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Introduction: Kleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental
disorder characterized by intellectual disability, infantile hypotonia, severe expressive
language delay, and characteristic facial appearance, with a spectrumof other distinct
clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine
methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals.

Methods: This work reports a translational genomic study that applies a
multidimensional computational approach for deep variant phenotyping,
combining conventional genomic analyses, advanced protein bioinformatics,
computational biophysics, biochemistry, and biostatistics-based modeling. We
use standard variant annotation, paralog annotation analyses, molecular
mechanics, and molecular dynamics simulations to evaluate damaging scores
and provide potential mechanisms underlying KMT2C variant dysfunction.

Results:We integrated data derived from the structure and dynamics of KMT2C to
classify variants into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural
and Dynamic Variant), and VUS (Variant of Uncertain Significance). When
compared with controls, these variants show values reflecting alterations in
molecular fitness in both structure and dynamics.

Discussion: We demonstrate that our 3Dmodels for KMT2C variants suggest distinct
mechanisms that lead to their imbalance and are not predictable fromsequence alone.
Thus, themissense variants studiedhere causedestabilizing effects onKMT2C function
by different biophysical and biochemical mechanisms which we adeptly describe. This
new knowledge extends our understanding of how variations in the KMT2C gene
cause the dysfunction of its methyltransferase enzyme product, thereby bearing
significant biomedical relevance for carriers of KLEFS2-associated genomicmutations.
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1 Introduction

The lysine methyltransferase 2 (KMT2) family (also known as
MLL) contains important architectural proteins involved in gene
regulation responsible primarily by methylation of histone
3 lysine 4 (H3K4), widely recognized as a mark of
transcriptional activation. The post-translational modification
(PTM) on K4 is dependent on which enzyme is involved in the
catalysis, resulting in mono- (me1), di- (me2), and tri-
methylation (me3) (Hu et al., 2013; Li et al., 2016; Bochyńska
et al., 2018; Maurya et al., 2022).

The human KMT2 family comprises six members, which can be
divided into three subclasses according to their evolutionary origins,
features, and functions (Figure 1A) (Crump and Milne, 2019;
Sugeedha et al., 2021). KMT2A and KMT2B members are
homologs of the Trithorax (Trx) gene, responsible for mono- and
di-methylating H3K4 as promoters and with low levels of
trimethylation activity also observed representing less than 5% of
global H3K4me3 (Poreba et al., 2020). KMT2C and KMT2D
members share the ancestor gene Trithorax-related (Trr) and are
the principal genes responsible for the mono-methylation of
H3K4 at enhancer regions. Lastly, SETD1A and SETD1B share
the ancestor gene SET1 in yeast, and both members have distinct
structural characteristics compared to the members mentioned
above. SETD1B is functionally redundant to SETD1A in
implementing H3K4me3 at highly expressed genes (Sze et al.,
2020). The enzymatic activity of the KMT2 family is driven by a
highly conserved 130–140 amino acid C-terminal catalytic Su(var)
three to nine, Enhancer-of-zester and Trithorax, or SET, domain
that methylate specific H3K4 sites by transferring a methyl group
from the cofactor S-adenosyl methionine (SAM) (Dillon et al., 2005;
Collins et al., 2019; Zheng et al., 2021).

Loss-of-function mutations in the KMT2 family of genes are
implicated in various chromatinopathies, including Kleefstra
Syndrome type-2 (KLEFS-2) and Kabuki Syndrome type-1
(KS-1). KLEFS-2 (OMIM 617768) is a rare genetic disorder
associated with mutations in the KMT2C gene, characterized
by individuals exhibiting intellectual disability, childhood
hypotonia, autistic-like features, and distinctive facial features
(Koemans et al., 2017; Lavery et al., 2020; Siano et al., 2022).
Heterozygous loss of function mutations in the KMT2D gene
(OMIM 147920) is the major primary cause of KS-1 and
individuals who also manifest with intellectual disability and
developmental delay and may share physical and behavioral
characteristics with individuals with KLEFS-2 (Lavery et al.,
2020; Barry et al., 2022).

Diagnosing rare diseases such as KLEFS-2 and KS-1 is
challenging due to high clinical phenotypic heterogeneity (Siano
et al., 2022). More information is needed to classify the genomic
variants in the KMT2C gene, with nearly 80% of germline missense
mutations lacking clear descriptions of their potential pathogenicity
due to an insufficient understanding of the role of this gene in rare
diseases. Therefore, in-depth investigations into the function and
regulation of the KMT2C protein are necessary.

To further explore and elucidate the significance of genomic
variants in KMT2C function, our study focused on variants within
the SET catalytic domain. We applied the paralog annotation
analysis (Ware et al., 2012; Walsh et al., 2014; DeVoe et al.,

2021). This annotation method is a well-established methodology
to identify and assess the impact of a single nucleotide variant on one
member of evolutionarily related proteins by annotating the
equivalent amino acid in the protein with unknown clinical
genetic information (Walsh et al., 2014). For instance, if a
missense mutation in the KMT2D gene located in chromosome
12q13 disrupts SET domain function in the KMT2D protein and
results in KS-1, then a novel variant affecting the equivalent amino
acid in KMT2C mapped in chromosome 7q36, located at a different
chromosomal locus, would likely be pathogenic, causing KLEFS-2 in
a patient.

In this study, we developed a multidimensional approach that
includes standard variant annotation, paralog annotation, molecular
mechanics scoring, and molecular dynamics simulations to
understand the potential mechanisms by which the KMT2C
variants can impact SET domain function. Combined, the data
presented here provide valuable knowledge that aids in
classifying genomic variants in the KMT2C gene and sheds light
on the underlying molecular mechanisms. Furthermore, our
findings may pave the way for future drug design by identifying
druggable conformations specific to KMT2C mutations, thus
offering potential therapeutic targets for ameliorating the
symptoms of KLEFS-2. In conclusion, this new knowledge
advances the field of chromatinopathies in rare and undiagnosed
diseases.

2 Materials and methods

2.1 Data collection and variant pathogenicity
classification

The germline missense variants were collected and annotated
from ClinVar database (Landrum et al., 2016). Additionally,
dbNSFP version 4.0 was used to annotated the missense
mutations with 20 prediction algorithms including SIFT (Ng and
Henikoff, 2003), SIFT4G (Vaser et al., 2016), PolyPhen2 (Adzhubei
et al., 2010), FATHMM (Shihab et al., 2013), MutationAssessor
(Reva et al., 2011), MutationTaster (Schwarz et al., 2014), MutPred
(Li et al., 2009), PROVEAN (Choi and Chan, 2015), GERP_RS
(Davydov et al., 2010), PhiloP30way (Pollard et al., 2010),
PhastCons30way (Siepel et al., 2005), CADD (Rentzsch et al.,
2019), DANN (Quang et al., 2014), fathmm_MKL (Shihab et al.,
2015), fathmm_XF (Rogers et al., 2018), GenoCanyon (Lu et al.,
2015), METALR (Sun and Yu, 2019), MetaSVM (Kim et al., 2017),
REVEL (Ioannidis et al., 2016), and VEST4 (Carter et al., 2013). The
genomic location, using the GRCh38 reference assembly, and altered
base data for each variant were used as input in dbNSFP (Liu et al.,
2020).

