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Forest gaps play an important role during forest succession in temperate forest

ecosystems.However, thedifferences in spatial distributionand replacementpatterns

of woody plants (trees and shrubs) between primary and secondary forests remain

unclear during the gap-filling processes, especially for temperate forests inNortheast

China. We recorded 45,619 regenerated trees and shrubs in young gaps (<10 years),

old gaps (10~20 years), and closed forest stands (i.e., filled gaps) in the primary

broadleavedKoreanpine (Pinus koraiensisSieb. Rt Zucc.) forests vs. secondary forests

(degraded fromprimary forests). Thegap-fillingprocessesalonghorizontal (Cartesian

coordinate system)andvertical (lower layer:0~5m,mediumlayer: 5~10m,andupper

layer: >10 m) dimensions were quantified by shade tolerance groups of trees and

shrubs. We found that gap age, competition between species, and pre-existing

regeneration status resulted in different species replacement patterns within gaps in

primary vs. secondary forests. Gap formation in both primary and secondary forests

increased species richness, with 33, 38, 39, and 41 in the primary closed stands,

primary forestgaps, secondaryclosedstands, andsecondary forestgaps, respectively.

However, only 35.9% of species in primary forest gaps and 34.1% in secondary forest

gaps successfully reached the upper layer. Based on the importance values (IVs) of

tree species across different canopy heights, light-demanding trees in the upper layer

of the secondary forestswere gradually replaced by intermediate and shade-tolerant

trees. In the primary forests, Korean pine exhibited intermittent growth patterns at

different canopy heights, while it had continuous regeneration along vertical height

gradients in the secondary forests. The differences in Korean pine regeneration

between the primary and secondary forests existed before gap formation and

continued during the gap-filling processes. The interspecific competition among

different tree species gradually decreased with increasing vertical height, and

compared to the primary forests, the secondary forests showed an earlier

occurrence of competition exclusion within gaps. Our findings revealed the species

replacement patterns within gaps and provided a further understanding of the

competition dynamics among tree species during the gap-filling processes.
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1 Introduction

The escalating issue of forest degradation has emerged as a

formidable global challenge confronting humanity (Global Forest

Resources Assessment, 2020). How to guide degraded forests toward

positive succession has become a global concern (Hua et al., 2022).

Degraded forests, such as secondary forests, often require forest

management to accelerate their restoration to the primary forest with

more stability and resilience. Strategies like near-natural forest

management, which imitates forest gaps, have been proposed to

enhance species diversity and guide positive succession in secondary

forests (Jacquemyn et al., 2003;Wang et al., 2021; Lu et al., 2023). Forest

gaps, caused mainly by strong winds, lightning storms, or artificial

disturbances, have the potential to alter the above- and below-ground

resources in closed forests (McClure and Lee, 1993; Jacquemyn et al.,

2003; Seidl et al., 2017), thereby affecting the structural and

compositional progression of the forest (Hale, 2003; Seidl et al., 2017).

The intermediate disturbance hypothesis suggested that

disturbances, such as forest gaps, promote the coexistence of

species with different life histories (Hubbell et al., 1999; Lara-

Romero et al., 2016). The spatial distribution pattern of tree

species in canopy gaps represents the competition they are

experiencing within the gaps and can also help researchers

predict the future development trajectory of canopy gaps

(Jacquemyn et al., 2003; Owen et al., 2017; Wang et al., 2017;

Omelko et al., 2018; Wang et al., 2021). Tree species with different

shade tolerance will survive in different positions within the forest

canopy (Lu et al., 2018). For example, Poznanovic et al. (2014)

observed that intermediate shade-tolerant Betula alleghaniensis was

mainly located in the south part of the nine-year-old large gaps.

Meanwhile, light-demanding P. tabulaeformis preferred

regenerating in the northeastern part of the gap created seven

years ago (Wang et al., 2017). Understanding the spatial

distribution patterns of different species within forest gaps can

provide important clues regarding the future development trends of

the forest and serve as a scientific basis for ecological conservation

and management (Agyeman et al., 1999; Thom and Seidl, 2016).

