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IDH prediction in adult-type
diffuse gliomas: a DKI-based
habitat analysis
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Yang Song2, Xu Yan2 and Yang Gao1*

1Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China,
2Magnetic Resonance Research Collaboration, Siemens Healthineers, Shanghai, China
Objective: To explain adult-type diffuse gliomas heterogeneity through diffusion

kurtosis imaging-based habitat characteristics and develop and validate a

comprehensive model for predicting isocitrate dehydrogenase (IDH) status.

Materials and methods: In this prospective secondary analysis, 103 participants

(mean age, 52 years; range, 21-77; 54 [52%] male) pathologically diagnosed with

adult-type diffuse gliomas were enrolled between June 2018 and February 2022.

The Otsu method was used to generate habitat maps with mean diffusivity (MD)

and mean kurtosis (MK) for a total of 4 subhabitats containing 16 habitat features.

Habitat heatmaps were created based on the Pearson correlation coefficient.

The Habitat imAging aNd clinicraD INtegrated prEdiction SyStem (HANDINESS)

was created by combining clinical features, conventional MRI morphological

features, and habitat image features. ROC, calibration curve, and decision curve

analyses were used to select the optimal model after 32 pipelines for model

training and validation.

Results: In the restricted diffusion and high-density subhabitat, MK was highly

correlated with MD (R2 = 0.999), volume (0.608) and percentage of volume

(0.663), and this region had the highest MK value (P<.001). The unrestricted

diffusion and low-density subhabitat had the highest MD value (P<.001). When

MK was less than the Otsu threshold, there was still a difference between

restricted diffusion and low-density and unrestricted diffusion and low-density

subhabitats (P<.01). The HANDINESS enabled more accurate prediction of the

IDH status in the training (AUC=0.951 [0.902-0.987]) and internal validation

cohorts (0.938 [0.881-0.949]). AUC values for single-modality models and

independent factors ranged from 0.593 to 0.916. Calibration and decision

curve analyses showed that the HANDINESS demonstrated a high level of

clinical applicability and predictive consistency.
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density; ClinicRad, clinical and radiological score; H-
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Conclusion: Diffusion kurtosis imaging-based habitat analysis provides

additional important information on microscopic tumor spatial heterogeneity.

The HANDINESS has higher diagnostic performance and robustness than single-

modality models.
KEYWORDS

glioma, isocitrate dehydrogenase, diffusion magnetic resonance imaging,
habitat, biomarkers
1 Introduction

Adult-type diffuse glioma is a lethal brain tumor that demonstrates

genetic, epigenetic, and environmental heterogeneity. Together, these

heterogeneities constitute extreme phenotypic heterogeneity at the

cellular level that provides multiple mechanisms for tumor cell

hyperadaptation and treatment resistance (1, 2), resulting in poor

patient prognosis. Furthermore, the 2021 WHO Classification of

Tumors of the Central Nervous System emphasizes the important

role of genetic heterogeneity in the evolutionary development

of ltumors (3), particularly isocitrate dehydrogenase (IDH)

heterogeneity. Differences in the IDH status can provide guidance in

the selection of immunotherapy or targeted therapeutic approaches for

oncology (4). Therefore, exploring inter- and intratumor heterogeneity

associations as well as accurately predicting IDH status is crucial for

developing personalized patient treatment regimens (2, 5).

In recent years, diffusion imaging techniques have become a topic

of great interest in central nervous system disease applications, not only

serving as a means of quantitative assessment of (6) spatial

heterogeneity of tumors but also offering improvements to and

complementing conventional MRI (cMRI). Exploring the

heterogeneity of tumors remains a key focus and challenge in both

scientific research and clinical practice. Diffusion kurtosis imaging

(DKI) allows a more detailed assessment and response to the

microstructural properties of living tissues (7) and has been

implemented in various clinical applications (8, 9). DKI can

effectively represent the non-Gaussian distribution of water molecule

diffusion and quantify deviations from Gaussian diffusion. This

characteristic is an advantage and aspect that is not possessed by

cMRI. A summary of previous studies by Falk et al. (10) showed that

the mean kurtosis (MK) and mean diffusivity (MD) in DKI have high

diagnostic performance for tumor grading or gene prediction. The

researchers suggested adding DKI to the routine imaging protocol for

suspected glioma. However, in terms of describing the tumor spatial

heterogeneity, the use of DKI alone remains inadequate.
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Habitat imaging analysis is a method based on Darwinian

