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Ultra-flat carrying robots (UCR) are used to carry soft targets for functional

safety road tests of intelligent driving vehicles and should have superior control

performance. For the sake of analyzing and upgrading the motion control

performance of the ultra-flat carrying robot, this paper develops themathematical

model of its motion control system on the basis of the test data and the system

identification method. Aiming at ameliorating the defects of the standard particle

swarm optimization (PSO) algorithm, namely, low accuracy, being susceptible

to being caught in a local optimum, and slow convergence when dealing with

the parameter identification problems of complex systems, this paper proposes

a refined PSO algorithm with inertia weight cosine adjustment and introduction

of natural selection principle (IWCNS-PSO), and verifies the superiority of the

algorithm by test functions. Based on the IWCNS-PSO algorithm, the identification

of transfer functions in the motion control system of the ultra-flat carrying robot

was completed. In comparison with the identification results of the standard

PSO and linear decreasing inertia weight (LDIW)-PSO algorithms, it indicated that

the IWCNS-PSO has the optimal performance, with the number of iterations it

takes to reach convergence being only 95 and the fitness value being only 0.117.

The interactive simulation model was constructed in MATLAB/Simulink, and the

critical proportioning method and the IWCNS-PSO algorithm were employed

respectively to complete the tuning and optimization of the Proportional-

Integral (PI) controller parameters. The results of simulation indicated that the PI

parameters optimized by the IWCNS-PSO algorithm reduce the adjustment time

to 7.99 s and the overshoot to 13.41% of the system, and the system is significantly

improved with regard to the control performance, which basically meets the

performance requirements of speed, stability, and accuracy for the control system.

In conclusion, the IWCNS-PSO algorithm presented in this paper represents an

e�cient system identification method, as well as a system optimization method.

KEYWORDS

ultra-flat carrying robot, improved PSO algorithm, system identification, critical

proportioning method, optimization of PI parameters

1 Introduction

The increasingly mature intelligent driving technology has brought new safety

problems, which has resulted in higher requirements for vehicle safety (Stilgoe,

2021). The ultra-flat carrying robot (UCR) is a kind of road test equipment

applied to the functional safety of intelligent driving vehicles, which can be

equipped with a variety of soft targets to reproduce road hazard scenarios

(Steffan et al., 2017; Uchida and Yamazaki, 2018; Bartholomew et al., 2023).

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1294606
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1294606&domain=pdf&date_stamp=2023-11-28
mailto:hdclb@163.com
https://doi.org/10.3389/fnbot.2023.1294606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1294606/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu et al. 10.3389/fnbot.2023.1294606

It fits well with the testing needs of industry regulations and

compensates for the limitations of previous testing methods.

The ultra-flat carrying robot has the characteristics of stability,

reliability, easy maintenance, wide use, and low radar properties. In

detail, first of all, the ultra-flat carrying robot’s upper cover plate

and body are of an integrated design, which has stronger load-

bearing capacity and higher stability; it adopts the modular design

of bottom drive+ central control+ upper computer, which is more

stable in control and more convenient in upgrading. Secondly, the

ultra-flat carrying robot can carry soft target dummies, bicycles, and

electric scooters, and its trajectory can be customized to meet the

test requirements in the New Car Assessment Program (NCAP)

and other regulations. Last but not least, the ultra-flat carrying

robot adopts the structural design of invisible materials combined

with an inclined plane for the first time in the world, which greatly

reduces the radar attribute value of the product and effectively

avoids the false detection of vehicle sensors in the testing process.

The ultra-flat carrying robot usually adopts the Proportional-

Integral (PI) control algorithm. For the purpose of enabling the

ultra-flat carrying robot to be equipped with superior control

performance, it is of vital importance to establish an accurate

mathematical model of the motion control system of the ultra-flat

carrying robot and optimize the parameters for the PI controller. In

general, the parameters of Proportional-Integral-Derivative (PID)

controllers are largely dependent on manual experience to try

and figure out, which results in a considerable amount of work,

wastage of time, and difficulty in achieving the best control effect

(Chunchen et al., 2017).

The particle swarm optimization (PSO) algorithm is typically

employed to address issues such as system parameter identification

and optimization. For multi-parameter identification models and

high-dimensional complex optimization problems, the standard

PSO algorithm tends to be premature and fall into the local

optimum (Cheng et al., 2021), which leads to poor identification

accuracy and unsatisfactory optimization results. In order to

strengthen the performance of PSO algorithms, many scholars at

home and abroad have actively explored and applied it to the system

parameter identification and optimization of PID parameters. Their

studies have been summarized in Table 1 for better readability.