2.2 Modeling

The crystallized structure of the KMT2C in complex with
cofactor product AdoHcy (SAH) and the H3 peptide, entry code
5F59 at 2.8 Å resolution (Li et al., 2016), were retrieved from RCSB
Protein Data Bank (PDB) (Berman et al., 2007), and used as a
geometric reference for constructing the biomacromolecule model.
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The missing loop (FEDDQH) connecting the N4889 and
K4895 was built and optimized using the LOOPER algorithm
(Spassov et al., 2008). The missense variants were built by
substitutions into the wild-type (WT:KMT2C) protein, and side
chain refinement was performed on mutated residues using
ChiRotor algorithm (Spassov et al., 2007). Input conformations
for MD simulations using the Discovery Studio suite version 21.1

(Dassault Systèmes BIOVIA) were obtained as follows. We first
minimized the energy using Steepest Descent with 500 ps run at
constant volume at 300K, followed by a Conjugate Gradient
minimization with the Distance-Dependent Dielectrics solvent
model with the same size and temperature. The structures of the
energy-minimized models are available in Supplementary Table
(KMT2C_PDBs.zip).

FIGURE 1
Sequence conservation and Variants in KMT2 family proteins: Evolution, Domains and Mutations. (A) The human KMT2 family is comprised of six
members, which can be divided into three subclasses according to their evolutionary origins. (left) Evolutionary distances between KMT2 family protein
sequences in Human and Saccharomyces cerevisiae (Set1 Yeast), generated by Clustal-Omega (Sievers et al., 2011) using the default settings, (right)
Domain organization of the KMT2 proteins. The numbers indicate the number of amino acids. AT-Hook = adenosine-thymidine-hook; FYRN/
FYRC = phenylalanine and tyrosine-rich region (N- and C-terminal); HMG, high mobility group; N-SET = N-terminal of SET; PHD, plant homeodomain;
Post-SET, C-terminal of SET; RRM, RNA recognition motif; SET = Su(var)3–9. (B) Frequency of germline missense mutations across each member of the
KMT2 family reveals that 48% of variants are attributed to the KMT2D gene, accounting for 1,338 entries. The other members of the family exhibited
varying frequencies, with KMT2A having 598 (21.5%), KMT2C with 440 (15.8%), and KMT2B with 275 (9.9%). The remaining 5% of the population was
represented by SETD1A (57 entries) and SETD1B (78 entries). (C) Current interpretation of the variants under study in ClinVar classified based on the five-
classification system of KMT2C (left) and KMT2D (right). (D) SET domain multiple sequence alignment (MSA) of KMT2C (top) and KMT2D (bottom)
paralogs. Positions that are identical between the orthologs are highlighted with a red background, and similar residues are written with bold black
characters and boxed in yellow. Alignment was performed using the using the Align123 algorithm (HigginsThompson et al., 1994) available in Discovery
Studio and displayed using Esprit 3.0 Server (Robert andGouet, 2014). Relative positions of variantsmined on ClinVar are labeledwith secondary structure
as circles on top of the KMT2C sequence and below the KMT2D sequence. Colors represent the clinical interpretation according to Figure 1Cmap (VUS as
black circle, CIP as gray, likely pathogenic as pink, and pathogenic as red).

Frontiers in Genetics frontiersin.org03

Jorge et al. 10.3389/fgene.2023.1291307

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1291307


2.3 In silico mutagenesis and energy
calculation

We evaluated the effect of single-point mutations in protein
stability upon amino-acid substitution by calculating the change in
folding free-energy (ΔΔGfolding) using two different force field-based
methods. CHARMM forcefield was used to perform the alanine
scanning mutagenesis (ΔΔGfold-ALAmut) and the impact of variants
on structural integrity (ΔΔGfold-CHARMM) using Calculate Mutation
Energy (Stability) protocol in Discovery Studio (Adzhubei et al.,
2010). Additionally, we evaluated the change in protein stability
using FoldX (ΔΔGfold-FOLDX) for each variant (Shihab et al., 2013).
The effect of a mutation on protein stability, ΔΔGfold, is calculated as
the difference between the folding free energies, (ΔGfolding) of the
mutant (ΔGfolding-mutant) and the wild type (ΔGfolding-WT).

Folding energy values of ΔΔGfolding > 0.5 kcal/mol classify the
effect of a variant as destabilizing, namely, unfolding propensity,
whereas variants with values of ΔΔGfolding < −0.5 kcal/mol have a
stabilizing effect, and variants with neutral effects yield values of
ΔΔGfolding ranging from −0.5 to 0.5 kcal/mol.

In silico mutagenesis was performed using the Calculate Mutation
Energy (Binding) protocol in Discovery Studio to assesses changes in the
binding affinity of KMT2C:SAH and KMT2C:H3K4 peptide complexes
in response to single-point mutations (Reva et al., 2011). The energy
effect of each mutation on the binding affinity (mutation energy,
ΔΔGbinding) is calculated as the difference between the binding free
energy in themutated structure (ΔΔGbinding-mutant) andwild type protein
(ΔΔGbinding-mutant). The binding free energy, ΔΔGbind, is defined as the
difference between the free energy of the complex and unbound state. All
energy terms are calculated byCHARMmand the electrostatics energy is
calculated using a Generalized Born implicit solvent model.

2.4 Residual frustration analysis

To quantify changes in local interactions caused by each genomic
variant, we used the algorithm developed by Ferreiro and Woylness
(Ferreiro et al., 2007) for the calculation of residual frustration in the
WT and variant structures. The single residual frustration index was
calculated from the Frustratometer server (http://www.frustratometer.
tk) (Parra et al., 2016). This server estimates the energy of a protein
structure and compares it to the energies of a set of ~1,000 decoy states.

The frustration index for the contact between the amino acids i,j
was defined as a Z-score of the energy of the native pair compared to
the N decoys. A Z-score >0.78 classifies the effect of a residue (or native
contact) as minimally frustrated or stabilizing, whereas a residue (or
native contact) with a Z-score < −1.0 classifies as highly frustrated or
destabilizing, and residues (or native contacts) with neutral effects yield
Z-scores ranging from −1.0 to 0.78 (Parra et al., 2016).

2.5 Molecular dynamics

MD simulations were performed using the CHARMM36 all-atom
force field (Huang and MacKerell, 2013). The distance-dependent
dielectrics were used as an implicit solvent model with a dielectric
constant of 80 and a pH of 7.4. Each model was initially subjected to
energy minimization for 5,000 steps using the steepest descent followed

by 5,000 steps of conjugate gradient without any constraints/restraints
on the KMT2C atoms. The systemwas then heated to 300 K at constant
volume during 200 ps followed by 500 ps equilibration. The 10 ns
production simulations were conducted under NPT thermodynamic
ensemble with a step size of 2 fs. Trajectory files were recorded every
10,000 simulation steps to generate 1,000 conformations.

The trajectory files were analyzed for structural impact. The root
mean square deviation (RMSD) was calculate including the protein
backbone as reference. The root mean square fluctuation (RMSF)
from the average structure in the trajectory was obtained by
superimposition of each frame to the first frame before
calculating the average structure. We also calculate the radius of
gyration (Rg), solvent accessible surface area (SASA) and non-bond
interactions analysis using the tools available within Discovery
Studio. The data was plot in GraphPad Prism and Molecular
visualizations were generated using PyMOL. The RMSF values
have been written as B-factor in the models provided within the
Supplementary Table (KMT2C_PDBs.zip).

