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Abstract   

Background: For effective diagnosis and treatment planning, accurate segmentation of the kidneys and detection of 
kidney stones are crucial. Traditional procedures are time-consuming and subject to observer variation. This study 
proposes an automated method employing YOLO (You Only Look Once) algorithms for renal segmentation and kidney 
stone detection on CT scans to address these issues.   

Methods: The dataset used in this study was sourced from the GitHub. The dataset contains a total of 1799 images, 
with 790 images labeled as 'containing kidney stones' and 1009 images labeled as 'not containing kidney stones'. U-
Net architecture was utilized to precisely identify the region of interest, while YOLOv5 and YOLOv7 architecture was 
utilized to detect the stones. In addition, a performance comparison between the two YOLO models and other 

contemporary relevant models has been conducted. 

Results: We obtained a kidney segmentation IOU (Intersection over Union) of 91.4% and kidney stone detection 
accuracies of 99.5% for YOLOv7 and 98.7% for YOLOv5. YOLOv5 and YOLOv7 outperform the best existing models, 
including CNN, KNN, SVM, Kronecker CNN, Xresnet50, VGG16, etc. YOLOv7 possesses superior accuracy than 
YOLOv5. The only issue we encountered with the YOLOv7 model was that it demanded more training time than the 
YOLOv5 model. 

Conclusion: The results demonstrate that the proposed AI-based method has the potential to improve clinical 
procedures, allowing radiologists and urologists to make well-informed decisions for patients with renal pathologies. As 
medical imaging technology progresses, the incorporation of deep learning techniques such as YOLO holds promise 
for additional advances in automated diagnosis and treatment planning. 
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Background  
The field of medical imaging has been significantly transformed 

by the advent of computed tomography (CT) [1]. Renal health 

assessment, specifically kidney segmentation and stone 

detection, has emerged as a crucial diagnostic tool within a 

wide range of applications. The precise and effective analysis of 

CT scans is of utmost importance in assisting healthcare 

practitioners in making informed decisions and delivering 

prompt interventions [2]. In recent years, there has been 

significant progress in object detection tasks across various 

domains through the utilization of deep learning-based 

algorithms, specifically, the You Only Look Once (YOLO) 

framework. YOLO is a single-stage detector, so it can detect all 

of the objects in an image with a single forward transit through 

a convolutional neural network (CNN). It utilizes a singular 

neural network to predict the bounding boxes and class 

probabilities of the objects present in an image, making YOLO 

extremely fast [3]. The incorporation of the YOLO in medical 

contexts holds promise for enhancing the precision and 

effectiveness of medical diagnoses. YOLO is particularly 

attractive for time-sensitive medical procedures and clinical 

decisions such as disease detection, treatment planning, and 

monitoring of disease progression due to its real-time 

performance [4]. Kidney segmentation plays a crucial role in 

facilitating disease diagnosis and enhancing treatment planning. 

Accurate segmentation of kidney structures yields valuable 

insights into irregularities pertaining to shape and size. These 

findings can be leveraged by medical professionals to analyze 

critical clinical conditions, such as carcinoma [5]. CT imaging 
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is preferred by radiologists over other imaging techniques 

because it generates high-resolution images with clear 

anatomical details. Consequently, CT imaging is an 

indispensable diagnostic instrument for any disease affecting 

the kidneys [2]. Manual segmentation, despite being regarded as 

the gold standard, is labor-intensive, prone to human error, and 

time-consuming. Kidney stones are a prevalent medical 

condition with a global impact, leading a significant number of 

individuals to seek urgent medical attention due to severe 

discomfort [6]. Unless detected and treated early, it can develop 

and cause severe pain, as well as a high likelihood of 

obstructing the urinary system and causing kidney failure [7]. 

Even though there are numerous imaging techniques available, 

selecting the most appropriate one for kidney stone detection 

can vary from patient to patient. However, non-contrast 

computed tomography (NCCT) is considered the most accurate 

imaging technique due to its high sensitivity, specificity, and 

precise detection of the stone size [8]. Due to the unprecedented 

amount of computational power and advanced imaging 

techniques, we can meticulously analyze medical images and 

detect details that human eyes may have overlooked. Deep 

learning offers algorithms that are effective for image 

segmentation [9], object detection [10], and classification [11]. 

