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Introduction: For radiotherapy based solely on magnetic resonance imaging

(MRI), generating synthetic computed tomography scans (sCT) from MRI is

essential for dose calculation. The use of deep learning (DL) methods to

generate sCT from MRI has shown encouraging results if the MRI images used

for training the deep learning network and the MRI images for sCT generation

come from the same MRI device. The objective of this study was to create and

evaluate a generic DL model capable of generating sCTs from various MRI

devices for prostate radiotherapy

Materials and methods: In total, 90 patients from three centers (30 CT-MR

prostate pairs/center) underwent treatment using volumetric modulated arc

therapy for prostate cancer (PCa) (60 Gy in 20 fractions). T2 MRI images were

acquired in addition to computed tomography (CT) images for treatment

planning. The DL model was a 2D supervised conditional generative adversarial

network (Pix2Pix). Patient images underwent preprocessing steps, including

nonrigid registration. Seven different supervised models were trained,

incorporating patients from one, two, or three centers. Each model was

trained on 24 CT-MR prostate pairs. A generic model was trained using

patients from all three centers. To compare sCT and CT, the mean absolute

error in Hounsfield units was calculated for the entire pelvis, prostate, bladder,

rectum, and bones. For dose analysis, mean dose differences of D99% for CTV,

V95% for PTV, Dmax for rectum and bladder, and 3D gamma analysis (local, 1%/1

mm) were calculated from CT and sCT. Furthermore, Wilcoxon tests were

performed to compare the image and dose results obtained with the generic

model to those with the other trained models.
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Results: Considering the image results for the entire pelvis, when the data used

for the test comes from the same center as the data used for training, the results

were not significantly different from the generic model. Absolute dose

differences were less than 1 Gy for the CTV D99% for every trained model and

center. The gamma analysis results showed nonsignificant differences between

the generic and monocentric models.

Conclusion: The accuracy of sCT, in terms of image and dose, is equivalent to

whether MRI images are generated using the generic model or the monocentric

model. The generic model, using only eight MRI-CT pairs per center, offers

robust sCT generation, facilitating PCa MRI-only radiotherapy for routine clinical

use.
KEYWORDS
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1 Introduction

Computed tomography (CT) is generally used as the reference

imaging modality for radiation therapy (RT) dose planning (1).

However, with the recent emergence of the MRI Linac (a linear

accelerator combined with an MRI device) (2), there is a rapidly

growing interest in complementing or even replacing CT with MRI

in the RT field owing to its superior soft-tissue contrast. MRI is the

standard of care for prostate delineation because of its lower

volume, which translates into lower doses delivered to adjacent

organs at risk (3). Additionally, an MRI-only RT workflow avoids

extra imaging radiation to the patient and reduces errors related to

intermodality registration (4).

The main challenge with MRI-only RT is that MRI intensity

values do not directly correlate with electron densities, which are

necessary for accurate dose calculation (4). Several approaches for

dose calculation from MRI have been proposed (5). These can be

classified into three categories: bulk density, atlas-based, and

machine learning methods (including deep learning methods

[DLMs]) (6–8). Literature comparisons of these methods reveal

that the best results are obtained from generating a synthetic CT

(sCT) from MRI using DLMs (7–10). These DLMs can be

supervised (using paired data from the same patient) or

unsupervised (which does not require paired or registered CT/

MRI from the same patient) (8). DLMs can be based solely on

generators (ResNet, UNet, etc.) or use the generative adversarial

network (GAN) architecture (like conditional GAN, Pix2Pix, and

CycleGAN). The unsupervised methods predominantly implement

the cycle GAN architecture.

Regardless of the DLM’s architecture, a training step is essential

before generating an sCT. The challenge is to produce an accurate

sCT from a single training session, irrespective of the MR

acquisition device and/or sequence parameters. In routine

practice, it would be impractical for each clinical center to

conduct a unique training (for each MR sequence and anatomical

localization). Most studies on sCT generation (6–8) are
02
monocentric, meaning both training and testing images originate

from the same MR device. However, these models are not adaptable

to the variability between MR devices in multicenter workflows and

thus cannot be universally applied but are instead restricted to

specific centers. This is a major limitation of the clinical

implementation of sCT.

Few multicenter studies exist in the current state of the art, and

they mainly focus on H&N, brain, and pelvis regions. Only four

studies (11–14) have used a DLM for pelvis sCT generation in a

multicentric context. Three of these were sourced from a gold atlas

(15). Two studies used cervix (11) or anorectal data (12) with

prostate data. Three adopted the cGAN methods (11–13) [one

using the Pix2Pix architecture (11)], and one employed the

CycleGAN method with unsupervised training (13).

In the context of generating sCT from MRI specifically for

prostate data, there is a notable gap in information regarding the

potential to create a generic model. Such a model would enhance

the generalizability of MR-to-CT synthesis using pelvis data, thus

enabling multicentric data use in both the training and

testing phases.