2.6 MM/PBSA calculations

We performed the Molecular Mechanics Poisson-Boltzmann
Surface Area (MM/PBSA) calculations to evaluate the binding
affinities of KMT2C:complex interactions (Tirado-Rives and
Jorgensen, 2006; Homeyer and Gohlke, 2012). The last 1,000 ps
of the MD trajectories were analyzed at a 10 ps time interval to
estimate the binding free energy (ΔGbind), which was calculated by
the following equation:

ΔGbind � Gcomplex –GKMT2C –Gligand (1)
where Gcomplex, GKMT2C and Gligand are the free energies of KMT2C:
complexes; KMT2C (WT and variants) and ligand (SAH cofactor or
H3 peptide) respectively. The Free Energy (G) of each state is
estimated as follows:

G � EMM + GPB + GSA –TS (2)
EMM � Evdw + Eele + Ebnd (3)

where, in Eq. (2), EMM is the molecular mechanical energy, GPB, and
GSA are the polar and non-polar contributions to the solvation-free
energies, and TS is the entropic contribution of the system. EMM was
obtained by summing contributions from van der Waals,
electrostatic, and bonded (bond, angle, and dihedral) interactions,
according to Eq. (3).

Additionally, we performed calculations of interaction energy
(CIE) to evaluate the nonbonded interactions (van der Waals term
and the electrostatic term) between Zn2+ and KMT2C.

3 Results

3.1 Clinical significance of germline
missense mutations in KMT2C and KMT2D
genes

Genetic mutations are crucial in developing various diseases,
including rare genetic disorders. Identifying and characterizing
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these mutations is essential for understanding disease mechanisms
and improving patient care. Toward this end, we mined a
comprehensive dataset of germline missense mutations in
KMT2 family members from the ClinVar database.

We identified 2,786 germline missense mutations in
KMT2 family members. Figure 1B illustrates the distribution of
these mutations among different genes within the family.
Approximately half of the variants (48%) are attributed to the
KMT2D gene, accounting for 1,338 entries. The other members
of the family exhibited varying frequencies, with KMT2A having 598
(21.5%), KMT2C with 440 (15.8%), and KMT2B with 275 (9.9%).
The remaining 5% of the population was represented by SETD1A
(57 entries) and SETD1B (78 entries).

To assess the clinical significance of the variants identified in
KMT2C and KMT2D, we employed a five-classification system
widely used in genetics research (Richards et al., 2015). This system
classifies variants as Benign, Likely Benign, Variant of Uncertain
Significance (VUS), Likely Pathogenic, and Pathogenic, based on
their predicted impact on gene function. Figure 1C presents the
classification distribution of the variants within KMT2C and
KMT2D. Notably, most variants in both genes are classified as VUS.
In KMT2C, 289 out of 440 variants (65.7%) fell into the VUS
classification; in KMT2D, 886 out of 1,338 variants (66.2%) are
classified as VUS. This underscores the challenges in determining
the clinical implications of these variants due to their uncertain
significance. Moreover, our analysis reveals a concerning number of
conflicting interpretations. For instance, 0.9% of KMT2C (4 out of 440),
and 8.1% of KMT2D (108 out of 1,338) variants were observed with
conflicting interpretations, and 7.7% of KMT2C (34 out of 440) and
1.6% of KMT2D (21 out of 1,338) variants could not be classified.

Furthermore, a substantial percentage of germline missense
variants in KMT2C (74.3%, 327 out of 440) and KMT2D (75.9%,
1,015 out of 1,338) cannot be confidently classified in terms of their
potential pathogenicity. The high prevalence of VUS classifications,
conflicting interpretations, and unclassified variants poses challenges in
clinical decision-making and genetic counseling for patients and their
families. These findings underscore the need for further research and
functional studies to better understand the role of KMT2C andKMT2D
genes in rare diseases. This led us to the current study that uses a multi-
tier data-science approach to address this knowledge gap.

3.2 Classification of genomic variants in SET
domains according to 2D sequence-based
methods from clinical classification
guidelines

The germline missense variants are distributed across the
entire KMT2C and KMT2D proteins without a specific
concentration bias, as depicted in Supplementary Figure S1
(Supplementary Material). However, the clinical implications
of genomic variants within the SET domains of these proteins
have garnered significant interest. In this study, we focused on
the conserved sequence of 130–140 amino acids within the SET
domain. KMT2C had 11 variants out of 440 while KMT2D had
20 variants out of 1,338 in this domain.

To identify the functionally equivalent amino acids across the
KMT2C/D paralog proteins, we annotated the KMT2D variants by

aligning the protein sequences (Figure 1D). The sequence identity
for the full-length proteins was found to be 31.5% across the
paralogs. When considering only the SET domain, the sequence
identity was 81.2% among the paralogs. These findings highlight the
conservation of the SET domains within the paralogous proteins,
suggesting a shared functional role, despite variations in other
regions of the proteins.

In this way, the total of 20 variants that were mined in KMT2D can
then be used to annotate the equivalent amino acid inKMT2C, forwhich
no clinical genetic information exists (Figure 1D; Table 1). The KMT2D
variant D5489E was excluded from our analysis since the KMT2C
analogous residue is already glutamic acid. There are two hotspots in
KMT2D, one at position 5,471, with three variants submitted to Clinvar
classified as likely pathogenic (R5471K, R5471S, and R5471W), and the
other hotspot is at position 5,432, with two variants (R5432Q and
R5432W). Paralog annotation revealed a third hot spot, with two
variants with the same pattern of substitution of tyrosine by cysteine
at position 4,884 in KMT2C and 5,510 in KMT2D.

As previously noted, out of 31 variants annotated in the SET
domain, 23 (74.2%) were classified as VUS, which is highly problematic
since they are in the catalytic methyltransferase domain. Therefore, the
precise classification of the variants is fundamental for a better
understanding of the functional mechanism of the protein. To
enhance the interpretation and the prediction of variants with
functional consequences, we started scoring the germline variants
within the SET domain with the sequence-based methods (2D). We
used available pathogenicity prediction algorithms based on
chromosome and position on genome version GRCh38. Scouring
the dbNSFP4.0 database, we obtained unsupervised scores relevant
to coding variants. The threshold levels to classify variants into benign/
tolerant/neutral and damaging/deleterious categories are described in
Supplementary Table S1 (Supplementary Material). The lack of
consensus in the classification is due to the different considerations
and implications of each score (Figure 2A), as they vary from sequence
conservation and machine learning to evolutionary constraints. Due to
limitations in functional data, understanding how the different scoring
methods are put together is imperative. Each scoring algorithm is based
on different metrics. Briefly, sequence/functional scoring methods are
based on the structure and the function of human proteins; ensemble
scores are based on machine learning techniques and predictions; and
evolutionary/conservation scores are based on observed and expected
mutation rates (Panchenko et al., 2004).

The pathogenicity scores from 19 selected tools showed a consensus
result for KMT2C variants T4838M, R4845W, N4854D, V4860A,
R4874W, and Y4884C. All scores classified these variants as
damaging. Based on the cumulative analysis, variant E4792D
showed a lower frequency (75%), with 15 of 20 tools predicting it as
deleterious. These tools often have conflicting predictions and vary in
accuracy and reliability, which prompted us to investigate these variants
further using 3D structure-based analyses.

3.3 Classification of genomic variants in SET
domains according to structure-based
methods

We further investigated the potential damage caused by genomic
mutations on the protein structure. Based on multiple sequence
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alignment among the paralogues, we used the crystal structure of the
KMT2C SET domain in complex with the cofactor product AdoHcy
(S-adenosyl homocysteine, SAH) and the H3K4 peptide (PDB ID
5F59 at 2.8 Å resolution) (Li et al., 2016) as the template for
homology modeling (see Methods for complete model building).
Additionally, this template includes the C-terminal post-SET

domain (region 4,886–4,911) where Zn2+ coordinates with the
three cysteines (C4899, C4901, and C4906) together with a
fourth cysteine (C4851) close to the SET domain active site
(Figure 2B). Subsequently, we generated models for pathogenic
variants using optimized in silico mutagenesis methods (Wells,
1991; Mishra et al., 2012).