Ebrahimi et al. (2019) proposed a flexible PSO algorithm to estimate

the parameters of the photovoltaic cell model and verified that

the algorithm has high accuracy and robustness through three

different solar modules. Wang B. M. et al. (2021) presented a

randomweight PSO algorithm to identify the dynamics parameters

of the robot, and the simulation results showed that the random

weight PSO algorithm has high accuracy for the identification of

robot dynamics parameters. Liu and Zhang (2022) put forward a

loop-iteration PSO algorithm to identify multiple parameters of

the electric vehicle wireless charging system, which can achieve

high identification accuracy under the condition of less detection.

Kang and Sun (2023) combined the PSO with spatial disturbance

to form an improved PSO algorithm, which realized the integrated

identification of the asynchronous motor and load parameters.

Chen et al. (2023) adopted an improved chaotic PSO algorithm

integrated with the principle of elite immunity to identify the

parameters of the permanent magnet synchronous motor online,

and verified the effectiveness of the algorithm through simulation

and comparison. Wang Q. L. et al. (2021) used a hybrid PSO

algorithm that introduced the concept of hybridization in genetic

algorithms to optimize the PID controller parameters of automated

guided vehicles, which achieved a good control effect. Xiang

and Chen (2022) proposed a modified cloud theory-based PSO

algorithm introducing cloud evolution and mutation methods to

set the initial PID control parameters and optimize the control

rules of the fuzzy PID controller, thereby dramatically suppressing

oscillation and overshoot. Lv et al. (2022) designed an immune

PSO algorithm by improving the inertia weight, learning factor,

and particle learning mode and introducing the artificial immunity

idea, and then optimized the PID controller. It was verified that the

immune PSO algorithm has a better optimal control effect in the

simulation environment.

The above studies have resulted in an enhanced performance

of the PSO algorithm for system parameter identification and

parameter optimization to varying degrees. Nevertheless, there

exist issues such as the insufficient performance of the algorithm

under multiple parameters, the added sophistication to the

improved algorithm, and the enormous computational effort

of the algorithm itself and the long time taken. Furthermore,

their research objects are mostly low-order systems, while there

are comparatively few domestic studies conducted regarding the

development of intelligent driving test equipment such as ultra-flat

carrying robots at present, and the control performance of ultra-flat

carrying robots still need to be further improved.

In light of the above issues, taking the ultra-flat carrying

robot as the research subject, this paper proposes an improved

PSO algorithm called the IWCNS-PSO and applies it to the

system parameter identification and optimization of PI parameters,

as shown in Figure 1. The lower left corner of Figure 1 refers

to the entity UCR, and the lower right corner (the box

named “UCR model”) of Figure 1 shows roughly the internal

hardware structure of the ultra-flat carrying robot, which contains

steering wheels (front wheels), driving wheels (rear wheels),

motors, electric push cylinders, torsion springs, and so on.

In this paper, the mathematical model of the motion control

system of the ultra-flat carrying robot is firstly established and

determines the parameters to be identified. Afterwards, for the

purpose of accurately identifying the unknown parameters in the

model, the IWCNS-PSO algorithm is proposed in this paper,

while verifying the performance of the IWCNS-PSO via test

functions and comparison with the standard PSO, LDIW-PSO,

Ant Colony Optimization (ACO), and Simulated Annealing (SA),

thereby highlighting the superiority of the IWCNS-PSO algorithm.

Thereafter, on the basis of the IWCNS-PSO algorithm, with the

sum of squares due to error (SSE) being selected as the fitness

function, this paper completes the transfer function identification

for the motion control system of the ultra-flat carrying robot,

in addition to comparing the identification results of the other

two PSO algorithms. Finally, by employing a MATLAB/Simulink

interactive simulation, this paper adopts the critical proportioning

method and the IWCNS-PSO algorithm respectively with ITAE

as the fitness function to tune and optimize the PI controller

parameters, which improves the speed, accuracy, and stable control

performance of the system. The IWCNS-PSO algorithm introduced

in this paper represents an efficient system identification and
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TABLE 1 Summary of the literature review.

References Research objects Strategies Dimensions Complicated
or not

Purposes

Ebrahimi et al. (2019) Photovoltaics (PV) solar

cells and modules

Elimination+ search space change 5 and 7 No Identification

Wang B. M. et al. (2021) Selective Compliance

Assembly Robot Arm

(SCARA) robot

Random weight 4 No Identification

Liu and Zhang (2022) Electric vehicle wireless Loop-iteration 4 Yes Identification

Kang and Sun (2023) Asynchronous motor

and load

Space disturbance 9 No Identification

Chen et al. (2023) Permanent magnet

synchronous motor

Chaotic algorithm+ elite immunity

principle

3 Yes Identification

Wang Q. L. et al. (2021) Automated guided

vehicle

Hybridization concept 3 Yes Optimization

Xiang and Chen (2022) Fuzzy PID controller Cloud evolution and mutation methods 3 Yes Optimization

Lv et al. (2022) PID controller Learning factor change+ particle

learning mode change, etc.+ artificial

immunity idea

3 Yes Optimization

Zhu et al. (this paper) Ultra-flat carrying robot Inertia weight cosine adjustment+

natural selection principle

7 and 3 No Identification and

optimization

FIGURE 1

Control method of the ultra-flat carrying robot.

system optimization method with a certain degree of value for

engineering applications.

