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Background: Birth weight is a crucial factor linked to a newborn’s survival and 
can also affect their future health, growth, and development. Earlier, researchers 
focused on exploring maternal and fetal factors contributing to low birth weight. 
However, in recent years, there has been a shift toward effectively predicting low 
birth weight by utilizing a combination of variables. This study aims to develop 
and validate a nomogram for predicting low birth weight in Ethiopia.

Methods: A retrospective follow-up study was conducted, and a total of 1,120 
pregnant women were included. Client charts were selected using a simple random 
sampling technique. Data were extracted using a structured checklist prepared on the 
KoboToolbox (Cambridge, Massachusetts in the United States) and exported to STATA 
version 14 (Computing Resource Center in California) and R version 4.2.2 (University 
of Auckland, New Zealand) for data management and analysis. A nomogram was 
developed based on a binary logistic model, and its performance was assessed 
by discrimination power and calibration. Internal validation was performed using 
bootstrapping. To evaluate the clinical impact, decision curve analysis was applied.

Results: The nomogram included gestational age, hemoglobin, primigravida, 
unplanned pregnancy, and preeclampsia. The AUROC of the predicted nomogram 
was 84.3%, and internal validation was 80.1%. The calibration plot indicated that 
the nomogram was well calibrated. The model was found to have clinical benefit.

Conclusion: The nomogram demonstrates strong discrimination performance 
and can predict low birth weight clinically. As a result, it can be used in clinical 
practice, which will help clinicians in making quick and personalized predictions 
simply and rapidly, enabling the early identification and medical intervention. For 
broader applicability, the nomogram must be externally validated.
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Introduction

Birth weight is a reliable indicator of fetal development and might 
have a significant role in predicting the newborn’s survival and can 
also affect their long-term health, growth, and development (1). Low 
birth weight (LBW), defined by World Health Organization (WHO) 
standards, refers to birth weight lower than 2,500 g, while the normal 
infant weight ranges from 2,500 g to 4,000 g (1). Babies with low birth 
weight are born as a result of prematurity (being born too soon), poor 
intrauterine growth (developing too slowly in the womb), or both (2, 
3). Approximately 20 million babies with low birth weight are born 
each year, making it a persistently significant global public health 
problem (1). It is noteworthy that the majority of these babies are born 
in developing countries (4). The prevalence of LBW varies widely 
across different regions and nations, with highest incidence often 
found in low- and middle-income countries (LMIC). The prevalence 
in low- and middle-income nations (16.5%) is more than twice as high 
as that in high-income countries (7%) (4, 5). The LBW rate in Ethiopia 
ranges from 8 to 54%, with large variations across geographical 
contexts and time periods. A recent systematic analysis found a pooled 
estimate of 18% in Ethiopia (6), implying that it is still a significant 
public health issue in the country.

Globally, 60–80% of neonatal mortality is caused by LBW (7). 
Infant morbidity and mortality rates are higher in cases where the 
newborn has LBW or is small for gestational age (8). It is associated 
with adverse effects on a child’s health, such as decreased cognitive 
function, increased risk of infection, neurological abnormalities, 
hypertension, type 2 diabetes, and later cardiovascular diseases (2, 6, 
9–15). Infants with low birth weight have a mortality rate that is nearly 
20 times higher than infants with a normal weight (1). A major 
amount of Ethiopia’s infant mortality rate, recorded at 48 deaths per 
1,000 live births, was associated with LBW (16).

Maternal age, birth order, household income, primigravida, 
educational level, rural residence, diet, anemia, parity, presence of 
chronic illness, maternal nutritional status before and throughout 
pregnancy, preeclampsia, short stature, sex of the newborn, physical 
labor during pregnancy, and antenatal care (ANC) are well recognized 
risk factors for LBW (4, 6, 13, 15, 17).

The most effective strategy for preventing LBW is to initiate 
prenatal care as early as possible in pregnancy and to continue 
receiving it throughout pregnancy (8). By the end of 2025, the World 
Health Assembly set a strategic aim to reduce LBW by 30%(from 
approximately 20 million to nearly 14 million infants with low weight 
at birth) (1). The care provided during the prenatal, antenatal, 
intranatal, and postnatal periods, interventions to prevent LBW, and 
LBW-associated morbidity and mortality in community settings are 
emphasized in the packages (7). The prediction model is used to 
identify pregnant women who are at high risk of having babies with 
LBW early on, to make informed clinical decision-making, and to 
improve the excellence of early attention to lower morbidity and death 
rates for newborns and children under the age of five. Therefore, 
developing an easy, non-invasive, useful, and truthful model for 
determining the risk of LBW in different periods of pregnancy is 
crucial, particularly in resource-limiting settings where there is a 
shortage of imaging equipment and trained personnel to diagnose or 
predict fetal growth restrictions earlier in the gestation period. Hence, 
the objective of this study is to develop and validate a nomogram for 
LBW in the context of Ethiopia.

