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Cell therapy utilizing chimeric antigen receptors (CARs) in conjunction with

immune cells, primarily T lymphocytes, is known as CAR-T cell therapy. This

innovative approach is revolutionizing the landscape of oncohaematology by

precisely targeting specific antigens for elimination. However, despite its

promising prospects, CAR-T therapy presents several challenges, including a

notable rate of disease relapse, intricate pathologies impeding widespread

adoption, prolonged manufacturing timelines, and substantial costs. Looking

forward, ongoing research and progress aim to address these challenges to

mitigate these constraints, underlining the continuous efforts to enhance the

efficacy and accessibility of this transformative therapy
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1 Introduction

CAR-T therapy has emerged as a promising strategy in oncohematology, precisely

steering immune responses toward specific targets for effective treatment. However, despite

its immense potential, several challenges, such as disease recurrence rates, intricate

pathophysiology of target neoplasms, prolonged manufacturing times, and high costs,

underscore the imperative to persevere in research and innovation within this

transformative field.
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2 CAR-T development: early steps
and progress

The origins of CAR-T cell therapy can be traced back to 1987

when Kuwana et al. first introduced the concept of HLA-

independent antigen recognition through a chimeric receptor (1,

2). In the early 1990s, Arthur Weiss of the University of California

(San Francisco) reported that chimeric receptors containing the

intracellular signaling domain of CD3z, activated T-cell signaling.

This work resulted in the binding of the intracellular domains of

CD3z to the chimeric receptors to transfer the activation signaling

to the T cell (3).

Until then, the chimeric receptor (TCR) was composed of an

antibody’s variable region domain and the TCR’s constant region

domain. However, transduction exhibited low efficiency due to the

necessity of introducing two genes into the same lymphocyte using

retroviral vectors to encode the chimeric receptor. In response to

this issue, in 1993, Zelig Eshhar, Gideon Gross, and colleagues

published the structure of a novel chimeric receptor composed of a

single-stranded variable fragment (scFv) derived from an antibody

bound to the CD3z intracellular complex (4). Both immunologists

redirected this research towards the field of oncology (5, 6).

In the mid-1990s, significant progress was made by developing

the first clinical trial based on CD8+ T cells modified to express a

chimeric receptor structure against a surface antigen present in

HIV-infected cells. This work demonstrated that the modified CD8

+ T cells effectively identified and eliminated infected cells, showing

a lytic capacity of 50-60%. Also, it was described that these ScFv-

based receptors had a Major Histocompatibility Complex (MHC)-

independent recognition, in contrast to initial cTCRs, suggesting

the potential development of universal cell therapy (7). Thus, was

born the first T cell designed with the chimeric receptor structure of

the products currently marketed, called “T body” (8).

The hypothesis of linking the chimeric receptor to other cells of

the immune system such as Natural Killer (NK) lymphocytes was

proposed in 1993 to explore its HLA-independent lytic activity (4).

This response is mediated by the killer immunoglobulin receptor

(KIR) and triggered by detecting reduced inhibitory markers or

stress markers on the surface of abnormal cells (9). However,

currently, compared to CAR-T cells, CAR-NK cell-based adoptive

immunotherapy is generally limited by substantial restrictions prior

to large-scale practical implementation. These limitations

encompass inadequate proliferation and in vivo activation

capacity or limited persistence (10, 11).
3 Enhancing CAR-T cell therapy:
second and third generations

In response to the non-sustained activation observed in first-

generation CAR-T cells, research from 1995 to 1998 delved into the

role of co-stimulatory molecules to enhance lymphocyte activation

and CAR-T cell persistence. This concept is grounded in the

extrapolation of the theory of dual activation signals observed in

T-cell antigenic recognition.
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During this period, the research published by Sadelain et al. in

1998 showed evidence that CD28 signaling had a substantial impact

on the enhanced survival and proliferation of CAR-T cells and an

increase of pro-inflammatory cytokines production when they

recognized the target. These findings had significant implications

for the potential effectiveness of T-cell therapies (12).

Margo Roberts and Helene Finney were the first to develop a

2nd generation CAR-T therapy (CD28-CARs) and achieved a

patent in 1997 (Margo Robert’s patent was filed in February 1995

and Helene Finney’s patent was filed in December 1996) (13–15).

In the 2000s, several research was led to study different

costimulatory molecules to improve their antileukemic effect.