Moreover, the resource competition theory suggests that the

horizontally and vertically spatial distribution patterns of species are

also determined by resource competition (Larocque et al., 2013;

Nakashizuka and Matsumoto, 2002). The types of competition

experienced by individual trees vary at different vertical heights within

canopy gaps (Dai et al., 2018). In the lower layers of canopy gaps, shrubs

often compete for growing space and negatively impact the growth of

tree seedlings (Kern et al., 2012). In the middle and upper layers of

canopy gaps, the competition between tree species gradually decreases,

and the spatial distribution pattern of trees is controlled by resource

heterogeneity at the landscape scale (Raymond et al., 2006; Wang et al.,

2021). Only a few tree species can successfully grow from lower to

middle and upper layers (Zhu et al., 2021). The average tree species

regeneration from a horizontal perspective may lead to a limited

estimation of the progress of tree species succession in forest gaps (Lu

et al., 2023). The vertical arrangement of temperate forests holds

significant importance once the trees have been established

(Nakashizuka and Matsumoto, 2002). According to Hao et al. (2007),

the vertical structure plays a crucial role in the regeneration of
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populations and the dynamics of communities. It also provides

valuable insights into population dynamics and competition in

different height layers. Therefore, it is necessary to have a clear

understanding of the horizontal and vertical regeneration processes of

different shade-tolerant tree species within forest gaps (Martin et al.,

2021; Lu et al., 2023).

Secondary forests formed due to severe disturbances in primary

forests account for over 70% of the forests in Northeast China (Zhu

et al., 2021). Unlike primary forests, secondary forests have the

characteristics of destruction or loss of basic structure and inherent

functions (Finegan, 1996), decreased biodiversity (Turner et al., 1997),

weakened stability and resilience (Finegan, 1996), and low system

productivity (Guariguata and Ostertag, 2001). For example, Zhang

et al. (2009) observed that the Shannon diversity of the primary

broadleaved Korean pine forest was higher than that in the

secondary forest. Previous studies indicated that it would take over

200 years for secondary forests to restore functions similar to primary

forests under natural development (Wang et al., 1993). The current

issue for forest managers is how to guide the positive succession of

secondary forests to restore the forest structure to resemble that of the

primary forests. In recent decades, forest managers have developed

various forest management programs, especially simulating natural gap

disturbances, to accelerate the restoration of degraded forests and

enhance ecosystem services (Kern et al., 2017). Consequently,

understanding the process and mechanisms of gap regeneration is

important to achieve the management goals of promoting natural

forest succession (McClure and Lee, 1993; Raymond et al., 2006).

This study aims to compare the horizontal and vertical

regeneration patterns of tree species with different shade tolerances

(i.e., light-demanding, intermediate, and shade-tolerant) in the

primary and secondary forests during the gap-filling processes. We

used point pattern analysis methods to explore the spatial distribution

patterns of trees and shrubs at different vertical layers and the

underlying implications for competition. We investigated all trees

and shrubs within 12 natural gaps in the primary and secondary

forests. The specific questions were: (1) How does the regeneration of

tree species change along vertical dimensions during gap-filling in

primary vs. secondary forests? (2) How do tree species of different

shade tolerance fill the gaps regarding distribution patterns at

different vertical layers? (3) How does the interspecific competition

change at different vertical layers in primary vs. secondary forest

gaps? We hypothesized that: (1) As the gap closure process

progresses, the IV of trees in both forest types will increase, but

species-specific differences exist. (2) Light-demanding species

dominate in the early stages of gap formation, while intermediate

and shade-tolerant species gradually replace part of the light-

demanding species. (3) Compared to primary forests, competition

for trees in secondary forests might be less intense.
2 Materials and methods

2.1 Study area

This study was carried out within the Lushuihe Forest Bureau,

situated in the northwestern region of the Changbai Mountains (127°
frontiersin.org
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29’-128°02’ E, 42°20’-42°40’ N). The study area is characterized by

mixed broadleaved Korean pine forests, and it experiences a typical

temperate continental climate. The region has an average annual

temperature of 2.8°C and an annual precipitation ranging from 800

to 1040mm. The elevation in this region ranges from 600 to 800meters

above mean sea level, and the soil is typical mountainous dark brown

forest soil (Zhao et al., 2013). Before experiencing significant

disturbances, the forest type in the Lushuihe Forest Bureau was the

primary broadleaved Korean pine forest. The dominant species were

Korean pine and broadleaved trees such as Tilia amurensis, Acer mono,

Fraxinus mandshurica, and Juglans mandshurica (Zhao et al., 2013).

