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Single cElls method for
cryopreservation enables the
generation of single-cell immune
profiles from whole blood
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2Department of Biomedical Informatics, Emory University, Atlanta, GA, United States, 3Department of
Pediatrics, Emory University, Atlanta, GA, United States, 4Division of Rheumatology, Children’s
Healthcare of Atlanta, Atlanta, GA, United States, 5Georgia Cancer Center, Augusta University,
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Introduction: Current multistep methods utilized for preparing and

cryopreserving single-cell suspensions from blood samples for single-cell RNA

sequencing (scRNA-seq) are time-consuming, requiring trained personnel and

special equipment, so limiting their clinical adoption. We developed a method,

Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of

whole blood (WB) along with granulocyte depletion during single-cell assay, to

generate high quality single-cell profiles (SCP).

Methods: WB was cryopreserved using the SENSE method and peripheral blood

mononuclear cells (PBMCs) were isolated and cryopreserved using the

traditional density-gradient method (PBMC method) from the same blood

sample (n=6). The SCPs obtained from both methods were processed using a

similar pipeline and quality control parameters. Further, entropy calculation,

differential gene expression, and cellular communication analysis were

performed to compare cell types and subtypes from both methods.

Results: Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were

obtained from the six WB samples cryopreserved using the SENSE method. In-

depth characterization of the scRNA-seq datasets from the samples processed

with the SENSE method yielded high-quality profiles of lymphoid and myeloid

cell types which were in concordance with the profiles obtained with classical

multistep PBMC method processed samples. Additionally, the SENSE method

cryopreserved samples exhibited significantly higher T-cell enrichment, enabling

deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC

methods processed samples exhibited transcriptional, and cellular
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Abbreviations: FC, fold change; SCP, Single Cell Pro

prEservatioN of Single cElls; WB, whole blood; JIA

Arthritis; PBMC, Peripheral Blood Mononuclear C

Manifold Approximation and Projection.
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communication network level similarities across cell types with no batch effect

except in myeloid lineage cells.

Discussion: Comparative analysis of scRNA-seq datasets obtained with the two

cryopreservationmethods i.e., SENSE and PBMCmethods, yielded similar cellular

and molecular profiles, confirming the suitability of the former method’s

incorporation in clinics/labs for cryopreserving and obtaining high-quality

single-cells for conducting critical translational research.
KEYWORDS
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1 Introduction

Recent advances in single-cell microfluidic technologies have

resulted in a ubiquitous implementation of single-cell approaches to

understand disease mechanisms and developmental biology (1–3).

Single-cell assays provide high-resolution measurement of cell types/

subtypes (4) and their molecular states associated with health/disease

conditions (5). Single-cell assays have immense potential in the

discovery of cell-specific biomarkers (6) and for gaining

unprecedented insights into composite cell-to-cell interactions that

drive therapeutic responses (7) for expanding disease diagnosis and

therapeutic options (8). We are utilizing single cell assays for the

development of single-cell atlases for multiple myeloma (MM) (9, 10),

pediatric cancers (11) as well as chronic wounds (12–14), to identify

next-generation prognostic biomarkers with high sensitivity and

specificity. Recently, a comparative analysis by our group, of rapid

and non-progressing MM patient samples using single-cell profiling

(SCP), revealed a significant contribution of exhausted T-cells in the

rapid progression of MM (9). The implementation of SCP in another

study on diabetic foot ulcers (DFUs) resulted in the identification of a

unique fibroblast population associated with the healing of chronic

DFUs in diabetic patients (14). A major issue with the single-cell

approach is that samples need to be immediately subjected to

downstream processing for live cell capture or frozen viably, both of

which require precious time and bench-work, often not feasible in a

clinical setting. Therefore, developing and optimizing methodologies

that enable stable cryopreservation of clinic/hospital-collected samples

with minimal intervention is crucial for implementation of SCP assays

as routine.

Sample preparation for bulk sequencing can be performed on

samples collected in the clinic in tubes with RNA/DNA stabilizers (15)

without the need for immediate pre-processing (16). Although this

approach is easy and practical in a clinical setting, a major drawback is

that bulk approaches only reveal the average behavior of all the

different cell populations in a sample (17). On the contrary, single-
filing; SENSE, Simple
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cell assays measure individual cell profiles (18) and their

transcriptional states in the complex tissue architecture (2).

However, the inherent need for viable cells (19) for performing

single-cell assays limits the adoption of single-cell assays in clinics

(bench to bedside) as well as the collection of clinical samples for

single-cell research (bedside to bench). The traditional method of

isolating PBMCs involves multiple centrifugation steps, the addition of

special density gradient reagents like Ficoll-Paque to facilitate the

isolation of mononuclear cells (20) for downstream single-cell assays

and significant time commitment (Figure 1A). These preprocessing

steps to isolate PBMCs may inevitably delay sample cryopreservation,

which can potentially introduce technical bias and artifacts during

SCP (21). To overcome the limitations associated with traditional

sample preservation for single-cell assays, we have developed and

implemented the Simple prEservatioN of Single cElls (SENSE)

method for one-step cryopreservation of whole blood (WB) by the

direct addition of freezing solution. The SENSE method also

incorporates a granulocyte removal step during single-cell assay

steps, resulting in optimal capture of immune repertoire from WB

samples. In this study for the first time, we have performed a deep

characterization of the SENSE method-generated transcriptome

profiles and compared it with the transcriptome profiles of the

PBMCs isolated by the standard Ficoll-Paque gradient method.

Comparative analysis was performed on the patient blood samples

collected in clinic setting to pave the way for the clinical

implementation of the SENSE method. Development and

implementation of simplified cryopreservation of WB samples using

methods like one-step SENSE method would result in a significant

increase in the adoption of SCP in clinics and single/multi-center

therapeutic trials and enable robust identification of next-generation

diagnostics, prognostics, and therapeutic biomarkers.
2 Results

2.1 Whole blood cryopreservation by the
SENSE method generated high-quality cells

We tested the feasibility and performance of the SENSE method

for SCP on whole blood samples, collected in a clinic at Children’s
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Healthcare of Atlanta from Juvenile Idiopathic Arthritis (JIA) (n=5)

and pediatric lupus (n=1) patients (Table 1). The blood samples (3.0

ml - 4.5 ml) were split into two equal aliquots and processed in

parallel using the SENSE and PBMC methods. The Ficoll-Paque

density gradient method was used to isolate PBMCs from one-half

of the sample which were then frozen in freezing media (Fisher

Scientific). These viably frozen PBMCs were thawed and profiled

directly using 10x Genomics Next GEM single cell 3’v3.1 kits (as

described in the methods section) (Figure 1A). The remaining half

of the blood sample was processed using the SENSE method that

involved freezing WB directly by adding freezing solution (80%

FBS, 20% DMSO) at a ratio of 1:1 to obtain a final concentration of
Frontiers in Immunology 03
40% FBS, 10% DMSO in the cryopreserved WB samples. In the