evolutionary dynamics that combines information about tumor

cells and their microenvironment to better reveal the spatial

heterogeneity of tumors and essentially elucidate the laws

controlling tumorigenesis and progression (11). In previous studies

(12), glioma heterogeneity was analyzed to some extent by using

habitat features, but the use of cMRI alone to create habitat mapsmay

not be sufficient to explain the underlying mechanisms of tumor

heterogeneity. We expect to extend the theoretical advantages of DKI

by using habitat analysis, which is expected to overcome the possible

shortcomings of previous studies (Appendix S1).

The purpose of this study was to explore the relationship between

habitat maps and adult-type diffuse gliomas heterogeneity and to

develop and validate a comprehensive predictive model of IDH status

based on DKI habitat analysis techniques. This may help to explain

the differences in the spatial heterogeneity of the glioma

microenvironment and further enhance the accuracy of IDH status

diagnosis in the clinic.
2 Materials and methods

We conducted a secondary analysis of the data obtained from a

prospective study in accordance with the Declaration of Helsinki.

The ethics committee of our hospital approved the study protocol,

and all participants signed informed consent forms prior to

enrollment in the cohort.
2.1 Participants and clinical data

From June 2018 to February 2022, 337 subjects with suspected

adult-type diffuse gliomas were registered in our hospital. All

participants were suspected of adult-type diffuse gliomas due to

clinical symptoms or previous imaging reports. We removed 234

patients who met the following exclusion criteria (1): treatment

(including steroids, radiotherapy, chemotherapy, or concurrent

radiotherapy and chemotherapy) before scanning or no

preoperative diffusion spectrum imaging; (2) poor scan image

quality or image loss; (3) no surgery or needle biopsy; and (4) a

disease other than tumors or loss to follow-up. Finally, 103 eligible

subjects (mean age, 52 years; range, 21-77; 54 [52%] male) were

included in the cohort. Most participants received only general
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symptomatic care, such as a decrease in cranial pressure, between

the MRI scan and surgery. Figure 1 shows the participant inclusion

process. According to the WHO Central nervous system Tumor

Classification Criteria in 2021, astrocytoma subjects with IDH

mutation and oligodendroglioma with IDH mutation and

synchronous deletion of the short arm of chromosome 1 and long

arm of chromosome 19 were classified as the IDH mutant group.

Glioblastoma subjects with wild-type IDH were classified as the

IDH wild-type group (Supplementary Table S1).

Fifty-five of sixty-seven subjects with adult-type diffuse gliomas

from a previous study (13) were all included in the present study.

The purpose of the previous study was to compare the accuracy and

stability of 3 diffusion models, based separately on mean apparent

propagator-MRI, DKI and diffusion tensor imaging, in predicting

WHO grade and major genetic features in adult-type diffuse

gliomas. The purpose of this study was to explore the potential

mechanisms underlying the microscopic spatial heterogeneity of

adult-type diffuse gliomas through macroscopic DKI habitat

characteristics and to develop and validate a comprehensive

model for predicting IDH status.
2.2 MRI scanning and preprocessing

All study participants underwent preoperative MRI using a 3T

scanner (MAGNETOM Skyra; Siemens Healthcare, Erlangen,

Germany) equipped with a 32-channel head/neck coil. To

increase consistency in the radiographic characteristics, scans

were carried out during the same time period (14). cMRI (T1WI,

T2WI, FLAIR, CE-T1, DWI) and diffusion spectrum imaging were

performed. Sequence details are shown in Supplementary Table S2.