The secondary forest in our study area is derived from natural

regeneration after clear-cutting and is dominated by Betula

platyphylla. In 1998, the Chinese government initiated implementing

Natural Forest Conservation Projects, and the Lushuihe Forestry

Bureau began prohibiting timber logging (Yu et al., 2019).
2.2 Gap selection

We set up six treatments to compare the gap regeneration in

different development stages, including primary young gap (PYG),

primary old gap (POG), primary closed stand (PCK), secondary

young gap (SYG), secondary old gap (SOG) and secondary closed

stand (SCK). Each treatment was repeated three times.

We adopted the belt transect method in the field investigation in

2019. A total of 198 and 30 forest gaps were pre-selected in the

primary broadleaved Korean pine forest and in the secondary birch

forest, respectively. The purpose of our pre-selection was to identify

ideal forest gaps (and CK plots). For all pre-selected gaps, we

measured gap size, recorded gap shape, and estimated gap age

using tree ring analysis, and then we decided which gap could be

used. The minimum distance between any two sample plots was

more than 100 m, and there were no other gaps between any two

selected plots. Then, we only selected forest gaps that meet the

following conditions for field surveys: (1) The diameter-to-height

ratio of forest gaps >0.73 (medium gap and large gap); (2) No

obvious signs of human or animal disturbances; (3) The tree core

shows obvious growth and release, which can accurately determine

the age of forest gaps (Rozas, 2003). Consequently, six medium and

large gaps were selected from the primary broadleaved Korean

pine and secondary forests. Three gaps in the primary forest were

440.7 ± 153.7 m2 on average with a gap age of 6.3 ± 1.7 years as the

PYG, and three gaps were 612.7 ± 115.2 m2 on average with a gap

age of 15 ± 1.6 years old as the POG. Three gaps in the secondary

forest were 395.6 ± 80.7 m2 on average with a gap age of 6 ± 1.4

years old as the SYG, and three gaps were 417.6 ± 78.6 m2 on

average with a gap age of 14 ± 2.2 years old as the SOG. We selected

three control plots (30 m × 30 m) in PCK and SCK as the plot filled

and closed through forest gaps.
2.3 Gap regeneration surveys

We recorded a total of 45,196 trees and shrubs with height

>0.1 m in the plots, documenting all their species, coordinates,
Frontiers in Plant Science 03
heights, diameters at breast height (DBH) or root collar diameter

(RCD), and other relevant indicators. We divided them into three

height groups, including the lower layer (height: 0~5 m), medium

layer (height: 5~10 m), and upper layer (height: >10 m) within the

PYG, POG, PCK, SYG, SOG, and SCK plots. We established a

coordinate system with the center of the forest gap as the origin (0,

0). The north-south direction of the forest gap is the Y-axis, and the

east-west direction of the forest gap is the X-axis. To map the

regeneration locations more accurately, we divided every plot into

100 subplots (3 m × 3 m) to avoid missing individuals during the

investigation. An ultrasound-based positioning instrument

(Fieldscout TDR 350, Haglöf PosTex Långsele, Sweden) was used

to acquire the precise coordinates of each individual, which could

improve the accuracy of spatial point pattern analysis results.
2.4 Statistical analysis

2.4.1 Regeneration within gaps
To assess the transition patterns of tree species in different

stages of gap closure between primary and secondary forests, we

calculated the importance values of different tree species in PYG,

POG, PCK, SYG, SOG, and SCK. In order to explore the

regeneration dynamics of different tree species at varying vertical

heights during different stages of gap closure in primary and

secondary forests, we computed the importance values of different

tree species in lower layer (height: 0~5 m), medium layer (height:

5~10 m) and upper layer (height: >10 m) within the PYG, POG,

PCK, SYG, SOG, and SCK plots. The importance value was

calculated with the following equations:

IV =
RD + RF + RC

3

IV =

ni

os
i=1

ni *100 +
ai

os
i=1

ai *100 +
fi

os
i=1

fi *100

3

where RD is the relative dominance, RF is the relative frequency,

RC is the relative coverage, ni is the number of individuals of the ith

species, ai is the basal area belonging to the ith species, fi is the

number of quadrats the ith species appeared, and S is the total

number of species.

