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Metabolic reprogramming at a cellular level contributes to many diseases
including cancer, yet few assays are capable of measuring metabolic pathway
usage by individual cells within living samples. Here, autofluorescence lifetime
imaging is combined with single-cell segmentation andmachine-learningmodels
to predict the metabolic pathway usage of cancer cells. Themetabolic activities of
MCF7 breast cancer cells and HepG2 liver cancer cells were controlled by growing
the cells in culture media with specific substrates and metabolic inhibitors.
Fluorescence lifetime images of two endogenous metabolic coenzymes,
reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin
adenine dinucleotide (FAD), were acquired by a multi-photon fluorescence
lifetime microscope and analyzed at the cellular level. Quantitative changes of
NADH and FAD lifetime components were observed for cells using glycolysis,
oxidative phosphorylation, and glutaminolysis. Conventional machine learning
models trained with the autofluorescence features classified cells as dependent
on glycolytic or oxidative metabolism with 90%–92% accuracy. Furthermore,
adapting convolutional neural networks to predict cancer cell metabolic
perturbations from the autofluorescence lifetime images provided improved
performance, 95% accuracy, over traditional models trained via extracted
features. Additionally, the model trained with the lifetime features of cancer
cells could be transferred to autofluorescence lifetime images of T cells, with a
prediction that 80% of activated T cells were glycolytic, and 97% of quiescent
T cells were oxidative. In summary, autofluorescence lifetime imaging combined
with machine learning models can detect metabolic perturbations between
glycolysis and oxidative metabolism of living samples at a cellular level,
providing a label-free technology to study cellular metabolism and metabolic
heterogeneity.
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1 Introduction

Despite the relevance of cellular metabolism to normal and pathological physiology, a
technological gap exists for methods that measure metabolism in living samples with single-
cell resolution. Cellular metabolism is linked with cellular function for many cell types. For
example, cancer is often characterized by a dependence on aerobic glycolysis, and the
function of many immune cells, including pro-inflammatory macrophages and activated
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T cells, is dependent on glycolysis (Warburg, 1956; Leone and
Powell, 2020). Single-cell RNA analysis, a technique that allows
single-cell measurements but requires tissue dissociation and
fixation, has revealed high metabolic heterogeneity exists within
tissues and can affect patient outcomes; for example, metabolic
heterogeneity is correlated with increased cancer metastasis (Davis
et al., 2020; Hartmann et al., 2021). Measurements of metabolism on
live cells, such as with oxygen consumption assays which can be
performed on live cells but lack single-cell resolution, demonstrate
that cellular metabolic pathway use is dynamic and responsive to
microenvironments, substrate availability, and chemical signaling
(Dar et al., 2017; Masoud et al., 2020; Nile et al., 2021). Therefore,
full characterization of cellular metabolism and metabolic
heterogeneity within tissues requires a technique that provides
metabolic information, can be performed on live cells, allows
repeated measurements to capture changes or dynamics,
maintains the spatial positioning of the cells, and has single-cell
or better resolution. Such a technology will be vital for advancing
mechanistic and therapeutic research within the myriad of
metabolic-relevant pathologies, including cancer development
and metastasis, diabetes, and neurodegeneration. To address this
technological gap, here, the combined use of autofluorescence
lifetime imaging, single-cell segmentation, and machine learning
(ML) models is evaluated to predict the metabolic pathway use of
single cells.

Currently, metabolic measurement technologies are limited in
spatial and temporal resolution. The oxygen consumption rate
(OCR) and the extracellular acidification rate (ECAR) of cell
populations can be used to evaluate mitochondrial respiration
and glycolysis, respectively (Zhang et al., 2012; Van den Bossche
et al., 2015). However, these measurements are recorded for cell
populations. Likewise, biochemical analyses of metabolic enzymes,
including Western Blot analysis, mass spectroscopy, mRNA
analysis, and immunohistochemistry, require cell or tissue
fixation and generally lack single-cell resolution (Ramm Sander
et al., 2013). Positron Emission tomography (PET) detects
radioactive substances, such as 2-deoxy-2-[18F] fluoro-D-glucose
(FDG) to visualize glucose uptake of tumors which is higher than
surrounding tissue due to enhanced glycolysis (Challapalli and
Aboagye, 2016). FDG-PET is used clinically, and additional
contrast agents are in development to detect choline metabolism,
glutamine transport, and fatty acid metabolism (Steven et al., 1996;
Hara et al., 1997; Lieberman et al., 2011). However, the spatial
resolution of PET is fundamentally limited by the millimeter
distances that positrons can travel prior to annihilation events
(Moses, 2011). Signaling pathways can be labeled with
genetically-encoded fluorescence proteins to offer metabolic
information, however, the dependence on exogenous
fluorescent labels requires cellular manipulations and brings
confounding factors like cell destruction, dye concentration,
and label distribution errors (Kauffman et al., 2016; Little
et al., 2020). Raman spectra and microscopy can detect
chemical bond signatures distinct to lipids, fatty acids,
phospholipids, amino acids, and proteins at a single-cell level
in a label-free manner (Okada et al., 2012; Yue and Cheng, 2016).
Raman microscopy can also be used to measure carbon
metabolism in live cells, but this typically relies on labeled
glucose (Li and Cheng, 2014; Hu et al., 2015; Xu et al., 2017).

Therefore, a robust technology capable of live-cell metabolic
measurements remains elusive, yet potentially impactful due
to a large number of diseases and pathologies characterized by
metabolic dysfunction and heterogeneity.

Autofluorescence imaging of two key endogenous metabolic co-
enzymes reduced nicotinamide adenine dinucleotide (NADH) and
oxidized flavin adenine dinucleotide (FAD) offers functional metrics
for detecting metabolic variations (Chance et al., 1979; Georgakoudi
and Quinn, 2012). NADH and FAD are used in metabolic pathways
including glycolysis, oxidative phosphorylation (OXPHOS), and
glutaminolysis. Glycolysis breaks down glucose into pyruvate and
reduces NAD + to NADH in the cytosol. This can be used to reduce
mitochondrial NAD+ to NADH through the malate-aspartate
shuttle. This, alongside NADH produced from the further
oxidation of pyruvate inside the mitochondrial TCA cycle, is
used to generate ATP via the electron transport chain. During
glutaminolysis, NAD+ also assists glutamate dehydrogenase
(GDH) to convert glutamate to α-ketoglutarate by reducing to
NADH. The fluorescence intensity ratio of NADH and FAD is
defined as the optical redox ratio and has been widely used as a
marker of the redox state in cells and tissues (Chance et al., 1979;
Skala et al., 2007). The spectral properties of NADH and its
phosphorylated form, NADPH are identical, thus NAD(P)H is
used to represent their combined fluorescence signal detected
from cells. Similarly, the fluorescence of different flavin species
such as flavin mononucleotide (FMN) and FAD are challenging
to separate due to the substantial spectral overlap of their
fluorescence properties (Gregor et al., 2018). FAD is the
predominate intracellular fluorescent flavin molecule, with FMN
contributing a small fraction, around 5% as previously estimated, of
the flavin autofluorescence signal (Huhner et al., 2015; Kalinina
et al., 2021). Due to the primary contribution of FAD to flavin
autofluorescence signals and for consistency with prior optical
metabolic imaging literature, the flavin autofluorescence is
hereafter referred to as FAD, and potential errors in data
interpretation due to this convention are discussed where
appropriate (Georgakoudi and Quinn, 2012; Kolenc and Quinn,
2019).

