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LodgeNet: an automated
framework for precise detection
and classification of wheat
lodging severity levels in
precision farming
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Wheat lodging is a serious problem affecting grain yield, plant health, and grain

quality. Addressing the lodging issue in wheat is a desirable task in breeding

programs. Precise detection of lodging levels during wheat screening can aid in

selecting lines with resistance to lodging. Traditional approaches to phenotype

lodging rely on manual data collection from field plots, which are slow and

laborious, and can introduce errors and bias. This paper presents a framework

called ‘LodgeNet,’ that facilitates wheat lodging detection. Using Unmanned

Aerial Vehicles (UAVs) and Deep Learning (DL), LodgeNet improves traditional

methods of detecting lodging withmore precision and efficiency. Using a dataset

of 2000 multi-spectral images of wheat plots, we have developed a novel image

registration technique that aligns the different bands of multi-spectral images.

This approach allows the creation of comprehensive RGB images, enhancing the

detection and classification of wheat lodging. We have employed advanced

image enhancement techniques to improve image quality, highlighting the

important features of wheat lodging detection. We combined three color

enhancement transformations into two presets for image refinement. The first

preset, ‘Haze & Gamma Adjustment,’minimize atmospheric haze and adjusts the

gamma, while the second, ‘Stretching Contrast Limits,’ extends the contrast of

the RGB image by calculating and applying the upper and lower limits of each

band. LodgeNet, which relies on the state-of-the-art YOLOv8 deep learning

algorithm, could detect and classify wheat lodging severity levels ranging from

no lodging (Class 1) to severe lodging (Class 9). The results show the mean

Average Precision (mAP) of 0.952% @0.5 and 0.641% @0.50-0.95 in classifying

wheat lodging severity levels. LodgeNet promises an efficient and automated

high-throughput solution for real-time crop monitoring of wheat lodging

severity levels in the field.

KEYWORDS

wheat lodging, classification, multi-spectral imaging, Unmanned Aerial Vehicle,
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1 Introduction

Wheat is a crucial food crop that provides essential nutrients to

consumers worldwide. To ensure that sufficient food is available to

the growing world’s population, it is essential to maintain wheat

yield and quality by managing the limiting factors that affect its

growth and production, such as lodging (Jiang et al., 2022; Yu et al.,

2022). Lodging in wheat may cause a yield reduction from > 50%

depending on the extent of damage, affecting kernel numbers per

spike, inducing sprout damage in grain, interfering with harvesting,

and deteriorating post-harvest grain quality, thereby lowering the

wheat market grade (Fischer and Stapper, 1987; Berry and Spink,

2012; Pin˜era-Chavez et al., 2016). Wheat lines with lodging

resistance are more desirable, and a target trait in breeding (Shah

et al., 2019). Various stakeholders, including breeders, agronomists,

plant physiologists, farmers, and crop insurance personnel, require

accurate and timely assessment of wheat lodging to mitigate its

impact on wheat growth, production and marketability (Kang et al.,

2023; Sun et al., 2023). Lodging resistance would help to minimize

yield losses and maintain crop quality (Yang et al., 2021).

Developing efficient and reliable methods for lodging detection is,

therefore, crucial.

Traditional methods for detecting wheat lodging are manual

that rely on visual and subjective rating of the plants’ stature, which

is highly laborious phenotyping and a time consuming activity (Ali

et al., 2023; Modi et al., 2023; Zaji et al., 2023). These methods are

more prone to error depending on a number of factors, including

the expertise of the person rating the lodging and, the time of rating

after the lodging, to some extent, affected by extreme environmental

conditions during the assessment, affecting the accuracy and

reliability of the results (Ali et al., 2019a). Emerging technologies

such as remote sensing, Unmanned Aerial Vehicles (UAVs), and

Artificial Intelligence (AI) hold great promise for non-invasive,

rapid, and accurate monitoring of crop lodging (Zhang et al., 2020).

Integrating these technologies with traditional methods could

overcome the limitations of the current manual approach,

enabling more efficient, objective, and reliable detection of wheat

lodging (Wen et al., 2022). Among various technologies, UAVs

have great potential in improving the efficiency and reliability of

wheat lodging detection, providing the opportunity to improve high

throughout phenotyping.

Recent years have witnessed significant progress in crop

monitoring, using more advanced UAV platforms and

information processing technologies (Chauhan et al., 2019a).

UAVs are effective, low-cost, and flexible tools in precision

agriculture, offering great potential in plant breeding, especially

for screening thousands of lines in a shorter time. The use of

Machine Learning (ML) techniques together with Red, Green, and

Blue (RGB) images has significantly improved crop breeding

phenomics by enabling the selection of various traits like crop

lodging information and area (Liu et al., 2018; Asad and Bais,

2020a). For example, (Fang et al., 2021) collected RGB images using

a UAV platform post-wheat lodging and combined Digital Surface

Model (DSM) images and Excess Green Vegetation Index (EXG) to

generate “DSM + RGB” and “DSM + EXG” fusion images. The
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researchers then applied maximum likelihood and random forest

methods to the images, achieving an impressive 93.75% accuracy in

extracting information on wheat lodging areas from the “DSM +

RGB” fusion images. Similarly, (Li et al., 2019) used a

comprehensive feature model based on two individual features of

wheat lodging extracted from UAV RGB images and a K-means

algorithm to develop a multi-temporal lodging area extraction

method. In addition, (Chauhan et al., 2019b) utilized UAV multi-

spectral images to differentiate among various categories of lodged

wheat plants, achieving an overall accuracy rate of 90% through a

multi-resolution segmentation algorithm and the nearest neighbor

classification algorithm. (Cao et al., 2021) proposed a hybrid

algorithm founded on a watershed algorithm and adaptive

threshold segmentation to extract the lodging in wheat. Despite

the high recognition accuracy of ML techniques in UAV-based

monitoring for lodging, challenges in practical application continue

to exist, primarily due to the need to select precise features of the

trait to ensure the effectiveness of these techniques (Das and Bais,

2021; Yu et al., 2023). This underscores the importance of

alternative methods, such as advanced remote sensing

technologies, which could enhance the capabilities of UAV-based

monitoring in the lodging detection process.