This study aimed to evaluate a generic deep learning (DL)

model for MR-to-CT synthesis in prostate MR-only radiotherapy.
2 Materials and methods

Figure 1 describes the workflow of the study.

To improve the robustness of the model, the first step involves

preprocessing the CT and MR images for each center to standardize

the database. For each center, the initial CTs (CTi) and MRs (MRi)

were delineated by a radiation oncologist. Subsequently, the CTs

were non-rigidly registered to their corresponding MRs (the

method used is supervised, then the deformable registration step

of the CT/MR pairs is mandatory). The MRs underwent

normalization through (1) N4 bias field correction, (2) histogram

matching, and (3) nonlinear filtering. Furthermore, each CT and
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MR image was cropped to retain 8 cm on each side of the prostate,

ensuring a consistent FOV for each patient.

The second step focuses on training the Pix2Pix network. Seven

distinct models, based on the learning center mixing, were created

(with 24 patients per model). The first three models (A, B, C) are

composed of patients from a single center; the next three models (D, E,

F), which are called the “mixedmodels,” are composed of patients from

two centers; and the last model (model G) is the model comprising

patient data from all three centers and is termed the “generic model.”

For the mixed models and generic model, 12 and eight patients

were respectively chosen from the pool of 24 cases used in the

monocentric model. Likewise, for the test, the six patients used to

evaluate the mixed models were the same as the monocentric models.
Frontiers in Oncology 03
The third step entails the generation of sCTs. For each model,

30 sCTs are produced in cross-validation, resulting in 210 sCTs per

center (630 in total).

The fourth step evaluates the images and doses by comparing

the generated sCTs to the reference CT. A dose plan is computed for

each reference CT (90 in total). Subsequent dose calculations are

conducted using the sCT by using the beam parameters from the

CT planning, leading to a total of 630 dose calculations. The

dosimetric comparison is achieved by contrasting the dose based

on CTref with the dose recalculated on sCT.

For every patient, the image and dose outcomes for the sCTs

created with the generic model are compared against the outcomes

of other models using a Wilcoxon test.
FIGURE 1

Workflow of the study.
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CTi = initial CT,  MRi = initial MR,  CTref = reference CT,  sCT

= synthetic CT,  C1 = center 1,  C2 = center 2,  C3

= center 3,  and FOV = field of view :
2.1 Patient data collection

This study included MR and CT images from 90 patients with

prostate cancer, which were acquired from three different centers

(30 patients per clinical center). Table 1 presents the data

characteristics. The magnetic fields of the MR devices range from

0.35 to 3 T; CT and MR scans were acquired in the RT treatment

position. For all patients, the organ delineation on OARs and target

volume was performed manually on both CT and MRI, by the

radio-oncologists at each center in accordance with the GETUG/

RECORAD (16) group recommendation.
2.2 Image preprocessing

To ensure a smooth workflow and harmonize the data from

each center, patient images underwent three preprocessing steps

(Figure 1, step 1), which are described in the following subsections.
2.2.1 Correction of MRI nonuniformity
To perform the same pre-processing on the entire cohort,

regardless of training center or acquisition system manufacturer,

the same parameters for correction of MRI nonuniformity were

applied to all the data from the three centers.
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The T2-weighted scans were preprocessed using the following

steps with the Insight Segmentation (17) and Registration Toolkit

(ITK) to correct MRI nonuniformity and normalize MRI contrast as

described in (18): (1) N4 bias field correction with B-spline fitting

(19): parameters [160, 3, 0, 0.5]; convergence: [100 × 100 × 100,

0.001]; shrink factor: (2) MRI contrast normalization using

histogram matching with levels: 1024, match points: 7, and a

threshold at mean intensity. (3) Nonlinear filtering via anisotropic

diffusion (7) with 10 iterations, a time step of 0.03, and a

conductance of 1.0. The MR images from the center 1 (C1) had

already been pre-processed by Dowling et al. (18). These correction

algorithms were performed in addition to vendor algorithms.

2.2.2 Image registration
Furthermore, although the delay between CT and MRI

acquisitions was minimized, there were still slight differences in

the patient’s anatomy between acquisitions. Since the approach

used was supervised, the CT/MRI pairs must be registered in the

most optimal way, otherwise, the generation of sCT could be

compromised. Therefore, each CT was registered to its

corresponding MRI (of the same patient) as described in (9)

(metric, normalized cross-correlation; geometric transform, rigid).

A structure-guided deformable registration was then computed to

ensure bone rigidity while facilitating high-quality bladder and

rectum deformable registration (metric, normalized mutual

information with 64 bins; geometric transform, B-spline freeform

deformation). This registered CT was treated as the ground truth

and was termed the reference CT (CTref).

2.2.3 FOV uniformity correction
Each MR and CT image was cropped to maintain a common

FOV that extends 8 cm above and below the geometric center of the
TABLE 1 Acquisition parameters of the modalities (CT and MR) for the three centers (C1, C2, and C3).