The fluorescence lifetime is the time a fluorophore remains in
the excited state before releasing a fluorescent photon and resolves
information on chemical structures and the surrounding
microenvironments of NAD(P)H and FAD (Nakashima et al.,
1980; Jr et al., 1992; Lakowicz, 2006). Both NAD(P)H and FAD
can exist in two conformations, protein-bound or free within cells,
each of which has a different fluorescence lifetime (Nakashima et al.,
1980; Jr et al., 1992). Fluorescence lifetime imaging (FLIM) resolves
the fraction of free and protein-bound coenzymes as well as the
corresponding short- and long-lifetime components (Becker, 2012;
Georgakoudi and Quinn, 2012). The fluorescence intensity and
lifetime of NAD(P)H and FAD are sensitive to metabolic changes
in precancerous tissues, disease development, drug treatment
responses of cancer cells, differentiation of stem cells, and
macrophage phenotype (Bird et al., 2005; Skala et al., 2007;
Ostrander et al., 2010; Konig et al., 2011; Stringari et al., 2012b;
Quinn et al., 2013; Walsh et al., 2013; Colin et al., 2014; Varone et al.,
2014; Palmer et al., 2015; Alfonso-Garcia et al., 2016; Szulczewski
et al., 2016; Fayad et al., 2018; Borowczyk et al., 2020; Heaster et al.,
2020). Moreover, cell segmentation from the NAD(P)H intensity
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images provides single-cell and subcellular information and
quantifies cellular heterogeneity (Walsh et al., 2021; Cardona and
Walsh, 2022).

Although autofluorescence imaging of NAD(P)H and FAD
often detects metabolic perturbations between samples and has
been applied to identify various metabolic shifts in cells, the
lifetime metrics lack specificity for direct interpretation of
metabolic pathway usage. In this paper, alternations in NAD(P)
H and FAD fluorescence lifetime features are defined for metabolic
pathway perturbations of cancer cells using both chemical
inhibition and substrate manipulation of glycolysis, oxidative
phosphorylation, and glutaminolysis. The autofluorescence
lifetime data is combined with one-dimension (1D) conventional
machine learning (ML) algorithms and two-dimension (2D)
convolutional neural networks (CNN) to predict glycolytic or
oxidative phenotypes of cells. The 2D CNNs can learn spatial
information from intensity and lifetime images and exhibit better
performance in discriminating metabolic activities for larger
datasets. The feature-based 1D ML models and 2D CNNs were
then evaluated across different cell types to test model
robustness and transference. Notably, cancer cells were used
as a model system due to their high metabolic activity and ease of
manipulation using substrates and inhibitors, and show that the
results obtained from breast cancer cells can be extrapolated to
liver cancer cells and non-cancerous T cells. These findings
suggest that machine learning algorithms applied to
autofluorescence lifetime images offer a reliable method for
assessing glycolytic and oxidative phenotypes with high
classification accuracy. Thus, these results and metabolism-
prediction models will promote the application of
autofluorescence lifetime imaging as a label-free, non-contact
assay of cellular metabolism to provide important insights into
biological and medical fields that study metabolism.

2 Materials and methods

2.1 Cell culture and preparation

MCF7 breast cancer cells were cultured in high glucose
Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented
with 1% antibiotic-antimycotic, and 10% fetal bovine serum
(FBS). For fluorescence lifetime imaging, cells were seeded at a
density of 2 × 105 per 35 mm glass-bottom imaging dish 48 h before
imaging. Each dish was refreshed with the culture media 30 min
before imaging to ensure constant consistent nutrient
concentrations while imaging. To focus on the effects of
glycolysis, OXPHOS, pyruvate concentration, and
glutaminolysis on NAD(P)H and FAD fluorescence lifetime,
specific inhibitors and substrates were applied to isolate the
influence of each metabolic pathway. The metabolic
perturbation details can be found in the Supplementary
Material Appendix. HepG2 hepatoma cells were cultured in
low glucose (5.6 mM) DMEM supplemented with 1%
penicillin-streptomycin, and 10% FBS. The cells were seeded at
a density of 2 × 105 per 35 mm glass-bottom imaging dish and
fasted for 24 h. Two metabolic groups were prepared by treating
the cells with either 30 mM glucose or 0.4 mM palmitate (PA)

respectively 12 h before imaging. The NAD(P)H and FAD
fluorescence lifetime images from the activated and quiescent
T cells were provided by AJ Walsh and MC Skala (Walsh et al.,
2021).

2.2 Fluorescence lifetime imaging and
analysis

The NAD(P)H and FAD fluorescence lifetime images were
obtained using a custom-built multi-photon microscope
(Marianas, 3i) coupled with a 40× water immersion objective
(1.1 NA) and a tunable (680nm–1080 nm) Ti: sapphire
femtosecond laser (COHERENT, Chameleon Ultra II). All cell
imaging dishes were placed in a stage-top incubator (okolab) to
maintain the environment of the cells at 37 °C, 5% CO2, and 85%
relative humidity while imaging. NAD(P)H fluorescence was
excited at 750 nm with a laser power of 6.8 mW–7.4 mW at
the specimen plane. FAD fluorescence was excited at 890 nm
with a laser power of 6.7 mW–7.5 mW at the specimen plane. To
isolate NAD(P)H and FAD fluorescence emission, a 447/60 nm
bandpass filter and a 550/88 nm bandpass filter, respectively,
were placed before each detector. The bandpass filters were
chosen based on the emission spectra of NAD(P)H and FAD
to separate the two fluorophores and maximize the bandwidth to
capture sufficient signal (Becker, 2021). Fluorescence lifetime
images of NAD(P)H and FAD were obtained sequentially by
photomultiplier tube (PMT) detectors (HAMAMATSU) attached
to a time-correlated single-photon counting (TCSPC) electronics
module (SPC-150N, Becker & Hickl). Each fluorescence lifetime
image (256 × 256 pixels, 270 × 270 µm) was acquired with a pixel
dwell time of 50 µs and 5 frame repeats for a collection time of
60 s. Both NAD(P)H and FAD fluorescence lifetime images were
captured in at least five randomly selected positions for each dish,
and three technical replicates were performed to ensure the
reliability of the results. The second harmonic generated signal
of urea crystals was excited at 900 nm and measured with the
NAD(P)H channel for the instrument response function (IRF).
Fluorescence lifetime measurements of the system were validated
with a YG fluorescent bead, which had a measured lifetime of
2.1 ns, consistent with previously published values (Bird et al.,
2005).

2.3 Cell-based image analysis

Fluorescence lifetime decays were analyzed by SPCImage
(Becker & Hickl). Different thresholds were used to exclude
pixels with low fluorescence intensity in NAD(P)H (minimum
threshold of peak = 20 photons) and FAD (minimum threshold
of peak = 3 photons) fluorescence lifetime images. The average
number of photons at each cytoplasm pixel is around 1,000 with a
peak photon above 100 in cancer cells with a spatial binning of
9 pixels. The average χ2 for fitting each image is around 1.07 for
NAD(P)H images, and around 0.79 for FAD images. As the nucleus
regions typically exhibit lower peak pixel values (50 for NAD(P)H,
20 for FAD), a low peak number threshold was used to ensure that
all pixels in the cellular regions were included in the analysis. The
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lifetime value of each cell was then calculated based on the
segmented cytoplasm regions, which had decay peaks
with >100 photons. A binning of nine surrounding pixels was
used, and the decay curve of each pixel was deconvoluted from
the measured IRF of urea crystals and fitted to a two-component
exponential model, I(t) � α1e−t/τ1 + α2e−t/τ2 + C, where I(t)
represents the fluorescence intensity as a function of time t, α1,
α2 are the fractions of the short and long fluorescence lifetime,
respectively, and their sum is 100 percent (α1 + α2� 1). τ1, τ2 are the
corresponding short and long lifetimes, and C accounts for
background light. NAD(P)H has a short lifetime at the free
conformation, and a long lifetime when bound to a protein.
Conversely, FAD has a long lifetime when it is free, and a short
lifetime when bound.