SENSE method, frozen WB was thawed, and the mononuclear cells

were collected and resuspended after the removal of CD15+ and red

blood cells as described in the detailed protocol (Supplementary

Document 1; Figure 1B). The cells were then used for generating

single-cell RNA sequencing (scRNA-seq) libraries. The data

obtained from both methods were extensively studied by

comparing various qualitative and quantitative parameters

(Figure 1A). Simple single-step cryopreservation of WB made

possible with incorporation of the SENSE method will promote

the clinical implementation of SCP assays and expand single-cell

research and discoveries (Supplementary Figure 1).
A

B

FIGURE 1

Overview of SENSE (Simple PrEservatioN of Single cElls) method for cryopreservation and single-cell immune profiles from whole blood. (A) Assay
Overview: Blood samples were collected in EDTA tubes which were then split into two aliquots. One aliquot was processed using the traditional Ficoll-
Paque density gradient method to isolate PBMCs, which were then cryopreserved. The other aliquot of blood was viably cryopreserved using the SENSE
method, i.e., a cryoprotectant solution was added and the sample frozen. Post-thawing, the WB cells from the SENSE method were subjected to
granulocyte depletion, and the CD15- fraction was collected, washed, and processed for single-cell profiling using the 10x Genomics method. The
resulting single-cell data from the SENSE and PBMC methods were then compared to identify any differences in cell quality metrics and molecular
profiles. (B) Schematic for single cell assays using sample stored and processed using the SENSE method involving: 1. simple cryopreservation of whole
blood samples stably stored for short or long term in -80 °C or liquid nitrogen respectively, and 2. preparation of sample for single cell assay by
removing granulocytes and RBCs. 3. Generation of single cell RNA sequencing libraries using appropriate 10x Genomics kits (5’ or 3’with/without cell
multiplexing). The color bars on the left-hand side serve as visual indicators, with the red bar denoting steps specific to SENSE method, while the blue
bar represents steps common single cell profiling steps for both methods. The figure was prepared using BioRender.com.
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Comparative analysis of cell viability upon thawing of

cryopreserved WB followed by granulocyte depletion (SENSE

method) and thawing of cryopreserved PBMCs (density gradient

method) revealed that the latter method yielded slightly higher

viability (91 ± 1.64%) as compared to the former method (86.3 ±

1.51%), however, this difference was not significant (P=.10)

(Figure 2A). A total of 20,024 and 23,502 cells were profiled from

the PBMCs isolated using density gradient method and WB frozen

using SENSE method respectively, hereby referred to as ‘PBMC’ and

‘SENSE’ for simplicity. The low-quality cell identification based on

unique genes (<200), UMI count (<600), andmitochondrial transcripts

(>20%) identified 793 and 1,149 low-quality cells with PBMC and

SENSE methods respectively, that were filtered out from the

subsequent analysis. This resulted in 19,231 and 22,353 high-quality

cells from the PBMC and SENSE methods respectively (Figure 2B).

The SENSE method was found to capture median gene counts and

uniquemolecular identifiers (UMIs) comparable to the PBMCmethod,

with a similar median representation of mitochondrial genes

(Figure 2C). To check whether the SENSE method affected the

integrity of the cells, the representation of genes in the membrane,

extracellular, and ribosomal ontology categories were assessed. Cellular

damage results in increasing the representation of the membrane genes

and lowering the representation of extracellular genes (22).

Comparative analysis showed profiling of similar proportions of

cytoplasmic, membrane, extracellular, and ribosomal ontology

categories with SENSE and PBMC methods, demonstrating that the

former method is as robust as the latter method in obtaining high-

quality cells fromWB with no introduction of cellular damage artifacts

(Figure 2D). SCP can be utilized to evaluate the cell cycle phases (i.e.,

G1, G2/M, and S) which significantly impact cellular gene expression

and are vital in classifying cellular sub-populations in the single-cell

assays. The comparative analysis revealed a broadly similar distribution

of cells in various cell cycle phases between cells from all samples from

the SENSE and PBMC methods (Figure 2E). Additionally, we also

assessed the impact of sample processing by each method on the

doublet rates as they are key confounders in the single cell data (23).

The WB samples cryopreserved using the SENSE method had a lower

percentage of doublets (2.41%, 539 cells) as compared to the PBMC

method (4.76%, 916 cells) (Figure 2F), demonstrating that single cells

cryopreserved using the SENSEmethod generated high-quality SCPs of

clinical WB samples. Clusters with a high percentage of doublets were

manually reviewed using canonical marker expression and excluded

from downstream analysis.
Frontiers in Immunology 04
Altogether, these single-cell quality assessment analyses

demonstrate that the SENSE method is a reliable and effective

method for WB single-cell profiling by preserving high-quality cells

that yield comparable results to the traditional density gradient

PBMCs isolation method.
2.2 Cellular profile and enrichment
between SENSE and PBMCs methods

The high-quality cells obtained after filtration and

normalization steps were clustered based on the gene expression

profiles using Seurat (24). The initial 21 clusters obtained from the

integrated scRNA-seq data of samples processed using PBMC and

SENSE methods, were annotated to obtain 11 major cell types from

various lineages using canonical marker genes: B-Cells (MS4A1+,

CD79A+), Memory B-cells (CD19+, IGLC2+), NK cells (NKG7+,

KLRD1+, CD3D-), Myeloid cells (CD14+, MNDA+, FCGR3A+,

FCN+), CD4+ Naïve T-cells (CD3D+, CD4+, CCR7+, LEF1+),

CD4+ Memory T-cells (CD3D+, CD4+, TRAAD+, TNFRSF4+), IFN

T-cells (CD3D+, ISG15+, STAT1+, IFI6+), CD8+ Effector T-cells

(GZMA+, GZMB+, CD8A+), CD8+ Naive T-cells (CD8A+, CCR7+,

LEF1+, TCF7+), CD8+ Memory T-cells (CCL5+, GZMB+, CD8A+),

and platelets (SNCA+) (Figures 3A, B). Using the doublet detection

algorithm of the DoubletFinder package (25), we identified two

outlier clusters exhibiting doublet proportions greatly exceeding

other clusters: Db 1 (95% doublets) and Db 2 (44.1% doublets). The

remaining clusters demonstrated notably lower doublet percentages

(averaging at 1.7 ± 0.8%). We reviewed the canonical markers

expression in these doublet-enriched clusters to explore if they

express markers of cell types from different lineages and correctly

flagged doublets. Cluster Db1 highly expressed both pDC and T-cell

related markers (CD4, JCHAIN, MZB1, IRF8, CLEC4C), whereas

cluster Db2 highly expressed both plasma cell and T cell markers

(CD8A, JCHAIN, MZB1, CD38). We also observed a small number

of cells in both PBMC (n=120 cells) and SENSE (n=182 cells)

methods that were enriched with mitochondrial genes (Mt

Enriched) (Figures 3A, B). On average, T-cells were the largest

cluster among all patients, followed by myeloid cells, and B-cells

(Figure 3A). All the identified cell types (except platelets) were

detected in samples processed using either SENSE or PBMC

method (split UMAP in Figure 3C). Regardless of the processing

method used, cells of the same type consistently clustered together,
TABLE 1 Patient characteristics table.