Methods and materials

Study design

A retrospective follow-up study was conducted at Debre Markos 
Comprehensive and Specialized Hospital (DMCSH) in Ethiopia to 
develop and validate a nomogram for LBW among pregnant women 
who had antenatal care visits.

The study’s hypothetical design was proposed as follows: the 
incidence of LBW at a future time “t” is a function of various 
prognostic determinants measured at a time point before the 
occurrence of LBW or during pregnancy, “t0.” The study’s domain 
included pregnant women who received antenatal care.

 PTB t f x t x t x t0 1 1 0 2 0 3 0�� � � � � � � � � � � ��� �� �

Study period, area, and population

The study was conducted at DMCSH from 1 January 2020 to 30 
August 2022, and the data were extracted from 3 January 2023 to 1 
February 2023. DMCSH is located at Debre Markos town, which is 
299 km from Addis Ababa, Ethiopia’s capital city and 265 km from 
Bahir-Dar, the capital city of the Amhara Regional State. This 
hospital is one of the largest tertiary-level referral facilities in the 
Amhara region. The history of this hospital dates back to 1965 when 
it was founded by Emperor H/Selassie, and currently, it serves 
approximately five million people (18). Gynecology and Obstetrics 
is one of the major departments in the hospital. Antenatal care and 
delivery services are among the services provided in the hospital. 
Since last year, the total number of pregnant women receiving 
antenatal care and the total number of deliveries have been 2,200 
and 6,000, respectively. The hospital has 7 obstetrics and gynecology 
specialists, 46 midwives, 1 clinical midwifery specialist, and 3 
emergency surgeons. The study population was all pregnant women 
who had ANC visits at DMCSH from 1 January 2020 to 30 August 
2022. At DMCSH, all pregnant women who received ANC 
follow-ups from 1 January 2020 to 30 August 2022 and gave birth 
at DMCSH were included.

Sample size and sampling procedure

A rule of thumb for developing a prediction model suggests 
having 10 to 20 events for each predictor (19). Generally, the required 
sample size in the development of a prediction model is at least 10 
events for each predictor (19). The formula for determining the 
required sample size is N = (n*10)/I, where n represents the number 
of predictors (19). In this study, considering 15 predictors with easily 
accessible and significant clinical or statistical effects for low birth 
weight, the incidence of LBW was 14.0% (13), and the calculated 
sample size can be  derived as follows: N = (n*10)/I, 
(15*10)/0.140 = 1,071. Accounting for a 5% for missing data, the 
adjusted sample size was 1,124. Using a computer-generated simple 
random sampling procedure, 1,124 records (charts) of study 
participants were selected.
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Variables of the study

Dependent variable
Low birth weight (yes/no).

Independent variables
Age, marital status, middle upper arm circumference (MUAC), 

maternal weight, place of residence, gravidity, hemoglobin level, 
pregnancy status, timing of ANC initiation, timing of iron folate 
initiation, comorbidities (such as pulmonary: history of asthma or 
COPD (chronic obstructive pulmonary disease); cardiac: history of 
heart failure or ischemic heart disease; and renal diseases), 
and preeclampsia.

Operational definitions

Anemia
Mothers with hemoglobin level less than 11 g/dL (1).

Gravidity
The total number of pregnancies, including abortion, ectopic 

pregnancy, and any other pregnancies documented on the chart.

Low birth weight
Any neonate that weighs less than 2,500 g (5.51 pounds). Within 

72 h of delivery, the birth weight was measured on a digital scale (1).

Late initiation of antenatal care
Pregnant women who start antenatal care visit after 12 weeks of 

gestation (20).

Under nutrition or malnourished
Mother with MUAC less than 24 cm during pregnancy (1).

Parity
The number of deliveries after 28 weeks of gestation including 

IUFD and stillbirth documented in the chart.

Underweight
Mothers with weight less than 50 kg (9).