The principal contributions of this paper are outlined

as follows:

(1) The fourth-order mathematical model of the motion control

system in the ultra-flat carrying robot, which is consistent

with the features of the test data, is established by means

of the system identification method, and the seven unknown

parameters to be identified are determined.

(2) With the inspiration of the standard PSO and LDIW-PSO,

this paper proposes the IWCNS-PSO with inertia weight

cosine adjustment and introduction of natural selection

principle. With the Rastrigin function and Rosenbrock

function, the performance of this algorithm is analyzed

in comparison with the other two PSO algorithms and

the other two heuristic algorithms. Both the speed and

accuracy of optimization of the PSO algorithm have been

remarkably improved.

(3) The transfer function of the motion control system in the

ultra-flat carrying robot is accurately identified using the

IWCNS-PSO algorithm. An interactive simulation model of

optimizing PI parameters with the IWCNS-PSO algorithm

is built in MATLAB/Simulink. The optimized PI parameters
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FIGURE 2

Research idea.

reduce the adjustment time to 7.99 s and the overshoot to

13.41% of the system, which significantly enhances the control

performance of the system.

(4) This paper compares and analyzes the tuning and

optimization results of the PI controller parameters obtained

by the critical proportioning method and the IWCNS-PSO

algorithm, and proposes to combine the two for applications

in engineering practice. To a certain extent, this paper

provides theoretical guidance for the development and

debugging of similar electromechanical products such as

ultra-flat carrying robots.

2 Proposed methodology

2.1 System identification-based modeling
of ultra-flat carrying robots

With the aim of quantitatively analyzing and optimizing a

control system, it is imperative to first develop its mathematical

model. The motion control chassis of the ultra-flat carrying robot

consists of the control module, drive subsystem, brake motor, etc.,

which is a comparatively complex system with greater difficulty

in modeling by theoretical analysis methods. System identification

involves no in-depth insight into the internal mechanisms of the

system, which exploits the information available from the input and

output data to build a mathematical model of the system for use

in system prediction and design, among other things (Ljung, 1987;

De Persis and Tesi, 2019). By adopting the system identification

method, this paper establishes the mathematical model of the

motion control system in the ultra-flat carrying robot and obtain

its transfer function, with the research idea illustrated in Figure 2.

The motion control chassis of the ultra-flat carrying robot is

a speed closed-loop control system, which can be equated to the

form shown in the lower box in Figure 2, whose equivalent transfer

function G1(s) is termed as the closed-loop transfer function.

Meanwhile, this system represents a unit negative feedback system,

thereby, G1(s) can be expressed as:

G1(S) =
GPI + UCR (S)

1 + GPI + UCR (S)
(1)

The time-domain performance indexes of the control system

are determined in accordance with the output response of the

system subjected to a unit step signal with zero initial condition

(Zheng et al., 2017). Therefore, this paper selects the unit step speed

FIGURE 3

Satisfactory fitting e�ect of the identification data and the actual

data.

signal as the input signal for the ultra-flat carrying robot during the

test, while its actual response speed of the output is recorded with

the inertial navigation (Collin et al., 2019). For the sake of ensuring

the fitting degree between the output series of the established

mathematical model and the actual data, it is crucial to choose the

appropriate form of the transfer function. The satisfactory fitting

effect should be as shown in Figure 3. In consideration of the fact

that the unit step response in a second-order system normally does

not match with Figure 3, it is considered to increase the order of the

system to enhance the fitting effect. By combining experience and

previous attempts, the number of poles of the transfer function to

be identified are chosen to be four and the number of zeros to be

two. The form of it is as follows:

G1(s) =
λs2 + µs+ ϕ

s4 + αs3 + βs2 + γ s + δ
(2)

where α, β , γ , δ, λ, µ, and ϕ are the parameters to be identified.

First and foremost, the PSO algorithm and test data are

employed to identify the closed-loop transfer function G1(s) of the

motion control system in the ultra-flat carrying robot, followed

by deriving the equivalent transfer function GPI+UCR(s) of the PI

controller and the UCR model in series according to the inverse of

Equation 1. Under the condition that the transfer function of the

PI controller is known, the transfer function GUCR(s) of the UCR

model is available to be obtained and applied to the subsequent

tuning and optimization of the PI controller parameters.

