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This study investigated the relationship between the observed and simulated

dissolved oxygen (O2) inventory changes in the North Pacific by analyzing an

observational dataset and the outputs of Coupled Model Intercomparison

Project Phase 5 and 6 (CMIP5/6) between 1958 and 2005. A total of 204

ensembles from 20 models were analyzed. Many of the models in the North

Pacific subarctic region have higher climatological O2 concentrations than

observed at deeper water depths. Therefore, the negative trend of O2

inventories tends to be larger, and in fact, several model ensemble members

have a larger negative trend in O2 inventories than observed. The variability

among model ensemble members is more influenced by the uncertainty due to

internal variability than by the uncertainty resulting from model dependency. An

inter-model empirical orthogonal function (EOF) analysis revealed that the

different simulated magnitudes of the negative O2 trend is closely associated

with the first EOF mode, and ensemble members with strong negative trends are

characterized by large oxygen reduction in the subarctic North Pacific, especially

around the boundaries between the North Pacific Ocean and the Sea of Okhotsk

as well as the Bering Seas. The modeled strong O2 decrease in the subarctic

North Pacific is consistent with the spatial pattern of the observed O2 trend.

Further analysis of climate models indicated that the O2 decrease in the subarctic

region was primarily caused by physical factors. This conclusion is supported by

the significantly high correlation is present between the potential temperature

and O2 inventory trend in the subarctic region, whereas an insignificant

correlation coefficient is present between dissolved organic carbon and the O2

inventory trend. However, the observations have a larger ratio of O2 inventory

trend to temperature trend than any of the ensembles, and thus the relationship

between O2 and temperature change in the subarctic North Pacific seen in the

CMIP5/6 simulations is not exact.
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1 Introduction

Ocean deoxygenation is a phenomenon in which dissolved

oxygen (O2) decreases in the global oceans due to global warming

(Bopp et al., 2002; Keeling and Garcia, 2002; Plattner et al., 2002;

Frölicher et al., 2009). Ocean deoxygenation is caused by a decrease

in the saturated oxygen concentration in the surface layer of the

ocean due to warmer temperatures and weakened ventilation as well

as mixing caused by enhanced stratification resulting from surface

warming and freshening (Helm et al., 2011). In the past half-

century, according to global observational data analysis, the global

O2 inventory decreased by approximately 2% of the global O2 (Ito

et al., 2017; Schmidtko et al., 2017).

No consensus is present on the accuracy of numerical

experiments with respect to the observed O2 decrease. Based on

the fact that discrepancies exist between observations and climate

models in the Coupled Model Intercomparison Project Phase 5 and

6 (CMIP5/6), CMIP5 models indicate only 0.6% global O2 decrease

compared with the 2% O2 decrease from observations over the past

half-century (Oschlies et al., 2018; Grégoire et al., 2021). By

contrast, Kwiatkowski et al. (2020) suggested that the global O2

concentration trend of multi-model ensemble mean of CMIP5/6

models is within the range of different observational estimates. The

lack of consensus implies that further studies are needed to

understand the relationships between the observed and simulated

O2 changes. In particular, it should be useful to compare

observations and models in an ocean basin where data availability

is relatively high and strong deoxygenation has been observed. For

these reasons, we focus our attention on the North Pacific.

The North Pacific has experienced strong ocean deoxygenation,

contributing approximately 18% of the global O2 decrease from

1960 to 2010 (Schmidtko et al., 2017). Compared with other regions

of rapid deoxygenation, such as the South Atlantic and Southern

Oceans, the North Pacific has better O2 data coverage (Ito et al.,

2017). This data availability suggests that the strong O2 decrease in

the North Pacific detected by global analyses (Ito et al., 2017;
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Schmidtko et al., 2017) would be reliable and consistent with

regional analyses conducted both on the western and eastern

sides of the basin. The majority of O2 in the northwestern North

Pacific generally decreased in the subsurface (200–600 m) (Ono

et al., 2001; Takatani et al., 2012; Sasano et al., 2015). In the eastern

North Pacific, O2 concentrations increased from the 1950s until the

1980s, after which they continued to decrease, with particularly

large declines near the surface (Whitney et al., 2007; Mecking et al.,

2008; Crawford and Peña, 2016; Ross et al., 2020). Observed O2

changes in the North Pacific are correlated with cycles of natural

variability, such as the Pacific Decadal Oscillation, North Pacific

Gyre Oscillation, and 18.6-year period tidal mixing (Andreev and

Baturina, 2006; Stramma et al., 2020). Moreover, O2 decreases in the

northwestern North Pacific are suggested to be attributed to a

decrease in sea ice (Nakanowatari et al., 2007; Sasano et al., 2018).