TABLE 1 Germline missense and paralog annotated KMT2C variants mined on the SET Domain.

Gene Variant GRCh38a Mutation Gene(s) Clinical datab Clinical significancec Paralog annotationd

KMT2C R4763Q 7:152,144,768 c.14288 G > A p.Arg4763Gln NP VUS -

E4792D 7:152,139,759 c.14376 G > C p.Glu4792Asp Kleefstra syndrome 2 VUS -

G4802R 7:152,139,731 c.14404 G > A p.Gly4802Arg NP VUS -

I4805V 7:152,139,722 c.14413A > G p.Ile4805Val NP VUS -

E4808K 7:152,139,713 c.14422 G > A p.Glu4808Lys NP VUS -

R4828H 7:152,139,237 c.14483 G > A p.Arg4828His NP VUS -

C4851Y 7:152,138,887 c.14552 G > A p.Cys4851Tyr NP VUS -

N4854D 7:152,138,879 c.14560A > G p.Asn4854Asp NP VUS -

V4860A 7:152,138,860 c.14579 T > C p.Val4860Ala NP VUS -

Y4884C 7:152,136,917 c.14651A > G p.Tyr4884Cys NP VUS -

F4890Y 7:152,136,899 c.14669 T > A p.Phe4890Tyr NP VUS

KMT2D Q5387R 12:49,022,768 c.16160A > G p.Gln5387Arg NP VUS Q4761R

S5404C 12:49,022,717 c.16211 C > G p.Ser5404Cys Kabuki syndrome 1 VUS S4778C

R5405H 12:49,022,714 c.16214 G > A p.Arg5405His NP Likely benign R4779H

V5423F 12:49,022,661 c.16267 G > T p.Val5423Phe NP VUS V4797F

E5425K 12:49,022,655 c.16273 G > A p.Glu5425Lys NP Pathogenic E4799K

R5432Q 12:49,022,633 c.16295 G > A p.Arg5432Gln NP|Kabuki syndrome 1 CIP R4806Q

R5432W 12:49,022,634 c.16294 C > T p.Arg5432Trp NP Pathogenic R4806W

N5437S 12:49,022,618 c.16310A > G p.Asn5437Ser NP VUS N4811S

T5464M 12:49,022,301 c.16391 C > T p.Thr5464Met NP VUS T4838M

R5471K 12:49,022,280 c.16412 G > A p.Arg5471Lys NP Likely pathogenic R4845K

R5471S 12:49,022,151 c.16413 G > T p.Arg5471Ser Kabuki syndrome 1 Likely pathogenic R4845S

R5471W 12:49,022,281 c.16411A > T p.Arg5471Trp Kabuki syndrome 1 Likely pathogenic R4845W

C5481Y 12:49,022,122 c.16442 G > A p.Cys5481Tyr Kabuki syndrome|NP P/LP C4855Y

F5488L 12:49,022,100 c.16464 T > A p.Phe5488Leu NP VUS F4862L

D5489E 12:4,9,022,097 c.16467 C > G p.Asp5489Glu Kabuki syndrome VUS D4863Ee

I5496S 12:4,9,022,077 c.16487 T > G p.Ile5496Ser NP VUS I4870S

R5500W 12:4,9,022,066 c.16498 C > T p.Arg5500Trp NP VUS R4874W

E5507D 12:4,9,022,043 c.16521 G > C p.Glu5507Asp NP VUS E4881D

Y5510C 12:4,9,021,865 c.16529A > G p.Tyr5510Cys Neurodevelopmental disorder VUS Y4884C

D5518G 12:4,9,021,841 c.16553A > G p.Asp5518Gly Kabuki syndrome VUS D4892G

aChromossome:Location.
bNP: not provided.
cVUS: variant of uncertain significance; CIP: conflicting interpretations of pathogenicity; P/LP: Pathogenic/Likely Pathogenic.
dAnnotated equivalent amino acid in KMT2C.
eVariant excluded from analysis since the KMT2C analogous residue is already glutamic acid.
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FIGURE 2
Classification of genomic variants according to sequence- and structure-basedmethods. (A)Classification of genomic variants in SET domain based
on sequence/functional, ensemble, and evolutionary/conservation scoring methods. The pathogenicity scores from 20 selected tools showed a
consensus result for variants T4838M, R4845W, N4854D, V4860A, R4874W, and Y4884C. All scores classified these variants as damaging. Based on the
cumulative analysis, variant E4792D showed a lower frequency (74%), with 15 of 20 tools predicting it as deleterious. (B)Mapping of paralogmissense
variants onto the KMT2C SET domain structure in complex with cofactor product SAH and the histone H3K4 peptide (PDB ID: 5F59 at 2.80 Å resolution)2.
The same color codes for the sub-domains shown in Figure 1D are used. The protein is shown in cartoon representation. The cofactor product SAH and
the substrate H3K4 are shown in a stick model with carbon atoms colored in blue and yellow, respectively, oxygen in red, nitrogen in blue, and sulfur in
yellow. The Zn2+ ion is shown as an orange sphere. Mapped variants are shown as spheres and colored according ClinVar interpretation indicated in the
legend in Figure 2A. (C) The G4802R variant showed the highest destabilizing effect. The substitution of Gly by Arg with bulky and positive side chain,
results in partial loss of secondary structure of the third beta-sheet due to unfavorable steric clashes and polar solvation energy. (D) The D4892G variant
has stabilizing effect. This substitution between the last two loops at the C-terminus nullifies the effect of the side chain in the same manner as alanine
mutagenesis. However, unlike alanine, glycine maintains the conformational flexibility of the backbone, resulting in a favorable effect for this substitution
and this protein region. (E) The C4891Y variant disrupts the Zn2+ coordination because of inability of Tyr to make coordinate bond and the steric clashes
introduced upon substitution. WT (top) and variant (bottom) structures are colored in salmon and gray, respectively. Polar interactions are represented as
yellow dashed lines and hydrophobic bonds in purple. The backbone atoms are shown in line model, and the sidechain atoms as stick models.
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TABLE 2 Scores and classification of KMT2C variants in the SET domain based on structural methods.