Images were then segmented into individual cell, cytoplasm, and
nucleus compartments to acquire cell-based fluorescence lifetime
endpoints. The cell segmentation process was based on the NAD(P)
H intensity images and achieved in CellProfiler using a customized
pipeline (Supplementary Material Appendix). Mitochondria masks
were created by selecting the brightest 20% of pixels in each cell’s
cytoplasm from the NAD(P)H intensity images to separate the
lifetime values of mitochondria and cytosol. Image processing
was performed using MATLAB to calculate the images of optical
redox ratio (FAD fluorescence intensity divided by the summed
intensity of FAD and NAD(P)H, FAD/(NAD(P)H + FAD)),
weighted average fluorescence lifetime (τm � α1τ1 + α2τ2), and
fluorescence lifetime redox ratio (FLIRR, bound NAD(P)H
fraction divided by the bound FAD fraction, NAD(P)H α2/FAD
α1). Twelve NAD(P)H and FAD fluorescence features including
optical redox ratio, FLIRR, NAD(P)H τm, NAD(P)H τ1, NAD(P)H
τ2, NAD(P)H α1, NAD(P)H intensity, FAD τm, FAD τ1, FDA τ2,
FAD α1, and FAD intensity were averaged across all pixels within a
cytoplasm for each segmented cell for a single cell-level data.

2.4 Statistical analysis and classification

Data analysis was performed in R Studio. A two-sided
Wilcoxon test with Bonferroni correction was used to indicate
differences across cell groups for each fluorescence lifetime
endpoint, and an alpha significance value of 0.05 was used to
indicate significance. The Uniform Manifold Approximate and
Projection (UMAP) method was used to visualize clustering within
the autofluorescence imaging datasets (Becht et al., 2018). Cancer
cells treated with sodium cyanide were defined as the OXPHOS
inhibition group. Cells treated with 50 mM 2-DG and exposed to
no glucose media were identified as the glycolysis inhibition
group. Classical machine learning algorithms (random forest
tree (RFT), support vector machine (SVM), quadratic
discriminant analysis (QDA)) were trained to classify cells with
inhibited glycolysis versus cells with inhibited OXPHOS based on
the fluorescence lifetime features. The RFT model utilized 50 trees,
comprising a total of 166 nodes. The minimum size of the terminal
node was 1, and 5 variables were randomly sampled as candidates
at each split. The supporting vector machine was configured as a
classification machine, with training and prediction employing a
linear kernel. These models were trained on a randomly selected
75% (1,365 cells) of the dataset and tested on the remaining 25%

(454 cells) of the dataset. A receiver operation characteristic (ROC)
curve and confusion matrix were used to evaluate the performance
of the models on test datasets. The importance within the RFT
classification model and the AUC (area under the curve) value of
the ROC curve of each fluorescence lifetime feature were used to
assess each feature’s contribution to the prediction. Each model
was tested with 5-fold cross-validation and an average accuracy
was computed to ensure its robustness. When predicting the
metabolic activities of liver cancer cells, to avoid lifetime
parameter differences within cell types, each feature value was
normalized with the mean value of corresponding control cells to
get the relative changes, and a new model was trained with
normalized FLIM features.

2.5 Image preprocessing and CNN
development

Since CNN development requires a larger dataset than the
classical machine learning algorithms, the glycolysis and
OXPHOS inhibition experiments were repeated to obtain
~5,000 original cells (Supplementary Table S7). Each cell was
extracted based on the bounding box of its mask generated by
CellProfiler to produce six autofluorescence lifetime endpoint
images (NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, NAD(P)H τm,
NAD(P)H intensity, and FAD intensity). Then, the following image
preprocessing procedure (Supplementary Table S17) was achieved
in Python with the help of the OpenCV package to prepare for the
training of CNN. A LeNet architecture for the CNN was developed
using the machine-learning library Keras with a Tensorflow backend
in Python running on Jupyter Notebook on the platform Anaconda
3. The input layer was adjusted to 40 × 40 with different channel
numbers to fit the input number of lifetime components (Figure 5A).
The loss function is the cross-entropy loss between true labels and
predicted labels, which calculates the score that penalizes the
probabilities based on the distance from the expected value,

Loss� − 1
N∑

N

i�1
yilogŷi + (1 − yi)log(1−ŷi, where, yi is the actual

values, and ŷi is the neural network prediction. All CNN
classifiers were trained to identify cells in glycolytic and oxidative
phenotypes at a single-cell level. Further information about image
preprocessing and CNN training can be found in the Supplementary
Material Appendix.

2.6 Seahorse metabolic flux assay

A Seahorse XFe96 extracellular flux analyzer (Seahorse
Biosciences, Santa Clara, CA) was used to assess the
mitochondrial and glycolytic function of the cells in different
metabolic groups. MCF7 breast cancer cells were plated at two
densities (5 × 105 cells/mL, 106 cells/mL) on a Seahorse 96-well plate
in a DMEM-based medium without phenol red, bicarbonate,
glucose, pyruvate, or glutamine. Pyruvate (1 mM), glucose
(10 mM), 2-DG (50 mM), and sodium cyanide (4 mM) were
sequentially injected into the media. Oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) were measured
every 5 min for 15 cycles.
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3 Results

3.1 NAD(P)H fluorescence lifetime imaging
reveals glycolytic and OXPHOS states of
cancer cells

In the autofluorescence images of NAD(P)H of MCF7 cells, the
nuclei were darker than the cytoplasm because NAD(P)H was
primarily located in the cytosol and mitochondria (Figure 1A).
Metabolic perturbations to enhance and inhibit glycolysis altered
autofluorescence lifetime features averaged across the cytoplasm
pixels of each segmented cell (Supplementary Table S1, Figure 1).
Inhibition of glycolysis within MCF7 cells with 2-DG treatment and
glucose starvation resulted in a decreased NAD(P)H free fraction
(α1), an increased free NAD(P)H fluorescence lifetime (τ1), and an
increased bound NAD(P)H fluorescence lifetime (τ2) as compared
with control MCF7 cells (Supplementary Table S1, Figures 1B–D).
These NAD(P)H lifetime variations led to a longer NAD(P)H mean
lifetime (τm) of MCF7 cells with inhibited glycolysis (Figure 1E).
Additionally, titrated concentrations of 2-DG promoted consistent
reductions in NAD(P)H free fraction (α1) and increases in NAD(P)
H fluorescence lifetimes (τ1, τ2, τm). Conversely, an increased NAD(P)

H free fraction (α1), and shorter free and bound NAD(P)H fluorescence
lifetime (τ1, τ2) were observed in cyanide-treated MCF7 cells, relative to
the corresponding values of control cells (Supplementary Table S1,
Figures 1B–D). These lifetime variations resulted in a shorter
NAD(P)H mean lifetime (τm) for MCF7 cells with OXPHOS
inhibition (Figure 1E). With OXPHOS inhibition by cyanide, the
NAD(P)H intensity of cancer cells increased, and the FAD intensity
decreased, causing a decrease in the intensity redox ratio (IRR, FAD/
(FAD + NAD(P)H)) after cyanide exposure (Supplementary Figure S1,
Supplementary Table S1). Glucose starvation resulted in a significant
decrease in both NAD(P)H and FAD intensities, generating a lower
intensity redox ratio (Supplementary Figure S1, Supplementary Table
S1). Glucose starvation altered the FAD fluorescence lifetime features of
MCF7 cells resulting in an increasedmean FAD lifetime (Supplementary
Figure S2, Supplementary Table S1).