2.2 Standard PSO algorithm

Particle swarm optimization (PSO) refers to a swarm

intelligence algorithm originally introduced by Eberhart and

Kennedy (1995) and Kennedy and Eberhart (1995), which was

motivated by some of the social behaviors of animals, such as

foraging in flocks of birds. As a stochastic search method, it features

the advantages of good robustness, easy implementation, low

parameter settings, and small memory space occupation (Jain et al.,
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2022), while being widely applied in system optimization, neural

network training, pattern recognition, and other fields (Singh et al.,

2022).

The PSO algorithm firstly initializes a set of particles without

mass randomly in the search space, while each particle stands for

a feasible solution in space, which gets the corresponding fitness

value by being substituted into the objective function. In the search

for the optimal solution, the particles continuously renew their

speeds and positions with reference to the optimal position they

have reached and follow the particle with the optimal position in

the population, thereby seeking the optimal solution in the solution

space. It is assumed that the dimension of the solution space is d

while the size of the population is n, then the speed and position for

the i-th particle can be written as:

vi = (vi1, vi2, ..., vid), i = 1, 2, ..., d (3)

xi = (xi1, xi2, ..., xid), i = 1, 2, ..., d (4)

This algorithm keeps two optimal positions all along: one is the

optimal position of the i-th particle passed so far and the other is

the optimal position for all the particles in the whole population,

which are denoted by pbesti and gbest, respectively. In other words,

pbest and gbest stand for the optimal location historically and

globally in the k-th iteration. Furthermore, pbesti of the i-th particle

corresponds to its historical best fitness value, while all particles

share the position (gbest) of global best fitness value. Upon locating

these two optimal values, the particle updates its speed and position

in each iteration in line with the following equations:

vk+1
i = ωvki + c1r1(pbest

k
i − xki )+ c2r2(gbest − xki ) (5)

xk+1
i = xki + vk+1

i (6)

where k refers to the number of current iteration; ω denotes the

inertia weight; and c2 denote the cognitive learning factor and social

learning factor of the particle, respectively, which normally take

values between 0˜2 (Xia and Li, 2020), signifying the magnitude of

the influence exerted by the experience of the particle itself and the

population on the position movement of this particle; and r1 and r2
represent two numbers between [0, 1] that are generated randomly.

It is precisely through the synergistic cooperation and information

sharing among the particles that they decide the next movement

(Shu et al., 2021).

2.3 IWCNS-PSO algorithm

In the PSO algorithm, the larger the inertia weight ω is, the

wider the particle’s search range and the more robust the global

optimization ability will be (Bhattacharya et al., 2019) while the

more feeble the local optimization capability will become; the

smaller the ω is, the more feeble the particle’s global optimization

ability will be while the more robust the local optimization ability

will become. In the standard PSO algorithm, ω is a fixed value.

FIGURE 4

Inertia weight changes of the standard PSO, LDIW-PSO, and

IWCNS-PSO.

Therefore, the performance of the PSO algorithm can be optimized

by means of adjusting the inertia weight ω.

Shi and Eberhart (1998) put forward the strategy of linear

decreasing inertia weight (LDIW), as shown in Figure 4, which can

realize the process of changing from a stronger global search at

the initial stage to a stronger local search at the late stage, and can

achieve better solution accuracy to a certain extent compared with

ω as a fixed value. However, in this strategy, the change rate of the

inertia weight is a fixed value, so that the numbers of iterations

of the particle swarm in the more robust global search and the

more robust local search are essentially identical, thereby the global

optimal solution is likely not to be found in the global search at

the early stage of the iteration, and is likely not to better approach

the global optimal solution in the local search at the late stage of

the iteration.

Based on this, this paper further optimizes the inertia weight

by adjusting the change rate of the inertia weight to a dynamic

change and proposes an improved PSO algorithm (IWCNS-PSO)

with inertia weight cosine adjustment and the introduction of

the principle of natural selection. The improved inertia weight is

expressed as:

ω(k) = ωmin

(

1− cos

(

πk

2kmax

))

+ ωmax cos

(

πk

2kmax

)

(7)

where and ωmin = 0.4. The change of the inertia weight is shown

in Figure 4. During the initial stage of the search, ω is larger

and its change rate is slower, which is beneficial for the particle

swarm to conduct a long-term global search and jump out of the

local optimum. Consequently, the likelihood of finding the global

optimal solution is substantially enhanced. In the late stage of the

search, ω is smaller and its change rate is faster, which strengthens

the ability of particles to approach the global optimal solution

and further improves the solution accuracy of the algorithm. In

addition, in the first third period of the whole iteration process,

ω changes slowly. In order to further accelerate the convergence,

a principle similar to the natural selection in genetic algorithms is

introduced: after each iteration is completed, all the particles are

sorted by fitness values, and the speed and position of the same

number of the worst particles are substituted with those of the

optimal 25% of particles in the population, keeping pbest and gbest
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FIGURE 5

IWCNS-PSO algorithm flow chart.

unchanged. In this way, the proportion of optimal particles in the

population can be increased, and the performance of the particles

in each iteration is better. As a result, the convergence speed is

accelerated. The integrated flow of the IWCNS-PSO algorithm is

illustrated in Figure 5.

