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In light of recently proposed quantum
algorithms that incorporate symmetries
in the hope of quantum advantage, we
show that with symmetries that are re-
strictive enough, classical algorithms can
efficiently emulate their quantum counter-
parts given certain classical descriptions
of the input. Specifically, we give classi-
cal algorithms that calculate ground states
and time-evolved expectation values for
permutation-invariant Hamiltonians spec-
ified in the symmetrized Pauli basis with
runtimes polynomial in the system size.
We use tensor-network methods to trans-
form symmetry-equivariant operators to
the block-diagonal Schur basis that is of
polynomial size, and then perform exact
matrix multiplication or diagonalization in
this basis. These methods are adaptable
to a wide range of input and output states
including those prescribed in the Schur ba-
sis, as matrix product states, or as ar-
bitrary quantum states when given the
power to apply low depth circuits and sin-
gle qubit measurements.

1 Introduction
In the physical sciences, symmetries are useful
for simplifying difficult computational tasks by
reducing the effective degrees of freedom of the
problem. This general principle has been used
to find exact solutions to many problems, such
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as integrable systems [1], topological fixed-point
models [2], or conformal field theories [3]. There
has been a hope that similar symmetries may
enable the efficiency of quantum algorithms for
simulating or finding the ground state of a sym-
metric Hamiltonian. Indeed, it is known that
there exist theoretical guarantees for quantum
algorithms for finding the ground state [4] and
fast-forwarding quantum dynamics [5] of Hamil-
tonians which commute under the action of the
symmetric group Sn on qubits. It has also nu-
merically been shown that quantum algorithms
are capable of finding the ground state of certain
integrable systems [6, 7] even when the symmetry
is not explicitly given to the quantum algorithm
a priori. Furthermore, prior work used Lie al-
gebraic methods to efficiently classically simulate
operators restricted to a Lie algebra whose dimen-
sion is polynomially large (independent of the po-
tentially exponentially large Hilbert space dimen-
sion) [8, 9]. Quantum machine learning models
that are symmetry equivariant are also believed
to be more efficiently trainable than their gen-
eral counterparts [10, 11, 12, 13, 14, 15]. These
quantum models are partly inspired by classical
neural network models that have enjoyed much
recent success [16, 17, 18]. However, restricting
quantum algorithms to problems obeying many
symmetries potentially allows for efficient classi-
cal algorithms which also take advantage of these
same symmetries. This raises the natural ques-
tion: are there efficient classical algorithms capa-
ble of performing these tasks?

This is what we investigate here. Intuitively,
we show that problems constrained by large sym-
metry groups yield efficient classical algorithms
for computing many properties of interest, as il-
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lustrated in Figure 1(a). We first broadly dis-
cuss very general classical algorithms for finding
the ground state and energy of Hamiltonians con-
strained by many symmetries. We also consider
the problem of simulating dynamics under sym-
metric Hamiltonians. We then specialize to the
case of systems invariant under permutations of
its qubits. Finally, we dequantize an algorithm
for performing binary classification problems us-
ing permutation-invariant systems on qubits.

2 Motivation and setting
Our algorithms are motivated by the fact that
symmetries significantly reduce the number of de-
grees of freedom for a given problem. For exam-
ple, consider the classical setting of Boolean func-
tions which are invariant under arbitrary permu-
tations of the bits. Such functions are defined up
to the orbits of the Boolean cube with respect
to permutations of the bits. For a Boolean func-
tion on n bits, there are n + 1 orbits indexed by
the Hamming weight of the bitstrings. Therefore,
any problem over symmetric Boolean functions
need only consider a given element of each of the
n + 1 orbits to cover all possible degrees of free-
dom. As we will later show, the symmetric group
acting over n qubits similarly reduces systems to
O(n3) degrees of freedom. By considering the al-
gebra of the symmetric group on the symmetric
subspace of linear operators, we will show that
all these degrees of freedom can be manipulated
solely through classical computation.

Before proceeding, we need to introduce impor-
tant functions and definitions that will be used in
this setting. We first formalize the notion of sym-
metry by speaking of invariant operators, defined
in the following way:

Definition 1 (Invariant operator). Given a com-
pact group G with unitary representation R :
G → U(N), a linear operator H : CN → CN

is invariant under R (G) if

R(g)HR(g)† = H, ∀g ∈ G. (1)

Note that any invariant operator is also an equiv-
ariant operator [13] in the sense that it commutes
with the representation of the group.

Any operator can be projected onto the sym-
metric subspace induced by R (G) using the
twirling superoperator ReR (more commonly

known as the Reynold’s operator in invariant the-
ory) [19, 20], which maps any operator onto the
set of equivariant operators:

ReR(M) = 1
|G|

∑
g∈G

R(g)MR(g)†. (2)

Invariant subspaces of a larger Hilbert space
can be identified by performing an isotypic de-
composition of the representation of a group. As
an example, in the case of systems invariant under
permutations of the qudits, the Schur decomposi-
tion maps the computational basis into blocks of
invariant subspaces. We graphically visualize this
phenomenon in Figure 1(b) and provide further
details in Appendix A.