The spatial pattern of the O2 trend in the CMIP5 multi-model

mean is uniform compared with that of observations, and it does

not reproduce the distribution and amplitude of the observed O2

trend (Stramma et al., 2012; Oschlies et al., 2017); although, for both

global and North Pacific O2 concentrations, a high correlation exists

between CMIP5/6 model outputs and observed climatology in

subsurface waters (Takano et al., 2018; Figure 4 in Séférian et al.,

2020). It should be noted, however, that the CMIP model tends to

overestimate climatology in the North Pacific interior (Takano

et al., 2018). A hindcast model experiment to simulate the effects

of physical and biological factors on O2 changes in the North Pacific

showed that O2 variability is dominated by ventilation and

circulation, and that the effects of biological factors are limited to

30°N–40°N (Deutsch et al., 2006). Furthermore, a hindcast

experiment conducted with the Community Earth System Model

experiment showed that O2 changes in the North Pacific are caused

by Pacific Decadal Oscillation-linked changes in seawater

temperatures that alter the depth of the isopycnal surface (Ito

et al., 2019). However, it has not been investigated whether

climate models capture the observed North Pacific O2 changes

within the range of uncertainties of model ensemble members.
FIGURE 1

Vertical profile of regionally averaged O2 climatology in the subarctic region (40° to 65°N). Gray symbols represent the CMIP5 models and colored
symbols represent the CMIP6 models. The black line shows the climatology based on the Garcia et al. (2019).
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This study aims to determine whether the past O2 changes in

the North Pacific are consistent or not between observations and

CMIP model ensemble members. To this end, we compare the

observations with 204 ensembles of 20 CMIP5/6 models. Using

nearly 200 ensemble members, including six models with more than

10 ensemble members, allows us to assess how well climate models

capture the observed changes including internal variability, which

has a significant effect on O2 changes in the North Pacific. Whether

or not the observations are included in the ensemble members’

variability is important in assessing the validity of the models.

The uncertainty in climate simulations is generally considered

to arise from scenario uncertainty, model dependency, and internal

variability (Hawkins and Sutton 2009) and the partitioning of these

uncertainties should be studied for future ocean deoxygenation

(Frölicher et al., 2016). Because we use only historical simulations,

there is no scenario uncertainty, and thus only the internal

variability and model dependency are the sources of uncertainty.

To separate these two sources of uncertainty, large ensembles of

Earth system models are useful (Maher et al., 2021). The use of a

large ensemble in climate simulations allows for the internal

variability to be identified as differences among ensemble

members, as the initial conditions in climate simulations need

only be perturbed slightly to rapidly randomize climate changes

over specific time slices. Differences in response to external forcings,

that is, model dependency, can be identified by using the ensemble

mean as a common response among ensemble members (Deser

et al., 2014).

The remainder of this paper is organized as follows. In Section

2, we describe the observational dataset and the CMIP model

ensemble members used in this study. In Section 3, we first

compare the O2 inventory changes in the North Pacific of the

observations and those of the model ensemble members.

Subsequently, the characteristics of a common spatial pattern

among the model ensemble members are described. In Section 3,

environmental factors related to the dominant spatial pattern

among the model ensemble members are described. A discussion,

including a summary of this study, is presented in Section 4.
2 Data and methods

Gridded O2 concentration anomaly data produced by Ito et al.

(2017) are used in this study on a 1° × 1° scale, with data from the

surface to a depth of 1000 m, comprising 47 layers from 1950 to 2015

in annual intervals. The gridded anomaly data is generated using

simple objective mapping with a Gaussian weight function, whose

length scales are 1000 km and 500 km in the zonal and meridional

directions, respectively. If there are insufficient observations for a

grid, the grid value is considered as a missing value. Reflecting the

changes in the observation numbers in Boyer et al. (2013), the

temporal data coverage was relatively poor during the 1950s and

2010s. Thus, our analysis period is selected from 1958 to 2005, and

our analysis domain is the North Pacific (15°N–65°N, 140°E–100°W).

We analyze the outputs of 10 CMIP5 and CMIP6 models each,

that is, 20 models in total, for their historical simulations (Table 1).

The model outputs on the original grid shown in Table 1 are re-
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gridded to a common 1° × 1° grid both in latitude and longitude

using bilinear interpolation, and the vertical layers are interpolated

to match the 47 layers of WOD13 from the surface to 1000 m. To

determine whether artificial trends of substantial magnitudes

occurred in historical simulations, the O2 inventory trends in the

piControl experiment were examined. We compare the O2

inventory trends calculated by subtracting the trend of O2

concentrations for the entire period of the piControl experiment

from O2 concentration of the historical simulation for all model

ensembles with the O2 inventory trend calculated without

subtracting the trend from the piControl experiment. There is

little difference between the O2 inventory trends calculated using

these two methods. Thus, in this study, trend subtraction from the

piControl experiment is not conducted. We analyze ensembles

available for each model (Table 1) to assess the impact of internal

variability on the O2 changes. The total ensemble number is 204,

which is approximately one order of magnitude greater than the

number of ensemble members used in previous studies of CMIP5/6

analyses (23 models in Kwiatkowski et al., 2020).