Diffusion parameters were calculated using NeuDiLab, software

developed in-house with Python based on the open-source tool

Diffusion Imaging in Python (https://dipy.org) (15). The software is

outfitted with FSL-based brain extraction, eddy-current and head-

motion correction, and smoothing functions (16). ANTs were used

for diffusion parametric mapping and cMRI alignment using
Frontiers in Oncology 03
default parameters in 3D-Slicer. The N4ITK MRI Bias correction

module in 3D-Slicer was used to bias-correct the cMRI data (17).
2.3 Region of interest segmentation and
habitat feature extraction

The regions of interest (ROI) were selected by two radiologists

(ZY.H. and P.W., with 2 and 3 years of neuroimaging experience,

respectively) using 3D-Slicer under the supervision of a more

experienced doctor (Y.G., with 27 years of experience in

neuroimaging). The three radiologists knew the diagnosis of the

tumor but were blinded to the clinical and pathological details. The

regions of interest were identified as areas affected by the tumor and

were outlined on the B0 map using cMRI. Radiologically, the areas of

solid tumor and peritumoral edema were typically reported as being

encircled by abnormal/high signals on T2/T2-FLAIR. Areas near the

edema that were thought to have been invaded, such as those with a

slightly elevated signal or other unusual signal patterns discovered on

T2WI, were typically also included in the region of interest.

MD and MK maps were used as the main quantitative

parameters (10, 18) for extracting habitat space features. The

Otsu threshold method was applied to split the voxels into high-

and low-intensity regions in the entire cohort for each map. The

threshold value was determined iteratively to satisfy two conditions:

1) minimizing within-class variance and 2) maximizing between-

class variance. The resulting subregions from each map were

combined to obtain four final subregions: restricted diffusion and

low-density (LL), restricted diffusion and high-density (LH),

unrestricted diffusion and low-density (HL), and unrestricted

diffusion and high-density (HH) subregions (Supplementary

Figure S1). Figure 2 demonstrates the high overlap between cMRI

and habitat features, as well as the selection of ROIs. A total of 16

quantitative features, including MD and MK values, volume, and

percentage of volume corresponding to the four subregions, were

extracted. Intraclass correlation coefficients were used to assess the

agreement between observers for the retrieved features. The habitats
FIGURE 1

Flow chart of subject exclusion.
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analysis was implemented by an in-house software nnFAE, which

was developed based on python. The intraclass correlation

coefficient values for the features were all 0.60 or above.
2.4 Extraction of morphological features

To evaluate the morphologic details of each participant, two

radiologists independently examined all cMRI pictures (SH.X. and

JL.H., with 11 and 12 years of neuroimaging expertise, respectively).

The two radiologists were blinded to the clinical and pathological

details but were aware of the tumor diagnosis. Additionally,

judgments were divided into separate tasks that each included

evaluation of a distinct feature by a radiologist who was unaware

of the results of the other tasks. A senior physician (Q.W., with 15

years of neuroimaging expertise) was consulted when there was

disagreement, and a final choice was then made. Imaging features

were used to assess the solid tumor as well as any area of edema.

Necrosis, cystic areas, calcification, the tumor enhancing pattern,

location, and side as well as the clarity of solid tumor boundaries

were all considered to be solid tumor components (19). The

minimum length from the solid tumor to the adjacent white

matter was evaluated in the peritumoral edema region. In

Appendix S2, the classification standards used are displayed.
2.5 Correlation analysis and
model construction

Pearson correlation analysis of the DKI-based habitat parameters

was conducted with the aim of exploring potential associations
Frontiers in Oncology 04
between habitat diffusion parameters. Correlation coefficients

between parameters were used to create heatmaps for further

visualization of the data comparison. We classify correlations

greater than 0.6 as high correlations. FeAture Explorer (FAE

v0.5.2) (20) was used for model construction, and the optimal

diagnostic model was selected. Thirty-two pipelines were used,

including 2 dimensionality reduction methods (principal

component analysis [Supplementary Figure S2] and Pearson

correlation coefficients with a cutoff of 0.85), 4 feature selection

methods (analysis of variance, recursive feature elimination, Kruskal–

Wallis and Relief) and 4 modeling methods (logistic regression, least

absolute shrinkage and selection operator, linear discriminant

analysis, and support vector machine) (Supplementary Table S3).