Deep learning is becoming increasingly valuable in urology for 

the detection of kidney stones [12]. Among the pertinent works 

is the early detection of chronic kidney disease using machine 

learning techniques [13]. Using deep learning techniques, a 

recent study has devised a computer-assisted diagnostic 

technique for detecting kidney stones in coronal CT scans. 

Baygin et al. introduced ExDark19, a transfer learning-based 

image classification method for automated kidney stone 

detection using CT images, in a separate study [14]. 

Nonetheless, there are rarely any studies that use YOLO 

algorithms for the automated segmentation and detection of 

kidney and kidney diseases. In our study, we developed a model 

that first segments the kidneys from the NCCT images using the 

U-Net architecture and then detects kidney stones with the 

YOLO algorithms. Due to the absence of any other organ in the 

image, segmenting the kidneys increases the efficacy of stone 

detection. The research questions for this article could include: 

1. How can YOLO algorithms be adapted and implemented for 

automatic kidney segmentation and kidney stone detection in 

computed tomography (CT) images? 

2. Can the YOLO-based system accurately differentiate kidney 

stones from other common kidney anomalies on CT scans? 

We hypothesized that AI can be efficiently used to diagnose and 

detect kidney stones. Hence, this article aims to address the 

automatic segmentation of kidneys and kidney stones in NCCT 

images using YOLOv7 and YOLOv5 algorithms. The goal of 

this present study is to detect the stone as exactly as possible, 

which leads to image processing. The current study has the 

following contributions.  

1. A cutting-edge automated approach for kidney segmentation 

and the detection of kidney stones on CT scans, leveraging the 

YOLO framework.  

2. This novel method offers healthcare professionals a powerful 

tool to improve patient outcomes and streamline the diagnostic 

process.  

As the prevalence of kidney-related disorders continues to rise, 

the findings of this study are anticipated to have a substantial 

impact on the field of medical imaging and deep learning 

applications in healthcare. 

 

Methods  
U-Net architecture was used to precisely determine the region 

of interest, while YOLOv5 and YOLOv7 architecture were used 

to detect the stones. Each utilizes convolutional neural 

networks. Figure 1 provides a comprehensive illustration of the 

workflow.

  
Figure 1. Workflow of the whole process of kidney segmentation and stone detection.
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Dataset description 

The dataset employed in this study was sourced from the kidney 

stone detection repository available on GitHub [12]. The 

repository comprises a varied collection of coronal CT scans 

obtained from multiple institutions and scanners. The scans 

within the dataset were obtained in the Digital Imaging and 

Communications in Medicine (DICOM) format and underwent 

pre-processing to eliminate any personal identification details 

pertaining to the patient. Without contrast administration, every 

image was captured in the supine position. The dataset 

comprises a total of 1799 images, with 790 images labeled by 

radiologists and urologists as containing kidney stones and 

1009 images labeled as not containing kidney stones.  

The dataset consists of CT scans from male and female patients 

spanning ages from 18 to 80 years. For testing, we categorized a 

total of 165 images as containing stones and 181 images as not 

containing stones. The remaining images were allocated for the 

tasks of creating binary masks, labeling, training, and 

validation. This database is made publicly available Yildirim et 

al. [12], at the following ink: 

(https://github.com/yildirimozal/Kidney_stone_detection). The 

distribution of data for training, validation, and testing for both 

U-Net and YOLO is shown in Figure 2. 

Figure 3 depicts the NCCT images with and without kidney 

stones from the dataset used for training, validation, and testing. 

 

Figure 2. Data distribution for both U-Net and YOLO models 

Figure 3: Typical examples of normal and kidney stone NCCT images are used in this study provided by Yildirim et al [12].

Data for U-Net 

We gathered 1453 images for training and validation, with 80% 

devoted to training and 20% to validation. We used label-studio 

to create each image's mask. Every image had one left mask 

(for the left kidney) and one right mask (for the right kidney). 

The masks are then converted to binary masks containing only 0 

and 255 as pixel values. The model took three folders as input, 

where the first folder contained all the images, and the rest 

contained the respective masks for each image. The images and 

masks consist same name and sequence. The model resized the 

images and masks into 512×512 and split the data into two 

portions for training and validation. 