To determine the extent of the influences of physical and

biological factors on O2 changes in the CMIP model, we examine

the potential temperature, sea ice volume, and dissolved organic

carbon (DOC). The change in potential temperature due to global

warming and internal variability is the primary driver of important

physical changes for O2 changes, including solubility, stratification,

circulation-driven changes, and vertical migration of isopycnal

surfaces. Another physical variable in this study is the sea ice

volume, which is related to the formation of dense shelf water in

the Okhotsk Sea which supplies O2-rich water to the northwestern

North Pacific. On the other hand, DOC is related to biological

factors, such as remineralization by microbial respiration, and the

relationships between DOC and O2 utilization in the interior ocean

have been widely studied (Doval and Hansell, 2000; Carlson et al.,

2010). Also, DOC is the variable with the most model outputs for

variables related to three-dimensional organic carbon in the model

ensembles used in this study. The outputs of each variable are listed

in Table 1.

For sea ice volume calculations, we use the same method as in

Notz and SIMIP Community (2020). For the CMIP6 models, when

a variable of sea ice volume is provided, sivoln, the short variable

name in ESGF, is directly used; if it was not provided, we multiply a

variable of sea ice volume per grid cell area, sivol, by the individual

grid point area. If neither sea ice volume nor value per grid cell area

is provided, we multiply the variables of sea ice concentration,

siconc, sea ice thickness, sithick, and individual grid point area. For

the CMIP5 models, only the variables of sea ice concentration and

sea ice thickness are provided; thus, we multiply these variables and

individual grid point areas. The trends in sea ice volume are

calculated using the maximum sea ice volume between November

and March each year.

In addition to the gridded observational O2 data and CMIP5/6

data, we use temperature and salinity data to compare the simulated

temperature changes with observations and calculate saturated

oxygen concentrations. The data are obtained from the World

Ocean Atlas 2018 (WOA18) (Garcia et al., 2019; Locarnini et al.,

2019; Zweng et al., 2019), Met Hadley Centre’s EN4.2 gridded data
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(Good et al., 2013), and Japan Meteorological Agency’s (JMA)

gridded data ver. 7.3.1 (Ishii et al., 2017). The outputs of all

variables are re-gridded to a common 1° × 1° grid and

interpolated to standard ocean depth. Because the WOA18 data

are provided only for decadal climatologies on an average per 10
Frontiers in Marine Science 04
years from 1955 to 2004, the trend is calculated for this period. We

use all available gridded data of temperature and salinity.

To estimate the observed O2 inventory in the North Pacific, we

use a same calculation method by Ito et al. (2017), using the

following equation:
TABLE 1 Coupled Model Intercomparison Project (CMIP) models used in this study.

Model Level/ horizontal grid Ensemble Temperature Sea ice DOC

CMIP5

CESM1-BGC
Gent (2011)

60/384×320 r1i1p1 ✓ ✓ ✓

GFDL-ESM2G
Dunne et al. (2013)

63/210×360 r1i1p1 ✓ ✓ ✓

GFDL-ESM2M
Dunne et al. (2013)

50/200×360 r1i1p1 ✓ ✓ ✓

HadGEM2-CC
Collins et al. (2011)

40/216×360 r1 - r3i1p1 ✓ ✓

HadGEM2-ES
Collins et al. (2011)

40/216×360 r1 - r4i1p1 ✓ ✓

IPSL-CM5A-LR
Dufresne et al. (2013)

31/149×182 r1 - r6i1p1 ✓ ✓ ✓

IPSL-CM5A-MR
Dufresne et al. (2013)

31/149×182 r1 - r3i1p1 ✓ ✓ ✓

IPSL-CM5B-LR
Dufresne et al. (2013)

31/149×182 r1i1p1 ✓ ✓ ✓

MPI-ESM-LR
Giorgetta et al. (2013)

40/220×256 r1 - r3i1p1 ✓ ✓ ✓

MPI-ESM-MR
Giorgetta et al. (2013)

40/404×802 r1 - r3i1p1 ✓ ✓ ✓

CMIP6

ACCESS-ESM-1-5
Ziehn et al. (2020)

50/300×360 r1 - r40i1p1f1 ✓ ✓

CanESM5
Swart et al. (2019)

45/291×360 r1 - r25i1p1f1 ✓

GFDL-ESM4
Dunne et al. (2020)