The detailed implementation steps of the IWCNS-PSO

algorithm are described as follows:

Step 1: Set the initial parameters of the IWCNS-PSO algorithm,

such as c1, c2, ωmin, ωmax, etc. Randomly initialize the speed

and position of each particle in the population;

Step 2: Calculate the initial fitness value of each particle

according to the objective function, store the current position

of each particle in respective pbest, and store the position of

the particle with the optimal fitness value in gbest;

Step 3: Update the inertia weight in accordance with Equation 7;

Step 4: Update the speed of each particle in accordance with

Equation 5;

Step 5: Judge whether the speed of the particle is beyond the

limited range. If it exceeds this, the speed is modified

to the corresponding boundary value; otherwise, it

remains unchanged;

Step 6: Update the position of each particle in accordance with

Equation 6;

Step 7: Judge whether the position of the particle is beyond

the limited range. If it exceeds this, the position is

modified to the corresponding boundary value; otherwise, it

remains unchanged;

Step 8: Update the fitness value of each particle. If the particle’s

current fitness value is better than its historical optimal fitness

value, update its historical optimal fitness value to the current

fitness value, and update the particle’s current position to pbest,

otherwise it remains unchanged. Update the position of the

particle with the optimal fitness value in the whole population

to gbest;

Step 9: If the current iteration number is in the first third of

the maximum number of iterations, sort all the particles in

line with the current fitness values and replace the speed and

position of the identical number for the worst particles with

those of the optimal 25% of particles, keeping pbest and gbest

unchanged; otherwise, skip Step 9;

Step 10: If the maximal number with iterations has been

attained, output the optimal solution gbest, and the algorithm

ends; otherwise, return to Step 3.

3 Comparison and verification of
algorithm performance

The IWCNS-PSO algorithm is refined by inertia weight cosine

adjustment strategy, while the quality of the particles in the

algorithm is optimized by the principle of natural selection.

Through the fitness value and iteration time (Xia and Li, 2020),

this paper assesses the merits and demerits of the algorithms,

so as to embody the effectiveness of the proposed IWCNS- PSO

algorithm in complex optimization problems, as well as the fact

that the IWCNS-PSO algorithm features the best effect, which

is relative to the other two PSO algorithms and the other two

heuristic algorithms.

As an essential indicator of the performance of intelligent

optimization algorithms, the convergence curve can intuitively

reflect whether the algorithm falls into a local optimal solution, as

well as the time and the number of times it falls into a local optimal

solution. To verify the superiority of the IWCNS-PSO algorithm,

the Rastrigin function and Rosenbrock function are selected

typically for testing (Fischer et al., 2023), in which the convergence

curves of the IWCNS-PSO algorithm are in comparison with

the convergence curves of the standard PSO algorithm, LDIW-

PSO algorithm, simulated annealing (SA) algorithm, and ant

colony optimization (ACO) algorithm. The specific equation of the

Rastrigin function is:
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FIGURE 6

Images of the two functions. (A) Two-dimensional Rastrigin

functional. (B) Two-dimensional Rosenbrock functional.

f (x) =

n
∑

i=1

(xi
2 − 10 cos(2πxi)+ 10), x ∈ [−5.12, 5.12] (8)

The specific equation of the Rosenbrock function is:

f (x) =

n−1
∑

i=1

[100(xi+1 − xi
2)

2
+ (xi − 1)2] , x ∈ [−30, 30] (9)

where n is the number of variables, namely, the dimensionality

of the solution space. The Rastrigin function is a non-linear

multimodal function with multiple local extrema and reaches its

global minimum of 0 when all variables are 0. The Rosenbrock

function is a non-convex pathological function that is difficult to

converge to the global minimum and reaches its global minimum

of 0 when all variables are 1. The images of the two-dimensional

Rastrigin function and Rosenbrock function are shown in Figure 6.