Patient no. Diagnosis age (years) Sample collection age (years) Sex Race Ethnicity Diagnosis

1 6 7 Male White Non-hispanic Oligoarticular JIA

2 2 16 Female White Non-hispanic Polyarticular RF-

3 8 13 Female White Non-hispanic Unfifferntiated JIA

4 5 11 Male AA/black Non-hispanic Systemic JIA

5 1 8 Female Asian Non-hispanic Polyarticular RF+

6 15 16 Female AA/black Non-hispanic Lupus
JIA, Juvenile idiopathic arthritis; RF, Rheumatoid factor. Patient 1-5: JIA, Patient 6: Pediatric lupus.
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highlighting their high transcriptome similarity. The split UMAP

visualization and bar plots depicted lower enrichment of cells from

the myeloid lineage (PBMC: n=6,085, SENSE: n=1,903) and higher

enrichment of T cells (PBMC: n=8,558, SENSE: n=15,373) in the

SENSE method as compared to the PBMC method (Figures 3C, D).
Frontiers in Immunology 05
Most of the major clusters had contributions of cells from each

patient, implying a similar single-cell landscape across all patients

(Figure 3D). Some clusters, such as IFNg responsive T-cells (IFN T-

cells), showed a disproportionately high contribution from a single

patient (patient 1) with both processing methods (Figure 3D),
A

B

D

E F

C

FIGURE 2

Comparative analysis of cell quality of SENSE and PBMCs methods. (A) Cell viability % boxplots, and (B) Single-cell counts boxplots with each dot
representing an individual patient. The significance of the difference between the methods was tested using the paired Student’s t-test. NS indicates
non-significant differences with P >.05. (C) Count of Genes (log-scale), UMIs (log-scale), and proportion of mitochondrial genes per cell. The violin
plots in the top panel show patient-wise information for the count of genes, UMIs, and proportion of mitochondrial genes per cell, while the violin
plots in the bottom panel show the group-wise comparison of SENSE and PBMC methods. (D) Proportion of patient and group-wise genes in
cytoplasmic, membrane, extracellular, and ribosomal gene ontology categories. (E) Proportion of cells from SENSE and PBMC methods in the G1,
G2M, and S phases, and (F) Proportion of the singlets and doublets cells in the SENSE and PBMCs protocols.
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FIGURE 3

Characterization of blood single cell profiles obtained with SENSE and PBMCs methods. Blood samples for the analysis were obtained from JIA and
pediatric Lupus patients from the rheumatology clinic in CHOA. (A) Uniform Manifold Approximation and Projection (UMAP) embedding of scRNA-
seq data from both methods across all patients consisting of >41,000 high-quality single-cells distributed into 11 cell types. Canonical cell types are
based on the expression of marker genes that include: B-Cells (MS4A1+, CD79A+), Memory B-cells (CD19+, IGLC2+), NK Cells (NKG7+, KLRD1+,
CD3D-), Myeloid cells (CD14+, MNDA+, FCGR3A+, FCN+), CD4+ Naïve T-cells (CD3D+, CD4+, CCR7+, LEF1+), CD4+ Memory T-cells (CD3D+, CD4+,
TRAAD+, TNFRSF4+), IFN T cells (CD3D+, ISG15+, STAT1+, IFI6+), CD8+ Effector T-cells (GZMA+, GZMB+, CD8A+), CD8+ Naive T-cells (CD8A+, CCR7+,
LEF1+, TCF7+), CD8+ Memory T-cells (CCL5+, GZMB+, CD8A+), and platelets (SNCA+). (B) Dot Plot depicting expression profile of markers genes
used for annotating different cell type clusters. The relative expression and percent of cells expressing specific markers are shown by shades of red
color and the size of the dot respectively. (C) PBMC and SENSE single-cell method-based split UMAP showing the distribution of cell types. There
are slightly elevated differences in T-cells subtypes in the SENSE group, while PBMC samples showed higher levels of myeloid cells. (D) Stacked bar
plot showing the relative patient contribution in each individual cell type cluster. The samples from PBMC and SENSE methods are shown with
shades of blue and red respectively. Each cluster depicted the varying levels of contribution from individual patients. The contribution of cells from
each sample is shown using a pie graph with orange and purple colors representing SENSE and PBMC profiled samples respectively. (E) Heatmap
displaying the top two gene markers expressed by each cell type. Columns represent individual cells, grouped by cell type, while rows display
individual genes. Horizontal colored bars above the heatmap indicate the different cell types. Relative gene expression is shown in pseudo color,
where blue represents low expression, and red represents high expression. Top markers generally correlate with well-established canonical markers
for each cell type. (F, G) Comparative analysis proportions of cell types in the PBMC and SENSE methods. The proportion of Total (F) and CD45+
(G) cells per sample between PBMC and SENSE methods are shown. Each bar plot depicts the mean proportions and ± standard error of the mean.
Each dot represents an individual sample. The significance of the difference in the mean in the groups was tested using paired Student’s t-test, with
significant differences being indicated with * (P<0.05) and ** (P<0.01).
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which may be a result of the clinical condition of that patient.

Patient 1 is a recently diagnosed JIA patient as compared to other

JIA patients in this study who have been undergoing treatment for

quite some time (Table 1).

To further dissect the expression profiles of different cell types,

we compared the gene expression profile of the target cluster with

the other cells in the sample based on the non-parametric Wilcoxon

Rank Sum test (average log-fold change (FC) ≥0.25, > 25% of cells

expressing gene, and P< .01). This analysis allowed the

identification of a gene signature for each cell type (Figure 3E).

The SENSE method captured a higher number of T cells per sample

as compared to the PBMCs method indicating its advantage in T-

cell repertoire characterization (Figure 3F; Supplementary Figure 2).