Data collection procedure and tool

A data extraction checklist was prepared on the KoboToolbox 
web-based tool for the collection of data from the mother’s medical 
records (21). The checklist was arranged into sociodemographic 
characteristics of the pregnant mothers, medical illnesses, past and 
recent obstetric characteristics, and birth outcomes.

Data quality control and assurance

Data extraction checklist was developed in English for data 
collection. Prior to the actual data collection, the primary investigator 
trained the data collectors for 2 days about the KoboToolbox, the 
elements of the checklist, the sequence, and potential issues they 

might encounter. The supervision of data collectors was done often 
and on schedule. The principal investigator verified the correctness 
and completeness of the data during data collection.

Data processing and analysis

Data were collected using KoboToolbox. The collected data were 
exported to STATA 14 and R 4.2.2 Software for data management and 
analysis. Missing data were handled by multiple imputation by 
assuming missing values at random. The Transparent Reporting of a 
multivariable Prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) guideline was used for developing and reporting the 
prediction model (22). Tables and figures are used to describe the 
characteristics of the study participants.

A logistic regression analysis was used to evaluate which variables 
are most powerful in predicting LBW (23). A bivariable regression 
analysis was used to obtain insights into the association of each 
potential determinant with low birth weight and for inclusion in a 
multivariable regression analysis. Variables with a p-value of ≤0.25 in 
the bivariable analysis were fitted to the multivariable regression 
analysis. After a stepwise backward elimination technique was used, 
the role of each predictor in the multivariable analysis was assessed by 
the likelihood ratio test. To be more liberal, a p-value ≤0.15 for the 
likelihood ratio test was used to fit the reduced model (23).

The performance of the nomogram was assessed using 
discrimination power and calibration. Discrimination refers to the 
performance of the model to differentiate pregnant women who give 
birth to a LBW baby from those who did not give birth to a LBW baby. 
The area under the receiver operating characteristic curve (AUROC) 
was used to evaluate the discrimination power of nomogram. The 
AUROC between 0.7 and 0.9 indicates good discrimination power 
and > 0.9 indicates excellent discrimination power (23, 24). Model 
calibration is the agreement between the observed proportions of 
preterm birth and predicted probabilities of LBW (24). Calibration 
was assessed using a calibration plot and a value of p to ensure the 
reliability of the prediction model, and Figure 1 shows that the model 
is well calibrated calibration, with the calibration plot falling along a 
45° line or an insignificant statistical test, such as the Hosmer-
Lemshow test (24). Internal validation was performed using the 
bootstrap procedure, which replicated the sample 1,000 times, to 
estimate how successfully the nomogram developed on the 

FIGURE 1

Calibration plot for the developed model.
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development set would perform on a hypothetical set of new patients 
(23). This approach can particularly assess the stability of selected 
predictors, as well as prediction quality (24). The most effective cutoff 
point for classifying pregnant women’s risk of having LBW babies as 
high or low was determined using the Youden index (25). To evaluate 
the prediction effectiveness, sensitivity, specificity, positive likelihood 
ratio, negative likelihood ratio, and accuracy were utilized. The clinical 
benefit of the nomogram was evaluated using decision curve analysis 
(DCA) (26). DCA was used to indicate the balance between the harm 
of a false-positive classification and the benefit of a true-positive 
classification (26). To provide a simply clinically applicable, individual 
prediction of LBW, a nomogram graphical display was developed (27).

Results

Baseline demographic, obstetric, and 
clinical characteristics of pregnant women

We included 1,120 women who gave birth and had their birth 
weight taken within 72 h of delivery. The demographic, obstetric, and 
clinical features of pregnant women enrolled in the study are shown 
in Table 1. The mothers’ median age was 28 years (IQR: 25–30), while 
48 (4.3%) of the participants were under the age of 20. The majority 
of them were married. More than one-third (36.8%) were primigravid, 
and a quarter (25%) of the mothers initiated an ANC visit early in 
their pregnancy. Unplanned pregnancies accounted for one-third 
(33.4%) of all pregnancies. Of the 1,120 women, 24 participants 
(2.14%) have a past medical history of chronic co-morbidities, which 
could include cardiovascular, pulmonary, diabetic, or chronic renal 
illness. According to the hemoglobin test results, 49 (4.3%) 
participants had hemoglobin levels less than 11 g/dL. Of the 1,120 
women, 137 (12.23%) had preeclampsia (Table 1).

