseudo-label selection. Label

alignment (He and Wu, 2020) may be one of the potential future

directions to address this limitation in our method.

Centroid alignment, as a classical cross-subject preprocessing

method (Zhang and Wu, 2020b), is particularly crucial for

computing the covariance centroid. Previous research has shown

that different subject sample distributions correspond to different

metric approaches (Li et al., 2021). Our experimental results

confirm this finding, as the BCIIV-2a dataset is better suited for

Euclidean metric in our DS-KTL method, both for MTS and STS

strategies (see Tables 4, 5). The BCIIV-2b dataset is known to

be more challenging (Mishuhina and Jiang, 2021), and our DS-

KTL method exhibits little difference in alignment metrics for this

dataset, both for MTS and STS strategies (see Table 6).

Moreover, the time complexity is an important metric for

evaluating the applicability of classification methods in online MI-

BCI systems. Studies have indicated (Arpaia et al., 2022; Tao et al.,

2023) that achieving stable online MI-BCI control performance

with millisecond-level response is crucial for generating control

commands. Our DS-KTL method demonstrates competitive time

complexity (see Tables 11, 12). For instance, on the target domains

of dataset BCIIV-2a within 144 MI-EEG samples, the cross-

subject MI-EEG classification using MTS or STS strategies can be

completed in ∼1.47 and 0.34 s, respectively. This achievement is

close to reaching the performance level required for online MI-

BCI and contributes to the development of rehabilitation systems.

Feature selection is the main time-consuming task, as confirmed

by previous research (Luo, 2023), especially when dealing with a

large number of source domain samples that influence the optimal

feature number. Reducing the number of source domain samples

is a focal point of our future research. Based on our experimental

results, we can identify a robust “golden subject” (Sun et al.,

2022) that requires fewer source domain samples while enhancing

discriminability. This approach can significantly reduce the time

complexity of MEFS (see Tables 4–6).

Furthermore, compared to conventional binary classification

SOTAmethods without feature selection or pseudo-labels selection,

our DS-KTL method achieves improved cross-subject classification

performance on Dataset 2a (L vs. R), Dataset 2a (F vs. T), and

Dataset 2b for both the MTS and STS strategies (see Tables 7,

8). Among them, for the STS strategy, the t-test results revealed

significant classification improvements for our proposed dual-

selection strategy compared to a single selection strategy in four

subjects of BCIIV-2a (L vs. R) and BCIIV-2b, as well as in six

subjects of BCIIV-2a (F vs. T; see Table 14). Additionally, for the

binary classification tasks among Task 1 to Task 6, which are

derived from the four classes in Dataset 2a, our DS-KTL method

demonstrates significantly higher classification performance than

the METK (Zhang and Wu, 2020b) and FWR-JPDA (Zhang and

Wu, 2020b) methods under the STS strategy (see Tables 9, 10).

However, under the MTS strategy, the classification performance

of DS-KTL is comparable to that of METK and FWR-JPDA.

According to the experimental settings, the “Task” of STS strategy

treats each subject as target domain and another subject as source

domain, therefore results in 8 ∗ 9 = 72 sub-tasks from nine

subjects. Meanwhile, the “Task” of MTS strategy treats the remain

subjects as source domain and results in eight sub-tasks. So we

think the main reason is that 72 sub-tasks under the STS strategy

will benefited from the dual selection than the nine sub-tasks under

the MTS strategy, therefore achieved a higher average classification

performance. This further emphasizes the importance of feature

selection and pseudo label selection when using the STS strategy

in resource-limited online BCI control scenarios.

Regarding the sample distribution, we selected representative

source and target domains and provided experimental results

on the sample distribution, which subjectively support the

objective classification accuracy results (see Figure 3). Parameter
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sensitivity is another important metric for evaluating cross-

subject MI-EEG classification algorithms (Arpaia et al., 2022), as

it determines whether they can be effectively applied in online

MI-BCI applications. In our DS-KTL method, we have a total

of nine parameters, including MEFS, feature adaptation, and

regularizations. Based on our experimental results, all parameter

settings within appropriate ranges exhibit insensitivity (see

Figures 8–10). Our experiments conducted parameter sensitivity

tests on three tasks across two datasets, demonstrating the

robustness of the cross-subject sample set.

5.2 Limitation

Although our DS-KTL method achieves high performance

in cross-subject classification on the selected representative MI-

EEG datasets, there are still areas where further improvements

can be made. Firstly, spatial domain features struggle to capture

the comprehensive characteristics of nonlinear and non-stationary

MI-EEG signals. Recent researches have started to divide MI-

EEG signals into time-frequency segments (Mishuhina and Jiang,

2021; Luo, 2023) and extract CSP or RTS features from different

time segments and frequency bands. The resulting feature

combinations encompass temporal-spatial-spectral characteristics,

thus overcoming the limitations of classical CSP or RTS features.

Secondly, if more comprehensive temporal-spatial-spectral

feature representations are adopted, feature adaptation will also

face the limitations of high-dimensional features, making effective

feature selection particularly important. Experimental findings

reveal that our proposed supervised MEFS method experiences

an increase in time complexity as the number of source domain

samples increases, while it cannot guarantee optimal feature

selection on the target domain, thus exhibiting limitations in

both performance and efficiency. Recently, researchers have

proposed efficient and unsupervised multi-label feature selection

methods (Zhang et al., 2020b, 2023) that demonstrate promising

performance when dealing with larger sample sets. These feature

selection methods have the potential to be expanded and adapted

for the selection of more complex MI-EEG feature representations.