35/180×360 r1i1p1f1 ✓ ✓ ✓

IPSL-CM6A-LR
Boucher et al. (2020)

75/332×362 r1 - r33i1p1f1 ✓ ✓ ✓

MIROC-ES2L
Hajima et al. (2020)

52/200×360 r1 - r30i1p1f2 ✓ ✓

MPI-ESM1-2-HR
Müller et al. (2018)

40/404×802 r1 - r10i1p1f1 ✓ ✓ ✓

MPI-ESM1-2-LR
Mauritsen et al. (2019)

40/220×256 r1 - r30i1p1f1 ✓ ✓ ✓

MPI-ESM-1-2-HAM
Mauritsen et al. (2019)

40/220×256 r1 - r3i1p1f1 ✓ ✓ ✓

NorESM2-LM
Tjiputra et al. (2020)

53/385×360 r1 - r3i1p1f1 ✓ ✓ ✓

NorESM2-MM
Tjiputra et al. (2020)

53/385×360 r1 - r3i1p1f1 ✓ ✓ ✓
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IO0
2
(t) = (

Vobs(t)
Vtot

)−1
Z 

O0
2(x, t)dV ,

where IO0
2
(t) is the inventory of O2, O

0
2(x, t) is the anomaly of O2

concentration, x is the position vector, t is the year, Vtot is the total

volume of the ocean, and Vobs(t) is the integrated volume of grid cells

where the O2 data exists. Because grid cells where O2 data are available

differ annually, the correction factor ( Vobs(t)
Vtot

)−1 is applied. The volume

integration is based on the same standard depths of WOD13.

In this study, six models (ACCESS-ESM1-5, CanESM5, IPSL-

CM6A-LR, MIROC-ES2L, MPI-ESM1-2-HR, and MPI-ESM1-2-

LR) with more than 10 ensemble members are considered as models

with a large ensemble. The uncertainty of model dependency in the

O2 inventory trend is expressed as the standard deviation among

the ensemble means of each model. Furthermore, the uncertainty

associated with internal variability is calculated by averaging the

values of the standard deviations among the O2 inventory trends for

ensemble members of each model. We use an empirical orthogonal

function (EOF) analysis on the spatially distributed linear trend of

O2 concentration at each horizontal grid point averaged from the

surface to a depth of 1000 m across the 204 model ensemble

members (known as the inter-model EOF analysis (Zheng et al.,

2016; Zhang et al., 2023)) to determine representative O2 trend

patterns among ensemble members. We use this analysis because

we hypothesize that the representative pattern differences across

model ensemble members could be related to the varying

magnitudes of O2 inventory trends and influencing mechanisms

of the trends. The inter-model EOF is calculated as follows: First, for

each model ensemble member, the linear trend of O2 concentration

is calculated at each horizontal grid point, averaged from the surface

to depths of 1000 m as Z(x, y,m), where x is the latitude, y is the

longitude, and m is the number assigned to the model ensemble

members (i.e., 1 to 204). The multi-model ensemble mean

(MMEM), �Z(x, y), across 204 ensemble members of the trend is

subtracted from trends of respective ensemble members, yielding

deviations in trends of respective ensemble members as, Z0(x, y,m
) = Z(x, y,m) − �Z(x, y). The inter-model EOF analysis expands the

O2 trend deviation as follows:

Z0(x, y,m) = o
n=1

Xn(x, y)Mn(m),

where Xn(x, y) is the spatial pattern of the nth mode, andMn(m)

is the model loading, which represents the amplitude of the spatial

pattern for each model ensemble member.
3 Results

3.1 Oxygen inventory changes

First, we conduct a comparison to assess the consistency

between the O2 climatology in the models and observation. As

shown later, the subarctic region between 40°N and 65°N is the

dominant region in the models for the overall O2 change in

the North Pacific. Therefore, we present Figure 1 which shows

the vertical distribution of regionally averaged climatological O2

concentration in the subarctic region. At depths greater than 200 m,
Frontiers in Marine Science 05
most models have higher climatology than observation, and the

difference with observation increases as the depth increases until

around 700 m depth, where the decrease in observed O2 climatology

levels off. This inconsistency between the climatologies of models

and observations should be taken into account when comparing the

modeled O2 inventory trend with observations, because models may

not well reproduce water mass or O2 consumption by organisms.

The observed and simulated time series of O2 anomaly

inventories in the North Pacific are shown in Figure 2. The

observed O2 inventory generally increased until approximately

1990, followed by large negative anomalies in the late 1990s and

the early 2000s. An increase in the O2 inventory in the early period is

also found in previous global observational analyses (Garcia et al.,

2005; Ito et al., 2017). The record-low O2 concentrations occurred in

the Oyashio area during the late 1990s (Sasano et al., 2018), which are

also observed at Station P in the early 2000s (Whitney et al., 2007).