To assess the regeneration process in gaps of different vertical

layers, we calculated the species richness in the lower layer (height:

0~5 m), medium layer (height: 5~10 m), and upper layer (height:

>10 m) of PYG, POG, PCK, SYG, SOG, and SCK plots. The species

richness was calculated as the number of species in each plot.

To assess the regeneration process in gaps of different ages, we

calculated the Shannon diversity index of PYG, POG, PCK, SYG,

SOG, and SCK plots. The Shannon diversity index was calculated

with the following equations:

H = −o
s

i=1
(Pi)(lnPi)

where Pi is the proportion of the entire species community, and

S is the total number of species in plots.
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To assess the regeneration growth in gaps of different ages, we

analyzed the height differences of light-demanding, intermediate,

and shade-tolerant species in PYG, POG, PCK, SYG, SOG, and SCK

plots. One-way ANOVA was used to test the effects of gap age on

the heights of woody species. Tukey’s post hoc tests were used to test

the differences between different gap ages using SPSS (SPSS

software, 22nd edition, Chicago, USA).

2.4.2 Univariate and bivariate spatial patterns
Point pattern analysis is widely applied in describing gap

regeneration patterns (Poznanovic et al., 2014; Wang et al., 2017).

The univariate spatial patterns of trees at the lower layer (height:

0~5 m), medium layer (height: 5~10 m), and upper layer (height:

>10 m) in PYG, POG, PCK, SYG, SOG, and SCK plots were

analyzed using g(r). Point pattern analysis was conducted using

the Programita software (Wiegand et al., 2016).

Many previous studies used K(r) to calculate the spatial pattern,

but K(r) has a nature of cumulation (Ripley, 1977). The pair

correlation function g(r) is widely used because of its non-

cumulative character. The pair correlation function employs

annuli as distance categories rather than circles. g(r) is related to

the K(r) (Ripley, 1977) as follows:

K(r) =
s

n(n − 1)omonI(dmn ≤ r)emn

g(r) =
d
dr

K(r)=(2pr)

where s is the area of the forest gaps, n is the number of points,

m and n are all ordered point pairs, I is an indicator (1 if dmn ≤ 1),

dmn is the distance between two points, and e is an edge correction.

Points above the upper g(r) envelope represent clustered, and points

below the g(r) envelope represent regularity. The g(r) envelopes

were derived from 199 Monte Carlo simulations of CSR (Wiegand

et al., 2016).

The bivariate relationship between trees and shrubs in PYG,

POG, PCK, SYG, SOG, and SCK plots was analyzed by g12(r):

g12(r) =
d
dr

K12(r)=(2pr)

If the observed g12(r) was located above or below the simulation

envelope at a specific distance r, indicating the attraction or

repulsed pattern of shrubs and trees, respectively. If the observed

g12(r) was located in the simulation envelope, indicating the

independent relation of shrubs and trees. In the context of point

pattern analysis, the significance level of 199 Monte-Carlo test

was 0.02.

2.4.3 Kernal density estimation for density
Kernel density estimation (KDE) was used to analyze the

density distribution of light-demanding, intermediate, and shade-

tolerant trees in lower, medium, and upper layers of PYG, POG,

PCK, SYG, SOG, and SCK (Langford and Unwin, 1994).

The KDE analysis, introduced by Bowman (1985), is a

nonparametric statistical method. The KDE analysis utilizes the

quadratic kernel function to represent a smooth surface for every
Frontiers in Plant Science 04
data point. The KDE analysis enables the computation of the

magnitude per unit area, as described by Silverman, 1986. The

kernel density estimator is defined as follows:

fr(x) =
1
pro

n
i=1S(

x − xi
r

)