The effects of pyruvate and glucose, as well as 2-DG and cyanide
treatments, on glycolysis and mitochondrial respiration of
MCF7 cells were measured with a Seahorse analyzer. The ECAR
increased when glucose was added, and decreased with 2-DG
injection, while no changes were observed for the addition of
pyruvate or cyanide (Supplementary Figure S3A). The OCR
decreased with cyanide injection (Supplementary Figure S3B).

FIGURE 1
Glycolysis and OXPHOS inhibition alter the NAD(P)H fluorescence lifetimes of MCF7 cells. Glycolysis inhibition increased NAD(P)H fluorescence
lifetime (τ1, τ2, τm), and reduced free NAD(P)H fraction (α1), while OXPHOS inhibition reduced NAD(P)H fluorescence lifetime (τ1, τ2, τm), and increased free
NAD(P)H fraction (α1). (A) Representative NAD(P)H τm images, scale bar = 60 μm. (B)NAD(P)H α1 (C)NAD(P)H τ1 (D)NAD(P)H τ2 and (E)NAD(P)H τm. ***p <
0.001 for two-sided Wilcoxon test with Bonferroni correction for multiple comparisons. Substrates in each media: Control (25 mM glucose +1 mM
pyruvate), 2-DG (25 mM glucose +1 mM pyruvate +10/20/50 mM 2-DG), No glucose (50 mM pyruvate), Cyanide (25 mM glucose +1 mM pyruvate
+4 mM NaCN).
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3.2 NAD(P)H fluorescence lifetime imaging
reveals glutaminolysis perturbations within
cancer cells

The stimulation and inhibition of the glutaminolysis pathway
within MCF7 cells altered NAD(P)H fluorescence lifetimes.
Inhibition of glutaminolysis with both glutamine starvation and
BPTES treatment increased the NAD(P)H free fraction (α1), and
decreased the free and bound NAD(P)H fluorescence lifetimes (τ1,
τ2) (Figures 2B–D), resulting in a decreasedmeanNAD(P)H lifetime
(τm) (Figures 2A,E). Furthermore, an increase in the intensity
redox ratio was observed in the BPTES-treated cells compared
with the control group (Figure 2F). Glutamine starvation
increased the bound fraction of FAD (α1) and lowered the
bound and free lifetimes (τ1, τ2) resulting in a lower mean
FAD lifetime (τm) (Supplementary Figure S4). BPTES
treatment of MCF7 cells increased the lifetime of free FAD
(τ2) but did not affect the other FAD lifetime parameters
(Supplementary Figure S4C).

Autofluorescence lifetime imaging was performed on
MCF7 cells fasted for 1 h and then exposed to 2 mM glutamine
at 1, 2 and 3 h to isolate the effects of glutaminolysis from OXPHOS
which proceeds once a cell has converted glutamine to α-
ketoglutaric acid and to image at a quasi-steady state of
metabolism following the addition of glutamine. An increase in
NAD(P)H intensity and FAD intensity within the MCF7 cells was
observed at 2 and 3 h of glutamate, as compared with the cells with
glutamate for 1 h (Supplementary Figure S5). The NAD(P)H and

FAD fluorescence lifetime components changed over time with
glutamate stimulus. 1 h of glutamine stimulus increased the
NAD(P)H lifetimes (τ1, τ2, τm) and reduced the free fraction (α1)
of NAD(P)H as compared with control MCF7 cells (Supplementary
Figures S6A–D). Similarly, as compared with control MCF7 cells, 1,
2, and 3 h of glutamine stimulus increased the FAD lifetimes (τ1, τ2,
τm) and reduced the bound fraction (α1) of FAD (Supplementary
Figures S6E–H).

3.3 Pyruvate concentration alters the FAD
fluorescence lifetime

To evaluate the effects of OXPHOS stimulation on
autofluorescence lifetime metrics, MCF7 cells were fasted and
then provided pyruvate at scaled concentrations. Cellular
quantitation analysis showed that the pyruvate concentration
groups had a longer bound (τ1) and free (τ2) FAD lifetime,
which led to a longer mean FAD lifetime (τm), as compared to
the control group (Figures 3A, C–E). The cells exposed to different
concentrations of pyruvate had an increased fraction of enzyme-
bound FAD (α1) than the control cells (Figure 3B). Furthermore,
pyruvate starvation caused a reduced fraction of bound FAD (α1),
while increased pyruvate concentration increased the bound FAD
fraction (α1), and bound FAD lifetime (τ1) (Figures 3B,C). A longer
mean NAD(P)H fluorescence lifetime (τm) of MCF7 cells can be
observed in the pyruvate groups than in the control groups due to
reduced free NAD(P)H fraction, and increased free and bound

FIGURE 2
Autofluorescence lifetime variations of MCF7 cells in response to glutaminolysis inhibition. Glutaminolysis inhibition reduced NAD(P)H fluorescence
lifetime (τ1, τ2, τm), and increased free NAD(P)H fraction (α1). (A) Representative NAD(P)H τm images of control (Control G), no glutamine (Control No G),
and BPTES-treated (BPTES) MCF7 cells, scale bar = 60 μm (B)NAD(P)H α1 (C)NAD(P)H τ1 (D)NAD(P)H τ2 (E)NAD(P)H τm (F) Intensity redox ratio (FAD/(FAD
+ NAD(P)H)). ***p < 0.001 for two-sided Wilcoxon test with Bonferroni correction for multiple comparisons. Substrates in each media: Control G
(25 mM glucose +1 mM pyruvate +2 mM glutamine), Control No G (25 mM glucose +1 mM pyruvate), BPTES (25 mM glucose +1 mM pyruvate+ 2 mM
glutamine +10 µm BPTES).
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NAD(P)H lifetime (Supplementary Figure S7C–F). Additionally, the
intensity of both NAD(P)H and FAD were lower in the pyruvate
assay groups than in the control group, and an increased pyruvate
concentration reduced both the NAD(P)H and FAD intensities,
which led to reduced optical redox ratio (Figures 3F,G,
Supplementary Figure S7B).

3.4 NAD(P)H and FAD fluorescence lifetime
features predict cellular metabolic
perturbations

UMAP visualization of the 12 autofluorescence imaging
features (NAD(P)H α1, τ1, τ2, τm, intensity; FAD α1, τ1, τ2, τm,
intensity; redox ratio; FLIRR) revealed the cluster separation of
MCF7 cells with glycolysis inhibition groups (grey dots) from the
OXPHOS inhibition groups (blue dots) with the control cell group

(red dots) in the middle and overlapping with both inhibition
groups (Figure 4A). A UMAP of the subset of data with MCF7 cells
treated with 50 mM 2-DG and glucose starvation as the glycolysis
inhibition groups, and treated with cyanide for maximizing the
OXPHOS activities, showed a significant separation of MCF7 cells
with inhibited glycolysis (grey dots) and cells with inhibited
OXPHOS (blue points) (Figure 4B).