The simulated O2 inventories show large diversity in their temporal

evolution. The multi-ensemble mean increases until the mid-1980s

and later decreased; however, each ensemble member exhibits

substantial differences. Some ensemble members generally increase,

whereas others generally decrease, and some increase in earlier

decades and subsequently decreased. Regardless of the diversity of

simulated O2 inventories, no ensemble member shows large negative

anomalies in the late 1990s and the early 2000s, as observed.

To evaluate how representative model skill in the North Pacific

is for the global ocean, we examine the relationship between the

regional and global difference in the observed and model O2

inventory trend. The relationship is obtained by (i) computing

the O2 inventory trend difference for each ensemble member, and

(ii) computing the correlation coefficient for the relationship

between inventory trend difference in the North Pacific and the

global ocean. We find a correlation coefficient of 0.535, which is

statistically significant. However, it must be noted that the share of

total O2 observations in the north Pacific is about 10% greater than

the North Pacific’s share of the global ocean area.

Figure 3 shows the spatial patterns of the trends of the vertically

averaged O2 concentrations in the observations and MMEM values.

The observed trend is characterized by a strong decrease in the

subarctic North Pacific, including the northwest North Pacific,

especially around the Kuril Islands, between the Sea of Okhotsk

and the North Pacific; around the Bering Sea; in the Gulf of Alaska;

and offshore California, consistent with previous regional

observational studies for the northwest North Pacific

(Nakanowatari et al., 2007) and offshore California (Pierce et al.,

2012; Crawford and Peña, 2016). However, the spatial pattern of the

MMEM trend displays more uniformity than the observed trend.

Figure 4 shows the linear trends of the O2 inventory anomaly

from 1958 to 2005 in the observation and models. The observed

trend of -3.52×1012 mol/yr is thrice as large as the MMEM trend

(-1.02×1012 mol/yr). Although the observed trend is higher than the

simulated trend, it is included in the variability of the simulation. 19

model ensemble members out of 204 ensemble members (i.e., 9.3%)

have larger than observed negative O2 trends. Figure 4 also

suggested that internal variability plays an important role in the

uncertainty of the modeled O2 trend, as displayed by the positive

and negative trends for different ensembles (HadGEM2-ES, IPSL-
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FIGURE 2

Anomalies in the O2 inventory from the surface to depths of 1000 m in the North Pacific from 1958 to 2005. In panel (A), the red and cyan lines
indicate observed and MMEM inventories, respectively, whereas the shaded area indicates the range between the 95 and 5 percentiles among model
ensemble members for each year. In panel (B–U), the light blue lines represent the ensemble members, respectively and the black line is the
ensemble mean.
B

A

FIGURE 3

Vertical averages of O2 concentration trend from 1958 to 2005 in (A) observations, and (B) MMEM.
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CM5A-MR, MPI-ESM-LR, MPI-ESM1-2-HR, ACCESS-ESM1-5,

CanESM5, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-HR,

MPI-ESM1-2-LR, and NorESM2-MM). To assess the impact of

internal variability on the variability of O2 inventory trends across

model ensemble members, we calculate the uncertainty of model

dependency and internal variability. We obtain the uncertainty of

model dependency is 8.73×1011 mol/yr and internal variability is

1.65×1012 mol/yr, respectively. The uncertainty in the O2 inventory

trend due to internal variability is larger than the uncertainty due to

model dependency, affecting the differences in O2 inventory trends

among the models. It can be concluded that the models adequately

capture the O2 trend observed. However, as previously mentioned,

it is important to consider that many models have higher

climatological values than observations. In particular, IPSL-

CM6A-LR and MPI-ESM1-2-LR include the observed trends

within the ensemble member variability, but the large difference

in climatology between these models and observations from

Figure 1 suggests that the models do not correctly reproduce the

physical field or effect of organisms, and that O2 may not be

decreasing for the same reasons as observed.
3.2 Relationship between the oxygen
inventory and spatial patterns

In contrast to the spatially uniform MMEM trend (Figure 3B),

the model ensemble members generally show pronounced spatial
Frontiers in Marine Science 07
structures of the O2 concentration trends. Figure 5 shows the

standard deviation of the O2 concentration trend averaged from

the surface to 1000 m. The variability of the trend is particularly

large in the western subarctic, the Bering Sea, and especially the Sea

of Okhotsk. The locations with the greatest variation among these

model ensemble members are, as noted above, those with the largest

negative trends in the spatial pattern of trends in the observations

shown in Figure 3A.