The color bar and its gradient in Figure 6 intuitively show the

complexity of the test function and the distribution and range

of the function values, from which it can be easily seen that the

global minimum value of the function is 0. The 5-dimensional

Rastrigin function and the 10-dimensional Rosenbrock function

were chosen to test the performance of the standard PSO, LDIW-

PSO, IWCNS-PSO, SA, and ACO in processing high-dimensional

complex optimization problems. The fitness functions or objective

functions are naturally the Rastrigin function and Rosenbrock

function, respectively, the value range xlim of solution is limited to

[−5.12, 5.12] and [−30, 30], and the dimension of solution space

d is set to 5 and 10. For the PSO, the initial parameters of the

particle swarm are set as follows: the population size n is 50, the

maximum number of iterations kmax is 1,000 and 600, the speed

limit vlim is [−2, 2], the fixed initial inertia weight is ω = 0.8

in the standard PSO algorithm and the initial inertia weight is

ωmax = 0.9 and the ending inertia weight is ωmin = 0.4 in the

LDIW-PSO and IWCNS-PSO algorithms, the cognitive learning

factor c1 and the social learning factor c2 of the particles are both

2, the population’s initial speed is v = rand(n, d), and the initial

position is x = xlim(1) + [xlim(2) − xlim(1)] · rand(n, d). For the

SA, the initial temperature T is set to 100, the final temperature is

set to 10−8, the cooling rate is set to 0.99, and the Markov chain

length is set to 300. For the ACO, the number of ants is set to

50, the maximum number of iterations is set to 1,000 and 600, the

pheromone importance factor α is set to 2, the heuristic factor β is

set to 4, the pheromone evaporation coefficient ρ is set to 0.2, and

the pheromone increment Q is set to 10. The fitness convergence

curves of the five algorithms are shown in Figure 7.

As can be observed from Figure 7, the ACO shows the worst

results, followed by the SA, which means that the ACO and

SA may be inefficient in processing high-dimensional complex

optimization issues compared with PSO algorithms. In the three

PSO algorithms, the standard PSO shows the slowest convergence

speed, and the convergence result is very different from the actual

minimum of the function, which indicates that the standard PSO

is caught in the local optimum. As a consequence, the standard

PSO is highly susceptible to fall into the local optimum with low

accuracy and slow convergence of fitness when applied to multi-

parameter problems. In comparison with the standard PSO, the

performance of the LDIW-PSO has been improved to a certain

extent with a faster convergence speed and a convergence result

closer to the actual minimum of the function. However, it is still

caught in the local optimum. Apparently, the IWCNS-PSO not

only converges the fastest, but also converges the result closest to

the actual minimum of the function or is even consistent with it,

achieving the highest convergence accuracy.

In short, the test results indicate that the improvements

proposed in this paper to the standard PSO algorithm are

effective. In contrast to the standard PSO, LDIW-PSO, ACO,

and SA (the other two heuristic algorithms), the IWCNS-

PSO has been considerably improved for its optimization

capability. With respect to most optimization issues, the IWCNS-

PSO algorithm outperforms the other four algorithms. The

IWCNS-PSO algorithm has high optimization efficiency and

prominent advantages.

4 Results and analysis of transfer
function identification of ultra-flat
carrying robots based on the
IWCNS-PSO algorithm

The IWCNS-PSO algorithm is applied to identify the unknown

parameters in the transfer function (Equation 2) of the motion
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FIGURE 7

Fitness convergence curves of the standard PSO, LDIW-PSO, IWCNS-PSO, ACO, and SA. (A) Rastrigin. (B) Rosenbrock.

TABLE 2 Identification results of the standard PSO, LDIW-PSO, and IWCNS-PSO.

Algorithms α β γ δ λ µ ϕ SSE Number of times

Standard PSO 2.730 6.038 8 8 2.845 3.519 8 0.197 229

LDIW-PSO 1.943 5.856 5.630 8 2.932 2.072 7.981 0.145 158

IWCNS-PSO 2.185 5.883 6.359 7.923 2.881 2.504 7.916 0.117 95

control system of the ultra-flat carrying robot, and the identification

results are compared with those of the standard PSO algorithm

and LDIW-PSO algorithm. Set n = 100, d = 7, kmax = 300.

Additionally, the ranges of the seven unknown parameters to be

identified equivalent to xlim in Section 3 are all set to [0, 8], and the

rest of the parameters are the same as those in Section 3. The fitness

function is chosen as the sum of squares due to error (SSE):

SSEki =

T
∑

t=0

{(y(t)− yki (t))
2
} (10)

where t is a series of discrete time sequence from 0 to T;

y(t) is the actual output sequence of the system; and yki is the

system output sequence corresponding to the transfer function

obtained for the i-th particle after the k-th iteration. The PSO

algorithms are employed to identify the unknown parameters of

the transfer function, namely, to obtain the position of the particle

corresponding to the historical optimal fitness of the population

that is expressed as gbest before when the maximum number of

iterations is reached, which satisfies the minimum sum of squares

due to error. The identification results of the standard PSO, LDIW-

PSO, and IWCNS-PSO are presented in Table 2.