T cell subtype comparison depicted that CD8+ T cells (Naïve,

Memory) are significantly elevated (P<.05) in the SENSE method

profiled samples (Figure 3F; Supplementary Figure 3). On the other

hand, the PBMC-based method depicted significant enrichment

(P<.05) of the myeloid cells (Figure 3F). Additionally, PBMC

method also depicted significant enrichment of platelets as

compared to SENSE (P<.01) (Figure 3F). Similar observations

were made while considering only CD45+ immune cells of
Frontiers in Immunology 07
samples, where the PBMC-based method illustrated significantly

better capture for the memory B-Cells in addition to myeloid cells

(Figure 3G). The disparity observed in myeloid cells and platelets

may be attributed to the CD15+ granulocyte removal steps

employed in the SENSE method, while the disparity in T cells

might be due to density gradient step in the PBMC method.
2.3 Cell types exhibited similar
transcriptome profiles for SENSE and
PBMC methods

To assess the sample processing method-induced technical

variations in the overall expression profiles, we studied the

clustering based on cell types split on SENSE and PBMC

methods. Most of the matching cell types, irrespective of the

processing methods, depicted similar clustering patterns except

for subtle variations in the myeloid cells compartment

(Figure 4A). The hierarchical clustering based on the cell types/

subtypes markers genes identified based on the Wilcoxon Rank

Sum test (average log-FC ≥0.25, >25% of cells expressing gene, and
A B

DC

FIGURE 4

Comparison of single cell profiles of samples processed using SENSE and PBMC methods. The scRNA-seq data from blood samples processed using
SENSE and PBMC methods were analyzed using a uniform bioinformatics workflow for comparative analysis. (A) Dendrogram showing the distances
between cell types from each method based on the differentially expressed genes for each cell type computed independently. The differentially
expressed genes were identified by comparing the target cell type with others based on an average log FC > 0.25 and Wilcoxon Rank Sum test P<.01
as well as genes expressed in > 25% of a given cell population. (B) A Circos plot showing the correlation between expression profiles of cell types
profiled using SENSE and PBMC methods. The individual cell types between profiling methods depict significant similarities in the expression profiles.
Some cell subtypes within the T cell compartment depicted lower correlations. (C) Comparative analysis of canonical cell type-specific markers
between the two methods. Most of the cell type defining markers are concordantly expressed across corresponding cell types indicating strong
similarity in the SCPs generated by SENSE and PBMC methods. The color scales on the right show the gene expression levels in samples processed
using PBMC (purple) and SENSE (orange) methods. The size of the dot represents the percent of cells expressing specific markers. The Y-axis shows
the cell types with SE indicating samples processed using the SENSE method and PB representing samples processed using the PBMC method. The
X-axis shows the gene names. (D) Shannon’s entropy-based batch effect estimation. The UMAP plot shows Shannon’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC) among the cell’s 100 nearest neighbors. The analysis was performed
on normalized data without any batch effect correction. Low entropy values were observed in myeloid cell clusters (marked with red lasso) and an
IFN T-cell cluster (marked with black lasso), indicating poor mixing and method-based batch effect.
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P< .01) depicted that naive and memory T-cells formed one distinct

cluster, while doublets and myeloid cells formed another cluster. B-

cells formed a separate cluster, and natural killer (NK) cells and

effector T-cells clustered together in a different group. For most of

the cellular compartments, the same cell types/subtypes depicted

the highest correlation except the T cells compartment (Figure 4A).

For example, the NK, CD8+ effector T-cells, and myeloid cells

depicted the highest correlation between transcriptome profiles

from SENSE and PBMCs method (Figure 4A). In the T cells

compartment, some of the cell types depicted a weaker

correlation between the matching cell types from the two

methods indicating some variation. This finding aligns with a

higher proportion of the T cells captured using the SENSE

method as compared to PBMCs based method. To further

validate the consistency of cell type labeling across methods, we

assessed the similarity of the differentially expressed markers for

each of the 11 cell types from the two methods. To achieve this, cells

from each method were subsetted, and the top differentially

expressed markers for each cell type with respect to all other cells

from the same method were identified based on the Wilcoxon Rank

Sum Test (average log-FC ≥0.25, >25% of cells expressing gene, and

P < .01) and visualized using Circos plots generated using

ClusterMap (26) R package. The cell types from the SENSE

method depicted high transcriptome correlation with matching

cell types from the PBMCs method, again indicating strong

concordance among the methods (Figure 4B). Next, we assessed

the similarity in canonical/top markers expression for various cell

types based on processing protocol. The markers for each cell type

depicted similar expressions irrespective of the processing method

(split dot plot in Figure 4C). The consistency of key marker genes

expression establishes the transcriptome similarity of cellular

profiles from the SENSE and PBMCs methods. To further assess

and quantify batch effects due to processing methods, we calculated

Shannon’s entropy/cell to assess the degree of mixing of samples

from the two methods (27). Low entropy values indicating poor

mixing of a cells from different samples and methods were observed

mainly in myeloid (0.526 ± 0.005) (Figure 4D, red lasso) and T cells

(0.701 ± 0.004) (Figure 4D, black lasso). The rest of the cell types

depicted high entropy (0.872 ± 0.001) indicating no batch

effects (Figure 4D).
2.4 SENSE enables deep profiling of
immune repertoire by capturing profiles of
T cell subtypes

T cells are highly diverse and play a critical role in eliciting

immune responses against antigens. To further investigate the

different T cell subtypes captured by SENSE and PBMC methods,

we performed a focused analysis after subsetting out and

reclustering the T and NK cell clusters. The analysis included

27,982 cells that were annotated into 10 distinct T and NK cell

subtypes (Figures 5A, B) based on the expression of marker genes

that include Naïve T-cells (CD3D+, CCR7+, LEF1+), Effector T-cells

(CD3D+, GNLY+, GZMK+), CD4+ Naive T-cells (CD4+, CCR7+,

LEF1+), CD4+ memory T-cells (CD4+, TCF7+, TNFRSF4+), CD4+
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Memory IFN T-cells (CD4+, TNFRSF4+, ISG15+, MX1+), CD8+

Naive T-cells (CD8+, CCR7+, LEF1+), CD8+ Memory/Effector T-

cells (CD8+, TCF7+, TNFRSF4+,GZMK+), CD8+ IFN T-cells (CD8+,

ISG15+, MX1+), IFN NK/T cells (CD3D-, GNLY+, NKG7+, ISG15+,

MX1+) and NK cells (CD3D-, GNLY+, NKG7+). In both SENSE and

PBMC methods various subtypes of CD8+ T-cells were the

dominant T-cells (~41%), with the remaining cells consisting

primarily of CD4+ T-cells (~37%) along with NK cells (~8%),

other T cells (~8.5%) and NK/T (specific to patient 1, ~4.5%)