Number of patients
C1 C2 C3

30 30 30

CT

Manufacturer General Electric Toshiba General Electric SIEMENS

Model LightSpeedRT large-bore Aquilion LightSpeedRT 16 SOMATOM Confidence

Slice thickness (mm) 2.5 2.0 2.5 2

MR

Manufacturer Siemens ViewRay Inc. GE

Model Skyra 3 T
MRIdian

Medical System Optima
MR450 w

0.35 T 1.5 T

Slice thickness (mm) 1.6 1.5 1.6

Sequence type T2-weighted T2/T1-weighted T2-weighted

Bandwidth (Hz/pixel) 250 535 325.508

TR (ms) 1200 3.37 1800

TE (ms) 102 1.45 87
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prostate for the images from each center. Moreover, the FOV was

larger for CT than for MRI. This step standardized the FOV size

across all centers. The choice of 8 cm was based on clinical criteria,

ensuring sufficient tissue for accurate dose calculation. Additionally,

B-spline resampling was employed to ensure standardized

dimensions of 256 × 256 × 128 for both MR and CT images

across all centers.
2.3 Network

2.3.1 Pix2Pix network
The 2D supervised model used for this work was Pix2Pix (20), a

conditional GAN (cGAN) architecture previously described in a

study (20). This architecture comprises two neural networks: a

generator and a discriminator. The generator produces sCT images

from MR images, whereas the discriminator assesses the quality of

the sCT images in comparison to the reference CT image. The

training was performed with the Adam optimization algorithm as

described by Isola et al. (20). Parameters of the Pix2Pix network,

determined from a prior study (18), were set as follows: a learning

rate of 2.10−4, momentum parameters of 0.5 and 0.999 for b1 and

b2, respectively, and 100 epochs. For training our model, a

perceptual loss was introduced. The generator network (2D

ResNet 9 blocks) aimed to generate sCTs from patient MRIs. The

discriminator was a PatchGAN, which takes an sCT image as input

and outputs a probability value. This value is almost 1 if the sCT

image resembles a genuine CT image and approaches 0 if it looks

like a fake CT image. Training proceeded iteratively and halted

when the discriminator could no longer accurately discern if the

sCTs generated by the creator resembled real or fake CTs (10). In

our research, PatchGAN segmented the generated images into 70 ×

70 voxel patches. The adversarial loss function of the discriminator

is the binary cross-entropy (BCE) (9).
2.3.2 Training data
Overall, seven trainings were performed (Figure 1, step 2). The

A, B, and C models were composed of patients from a single center,

the D, E, and F models, which were called the “mixed models”, were

composed of patients from two centers and model G was the model

comprising patient data from all three centers and was called the

“generic model.” From a database of 30 patients from each center,

24 patients were used for training and six patients in five cross-

validation testing. To maintain a consistent number of patients in

training, 24 patients from the same center were used for

monocenter training (models A, B, and C); 12 patients per center

were used for training that included patients from two centers

(mixed models D, E, and F); and eight patients per center were used

for training that included patients from all three centers (generic

model G). For the mixed models and generic model, 12 and eight

patients were respectively chosen from the pool of 24 cases used in

the monocentric model. Likewise, for the test, the six patients used

to evaluate the mixed models were the same as the monocentric

models. Indeed, the number constituting the training set has a great

impact on the sCT quality (21). However, in this study, only the
Frontiers in Oncology 05
multicenter impact wants to be studied, therefore the same training

size will be used for all seven trainings.

2.3.3 sCT generation
The tests were systematically conducted on all the patients in

each center in cross-validation. Overall, 210 sCTs were generated by

Pix2Pix for each center (Figure 1, step 3).
2.4. sCT evaluation

2.4.1 Voxel-wise comparison
The delineations were rigidly propagated from the CTref to the

sCT images generated by the 7 training models with each test center

image. CTref and generated sCT had the same voxel size to ensure

the correct rigid propagation of the contours. To ensure uniform

voxel size alignment between the CT and the sCT, we extracted the

reference value from each patient’s reference CT and then applied

this value to the sCT. The voxel size ranged between 0.9 mm and 1.3

mm for both the sagittal and coronal directions, while it ranged

between 1.4 mm and 1.8 mm along the axial direction.

The mean absolute error was computed by comparing

corresponding CT and sCT pairs at a voxel level. The global

quality of sCT (in terms of image and dose) was evaluated with

respect to the patient’s structures (prostate, bladder, rectum, and

bones) and entire pelvis by computing (MAE) defined as follows:

MAE =
1
no

n

i=1
XCTref (i) − XsCT(i)j j (1)

with n being the number of voxels, and XCT(i) and XsCT(i) are

the intensities of the ith voxel in, respectively, the reference and the

generated image, in Hounsfield units (HU) for image evaluation or

in Gray or percent for dose evaluation.