Prediction model for low birth weight

Variable selection
Out of 1,120 women who gave birth, 166 (14.8%) had LBW 

newborns (SD: 516.1). The average birth weight was 2,942.7 g. 
Following a study of the literature, 14 baseline measurements on the 
mother’s demographic, obstetric, and clinical features were taken into 
consideration to predict LBW. Numerous factors were determined to 
be eligible for inclusion in the prediction model using the univariable 
analysis. Age at current pregnancy, hemoglobin level, gravidity, 
marital status, residency, weight, MUAC, timing of ANC initiation, 
pregnancy status, and preeclampsia were the variables with a p-value 
≤0.25 in the univariable analysis. Using the results, a prediction model 
was developed, and the equation for the prediction model was 
obtained (Table 2).

Model development
Probability of LBW = f (predictor variables).
PR (LBW) = f (age, pregnancy status, gravidity, preeclampsia, 

hemoglobin).
PR (Y = 1) = f (X), where Y = 1 refers to having LBW and Y = 0 

refers to not having LBW.

 
( ) 1 2 3  

1
4 5

o age gravidity pregnancy status
PR Y f

preeclampsia HGB
β β β β
β β

 + + + = =   + + +  

 

( )
( ) ( )

( ) ( )

Risk prediction model 2.78 Age 20
1.098 Pregnancy status unplanned 3.383Hemoglobin 11g / dL
0.387 Gravidity primigravida 2.535 preeclampsia Yes .

= <
+ +
+ +

Model performance
The AUROC of the nomogram using five predictors was 84.3% 

(95% CIs: 80.0, 87.7%) using original beta coefficients, which means 
a model that was 84.3% differentiates pregnant women who give birth 
to LBW from those who do not give birth to LBW, indicating the 
model’s capacity for identification was good (Figure 2).

TABLE 1 Demographic, obstetric, and clinical characteristics of pregnant 
women included in the analysis.

Predictor Category Frequency Percent

Gravidity Primigravida 412 36.79

Multigravida 708 63.21

Preeclampsia No 983 87.77

Yes 137 12.23

Residence Urban 975 87.05

Rural 145 12.95

Weight <50 kg 193 17.23

> = 50 kg 927 82.77

MUAC > = 24 cm 853 76.16

<24 cm 267 23.84

Hemoglobin > = 11 g/dL 1,071 95.63

<11 g/dL 49 4.38

Timing of iron 

folate initiation

1st trimester 262 23.39

2nd trimester 826 73.75

3ed trimester 32 2.86

Pregnancy status Planned 745 66.52

Unplanned 375 33.48

Timing of ANC 

initiation

Early initiation 280 25.00

Late initiation 840 75.00

Age > = 20 1,072 95.71

<20 48 4.29

Marital status Married 1,099 98.13

Single 21 1.88

Rh status Positive 1,040 92.86

Negative 80 7.14

HIV Negative 1,067 95.27

Positive 53 4.73

Comorbidities No 1,096 97.86

Yes 24 2.14

MUAC: Middle Upper Arm Circumference.
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Since the model was well calibrated (p = 0.729) and the calibration 
plot fell along a 45° line (Figure 1) or an insignificant statistical test, 
such as the Hosmer–Lemshow test (p-value = 0.066). it indicates that 
the model well represented the data (the nomogram showed 
probability, and its actual probability was in agreement).

Nomogram for low birth weight

A nomogram was developed to generate a simple clinically 
applicable individualized prediction of pregnant women’s risk of 
having an LBW baby (Figure  3). Clinicians can calculate the 
probability of LBW risk in pregnant women by combining each of the 
values of the prognostic indicators from the nomogram. This graphical 
representation of a nomogram provides a clinically valuable 
individualized prediction of LBW risk. Five prognostic markers of 
LBW were evaluated in the nomogram to predict LBW.

In the nomogram, the linear predictor of five factors was 
assessed for determining the probability of each pregnant woman 
to give a LWB baby. For example, for a pregnant women having 
unplanned pregnancy and primigravida, the anticipated 
probability of a LBW is as follows: the total point for the two 
predictors is the sum of the points for each predictor, which is 
1.7 + 1.8 = 3.5. As a result, the probability of the LBW was 0.12 
(12%), with the equivalent total points in the nomogram showing 
a low risk of the LBW. For a pregnant women aged <20 and having 
preeclampsia, the total point was as follow: 7.4 + 7.6 = 15.0 points. 
Thus, the probability of giving birth to an LBW baby, which is 
approximately 0.86 (86%), is high.