To investigate whether there is a relationship between the inter-

model variability in the spatial pattern of O2 trends and inter-model

variability in regionally-integrated O2 inventory trends, we examine

the spatial patterns of vertically averaged O2 trends for model

ensemble members with large negative O2 inventory trends and

those with large positive O2 inventory trends. We specifically

compare the ensemble member with the largest negative trends

and the ensemble member with the largest increase trends within

the top four models (ACCESS-ESM1-5, IPSL-CM6A-LR, MPI-

ESM1-2-HR, and MPI-ESM1-2-LR) characterized by the highest

variability in O2 inventory trends within each model shown in

Figure 4. From Figure 6, it is evident that ensemble members with

large negative O2 inventory trends show strong negative trends in

the subarctic region, the Sea of Okhotsk, and the Bering Sea. On the

other hand, ensemble members with large positive O2 inventory

trends show a corresponding distribution of positive trends in those

regions. In IPSL-CM6A-LR, the negative trend in the Sea of

Okhotsk is large in the ensemble member showing a positive

trend in O2 inventory. Looking at each depth level in detail,
FIGURE 4

Trends of O2 inventory anomalies from 1958 to 2005 in the North Pacific from the surface to depths of 1000 m, with negative trends represented by
upward bars. The red line shows the observational trend, and the black line shows the MMEM trend. Gray symbols represent the CMIP5 models and
colored symbols represent the CMIP6 models.
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although the negative trend is large in all depth level in the Sea of

Okhotsk, the positive trend is largely distributed in the subarctic

region at depths of 300 m and deeper. While the vertically averaged

trend diminishes the pronounced positive trend, it is likely that this

ensemble member demonstrates a positive trend in the O2

inventory trend due to the substantial positive trend in the

subarctic region at deeper depths as in other models. Therefore, it

is suggested that the differences in trends in the subarctic region, the

Sea of Okhotsk, and the Bering Sea also affect the differences in O2

inventory trends.
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To extract the representative spatial patterns of the vertically

averaged O2 concentration trend, inter-model EOF analysis is

applied as explained in Section 2. The explained variance of the

first mode was 0.28, which is much higher than that of the second

mode (0.10). Figures 7A, B show the model loadings and spatial

pattern, respectively, for the first EOF mode. As the spatial pattern

indicates strong negative amplitudes in the subarctic North Pacific,

especially in the western part and Sea of Okhotsk, ensemble

members with positive loadings imply that their negative O2

trend in this region is larger than that of the MMEM. Therefore,
FIGURE 5

Standard deviation of the vertical averages of O2 concentration trend in 1958–2005 of the all model ensemble members.
FIGURE 6

Vertical averages of O2 concentration trends from 1958 to 2005 in the top four models known for their large variability in O2 inventory trend (as
shown in Figure 4). The left panels are the ensemble members characterized by the largest negative O2 inventory trend, while the right panels
exhibit the ensemble member with the largest positive O2 inventory trend.
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it is expected that a higher loading would result in a more

pronounced negative trend, indicating a potential correlation

between the loadings and the O2 inventory trend.

Figure 8A shows a scatter plot of the loadings of the first EOF

mode shown in Figure 7A and the O2 inventory trends in Figure 4.

The correlation coefficient between them is significant at -0.88
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(p<0.01); thus, this relationship accounts for approximately two-

thirds of the variance of the O2 inventory trends among ensemble

members. Therefore, ensemble members with the largest, positive

loadings on the first EOF mode have a stronger negative trend in O2

inventories. Since the largest negative amplitudes of the first EOF

occur in the subarctic north Pacific, the strong negative relationship
BA

FIGURE 7

(A) Loading of the first Empirical orthogonal function (EOF) mode of the vertical averaged O2 concentration trend from 1958 to 2005 in model
ensemble members, (B) spatial distribution of the first mode, and the color bar in (B) shows a different range from the color bars in Figures 3, 6. In
(A), symbols are the same as Figure 4.
B

A

FIGURE 8

Scatter plots of the model loadings of the first EOF mode of the spatially distributed O2 trend and (A) the O2 inventory trend and (B) spatial
correlation between the observation and each model ensemble member. The red line shows the observational trend. Gray symbols represent the
CMIP5 models and colored symbols represent the CMIP6 models. Symbols are the same as Figures 4, 7A.
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between the loadings and the simulated trend in the O2 inventories

suggests that these simulated trends are mainly driven by inter-

model variability in the subarctic north Pacific.