Mutation Energy - Stability Mutation Energy - Binding Frustratometer Index

Variant ΔΔG fold-

ALAmut

Effecta ΔΔG fold-

FOLDX

Effecta ΔΔG fold-

CHARMM

Effecta ΔΔGbinding-

H3K4

Effecta ΔΔGbinding-

SAH

Effecta ΔF Effectb

Q4761R 0.0 Neutral −0.78 Stabilizing −0.12 Neutral 0.12 Neutral 0.08 Neutral −0.07 Neutral

R4763Q −0.2 Neutral −0.64 Stabilizing −0.02 Neutral −0.12 Neutral −0.05 Neutral 0.48 Neutral

S4778C −0.2 Neutral 5.40 Destabilizing 1.24 Destabilizing −0.06 Neutral −0.04 Neutral 1.69 Minimally
Frustrated

R4779H −0.6 Stabilizing 0.21 Neutral 0.91 Destabilizing −0.18 Neutral −0.26 Neutral −0.71 Neutral

E4792D 0.2 Neutral −0.35 Neutral 0.93 Destabilizing −0.01 Neutral 0 Neutral 0.64 Neutral

V4797F 0.0 Neutral 8.89 Destabilizing −0.13 Neutral −0.03 Neutral −0.01 Neutral 0.32 Neutral

E4799K 0.3 Neutral 2.04 Destabilizing 4.13 Destabilizing 0.45 Neutral 0.1 Neutral −0.29 Neutral

G4802R 0.0 Neutral 31.81 Destabilizing 12.37 Destabilizing 0.97 Destabilizing −0.03 Neutral −0.18 Neutral

I4805V 0.1 Neutral 1.03 Destabilizing 1.25 Destabilizing 0.08 Neutral 0 Neutral −0.24 Neutral

R4806Q −0.3 Neutral −0.13 Neutral −0.59 Stabilizing −0.21 Neutral −0.04 Neutral −1.62 Highly Frustrated

R4806W −0.3 Neutral 0.41 Neutral −1.15 Stabilizing −0.19 Neutral −0.04 Neutral −0.94 Neutral

E4808K 0.6 Destabilizing 1.13 Destabilizing 1.04 Destabilizing 0.77 Destabilizing 0.11 Neutral −1.70 Highly Frustrated

N4811S 0.4 Neutral 0.23 Neutral 0.8 Destabilizing 0.71 Destabilizing 0.01 Neutral 0.02 Neutral

R4828H −0.2 Neutral 6.06 Destabilizing 1.17 Destabilizing 0.94 Destabilizing −0.1 Neutral −0.42 Neutral

T4838M −0.1 Neutral 0.62 Destabilizing 0.91 Destabilizing −0.21 Neutral −0.03 Neutral −0.72 Neutral

R4845K −0.2 Neutral −0.86 Stabilizing 1.61 Destabilizing −0.2 Neutral 0.49 Neutral −0.40 Neutral

R4845S −0.2 Neutral 2.31 Destabilizing 2.33 Destabilizing −0.34 Neutral 0.22 Neutral 0.52 Neutral

R4845W −0.2 Neutral 6.29 Destabilizing 0.88 Destabilizing −0.72 Stabilizing 0.4 Neutral 1.91 Neutral

C4851Y 4.6 Destabilizing 9.23 Destabilizing 3.46 Destabilizing 0.23 Neutral 4.9 Destabilizing −1.85 Highly Frustrated

N4854D 0.0 Neutral 2.23 Destabilizing 1.76 Destabilizing −0.2 Neutral −0.2 Neutral −0.18 Neutral

C4855Y 0.0 Neutral 5.52 Destabilizing −0.93 Stabilizing 0.01 Neutral −0.01 Neutral −0.72 Neutral

V4860A 0.0 Neutral 2.77 Destabilizing 1.35 Destabilizing 0.01 Neutral 0 Neutral −0.98 Neutral

F4862L 0.0 Neutral 1.56 Destabilizing 1.28 Destabilizing 0.02 Neutral 0 Neutral 1.91 Minimally
Frustrated

I4870S 0.1 Neutral 5.99 Destabilizing 3.96 Destabilizing 0.07 Neutral 0.01 Neutral −2.15 Highly Frustrated

(Continued on following page)
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We first performed alanine scanning mutagenesis to determine
the contribution of amino acid side chains to KMT2C protein
stability. For each variant, the simulation calculates the difference
between the energy that is either favorable or unfavorable to protein
folding (folding free energy, ΔΔGfold-ALAmut) of the wild type and
variants. The results reported in Table 2, show that most residues
(23 of 30) have neutral effects in stability when substituted by
alanine.

We also highlight the destabilizing effect caused by mutating the
side chain of C4851, a residue that contributes to Zn2+ binding via
thiol interaction (Zhang et al., 2003). The alanine substitution at this
position displays a variation in folding energy (ΔΔGfold-ALAmut

(C4851A) = 4.63 kcal/mol) caused by a loss of interaction. We
report the combined results from alanine scanning mutagenesis
for each amino acid within the SET domain in Supplementary
Figure S2 (Supplementary Material).

We also used other methods for calculating the impact of
variants on structural integrity, namely, thermodynamic stability
(ΔΔGfolding) of variants. We leveraged two different force field-based
methods, CHARMM (ΔΔGfold-CHARMM) (Brooks et al., 2009) and
FoldX (ΔΔGfold-FoldX) (Schymkowitz et al., 2005), respectively, for
fast computational mutagenesis. Through this analysis, we found
two structure-based scores with a high degree of agreement across
the variants (Table 2), reflecting more variants with destabilizing
effects. For example, the G4802R variant showed the highest
destabilizing effect by both methods (ΔΔGfold-CHARMM =
12.37 kcal/mol, ΔΔGfold-FoldX = 31.82 kcal/mol) among all
variants. The substitution is non-conservative and replaces Gly
with bulky and positive side chain, resulting in partial loss of
secondary structure of the third beta-sheet due to unfavorable
steric clashes and polar solvation energy (Figure 2C). In contrast,
the D4892G variant has stabilizing effect calculated by both methods
(ΔΔG folding-CHARMM = −1.3 kcal/mol, ΔΔG folding-
FOLDX = −1.17 kcal/mol). This substitution between the last two
loops at the C-terminus nullifies the effect of the side chain in the
same manner as alanine mutagenesis. However, unlike alanine,
glycine maintains the conformational flexibility of the backbone,
resulting in a favorable effect for this substitution and this protein
region (Figure 2D).

We also calculated the effect of missense mutations in KMT2C
cofactor and substrate complexes to identify the differences in the
binding (free energy of binding) between the wild-type and mutated
structures. In the KMT2C:SAH complex, only the variant C4851Y
has a destabilizing effect. This missense mutation disrupts the Zn2+

coordination because of the inability of Tyr tomake coordinate bond
and the steric clashes introduced upon substitution (Figure 2E).
Further, it displaces the residue H4900 enough to lose the strong
N-H main-chain bond with the SAH-N1-Adenine moiety, resulting
in a value of ΔΔGbinding-SAH = 4.9 kcal/mol. In the KMT2C:
H3K4 peptide complex, five variants show destabilizing effects.
The polar and positive residues in variants G4802R and E4808K
change the electrostatic properties by forming additional
intramolecular short-range interactions that affect the
H3K4 binding site. Substitutions in variants N4811S, R4828H,
and Y4884C cause a loss of interactions with the peptide due to
direct changes in the binding site. The two-dimensional interactions
of variants that destabilize the KMT2C are reported in
Supplementary Figure S3 (Supplementary Material).TA
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Finally, we studied how each genomic variant changes the local
interactions by calculating the protein`s residual frustration (F)
(Parra et al., 2016). Protein frustration refers to the suboptimal
or energetically unfavorable interactions locally within a protein,
which might differ between WT and damaging mutations. The
variations (ΔF) in the configurational frustration index caused by a
mutation (Fmut) can quantify a tendency to cause a conformational
change in the protein (Dixit and Verkhivker, 2011). The
configurational frustration indices calculated through single
residual frustration (Fwt) analysis indicates that the KMT2C SET
domain is slightly lower in frustration index than a typical globular
protein (Ferreiro et al., 2007). Using the cutoff values of frustration
indices (see Methods), 7% of residues are highly frustrated
(compared with 10% observed in a typical protein), and 34% of
the residues are minimally frustrated (40% in a typical protein). The
frustration values range between −1.92 and +2.25. After calculating
the ΔF values (ΔF = Fmut - Fwt), we observed that substitutions in
six genomic variants (R4806Q, E4808K, C4851Y, I4870W, R4874W,
and F4890Y) affect the protein stabilization as the mutant residues
are highly frustrated (ΔF < −1). Thus, the structural information
obtained from thermodynamic parameters reveals that all genomic
variants, except for Q4761R, R4763Q, and R4806W, cause
significant perturbation in the folding and binding energies.