Using the MCF7 metabolic perturbation data, machine learning
algorithms were developed to predict cellular metabolic variations,
and the accuracy was calculated as the percentage of correctly
classified cells over the total number of cells. A RFT model
achieved a mean prediction accuracy of 92% and an ROC AUC
value of 0.96 (Figure 4C, Supplementary Figure S8A). The support
vector machine (SVM) model achieved a mean prediction accuracy
of 90% and an ROC AUC of 0.95 (Figure 4C, Supplementary Figure
S8B). The quadratic discriminant analysis (QDA) obtained a mean
prediction accuracy of 92% and an AUC value of 0.94 (Figure 4C,

FIGURE 3
FAD fluorescence lifetimes of MCF7 cells were altered with different pyruvate concentrations of the culture media. Elevated pyruvate concentration
resulted in an increase in the bound FAD fraction (α1), and bound FAD lifetime (τ1). (A) Representative FAD τm images of cancer cells exposed to different
pyruvate concentrations, Py, pyruvate; scale bar = 60 μm (B) FAD α1 (C) FAD τ1 (D) FAD τ2 (E) FAD τm (F) NAD(P)H intensity (G) FAD intensity. *p < 0.05,
***p < 0.001 for two-sided Wilcoxon test with Bonferroni correction for multiple comparisons. Substrates in each media: Control (25 mM glucose
+1 mM pyruvate), Pyruvate (no glucose + no glutamine +0/10/20/50 mM pyruvate).
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Supplementary Figure S8C). When normalizing the data with the
corresponding control cell group, the RFT model achieved a mean
prediction accuracy of ~0.97 with an ROC AUC value of ~0.99
(Supplementary Figure S8D, E). Moreover, the separation of
mitochondria and cytosol signals enhanced the prediction of
metabolic phenotypes. The RFT model trained with cytosol
lifetime values achieved an average accuracy of ~90.5% in a 5-
fold cross-validation and improved to approximately 94% using
mitochondria lifetime values to discriminate between glycolytic and
oxidative cells (Supplementary Figure S9).

Feature analysis from the RFT model revealed that the mean
NAD(P)H lifetime (τm) contributed most to this prediction, followed
by the free NAD(P)H fraction (α1) (Supplementary Figure S10).
Furthermore, the ROC AUC of models built from each feature
individually implied that NAD(P)H τm (AUC = 0.92), and
NAD(P)H α1 (AUC = 0.89), FLIRR (AUC = 0.88) and NAD(P)H
τ2 (AUC = 0.88) were significant features for the prediction of cancer
cell metabolic perturbations (Figure 4D). FAD lifetime features had
low ROC AUC values and feature importance (Figure 4D,
Supplementary Figure S10).

3.5 Convolutional neural networks can
predict metabolic activities of MCF7 cells
from NAD(P)H and FAD fluorescence
lifetime images

A conventional LeNet CNN architecture was trained with
different autofluorescence lifetime feature images and the training
parameters were tuned to achieve the best performance (Figure 5A).
Since no consistent difference was observed in the FAD lifetime
between glycolytic and oxidative cells, and FAD lifetime values
contributed less to the ML learning models, the CNN inputs
were limited to FAD intensity images, as incorporating FAD
lifetime images for training would require more memory and
time for processing, without sufficient enhancement of model
performance. The performance of each CNN model was assessed
based on the prediction results of the test dataset. The prediction
result was presented in a confusion matrix, where glycolysis
inhibition cells were defined as the negative group, and the
OXPHOS inhibition cells were defined as the positive group. The
precision was determined as the percentage of true positives out of

FIGURE 4
Autofluorescence lifetime features allowed classification of metabolic perturbations of MCF7 cells. Conventional machine learning models trained
on autofluorescence lifetime features achieved approximately 90% accuracy in classifying glycolytic and oxidative cancer cells. (A, B) UMAP data
reduction technique allows visual representation of the separation between OXPHOS maximum (glycolysis inhibition groups: 10 mM 2-DG, 20 mM 2-
DG, 50 mM 2-DG, No glucose) and glycolysis maximum cells (OXPHOS inhibition groups: Cyanide). Each color represents a metabolic group, red
corresponds to control, grey and blue to glycolysis inhibition, and OXPHOS inhibition respectively. Each shape represents a different drug-treated
group. ROC curves of the test data for (C)machine learning classificationmodels, RFT: random forest tree; SVM: support vectormachine; QDA: quadratic
discriminant analysis, and (D) lifetime features for classification of glycolytic versus oxidative cancer cells. Int, intensity; Redox ratio = FAD/(FAD + NAD(P)
H); FLIRR = NAD(P)H α2/FAD α1.
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all the positive predictions. The recall was calculated as the
percentage of correctly predicted positive cases out of the total
actual positive cases.

The CNNmodels reached the least validation loss at ~ 80 epochs
with a 0.00001 learning rate (Supplementary Figure S11). When
trained with only NAD(P)H intensity images, the LeNet CNN
achieved an average test dataset accuracy of 75.7%, an ROC AUC
of 0.81, a precision of 76.5%, and a recall of 60.0% for predicting
glycolytic versus oxidative cells (Figure 5B, Supplementary Figure
S12). Similar to the classical machine learning model results,
including FAD intensity images did not significantly improve this
prediction. When the CNN model was trained on both NAD(P)H

intensity and FAD intensity images together, the accuracy of the test
data increased by ~3% (78.4%) with an ROC AUC value of 0.86
(Figure 5B, Supplementary Figure S12). The CNNmodel performed
better when trained with NAD(P)H lifetime images, as compared to
the intensity images. The CNN model trained with NAD(P)H τm
images classified glycolytic MCF7 cells from oxidative cells with an
average accuracy of 85.1%, a precision of 87.4%, a recall of 81.3%,
and an ROC AUC of 0.93 for the test data (Figure 5B,
Supplementary Figure S12). Including additional NAD(P)H
lifetime component images in the CNN improved the accuracy,
and the highest performance achieved for the CNN model was
trained with all NAD(P)H lifetime components (intensity, τ1, τ2,

FIGURE 5
Metabolic activities of breast cancer cells are predicted from autofluorescence lifetime images. CNN models trained on autofluorescence lifetime
images achieved approximately 95% accuracy in classifying glycolytic and oxidative cancer cells. (A) Predicting MCF7 metabolism as glycolysis inhibition
or OXPHOS inhibition from autofluorescence lifetime images with CNN. The LeNet CNN models were trained with different fluorescence lifetime
component images (NADH τ1, NADH τ2, NADH α1, NADH τm, NADH intensity, FAD intensity), scale bar = 7 μm. (B) AUC ROC curves and accuracy for
the test dataset (n = 1,520) of each classifier built to predict metabolism as glycolysis inhibition or OXPHOS inhibition. RFT: random forest tree; SVM:
support vector machine; QDA: quadratic discriminant analysis.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Hu et al. 10.3389/fbioe.2023.1293268

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1293268


τm, α1). This model achieved 94.5% accuracy, 0.99 ROC AUC,
98.2% precision, and 91.5% recall. (Figure 5B, Supplementary
Figure S12). The performance of the LeNet CNN trained with
images of all NAD(P)H lifetime components (intensity, τ1, τ2, τm,
α1) exceeded the prediction performance of classical machine
learning algorithms, including RFT, SVM, and QDA, trained
and tested with the same datasets (Figure 5B, Supplementary
Figure S12).

3.6 The metabolic prediction models
transfer to additional datasets

To further access the applicability of the fluorescence lifetime
model to predict metabolic pathways, the models were first tested
with data from the 10 mM and 20 mM 2-DG concentration
groups, and the pyruvate titration data. Using the classical
machine learning model, more than 80% of the MCF7 cells
exposed to 10 mM 2-DG and 20 mM 2-DG were predicted to
have glycolysis inhibition (Supplementary Table S2). When tested
with the pyruvate assay data, where MCF7 cells were only provided
pyruvate as a substrate, more than 95% of the cells were predicted
to have glycolysis inhibition by the classical machine learning
model (Supplementary Table S2). Furthermore, the classical
machine learning model predicted that over 95% of the cells
fed with glutamine rely more on the oxidative pathway
(Supplementary Table S2).