where S is a non-negative function with an integral of 1, with an

average value of zero, p is the number of the points of trees and

shrubs (x), and r is the search radius (Silverman, 1986). The

research radius r is 1 m in our research. We converted the initial

coordinates of the trees and shrubs into a new coordinate system,

with the origin coordinates set at the center of each gap. These new

coordinates system effectively represented all 45,196 trees and

shrubs in the plots, with the forest gap center points as a

common anchor point. Trees and shrubs were first grouped by

layers (lower layer, medium, and upper layer) and shade-tolerance

(light-demanding, intermediate, and shade-tolerant) and were

aligned based on the coordinates of the center of each gap. Then,

we ran kernel density estimates for the 12 gaps and 6 closed forest

stands. ArcMap 10.1 (ESRI, 2012) was used to calculate the kernel

density estimates for PYG, POG, PCK, SYG, SOG, and SCK.
3 Results

3.1 General regeneration patterns

Generally, the number of species in the PCK, the primary forest

gap (PYG and POG), SCK, and the secondary forest gap (SYG and

SOG) were 33, 39, 38, and 41, respectively (Table S2). The Shannon

diversity index of PCK, PYG, POG, SCK, SYG, and SOG were 2.50,

2.41, 2.75, 2.54, 2.08 and 2.67, respectively. However, the IV changes

in tree species in the primary and secondary forests were quite

different (Table S1). According to the data in Figure 1, the IV of

Korean pine in the primary forest gap was far lower than that in the

secondary forest gap, which was 1.4% in PYG, 2.3% in POG, 6.9% in

SYG and 10.4% in SOG, respectively. Acer spp. maintained high IV

in the gap plots and control plots of the primary forest or secondary

forest (Figure 1).
3.2 Regeneration pattern in different layers

In both primary and secondary forest gaps, there was a trend of

decreasing species richness with increasing vertical height

(Figure 2). However, the IV of some species in primary and

secondary forests showed a distinct pattern across lower, medium,

and upper layers. As was apparent from Figure 2, Korean pine had

the highest importance value in the medium layer of secondary

forest gaps but barely had any regeneration in primary forest gaps.

Acer spp. had a high proportion in three layers of primary and

secondary forests. Surprisingly, the importance value of B.

platyphylla in the upper layer of the SCK was 50%, while its

importance value in the lower and medium layers of the SCK

tended to be zero. Similar results were also found in the

primary forest.
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From the pattern analysis results in Figures 3, 4, it can be seen

that trees tended to randomly distribute as the height layer

increased. Trees in the upper layer were spatially random across

all scales (100%) examined in PYG, POG, PCK, SYG, SOG, and

SCK (Figures 3, 4). Similarly, trees in the lower layer were clustered

at all distances (100%) examined in PYG, POG, PCK, SYG, and

SOG, and 50% scale in SCK. However, the trees in the medium layer

clustered in PYG, POG, and PCK at a small scale (Figure 3),

contrasting with a random distribution at 100% distances in the

medium layers of SOG and SCK (Figure 4). The density distribution

of light-demanding and intermediate trees was denser than shade-

tolerant trees (Figure 5). As the process of gap closure advanced,

there was a gradual decline in the highest density of light-

demanding trees in the lower layer appealing, with a discernible

pattern of decreasing from 8-11 stems m-2 in the PYG to 3-4 stems

m-2 in the POG, and ultimately reaching 1-2 stems m-2 in the PCK

(Figure 5). However, the density of shade-tolerant trees in the lower

layer of secondary forests remains relatively stable (Figure 5). In

both primary and secondary forest gaps, there was a similar pattern

of the density of intermediate trees increasing with the age of the

gaps in the lower layer regeneration (Figure 5). The height of upper

layer trees increased gradually with the gap closure of primary and

secondary forests (Figures 6, 7). However, the average height of

light-demanding, intermediate, and shade-tolerant trees remained

stable in the medium layer of primary forest and secondary forest

(Figures 6, 7). Competition between trees and shrubs in the lower

layer showed a small-scale positive correlation and a large-scale

negative correlation in PYG, SYG, and PCK (Figure 8). The mutual
Frontiers in Plant Science 05
exclusion between trees and shrubs in primary forests intensified

with forest succession. Compared with secondary forests, the

competition relationship between trees and shrubs was more

obvious in primary forests (Figure 8).
4 Discussion

4.1 General regeneration patterns

We found that forest gaps increased species richness in both

primary and secondary forests. Gap formation increases light

penetration, creating opportunities for plants to thrive and for

new seedlings to establish (Abd Latif and Blackburn, 2010). This

led to a greater variety of habitats and resources, ultimately

supporting a more comprehensive range of species in the forest

ecosystem (Thom and Seidl, 2016; Lu et al., 2023). In accordance

with the findings of Liu et al. (2003), our study also observed a

similar pattern of Shannon diversity index in primary and

secondary forests, namely: PYG<PCK<POG and SYG<SCK<SOG.