To ascertain whether the factors that result in the spatial pattern

of the first EOF mode are consistent with the factors that reduce

dissolved oxygen in the observation, it is important to investigate

whether model ensemble members with positively high loading have

a spatial pattern similar to the observations. Therefore, we analyze the

relationship between the EOF loadings and the similarity in the

spatial pattern of the O2 trend in the North Pacific between the

ensemble members and observation, using spatial correlation

coefficients in vertically averaged O2 concentration trends between

the observation and each ensemble member as a measure of similarity

(Figure 8B). The correlation coefficient between the EOF loadings

and the spatial correlation coefficients is 0.74 (p<0.01); therefore, the

spatial patterns of the model ensemble members with high loadings

are similar to those observed in association with strong O2 reduction

in the subarctic North Pacific. An ensemble member that has a strong

negative trend in this region, indicating a closer resemblance to the

observed trend pattern, tends to exhibit a stronger decrease in O2

throughout the basin.
3.3 Environmental factors of
oxygen decrease

The results of the previous subsections indicate the importance of

O2 changes in the subarctic North Pacific in observations and

simulations. To determine why O2 trend variability between

models is greater in the North Pacific subarctic, and whether it is

consistent with observed O2 trend variability, this section discusses

environmental factors that can influence O2 variation in that region.

We first examine the oxygen saturation (O2sat) and apparent oxygen

utilization (AOU). Here, O2sat is calculated according to the equation

by Garcia and Gordon (1992), using temperature and salinity data.

Temperature and salinity data are obtained from EN4, JMA, and

WOA18. The AOU is calculated as AOU=O2sat-O2, where the O2

value from observations is estimated by adding the climatological O2

concentration fromWOA18 to the O2 anomaly from Ito et al. (2017).

We used the WOA18 annually averaged climatology from 1960 to

2017. To determine the extent to which the O2 inventory trend is

explained by the AOU inventory trend and the O2sat inventory trend,

we calculate the ratio of the AOU and O2sat inventory trends to the O2

inventory trend, respectively. The AOU inventory trends dominate

the observed O2 and simulated inventory trends in the subarctic

North Pacific. The AOU inventory trend accounts for approximately

100% of the observed O2 inventory trend. To examine the

contributions of O2sat and AOU to ensemble member differences,

we use multiple regression analysis to obtain partial regression

coefficients for O2sat and AOU inventory trends related to O2

inventory trend in the subarctic North Pacific. The partial

regression coefficient of the O2sat inventory trend on the O2

inventory trend is 0.0096, and that of the AOU inventory trend

against the O2 inventory trend is -0.98. Thus, the O2 inventory trend

in the subarctic North Pacific is dominated by the AOU inventory

trend in the model ensemble members.
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Next, we examine the influence of the physical and biological

environmental factors, that is, ocean temperature, sea ice, and DOC,

on the O2 inventory trends in the subarctic North Pacific. Subarctic

inventory trends are calculated for temperature and DOC at each

grid point and averaged in the subarctic North Pacific from the

surface to depths of 1000 m, between 40°N and 65°N. For sea ice,

the inventory trend of the sea ice volume is calculated by horizontal

integration of sea ice volume at each grid point.

The correlations between these variables and subarctic O2

inventory trends are used to determine their relationship with the

O2 change in the subarctic North Pacific. Figure 9 shows the

relationship between the subarctic O2 inventory and the trend for

each environmental factor. The potential temperature had a

correlation of -0.24 (p<0.01), and the sea ice volume had a

moderate correlation of 0.19 (p=0.011). The correlation coefficient

between the temperature trends and sea-ice trends is -0.62 (p<0.01).

The correlation coefficient with DOC is small and insignificant,

even at the 10% significance level. The observed O2 inventory trend

in the subarctic North Pacific is higher than that in most of the

ensembles, while 68.5% of the total 204 ensemble members show a

stronger positive temperature trend than observed. This suggests

that the model underestimates the decrease in O2 in response to

increasing water temperature.

Figure 9A shows that the correlation between potential

temperature and O2 inventory trend is not strong. However, the

regression map between the O2 inventory and the potential

temperature trend in the North Pacific shown in Figure 10

indicates that potential temperature changes in the western

subarctic region and the Sea of Okhotsk have a strong influence

on the O2 inventory trend. In fact, the correlation coefficient

between potential temperature around the Sea of Okhotsk (45° to

65°N, 140° to 160°E) and the North Pacific O2 inventory trend was

highly correlated at -0.55. For SST, the relationship with the North

Pacific O2 inventory trend has the same spatial pattern as in

Figure 10. This spatial pattern is not entirely consistent with the

PDO spatial pattern consisting of the SST anomaly which is one

sign in the central and western North Pacific and the opposite sign

along the eastern North Pacific (Mantua et al., 1997).