Lastly, regarding feature adaptation, existing methods mainly

focus on using maximum mean discrepancy (MMD) to express

differences in feature distributions. However, this approach may

have limitations in accurately characterizing the distribution of

features, which can impact the adaptation process. In addition

to using MMD to express distribution differences, researchers

have explored alternative approaches such as domain-invariant

kernel matrices (Ma et al., 2023) sparse coding (Chen and Song,

2021), and adversarial learning (Xu et al., 2023) to address this

issue from different perspectives. To enhance the comprehensive

representation of distribution differences, future researches should

consider combining multiple measurement approaches to achieve

better feature adaptation in cross-subject MI-EEG analysis.

Additionally, for the cross-subject MI-EEG classification,

conventional methods (Zhang and Wu, 2020b; Luo, 2022) are

limited by the design of classifiers and typically can only construct

binary classifiers. For an MI-EEG dataset with n classes, either one

class is selected as the target class, and the remaining total classes

are considered as another class for binary classifier construction, or

constructing n∗ (n−1)/2 binary classification tasks. The advantage

of DANN methods lies in their ability to handle classification tasks

with any number of classes. However, they usually require a small

number of samples for fine-tuning the DNN model, which can be

less efficient in terms of calibration time compared to conventional

methods. To address the dependency of conventional methods

on binary classification, one approach is to construct multi-class

classifiers such as kNN or SVM for the end-to-end multi-class

domain adaptation (Zhou et al., 2023). Another approach involves

incorporating the learned features into neural networks to achieve

multi-class classification. Our proposed DS-KTL method defines

the nearest class prototype using Equation 23. If the conditional

probability calculation in Equation 24 is directly extended to multi-

class scenario, it may lead to the clustering of multiple classes

and deteriorate classification performance. Future works will focus

on extending the pseudo-labels selection to deep neural network

models by calculating the center loss (Zhang et al., 2020c) for

different classes, replacing the nearest class prototype computed in

Equation 23 to enable the classification of multi-classification.

Moreover, from the experimental results, we observed that

in the STS strategy for the Dataset 2a (F vs. T) task, a higher

classification accuracy was achieved when pseudo-labels selection

was not used (see Figure 5B). This indicates that pseudo-labels

selection has a negative impact on the feet vs. tongue task. In

fact, previous studies (Pfurtscheller et al., 2006) have shown that

the event-related desynchronization (ERD) phenomena in left

hand and right hand MI are more distinct in the contralateral

hemisphere of the brain, resulting in significant differences in

sample distributions between the two classes (refer to Figure 4).

Therefore, pseudo-labels selection can play a more significant

role in such cases. However, for the feet and tongue MI, the

ERD phenomena occur in the central region of the brain, where

there is a higher degree of overlap. Although they are somewhat

different, the overlap is substantial. Hence, for the feet vs.

tongue classification task, during the computation of Equation

23, the nearest class prototypes of such two classes will overlap

significantly. Consequently, during the pseudo-labels selection

process, incorrect samples can be selected iteratively, leading to

more severe performance degradation. To address this issue, future

researches will refer to relevant works in metric learning (Wang

et al., 2023a) to define novel class prototypes that better capture

overlapping classes. By doing so, we can expect to achieve higher

cross-subject MI-EEG classification performance.

6 Conclusion

MI-EEG classification plays an essential role in the

development of BCI applications. However, due to the scarcity of

subject-specific samples and the high cost of acquisition, cross-

subject MI-EEG classification has become a prominent research

focus. Feature adaptation is commonly employed to address this

task. However, existing methods often overlook redundant feature

dimensions and incorrectly predicted pseudo-labels, leading to

performance bottlenecks in classification. In this paper, we propose

the DS-KTL method to address these performance bottlenecks

by simultaneously introducing feature selection and pseudo-label
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selection in the feature adaptation process. The proposed method

first aligns samples through centroid alignment, followed by the

extraction of RTS spatial features. The manifold embedded spatial

feature selection method is then employed to select discriminative

features for adaptation. In the feature adaptation stage, an efficient

JPDA algorithm is introduced, along with three regularizations

and pseudo-labels selection, to enhance the stability of JPDA

iterations and ensure robust performance in cross-subject MI-EEG

classification. Experimental evaluations conducted on two MI

datasets using MTS/STS strategies demonstrate the effectiveness

and efficiency of the DS-KTL method. The proposed method

exhibits superior performance compared to SOTA methods, while

achieving comparable efficiency. Ablation studies further confirm

that the DS-KTL method ensures classification performance by

selecting an appropriate number of features and parameter values.

Future works will concentrate on exploring more effective feature

representation of MI-EEG from a deep-learning perspective.

Additionally, efforts will be directed toward developing more

robust and efficient feature selection and adaptation methods.

Furthermore, we aim to apply the DS-KTL method to practical

BCI scenarios, such as emotional BCI and ERP-BCI.
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