 

Data for YOLO 

We created a second data set containing 608 training images 

and 154 validation images for stone detection. The images were 

obtained by multiplying the original images with their 

respective binary masks, and contour detection was utilized to 
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obtain images of each kidney. We resized every image to 

640×640 before labeling.  The kidney images were separated 

into two folders containing images with and without stones. We 

used makesense.ai to designate the images with an appropriate 

bounding box around the stones. We trained both YOLOv5 and 

YOLOv7 models with the same dataset. YOLO and U-Net 

models were tested with 346 images. None of these images was 

used for either training or validation. 

 

U-Net Training 

The U-Net consists of two major parts. The left part is known as 

the contracting part, constituted by the general convolutional 

process. The right part is the expansive part, constituted by 

transposed 2D convolutional layers [15]. Before training, every 

image was resized into 512×512. The contracting path consists 

of four layers, each consisting of repeated applications of 

convolutions followed by a rectified linear unit (Relu) and a 

max pooling operation reducing the size in half after each stage. 

The U-Net model is trained on Google colab using 50 epochs 

and took 5 hours to train with the Tesla T4 GPU. The Adam 

optimization algorithm, dice loss, and binary-cross-entropy loss 

were used to adjust the parameters of the U-Net model. The 

model predicts binary masks as output. To increase the IOU, we 

trained the U-Net model again with inceptionv3 as the 

backbone using the same condition and dataset. After 

multiplying the predicted mask with the original image, we get 

the desired images where only the kidney is present. Then by 

applying contour detection, we get two separate images of both 

kidneys. The U-Net architecture is shown in Figure 4. 

 

Figure 4: U-Net Architecture 

 

YOLO Training 

The YOLO network consists of 24 convolutional layers and two 

fully connected layers at the end. The convolutional layers 

extract the features of the image, and the fully connected layers 

predict the output coordinates and probabilities [16]. The 

bounding box contains five predictions: x, y, w, h, and 

confidence. We used 0.5 as the confidence threshold to predict  

 

 

 

 

the stones and only one class stone. We trained the YOLOv5 

and YOLOv7 models on Google Colab using the Tesla T4 GPU 

with 100 epochs. The YOLO algorithm is quick and accurate, 

but the stones may be too small sometimes for it to detect 

efficiently. This problem is solved in YOLO versions 5 and 7. 

All the models are trained with the same dataset. The general 

procedure using YOLO models for this work is shown in Figure 

5. 

Figure 5: Process flow diagram of kidney stone detection using YOLO models 
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Results and discussion  
Model performance  

The split function randomly separated images for training and 

validation, and it took almost 5.5 hours to complete 50 epochs. 

We trained the U-Net model using the inceptionv3 as the 

backbone. The outcomes can be seen in Table 1. We evaluated 

the models using the 346 images we set aside. The model's 

accuracy is exceptionally high, as is typical for segmentation 

models. The IOU of the inceptionv3-trained U-Net model is 

0.91. The IOU and dice coefficients indicate how near the 

prediction is to the actual value and the model's precision. 

(Table 1).  

 

Table 1: Parameters obtained by U-Net models 

Model-Name IOU F1 score Validation loss 

U-Net 0.72 0.83 0.15 

U-Net with inception 0.91 0.95 0.04 

 

The experimental findings encompassed four distinct outcomes: 

true positive (TP), false positive (FP), true negative (TN), and 

false negative (FN) [17]. However, it misclassified three kidney 

stone images as normal (FN) and five normal images as kidney 

stones (FP). Similarly, the YOLOv7 model accurately predicted 

174 kidney stone images and 360 normal images. Nevertheless, 

it misclassified four kidney stone images and one normal image.  

Important statistical metrics are computed utilizing the 

 

following equations [17]. 

Precision = TP/(TP + FP)                                                      (1) 

Recall = TP/(TP + FN)                                                          (2) 

F1 − score = (2)/((1/precision) + (1/recall))                          (3)                                

Accuracy = ((TP + TN / (TP + TN + FP + FN))                   (4) 

The performance summary of the YOLO models can be 

observed in Table 2. 