As can be observed from Table 2, the IWCNS-PSO algorithm

corresponds to the smallest sum of squares due to error, which

suggests that it features the highest identification accuracy and the

best fitting effect. Moreover, the IWCNS-PSO also requires the least

number of iterations to reach the convergence of the population’s

historical optimal fitness, whose fitness convergence curve is shown

in Figure 8, which embodies again the superiority of the IWCNS-

PSO algorithm compared with the standard PSO algorithm and

LDIW-PSO algorithm. The identified transfer function G1(s) is

given by:

G1(s) =
2.881s2 + 2.504s+ 7.916

s4 + 2.185s3 + 5.883s2 + 6.359s+ 7.923
(11)
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FIGURE 8

Fitness convergence curve of the IWCNS-PSO.

TABLE 3 Routh table of the fourth-order system.

s4 1.000 5.883 7.923

s3 2.185 6.359 0

s2 2.973 7.923

s1 0.535 0

s0 7.923

In accordance with the coefficients of the characteristic

equation, the Routh table of this fourth-order system is

established as Table 3.

According to the Routh criterion (Li et al., 2019), all the

elements in the first column of the Routh table are >0, which

means that this fourth-order system is stable. The transfer function

GUCR(s) of the UCR model can be further derived from Equation

1, which will be applied to the tuning and optimization of the PI

controller parameters hereafter.

5 PI parameter optimization based on
the IWCNS-PSO algorithm

5.1 Principle of optimizing PI parameters
using the IWCNS-PSO algorithm

PID control adjusts the controlled object through the linear

combination of the proportional (P), integral (I), and differential

(D) of the error to constitute the control quantity. It features the

advantages of a simple structure and strong robustness, as well as

convenient adjustment (Borase et al., 2021). The ultra-flat carrying

robot adopts PI control, and its working principle is:

u(t) = kpe(t)+ ki

∫ t

0
e(t)dt (12)

where u(t) refers to the output of the controller; e(t) is the error

signal; and kp and ki denote the proportional coefficient and

integral coefficient, respectively. Laplace transform is carried out

on Equation 12 and then the transfer function of the PI controller

is obtained as follows:

FIGURE 9

Structure of the PI control system based on the IWCNS-PSO

algorithm.

G(s) =
U(s)

E(s)
= kp +

ki

s
(13)

By adjusting kp and ki, the control performance of the system

can meet the requirements as much as possible, so it is crucial to

tune and optimize the two parameters. The manual tuning method

is based on engineering experience, and it is often difficult to find

the global optimal solution when the parameter space is relatively

large. The IWCNS-PSO algorithm is a highly efficient search

algorithm because of its conciseness, clearness, high optimization

accuracy, and fast convergence speed. The structure of the PI

control system on the basis of the IWCNS-PSO algorithm is shown

in Figure 9.

ITAE is a good performance index (Martins, 2005) that

integrates the rapidity, stability, and accuracy of a control

system. Many pieces of the literature regard ITAE as one of the

best performance indexes of single-input single-output control

systems and adaptive control systems (Shuaib and Ahmed, 2014).

Therefore, it is adopted as the objective function, that is, the fitness

function is:

ITAE =

∫ ∞

0
t|e(t)|dt (14)

Utilizing the IWCNS-PSO algorithm to optimize PI parameters

is equal to seeking kp and ki that minimize ITAE (Rao and Santosh,

2020). The simulation model was built in Simulink with reference

to Figure 9, as shown in Figure 10, where the input is the unit step

signal, the output is the unit step response of the system and the

value of ITAE, and the Transfer Fcn module corresponds to the

transfer function GUCR(s) of the UCR model.

5.2 Simulation process and results analysis

This paper performs an interactive simulation by utilizing

MATLAB/Simulink version R2021b. The process of optimizing the

PI controller parameters based on the IWCNS-PSO algorithm is

demonstrated in Figure 11, where the left part (red box) represents

the IWCNS-PSO algorithm program (.m file) written in MATLAB

and the right part (blue box) represents the simulation model

(.slx file) built in Simulink. First and foremost, the particle swarm

parameters are initialized in MATLAB, with (kp, ki) representing

the spatial position of the population particles, which are assigned
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FIGURE 10

Simulink simulation model.

FIGURE 11

Process of optimizing PI parameters using the IWCNS-PSO algorithm.

to the parameters of the PI controller. Afterwards, the Simulink

model is run to obtain the ITAE value and input it into the

MATLAB workspace. After that, the particle population is updated

in accordance with the iterative equations, and and ki of the new

generation of the particles are reassigned to the parameters of the

PI controller, while the subsequent process is carried out again,

in which the cycle is repeated until the termination condition

is satisfied. Eventually, the global optimal solution is obtained,

namely, the optimal parameters of the PI controller.