CAR constructs began to be developed with the 4-1BB molecule

(CD137), which appeared to provide CAR-T cells with great

persistence in the body (16, 17). These studies with second-

generation CAR-T cells (CD137 and CD28) focused on targeting

the CD19 antigen, which is specific to the B-lymphoid lineage,

especially CLL (18) and ALL (16, 17).

In 2005, considering the studies published on both co-

stimulatory molecules, Brenner et al. studied third-generation

CAR-T consisting of two costimulatory molecules, CD28 and

OX40 to improve antileukemic efficiency (19). However, these

studies did not demonstrate a therapeutic benefit, but warnings

regarding its use have emerged (20) (Figure 1).
4 Bridging the lab to clinical practice:
FDA approvals and clinical application

In 2010, a pivotal moment arrived when Steven Rosenberg at

the NCI and Carl June and David Porter at the University of

Pennsylvania administered CART-19 to a patient with chronic

lymphocytic leukemia (CLL), marking a turning point in CAR-T

therapy’s trajectory (22).

This therapy underwent a revolution with the case of Emily

Whitehead, a 7-year-old diagnosed with acute lymphoblastic

leukemia (ALL) refractory to standard treatments. She participated

in a phase 1 clinical trial (NCT01626495), receiving an infusion of

autologous CTL019, a CAR-T therapy with 4-1BB as a co-stimulatory

molecule, similar to the previous studies published in CLL (23). An

example of the influence of this case is the foundation created by

Emily Whitehead’s family to encourage donations to support

oncology research for children’s treatment (24).

Between 2013 and 2014, the first clinical trial results were

published and it was not until 2017 that the Food and Drug

Administration (FDA) approved Kymriah (tisagenlecleucel) (25) for

use in relapsed or refractory ALL after two prior lines for children and

young adults up to 25 years old, and Yescarta (axicabtagene ciloleucel)

for the treatment of adult patients with relapsed or refractory diffuse

large B-cell lymphoma (DLBCL) after two or more lines of treatment.

The latter study included DLBCL, primary mediastinal lymphoma,

high-grade B lymphoma, and DLBCL arising from follicular

lymphoma. Axicabtagene ciloleucel is an anti-CD19 CAR-T like

tisagenlecleucel but differs in the co-stimulatory molecule as it is

made up of CD28 rather than 4-1BB (26, 27).
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FIGURE 1

Evolution of the chimeric receptor structure (1, 8, 21).
FIGURE 2

(A) Key preclinical events in the history of the development of CAR-T therapy. (B) The First FDA Approvals for CAR-T Cell Therapies. ALL, acute
lymphoblastic leukaemia; NHL, non-Hodgkin lymphoma; ML, Mantle lymphoma; MM, multiple myeloma; FL, follicular lymphoma.
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Since that time until now, various regulatory agencies such as

the FDA or the European Medicine Agency (EMA) have approved

different products for oncohematological pathologies. For instance,

Tecartus (brexucabtagene autoleucel) has been approved for mantle

cell lymphoma treatment (28), Breyanzi (lisocabtagene maraleucel)

for DLBCL treatment (29) or Abecma (Idecabtagene vicleucel) (30)

and Carvykti (ciltacabtagene autoleucel) (31) for multiple myeloma

treatment. Additionally, tisagenlecleucel and axicabtagene ciloleucel

are seeking to expand their indications to follicular lymphoma

treatment through the ELARA (32) and ZUMA-5 (33) clinical

trials, respectively. These products have been approved for these

pathologies in the relapsed or refractory setting after two or more

lines of treatment (Figure 2).

Considering the promising results, several pivotal trials of CAR-T

products with extensive experience have been published, aiming to

administer them in earlier lines of therapy. The ZUMA-7 (34) and

ZUMA-12 (35) trials have reported results of administering

axicabtagene ciloleucel in the 2nd and 1st line of treatment, respectively.

However, currently, several limitations related to this therapy

have been described.
5 Limitations of CAR-T therapy: an in-
depth analysis and exploring solutions

5.1 “On-target/Off tumor” side effect

In the first place, the coexistence of the target antigen in the tumor

and healthy cells results in an “on-target/off-tumor” activity. In the case

of B cell lymphoid pathologies, CART anti-CD19 cells cause an aplasia

in this line, leading to a break in the humoral immune system and,

consequently, hypogammaglobulinemia. This condition increases the

risk of infection due to reduced levels of antibodies but can be resolved

through intravenous immunoglobulin supplementation and antiviral,

antibacterial, and antifungal prophylaxis (36, 37), although an increase

in fungal infection has not been documented in these patients (38).