Satellite-based remote sensing technologies have been widely

adopted for detecting wheat lodging (Shu et al., 2023). However,

their effectiveness is limited due to low spatiotemporal resolution and

weak spectral differences between lodged and non-lodged crops (Asad

and Bais, 2020b). Aerial remote sensing can provide higher spatial and

temporal resolution, but it is more complex and expensive. In contrast,

UAVs are cost-effective, flexible, and high-resolution alternatives to

satellite and aerial systems for detecting wheat lodging (Chauhan et al.,

2021). Despite their potential, there is a need for methodological

advancements in capturing and analyzing data, particularly in

generating and utilizing DSMs for enhanced information. One

approach to improve the quality of the information obtained from

DSMs is to use fusion images based on RGB and DSM, but there is no

consensus on which information is best to fuse. DSMs alone may not

capture subtle details related to lodging, especially when the lodging

severity is low. On the other hand, RGB images capture the visual

appearance of the crop canopy, which includes colour and texture

variations. By fusing RGB images with DSMs, it leverages the

complementary information offered by these two sources (Al-Najjar

et al., 2019). Moreover, extracting lodging information still presents

challenges that need to be addressed to increase the accuracy and

reliability of wheat lodging detection (Xie et al., 2021).

Further evaluation is required to determine the optimal mission

height for UAV-based wheat lodging detection (Dai et al., 2023).

Diverse image types, such as RGB, multi-band spectral and thermal

images, have been utilized to develop classification algorithms in

various crops (Vargas et al., 2019; Chauhan et al., 2020a). However,

there is a need for additional research to identify specific challenges,

such as the impact of varying image types and classification

algorithms on the precision of wheat lodging detection in UAV-

based studies.

Manual cropping of images for dataset creation can be time-

consuming, prone to human error, and may lead to inconsistent
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results (Ali et al., 2019b; Yu et al., 2023). Thus, a semi-automatic or

fully automatic approach is necessary to streamline and standardize

dataset creation. The fusion of emerging ML and DL algorithms

with remote sensing technologies has shown the potential to

enhance the efficiency and accuracy of wheat lodging detection

(Jiang et al., 2022). However, further studies are needed to measure

the impact of automation on dataset creation time, the accuracy of

lodging detection, and the consistency of results. Feature extraction

and classification can also aid in lodging detection (Ullah

et al., 2021).

Detecting crop lodging involves a classification task that

requires gathering features from image datasets and applying ML

algorithms (Zhang et al., 2022). DL models can automate the feature

extraction and classification process, but their effectiveness for

wheat lodging detection is still poorly explored. Few studies (e.g.

(Chauhan et al., 2020b)) have directly compared the performance of

DL and traditional ML algorithms in detecting wheat lodging,

indicating a gap in the literature and a need for more

comprehensive studies. DL models, specifically Convolutional

Neural Networks (CNNs), can extract detailed image features but

often require substantial computational resources and exhibit

complexity, hindering their large-scale, real-time use (Masuda

et al., 2013; Wang et al., 2019; Raja et al., 2020; Setyawan et al.,

2020; He et al., 2021). Therefore, it is worth exploring the specific

role of DL, particularly its strengths and potential limitations, in

tackling lodging recognition challenges.

The paper aims to tackle the above-mentioned issues by

addressing the following objectives: (1) collect a vast dataset of

multi-spectral images of wheat plots, (2) focus on developing an

image registration technique for multi-spectral images, (3) enhance

the image quality to improve the detection of wheat lodging, and (4)

build an automated framework named ‘LodgeNet’ that can detect

and classify the severity of wheat lodging into nine different classes

using advanced deep learning techniques. This research work is the

first to classify wheat lodging severity levels into different classes,

ranging from no lodging (Class 1) to severe lodging (Class 9).
2 Materials and methods

To develop the models for lodging detection, the data was

collected in a field set for evaluating different wheat lines. The data

sets were pre-processed, before applying a DL model to identify

severity levels of wheat lodging, to assess its practical application in

wheat fields.
2.1 Experimental field and data collection

A panel of durum wheat [Triticum turgidum L. ssp. durum

(Desf.) Husn.], comprising 110 diverse lines from Canadian and

international collections, was used as a platform for this study.

These lines differ in yield, height, lodging, and other grain quality

parameters. Replicated field plots were seeded in 2022 using a

randomized complete block design with two replications at
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Agriculture and Agri-Food Canada’s research farm in Indian

Head, SK. The field plots at Indian Head (Figure 1) were seeded

under dry-land conditions without artificial irrigation. Each plot

measured 3m in length, and 1.2m in width was seeded with 1,200

seeds in four rows with a gap of 0.23m between rows. The gap

between plots was filled by seeding two rows of winter wheat.