3.4 Classification of genomic variants in SET
domains according to dynamic-based
methods

We performed molecular dynamic simulations to study the
behavior of normal and mutated KMT2C. For this, we evaluated
protein stability using several local geometrical features, including
root mean square deviation (RMSD), root mean square fluctuation
(RMSF), the radius of Gyration (Rg), and solvent accessible surface
area (SASA). To better characterized the difference between theWT:
complex and the genomic variant, we used the average difference
over ten replicates.

To document how these complexes change over time and
whether they stabilize, we analyzed the energy variations of the
normal KMT2C complexes during the simulations. Supplementary
Figure S4 (Supplementary Material) shows the changes in total
energy for each simulation replicate after 10 nanoseconds (ns) of
simulation. The protein stabilizes at approximately 4 ns, with
repetitive movements. The energy of the system reached the
region of −7,570 kcal/mol, indicating a more stable state of this
protein. To further analyze the time-dependent changes of the
molecular interactions, we selected 250 conformations from the
last 2.5 ns of each simulation. These conformations represent
different snapshots of the protein during the simulation period.

The root-mean-square deviations (RMSD) of backbone atoms,
Figure 3A, also emphasize the structure stability of WT:KMT2C
during the simulation period. The RMSD values from WT:KMT2C,
highlighted as a red line, showed consistent values from 7.5 to 10 ns.
Hence, these results indicate that WT:KMT2C remained stable
throughout the simulation period. The consistent dynamics and
limited variation in energy reflects the maintenance of
conformational equilibrium. Congruently, the RMSD values of
the backbone atoms further support structural stability. Thus,

combined, our computer simulations lend insights into the
behavior of this protein, which maintains stability over time. This
information contributes to our understanding of the structural
dynamics of KMT2C and its functional implications.

The RMSD is a popular metric for the assessment of structural
similarity in 3D-structure by measuring the distance between the
protein atoms of two structures during the simulation periods
(Maiorov and Crippen, 1994). Higher deviation occurs across
dissimilar structures, reflective of an unstable protein, whereas
values near zero indicate identical conformation structures.
Among all variants, the G4802R variant showed higher RMSD
values throughout simulations with RMSD values ranging from
0.95 Å to 2.65 Å, indicating that the G4802R variant is more
unstable than the WT (Figure 3B).

To complement the results of RMSD, we compared the local
protein flexibility of the WT and the variants using RMSF values.
The results plotted in Figure 3C show fluctuation values for
individual residues and provide evidence of a change in local
conformational dynamics of variants compared to WT. Notably,
we identified two major regions, around residues 4,770 to 4,785 and
4,889 to 4,902, where all genomic variants have higher RMSF values
than WT. The first region, located between β1 and β2 strands, is
involved in interactions with the SAM cofactor, and the second
region, located at the post-SET loop, links the SET-C region with the
conserved post-SET Zn2+-tetrathiolate. On the other hand, RMSF
values show a loss of flexibility, for all variants, at a region composed
of the β6 and β7 sheet and conserved first knot region, as observed by
lower RMSF values. This observation suggests that a high RMSF
related to the alignment of these two parallel loops is vital to
maintain the integrity of the substrate groove. Nevertheless, these
differences in RMSF provide an image of how the variants can affect
the binding mode of the SAM cofactor and the substrate recognition.

Based on previous work from our group (Chi et al., 2021; Chi
et al., 2022), we used two different RMSF scores, namely,: Pearson
correlation coefficient score (r-RMSF) and the average of absolute
difference score (Δ|RMSF|). The complete RMSF profile of the WT
and variants are shown in Supplementary Material (Supplementary
Figure S5), and the scores are listed in Supplementary Table S2.

The variation of Rg values measures the degree of compactness
and folding of a protein in relation to a circle or, in this case, a sphere
across the simulation period. For the WT complex, we find values
that range between 14.7 and 15.2 (Figure 3D), which reflex a stable
folded protein and compactness during the simulation. Except for
the variant E4792D, with relatively similar ranging values
(14.7 – 15.1), the remainder displayed higher variation in folding
(unstable folding) during the simulation period compared to WT.

Finally, we computed the SASA of the normal and variant
KMT2C systems. SASA helps us understand changes in exposed
hydrophobic regions of proteins. Hydrophobic regions are typically
buried in the interior of proteins, which mostly have charged
surfaces to contact solvent molecules. Consequently, SASA
analysis assesses significant changes in the surface exposure of
native hydrophobic regions between the normal and variant
KMT2C systems, which reflects structural alterations (Ausaf Ali
et al., 2014). Compared with the WT structure with a SASA of
6,756 ± 230 Å2, variants R4763Q, R4806Q, E4808K, N4854D, and
E4880D did not change significantly. In contrast, a significant
decrease in average SASA was observed for the E4792D, E4799K,
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R4806W, V4860A, I4870S, and D4892G variants (Figure 3E). The
remaining 18 variants showed an increase in SASA values, resulting
in a decrease in the overall compactness and stability of the protein.
Therefore, combining these four different structural and dynamic
metrics reflects the proper folding and dynamic stability of the
genomic variants studied.

3.5 Genomic variants affect the time-
dependent interaction with essential
functional cofactors

To assess the impact that each genomic variant has on its affinity
for its SAM cofactor and histone substrate, we used the molecular
mechanics-Poisson-Boltzmann Surface Area (MM-PBSA)
technique, which calculates binding energies for the formation
KMT2C:SAH (ΔΔGMMPBSA-SAH) and KMT2C:H3K4
(ΔΔGMMPBSA-H3K4) complexes respectively. This method highly
correlates with in vitro binding affinity measured experimentally
for several systems (Genheden and Ryde, 2015; Wang et al., 2017).

The binding energy was calculated by averaging 150 snapshots
extracted from MD conformational sampling for each replicate. The
binding energy change for each variant, denoted as ΔΔGbind, was then
obtained by subtracting the binding energy from the WT complex.
Hence, a negativeΔΔGbind value indicates improved binding affinity with
KMT2C, whereas positive ΔΔGbind values imply weaker binding affinity.

Compared with the WT:KMT2C (ΔΔGMMPBSA-

SAH = −163.4 kcal/mol), only variants R4806Q, R4845W, and
D4892G show similar ΔΔGAVERAGE, with differences ranging
within 2 kcal/mol (Figure 4A). Twelve variant models display
decreased binding affinity for SAH. The variants R4763Q,
E4792D, E4808K, R4845S, C4851Y, and F4890Y with
ΔΔGAVERAGE values ranging from −144.9 to −132.8 kcal/mol,
respectively, demonstrate the lowest binding energies, reflecting a
decrease in binding affinity of more than 12% compared with WT.