An obstacle in CAR-T cell development for myeloid and T-cell

malignancies is the concern surrounding “on-target/off-tumor”

toxicity. This toxicity in the case of these pathologies produces

aplasia in granulocytes and T-cell lineage. However, managing this

aplasia presents a significant challenge as effective strategies to

mitigate infectious risks remain unidentified. Allogeneic

transplantation following CAR-T cell therapy stands as the most

explored option (39, 40).

One of the barriers to overcome in T-lymphoid neoplasms is the

shared presence of tumor T cells and CAR-T cells, which could lead

to CAR-T fratricide at the time of expansion and reduce T cell

activity (41, 42). To avoid this, Li et al. designed an anti-CD7 CART,

with a built-in command to retain its own CD7 in the endoplasmic

reticulum so that it is not expressed on the membrane (39).
5.2 Manufacturing limitations

Currently, the manufacturing process of an autologous CAR-T

product takes approximately 15 days (43, 44), although the timeline
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we handle with the industry from the patient’s apheresis to

administration is around 30 days (45).

Many groups are studying methods to minimize manufacturing

times without compromising anti-tumor activity (46, 47) by

reducing the ex-vivo phase or developing a universal CAR-T

therapy (48, 49).

The development of an allogeneic CAR-T or a universal CAR-T

would allow administering the product with greater flexibility, as it

would not rely on the patient’s apheresis process, and its

manufacturing could be initiated in advance.
5.3 Relapse after CAR-T therapy

After CAR-T therapy, disease relapse in the case of ALL or

lymphoma can occur in 40-60% of patients at 12 months (50) and

the overall survival and event-free survival at 5 years is around 35-

45% (51). Among these relapses, 60% still express the target antigen

and it is considered that the issue lies in a low persistence or

suboptimal functionality of the infused product (25).

5.3.1 Loss of therapeutic efficacy
A decreased functionality or persistence may be caused by

exhausted CAR-T cells, defined as more differentiated

lymphocytes that exhibit increased expression of cell exhaustion

molecules (PD-1, TIM3, LAG-3, TRAIL), making them more

susceptible to antigen-induced cell death (AICD) following

antigen exposure. Consequently, exhausted T cells experience

reduced activity and proliferative capacity, potentially functioning

as a detrimental mechanism in the functionality of the CAR-T

product (52, 53).

A retrospective study conducted on patients who received

CART-19 (both tisagenlecleucel and axicabtagene ciloleucel)

reveals that a lower presence of Treg (54) and CAR-T cells

predominantly composed of memory T lymphocytes is indicative

of a favourable treatment response (55).

Another cause of reduced functionality resulting from an

increase in AICD is the high density of CAR on the membrane.

This can lead to an increase in tonic signalling and facilitate its

elimination (56).

To avoid this kind of relapse there are several projects aimed at

selecting less differentiated CAR-T lymphocyte populations (Naïve,

Stem Central Memory, and Central Memory) to improve CAR-T

persistence (57–59). In addition, allogeneic post-CAR-T

transplantation is being considered as a consolidation therapy for

patients at higher risk of relapse following this treatment.

5.3.2 Immune evasion
However, around 30-40% of disease relapses present malignant

cells that do not express the target antigen and may occur despite

detecting the presence of CAR-T cells in peripheral blood. In these

cases, there are various hypotheses to explain this mechanism of

treatment resistance while being an immune escape from the

CART-CD19 attack (41).

One of them is the negative selection that occurred after the

CART-CD19 administration. This selection can promote the
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survival of cellular subclones exhibiting diminished CD19

expression. These subclones acquire a competitive advantage for

survival and proliferation in the presence of CAR-T cells, leading to

relapse (60).

Another hypothesis is that the loss of CD19 antigen expression

may also be associated with changes in the epigenetic regulation of

genes. Alterations in DNA methylation or histone modifications

could influence the expression of CD19 and contribute to its

reduction or changes in the isoform (61).

To address this issue, dual-targeting CAR-T cells are being

developed, capable of recognizing different antigens in the tumor,

thus preventing cancer cells from escaping therapy by eliminating

one of the target antigens. A well-known approach in this field is the

use of CAR-T cells targeting both CD19 and CD22 antigens,

providing a more effective strategy for treating malignant diseases

and reducing the possibility of treatment resistance or evasion

(42, 48).
5.4 Early side effects after administration

Rather than these limitations, there are two commonly

described side effects related to this therapy in the literature:

cytokine release syndrome (CRS) and immune effector cell-

associated neurotoxicity syndrome (ICANS).