(Supplementary Figure 3). The Naïve T cells formed 51% of the

total T cells captured in the assays. Most of the T cell clusters had

contributions from all the patients except IFN-stimulated clusters

that are patient-specific (Figure 5C). Overall, the SENSE-based

method captured a significantly (P=.007) higher number of T

cells as compared to the PBMC method (Supplementary

Figure 2), but the relative proportion of T cell subtypes is similar

in both methods (Figure 5D; Supplementary Figure 3). Further to

explore the functional landscape of T/NK we performed a

comparative analysis of cellular communication based on the

expression of ligands and receptors (28). Comparison of the

overall number of interactions and their strengths revealed them

to be similar between SENSE and PBMC methods (Figure 5E;

Supplementary Figure 4). Further communication analysis depicted

similar communication patterns among cell types, with CD8+

Naïve T-cells with the highest incoming interactions and Effector

T-cells with the highest outgoing interactions (Figure 5F). Further,

we explored the information flow of the signaling pathways based

on the sum of communication probability among cell types of

SENSE and PBMC methods. We observed that most of the

pathways showed a similar information flow pattern, including

CLEC, MHC-I, LCK, IL16, ICAM, and ITGB2 (Figure 5G). Some

pathways including MIF, and CD99 depicted different signaling

between cell types from SENSE and PBMC methods. These

pathways typically involve myeloid, platelets, and dendritic cells

(29–31). Therefore, the differential signaling observed in these

pathways may be attributed to the differences in myeloid cells

and platelets captured by the two methods. These results indicate a

common signaling network operates between the cells processed

using either of the two methods, indicating that the SENSE method

yields similar results to the PBMC method and is suitable for

analysis of the T cells landscape in whole blood samples.
2.5 Myeloid lineage cell types have lower
enrichment but similar profiles between
single-cell preparation methods

The myeloid cell compartment is the second largest

compartment of cell types observed in both sample processing

methods. Overall, the SENSE method captured a significantly lower

number of myeloid cells (Figure 3F; Supplementary Figure 2) which

might be due to the filtering out of CD15+ myeloid/granulocytes to

enhance single cell capture efficacy and generate high-quality cells

for capturing. The sub-clustering and annotation on the myeloid

and platelet compartments comprising 7,599 cells yielded seven

distinct cell types or subtypes. Among these, six were identified as
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myeloid subtypes and a single cluster as platelets. Both methods

captured every cell type from the myeloid lineage as evident from

the split UMAP plot (Figure 6A). These clusters look like classical

and non-classical monocytes with the expression of CD14 and
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FCGR3A genes along with the expression of other markers

(Figure 6B). The analysis of patients’ contribution to different

clusters depicted that some of the clusters like cluster A (LYZ+,

CD14+, PABPC1+) had contributions from multiple patients
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C

FIGURE 5

Focused analysis on the T cell clusters to estimate the impact of blood samples processing protocols. (A) A UMAP displaying the T-cell subclusters
split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as T/NK cells (Naïve, Effector, IFN+, NK), CD4+

T-cells (Naïve, Memory, Memory IFN+), CD8+ T-cells (Naïve, Memory, IFN+) based on the expression of specific markers. The counts depicted
slightly better capture for T cell sub-clusters in the SENSE method as compared to the PBMC method. (B) Dot plot demonstrating the expression
profile of key markers for each T-cell subtype. The gradient of red color and size of dot represent the relative expression and percent cells
expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual T- cell sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for T-cell subclusters. The
proportion of total T-cells cells per sample between PBMC and SENSE methods for each sub-cluster is shown. (E-G) CellChat based analysis of cell-
cell communication. (E) Total number of interactions and interaction strength of the inferred cell-cell communication networks for T-Cells from
different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the major sources and targets of interaction on the 2D space
where the incoming and outgoing strength for each T cluster along the y-axis and x-axis, respectively. (G) Bar graph to compare the overall
information flow of each signaling pathway between PBMC and SENSE methods.
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FIGURE 6

Focused analysis on the Myeloid cell clusters to estimate the impact of single-cell processing protocols. (A) A UMAP displaying the myeloid and
platelet subclusters split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as Clusters A (CD14+, LYZ
+, PABPC1+), B (CD14+, RETN+, IFI44L+), C (CD14+, IFI27+, ISG15+), D (CD14+, NFKBIA+, IL1B+), E (CD16+, CD79B+), F (CD16+, ISG15+), and
Platelets (PPBP+, PF4+) based on the expression of top markers. The counts were lower for myeloid cell sub-clusters in the SENSE method as
compared to the PBMC method. The platelets were present only in the PBMC samples. (B) Dot plot demonstrating the expression profile of
common myeloid, neutrophils, and platelet markers. The gradient of red color and size of the dot represents the relative expression and percent
cells expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for myeloid and platelet
subclusters. The proportion of total myeloid and platelet cells per sample between PBMC and SENSE methods for each sub-cluster is shown. (E–G).
CellChat based analysis of cell-cell communication for Myeloid clusters. (E) Total number of interactions and interaction strength of the inferred
cell-cell communication networks for myeloid cells from different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the
major sources and targets of interaction on the 2D space where the incoming and outgoing strength for each T cluster along the y-axis and x-axis
respectively, (G) Bar graph to compare overall information flow of each signaling pathway between PBMC and SENSE methods.
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whereas others like cluster F (CD16+, ISG15+) were patient specific

(Figure 6C). Although the SENSE method captured fewer cells in

this compartment, comparative analysis of relative proportions of

myeloid cell subtypes depicts concordance of single cells captured

using the two methods (Figure 6D). To better understand the

communication patterns among different subtypes of the myeloid

lineage, we conducted cell communication analysis. The analysis

was performed only on the clusters that have cells from multiple

patients. Our analysis revealed lower interactions and weaker

strengths of interaction between the subtypes of the myeloid

lineage using the SENSE method (Figure 6E). One possible

explanation for these findings is that there were fewer overall cells

present during the analysis in this compartment from the SENSE

method (PBMC: n=5,401, SENSE: n=1,733). Comparison of cellular

communications patterns among the myeloid cells depicted

significant concordance with cluster A with characteristics like

classical monocytes with most incoming interactions (Figure 6F).

Further analysis of key pathways associated with the flow of

information among cells also depicted multiple similar pathways

including PECAM1, GRN, MHC-I, SELPLG, and Galectin

(Figure 6G). In summary, although there is concordance in the

myeloid cell sub types captured by the two methods, the lower

capture of myeloid cells in the SENSE method is leading to some

cellular communication differences that is one of its limitations.
2.6 SENSE method generated
transcriptome profile similar to publicly
available PBMC transcriptome profile

To further evaluate the transcriptome profile of SENSE method

WB generated data, we performed a comparative analysis with

publicly available PBMC dataset. This PBMC dataset (32) was

obtained from the 10x Genomics Inc. website and processed

uniformly and integrated with our data using integration

anchors-based batch correction. The comparative analysis of

cellular profiles based on split UMAP depicted co-embedding of

major cell types indicating similarity in transcriptome profiles

(Figure 7A). In line with the publicly available 10x Genomics

PBMC dataset (10x PBMC), the SENSE method also captured T

cells as the most abundant cell types from the whole blood profiling.