The ideal MAE value is 0. MAE values were calculated for the

following volumes: entire pelvis, bones, prostate, bladder, and rectum.

2.4.2 Dose comparison
Volumetric modulated arc therapy was planned using the

RayStation TPS v. 11B using the Collapsed Cone algorithm on a

2 × 2 × 2-mm³ grid. Treatment was delivered at a total dose of 60 Gy

to the prostate in 20 fractions of 3 Gy each. The GETUG dose–

volume constraints were applied to the organs at risk. The dose

plans were redone for each patient of the three centers to have the

same methodology for all the cohorts. The optimization and

calculation were performed directly on CTref, and the beam

parameters used to compute the dose from the CTref images

were also used to calculate the dose from the sCT images.

A spatial dose evaluation was conducted via 3D gamma analyses

with the Verisoft software, using criteria: local, a dose difference of

1%, a distance to agreement of 1 mm, and a dose threshold of 10%

of the prescription dose. This analysis compared the dose

distributions from CTref and sCTs.

Dose distributions were analyzed through absolute dose differences

(1) at D99% for CTV, V95% for PTV, and Dmax for rectum and bladder.

This voxel-wise dose difference is termed MAE in dose terms.
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2.4.3 Statistical analyses
Wilcoxon signed-rank tests were conducted to compare the

image and dose results. For MAE (image and dose), this test

compared the MAE of the generic model with that of the other

models and among each test center.
3 Results

3.1 Voxel-wise comparison

Figure 2 presents the MAE results for the entire pelvis across the

seven models (A–G), based on the training. Additional figures present

the MAE results for the prostate, bladder, rectum, and bones.

The average MAE values in the entire pelvis were lower than 90

HU for all seven training models of each center and lower than 80

HU for the monocentric (model A/test C1, model B/test C2, model

C/test C3) and generic models of each center (model G test C1 or

C2 or C3). For the generic model, 36 HU, 70 HU, and 75 HU were

obtained for centers 1, 2, and 3, respectively. For each center, when

the data used for the test come from the same center as the data

used for training, the results were never significantly different from

the generic model.

The average MAE values in the prostate were lower than 40 HU

for all seven models of each center and lower than 25 HU for the

monocentric (model A/test C1, model B/test C2, model C/test C3)

and generic models of each center (model G/test C1 or C2 or C3).

For the generic model, 17 HU, 16 HU, and 21 HU were obtained for

centers 1, 2, and 3, respectively. For each center, when the data used

for the test come from the same center as the data used for training,

the results are never significantly different from the generic model.

However, often, when the test data come from a center whose data

were not used for training, the results are significantly different from
Frontiers in Oncology 06
the results of the generic model (higher MAE). For example, for

center 1, the models B (trained with C2), C (trained with C3), and F

(trained with C2+C3) have significantly higher MAE than the

generic model (17 HU), with mean MAE respectively equal to 33

HU, 27 HU, and 22 HU, but the results for the models A (trained

with C1), D (trained with C1+C2), and E (trained with C1+C3)

were not significantly different, with mean MAE respectively equal

to 17 HU, 20 HU, and 17 HU.

The average MAE values in the bladder for all seven training

models of each center were lower than 60 HU and lower than 25

HU for the monocentric (model A/test C1, model B/test C2, model

C/test C3) and generic models of each center (model G/test C1 or

C2 or C3). For the generic model, 16 HU, 27 HU, and 18 HU were

obtained for centers 1, 2, and 3, respectively.

For the generic model, 17 HU, 16 HU, and 21 HU were

obtained for centers 1, 2, and 3, respectively. For each center,

when the data used for the test comes from the same center as

the data used for training, the results were never significantly

different from the generic model. However, often, when the test

data comes from a center whose data was not used for training, the

results are significantly different from the results of the generic

model (higher MAE). For example, for center 1, model B (trained

with C2), C (trained with C3), and F (trained with C2+C3) had

significantly higher MAE than the generic model (16 HU), with

respectively mean MAE equal to 60, 22, and 40 HU, but the results

for the models A (trained with C1), D (trained with C1+C2), and E

(trained with C1+C3) were not significantly different, with mean

MAE respectively equal to 16, 17, and 17 HU.

The average MAE values in the rectum were between 40 HU

and 100 HU for all models, and lower than 60 HU for the

monocentric and generic models, which was superior to the other

soft tissues. For the generic model, 45 HU, 45 HU, and 52 HU were

obtained for centers 1, 2, and 3, respectively.
FIGURE 2

Boxplot of MAE results for the different training models for each test center for the entire pelvis. The dotted line represents the results for center 1,
the larger dotted line for center 2, and the solid line for center 3. Furthermore, red boxes indicate the monocentric models (model A/test C1, model
B/test C2, model C/test C3), and blue boxes represent the generic model (model G/test C1 or C2 or C3). For each center, the seven models A, B, C,
D, E, F, and G are trained with C1, C2, C3, C1+C2, C1+C3, C2+C3, and C1+C2+C3, respectively. The generic model (G) is our reference model.
Wilcoxon tests were used to compare the generic model to the other models. *p-value< 0.05, significant differences.
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For center 1, unlike the results for the prostate and bladder,

there were no models with significantly different MAE values from

the values obtained for the generic model. However, for center 2,

model C (trained with C3) had significantly higher MAE than the

generic model, with, respectively, mean MAE equal to 58 and 45

HU. For center 3, models B (trained with C2) and D (trained with

C1+C2) had significantly higher MAE than the generic model, with,

respectively, mean MAE equal to 77, 68, and 55 HU.