All subjects were included within the training group. Then, using the

leave-one-out cross-validation, the diagnostic efficacy and stability

with the internal validation cohort parameters were assessed.
2.6 Statistical analysis

All statistical analyses were performed using SPSS 24.0, R Version

4.1.2, and Python version 3.9.12(with Scikit-Learn as the primary).

Quantitative data satisfying a normal distribution were compared using

Student’s t test; otherwise, the Mann–Whitney U test was used.

Precision-recall and receiver operating characteristic curve analyses

were used to evaluate the performance of the model. Confidence

interval (95% CI) calculations were performed using 1000

bootstrap intervals. The integrated discrimination improvement, net

reclassification improvement, and DeLong test were used to assess the

performance between the individual models. The calibration curve and

Brier score were used to assess the agreement between predicted and
FIGURE 2

Subhabitats of three participants on different images. The B0 map shows four spatial habitats. The LL and HL habitats have a high level of overlap with
peritumoral edema and cystic components compared with conventional MRI, mean diffusivity (MD) and mean kurtosis (MK) maps. (A, B) Show World
Health Organization (WHO) grade IV glioblastoma with IDH wild type. (C) Indicates a WHO grade III oligodendroglioma with IDH mutation.
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actual probabilities across the models. Decision curve analysis was used

to assess the net benefit. All statistical analyses were two-sided, with

P<.05 indicating statistical significance. Details on the sample size and

power calculations can be found in Appendix S3.
3 Results

3.1 Subjects in the study population

There were differences in age (P<.001), necrosis (<.001),

hemorrhage (<.05), calcification (<.05), edema (<.05), tumor

location category (<.001) and enhancement category (<.001)

between the IDH mutation and IDH wild-type groups. There

were no significant differences in sex, cysts, tumor borders, or

tumor side (all P>.05). The characteristics of the participants are

shown in Table 1.
3.2 Distribution and correlation of
habitat features

MD (P<.001), MK (<.001) and volume (<.05) were different

between the LH and HL groups. MK (P<.001) and percentage of
Frontiers in Oncology 05
volume (<.001) were different between the LH and LL subregions.

MD (P<.001), MK (<.01) and percentage of volume (<.05) were

different between the LL and HL subregions. Among all adult-type

diffuse gliomas participants, the parametric features of the HH

habitats may be more concentrated. Subjects with an HH volume of

0 were included regardless of IDH status (Figure 3).

High correlations were found between MK and MD in the LH

(r=-0.666), HL (0.665) and HH regions (0.999) (all P<.001), and no

correlations were found within the LL region (<.05). Only within

the LH subhabitat was there a high correlation between MK and

volume (r=0.608) and percentage of volume (0.663) simultaneously,

and within the other independent habitats, there was a low (0.286-

0.424) or no correlation (P>.05) or no simultaneous correlation

between diffusion parameters and volume/percent. For the

correlation analysis between habitat maps, a high correlation

(r=0.721) was found only in the MD of the LL and LH

subhabitats (Figure 4).
3.3 Establishment of three
prediction models

Clinical and radiological score (ClinicRad), habitat analysis

magnetic resonance imaging (H-MRI) and Habitat imAging aNd

clinicraD INtegrated prEdiction SyStem (HANDINESS) models were

constructed (Supplementary Table S3). The ClinicRad model was

established by combining the clinical characteristics of the subjects

and the imaging morphological features of the cMRI. The H-MRI

model was built based on the habitat imaging analysis of DKI. Finally,
TABLE 1 Participant characteristics.