Standard field practices were followed for fertilization, weed,

disease, and pest control to minimize other factors in yield

limitations. Wheat lines were evaluated for lodging, grain yield,

quality, and other agronomic characteristics. Grain yield was

calculated per plot and converted to a per-hectare basis using a

conversion factor.

Lodging was rated using a 1-9 scale, where 1 is assigned to

plants with the upright position in the plot with no sign of lodging,

whereas 9 is used when more than 75% of plants in the plot are laid

horizontally flat on the ground. Table 1 presents an illustration of

the evaluation process.

In this study, we used the MicaSense RedEdge-P Camera for all

experimental image data collection. MicaSense RedEdge-P Camera

is a six-band multi-spectral sensor for agricultural and

environmental monitoring applications. It captures images of the

same region in six different spectrum bands: blue, green, red, red

edge, near-infrared, and panchromatic (Figure 2). The study

collected around 2000 aerial images taken from an altitude of 42

feet over the wheat plots in the field using UAV before the maturity

stage. The panchromatic band of the RedEdge-P Camera, with a

resolution of 2464 × 2056, covers the entire visible spectrum and

provides a higher spatial resolution than the other bands, which

have a resolution of 1456 × 1088. This allows for more detailed and

precise imaging of the captured region. Six files are generated for

each shot the camera takes, each containing the information

captured by one of the six bands. The images are saved in a 16-

bit TIFF format, ensuring high precision in the captured data. The

Agisoft Metashape software (Agisoft Metashape, 2010; Kingsland,

2020) was used to obtain an orthomosaic of the wheat field, which

was further processed using the Geographic Information System

Application QGIS (QGIS, 2002; Moyroud and Portet, 2018).
2.2 Data pre-processing

Multi-spectral images captured by UAVs or other independent

devices typically consist of multiple bands, each captured by a

sensor and covering the same area. These bands are processed to

create indexes such as the Normalized Difference Vegetation Index

(NDVI) (Pettorelli, 2013), Visible Atmospherically Resistant Index

(VARI) (Sewiko and Sagala, 2022), Green Atmospherically

Resistant Index (GARI) (Sun, 2023), Surface Algal Bloom Index

(SABI) (Alawadi, 2010), or combined into multi-band

compositions. As physically separate sensors capture the bands,

they must be aligned before generating multi-band compositions.

The offset between them varies based on the physical distance

between the sensors and the distance between the camera and the

photographed objects (Abbas et al., 2020). The formulas for the four

vegetation indices can be found in Table 2.
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2.2.1 Image registration
In this study, a technique for aligning the bands of multi-

spectral images captured by separate sensors has been developed.

This technique is based on image intensity and involves an iterative

process that requires the specification of a pair of images, a metric,
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an optimizer, and a transformation type. The image similarity

metric evaluates the accuracy of the registration process and

produces a scalar value that indicates the degree of similarity

between the two images. The optimizer determines the method

for minimizing or maximizing the similarity metric, while the

transformation type, describing the mathematical model that

explains the geometric relationship between the fixed and moving

images, specifies the 2-D transformation needed to align the

misaligned image with the reference image. The process starts

with the transformation type and an internally determined

transformation matrix, which determines the specific image

transformation applied to the moving image through bi-linear

interpolation. The metric then compares the transformed moving

image to the fixed image and calculates a metric value. Finally, the

optimizer checks for a stop condition that could indicate the

termination of the process. The process usually ends when the

returns diminish, or the maximum number of iterations is reached.

If there is no stop condition, the optimizer adjusts the

transformation matrix and starts the next iteration. The algorithm

for this method is detailed in Algorithm 1.
B

C D

A

FIGURE 1

Location of UAV imaging area, study site, and lodging sample. (A) Canada map locating Saskatchewan province. (B) Indian Head Agricultural
Research Foundation (IHARF). (C) Mosaic of the lodged field (experimental field). (D) An image of wheat lodging.
TABLE 1 Class-wise manual evaluation of wheat lodging.

Entry Tag # Plot # Yield (g/plot) Lodging Class

23 2 1572.7 1

26 1 1126.4 2

90 13 1060.7 3

14 16 719.8 4

92 10 1331.2 5

88 58 937.6 6

89 82 963.9 7

82 96 446.9 8
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Fron
Input: Multi-Spectral Images (6-Bands)

Output: Alligned Bands with RGB Image

1: Specify ← (pair of images, metric, optimizer,

transformation type)

2: for each iteration do

3: Determine transformation matrix using

transformation type

4: Apply transformation to moving image using bi-

linear interpolation

5: Calculate metric value by comparing transformed

moving image to fixed image

6: if stop condition is met then

7: Terminate process

8: else

9: Adjust transformation matrix
tiers in Plant Science 05
10: end if

11: end for
Algorithm 1. Multi-spectral image registration and processing.

The optimization techniques and parameters are established

through experiments with images acquired from various locations

during the flights. The alignment process involves pairing the

images based on a reference band. Band 2 (Green, with a center

wavelength of 560 nm and a bandwidth of 27 nm) is used as the

reference band to align other bands, which results in optimal

calibration. The transformation type ‘rigid’ produces the best

results in the case of this study, and the optimizer and metric are

configured based on the following parameters. Mathematically, the

similarity metric is defined in (1), and the optimizer is outlined

in (2).
• GrowthFactor = 1.002

• MaximumIterations = 500

• InitialRadius = 0.0002

• Epsilon = 0.0000015
M(Iref , Imov ,T) =o
x,y
w(x, y), s(Iref (x, y), Imov(T(x, y))) (1)

where:
• Iref and Imov are the fixed and moving images, respectively, T

is the 2-D transformation
TABLE 2 Vegetation indices and their formulas.