The best cutoff point value (Youden index) to predict a high or low 
risk probability of LBW was 0.220 (22.0%). The Youden index cut 
point value has a maximum sensitivity and specificity of 78.0 and 
91.0%, respectively. At the Youden index threshold value, the positive 

and negative predictive values were 79.4 and 86.1%, respectively. The 
AUROC curve at the optimal cut point was 80.0%.

Validation of the nomogram
For internal validation of the nomogram, 1,000 random bootstrap 

samples with replacement were generated from the dataset that 
included complete data on all predictors. After bootstrapping, the 
predictive performance was 0.801(80.1%) (Figure  4), which is 
comparable to the performance of the original sample and can 
be  expected when the nomogram is applied to similar 
future populations.

The decision curve analysis (DCA)
Figure 5 shows the LBW nomogram’s decision curve analysis. The 

decision curve analysis results indicated that individuals with an LBW 
threshold probability greater than 12% would benefit the greatest from 
implementing our prediction tool. In general, this study showed that 
maternal characteristics during pregnancy can be  used to predict 
LBW. The model might be helpful in identifying pregnant women who 
are at a higher risk of having a baby with LBW. This feasible prediction 
model would make it possible for the reduction of obstetric-related 
problems, thus enhancing the overall mother and child healthcare in 
a low resource setting (Figure 5).

Discussion

In this study, we constructed a nomogram model based on the 
optimal combination of maternal characteristics to predict the risk of 
LBW during pregnancy in areas where no laboratory tests and 
ultrasound scans are not included. This model includes factors such 
as age under 20 years, hemoglobin levels below 11 mg/dL, 
primigravida, unplanned pregnancy, and preeclampsia.

TABLE 2 Univariable and multivariable logistic regression analyzes of predictors of low birth weight among pregnant women who had ANC visit to 
predict low birth weight (n  =  1,120).

Predictor variable Univariable analysis Multivariable analysis

β (95% CIs) p-value β (95% CIs) p-value

Age (<20) 2.780 (2.149, 3.424) <0.001^ 2.605 (1.800, 3.410) <0.001*

Residency (rural) 0.945 (0.532, 1.358) 0.009^ 0.325 (−0.234, 0.88) 0.254

Marital status (single) 0.890 (−0.071, 1.85) 0.070^ −0.168 (−1.61, 1.28) 0.820

Gravidity (primigravida) 0.387 (0.050, 0.725) 0.025^ 0.423 (−0.921, 0.07) 0.096*

Comorbidities (yes) 0.461 (−0.539, 1.46) 0.366 NA

HIV (positive) 0.286 (0.580, 1.153) 0.517 NA

Preeclampsia (yes) 2.535 (2.132, 2.938) <0.001^ 2.647 (2.169, 3.126) <0.001*

Rh (negative) 0.056 (−0.715, 0.604) 0.869 NA

Weight (<50 kg) 0.555 (0.158, 0.952) <0.001^ −0.054 (−0.704, 0.59) 0.870

MUAC (< 24 cm) 0.819 (0.464, 1.175) 0.080^ 0.287 (−0.282, 0.85) 0.324

Hemoglobin (11 g/dL) 3.383 (2.690, 4.075) <0.001^ 3.336 (2.528, 4.143) <0.001*

Timing of iron folate initiation 0.824 (0.404, 2.052) 0.388 NA

Timing of ANC initiation (Late) 0.297 (−0.112, 0.706) 0.155^ −0.001 (−0.509, 0.50) 0.998

Pregnancy status (unplanned) 1.098 (0.757, 1.438) <0.001^ 0.597 (0.145, 1.049) 0.010*

*Variables significantly associated to LBW used for model development, ^Variables of a p-value ≤0.25 required multivariable analysis, NA: not applicable and the actual observed value.
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The nomogram approach provides a visual and individualized 
prediction, which can make it easier for obstetricians to evaluate each 
pregnant woman’s risk of LBW based on her score and subsequently 
provide individualized treatment. Furthermore, the nomogram model 
makes it simple and straightforward for pregnant women who are 
personally at risk for LBW babies to participate in the intervention 
and receive superior clinical results. Additionally, this study’s 
predictive model was developed using the maternal clinical data from 
early pregnancy. It can be used for screening expectant mothers for 

LBW at this early stage of pregnancy, allowing for the earlier 
implementation of effective intervention and treatment for these 
pregnant women. More significantly, the screening tool’s variables are 
simple to understand.