Variable
IDHmut

(n=47)
IDHwt

(n=56)
P
value

Age (years) 46.83±10.70 57.29±10.70 <.001

Sex* .350

Male 27 (57.4%) 27 (48.2%)

Female 20 (42.6%) 29 (51.8%)

Necrosis <.001

Present 26 (55.3%) 49 (70.0%)

Absent 21 (44.7%) 7 (30.0%)

Hemorrhage .006

Present 28 (59.6%) 47 (83.9%)

Absent 19 (40.4%) 9 (16.1%)

Calcification .009

Present 16 (34.0%) 7 (12.5%)

Absent 31 (66.0%) 49 (87.5%)

Cyst or cysts .347

Present 40 (85.1%) 51 (91.1%)

Absent 7 (14.9%) 5 (8.9%)

Edema (≤1.5 cm) .027

Yes 32 (68.1%) 26 (46.4%)

No 15 (31.9%) 30 (53.6%)

(Continued)
TABLE 1 Continued

Variable
IDHmut

(n=47)
IDHwt

(n=56)
P
value

Tumor borders .773

Sharp 23 (48.9%) 29 (51.8%)

Blurry 24 (51.1%) 27 (48.2%)

Tumor location category <.001

Frontal or insula 37 (78.7%) 16 (28.6%)

Other 3 (6.4%) 5 (8.9%)

Basal nucleus or corpus
callosum

7 (14.9%) 35 (62.5%)

Side .494

Left 22 (46.8%) 30 (53.6%)

Right 25 (53.2%) 26 (46.4%)

Enhancement category <.001

Patchy enhancing 20 (42.6%) 5 (8.9%)

Ringlike enhancing 16 (34.0%) 49 (87.5%)

Nonenhancing 11 (23.4%) 2 (3.6%)
fron
Data are the mean ± standard deviation or n/N (%), where N is the total number of subjects
with available data. P values were calculated with the chi-square test or Mann–Whitney U test.
*: Subject information was retrieved from the hospital registration system.
IDHwt, isocitrate dehydrogenase wild-type; IDHmut, isocitrate dehydrogenase mutant.
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we ensured that the habitat features had sufficient contributions to

the model. The results of the H-MRI model were included in the

construction of the HANDINESS model as an independent predictor

along with the clinical features and imaging morphological features.

The log odds ratios for the HANDINESS were calculated as follows:

L= (0.03 × age) + (-0.65 × necrosis) + (-0.54 × hemorrhage) + (0.73 ×

tumor location category) + (1.65 × calcification) + (2.35 × H-MRI) +

(0.48 × edema) - 6.14. The probability of IDH wild-type was then

calculated for the HANDINESSmodel by using the equation 1/(1 + e-

L); this value ranges from 0 to 1, with higher L values increasing the

probability of IDH wild-type. The cutoff value provided by the

HANDINESS was 0.38.
3.4 Performance and clinical value of the
three models

HANDINESS predicted IDH status in glioma subjects more

accurately both within the training and validation groups. The AUC

of HANDINESS in the training group was 0.951 (0.902-0.987),

accuracy was 0.893, sensitivity was 0.911, and specificity was 0.872.

In the validation group the AUC was 0.938 (0.881-0.949), accuracy

was 0.884, sensitivity was 0.821 and specificity was 0.957 (Table 2).

The predictive performance of the HANDINESS model (0.951 and

0.938) was higher than that of the ClinicRad model (0.916 and
Frontiers in Oncology 06
0.889) and the H-MRI model (0.884 and 0.853) (Figure 5).

Regarding the areas under the precision-recall curves, the

HANDINESS exhibited maximum values of 0.955 and 0.944 in

the training and internal validation cohorts, respectively. In the

AUC comparison diagram of the training cohort (Supplementary

Figure S3), the AUCs for the single features of the ClinicRad model

were 0.593-0.777, while that of the single factor of the H-MRI model

ranged from 0.692 to 0.809.

The integrated discrimination improvement (all P<.05;

Supplementary Table S4) and net reclassification improvement

(all P<.05 except for the comparison between HANDINESS and

ClinicRad in the training and validation cohorts; Supplementary

Table S5) indicated that the HANDINESS model offered the highest

diagnostic model efficacy. The excellent diagnostic performance of

the HANDINESS was demonstrated by comparing the AUCs with

the DeLong test (all P<.05 except for the comparison between the

HANDINESS and ClinicRad models in the training cohort;

Supplementary Table S6). There was no difference in diagnostic

efficacy between ClinicRad and H-MRI.