The average MAE values in the bones were between 100 HU

and 275 HU for all models, which was superior to the other

structures. For the generic model, 140 HU, 220 HU, and 240 HU

were obtained for centers 1, 2, and 3, respectively.

For center 1, there was a great disparity in results between the

models. Indeed, for the monocentric models A (trained with C1), D

(trained with C1+C2), and E (trained with C1+C3), i.e., the models

when the data used for the test come from the same center as the

data used for training, the average value of the MAE was close to the

MAE of the generic model with 110 HU, 120 HU, 122 HU, or 138

HU, respectively. On the other hand, for models B (trained with
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C2), C (trained with C3), and F (trained with C2+C3), i.e., when the

test data come from a center whose data were not used for training,

the average values of the MAE were significantly higher, with

respectively 180, 255, and 178 HU.

For the three centers, the MAE results for monocentric models

(model A/test C1, model B/test C2, model C/test C3) were not

significantly different from the generic model for each structure.

For a visual comparison, Figure 3 demonstrates the reference

CT and sCT for the seven models for one patient from each center.

The sCT of the patient from center 3 exhibits more artifacts, unlike

the sCTs of the patients from centers 1 and 2.
3.2 Dose comparison

Figure 4 presents the absolute dose differences for the D99% of

the CTV, and Supplementary Table S1 the absolute dose differences

for all the DVH indicators considered.
FIGURE 3

Matched reference CT and synthetic CT (sCT) for each model, for one patient at each center. On the first line, from left to right, the reference CTs
of one patient from center 1, one patient from center 2, and one patient from center 3 are represented. For each patient in each center, the sCT
generated with each model is represented. The sCT images of each model represent the same slice as the reference CT. Arrows show limitations of
the sCT generation (red arrow for misgeneration of the external contour, brown arrow for misgeneration of air pockets, blue arrows for
misgeneration of bones).
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For center 1, models B (trained with C2), C (trained with C3), D

(trained with C1+C2), and F (trained with C2+C3) showed

significantly higher absolute dose differences than the generic

model G, while models A (trained with C1) and E (trained with

C1 + C3) showed nonsignificant differences. For center 2, results

from model G had significantly lower MAEs than the other models

except for model B (C2). For center 3, the generic model G had an

MAE significantly lower than models A (trained with C1) and D

(trained with C1 + C2) and nonsignificant differences with other

models. The average MAE values for the D99% of the CTV were

lower than 0.6 Gy for all seven models of each center and lower or

equal to 0.3 Gy for the monocentric (model A/test C1, model B/test

C2, model C/test C3) and generic models of each center (model G/

test C1 or C2 or C3).

For the generic model, 0.2 Gy, 0.3 Gy, and 0.3 Gy were obtained

for centers 1, 2, and 3, respectively.
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Unlike the image evaluation (MAE in HU), when the data used

for the test come from the same center as the data used for training,

the results were sometimes significantly different from the generic

model. However, the results obtained for the generic model of each

center (model G/test C1 or C2 or C3) were never significantly

different from those obtained for the monocentric model of each

center (model A/test C1, model B/test C2, model C/test C3).

Table 2 presents the gamma pass-rate values for different

training cohorts at each test center, and Figure 5 represents

gamma maps obtained by comparing reference CT to synthetic

CT (sCT) for each model for one patient (the same as Figure 3) at

each center. For center 1, there were no significant differences

between the gamma pass-rate results of the different models. For

center 2, the gamma values were significantly lower for models A

(trained with C1) and B (trained with C1 + C3). For each of these

models with lower gamma values, there were no patients from
FIGURE 4

Boxplot of dose absolute errors for D99% of the CTV. The dotted line represents the results for center 1, the larger dotted line for center 2, and the
solid line for center 3. Furthermore, red boxes indicate the monocentric models (model A/test C1, model B/test C2, model C/test C3), and blue
boxes represent the generic model (model G/test C1 or C2 or C3). For each center, the seven models A, B, C, D, E, F, and G are trained with C1, C2,
C3, C1+C2, C1+C3, C2+C3, and C1+C2+C3, respectively. The generic model (G) is our reference model. Wilcoxon tests were used to compare the
generic model to the other models. *p-value< 0.05, significant differences.
TABLE 2 Gamma pass-rate values comparing the dose distribution on reference CT with the dose distribution on sCTs.