This pattern can be explained by the early stages of forest gap

formation, during which dominant species had more regeneration

compared to other species, resulting in a lower Shannon diversity

index in young gaps. As the forest gaps aged, the diversity of tree

species increased, leading to a rise in the Shannon diversity index

(Liu et al., 2003). Our results showed that the variation in

importance values of the same tree species differs between plots

in the primary and secondary forests. The importance value of
A B

FIGURE 1

Importance value (IV) of all species in (A) primary and (B) secondary forest. PYG, primary young gap; POG, primary old gap; PCK, primary closed
forest; SYG, secondary young gap; SOG, secondary old gap; SCK, secondary closed forest.
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Korean pine was much lower in the primary forest gaps than in the

secondary forest gaps. To investigate the reasons, we inferred the

advanced regeneration of Korean pine before gap formation based

on the calculated age of the Korean pine (Ge et al., 2022). The

advantage of Korean pine regeneration in the secondary forest was

already present before gap formation (Figure S1). After gap

formation, the regenerating Korean pine maintained this

advantage (Liu and Li, 1987). Previous results showed a positive

correlation between the growth of Korean pine seedlings and

canopy transparency (Zhang et al., 2013). The light intensity in

the secondary forest gap was higher than in the primary forest gap,

which led to the good regeneration of Korean pine in the secondary

forest gap. Fan and Xu (2019) claimed that habitat filtering and

intraspecific density constraints simultaneously affect seedling

survival. The other reason for the poor regeneration of Korean

pine in the primary forest might be the high proportion of Korean

pine within the primary broadleaved Korean pine forest, resulting
Frontiers in Plant Science 06
in the conspecific negative density dependence phenomenon (Fan

et al., 2017; LaManna et al., 2020).

Conversely, the importance value ofAcer spp. was notably high in

the forest gaps and closed stands of the primary forest, and a similar

trend was observed in the secondary forest. (Ye et al., 2014). Some

studies reported that the regeneration ofAcer spp. was not sensitive to

canopy disturbances (Yu and Hao, 1998), which was consistent with

our results. Although Acer spp. were not sensitive to the formation of

canopy gaps in both primary and secondary forests, they had high

IVs in all plots. This suggested that Acer spp. might become the main

tree species in the mixed broadleaved Korean pine forest.
4.2 Regeneration pattern in different layers

The proportion of importance values of Korean pine at different

height layers in the primary forest plots differed from those at
FIGURE 2

Importance value (IV) of all species in lower layer (0~5 m), medium layer (5~10 m), and upper layer (>10 m) in primary and secondary forest. PYG,
primary young gap; POG, primary old gap; PCK, primary closed forest; SYG, secondary young gap; SOG, secondary old gap; SCK, secondary
closed forest.
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different height layers in the secondary forest plots. It was consistent

that the Korean pine’s medium layers (Li and Wang, 1986) were

barely absent in the primary forest gap and closed stand (Zhang

et al., 2022). In our research, the importance value of Korean pine

was relatively high in the medium layer of secondary forests but

relatively low in the lower and upper layers. This meant Korean

pine continuously filled gaps from the lower layer to the medium

layer and then to the upper layer in secondary forests. The species

richness of shrubs and trees in the understory of secondary forests

was high. As the fill-in process of the medium and large forest gaps,

only several tree species could successfully ascend from the lower

layer to the medium layer and then extend from the medium layer

to the upper layer, ultimately completing the filling process of the

canopy. Our results showed that the IV of shade-tolerant trees in

the upper layers of the SCK (1.7%) was far lower than that of shade-

tolerant trees in the upper layers of the PCK (14.8%). In the lower
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layer of the primary forest gap, there was a decline in the density of

light-demanding trees as the age of the forest gap increased.