We found differences in the P values between these three

methods. The limitations of the DeLong test may be due to the

small sample size. The selection of assessment nodes for risk

stratification of data is not yet guided by highly reliable

guidelines, which may be a limitation of the net reclassification

improvement. Therefore, we believe that the P values from the
FIGURE 3

Distribution of features for each subhabitat. Two thresholds (MD 1.71 and MK 0.58; green dashed line) were used to divide the 4 habitat subregions.
*P<.05, **P<.01, ***P<.001 using one-way ANOVA; multiple comparisons were adjusted for using the Bonferroni correction. The HL subhabitat was
present in all IDH mutant subjects, and the HL subhabitat was absent in 5 IDH wild-type subjects. The HH subhabitat was absent in 15 IDH mutant
subjects and 8 IDH wild-type subjects. The black dashed line represents the absence of the HH or HL habitat in the subjects, and the gray dashed
line represents the other subjects. MK, mean kurtosis; MD, mean diffusivity; LL, restricted diffusion and low-density; LH, restricted diffusion and high-
density; HL, unrestricted diffusion and low-density; HH, unrestricted diffusion and high-density; IDH, isocitrate dehydrogenase.
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integrated discrimination improvement are likely to be the

most accurate.

Decision curve and calibration curve analyses suggested that the

HANDINESS has better potential for clinical application and

greater convergence in practical situations than the single-

modality models (Appendix S4, Supplementary Figure S4).
4 Discussion

In this study, we described the potential relationship between

DKI habitat features and microscopic anatomical regions of gliomas,

with particular reference to the correlation with infiltrating tumor,

cellular tumor. We then developed a comprehensive diagnostic

model for the pretreatment prediction of IDH status in adult-type

diffuse gliomas patients by combining quantitative clinical features,

cMRI morphological features, and DKI habitat imaging features. The

HANDINESS showed better prediction performance, both in the

training cohort and the internal validation cohort (AUCs of 0.951

and 0.938, respectively) than the single prediction models.

The extraction of habitat features allowed the highly dense

component of the cell (LH) to be effectively distinguished,

independently of the LL component. We classified the LH

subhabitat as a region highly similar to the cellular tumor (21),

reflecting the nuclear heterogeneity of its malignant transformation

by the high positive correlation between the microenvironmental

volume and volume occupancy and the degree of cellular

complexity. Differences due to histone methylation (22), epithelial

growth factor receptor and mutation of the telomerase reverse
Frontiers in Oncology 07
transcriptase promoter (23) make the IDH wild-type tumor

microenvironment more complex and cell dense, with more

pronounced water molecule diffusion restriction, than that of

IDH mutant tumors. This is reflected in our study by the high

contribution of the LH habitat to the H-MRI model. A previous

study showed (24) that MD and MK measurements in this region

can help in prognostic assessment. Furthermore, the LH subhabitat

is associated not only with IDH but also with the specific expression

of TP53 and ATRX (21), which may provide additional targets of

therapeutic relevance.

The LL subhabitat is an area of restricted diffusion and relatively

low density that we speculate is mainly infiltrative tumor, which

usually shows infiltrative edema with perineural satellite glial cell

hyperplasia (21). This region has relatively limited water molecule

diffusion because of various histopathological states, such as tumor

cell value-added, vasogenic edema, micronecrosis, and extracellular

matrix upregulation (25). In terms of macroscopic features, this

zone is less complex than the LH subhabitat (cellular tumor zone),

while the degree of water molecule restriction is closely related to

that of the LH subhabitat (which can be interpreted as similar

heterogeneity). The reason for the relatively low MK of the HL

subhabitat is consistent with that of the LL subhabitat but differs in

that the HL subhabitat has a more diffusion-unrestricted character.