Shannon’s entropy was computed per cell to assess the degree of

mixing of samples from three datasets (i.e., 10x PBMC, PBMC,

SENSE). Most clusters from different datasets depicted high entropy

indicating the mixing of cells from different datasets in respective

clusters (Figure 7B). We observed low entropy in the myeloid cell

clusters (i.e., poor mixing) which might be due to lower capture of

myeloid cells using the SENSE method. Further comparative

analysis of data quality by measuring proportions of cytoplasmic,

extracellular, membrane, ribosomal, and mitochondrial genes

depicted similar profiles indicating the similar quality of single-

cell data (Figure 7C). The assessment of the similarity in canonical

marker expression distribution from 10X PBMC dataset and our

cells from SENSE method depicted similar expressions for most cell

types (Figure 7D), with the primary exception being the previously

noted myeloid cells. The consistency of key marker expression
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demonstrates that cell types can be identified reliably using the

SENSE method, and comparative analysis can be performed among

the samples profiled using different methods.
3 Discussion

Analysis of blood samples is the most direct and least invasive

approach (33) to decipher disease mechanisms and identify

biomarkers (34). SCP of blood samples is ideal for characterizing

how the profiles and characteristics of different immune cells in the

blood change in response to disease or therapy, however, the need

for immediate sample processing to prepare and preserve viable

single cells is a major deterrent towards implementing this on

samples collected in a clinic or hospital setting. The traditional

method for isolating PBMCs using the Ficoll-Paque density

gradient method for SCP is cumbersome and its implementation

is challenging due to the lack of time, equipment, and trained

personnel in most clinics. This may also be partly responsible for

the limited implementation of single-cell profiling in clinical trials.

Direct cryopreservation of blood samples without pre-processing

has been reported to result in cell death and RNA/DNA

degradation, hampering molecular profiling (35). To address

these limitations, we have developed the SENSE method for

viably freezing WB collected in EDTA tubes without any need for

centrifugation steps, special reagents, and trained personnel. The

one-step addition of FBS/DMSO freezing solution assists in the

cryopreservation of WB cells by preventing the formation of

intracellular ice crystals, minimizing cell stress, and thereby

maintaining cell integrity/preventing senescence. Granulocytes

depletion post-thawing of WB samples enables the recovery of

high-quality mononuclear cells as granulocytes are poorly

cryopreserved in freezing media and release DNA and lysosomal

enzymes promoting cellular damage/clumping (36).

Validation of one-step SENSE method for cryopreservation of

WB will jump-start clinical implementation of SCP as well as

advance single-cell research. To validate the SENSE method and

demonstrate its suitability for cryopreserving high-quality single

cells for SCP, we processed freshly collected blood samples with

both the SENSE and the traditional density gradient isolation of

PBMCs methods. The initial step following the procurement of

blood samples, i.e., cryopreservation was much faster and easier

with the SENSE method compared to the more time-consuming

and complex density-gradient isolation of PBMCs. Although there

were slight differences in the viability of cells after the thawing and

washing steps, they were not significant and did not affect the

quality of the single-cell profiles. We tested multiple quality metrics

to evaluate the quality of cells prepared using the SENSE method in

comparison to the PBMC isolation method. Quality metrics like

median gene counts and unique molecular identifiers (UMIs), were

found to be comparable between SENSE and PBMC methods. High

mitochondrial content is indicative of poor-quality cells that are

either undergoing apoptosis or have lyzed (37). The median

representation of <10% mitochondrial genes in WB and PBMC

samples confirms a similar proportion of high-quality single cells

obtained with both methods. The SENSE method depicted a slight
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advantage in capturing the profile of the higher number of cells as

compared to the PBMCs method from similar cell suspensions

(concentration and viability). The high quality of cells was further

confirmed by the lack of cellular damage artifacts with the SENSE

method. On closer inspection of the percentage genes in the

cytoplasmic ontology category, we see bimodal distribution in
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PBMC method, in contrast to a unimodal distribution in SENSE

method (Figure 2D). Myeloid and platelet cells were found to have a

higher percentage of cytoplasmic genes (~32% - 40%) as compared

to the rest of the cell types (~20% - 30%) (Supplementary Figure 5).

Myeloid and platelets cells were captured more in the PBMC

method as compared to SENSE method, resulting in the bimodal
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FIGURE 7

Comparing the transcriptomic profile of SENSE method samples with PBMC method samples from 10x Genomics legacy datasets. (A) Split UMAP of
SENSE and PBMC methods data from our experiments and legacy data, 10x PBMC, from 10x genomics. Cluster labels are based on transferring the
labels from SENSE, PBMC data. (B) Shannon’s entropy-based batch effect estimation. The UMAP plot shows Shannon’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC, 10x PBMCs) among the cell’s 100 nearest neighbors. The analysis was
performed on normalized data with batch effect correction using integration anchors. (C) Proportion of group-wise genes in cytoplasmic,
membrane, extracellular, and ribosomal gene ontology categories, along with percent mitochondrial genes (green - 10x PBMC, purple-PBMC,
orange - SENSE). (D) Violin Plots comparing the expression of various cell markers among our SENSE, PBMC data with 10x PBMC dataset.
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distribution observed in Figure 2D with the former method.

Processing times and cryopreservation can result in changes in

cell cycle stages when performing SCP which will affect the

transcriptome (38). We observed no significant differences in the

cell cycle phases between samples processed using the two methods.

Multiplets can be biologically misleading and arise when two or

more cells are captured in single droplets during encapsulation

steps (39). Doublets can occur due to poor quality of cells resulting

in two cells clumping together, dying cells and/or broken cells

resulting in misleading hybrid transcriptomes (25, 39). We did not

observe any significant differences in the number of doublets

present between the samples processed using the SENSE method

and the PBMCs method. The SENSE method was shown to have

slightly fewer doublets compared to the traditional PBMC method

(doublet cells: PBMC method, n=916; SENSE method, n=539).

Therefore, comparative analysis of the single-cell quality of cells

obtained using the one-step cryopreservation SENSE method

revealed striking similarities to the traditional multi-step

cryopreservation PBMCs method, reinforcing its utility as a

method of choice for ease of cryopreservation and single-cell

profiling of clinical WB samples.