Finally, the models trained with MCF7 cells were evaluated to
identify metabolic variations of other cells. Glucose-treated
HepG2 liver cancer cells had more fraction of free NAD(P)H
(α1), and shorter NAD(P)H lifetimes (τm) than the control cells
(Figure 6A, Supplementary Figure S13A, D). Palmitate treatment of
HepG2 cells caused a lower fraction of free NAD(P)H (α1), and
longer free and bound NAD(P)H lifetimes (τ1, τ2) compared to the
control cells (Supplementary Figure S13A–C). When adapting the
UMAP algorithm to visualize distributions of different cellular
groups, a separation between cells exposed to glucose and cells
exposed to palmitate (PA) was observed in Figure 6B. When
applying the RFT machine learning model trained with
normalized MCF7 cell data, 65.4% of the glucose-treated cells
were predicted to be glycolytic (OXPHOS inhibition), and 89.2%
of the palmitate exposed cells were predicted to be oxidative
(glycolysis inhibition) (Figure 6C). When applying the CNN
model (trained with all NAD(P)H lifetime features) that was
trained with the MCF7 cells to the HepG2 liver cancer data,
80.8% of the palmitate exposed cells were predicted to have
glycolysis inhibition which was consistent with the prediction of
the classical machine learning model (Figure 6D). In contrast, 64.4%
of the glucose-exposed cells were predicted to be glycolysis
inhibition (Figure 6D). Moreover, MCF7 metabolic prediction
models were also tested with FLIM data from primary human
T cells, which have different metabolic phenotypes by activation
state. Activated T cells are more dependent on glycolysis and
quiescent T cells are more dependent on OXPHOS. The ratio of
OCR to ECAR was significantly decreased in activated T cells
compared with that of quiescent T cells (Walsh et al., 2021).
Using the RFT model, 80.2% of the activated T cells were
predicted to be glycolytic (OXPHOS inhibition), and 97.6% of

the quiescent T cells were predicted to be oxidative (glycolysis
inhibition) (Figure 6E). However, most (98+%) of both the
activated and quiescent T cells were predicted to exhibit
OXPHOS inhibition with the CNN model (Supplementary
Table S3).

4 Discussion

Autofluorescence lifetime imaging is sensitive to metabolic
differences in live cells between groups such as cancer and non-
cancer cells, phenotypes of immune cells, and stem cells and
differentiated cells (Bird et al., 2005; Skala et al., 2007;
Ostrander et al., 2010; Quinn et al., 2013; Walsh et al., 2013;
Varone et al., 2014; Palmer et al., 2015; Alfonso-Garcia et al., 2016;
Heaster et al., 2020; Walsh et al., 2021). By using endogenous
fluorophores for contrast, autofluorescence lifetime imaging
resolves cellular and sub-cellular resolution without contact or
manipulation of the sample providing label-free advantages and
independence from label-related confounding factors. However,
autofluorescence measurements lack the specificity provided by
protein- or molecule-targeted labels. Selection of specific excitation
and emission wavelengths can isolate endogenous fluorophores
such as NAD(P)H and FAD (Huang et al., 2002). Two-component
exponential decay fitting of NAD(P)H and FAD fluorescence
lifetimes allows quantification of the fraction of bound or free
coenzymes, and the lifetime values of the short and long lifetimes
(Nakashima et al., 1980; Lakowicz et al., 1992). Despite this
biochemical specificity, an interpretation or relationship
between NAD(P)H and FAD fluorescence lifetime metrics and
macroscopic cellular metabolic phenotypes remains elusive. In this
study, metabolic perturbation experiments were designed to
selectively activate or inhibit the metabolic pathways of
glycolysis, OXPHOS, and glutaminolysis via controlled substrate
availability and metabolic inhibitors. Then, NAD(P)H and FAD
fluorescence lifetime images were acquired and analyzed to define
fluorescence lifetime features of cells using specific metabolic
pathways. Finally, this robust dataset of autofluorescence
lifetime data was used to design and evaluate models for
predicting cellular use of glycolysis or OXPHOS. The results
show that fluorescence lifetime imaging of NAD(P)H and FAD
allows a non-destructive technique to predict metabolic
perturbations of cancer cells when treated with inhibitors or
exposed to culture environment variations at the single-cell level.

Cancer cells often have enhanced glycolysis, even in the presence
of oxygen and uncompromised mitochondrial function, to promote
growth, proliferation, and survival (Warburg, 1956). 2-DG (2-
deoxy-D-glucose) is a glucose analog that competitively inhibits
glycolysis by binding to the enzyme hexokinase, and cyanide binds
to cytochrome c oxidase and prevents the transfer of electrons to
oxygens in OXPHOS. Changes in metabolic pathways within
MCF7 cells alter the fluorescence lifetimes of NAD(P)H and
FAD. The reduction of free NAD(P)H fraction (α1) with 2-DG
treatment was observed in MCF10A breast cancer cells and
pancreatic islet cells (Drozdowicz-Tomsia et al., 2014; Wang
et al., 2021). Conversely, a higher level of glycolysis induced
more fraction of free NAD(P)H in kidney cells, neural cells, and
stem cells in disease states (Stringari et al., 2012a; Chakraborty et al.,
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2016; Sameni et al., 2016). Herein, glycolysis inhibition and
OXPHOS inhibition in the cancer cells resulted in the exact
opposite changes in NAD(P)H lifetime features (Figure 1,
Supplementary Table S1), and the consistent and opposite
changes in NAD(P)H fluorescence lifetimes support the
hypothesis that NAD(P)H fluorescence lifetimes are responsive
to metabolic pathway shifts and changes in the protein binding
partners of NAD(P)H (Liu et al., 2018; Sharick et al., 2018).
Consequently, NAD(P)H lifetime features (τm, α1, τ2)
contributed significantly to the prediction of glycolytic versus
oxidative cells (Figure 4D, Supplementary Figure S10).
Especially, NAD(P)H α1 is the highest weighted feature for the
classification of T cell activation, allowing robust differentiation
of oxidative quiescent T cells from glycolytic, activated T cells
(Walsh et al., 2021).

In contrast to the opposite variations observed in NAD(P)H
lifetime features of MCF7 cells with isolated glycolysis and OXPHOS
metabolism, no consistent changes in the FAD lifetime were
observed with direct glycolysis and OXPHOS perturbations with
cyanide, glucose-starvation, and 2-DG treatment (Supplementary
Figure S2, Supplementary Table S1). However, published studies
revealed FAD lifetime changes in lung cancer cells exposed to
rotenone/antimycin for OXPHOS inhibition, which resulted in a
reduced free-to-bound fraction of FAD (Penjweini et al., 2020).

Additionally, contradictory variations of FAD fluorescence
lifetime have been observed in bladder cancer cells, skin cells,
stem cells, and neural cells due to shifts between glycolysis and
OXPHOS (Chakraborty et al., 2016; Meleshina et al., 2017; Becker
et al., 2020; Ung et al., 2021). The contradictory lifetime results of
FAD autofluorescence may be due to contributions of additional
flavins to autofluorescence images. Flavin molecules including
flavin mononucleotide (FMN) and riboflavin can contribute to
the observed FAD fluorescence, introducing potential
confounding factors when using FAD fluorescence to study
metabolism. While the emission of FAD and free FMN both
peak around 530 nm, protein-bound FMN peaks around
495 nm. Although FMN contributions to flavin autofluorescence
imaged with a 542–582 nm emission filter were estimated to be
~5% (Kalinina et al., 2021), differences in emission filters may alter
the composition of the flavin autofluorescence. For example, a
blue-shifted filter may increase the contribution of protein-bound
FMN and reduce the sensitivity of the flavin autofluorescence
measurements to FAD, confounding the interpretation of flavin
autofluorescence lifetime data. Although FMN is typically only a
small portion of the flavin autofluorescence for emission filters
centered around 550 nm, protein-bound FMN has a longer
fluorescence lifetime (around 5 ns) than FAD (van den Berg
et al., 2002), and changes in FMN concentration or binding