Several approaches were used to assess the nomogram’s 
performance and discrimination. The AUROC value of 0.843 proved 
that the nomogram had good discrimination power (23). Similarly, 
models comprising different characteristics of pregnant women 
presented comparable ability, which achieved an AUC of 0.83, which 
is nearly the same with our study (11). This comparable discrimination 
ability of these models might be similar in predictors used for the 
model development.

This study conducted for predicting LBW in India revealed an 
AUC value of 0.762 (28). Similarly, a nomogram having seven 
predictors in China, including the mother’s education level, prenatal 
care, the mother’s work, pregnancy-induced hypertension, family 
income, pesticide exposure, and nutritional supplements, could gain 
an AUC of 0.698 (5). In another study conducted in Uganda, 
predictors of LBW include gravidity, educational level, serum Alanine 
Transaminase (ALT), serum Gamma-Glutamyl Transferase (GGT), 
lymphocyte count, placental position, and end-diastolic notch in the 
uterine arteries, all of which are factors to consider for an AUC of 
81.9% to predict LBW (29). Our model has higher predictive 
performance compared to previous studies, possibly because the 
predictors used in our model development had a smaller effect on the 
risk discriminating ability. However, the predictors they used for 
model development mostly included advanced laboratory and 

FIGURE 2

The ROC curve represents the probability of risk for LBW among 
pregnant women who had ANC visits.

FIGURE 3

Nomogram for predicting LBW during pregnancy. Instructions: the point score of each risk factor can be calculated separately by reading the score 
above the factor vertically. Then, the points from each variable value were summed. The sum on the total points scale was located and vertically 
projected onto the bottom axis, and then, a personalized low birth weight risk was obtained.
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imaging, which are not routinely available, not easily accessible, need 
additional investigation, and are difficult to apply in our setting. This 
renders those models as less practical.

The developed model was well calibrated, showing its 
reliability (consistency between predicted and observed values), 
and it revealed similar discrimination performance after internal 
validation, indicating that it is capable of predicting LBW in an 
independent set of pregnant women with a comparable degree of 
accuracy. The decision curve analysis showed that the established 
model for early risk classification of pregnant women for LBW has 
a higher clinical benefit than treating none and treating all 
pregnant women across a wide range of threshold probability. The 
concept of decision curve analysis involves the standard net 
benefit along the threshold probability, which is determined by 
the difference between benefit and cost. In this study, the benefit 
refers to treating true positives (after correctly predicting a 
pregnant woman will have an LBW baby) while the cost is treating 
false positives (after incorrectly predicting a pregnant woman will 
have an LBW baby).

Strengths and limitations of the study

First, the study was conducted with a sufficient number of 
participant outcomes for LBW prediction. This helped in building the 
model that has an adequate number of predictor variables while 
preventing overfitting. Second, we have developed a visual diagnostic 
tool for LBW that enables patients and physicians to make 
individualized predictions quickly and easily. Additionally, local 
governments and healthcare providers can use our prediction tool as 
a guide to enhance pregnancy outcomes.

The study was not without limitations; it would have been better 
if it had been conducted using a prospective follow-up study design. 
In retrospectively collected data, some variables that predict LBW 
might have been missed. However, the nomogram developed using 
retrospectively collected data are still important in resource-limited 
settings, including Ethiopia. Additionally, the model was not 
externally validated using an independent dataset. It would have been 
better if it had gone through external validation to ensure its 
prediction capability when applied to other contexts.

In conclusion, this study developed and validated a clinical 
nomogram for the prediction of LBW risk in Ethiopia. In areas with 
no laboratory tests and ultrasound scans, a woman’s maternal history 
can be used to determine the risk of a LBW baby. Factors such as being 
under the age of 20, having hemoglobin levels less than 11 mg/dL, 
being a primigravida, having an unplanned pregnancy, and 
experiencing preeclampsia are all independent risk predictors of 
LBW. We found that the discrimination ability of this nomogram is 
highly valuable and can provide significant clinical and public health 
benefits. We recommend clinicians to utilize this nomogram using the 
appropriate cutoff point provided to categorize pregnant women. For 
researchers validating the prediction tool in another context, this 
would also be a useful approach.
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