Considering the cMRI image features, possible explanations are that

the LL and HL subhabitats have a large overlap with the peritumoral

edema area of cMRI and that the HL subhabitat also contains part

of the tumor cystic area. The HL habitat may contain simple

vasogenic edema and cystic lesions. The hyperpermeable vessel

wall causes an elevated MD with a decreased MK. A possible reason
FIGURE 4

Correlation heatmap of diffusion parameters combined with habitat characteristics. Volume represents the volume of the subhabitat; percent
represents the percentage of the total volume of the subhabitat. *Excluding the LL subhabitat, there was a high correlation between MK and MD in
each habitat subregion (0.665-0.999). †Within the LH subhabitat, there was a high correlation between MD and volume and percentage of volume
(0.608 and 0.663). ‡In the comparison between groups of habitat characteristics, only LL_MD and LH_MD were highly correlated (0.721). MK, mean
kurtosis; MD, mean diffusivity; LL, restricted diffusion and low-density; LH, restricted diffusion and high-density; HL, unrestricted diffusion and low-
density; HH, unrestricted diffusion and high-density.
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for not seeing areas of cystic lesions in anatomic subregions (21)

may be that surgical resection usually does not preserve the

complete tumor anatomy. Studies in the literature have suggested

that the cyst fluid of malignant tumors may be a “trophic reservoir”

with important determinants of growth of the surrounding tumor

cells during tumor evolution (26) and is associated with tumor

spatial heterogeneity. Therefore, the tumor cystic zone is still

potentially valuable for research. In addition, it is difficult, if not

impossible, to distinguish simple edema from infiltrative edema on

cMRI, and DKI-based habitat analysis, which can differentiate

infiltrative edema from other subregions, may be a good

“weapon” for distinguishing peritumoral tumor cell from edema.

This may help in the differential diagnosis of glioma from solitary

brain metastases and lymphoma (27).

Some subjects did not have the HH subhabitat, regardless of

their IDH status. This subhabitat may have similarities to the Gad-

negative/low uptake subregion from a positron emission computed

tomography study (28) and may reflect the hypoxic necrotic zone of

the tumor, as in reality, this does not occur in all individual tumors.
Frontiers in Oncology 08
For the purpose of correctly reflecting the histological information

provided by this habitat, tumor stereotactic biopsy is still required.

Although DKI parameters based on non-Gaussian distributions

better characterize the high heterogeneity of gliomas than DWI and

diffusion tensor imaging, the complex DKI model parameters alone

(AUC 0.72-0.76) did not increase the accuracy in predicting IDH

(29). We further visualized the macro- and microcorrelations (DKI-

based habitat features with IDH) by means of habitat analysis to

enhance the performance of the model. The interpretation of spatial

heterogeneity in glioma using cMRI combined with habitat analysis

remains somewhat lacking (30). The DKI-based habitat analysis

showed a relatively high model performance (AUC 0.88). This is

due to differences in cellular phenotype and genetic factors between

wild-type IDH and mutant IDH (31), resulting in differences in

regions of critical environmental selectivity and cellular adaptation.

This link between gene status and habitat may produce a

bidirectional channel between the molecular characterization of

tumors and medical imaging as a way to improve the performance

of the model. In addition, other diffusion indicators, such as

fractional anisotropy and axial kurtosis, can reflect to some extent

whether the integrity of brain fibers is disrupted (29), providing

additional information on diffusion associated with glioma

heterogeneity and suggesting an area of focus for future studies.

In general, IDH wild-type gliomas tend to be more malignant and

more prone to hemorrhage and necrosis. Interestingly, the use of a single

macroscopic factor, such as hemorrhage, enabled the prediction of

poorer IDH performance in this study (0.63). This phenomenon was

also observed in the study by Maynard et al. (19), where this feature did

not improve the diagnostic efficacy of the model. The possible reason for

this is that during the evolutionary progression of the tumor, hemorrhage

due to vascular collapse and vessel wall lysis is associated with hypoxia or

angiogenic factors (32), implying that hemorrhage is not a characteristic

manifestation of tumor nuclear heterogeneity. Although these single

factors reflect the complexity of the intratumoral and peritumoral spaces

of glioma, the independent use of a single factor is not reliable. Notably,

previous studies have also shown (9, 13) that the diagnostic performance

when using a single parameter in diffusion tensor imaging or DKI in

predicting IDH status is not satisfactory (AUC 0.74-0.86). HANDINESS,

as one comprehensive model, which was constructed by fusing several

features, showed the highest diagnostic value (AUC 0.95), reflecting the

superior performance of the integrated model. A comprehensive model

based on multiple parameters can accurately assess glioma IDH status,

which will help guide the selection of clinical treatments and ultimately

aid in prolonging patient survival cycles.