In contrast, increased binding affinity was observed for
14 variants with ΔΔGAVERAGE values ranging

FIGURE 3
MD trajectory analyses of WT:KMT2C (red) and variant (gray)
complexes: (A) Root mean square deviations (RMSD) from the
corresponding initial structure emphasize the structure stability ofWT:
KMT2C during the simulation period consistent values from
7.5 to 10 ns (B) violin plot of backbone RMSD values, showing the
median (solid lines) inside the kernel density plots. Among all variants,
the G4802R variant showed higher values throughout simulations
ranging from 0.95 Å to 2.65 Å, indicating that the G4802R variant is
more unstable than the WT. (C) The plotted Root Mean Square
Fluctuations identified two major regions, around residues 4,770 to

(Continued )

FIGURE 3 (Continued)
4,785 and 4,889 to 4,902, where all genomic variants have higher
fluctuation values for individual residues than WT. On the other hand,
RMSF values show a loss of flexibility, for all variants, at a region
composed of the β6 and β7 sheet and conserved first knot region,
as observed by lower RMSF values. The secondary structure elements
are shown above, with beta sheets as green arrows, helices as red zig-
zags, and loops as blue bars. (D) The Radius of Gyration (Rg) for theWT
complex shows values that range between 14.7 and 15.2 which reflex a
stable folded protein and compactness during the simulation. Except
for the variant E4792D, with relatively similar ranging values
(14.7 – 15.1), the remainder displayed higher variation in folding
(unstable folding) compared to WT. (E) Solvent accessibility surface
area (SASA) assesses significant changes in the surface exposure of
native hydrophobic regions. Compared with the WT structure with a
SASA of 6,756 ± 230 Å2, variants R4763Q, R4806Q, E4808K, N4854D,
and E4880D did not change significantly. In contrast, a significant
decrease in average SASA was observed for the E4792D, E4799K,
R4806W, V4860A, I4870S, and D4892G variants. The remaining
18 variants showed an increase in SASA values, resulting in a decrease
in the overall compactness and stability of the protein. Panels (D) and
(E) plots follow the same pattern as (B).
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from −169.3 to −193.1 kcal/mol. Only the R4806W variant from this
group of 14 also showed an increased binding affinity to H3K4, with
ΔΔGMMPBSA-H3K4 = −103.1 kcal/mol, compared to WT
(ΔΔGMMPBSA-H3K4 = −98.0 kcal/mol). In total, as shown in
Figure 4B, only two more variants show negative values, variant
E4808K with ΔΔGMMPBSA-H3K4 = −104.6 kcal/mol, and variant
R4845K with similar ΔΔGMMPBSA-H3K4 = −98.5 kcal/mol. The
remaining 26 variants display binding affinity to H3K4 with
lower binding energy values than WT. It is important to
highlight the loss of 25% of binding affinity by variants R4779H
and C4851Y, with ΔΔGMMPBSA-H3K4 = −74.5 and −73.9 kcal/mol,
respectively. Both variants also exhibit the highest ΔΔGbind to SAH,
ΔΔGbind-R4779H = −29.7 kcal/mol and ΔΔGbind-C4851Y = 26.7 kcal/
mol, reflecting the dynamics of adjacent pockets and the importance
of the interactions between SAH and H3K4 pockets sites.

We extended our studies with a second approach for calculating
interaction energy (CIE) between Zn2+ and the protein based on Van
der Waals (VdW) and electrostatic interactions. This critical
regulatory mechanism involves metal binding to the post-SET
disordered region and can induce a disorder-to-order transition
(Martin and Zhang, 2005; Selevsek et al., 2009). The SNV in the
conserved Zn2+-tetrathiolate at position 4,851 (C4851Y) showed a
lower interaction energy to Zn2+, with a 19.9 kcal/mol decrease
compared to WT (Figure 4C). Altogether 14 variants show
decreased binding energies, while the other 14 had increased
values. Supplementary Table S2 (Supplementary Material)
provides a complete description of these results.

Thus, this approach further provides insight into how changes in
protein structure affect the dynamics of interactions among the
regions of KMT2C and influence the recognition and binding
affinity of the SAM cofactor, histone substrate, and Zn2+.

3.6 Genomic variants affect bond formation
by conserved residues within the SAH-
binding pocket and in the catalytic site

The fitness of variants for ligand binding was determined by
the MM-PBSA method. This computational approach estimates
the binding between a protein and other molecules (measured in
binding free energy terms) (Srinivasan et al., 1998; Kollman et al.,
2000). By computing binding free energy values, we assess
stability and affinity of protein-ligand complexes, which is
crucial to understand the impact of mutations on protein-
ligand interactions.

We mapped four critical conserved residues in the SAH cofactor
binding pocket and H3K4 binding channel during the last quarter of
MD simulations (Figure 4D). We created two heatmaps to better
understand the time-dependent hydrogen bond interactions and
monitor the distances throughout the trajectory (Figure 4E). In our
analysis, hydrogen bonds are identified to be formed with an upper
limit set at 3.3 Å for the distance between the donor and acceptor
atoms. These results demonstrated that there are variants where the
frequency of interaction increase between residues Tyr4825 (D1)
and Leu4783 (D2) with SAHwhen compared toWT; however, when
analyzed together with the distance map, measuring the quality of
these interactions is possible. Except for variants R4845W and
C4855Y, all variants showed increased distances, which defines

this contact as a weak dipole-dipole interaction. In contrast, all
variants showed a decrease in the frequency of hydrogen bonding
between the conserved Tyr4800 and Tyr4886 with the Lys4. These
two amino acid residues play an important role in the catalytic site.
The hydrogen bond interaction (D3) with Tyr4800 facilitates the
best alignment of Nε-Lys4 with the methyl group of the SAM
cofactor. In contrast, the hydrogen bond interaction between the
Nε-Lys4 and Tyr4886 (D4) appeared critical for the catalytic
function to transfer the methyl group from the SAM cofactor to
the substrate (Trievel et al., 2002).

In summary, our results demonstrate how changes in the amino
acid sequence or conformational changes affect the geometry of the
protein structure resulting in the loss of hydrogen bond interactions
across variants. Hydrogen bonds, although individually weaker than
some other intermolecular forces, collectively contribute significantly
to overall protein stability (Pace, 2009;Majewski et al., 2019). They play
a crucial role in aligning molecular groups in a specific orientation
giving proteins a defined structure. Consequently, disturbance of these
interactions can destabilize the protein structure, resulting in decreased
stability and functionality (BNt et al., 2021). This information bears not
only mechanistic significance but may orient future studies on drug
development.

3.7 Integrative analyses reveal that all
variants disrupt at least one of the structural
or dynamics features

Lastly, we integrate the data from the structure and dynamics of
KMT2C to establish a molecular fitness (MF) behavior, used it to
classify variants as SV (Structural Variants), DV (Dynamic
Variants), and SDV (Structural and Dynamic Variants). Our
dynamics data is compiled from time-dependent interaction
energies and time-dependent interaction bonds related to the
SET domain’s function. The score-specific thresholds applied to
dynamic scores to classify the effects of variants are described in
Supplementary Table S3 (Supplementary Material).

The MF scoring reveals that all variants destabilize at least
one of the structural or dynamics features (Figure 5A). According
to our simulations, substituting Gly for Arg at position
4,802 resulted in 12 destabilizing effects of 17 scores. Even
though variant G4802R is interpreted as VUS on Clinvar, our
results highlight the potential of this variant to cause dysfunction
of KMT2C enzymatic activity.

MF classifies only one variant, C4855Y, as SV based on ΔΔGfold-

FoldX destabilizing effects. This variant is annotated as Pathogenic/Likely
Pathogenic onClinVar. TheVUSQ4761R and R4763Q variants, as well
as the pathogenic R4806W variant, exhibited destabilizing effects
following the dynamic simulations, categorizing them as DV. The
remaining 25 variants were classified as SDV, including the likely
pathogenic hotspots R4845K, R4845S, and R4845W. Finally, the
annotations of the 21 classified VUS have been enhanced using our
method, where we aggregate valuable information related to structure
and dynamics behavior (Figure 5B).