 

Table 2:  Parameters obtained by the YOLO models 

Model-Name Precision Recall F1 Score Accuracy 

YOLOv5 0.98 0.97 0.98 0.98 

YOLOv7 0.99 0.97 0.98 0.99 

 

The confusion matrix depicted in Figures 6 (a) and 6 (b) 

compares the actual classification with the predicted 

classification. This phenomenon can serve as a visual 

representation of instances where the model experiences 

difficulty in accurately classifying or differentiating between 

two distinct classes. The representation is shown by a two-by-

two matrix. One axis of the matrix corresponds to the real or 

ground truth, while the other axis corresponds to the truth as 

predicted by the model. According to the confusion matrix of 

the YOLOv5 model, 175 kidney stone (TP) images and 356 

normal images (TN) were correctly predicted. While the 

YOLOv7 model's precise prediction for kidney stones is 174 

images, it is 360 for normal images. 

Figure 6: Confusion matrix diagram of (a) YOLOv5 and (b) YOLOv7. 

 

Comparisons of U-Net and YOLO models 

Using inceptionv3 improved the efficacy of the U-Net 

architecture, particularly the IOU and dice coefficient. Figure 7 

demonstrates the difference. To detect kidney stones, YOLOv5 

and YOLOv7 models were trained. Training the YOLOv7 

model required less time than training the YOLOv5. Both 

models were trained on the same dataset and with the same 

number of epochs using the Tesla T4 GPU on Google Colab. 

With both models, we used a threshold value of 0.5 for 

detection. Figure 8 displays the comparison graphs. YOLOv7 

has greater precision, while both models have the same recall 

value (Table 2). The YOLOv7 model has a more accurate 

prediction rate due to its increased precision. Both models 

predicted that four images containing a kidney stone were 

normal. Only one benign image was predicted to be a kidney 

stone by the YOLOv7 model. While YOLOv5 anticipated three. 

The YOLOv7 model incorrectly classified fewer images than 

 

 

the YOLOv5 model. The YOLOv7 model trained quicker and 

detected more accurately. The only difficulty we encountered 

with the YOLOv7 model was that it required longer training 

time than the YOLOv5 model. This result is consistent with a 

recent study by Soeb et al. [17]. The most accurate diagnosis is 

provided by NCCT images, which include the entire abdomen, 

pelvis, a portion of the thorax, and lower limbs. The kidneys are 

the region of interest, though they represent only a small portion 

of the total area. Therefore, it was imperative to precisely 

identify the area of interest [18]. The rib ends are nearly 

identical to larger kidney stones. Consequently, using the entire 

image for detection can result in less precise results. Due to the 

likelihood of detecting kidney stones in rib sites close to the 

kidneys. We segmented the kidneys using U-Net to reduce the 

likelihood of misidentification of other objects as kidney stones. 

normal image is detected as a kidney stone by both models, 

while a portion of the rib top is detected as a stone in two 

identical images (Figure 9).  
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Figure 7:  U-Net metrics comparison; a) IOU, b) dice coefficient, c) validation loss  

Figure 8: YOLO model metrics comparison; a) mAP, b) precision, c) recall 

Figure 9: (a)YOLOv7 and (b) YOLOv5 fault images. 

 

The efficacy of the proposed methodology for kidney stone 

detection is compared to that of previously published models. 

The outcomes are presented in Table 3. The table presents a 

comprehensive evaluation of the efficacy of different machine 

learning and deep learning models in the context of kidney 

segmentation and the identification of kidney stones in 

computed tomography imaging. The performance of the 

decision tree and SVM in kidney segmentation and stone 

detection is satisfactory. However, these models may lack the 

sophistication to capture complex patterns in CT scans when 

compared to more sophisticated models. Next, the K-Nearest 

Neighbors (KNN) algorithm, which is more data-driven than 

the previous models, outperformed them with an accuracy of 

89.0%. This suggests that data-driven methods may be more 
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appropriate for this particular issue. Regarding deep learning 

models, the CNN's accuracy was 86%. This further supports the 

trend that data-driven, sophisticated models tend to perform 

better in image-related tasks. A more specialized version of 

CNN, the Kronecker CNN, substantially improved accuracy to 

98.5%, indicating that customizations and refinements to 

standard CNNs can result in significant performance 

improvements. The YOLO models are explicitly designed for 

object detection tasks, and their accuracy rates are quite 

impressive. YOLOv7 is as accurate as VGG16, indicating that 

specialized models designed for specific tasks (such as YOLO 

for object detection) can match or even surpass the performance 

of general-purpose models such as VGG16. The models 

developed in this study, YOLOv5 and YOLOv7, outperform the 

best pre-existing models, suggesting that they could be valuable 

additions to the toolbox of methods for tackling this crucial 

medical task.  
 