Conversely, there was an increase in the density of intermediate

and shade-tolerant trees. Similar to our research findings, in canopy

gaps within temperate hardwood forests in Connecticut, USA, there

was also an observed phenomenon where light-demanding species

initially dominated but were eventually replaced by shade-tolerant

species (Martin et al., 2021). This phenomenon was likely caused by

the suitable light conditions after gap formation, promoting the

growth of light-demanding species, which subsequently made the

light conditions more favorable for the growth of shade-tolerant

tree species (Martin et al., 2021). However, there were also studies

suggesting that the differences in growth rates between tree species

with varying light requirements were insufficient in the short term

to result in the complete replacement of one species by another

(Guldin and Lorimer, 1985; Liptzin and Ashton, 1999). Therefore,
FIGURE 3

Univariate spatial pattern analysis of all trees in the lower (0~5 m), medium (5~10 m), and upper layer (>10 m) in primary forests. Each point pattern
analysis was repeated three times, with N representing the number of trees and P representing the difference between simulation values and
observed values, g(r) function for 199 Monte Carlo simulations of the null model with a 98% confidence envelope for a completely random
point process.
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based on the current trend of species importance value changes, we

predicted that the proportion of shade-tolerant trees in the upper

layer would increase with forest succession.

The formation of gaps had expanded the scale of tree aggregation,

with the aggregation scale of medium layers ranging from 0-1m in

PCK,0-4 m in PYG, and 0-6 m in POG. Given these variations in

scale, it is necessary to focus on the competitive individuals of the

dominant tree species within these ranges and promptly implement

forest management practices (Wang et al., 2017). Ripley (1977)

suggested that an aggregated distribution pattern implied that

individual trees were still engaged in intense competition, while a

random distribution pattern was the consequence of community-

level competition. Our research findings suggested that there was still

competition among trees with different scales in the medium layer of

primary forest gaps. The intensity of this competition was greater

within old forest gaps compared to young forest gaps and control
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plots. In the medium layer of older gaps and closed stands of

secondary forests, trees had completed their competition and

exhibited a random distribution pattern. Some studies suggested

that the spatial pattern of trees was related to the gap size. For

example, Wang et al. (2017) indicated that as the gap size increased

(from 49.3 m2 to 185.8 m2), the aggregation of Chinese pine in forest

gaps increased. Other researchers argued that the aggregated

distribution was due to heterogeneity within the study area or the

dispersal patterns of seeds (Grubb, 1977; Hubbell, 2001). Our

findings indicated that the gap formation in both primary and

secondary forests did not affect the clustered distribution in the

lower layer and random distribution in the upper layer. The likely

reason for the difference in distribution patterns in the medium layer

of primary and secondary forest gaps was that the growing conditions

in secondary forests were more suitable for tree growth, while the

resources within primary forest gaps were limited.
FIGURE 4

Univariate spatial pattern analysis of all trees in the lower (0~5 m), medium (5~10 m), and upper layer (>10 m) in secondary forests. Each point
pattern analysis was repeated three times, with N representing the number of trees and P representing the difference between simulation values and
observed values, g(r) function for 199 Monte Carlo simulations of the null model with a 98% confidence envelope for a completely random
point process.
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The differences in height and density distribution across vertical

layers also indicated differences in the primary and secondary forest

regeneration processes (Tesfaye et al., 2010). The average height of

shade-tolerant trees in the lower layer of the POG was significantly

higher than that in the PYG and PCK. With the gap-filling progress,

the density distribution of light-demanding trees gradually

decreased in the lower layer. Similarly, the average height of

intermediate trees in the lower layer of SOG was significantly

higher than that in the SYG and SCK. However, the density

distribution of intermediate trees in the lower layer remained

unchanged. These trends indicated that light-demanding tree

species were more likely to access the medium layer at an earlier

stage within the lower layer of primary forest gaps. Theoretically,

differences in tree height growth contributed to niche
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differentiation, ultimately allowing for the coexistence of multiple

species (Dekker et al., 2009). Lu et al. (2023) observed a significant

decrease in the density of light-demanding species in the lower

layer, suggesting a lack of new members to complement the

population. Consequently, it can be inferred that light-demanding

species may only have a single opportunity for success, but

intermediate species maintain continuous renewal in forest gaps.
4.3 Competition between trees and shrubs