Cellular landscape revealed by clustering enables identification

of cell types and their individual biological states and specific

functional roles in disease development and progression (40). All

major cell types were represented in UMAPs generated from

scRNA-seq data of samples prepared with both methods. The

marker genes were shown to have similar expressions for each

cluster/cell type or subtype from both methods. Hierarchical

clustering demonstrated that different immune cell types have

unique transcriptomes that enable their classification into distinct

clusters irrespective of sample processing method. The relative

cellular abundance analysis revealed that while dominant cell

clusters were similar in samples processed using either of the two

methods, there were differences in the myeloid and T cells subtype

clusters. Although the density gradient centrifugation method to get

PBMCs should remove heavier granulocytes, there are instances of

incomplete removal of granulocytes, especially in certain

pathological conditions like sepsis (41) and autoimmune

disorders (42) where there is increased amounts of low-density

granulocytes (43). Also, delay in processing of blood can result in

granulocyte activation; resultant degranulation gives rise to low

density granulocytes that will not be separated out efficiently by

density gradient methods (44). In SENSE method, the CD15+

granulocytes are selected and removed to obtain high quality

CD15- mononuclear cells. CD15+ cell depletion was combined

with density gradient centrifugation to effectively purify PBMCs

from sepsis patients with high percentage of low-density

granulocytes (43). Though there was some resultant loss of

additional cells other than granulocytes during the CD15+ cells

depletion steps, the functional cellular properties were not

compromised (43). The observed differences in myeloid clusters

in this study might be attributed to the SENSE method’s removal of

CD15+ cells to filter out sticky granulocytes that might have also

filtered out aggregating monocytes and platelets. Importantly, the

SENSE method was able to recapitulate the myeloid compartment

associated with disease as we observed similar patient-wise
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differences of cell-type distribution in scRNA-seq data from both

methods. In summary, even though SENSE captures fewer myeloid

cells compared to the PBMC method, it is still capable of revealing

differences in the proportions of myeloid cells within given samples.

On the other hand, we observed more efficient capture of T cells

in SENSE method cryopreserved WB samples. Importantly, our

focused analysis on the T cells compartment showed that the

SENSE method captured a significantly higher number of T cells

representing various types and subtypes, including Naïve, Effector,

and Memory T-cells. The possible cause of lower T-cell enrichment

with the PBMCs method might be due to some T-cells being lost

during the Ficoll-Paque density gradient centrifugation step due to

the difference in density of these cells (45). These results make our

simple WB sample cryopreservation combined with CD15+

granulocyte removal method especially suitable for immune

repertoire profiling using VDJ enrichment to explore the

association of T cell clonality with disease or therapeutic outcomes

analyses. Based on the single-cell quality metrics, the cryopreserved

WB using the SENSE method yielded high-quality single cells similar

to cryopreserved PBMCs isolated using the traditional density-

gradient method. Furthermore, the SENSE method can be

extended for more granular characterization of immune repertoire

using single cell proteomics/multidimensional profiling.

Comparison analysis of our data with an external 10x Genomics

PBMC dataset (32) revealed concordance between the three datasets

as all cell types were consistently identified in all three datasets. The

high quality of cells obtained with the SENSE method was further

demonstrated by quality metrics like lower % membrane genes and

higher % extracellular genes compared to the external PBMC

dataset. This analysis further validates the robustness of the

SENSE method to acquire high quality single-cells for single

cell profiling.
4 Methods

4.1 Sample collection

Informed consent according to Emory University IRB protocol

(IRB00079391 Determinants of Childhood Autoimmunity) was

obtained from Juvenile Idiopathic Arthritis (JIA) (n=5) and

pediatric Lupus (n=1) patients being treated in the rheumatology

clinic in CHOA prior to sample collection. Blood samples were

collected in lavender top EDTA tubes and transported to the lab

from the clinic at room temperature. Samples were cryopreserved

within 2h post-collection.
4.2 PBMCs isolation and whole
blood cryopreservation

The freshly collected blood was split into two equal aliquots,

with one aliquot processed for isolation of PBMCs while the other

aliquot was frozen directly using a cryopreservation solution.

PBMCs were isolated using the standard Ficoll-Paque density-

gradient method according to manufacturer’s instructions
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(Cytiva). Briefly, blood diluted in phosphate buffer saline (PBS)

(1:1) was gently layered onto Ficoll-Paque PLUS (Cytiva, 17144002)

and spun at 500g for 30 minutes at 21°C. The top layer (plasma) was

removed and discarded. The layer containing the mononuclear cells

was then carefully removed and diluted with 3x volume of PBS,

mixed well, and spun at 500g, for 10 minutes at 21°C. The pellet was

resuspended in PBS and washed again by spinning for 10 minutes at

500g and 21°C. The PBMCs pellet was then resuspended in 1 ml

recovery cell culture freezing media (Fisher Scientific, 12648010) at

a concentration of <10X106 cells/ml. The second set of blood

samples (by the SENSE method) was viably preserved by mixing

whole blood 1:1 with freezing solution made up of 80% heat-

inactivated fetal bovine serum (hiFBS) and 20% dimethyl

sulfoxide (DMSO). Samples were gradually frozen by placing in

Mr. Frosty freezing container (Fisher Scientific, 5100-0001) and

stored at -80 °C till further use.
4.3 Single cells preparation

Frozen PBMC samples were thawed and washed with wash buffer

(PBS containing 1% BSA) to prepare viable single cell suspensions

(14). Frozen whole blood samples were also thawed, and cells were

pelleted (380g, RT, 6.5 minutes), the supernatant was gently removed

so as not to disturb the pellet, which was then resuspended in EasySep

buffer (STEMCELL technologies, 20144) and filtered through 100 µm

filter mesh (Fisherbrand, 22363549). The EDTA concentration of

EasySep buffer used for washing and diluting the cells was modified.

The amount of EDTA in the EasySep buffer containing 1mM EDTA

was increased to 4mMby adding an additional 3mMEDTA. EDTA is

known to rapidly reverse the preferential binding of platelets to

monocytes (46). Therefore, the presence of higher EDTA

concentration in the buffer results in increased capture of high-

quality mononuclear cells. Granulocytes were removed using a

modified EasySep CD15 selection (EasySep™ Human CD15

Positive Selection Kit; STEMCELL technologies, 18651) protocol.