FIGURE 6
MCF7 cell-trained model prediction performance for liver cancer cells and T cells. The RFT machine learning model trained with normalized
MCF7 cell data effectively predicted glycolysis or OXPHOS use in hepatocellular cells, and T cells. (A) Representative NAD(P)H τm images of HepG2 cells
exposed to control media (starved condition), glucose (30 mM), and palmitate (0.4 mM PA), scale bar = 60 μm (B)UMAP data reduction technique allows
visual representation of the separation between different metabolic groups of hepatocellular cells. Each color represents a metabolic group, red
corresponds to control, grey and blue to glucose treated, and PA treated respectively. (C) Prediction of HepG2 cell metabolism by the RFTmodel trained
with MCF7 cells. (D) Prediction of HepG2 cell metabolism by the CNN model trained with MCF7 cells. (E) Prediction of activated and quiescent T cell
metabolism by the RFT model trained with MCF7 cells.
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dynamics could alter the measured lifetime values (Reichert et al.,
2023).

The use of FAD as a primary electron carrier at multiple steps
throughout the TCA and the electron transport chain suggests that
FAD fluorescence lifetimes should be sensitive to alterations in
cellular use of the oxidative metabolic pathway. To further
evaluate the role of OXPHOS on FAD fluorescence lifetimes,
MCF7 cells were grown and imaged in media with titrated
concentrations of pyruvate and an absence of other metabolic
substrates. Pyruvate enters the mitochondria and is converted to
acetyl-CoA by pyruvate dehydrogenase (PDH) to facilitate oxidative
phosphorylation (Figure 7). In this process, pyruvate dehydrogenase
(PDH) acts as a gatekeeper between glycolysis and oxidative

phosphorylation, and FAD is reduced to FADH2 through
lipoamide dehydrogenase (LipDH) (Figure 7). FADH2 can then
be oxidized to reduce NAD+ to NADH, which contributes to the
electron transport chain. The optical redox ratio ((FAD/(NAD(P)H
+ FAD)) was reduced at 10, 20, and 50 mMpyruvate (Supplementary
Figure S7B), which implies an increased oxidative state within the
cells (Varone et al., 2014). The cancer cells exhibit a higher
proportion of bound FAD (α1) as the concentration of pyruvate
in the media is increased, as compared to the control cells
(Figure 3B), suggesting an expected increased use of FAD due to
increased oxidative metabolism and throughput in the TCA cycle,
where FAD catalyzes the oxidation of succinate into fumarate
(Figure 7) (Martinez-Reyes and Chandel, 2020).

FIGURE 7
The roles of NADH and FAD in metabolic pathways. NADH and FAD are coenzymes in glycolysis, the TCA cycle, glutaminolysis, and the electron
transport chain. 2-DG inhibits glycolysis, forcing a cell to use alternative pathways for metabolism. Cyanide inhibits complex IV of the electron transport
chain, effectively inhibiting OXPHOS. BPTES inhibits glutaminolysis. Each metabolic pathway varies the fluorescence lifetimes of NAD(P)H and FAD
differently. IRR = intensity redox ratio FAD/(FAD + NAD(P)H), FLIRR = fluorescence lifetime redox ratio NAD(P)H α2/FAD α1.
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Elevated levels of glutaminolysis have also been found in cancer
cells to compensate for changes in glycolysis and maintain a
functional TCA cycle (Lj Reitzer and Kennell, 1979; Medina,
2001; Wise and Thompson, 2010). Glutamine is converted to
glutamate by enzyme glutaminase, and further metabolized to α-
ketoglutarate by glutamate dehydrogenase and fuels the TCA cycle,
while BPTES specifically targets glutaminase to inhibit
glutaminolysis (Figure 7). In glutaminolysis, NAD+ is reduced to
NADH and contributes to the mitochondrial-bound NADH pools
(Varone et al., 2014) (Figure 7). An increased NAD(P)H
fluorescence intensity in the fasted cells was observed at 1, 2, and
3 h after glutamine stimulation (Supplementary Figure S5A),
consistent with the expectation that glutaminolysis increases
NADH. Furthermore, the contribution of glutaminolysis to the
bound NAD(P)H fraction in MCF7 cells (Figure 2B) is consistent
with prior published results in human foreskin keratinocytes and
C2C12 myoblasts (Liu et al., 2018). Glutaminolysis is known to be
coupled with oxidative phosphorylation (OXPHOS) by fueling the
tricarboxylic acid (TCA) cycle. This relationship is supported by the
result that more than 95% of cells supplemented with glutamine
were predicted to be oxidative phenotypes with the classical machine
learning model (Supplementary Table S2), indicating that they rely
on OXPHOS to generate ATP. Furthermore, glycolysis and
glutaminolysis elicit opposite changes in structural metabolic
readouts, including mitochondrial clustering and network
analysis (Ghose et al., 2013; Xylas et al., 2015; Liu et al., 2018),
and opposite trends of NAD(P)H fluorescence lifetime metrics of
MCF7 were observed in cancer cells between glycolysis and
glutaminolysis stimulation (Figures 1, 2, 7). The inhibition of
glutaminolysis by BPTES has been found to decrease ATP levels
and profoundly increase ROS levels (Le et al., 2012), which leads to
changes in the optical redox ratio in cancer cells (Figure 2F).

Even though the lifetime values can change based on
experimental factors like filters and fitting methods, unlike
fluorescence intensity imaging, fluorescence lifetime imaging is a
self-referenced measurement, and theoretically independent of laser
power, detector sensitivity, and fluorophore concentration when
only one fluorophore species is contributing to the decay. Therefore,
FLIM provides a more robust technique than fluorescence intensity
imaging. Indeed, the lifetime measurement of certain molecules in
solution has been successfully reproduced across multiple
configurations, providing a reliable calibration reference for
fluorescence lifetime imaging (QS et al., 2001; Kristoffersen et al.,
2014). Additionally, fluorescence lifetime imaging also offers
information regarding binding status and microenvironment of
the fluorophores, which can be used to infer additional
biochemical information about NAD(P)H and FAD. Therefore,
the FLIRR was created based on protein-bound variations of
NAD(P)H and FAD during OXPHOS, to overcome the
measurement-dependent limitations of the traditional intensity-
based redox ratio (IRR), and provide metabolic information
within a single metric (Cao et al., 2019; Penjweini et al., 2020).
Furthermore, other formats of FLIRR have been extended using
different lifetime components of NAD(P)H and FAD to define
differences between tumor and normal cells (Kalinina et al.,
2021). The FLIRR is sensitive to drug-induced metabolic
alterations of human keratinocytes, prostate, and squamous
cancer cells (Alam et al., 2017; Wallrabe et al., 2018; Cao et al.,

2019; Kalinina et al., 2021). FLIRR reflects the protein-bound ratio of
NAD(P)H and FAD and is not correlated with IRR across a variety
of metabolic states in T cells (Hu et al., 2020). Additionally, the
correlation of bound NAD(P)H fraction and FLIRR values has the
potential to resolve subcellular information (Cao et al., 2019; Hu
et al., 2020).