These results suggest that the modeled O2 inventory trends in

the subarctic North Pacific are explained by temperature trends,

which are partly related to sea ice. The important contribution of

sea ice change in the Okhotsk Sea to the oxygen decrease in the

western North Pacific is revealed by an observational analysis by

Nakanowatari et al. (2007). The small influence of biological factors

in the subarctic North Pacific is consistent with the results of a

previous study (Deutsch et al., 2006). However, the observed O2

inventory trend in the subarctic North Pacific is higher than that in

most of the ensembles, whereas the observed temperature trends are

weaker than those in most simulations (Figure 9A). Consequently,

the observed ratios of the O2 inventory trend relative to the

temperature trend, that is, the O2 inventory trend divided by the

temperature trend, are greater than in any of the ensembles with a

negative O2 trend and a positive temperature trend. Therefore, the

relationship between O2 and temperature change in the subarctic

North Pacific found in the CMIP5 and CMIP6 simulations is

inaccurate and requires further investigation.
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4 Summary and discussion

We investigate O2 changes in the North Pacific from 1958 to

2005 using a gridded observational dataset and 204 ensemble

members of CMIP5/6 historical simulations. The results of the

EOF analysis indicate that the importance of the decrease in O2 in
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the Sea of Okhotsk and subarctic region for the decrease in O2 in the

North Pacific is consistent with the observations, but the factors that

cause the decrease are not consistent with the observations, as this

study reveals. The observed negative trend for O2 inventory in the

North Pacific is thrice as high as the MMEM trend. In the North

Pacific, inter-model variability due to internal variability is nearly
B

C

A

FIGURE 9

Scatter plots of the O2 inventory trend in the subarctic North Pacific and (A) potential temperature trend, (B) sea ice volume trend, and (C) DOC
trend averaged in the subarctic North Pacific (40° to 65°N). Symbols are the same as Figure 8. Star symbols in (A) show the trends of the
observations. The red line in (B, C) shows the observational trend.
FIGURE 10

Correlation map between O2 inventory trend in the North Pacific and vertical averaged potential temperature among the model ensemble members.
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twice as high as the variability due to the model response to forcing.

Thus, it is suggested that the differences between models and

observations may be attributed to variations in initial conditions.

However, as indicated by Figures 1, 4, models with ensemble

members whose O2 inventories exhibit a larger negative trend

than observed have climatologies that are inconsistent with

observations. This raises doubts about the fidelity of the

underlying physical and biogeochemical models, casting doubt on

whether the modeled O2 decline reproduce the observed O2 decline

for right reasons. The subarctic North Pacific and Sea of Okhotsk

are vital regions (Figures 6, 7B) that explains most of the observed

O2 inventory trend magnitude (Figures 4, 8), and dominantly

provides the major differences among ensemble members, as

found in the EOF analysis (Figure 7A), with the ensemble

members having higher negative O2 trends in this region also

having strong basin-wide negative O2 trends (Figure 8)

accompanying a higher similarity to the negative O2 trend of

observations (Figure 3A). Among the examined environmental

factors, that is, water temperature, sea ice volume, and DOC,

water temperature is the most strongly related to the ensemble

member differences of the simulated O2 inventory trends in the

subarctic North Pacific, followed by sea ice volume, whereas DOC is

not significantly correlated. The simulated temperature-oxygen

relation, however, is not in line with the observed relationship,

that is, the observed O2 inventory trend in the subarctic North

Pacific divided by temperature change is stronger than in any of the

204 ensembles. Consequently, the state-of-the-art earth system

models are not likely to adequately reproduce past O2 changes in

the subarctic North Pacific and Sea of Okhotsk, which is the key

region for ocean deoxygenation in the North Pacific.

The discrepancy between numerical models and observations of

ocean deoxygenation have already been suggested by global analysis

(Oschlies et al., 2018). In this study, we confirmed in more detail

that CMIP models show inconsistencies with observed O2 decreases

in the North Pacific, which is a relatively well-observed region

among areas of strong ocean deoxygenation, such as the South

Atlantic and the Southern Ocean (Schmidtko et al., 2017) based on

the comparison of O2 climatology and inventory trends in multi-

ensemble members and their ratio to water temperature trends.

This result raises concerns about future climatic model projections.

If climate models cannot reproduce past changes, future predictions

cannot be trusted. Given the relationship between model skill in the

North Pacific and model skill globally, the North Pacific O2 trend is

a touchstone for model improvement. Therefore, further studies are

necessary for observational data analysis, numerical modeling, and

comparisons between observations and numerical simulations in

the North Pacific.

We evaluate whether physical or biological factors have a more

important influence on O2 trends in the North Pacific subarctic

region using potential temperature, sea ice, and DOC trends.

However, the evaluation of the influence of biology and

circulation is more difficult than that of solubility. Buchanan and

Taguliabue (2021) calculated physical supply using ideal age to

assess the influence of circulation and biological demand

considering respiration and nitrification to assess the influence of
Frontiers in Marine Science
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biology on the O2 trend. They found that the measures of biological

demand for O2 provided in CMIP models today, such as NPP, are

insufficient to reveal the model’s true biological demand. Therefore,

it is difficult to accurately assess the impact of both in today’s

CMIP models.
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