Table 3. Performance comparison of the current study with 

existing models 

Model Accuracy (%) References  

CNN 86.0 [19] 

Decision tree 85.3 [20] 

KNN 89.0 [21] 

SVM 84.0 [21] 

Kronecker CNN 98.5 [22] 

Xresnet50 96.8 [12] 

VGG16 99.0 [16] 

YOLOv5  98.7 Present study 

YOLOv7 99.5 Present study 

 

When radiologists have to evaluate an increased volume of 

reports, they tend to accelerate the diagnostic process. 

Consequently, they may commit significant errors. There is 

evidence that 10% of radiologists missed important details 

when they screened a CT image for approximately 10 minutes, 

while the error rate increases to 26% when the screening 

duration is reduced by half [23]. Clinical radiology practice is 

associated with an error rate of approximately 4% [24]. If each 

image is evaluated by two expert radiologists, this error rate can 

be significantly reduced. However, this is not always feasible 

due to a lack of radiologists. Deep learning models can be used 

to perform the duties of a radiologist and generate a second 

opinion. Our proposed models are clinically reliable diagnostic 

tools due to their high accuracy, ability to precisely determine 

the region of interest, and ability to detect kidney stones with 

precision.  
 
Conclusion  
The model can be enhanced by integrating more sophisticated 

algorithms and images from other imaging modalities, such as 

X-ray, ultrasonography, MRI, and CT. Additionally, images 

obtained from various planes and hospitals should be used to 

improve the model's accuracy and provide more information 

about the stones' locations. In the present study, a deep-learning 

model was proposed for the automated detection of kidney 

stones using NCCT images. The model employs image 

segmentation to precisely distinguish the kidneys and detect 

kidney stones. To validate the performance of our model, we 

enlisted the assistance of a specialist Urologist from Sylhet 

MAG Osmani Medical College and Hospital, Bangladesh, who 

evaluated the results and determined that the regions of interest 

identified by our model were accurate for the majority of 

images. This suggests that our proposed model is accurate and 

can be utilized by radiologists as a dependable tool for detecting 

kidney stone cases rapidly and effectively. 

 

Abbreviation  
CT: Computed Tomography; YOLO: You Only Look Once; CNN: 

Convolutional Neural Network; NCCT: Non-Contrast Computed 

Tomography; IoU: Intersection over Union; DICOM: Digital Imaging 

and Communications in Medicine; TP: True Positive, FP: False 

Positive, TN: True Negative, FN: False Negative; KNN: K-Nearest 

Neighbors 

 

Declaration  

Acknowledgment   

None. 

 

Funding  

The authors received no financial support for their research, authorship, 

and/or publication of this article. 

 

Availability of data and materials  

Data will be available by emailing fahadbau21@hotmail.com 

 

Authors’ contributions  

Salman F. Rabby (SFR), and Janibul A. Soeb (JAB) were involved in 

conceptualization, writing original draft, and supervision; Farhad 

Hossain (FH) performed the data analysis, writing, reviewing and 

editing; Shuvro C. Das (SCD), Imdadur Rahman (IR), and Srejon Das 

(SD) were involved in programming, formal data analysis, writing 

original draft; Md. Fahad Jubayer (MFJ) conceptualized and supervised 

the research and engaged in writing original draft, reviewing and 

editing.  

 

Ethics approval and consent to participate  

We conducted the research following the declaration of Helsinki. The 

data used in this study was obtained from an open access repository 

(https://github.com/yildirimozal/Kidney_stone_detection), Provided by 

Yildirim et al. [12], Therefor there was no need for obtaining any 

ethical consent. 