Index Formula

Normalized Difference Vegetation Index (NDVI)
NDVI =

NIR�R
NIR + R

Visible Atmospherically Resistant Index
(VARI =

G − R
G + R − B

)

Green Atmospherically Resistant Index (GARI)
GARI =

NIR − (G − (B − R))
NIR − (G + (B − R))

Surface Algal Bloom Index (SABI)
SABI =

NIR − R
B + G
B C

D E F

A

FIGURE 2

Six bands of the same image captured by the camera MicaSense RedEdge-P, (A) Blue (475 nm center, 32 nm bandwidth), (B) Green (560 nm center,
27nm bandwidth), (C) Red (668 nm center, 14 nm bandwidth), (D) Red Edge (717 nm center, 12nm bandwidth), (E) Near-IR (842 nm center, 57 nm
bandwidth), (F) Panchromatic 634.5 nm center, 463 nm bandwidth.
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• M(Iref, Imov, T) represents the similarity metric, which is a

scalar value that indicates the degree of similarity between

the reference and moving images. It is calculated as the sum

of the product of the weighting function w(x,y) and the

similarity function s(Iref(x,y), I mov(T(x,y))) evaluated at

each pixel location (x,y) in the images.

• The similarity function s(Iref(x,y), I mov(T(x,y))), defined in

(3), measures the similarity between the intensity values of

the reference and transformed moving images at each pixel

location. This research employed a similarity function

called Mutual Information (MI). The choice of similarity

function depends on the specific application and the

registered images’ characteristics.

• The weighting function w(x,y), described in (4), assigns higher

or lower importance to certain regions of the images based on

their characteristics or prior knowledge about the scene. This

allows the registration process to focus on the images’ most

informative regions and improves the alignment’s accuracy.
T* = arg  max
T

M(Iref , Imov ,T) (2)

s(Iref (x, y), Imov(T(x, y))) =o
i,j
pi,j log

pi,j
pipj

(3)

where pi,j is the joint histogram of Iref andImov (T), and piand

pjare the marginal histograms of Iref and Imov(T), respectively.

w(x, y) = e−
(x� xc )

2+(y� yc )
2

2s2 (4)

where (xc,yc) is the center of the image and s controls the spread

of the Gaussian.
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After performing the alignment of multi-spectral images using a

reference band, a single RGB image was generated for detecting and

categorizing wheat lodging severity. Generating the RGB images

involves combining the aligned bands of the multi-spectral images

into a single image with three channels: blue, green, and red. The

outcome is a true color RGB image, commonly called a 3-2-1 image,

due to the bands assigned to the red, green, and blue channels.

These images are also known as RGB3-2-1 images. Figure 3

provides a visual representation of this process.
2.2.2 Image enhancement and composition
To make the spectral features in multi-spectral images more

visible, additional images with enhanced colors were created for

each composition. Three different color enhancement

transformations were utilized and combined into two presets. The

first preset, Haze & Gamma Adjustment, involved reducing

atmospheric haze and adjusting the Gamma. The formula for

adjusting Haze & Gamma is presented in (5).

The second preset, Stretching Contrast Limits, helped to

calculate each band’s upper and lower limits and used them to

stretch the image’s contrast. The formula for stretching contrast

limits is given by (6).

ac = 0:25 · percentile (Iin( :, :, c), 1)

tc = (Iin(x, y, c) > ac) · (1 + ac · (Iin(x, y, c)� ac))Þ−bc
bc =

1
no
x,y
(Iin(x, y, c)� ac) · t

gc
c

Iout(x, y, c) = bc · t
gc
c

(5)

where:
FIGURE 3

Process of multi-spectral images registration and processing to RGB images (3-2-1).
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• Iin is the input image.

• Iout is the output image after Haze & Gamma Adjustment.

• c denotes the color channel (e.g., c = 1 for red, c = 2 for

green, c = 3 for blue).

• ac, bc, gc are the parameters controlling the intensity of haze

reduction, the shape of the haze adjustment curve, and the

gamma correction, respectively.

• ac is the dark channel value for color channel c, computed as

the 1% percentile of Iin in that channel.

• tc is the haze adjustment term for color channel c.

• bc is the brightness adjustment term for color channel c,

computed as the average of Iinafter haze adjustment.

• percentile computes the nth percentile of a set of values.

• The values for the Haze & Gamma Adjustment preset are

ac = 0.2, bc= 0.7 for haze reduction, and gc= 0.6 for gamma

correction.
Iout(x, y, c) =
Iin(x, y, c) − Imin,c

Imax ;  c − Imin ;  c
· 255 (6)

where:
• Iin is the input image.

• Iout is the output image after Stretching Contrast Limits.

• c denotes the color channel (e.g., c = 1 for red, c = 2 for

green, c = 3 for blue).

• Imin,c and Imax,c are the lower and upper limits of color

channel c, respectively.
Each image band’s minimum and maximum pixel values are

lower and upper limits. These values were calculated separately for

each band and then used to stretch the contrast of the RGB image.
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New composite images were created by combining different

bands than the traditional red, green, and blue ones. These

customized images can potentially emphasize specific objects or

features in the images that might not be visible in the visible

spectrum. Figure 4 compares a standard RGB image created using

the traditional (3-2-1) combination and a customized image

composed of bands (4-2-1).