The critical proportioning method (Shi et al., 2016) and

the IWCNS-PSO algorithm are respectively applied to tune and

optimize the PI controller parameters. The parameters n = 100,

d = 2, and kmax = 100 are set, and the ranges of and ki are set

to [0, 500] and [0, 400], respectively, with reference to the results

of the critical proportioning method and the influence of kpand

ki on the dynamic performance, while the rest of the parameter

settings are the same as those in Section 3. The PI parameters

and their corresponding system performance indexes obtained by

the critical proportioning method and the IWCNS-PSO algorithm,

respectively, are presented in Table 4, while the unit step response

of the system is shown in Figure 12.

As evidenced by Table 4 and Figure 12, the unit step response

that correlates with the PI parameters tuned by the critical

proportioning method is oscillatory, divergent, and unrealistic,
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which fails to meet the needs of the test work. This indicates that

the critical proportioning method, which relies on engineering

experience, is not suitable for all cases. Meanwhile, the tuning

results of the critical proportioning method are likely to make

the control performance of the system even more unsatisfactory,

especially when dealing with high-order complex systems. By

employing the IWCNS-PSO algorithm and referring to the

adjustment results of the critical proportioning method, the PI

parameters are optimized, which leads to a significant improvement

in the control performance, thereby essentially meeting the

performance requirements for a speedy, stable, and accurate

control system.

As a consequence, in engineering practice, the parameter

debugging of the PI/PID controller cannot completely rely on the

method of engineering experience. On the basis of the results of

the manual tuning method, the IWCNS-PSO algorithm suggested

in this paper can further optimize parameters of PI/PID and

shrink the parameter debugging ranges. With this as a guideline,

the system can then be manually fine-tuned in combination

with the actual operation on site, so as to enable the control

performance of the system to reach the best and substantially save

the debugging time.

TABLE 4 Tuning and optimization results of PI controller parameters.

Parameters and
performance
indexes

Critical
proportioning

method

IWCNS-PSO
algorithm

kp 586.045 40.308

ki 449.508 35.062

Rise time/s 0.65 2.89

Peak time/s 1.22 3.95

Settling time/s ∞ 7.99

Overshoot/% ∞ 13.41

Steady-state error/% ∞ 0

ITAE value ∞ 5.784

6 Conclusions

This paper firstly established the fourth-order mathematical

model of the motion control system of the ultra-flat carrying

robot using the modeling method of system identification, which

conforms to the features of the test data. Next, this paper proposed a

refined particle swarm optimization algorithm named the IWCNS-

PSO that is combined with inertia weight cosine adjustment

and the introduction of the natural selection principle with the

aim of reducing the defects of the standard PSO algorithm,

including low accuracy, being easy to lapse into a localized

optimum, and slow convergence when dealing with the parameter

identification problems of complex systems. The effectiveness

of the improvements of the algorithm and the superiority of

the IWCNS-PSO algorithm were verified by comparison and

typical test functions. Afterwards, the IWCNS-PSO algorithm was

employed to identify the transfer function of the motion control

system in the ultra-flat carrying robot, which once again embodied

the superiority of the IWCNS-PSO algorithm in comparison

with the standard PSO algorithm and the LDIW-PSO algorithm.

Thereafter, the critical proportioning method and the IWCNS-

PSO algorithm were successively employed in the tuning and

optimization of the PI controller parameters. In the interactive

simulation environment of MATLAB/Simulink, compared with

the tuning effect that is oscillatory and divergent caused by the

critical proportioning method, the PI parameters optimized by the

IWCNS-PSO algorithm reduced the adjustment time to 7.99 s and

the overshoot to 13.41% of the system under the action of the unit

step signal. The control performance of the system is obviously

improved, and the system can achieve the expected effect quickly,

stably, and accurately in consequence.

In summary, the IWCNS-PSO algorithm introduced in this

paper stands out as an efficient system identification and system

optimization method, which provides theoretical guidance for the

development and debugging of the ultra-flat carrying robot to a

certain extent. In the future, the proposed IWCNS-PSO algorithm

will be employed in other areas with a view to enhancing the

practical effectiveness of the existing work. However, there are

still some limitations in this paper, which need to be further

FIGURE 12

Unit step response.
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discussed. At present, no test has been conducted to verify the

simulation results after optimizing the PI parameters, and the

simulation results indicate that the control performance of the

system are still in need of being further improved, and efforts

can be made to modify the control scheme or control strategy,

which will be the focus of the follow-up research and the areas to

be improved.
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