This study has some limitations. First, this study is based on a

single-center sample collection. The sample size limits the valid analysis

of the data, and the number of people in each group is not yet

homogeneous, but the distribution is consistent with epidemiology.

Second, the use of the Otsu method may not fully reflect the true

pathophysiological cell density and spatial heterogeneity of the tumor;

nevertheless, the method is not affected by image contrast, and the fast

computation helps to balance the loss of efficiency from using

segmented images. Third, the habitat analysis approach involving

diffusion model development could only explore the heterogeneity of

glioma in a single dimension, as there was a lack of information related

to perfusion models or metabolic images. We have considered
TABLE 2 Prediction performance of the HANDINESS compared with the
single-modality models.

Training cohort Internal validation cohort

HANDINESS

AUC* 0.951 (0.902–0.987) 0.938 (0.881–0.949)

Sensitivity 0.911 (51/56) 0.821 (46/56)

Specificity 0.872 (41/47) 0.957 (45/47)

PPV 0.895 (51/57) 0.958 (46/48)

NPV 0.891 (41/46) 0.818 (45/55)

ACC 0.893 (92/103) 0.884 (91/103)

H-MRI

AUC* 0.884 (0.814–0.940) 0.853 (0.764–0.919)

Sensitivity 0.786 (44/56) 0.839 (47/56)

Specificity 0.830 (39/47) 0.766 (36/47)

PPV 0.846 (44/52) 0.810 (47/58)

NPV 0.765 (39/51) 0.800 (36/45)

ACC 0.806 (83/103) 0.806 (83/103)

ClinicRad

AUC* 0.916 (0.841–0.966) 0.889 (0.808–0.949)

Sensitivity 0.912 (52/57) 0.912 (52/57)

Specificity 0.870 (40/46) 0.783 (36/46)

PPV 0.897 (52/58) 0.839 (52/62)

NPV 0.889 (40/45) 0.878 (36/41)

ACC 0.893 (92/103) 0.854 (88/103)
Data in parentheses are the numerator/denominator of participants included for each
parameter, unless otherwise indicated. Values correspond to the threshold according to the
maximum Youden index.
*: Data are the mean (95% CI).
HANDINESS, Habitat imAging aNd clinicraD INtegrated prEdiction SyStem; H-MRI, habitat
analysis magnetic resonance imaging; ClinicRad, clinical and radiological score.
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perfusion modeling for inclusion in subsequent studies (33). Finally,

some new state-of-the-art diffusion models should be tried to be

analyzed, even if short-term studies do not prove their practical

superiority (34).

In conclusion, DKI-based habitat imaging analysis provides

additional important information on the spatial heterogeneity of

microscopic tumors. The HANDINESS multimodal prediction

model had a diagnostic performance and robustness than the

single-modality models. Exploration between macroscopic image

features and microscopic tumor heterogeneity and the effective

construction of comprehensive diagnostic models will help in future

attempts to provide better personalized management and treatment

planning for glioma patients in clinical practice.
Nomenclature

Resource Identification Initiative

NeuroImaging Tools and Resources Collaboratory (NITRC)

(RRID:SCR_003430).
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FIGURE 5

Receiver operating characteristic curves (A) and precision-recall curves (B) of the three models. The HANDINESS model had better diagnostic
performance in the training and internal validation cohorts than the single ClinicRad model and the H-MRI model according to the integrated
discrimination improvement (all P<.05). HANDINESS, Habitat imAging aNd clinicraD INtegrated prEdiction SyStem; H-MRI, habitat analysis magnetic
resonance imaging; ClinicRad, clinical and radiological score.
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