2.2.3 Data annotation
The Label Studio tool (Tkachenko et al., 2020–2022) was used

to label the images collected from the field plots based on the

manual visual evaluation of lodging (1-9 scale, SASKSEED

GUIDE, 2022), facilitating efficient data labelling. The nine

categories of wheat lodging levels classified according to the

severity of the damage were essential for precise monitoring of

wheat growth and identifying areas needing corrective action. The

model was trained to recognize these nine classes, with damage

levels ranging from minimal to complete collapse. The labelling

was done with high accuracy through the Label Studio tool, as

demonstrated in Figure 5, ensuring the model is trained precisely.

This enables the system to accurately differentiate between the

various wheat lodging categories and assess the strong extent of

plant straw strength.
2.3 Wheat lodging detection
and classification

The flowchart in Figure 6 outlines the wheat lodging detection

and classification process. Initially, a wheat lodging dataset was

generated using the pre-processed multispectral images, as
frontiersin.org
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FIGURE 4

Compositions of enhanced RGB (3-2-1), (4-2-1). (A) Original RGB, (B) Haze & Gamma Adjustment, (C) Contrast stretching limits, (D) Customized
image (4-2-1) before enhancement, (E) Customized image (4-2-1) enhanced composition.
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FIGURE 5

Process of labeling images for wheat lodging severity levels (L1-L9) using Label Studio.
FIGURE 6

Framework flowchart of wheat lodging detection and classification.
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discussed in Section.2.1, and by labelling the ground-truth data.

After creating the dataset, it was randomly shuffled and divided into

training, validation, and testing sets. The training set was used for

model training, and the model’s performance was assessed by

utilizing the test set to produce the prediction and classification of

wheat lodging results.

In this framework, we used a state-of-the-art YOLOv8 (Solawetz,

2023) model to produce the final prediction and classification output

images. YOLOv8 requires minor modifications to meet the specific

input and output image requirements. The key architectural

enhancements and improvements include anchor-free detection, new

convolutions and building blocks, neck modifications, mosaic

augmentation adjustment, and improved accuracy. YOLOv8

introduces anchor-free detection, which predicts the center of an

object directly, simplifying the Non-Maximum Suppression (NMS)

process—a post-processing step to refine candidate detections

after inference.

The model is highly effective for object detection and image

classification. We applied YOLOv8 to detect and classify different

types of lodging that can occur under field conditions. We trained

the model on annotated images, specifying nine different classes (1-

9 scale) of lodging, allowing YOLOv8 to identify and classify

instances of wheat lodging effectively.

2.3.1 Model architecture and detection process
Figure 7 (Contributors, 2023) provides a detailed overview of

the architecture of YOLOv8. YOLOv8 is based on a similar

framework as YOLOv5, with some modifications to the

CSPLayer, now called the C2f module. The C2f module (cross-

stage partial bottleneck with two convolutions) is responsible for

merging high-level features with contextual information, ultimately

enhancing the accuracy of object detection. YOLOv8 employs an

anchor-free model with a decoupled head, allowing it to

independently process tasks related to objectness, classification,

and regression. This design ensures that each component can

focus on its specific task, thereby improving the overall accuracy

of the model Terven and Cordova-Esparza (2023).

In the output layer of YOLOv8, the sigmoid function is

employed as the activation function for determining the

objectness score, which represents the likelihood of a bounding

box containing an object. For class probabilities, indicating the

likelihood of an object belonging to a specific class, YOLOv8 utilizes

the softmax function. Furthermore, YOLOv8 adopts Complete

Intersection over Union (CIoU) and Distribution Focused Loss

(DFL) loss functions for bounding box loss and binary cross-

entropy for classification loss. These loss functions have proven

effective in enhancing object detection performance, particularly

when dealing with smaller objects.

We used the YOLOv8 object detection model to detect and

classify wheat lodging severity in RGB input images, as shown in the

following steps:
Fron
• Input Image: The process begins with an input image of a

wheat field, where the goal is to detect and classify the
tiers in Plant Science 09
severity levels or classes of wheat lodging within the

classification scale.

• Pre-processing: The input image is resized and normalized

to match the input size and format expected by the YOLOv8

model.

• Model Inference: The pre-processed image is then passed

through the YOLOv8 model.

• Raw Predictions: The model generates raw predictions,

including bounding box coordinates, class probabilities, and

scores for potential wheat lodging classes.

• Post-processing: NMS is applied to the raw predictions to

eliminate overlapping or duplicate detections.

• Thresholding: A confidence threshold is applied to the

remaining predictions to eliminate detections with low

confidence scores.

• Output: The resulting bounding boxes and class labels

represent the detected wheat lodging classes within the

input image. These overlay the original input image to

visualize the wheat lodging detection results.
Applying the YOLOv8 object detection model in this

framework allows for efficient and precise detection and

classification of wheat lodging severity levels or classes in input

images of wheat fields. This method offers valuable insights for crop

management and yield estimation, contributing to the optimization

of agricultural practices and informed decision-making for farmers

and other stakeholders in the industry.
3 Results

3.1 Evaluation metrics

To quantitatively evaluate and analyze the detection and

classification results, four evaluation metrics were used. The

results are presented in graphs categorized as True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN),

based on whether the class is correctly or incorrectly identified.