Our findings indicated that the correlation between shrubs and

trees varied with scale, exhibiting a trend of positive correlation at

small scales in PYG, POG, PCK, SYG, SOG, and SCK and negative
A

B D

C

FIGURE 5

Mean kernel stem density estimates for light-demanding, intermediate, and shade-tolerant species in the lower (0~5 m), medium (5~10 m), and
upper layer (>10 m). PYG, primary young gap; POG, primary old gap; PCK, primary closed forest; SYG, secondary young gap; SOG, secondary old
gap; SCK, secondary closed forest. (A) lower layer in primary forest, (B) medium and upper layer in primary forest, (C) lower layer in secondary forest,
(D) medium and upper layer in secondary forest.
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correlation at large scales in PYG and PCK. Previous research

showed that the correlation pattern at small scales was attributed to

biological characteristics (Holmgren et al., 2015). Our research

indicated that the formation of forest gaps did not change the

positive or independent relationship between shrubs and trees on a

small scale (0-4 m). Some studies also suggested that the presence of

shrubs promoted the regeneration of trees (Holmgren et al., 2015;

Urza et al., 2019). Shrubs could relieve non-biological stress by

reducing solar radiation, wind speed, and soil temperature, thereby

reducing water loss caused by plant transpiration and soil moisture

loss caused by evaporation (Lortie and Cushman, 2007). Shrubs

could also inhibit tree growth by blocking moss’s direct inhibitory

effect on them (Limpens et al., 2014). In addition, shrubs could
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indirectly promote the growth of tree seedlings by protecting them

from herbivorous animals (Kern et al., 2012). However, the negative

correlation between trees and shrubs at a large scale in the primary

forest plots was opposite to the positive association at a large scale in

the secondary forest plots. This could be related to the differences in

environmental conditions within the primary and secondary

forests. The correlation effect at large scales was due to

environmental factors (Holmgren et al., 2015). Beckage et al.

(2000) suggested that the high amount of shrub regeneration

directly offsets the quality of the regeneration environment

provided by forest gaps. Removing shrubs from primary and

secondary forests could promote seedling growth of shade-

tolerant trees (Yin et al., 2023). Once a seedling’s height growth
FIGURE 6

A one-way ANOVA of the height of trees with different shade tolerance (light-demanding, intermediate, and shade-tolerant) in primary forests. PYG,
primary young gap; POG, primary old gap; PCK, primary closed forest. Different letters represented significant differences at the p<0.05. Error bars
represented standard deviation.
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surpasses the shrub layer, it may have a higher chance of

successfully entering the canopy layer, as there are fewer potential

competitors in the forest gap. Understory shrubs reduced seedling

recruitment by shading out light (Kern et al., 2012). Therefore, in

both primary and secondary forest plots, shrubs protected tree

regeneration at small scales. However, at large scales, shrubs

competed with trees for growth resources in newly formed

forest gaps.
5 Conclusions

In this study, we used point pattern analysis to compare the

gap-filling processes of tree species in primary and secondary forest
Frontiers in Plant Science 11
gaps across horizontal and vertical dimensions. We found that the

formation of canopy gaps in both primary forests and secondary

forests indeed increased tree species richness. However, the main

tree species in the primary broad-leaved Korean pine forest, such as

Quercus mongolica, F. mandshurica, and T. amurensis, have not

regenerated well in the lower layer. Q. mongolica, F. mandshurica,

and T. amurensis could be planted in the forest management

process. At the same time, to end the aggregation of the trees in

the middle and lower layers of the forest gaps in advance, non-main

tree species could be removed to promote the growth of the main

trees. The regeneration advantage of Korean pine in secondary

forest plots existed before and after the formation of forest gaps. In

secondary forests, Korean pine successfully grew from the lower to

the upper layers, whereas it failed to do so in primary forests. The
FIGURE 7

A one-way ANOVA of the height of trees with different shade tolerance (light-demanding, intermediate, and shade-tolerant) in secondary forests.
SYG, secondary young gap; SOG, secondary old gap; SCK, secondary closed forest. Different letters represented significant differences at the p<0.05.
Error bars represented standard deviation.
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competition differed between tree species in canopy gaps of primary

and secondary forests manifested in the medium layer. In secondary

forest gaps, shade-tolerant and intermediate species replaced the

regeneration advantage of light-demanding trees. In primary forest

gaps, the regeneration advantage of intermediate trees were

consistently maintained. Our findings further explained the

spatial pattern of trees in the gap-filling phase.
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