 

Consent for publication  

Not applicable 

 

Competing interest   

The authors declare that they have no competing interests. 

 

Open Access  

This article is distributed under the terms of the Creative Commons 

Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/), which permits 

unrestricted use, distribution, and reproduction in any medium, 

provided you give appropriate credit to the original author(s) and the 

source, provide a link to the Creative Commons license, and indicate if 

changes were made. The Creative Commons Public Domain Dedication 

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to 

the data made available in this article unless otherwise stated. 

 

Author Details  
1Department of Electrical and Electronic Engineering, Sylhet 

Engineering College, Sylhet, 3100, Bangladesh. 
2Department of Health Management Information System, Mymensingh 

Medical College Hospital, Mymensingh-2200, Bangladesh.  
3Department of Farm Power and Machinery, Sylhet Agricultural 

University, Sylhet-3100, Bangladesh. 
4Department of Food Engineering and Technology, Sylhet Agricultural 

University, Sylhet-3100, Bangladesh. 

https://github.com/yildirimozal/Kidney_stone_detection


                                                          Rabby SF, et al., Journal of Ideas in Health (2023); 6(4):963-970                                                      970  

     

 

Article Info  

Received: 15 September 2023  

Accepted: 02 November 2023    

Published: 27 November 2023 

 

References  

1. Power SP, Moloney F, Twomey M, James K, O’Connor OJ, 

Maher MM. Computed tomography and patient risk: Facts, 

perceptions and uncertainties. World Journal of Radiology. 

2016;8(12):902-15. https://doi.org/10.4329%2Fwjr.v8.i12.902   

2. Caglayan A, Horsanali MO, Kocadurdu K, Ismailoglu E, Guneyli 

S. Deep learning model-assisted detection of kidney stones on 

computed tomography. International Braz J Urol. 2022; 48:830-9. 

https://doi.org/10.1590/S1677-5538.IBJU.2022.0132  

3. Fang W, Wang L, Ren P. Tinier-YOLO: A real-time object 

detection method for constrained environments. IEEE Access. 

2019; 8:1935-44. https://doi.org/10.1109/ACCESS.2019.2961959     

4. Pacal I, Karaman A, Karaboga D, Akay B, Basturk A, 

Nalbantoglu U, Coskun S. An efficient real-time colonic polyp 

detection with YOLO algorithms trained by using negative 

samples and large datasets. Computers in Biology and Medicine. 

2022; 141:105031. 

https://doi.org/10.1016/j.compbiomed.2021.105031     

5. da Cruz LB, Araújo JD, Ferreira JL, Diniz JO, Silva AC, de 

Almeida JD, de Paiva AC, Gattass M. Kidney segmentation from 

computed tomography images using deep neural network. 

Computers in Biology and Medicine. 2020; 123:103906. 

https://doi.org/10.1016/j.compbiomed.2020.103906  

6. Daudon M, Williams Jr JC. Characteristics of human kidney 

stones. Kidney Stones: Medical and Surgical Management. 2019; 

30:77. 

7. Singh P, Granberg CF, Harris PC, Lieske JC, Licht JH, Weiss A, 

Milliner DS. Primary hyperoxaluria type 3 can also result in 

kidney failure: a case report. American Journal of Kidney 

Diseases. 2022;79(1):125-8. 

https://doi.org/10.1053/j.ajkd.2021.05.016   

8. Nestler T, Haneder S, Hokamp NG. Modern imaging techniques 

in urinary stone disease. Current Opinion in Urology. 

2019;29(2):81-8.  

9. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-

Net: a self-configuring method for deep learning-based biomedical 

image segmentation. Nature Methods. 2021;18(2):203-11. 

https://doi.org/10.1038/s41592-020-01008-z 

10. Wu X, Sahoo D, Hoi SC. Recent advances in deep learning for 

object detection. Neurocomputing. 2020;396:39-64. 

https://doi.org/10.1016/j.neucom.2020.01.085  

11. Zhang J, Xie Y, Wu Q, Xia Y. Medical image classification using 

synergic deep learning. Medical Image Analysis. 2019;54:10-9. 