The previously described case of Emily Whitehead not only

marked a milestone in demonstrating CAR-T efficacy but also

represented the first instance of using tocilizumab in the

treatment of CRS. This patient experienced severe side effects,

primarily a persistent fever with hemodynamic instability. These

inflammatory effects were accompanied by significantly elevated

IL-6 levels. The patient’s condition improved after the

administration of tocilizumab (62), an anti-IL6 monoclonal

antibody recently approved by the FDA for rheumatoid

arthritis (63).

CRS is the most common side effect (6, 64, 65) and affects

approximately 80% of patients, with roughly 20% experiencing

severe cases (45, 51). This condition results from the release of

effector cytokines (IFN-g, TNF-a, IL-2) that can trigger the release

of proinflammatory cytokines (IL-1, IL-6, IFN-g, IL-10, and

monocyte chemoattractant protein-1). Clinical features are fever,

hemodynamic instability, and hypoxemia. The treatment for this

clinical condition is protocolized and severity-dependent, with

tocilizumab (anti-IL-6 monoclonal antibody) proving to be the

most effective option.

The most severe cases of CRS, which can even lead to

multiorgan failure, are often confused with Macrophage

Activation Syndrome (MAS) due to shared clinical features

stemming from hyperinflammation. Unlike CRS, these patients

do not respond to Tocilizumab administration and require other

treatments such as Anakinra (anti-IL1) or corticosteroids.

Therefore, it represents a significant diagnostic challenge, and

an early diagnosis of this condition has a notable impact

on prognosis.
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Its pathophysiology is akin to that described in Hemophagocytic

Lymphohistiocytosis, characterized by hemophagocytosis-related

features such as hepatomegaly, cytopenia, coagulopathy, and

multiorgan failure. In response to this challenge, a proposed name

change to “Immune Effector Cell-Associated Hemophagocytic

Lymphohistiocytosis-Like Syndrome” (IEC-HS) has been suggested,

acknowledging its resemblance to hemophagocytic lymphohistiocytosis

(HLH) (66).

ICANS affects 20-60% of patients and is characterized by

neurological symptoms of varying intensity, including

confusion, altered speech, dysarthria, emotional lability,

seizures, delirium, or changes in consciousness level. The

pathophysiology of ICANS is likely due to the release of

inflammatory cytokines that increase vascular permeability and

endothelial activation, potentially leading to disruption of the

blood-brain barrier, resulting in elevated cytokines in the

cerebrospinal fluid and even cerebral edema (36).

Several factors that might contribute to the manifestation of

clinical conditions associated with CAR-T cell therapy have been

identified. One of the most studied factors is the type of CAR-T

product infused. Studies on products like Yescarta, Kymriah, and

lisocabtagene maraleucel have revealed incidence rates of cytokine

release syndrome (CRS) around 92% (26), 60% (67), and 42% (29),

respectively. Furthermore, researchers are actively investigating

ways to improve the effectiveness of CAR-T therapy and reduce its

side effects after the manufacturing process. These studies cover a

range of strategies, such as optimizing the dosage of fludarabine or

cyclophosphamide (68) for lymphodepletion therapy and

exploring the use of CAR-T administered in divided doses,

among other innovative approaches. For instance, at the

Hospital Clinic in Barcelona (Spain) they’ve introduced a

protocol for administering their academic CAR-T therapy (ARI-

002) in two or three divided doses to minimize the risk of side

effects (69).
5.5 Solid tumors: microenvironment’s role

Developing CAR-T cells for certain diseases like T-ALL,

AML, and solid tumors is posing the greatest challenge. The

tumor microenvironment has been identified as a significant

factor contributing to tumor escape and resistance in solid

organ neoplasms. Strategies involving CAR-T cells that can

effectively interact with the tumor microenvironment are being

explored. These strategies include the development of CAR-T

cells capable of producing cytokines (such as IL12 or IL18) or

enhancing their proliferation and activation through specific

cytokines present in the tumor stroma. These advanced CAR-T

cell designs are often referred to as TRUCKs (T cells Redirected

for Universal Cytokine Killing) or “fourth-generation CART

cells” and “fifth-generation or next-generation CAR-T”,

respectively (70–72).

Initiated in the 1980s, research in this field gained momentum

with promising results from pivotal clinical trials of various CAR-T
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cell therapy products in oncohematology. These scientific

advancements represent a significant milestone in cancer treatment,

potentially leading to more effective and less side effect therapies in

the future. However, it’s crucial to emphasize that there is still much

to explore and investigate to address the current limitations.
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