Also, RBC depletion beads (STEMCELL Technologies, 18170) were

added following the CD15 cocktail mix and RapidSpheres incubation

steps to remove red blood cells. Following EasySep magnetic

separation of CD15+ antibody-bound granulocytes, the CD15-

mononuclear cells supernatant was collected, cells pelleted and

resuspended in PBS containing 1% BSA for generating viable cells

for scRNA-seq libraries. A detailed stepwise protocol for the SENSE

method is included as Supplementary document 1.
4.4 Single-cell assays and sequencing

ScRNA-seq libraries were prepared from viably thawed WB and

PBMCs single-cell samples prepared in the previous section according to

manufacturer’s (10xGenomics) instructions. CellPlex kit (10xGenomics,

1000261), which allows the pooling of samples prior to GEMs generation

by labeling samples with unique cell multiplexing oligos (CMOs), was

used to multiplex samples. The pooled samples were used to generate
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GEMs, followed by RT-PCR steps and cDNA amplification using Next

GEM single cell 3’v3.1 kits (10x Genomics, 1000268). Following the

cDNA amplification step, size selection beads were used to separate the

CMOand gene expression (GEX) cDNAs that were then used to prepare

the CMO and GEX libraries respectively. The final CMO and GEX

libraries were then pooled and sequenced according to 10x Genomics

sequencing parameters using Novaseq S4 PE100 (Illumina) kits for

comprehensive transcriptome profiling.
4.5 Single-cell profiling analysis

The raw FASTQ files from each multiplex sample were aligned

using 10x Genomics Cell Ranger (32) 6.1.2 to align against a reference

human genome (GRCh38) for generating raw cell-gene count

matrices. The count and CMO matrices from the samples were

analyzed with R (v 4.2.2) using Seurat (47) (v 4.0.4) and other

Bioconductor packages. Low-quality cells were filtered using Seurat

to keep only cells with >200 unique genes, >600 UMI reads, and <

20% mitochondrial UMIs. Potential doublets were marked using the

doubletFinder (25) algorithm that identifies doublets based on

neighborhood search on principal component analysis (PCA).

Assuming 3.5% of doublet formation from the 10x multiplexing

experiment, we performed analysis with top 10 principal components

with a neighborhood size of 0.1(pK) to predict doublets. The count

matrices were normalized using the SCTransform algorithm,

regressing out the per-cell UMI count, the number of unique

features per cell, and the percent mitochondrial reads mapped to a

cell. The normalized cell count was used for selecting the top 2,000

variable genes for principal component analysis (PCA) to identify the

principal components capturing the most variance across the

samples. Similar cells were clustered together via Louvain clustering

on the top principal components using the Seurat package that was

visualized Uniform Manifold Approximation and Projection

(UMAP) to determine the overall relationship among the cells. The

cell clusters weremanually annotated based on canonical cell markers

described in our previous studies. The cell markers for the different

cell clusters were identified by comparing target cell types with others

captured in the assay using the Wilcoxon Rank Sum test (adjusted

P<.10, average log2FC > 0.25, and percent cell expression > 25%).
4.6 Entropy calculation and
Gene-Ontology based cellular
component enrichment

Shannon entropy was calculated per cell for assessing the

batch effect due to method variation using 100 neighbors and 20

principal components using the CellMixS (27) R package. The gene

signatures for cellular components (extracellular region, cytoplasm,

membrane, ribosome) were sourced from Gene Ontology (48)

database (GO:0005576, GO:0005737, GO:0016020, GO:0005840).

PercentageFeatureSet function of Seurat was used to calculate the

percentage of all UMIs that belong to the gene signature per cell.
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4.7 Comparative analysis of cell types
across single-cell processing methods

We performed a comparative analysis of cell type abundance

as well as gene expression between SENSE and PBMCs methods.

The cellular proportion per patient were calculated and compared

between methods using paired t-tests. The cell types with a P value

<.05 were considered significantly differently enriched between

methods. To determine the correlation between cell types between

methods we implemented the ClusterMap package in R designed

to compare cellular profiles across multiple single-cell datasets

(26). Initially differentially expressed genes (DEGs) for each cell

type in a method-specific manner (i.e., SENSE, PBMC) were

identified based on the fold change and Wilcoxon Rank Sum

Test (average log-FC ≥0.25, >25% of cells expressing gene, and P

<.01). DEGs were computed using Seurat’s “FindAllMarkers”

function. This was followed by hierarchical clustering of DEGs

using their presence or absence (binary expression) in different

cell types to generate a cluster dendrogram. The relative distance

of cell types on the cluster dendrogram can be quantified by the

similarity of the cell types. The similarity of the cell types is

measured based on their Jaccard index. To match a cell type

profile with another cell type ClusterMap introduced a purity tree

cut algorithm (26). The algorithm uses the origin of cell types,

clustering pattern on the dendrogram, and similarity to match the

cell types from different methods. This results in matching cell

types as well as merging cell types in a group if cell types depict

>90% similarity within a method. The results from the analysis are

displayed as a Circos plot summarizing the similarity in cell types

and subtypes similarity.
4.8 Cellular communication and
interaction analysis

Cellular communication analysis was performed using the

CellChat platform (28). Cells from each processing method were

isolated, and ligand-receptor (L-R) analysis was performed on the

SENSE and PBMC methods independently using the standard

CellChat analysis. Differentially expressed signaling genes were

identified using the Wilcoxon rank sum test (P< 0.05), which was

followed by communication probability/strength calculation

between any interacting cell types. The cell-cell communications

were filtered out if they were present in a cell type/subtype with less

than 10 cells. The number of interactions and their strengths were

aggregated for each method. To compare the overall signaling

structure between cells in SENSE and PBMC samples, interaction

weights were used, which sum the information flow of all L-R

interactions between two cell types of lymphoid and myeloid

lineages. The sum of outgoing or incoming communication

probability associated with each cell group was visualized on a

scatter plot showing the dominant senders (sources) and receivers

(targets) cell types. The size of the data points on the scatter plot

corresponded to the number of inferred links, both outgoing and

incoming, connected to each specific cell type. Information flow/

interaction strength characterizes the likelihood of cell-cell
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interaction occurring through a given pathway. Cells with high

expression of a known ligand will have high information flow

scores with cells that have high expression of the matching

receptor. The conserved or processing method-specific pathways

were evaluated by comparing the sum of communication

probability among cell-type pairs for each pathway.
4.9 Comparing the SENSE and PBMC data
with external PBMC dataset

Single-cell gene expression dataset for frozen PBMC samples

(10x PBMC) from 3 donors (Donor A, B, and C) were downloaded

from 10x Genomics datasets (32). The filtered gene expression

matrices were merged with the PBMC and SENSE samples. The

count matrices were again normalized using the SCTransform

algorithm, regressing out the per-cell UMI count, the number of

unique features per cell, and the percent mitochondrial reads

mapped to a cell. The top 2,000 variable genes were found, and

further Louvain clustering was performed on the top principal

components using the Seurat package that generated a UMAP to

visualize the overall relationship among the cells. To correct for any

batch effect the samples count matrices from 10x PBMC and

PBMC, SENSE datasets were normalized and integrated using

integration anchors-based batch correction approach of the

Seurat package. The cell clusters were manually annotated by

transferring cluster labels from PBMC, SENSE to 10x PBMC

samples. Based on distribution of existing labels on new

clustering, some clusters were merged like B-Cell (B-Cell and

Memory B-Cell), CD4+ T-Cell (CD4+ Naïve and Memory T-

Cell) and CD8+ Cytotoxic T-Cell (CD8+ Effector and Memory

T-Cell).
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