Precision, recall, F1 score, and mean Average Precision (mAP) are

the chosen evaluation measures to assess the model’s performance.

3.1.1 Precision
Precision measures the model’s reliability in identifying positive

results among the actual positive ones. It is particularly useful when

the cost of FP is high. Precision is also known as Positive Predictive

Value (PPV). The precision is calculated by (7).

Precision =
TP

TP + FP
(7)
3.1.2 Recall
Recall measures the number of actual positive instances

correctly identified by the model (TP). It is used when FN has a

high cost. The recall calculation is determined using (8).
frontiersin.org
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Recall =
TP

TP + FN
(8)
3.1.3 F1 Score
When there is a significant class imbalance (i.e., a large number

of actual negatives), the F1 Score may be a better metric than

precision or recall to achieve a balance between the two. The F1

Score was calculated by (9).

F1 = 2� Precision� Recall
Precision + Recall

(9)
3.1.4 Mean Average Precision
Mean Average Precision (mAP) is a widely used performance

metric in object detection tasks that evaluates the precision of the

model at various recall levels. It is the mean of the dataset’s AP

values for each class. A higher mAP value generally indicates better

performance of the model. The calculation is given by (10).
Frontiers in Plant Science 10
mAP =
1

classesj j o
classesj j

i=1
APi (10)

where |classes| is the number of classes in the dataset and APi is

the average precision for the i-th class.
3.1.5 Confusion matrix
The confusion matrix is one of the metrics used to evaluate a

model’s performance in an object detection task. To calculate the

confusion matrix, it is important to understand the Intersection

over Union (IoU) metric, also known as the Jaccard index. IoU

measures the level of overlap between the Ground-Truth (GT) and

the predicted bounding box, and it is calculated by dividing the area

of overlap/intersection between the GT and predicted bounding box

by the area of their union, as shown in (11).

IoU =
AreaofOverlap
AreaofUnion

=
TP

TP + FP + FN
(11)
FIGURE 7

The architecture and visualisation of YOLOv8 (Contributors, 2023).
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3.2 Lodging field scenario

The wheat plots were classified into nine different lodging

classes used in the study (Table 1), ranging from no lodging

(Class 1) to severe lodging (Class 9). Each plot’s lodging severity

was manually assessed using the rating scale used at AAFC-Swift

Current’s wheat research program. The visual rating data for

lodging was used in labelling during the model’s training and

testing phases.
3.3 Model training

The study utilized the following software and hardware

configuration: Windows 10 operating system, Python 3.9,

PyTorch 2.0.0, and CUDA 11.7. The initial learning rate was set

at 0.001, and the training set images had dimensions of 1427 × 1035.

However, the image size was adjusted to 640 × 640 during model

input. The training process involved 300 epochs with a batch size 16

and employed the ’YOLOv8s’ model, which boasts 11.2 million

parameters. The dataset consisted of 2,000 multi-spectral images.

After the data pre-processing step, where the multi-spectral images

were transformed into RGB images, the dataset was randomly

mixed and split into training (70%), validation (10%), and testing

(20%) subsets.
3.4 Wheat lodging detection and
classification results

During training the model over 300 epochs, we implemented an

early stopping criterion to halt the training after 30 consecutive

epochs with no observable improvement. The optimal weights,

which are selected from the resulted epochs within this

framework, were then used to construct the test model. Figure 8

displays the classification loss for the training and validation sets.

The graph demonstrates that the gap between the two sets decreased

as the iterations increased and eventually reached a consistent state.

The minimal difference in error between the training and validation
Frontiers in Plant Science 11
sets indicates that the model’s variance is relatively low. In Figure 9,

the wheat lodging detection and classification outcomes for the

testing data are displayed. The model distinguished between nine

distinct classes of wheat lodging. These outcomes demonstrate the

framework’s outstanding forecasting and classification capabilities.

In this part of the research, we analyzed the evaluation metrics.

The confusion matrix of the model is shown in Figure 10 while

Figure 11 depicts evaluation metrics that offer a thorough

evaluation of the results. By comparing the model’s predictions

with the actual classes, the confusion matrix gives a useful indicator

of the classification accuracy, which was used to classify different

types of wheat lodging in this study. The IoU is used to evaluate the

accuracy of the object detection task by quantifying the overlap

between the predicted bounding boxes and the actual GT. The F1

curve displays an overall model performance of 0.87 at a 0.601

confidence level for all classes. This balance of precision and recall

suggests the model’s effectiveness in predicting positive and

negative cases. The precision curve presents a perfect score of

1.00 at a 0.911 confidence level for all classes, indicating the

model’s exceptional ability to classify positive cases and reduce

false positives. These high precision values ensure that the model’s

predictions are correct. The recall curve reflects the model’s ability

to identify true positive cases, with an outstanding value of 0.99 at a

0.000 confidence level for all classes. This means that the model

correctly detected almost all positive cases, reducing the possibility

of false negatives.

The Precision-Recall curve indicated a value of 0.952 at mAP@

0.5 for all classes, demonstrating the balance between precision and

recall at different confidence thresholds. This high value indicates a

successful balance between precision and recall. Taken together,

these curves provide a comprehensive assessment of the model’s

performance in 4object detection, consistently demonstrating high

levels of precision, recall, and F1 score, confirming the

model’s effectiveness.