Due to the unique autofluorescence lifetime phenotypes
observed for glycolytic or oxidative MCF7 cells, different
models for predicting cellular metabolic phenotypes from the
NAD(P)H and FAD fluorescence lifetime imaging data were
compared. Machine learning models are appropriate for
analysis of datasets with multiple variables, and have been
used to extract and interpret cell phenotypes from
fluorescence lifetime data. Several studies have applied
extracted lifetime features with machine learning algorithms to
identify mouse embryo health, quantify precancer cells, classify
T cell activation, differentiate stem cell phenotypes, and
investigate metabolic perturbations (Gu et al., 2015; Liu et al.,
2018; Ma et al., 2019; Wang et al., 2020; Hu et al., 2021; Qian
et al., 2021; Walsh et al., 2021). Here, both conventional machine
learning methods and neural networks were trained with
autofluorescence lifetime images and features to predict
metabolic states of cancer cells. The performance of the
models is comparable with published papers that use NAD(P)
H intensity images or autofluorescence lifetime features to
predict cell phenotypes (Liu et al., 2018; Wang et al., 2020;
Qian et al., 2021). Normalization with the mean lifetime
values of the control group improves classification accuracy
(0.97), suggesting heterogeneity within the cancer cells or
across technical replicates can be reduced by normalization
(Supplementary Figure S8D, E).

Analyzing the spatial information of NAD(P)H and FAD
fluorescent signals can improve metabolic studies. Firstly, the
mitochondrial network structure is associated with metabolism
and cellular function (Hackenbrock, 1968; C R Hackenbrock
et al., 1971; Capaldi, 2004; Benard et al., 2007; Jheng et al., 2012).
Since NAD(P)H is primarily localized in mitochondria and thus
mitochondria appear as bright pixels in NAD(P)H images,
analyzing mitochondrial organization from autofluorescent
images offers complimentary morphology information, and
reflects alterations in metabolic activities (Levitt et al., 2007;
Dimitra Pouli et al., 2016). Specifically, the mitochondria are
observed to be more clustered with a higher glycolytic level and
less clustered when glutaminolysis and OXPHOS are dominant
in tissues and cells (Xylas et al., 2015; Liu et al., 2018).
Furthermore, spatial mapping of NAD(P)H and FAD lifetime
metabolic activity can help resolve metabolic pathways, as
glycolysis and OXPHOS occur in different cellular
compartments. Using isolated lifetime values for potential
mitochondria (pixels with higher NAD(P)H intensity)
improved the accuracy of predicting glycolysis and OXPHOS
in machine-learning models by 4% (Supplementary Figure S9).
However, accurate mitochondria segmentation of cancer cells in
fluorescence lifetime images remains challenging, as it requires
high spatial resolution that may be compromised when using
spatial binning during lifetime analysis. Convolutional neural
networks (CNNs) are effective in retaining spatial information
within the cell, enabling the identification of mitochondria and
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cytosol and facilitating metabolic activity studies. CNNs capture
spatial relationships between different pixels in the cells through
convolutional operations on input images and then downsample
the feature maps using pooling layers to select the most
significant values in the cellular regions. Previously, the LeNet
CNN model achieved around 89% accuracy in classifying T cell
activation when trained with around 8000 NAD(P)H intensity
images (Wang et al., 2020). The best CNN model was achieved
by training with all NAD(P)H 2D fluorescence lifetime
component images together and achieved 95% accuracy and
an AUC of 0.99 for the testing dataset, which exceeds the
performance of conventional machine learning models that
use extracted FLIM features (Figures 4, 5; Supplementary
Figure S12).

To ensure the utility of the metabolism-prediction models for
additional cells and studies beyond MCF7 cells, the models trained
with breast cancer cells were tested on different samples. For liver
cancer cells, palmitate treatment triggers fatty acid oxidation, which
produces acetyl-CoA and contributes to the TCA cycle and electron
transport chain. Palmitate has been observed to reduce the NAD(P)
H bound fraction in myoblast cells, which is in contrast to cancer
cells (Liu et al., 2018). Even though there are multiple metabolic
pathways besides OXPHOS in the cancer cells with PA treatment,
the pre-trained models only predict whether glycolysis or oxidation
is the major metabolic activity. The pre-trained CNN model did not
provide high accuracy for prediction of the metabolic phenotypes of
liver cancer cells and T cells (Figure 6D, Supplementary Table S3),
implying that the difference in morphological features such as cell
size, and subcellular structure influence the performance of the
CNN significantly. In contrast, the conventional machine learning
models that use averaged FLIM features for each cell rather than the
cell images, worked well to predict glycolysis or OXPHOS use by
hepatocellular cells, suggesting that the autofluorescence endpoints
reflect changes in metabolic variations that are consistent across
these two different cancer cell types (Figure 6C). Furthermore, the
RFT model, trained on MCF7 data, accurately predicted the
metabolic shift of T cells from oxidative phosphorylation to
glycolysis and glutaminolysis upon activation (Figure 6E) (Wang
and Green, 2012; Chang et al., 2013). This finding is consistent with
previous Seahorse results, which showed a significant decrease in the
OCR to ECAR ratio in activated T cells compared to quiescent
T cells (Walsh et al., 2021). Specifically, the T cell data was collected
on a different microscope at a different location, indicating that the
metabolic prediction model can be used across cell types,
phenotypes, and instrumentation. The applicability of the MCF7-
cell trained RFT model to accurately predict metabolic phenotypes
across other cells and metabolic perturbations supports the
promotion of ML-FLIM for identifying cellular metabolism in
extensive research fields.

It is important to acknowledge that cells can exhibit multiple
metabolic activities simultaneously, which are not mutually
exclusive, and can switch between different metabolic pathways
based on their energy requirements and nutrient availability.
While it would be interesting to characterize glycolysis and
OXPHOS on a continuous spectrum, this is limited by the lack
of ground truth data for training and testing such models at a

cellular level. Although machine learning models can output the
predictive probability of cell assignment to each metabolic group
(Supplementary Figure S14) and such information may encode
relative contributions of the two metabolic pathways, the
biological significance of this information requires further
validation. Here, the impact of environmental factors that can
confound metabolic analyses were minimized by well controlled
studies of cultured cells. Future research will evaluate the models
in complex environments to improve the applicability of these
findings in both in vivo and ex vivo settings and investigate the
potential of CNN models to incorporate additional metabolic
pathways, further enhancing the ability to use autofluorescence
lifetime imaging to evaluate cellular metabolic activities.
Furthermore, mitochondria typically exhibit higher NAD(P)H
intensity than the cytosol, making segmentation a promising
approach to help discriminate glycolysis and OXPHOS based
on their distinct spatial locations. While the difference in
lifetime values between different metabolic groups was similar
when analyzing mitochondria and cytosol regions
(Supplementary Figures S15, 16), using isolated lifetime values
from mitochondria showed a better performance of predicting
glycolysis and OXPHOS in the machine learning models
(Supplementary Figure S9B). Therefore, the importance of
spatial information in discriminating metabolic activities is
highlighted by the results of both ML and CNN models. Future
technological developments that permit higher spatial resolution
imaging and analysis of fluorescence lifetime imaging may further
enhance spatially-dependent metabolic analysis.

5 Conclusion

In this paper, unique NAD(P)H and FAD lifetime alterations
were observed within cancer cells with different levels of glycolysis,
OXPHOS, and glutaminolysis. These alterations are sufficient for
machine learning models to predict the predominance of glycolysis
versus OXPHOS from the lifetime features and images. The FLIM
image-based CNN models provided increased accuracy over
traditional feature-based machine learning models due to spatial
information within the cell, but are less transferrable to other cells.
The RFT model trained with MCF7 cells can accurately predict the
dominant metabolic pathway of liver cancer cells exposed to
different metabolic environments and the metabolic status of
activated or quiescent T cells. In summary, autofluorescence
lifetime imaging offers a label-free, quantitative method to
identify metabolic activities in living cells, and can be used across
various platforms for broad applications to study metabolic changes
due to chemotherapy, gene expression, and immune responses.
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