https://doi.org/10.1016/j.media.2019.02.010  

12. Yildirim K, Bozdag PG, Talo M, Yildirim O, Karabatak M, 

Acharya UR. Deep learning model for automated kidney stone 

detection using coronal CT images. Computers in Biology and 

Medicine. 2021;135:104569. 

https://doi.org/10.1016/j.compbiomed.2021.104569   

13. Almansour NA, Syed HF, Khayat NR, Altheeb RK, Juri RE, 

Alhiyafi J, Alrashed S, Olatunji SO. Neural network and support 

vector machine for the prediction of chronic kidney disease: A 

comparative study. Computers in Biology and Medicine. 2019; 

109:101-11. https://doi.org/10.1016/j.compbiomed.2019.04.017   

14. Baygin M, Yaman O, Barua PD, Dogan S, Tuncer T, Acharya 

UR. Exemplar Darknet19 feature generation technique for 

automated kidney stone detection with coronal CT images. 

Artificial Intelligence in Medicine. 2022; 127:102274. 

https://doi.org/10.1016/j.artmed.2022.102274  

15. Causey J, Stubblefield J, Qualls J, Fowler J, Cai L, Walker K, 

Guan Y, Huang X. An ensemble of u-net models for kidney tumor 

segmentation with CT images. IEEE/ACM Transactions on 

Computational Biology and Bioinformatics. 2021;19(3):1387-92. 

https://doi.org/10.1109/TCBB.2021.3085608   

16. Jubayer F, Soeb JA, Mojumder AN, Paul MK, Barua P, Kayshar 

S, Akter SS, Rahman M, Islam A. Detection of mold on the food 

surface using YOLOv5. Current Research in Food Science. 2021; 

4:724-8. https://doi.org/10.1016/j.crfs.2021.10.003  

17. Soeb MJ, Jubayer MF, Tarin TA, Al Mamun MR, Ruhad FM, 

Parven A, Mubarak NM, Karri SL, Meftaul IM. Tea leaf disease 

detection and identification based on YOLOv7 (YOLO-T). 

Scientific Reports. 2023;13(1):6078. 

https://doi.org/10.1038/s41598-023-33270-4  

18. Serrell EC, Best SL. Imaging in stone diagnosis and surgical 

planning. Current Opinion in Urology. 2022;32(4):397-404. 

https://doi.org/10.1097/MOU.0000000000001002  

19. Apena WO, Joseph OL. Convolutional neural network model 

layers improvement for segmentation and classification on kidney 

stone images using keras and tensorflow. Journal of 

Multidisciplinary Engineering Science and Technology. 

2021;8(6):14151-56 

20. Aksakalli I, Kaçdioğlu S, Hanay Ys. Kidney x-ray images 

classification using machine learning and deep learning methods. 

Balkan Journal of Electrical and Computer Engineering. 

2021;9(2):144-51. https://doi.org/10.17694/bajece.878116  

21. Verma J, Nath M, Tripathi P, Saini KK. Analysis and 

identification of kidney stone using K th nearest neighbour (KNN) 

and support vector machine (SVM) classification techniques. 

Pattern Recognition and Image Analysis. 2017;27:574-80. 

https://doi.org/10.1134/S1054661817030294  

22. Patro KK, Allam JP, Neelapu BC, Tadeusiewicz R, Acharya UR, 

Hammad M, Yildirim O, Pławiak P. Application of Kronecker 

convolutions in deep learning technique for automated detection 

of kidney stones with coronal CT images. Information Sciences. 

2023;640:119005. https://doi.org/10.1016/j.ins.2023.119005  

23. Akshaya M, Nithushaa R, Raja NS, Padmapriya S. Kidney stone 

detection using neural networks. In 2020 International Conference 

on System, Computation, Automation and Networking (ICSCAN) 

2020 Jul 3 (pp. 1-4). IEEE. 

https://doi.org/10.1109/ICSCAN49426.2020.9262335  

24. Vishmitha D, Yoshika K, Sivalakshmi P, Chowdary V, Shanthi 

KG, Yamini M. Kidney Stone Detection Using Deep Learning 

and Transfer Learning. In 2022 4th International Conference on 

Inventive Research in Computing Applications (ICIRCA) 2022 

(pp. 987-992). IEEE. 

https://doi.org/10.1109/ICIRCA54612.2022.998572 

 