Thus, the combination of multidimensional data provides more
comprehensive information about the MF of KMT2C genomic
variants, which can aid in diagnosing and treating individuals
carrying KLEFS-2-associated mutations.
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4 Discussion

The current study reflects our efforts to standardize, parametrize,
and innovate the application of computational biophysics, biochemistry,
and chemical biology to advance methods of interpretation for disease-
associated genomic variations. Thus, the data presented here from our
multi-tiered approach provides knowledge on the potentially damaging
effects of distinct variants and their mechanisms of dysfunction. We are
applying these methodologies to study chromatinopathies, namely,
diseases caused by mutations in epigenomic regulators. In this regard,

published work from our laboratory has focused on the Kabuki
syndrome (Chi et al., 2021). Here, we extend our investigations to
related syndromes, specifically Kleefstra syndrome II. Our structural and
functional analysis offers a significant opportunity to understand how
germline SNVs may affect KMT2C enzymatic activity, a member of
the methyltransferase family responsible for several human
chromatinopathies. The Clinvar database is an important source for
mining information on germline SNV in KMT2 family members.
However, most variants remain classified as VUS, with conflicting
interpretations and many unprovided classifications. These numbers

FIGURE 4
Genomic variants affect the time-dependent interaction with essential functional cofactors. Bar graph illustrating the binding free energy difference
calculated from MM-PBSA of WT:KMT2C and variants in complex with (A) SAH and (B) H3K4 peptide calculated by averaging 150 snapshots extracted
fromMD conformational sampling for each replicate. The binding energy change for each variant, denoted as ΔΔGbind, was then obtained by subtracting
the binding energy from theWT complex. Hence, a negativeΔΔGbind value indicates improved binding affinity with KMT2C, whereas positive ΔΔGbind

values imply weaker binding affinity. (C) Zn2+ interaction energy differences showed the SNV in the conserved Zn2+-tetrathiolate at position 4,851
(C4851Y) has the weakest interaction with decrease of 19.9 kcal/mol compared to WT. (D) Mapped hydrogen bond interactions between conserved
residues Tyr4825 and Leu4783 with SAH, and Tyr4800 and Tyr4886 with H3K4 peptide, showed in green dashed lines. The protein residues are shown as
a stick model. (E) (left) Time-dependent non-bond monitoring at the last quarter of MD simulations is displayed as a heatmap (scale 0 to 1, where
frequency = 1 represents the specific bond detected on 100% of conformations throughout the MD trajectory). The partners in the interaction are From.
atom - To. atom. Greek letter locants are used to identify the relative location of atoms (A = alpha, B = beta, G = gamma, and D = delta). (right) Distances
between the monitored bonds. We defined hydrogen bonds ranging from 2.2 to 3.3 Å filled in green color.
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reach an impressive three-quarters of the total and represent a significant
clinical burden for diagnosed patients and their families, highlighting the
necessity for enhancing the annotation to understand the role of these
genes in rare diseases.

To increase the level of information, we used paralog annotation,
permitting coverage of a broad spectrum of mutations in the KMT2C
SET domain. The evolutionary-related gene KMT2D shares the
homologous sequence and protein domain and was identified as a
gene of interest. The interpretation of SNV in the conserved SET
domain, it is crucial to understand the functional mechanism of
KMT2C/D paralogs. The annotation of equivalent amino acids in
paralog proteins provides a valuable tool for predicting the potential
impact of missense variants in proteins, like KMT2C, for which there is
limited clinical genetic information. Additionally, we described the use
of multidimensional tools, such as 2D sequence-based scores with the
protein 3D structure scores and 4D time-dependent dynamic scores, to
extend our understanding of the SNV interpretation.

We initiated this study by analyzing multiple prediction algorithms
to assess the pathogenicity of variants. Variant E4792D, described in the
subdomain SET-C, showed less confident prediction rates. This lack of

agreement can be attributed to the fact that this glutamic acid is a non-
conserved residue-based on multiple sequence alignments across
KMT2 family members and is an aspartic acid in the KMT2A and
KMT2B proteins (Supplementary Figure S6 in SupplementaryMaterial).
In fact, the conflicting results can be ascribed to the development of a
large set of tools to predict the pathogenicity of SNV based on the
conservation and biochemical properties of the amino acid substitutions
using different predictive features.

On the other hand, the initial structural analysis reveals that the
SNV has the potential to produce a phenotypic effect by impacting
the stability of the KMT2C protein and/or by impairing the activity
of KMT2C without changing its stability but by blocking the
KMT2C catalytic site based on alterations in the affinity with the
histone substrate or SAM cofactor. Our results point out that 90% of
the SNV studied here falls in at least one of the six 3D scores and
may damage the function of KMT2C.

In our third level of analysis, we analyzed the MD trajectory of
the models to obtain scores related to time-dependent behavior,
including protein stability, conformational changes, and binding
affinities. Trajectory analysis provided quantitative measures of

FIGURE 5
Integrative analyses reveal that all variants disrupt at least one of the structural or dynamics features. (A) KMT2C variant scores based on molecular
fitness (MF), which is derived from the integration of data from the structure (Table 2) and dynamics features (Supplementary Table S3) and used to classify
variants into SV (Structural Variants), DV (Dynamic Variants), and SDV (Structural and Dynamic Variants). The MF scoring reveals that all variants destabilize
at least one of the structural or dynamics features. The interpretation column refers to ClinVar interpretation, and the variant classification column
refers to the classification by our MF analysis. (B)Mapping of variants onto the KMT2C SET domain molecular structure. Variants are indicated as spheres,
SV in black, DV in purple and SDV in yellow. (Upper) full view of SET Domain, middle) zoom-in the cofactor and Zn2+ regions, (lower) zoom-in the
substrate catalytic site. The same color codes for the sub-domains shown in Figure 1D are used. The protein is shown in cartoon representation. The
cofactor product SAH and the substrate H3K4 are shown in a stick model with carbon atoms colored in blue and yellow, respectively, oxygen in red,
nitrogen in blue, and sulfur in yellow. The Zn2+ ion is shown as an orange sphere.
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properties to compare the molecular behavior of the different
variant models to the canonical WT model.

Overall, this study highlights the importance of combiningmultiple
approaches to understand the functional consequences of genomic
variants at different information levels.We calculate and combined data
from structural properties and dynamic behavior data to classify
KMT2C and paralog variants. Further investigation, including MD,
provides more refined data than the current annotation tools used in
human genomics databases. Our built 3Dmodels for variants presented
in the SET domain regions suggest distinct mechanisms that lead to
their imbalance and are likely not predictable from sequence alone.

Using in silico-established tools allowed us to gain insights about
the consequences of SNV. Our MD simulations provide a deep
understanding of disturbances in interactions that can destabilize the
protein structure, resulting in decreased stability and functionality.

This new knowledge extends our understanding of the molecular
mechanism underlying the dysfunction of KLEFS type 2-associated
genomicmutations.We will continue pursuing newmetrics to improve
our multidimensional analysis and better understand how genetic
variation translates to functional mechanisms. Identifying KMT2C
mutation-specific druggable conformations may pave the way to
developing small molecules to ameliorate the symptoms of diseases
related to this protein and diseases caused by KMT2C paralogs.
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