Figure 12 presents the mAP for the current model, which

offers a comprehensive evaluation of its overall precision

performance in real-time. This metric was crucial for

comparing different object detection models and identifying

the most suitable one for a particular task. Higher mAP values
FIGURE 8

Training and validation classification loss.
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FIGURE 10

Confusion matrix of the model.
FIGURE 9

Framework detection and classification results.
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indicated better model performance. Our study examined two

mAP metrics: mAP @50and mAP@50-95. The model’s mAP@

50is 0.952%, indicating a high precision value for a relatively

generous IoU threshold. This suggests that the model

performed well when a 50% overlap between predicted and

actual bounding boxes is accepted. Meanwhile, the model’s

mAP@50-95 is 0.641%, reflecting its precision across a range

of IoU thresholds from 50% to 95%. This measure explains how

well the model performs under stricter criteria when the

prec is ion of the bounding box pred ic t ions becomes

increasingly important. Our reported mAP values provide

valuable insights into the model ’s overall performance,

enabling informed decisions concerning its suitability for the

specified framework.
3.5 Comparison

In comparing our LodgeNet framework with existing studies, it

becomes evident that our approach offers several distinct

advantages. While Jiang et al. (2022) focuses on using the

SegFormer-B1 model for wheat lodging area calculation,

achieving an accuracy of 96.56% using a DJI Phantom 4 Pro V2.0

UAV, equipped with RGB sensors. Tang et al. (2022) introduces the

pyramid transposed convolution network (PTCNet) for large-scale

wheat lodging extraction but relies primarily on GaoFen-2 satellite
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images. Finally, Zhang et al. (2022) explores UAV images at

different mission heights for lodging detection, focusing on SVM

and Resnet50 models.

Our LodgeNet leverages UAVs and deep learning, providing a

more versatile, precise, and efficient method. Notably, we have

multi-spectral UAV images and improved image quality through

advanced techniques like ‘Haze & Gamma Adjustment’ and

‘Stretching Contrast Limits’ while utilizing the YOLOv8 deep

learning algorithm for lodging detection. The results showcase a

mean Average Precision (mAP) of 0.952% @0.5, indicating the

remarkable accuracy of our LodgeNet. Additionally, we provide

comprehensive range of lodging severity levels, each with

competitive mAP scores, ranging from no lodging (Class 1) to

severe lodging (Class 9), which is the missing component in all of

the aforementioned articles. Table 3 summarizes the comparison

between LodgeNet and the referenced articles.
4 Discussion

Plant lodging is a major concern to wheat growers due to

reductions in grain yield and deterioration in grain quality.

Reducing the impact of lodging is required to improve the

economic benefits of wheat farming. Both plant genetics and

the growing environment can influence wheat lodging (Wu and

Ma, 2016). Fast and accurate screening protocols for wheat
FIGURE 11

F1 curve, precision curve, recall curve, and precision-recall curve for model’s performance.
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lodging can help to identify the germplasm for use in improving

lodging resistance in new cultivars. Accurate phenotyping using

sensor-based technology and UAV (drones), and matched with

machine with high precision learning can facilitate crop

phenotyping for lodging resistance. The LodgeNet framework

is an important step towards automated precision phenotyping

of wheat lodging that explored deep learning algorithms

combining visual rating, image processing, and data analysis to

improve the accuracy with significant improvement.

Conventionally, lodging is recorded manually using a visual

rating scale of 1-9 (SASKSEED GUIDE, 2022). The application

of image-based detection of lodging with machine learning is a

newer area that is still in the early stage of exploration. Other

studies on crop lodging monitoring mainly employ traditional

machine learning techniques such as k-Nearest Neighbours

(kNN) (Peterson, 2009), Linear Discriminant Analysis (LDA)

(Balakrishnama and Ganapathiraju, 1998), Random Forest (RF)

(Cutler et al., 2007), Neural Network (NN) (Hagan and

Demuth, 1999), and Support Vector Machine (SVM) (Noble,

2006), providing moderate accuracy in lodging detection.

Zhang et al. (Zhang et al., 2022) employ SVM with color and

texture features of UAV images for detecting wheat lodging. Liu

et al. (Liu et al., 2018) use SVM to differentiate between lodging

and non-lodging plants based on their color, texture, and

thermal infrared features. In a study conducted in (Zhang

et al., 2020), the GoogLeNet model is combined with RGB

images obtained from UAV for wheat lodging detection. The
TABLE 3 LodgeNet comparison with referenced articles.

Study Approach Input Data

Jiang et al. (2022) SegFormer-B1 RGB UAV images

Tang et al. (2022) PTCNet GaoFen-2 satellite images

Zhang et al. (2022) SVM+ResNet50 RGB UAV images

LodgeNet YOLOv8 Multi-spectral UAV images
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approach resulted in an accuracy rate of over 90%, which

necessitates improving the detection accuracy using other

approaches (Marsland, 2015). Our method is significantly

improved than many other published reports.

As shown in our study, deep learning network models are often

better than many traditional machine learning algorithms due to

their exceptional ability to learn complex patterns from large

amounts of data, their proficiency in handling unstructured data

such as images and text, and their capability to continuously learn

and improve from experience. These deep learning approaches are

increasingly used to improve the accuracy and efficiency of lodging

detection cereals and other crops (Krizhevsky et al., 2017). Using

computer vision and three deep learning methods (Faster R-CNN,

YOLOv2, and RetinaNet), corn lodging information was extracted

from UAV RGB images in (Hamidisepehr et al., 2020). In a similar

approach, the extraction of wheat lodging from UAV RGB images

was performed by (Li et al., 2019) using a comprehensive feature

model based on two single features. The authors utilized a K-means

algorithm to create a multi-temporal lodging area extraction

method. (Chauhan et al., 2019b) used a multi-resolution

segmentation algorithm and nearest neighbor classification

algorithm with UAV multi-spectral images to distinguish different

categories of lodging wheat, achieving an overall accuracy of 90%.