Number of centers in the train Models
Gamma pass rate (%)

Test C1 Test C2 Test C3

1

Model A (C1) 96.5 ± 1.4 85.9 ± 10.1* 96.1 ± 2.7

Model B (C2) 96.2 ± 2.4 97.9 ± 1.4 96.7 ± 1.7

Model C (C3) 96.5 ± 2.0 97.3 ± 1.5 98.7 ± 0.9

2

Model D (C1+C2) 96.4 ± 1.2 98.1 ± 2.2 96.2 ± 3.7*

Model E (C1+C3) 96.5 ± 1.1 94.7 ± 4.5* 92.2 ± 5.6*

Model F (C2+C3) 95.8 ± 2.7 98.0 ± 2.0 98.3 ± 1.6

3 Model G (C1+C2+C3) 96.3 ± 1.3 98.1 ± 1.5 98.4 ± 1.4
fr
The gamma criteria are local, 1%/1 mm, and 10% dose threshold.
The values are expressed as mean ± standard deviation. The Wilcoxon’s test was used to compare the gamma pass rate of the generic model with those of the other models.
*p-value< 0.05—significant difference.
Red cases indicate the monocentric models (model A/test C1, model B/test C2, model C/test C3) and blue cases represent the generic model (model G/test C1 or C2 or C3).
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center 2. For center 3, the gamma pass-rate values were significantly

higher for model C (trained with C3), model F (trained with C2 +

C3), and the generic model (G). Furthermore, for all the centers, the

generic model did not show significantly lower results than the

other models from the same center.
4 Discussion

This study investigates a DLM’s training with different center

mixing for pelvic sCT image generation from various MRI devices.

Different models were computed for each of the three test centers

(Figure 1). The results of each model were evaluated and compared

using image and dose endpoints. Previous studies (7–9) have

already shown that DLMs allow the creation of accurate sCT

images with monocentric data (data from the same center in both

the model and test). However, the question persists: can these

models accurately generate sCTs from any MRI device? Many

have speculated about the network’s inability to perform this

generation, hypothesizing that each MRI has distinct
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characteristics (magnetic field, sequence parameters, etc.).

Without training on images from the same MRI device, the

generation of sCT might be compromised.

The monocentric model (model A/test C1, model B/test C2,

model C/test C3) is considered the model that can obtain the most

accurate sCT generation, given that for training and testing, data

from the same center were used. Our objective was therefore to get

as close as possible to these “ideal” values.

For the generic model composed of patients from each center,

the image and dose results were not significantly different from the

results obtained with the monocentric models even though there

were only eight patients from each center (24 patients in

monocentric models). The results with the generic model were

also not significantly different from the mixed cohort with models

composed of patients from the same center as those of the

test center.

Centers 2 and 3 had higher MAE values than center 1, as

depicted in Figure 2. This discrepancy can be attributed to the data

from center 1 being first registered using an atlas method, followed

by the same method used for centers 2 and 3. Consequently, the
FIGURE 5

Gamma maps were obtained by comparing the dose distribution on reference CT to the dose distribution on synthetic CT (sCT) for each model, for
one patient of each center. The selected patients are the same as Figure 3. The gamma criteria are local, 1%/1 mm, and 10% dose threshold.
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data from center 1 were better registered than the data from centers

2 and 3. The quality of the CT-MR registration plays a crucial role

in the successful generation of sCT, with a supervised approach.

In the literature, different MAE results were obtained using

similar architectures, ranging from 36 HU to 55 HU (7, 8).

Moreover, few studies have employed a Pix2Pix architecture for

prostate sCT generation (11, 22). In the Fetty et al. study (11), the

MAE for the entire pelvis was 41 HU, and it was 54 HU in the

Cusumano et al. study (22). In comparison, the MAE for the entire

pelvis for centers 1, 2, and 3 were 31 HU, 85 HU, and 72 HU,

respectively. Several factors can explain these findings. The

deformable registration method for center 1 differs from the other

two centers. For center 2, the images originated from an MRI Linac

0.35 T, TRUFI sequence, and the image quality appeared different,

with lower contrast compared to the other two centers. For center 3,

most CTs were conducted with contrast agents during the excretory

phase, and pretreatment was carried out to address this issue.

Mixed models, consisting of two centers, were conducted

(trained with C1 + C2, C1 + C3, and C2 + C3). These models

were tested at each center. The results demonstrate that when the

model does not include any patients from the test center, the

generated sCTs appear visually degraded (Figure 3), and the MAE

values rise significantly (Figure 2). The image quality derived from

these models had visual differences compared to generic models and

showed significant differences in terms of image quality (Figure 2).

For the generic model (model G) comprising patients from each

center, the image and dose results were not significantly different

from those obtained with the reference monocentric models, even

though there were only eight patients from each center (24 patients

in monocentric models). The results with the generic model were

also not significantly different from the mixed models (trained with

two centers, including the considered center, Figure 2).

In this study, we demonstrated that the image and dose

differences were significantly lower when both the training and

the test included patients from the same center.

Regarding studies in the literature that address the generation of

sCT for the pelvic region, the results in terms of MAE range

between 35 HU and 66 HU. The dose differences on the PTV

range between 0.7% and 1.5%. Compared to the literature, our

generic model for center 1 presents a lower MAE than the

other studies.

This work has highlighted some limitations of the DL network

(not just the Pix2Pix architecture) and the evaluation of the sCTs.

At times, the image results were satisfactory (when compared to the

literature values); however, the sCT image contained artifacts that

could jeopardize the accuracy of dose calculation. Thus, a visual

inspection is always necessary, and other metrics for evaluating sCT

should be considered.

Indeed, we can see in Figure 3 that artifacts were sometimes

present in the images. The calculations of image metrics being

averages over a large volume, the differences linked to artifacts do

not necessarily modify the average value of MAE obtained, which

then seems to confirm the good quality of the sCTs generated.

However, in the dosimetric analysis, these artifacts on the images

will induce a large dosimetric difference, as shown in Figure 5.
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MAE results shown in the Supplementary Figures indicated that

the proposed models, with supervised cGAN-based, could precisely

estimate soft tissue HU values but had larger errors in reproducing

air-like air pockets in the rectum (brown arrows) and bone (blue

arrows). There are a few possible reasons. First, air and bone are

both barely visible in MR images due to weak signals, making their

HU prediction challenging. Second, registration errors between the

MR and CT images would have more impact on the intensity

mapping of end-of-range voxels than for soft tissue voxels.

Misregistration can cause air and bone tissue boundaries to be

shifted, introducing intensity mapping errors. However,

misregistration within the soft tissue itself does not have a large

impact on the intensity mapping. The red arrows in Figure 3

represent the misgeneration of the external contour.

The misgeneration of the external contour on the sCT (shown

by the red arrows in Figure 3) appears visually but also has a

dosimetric consequence, as shown in Figure 5. Indeed, for the

patient in center 3, the gamma maps show a great difference in dose

for the areas where the external contour has not been generated.

The gamma pass rate results were also affected.

All evaluations were conducted by comparing the reference CT

to the sCT. However, to advance in an MRI-only RT workflow, we

need clinically integrated tools for quality assurance of sCT without

any reference to CT (23).

Furthermore, in our study, we did not include patients with

atypical anatomy. For instance, no patient in our cohort had a hip

prosthesis (neither in training nor in testing), so we are unsure of

the sCT outcome in such cases.

To achieve low image and dose uncertainties for generating

sCT, several factors must be considered. First, the field of view is

crucial. During this study, several images were excluded due to a

limited field of view on the MR image, specifically when the FOV

was less than 10 cm. Although generating sCT with a limited field of

view is feasible, it is more efficient with a broader one as it provides

more image information. Additionally, generating sCTs for patients

with overly full or entirely empty bladders proved challenging, as we

identified generation artifacts for these patients. Lastly, for patients

with excessive gas in the rectum, evaluating the sCT was

complicated in the rectal area.

Firstly, when the bladder of the same patient did not have the

same filling on CT and on MRI, the deformable registration was

more complicated, and there remained differences between CT and

MRI, but it was the structures of the CT that were used to evaluate

sCT generated from MRI. This is the first limitation. Secondly, for

most patients, the bladder filling is not completely empty or filled.

Therefore, the training of the network is done mostly with patients

having an intermediate bladder. However, when the sCT is

generated for a patient with a completely empty or filled bladder,

the generation can prove to be more problematic. On the sagittal

plane, we noticed artifacts on the bladder for patients with extreme

bladder sizes (totally empty or full).

For patients with a difference in gas pockets in the rectum

between CTref and sCT, evaluation in terms of an image in the

rectum may be problematic. Indeed, if the patient does not present

gas pockets in the rectum during the MR acquisition, this was the
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case during the CT acquisition. Then the sCT generated from the

MRI should not show pocket gas. However, as the MAE is a

comparison of HU between CT and sCT, the differences in gas

pockets in the rectum will be interpreted as misgeneration, whereas

they are simply due to the anatomical difference between CT and

MRI. In the same way, if it is on the CT that there is pocket gas in

the rectum and not on the MRI, the problem will be the same but it

will be less so because we have observed that deep learning networks

experience difficulty generating gas pockets in the rectum, probably

because in the training data, pockets of gas are present randomly

depending on the patients. These visual observations are confirmed

by the results in terms of images. The MAE values are higher for the

rectum than for the prostate or the bladder, for example.