Another study in (Cao et al., 2021) proposed a hybrid algorithm for

extracting wheat lodging based on a watershed algorithm and

adaptive threshold segmentation. Despite the high recognition

accuracy of machine learning techniques in UAV lodging
FIGURE 12

The mean average precision mAP50 (0.952%) and mAP50-95 (0.648%).
Performance Lodging Severity

Accuracy: 0.965% No

F1, IoU: 0.853%, 0.743% No

Accuracy: 0.676% (SVM), 0.672% (ResNet50) No

mAP: 0.952% Comprehensive (Class 1-9)
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monitoring, their practical application is more complicated,

requiring expert selection of features as pointed out by (Yu

et al., 2023).

Existing approaches, such as ML and DL network models for

wheat lodging detection, lack the inclusion of lodging severity

information of wheat during detection and classification. The

proposed framework addresses this limitation by focusing on

wheat lodging severity levels, divided into nine classes ranging

from no lodging (Class 1) to severe lodging (Class 9). To our

knowledge, this is the first research work to detect and classify

wheat lodging severity levels into nine different classes. The study

finds that when classifying the severity of wheat lodging, the mAP50

for the model is recorded as 0.952% and 0.641% for mAP@50-95.

These mAP values helped in real-time wheat monitoring of lodging

severity levels, showing the effectiveness of the model and its

capability in its application. The main contributions of the

proposed framework as outlined below, can significantly impact

various fields of investigation.
Fron
• The dataset used in the study comprises 2000 multi-spectral

images.

• To ensure accurate detection and classification of wheat

lodging resistance, an image registration technique was

developed to align the bands of the multi-spectral images.

This allows for generating a single RGB (3-2-1

combination) image, which was used for detecting and

classifying wheat lodging resistance. This technique

eliminates any potential distortion or misalignment in the
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images, resulting in a more precise analysis of the severity

levels of wheat lodging.

• Image enhancement techniques were employed to improve

the quality of the images, highlighting the important

features for wheat lodging detection.

• A state-of-the-art deep learning technique called YOLOv8

was utilized to detect and classify wheat lodging severity

levels. This method employs a CNN architecture for image

object detection.

• An automated framework called ‘LodgeNet ’ was

developed to detect and classify the severity of wheat

lodging class-wise. The model was trained on a large

dataset of wheat lodging images, enabling it to

accurately classify the severity level of the lodging

detected in new images. ‘LodgeNet’ automatically

displays the severity levels of wheat lodging class-wise,

that could provide an efficient and automated solution

for researchers and farmers to detect and classify the

severity of wheat lodging accurately. ‘LodgeNet’ greatly

improves the accuracy and efficiency of crop monitoring

and management practices in agriculture.
The proposed framework also utilized QGIS to show the

accurate detection and classification of wheat lodging. The

framework was divided into two main steps. The first step of

the framework involved inputting the orthomosaic of the wheat

field, which then marks points on each plot of the field. Clicking

on any point brings up the corresponding image of that plot
FIGURE 13

Clicking on a point, pop up the respective plot image with wheat lodging class.
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Lodging class alongside the marked points for each field plot.
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with the detected and classified classes (severity levels) of wheat

lodging. The second step presents the lodging class alongside

the marked points for each field plot. An example of the

detected and classified classes of wheat lodging can be seen in

Figures 13, 14. Compared to the manual rating, the accuracy of

detection with the new approach seems reliable and could help

breeders to take lodging notes with a single field image of

several plots at different plant growth stages, saving time,

resources and effort. This approach enables farmers to easily

and efficiently monitor their crops, leading to improved

management practices and increased crop yields.
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5 Conclusion

In this research, we introduced LodgeNet, a framework that

combines advanced techniques such as image registration, image

enhancement, and deep learning for detecting wheat lodging with

high precision that could classify the severity levels of wheat lodging,

similar to the manual rating protocol used during wheat phenotyping.

The development of this automated system could provide a

streamlined and efficient solution for wheat breeders, farmers, crop

surveyors, and other stakeholders, transforming how crops could be

supervised and managed using modern high throughput approaches.
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The successful implementation of this framework offers immense

potential to identify lodging resistance in wheat germplasm and

develop better varieties for the farmers by facilitating more precise

wheat monitoring and management practices that could boost grain

yields and improve operational efficiency. Furthermore, the techniques

and methodologies can be applied across various crops and in diverse

agricultural scenarios. For example, our image registration and

enhancement techniques have the potential to be utilized for

identifying and categorizing diseases in wheat, simplifying wheat

screening for different traits using single image data sets. Being

simple but powerful, LodgeNet could also be tailored for other crops

like rice, corn, or soybeans, providing researchers, crop estimators, and

growers with an automated and efficient means of monitoring crop

health and managing potential issues. This research could aid

significant progress in crop management through image-based crop

phenotyping, underscoring the importance of utilizing advanced

technologies and methods in agriculture to enhance efficiency

and productivity.
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