This study reaffirmed our assumptions about the challenges of

using supervised single-center training for generating sCT from

MRIs from different centers. We now advocate for the creation of a

generic model. Nevertheless, there is still much to investigate

further. For instance, the labor-intensive image registration step

might be bypassed with unsupervised methods. Indeed, in the

pelvis, often, the patient’s anatomy has changed between the

acquisition of CT and MRI, especially concerning the pocket gas

in the rectum and bladder filling. Indeed, MRI and CT cannot be

acquired at the same time to maintain the same anatomy.

Supervised generation requires a perfect registration of CT/MRI

pairs to obtain accurate sCT. The results between the different

centers were impacted when the deformable registration was not

perfect. To overcome this problem, an unsupervised method can be

considered, which permits to overcome deformable registration.

Moreover, the interslice artifacts mentioned in the results are

mainly due to the use of a 2D method, like most of today’s synthesis

methods. A potential solution is the use of a 3D method, even if, 3D

learning requires more patients in the training cohort than the 2D

method and has a higher computational cost.

Other perspectives for improving the quality of sCT can

subsequently be considered, such as the development of methods

to reduce artifacts to allow better training and improve generation,

or even training on more data from other centers in an

international partnership.

Finally, the generic model should be tested on an MRI from

another center that has never been in a training cohort.

For optimal use of the generic model across any center, it is

recommended tomaintain a standardizedMRI acquisition procedure.
5 Conclusion

To produce accurate sCT images from various MRI devices with

the aim of prostate dose planning in RT, the generic DLM offers

comparable image and dose calculation uncertainties to

monocentric studies. The next step is implementing a generic

model in the clinical practice of MR-only radiotherapy, thus

eliminating the need for reference CT acquisition.
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SUPPLEMENTARY FIGURE 1

Boxplot of MAE results for the different models for each test center for the
prostate. The dotted line represents the results for center 1, the larger dotted

line for center 2, and the solid line for center 3. Furthermore, red boxes

indicate the monocentric (Model A/Test C1, Model B/Test C2, Model C/Test
C3), and blue boxes represent the generic model (Model G/Test C1 or C2 or

C3). For each center, the 7 models A, B, C, D, E, F, and G are trained with C1,
C2, C3, C1+C2, C1+C3, C2+C3, C1+C2+C3 respectively. The generic model

(Model G) is our reference model, Wilcoxon tests were used to compare the
generic model to the other models. *Significant differences were considered

at a p-value< 0.05.

SUPPLEMENTARY FIGURE 2

Boxplot of MAE results for the different models for each test center for the
bladder. The dotted line represents the results for center 1, the larger dotted

line for center 2, and the solid line for center 3. Furthermore, red boxes
indicate the monocentric (Model A/Test C1, Model B/Test C2, Model C/Test

C3), and blue boxes represent the generic model (Model G/Test C1 or C2 or

C3). For each center, the 7 models A, B, C, D, E, F, and G are trained with C1,
C2, C3, C1+C2, C1+C3, C2+C3, C1+C2+C3 respectively. The generic model

(Model G) is our reference model, Wilcoxon tests were used to compare the
generic model to the other models. *Significant differences were considered

at a p-value< 0.05.

SUPPLEMENTARY FIGURE 3

Boxplot of MAE results for the different models for each test center for the

rectum. The dotted line represents the results for center 1, the larger dotted

line for center 2, and the solid line for center 3. Furthermore, red boxes
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indicate the monocentric (Model A/Test C1, Model B/Test C2, Model C/Test
C3), and blue boxes represent the generic model (Model G/Test C1 or C2 or

C3). For each center, the 7 models A, B, C, D, E, F, and G are trained with C1,

C2, C3, C1+C2, C1+C3, C2+C3, C1+C2+C3 respectively. The generic model
(Model G) is our reference model, Wilcoxon tests were used to compare the

generic model to the other models. *Significant differences were considered
at a p-value< 0.05.

SUPPLEMENTARY FIGURE 4

Boxplot of MAE results for the different models for each test center for bones.

The dotted line represents the results for center 1, the larger dotted line for
center 2, and the solid line for center 3. Furthermore, red boxes indicate the

monocentric (Model A/Test C1, Model B/Test C2, Model C/Test C3), and blue
boxes represent the generic model (Model G/Test C1 or C2 or C3). For each

center, the 7 models A, B, C, D, E, F, and G are trained with C1, C2, C3, C1+C2,
C1+C3, C2+C3, C1+C2+C3 respectively. The generic model (Model G) is our

reference model, Wilcoxon tests were used to compare the generic model to

the other models. *Significant differences were considered at a p-
value< 0.05.

SUPPLEMENTARY TABLE 1

Mean values of volume and dose difference calculated between CT and sCT
for all the DVH indicators considered. Absolute dose values were reported in

Gy for all the parameters investigated except for V95% of PTV where the

volume percentage difference was considered. The values are expressed as
mean ± standard deviation. Red cases indicate the monocentric models

(model A/test C1, model B/test C2, model C/test C3), and blue cases
represent the generic model (model G/test C1 or C2 or C3).
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