Throughout this study, runtime complexities
are denoted as a function of the matrix multipli-
cation exponent ω. The best known upper bound
is currently ω = 2.37188 [21], which implies
asymptotic runtimes of O(nω+α) for any α > 0
for stably performing common linear algebraic
routines including eigendecomposition, SVD, and
matrix inversion [22].

3 Background for general symmetry
groups

In this Section, we discuss the general problem
of finding the ground state energy, ground state,
and performing time evolution under a Hamil-
tonian H on a finite-dimensional Hilbert space
which is invariant under some representation R
of a symmetry group G. Some of these prob-
lems have previously been considered in a variety
of special cases [23, 8, 9, 24, 25]. Here, we pro-
vide background on the general techniques used
in solving these problems using a unified frame-
work. We also give an equivalent formulation in
Appendix B in the language of tensor networks.

We consider the *-subalgebra of operators in-
variant under R to which H belongs. We think
of this subalgebra as a standalone *-algebra X,
such that the embedding of X into the full op-
erator algebra defines a representation A of X.
The practical relevance of these considerations is
when the size of the total Hilbert space grows ex-
ponentially with some scaling parameter n. The
paradigmatic example is the Hilbert space of n
qubits. If there are enough symmetries, it can
happen that the dimension N(n) of X only grows
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Figure 1: (a) Small groups of symmetry leave too large of an effective dimension for the problem to be tractable via
quantum computation. On the contrary, very restrictive symmetries render a problem classically tractable. Between
these two regions lies an area of promise where quantum computers may offer an advantage. (b) The Schur–Weyl
decomposition shows that only a smaller representative subspace (indicated by darker colors) of the larger Hilbert
space needs to be considered for permutation invariant operations. The size of this subspace grows as O(n3) for n
qubits.

polynomially with n, in which case many proper-
ties can be calculated efficiently [8]. This restric-
tion of X to a lower-dimensional subspace may
more generally happen beyond systems symmet-
ric in the sense of Definition 1. Due to this, for
now we focus explicitly on X and A, rather than
on G and its representation R; we will discuss
the connection of our results to G and R more
specifically at the end of this Section.

For the various algorithms we now consider, we
will assume that different properties of X and A
are known. In the course of proving Lemma 2, we
give an algorithm for finding the ground state of
H. Every finite-dimensional *-algebra is isomor-
phic to a direct sum of irreducible blocks, and ev-
ery representation is isomorphic to a direct sum
of irreducible representations. That is, there is
a block-diagonal orthonormal basis |λ, qλ, pλ⟩ of
the vector space acted upon by A, where λ labels
an irrep of X, qλ labels a basis vector internal to
λ, and pλ labels a basis vector in the multiplicity
vector space of λ; this is the basis in which we
compute the ground state of H (for some arbi-
trary and fixed multiplicity label pλ0). To prove
our theorem, we assume knowledge of the matrix
elements:

F i,λqλ,q
′
λ

:= ⟨λ, qλ, pλ0|Ai
∣∣λ, q′

λ, pλ0
〉
. (3)

In the following lemmas, we assume we are
given the Hamiltonian H ∈ A(X) as h ∈ X ex-
pressed in the preferred basis, such that

H =
∑
i

hiAi . (4)

Though a given H may not be classically de-
scribed in this exact basis, transformations into
this basis are typically efficient when the number
of irreps and irrep dimensions are polynomially
sized. For example, a Pauli decomposition can be
used to transform operators into the Pauli basis
studied later in the permutation invariant setting.
We first focus on the case when we are interested
in finding the ground state of some representa-
tion of such a Hamiltonian, in a basis where the
action of the representation is known.

Lemma 2 (Finding the ground state of symmet-
ric Hamiltonians). Consider a subalgebra A(X),
and assume that the matrix elements F i,λqλ,q

′
λ

are
known as discussed above. Then the ground state
energy and ground state of H in the |λ, qλ, pλ0⟩
basis can be found in time O

(
n2
λn

4
q

)
, where nλ

are the number of irreps of X and nq the maxi-
mum irrep dimension.

Proof. For each λ, we compute the operator with
indices:

ĥλqλ,q
′
λ

:=
∑
i

hiF
i,λ
qλ,q

′
λ
. (5)

This takes time O
(
dim (X)2

)
= O

(
n2
λn

4
q

)
. Note

that in the |λ, qλ, pλ⟩ basis, H has a block diag-
onal form. Furthermore, as pλ labels isomorphic
copies of irreps, we can find the ground state by
fixing pλ0 WLOG. Namely, the ground state en-
ergy is given by:

GSE(H) = min
λ

GSE(ĥλ) , (6)
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where:

GSE(ĥλ) := min
|ψ⟩

⟨ψ| ĥλ |ψ⟩ . (7)

Furthermore, let

λmin := argminλ GSE(ĥλ) (8)

and
|ψ∗⟩ := argmin|ψ⟩ ⟨ψ| ĥλmin |ψ⟩ . (9)

Then, for any p,

|λmin, ψ
∗, p⟩ (10)

is a ground state in the |λ, qλ, pλ⟩ basis. The
dimension of ĥλ is dimX(λ) × dimX(λ), and thus
and thus diagonalizing it takes time O

(
nωq

)
. As

we need to do this for O(nλ) many values of λ, the
total runtime for finding |ψ∗⟩ is O

(
nλn

ω
q

)
. So the

runtime of the computation in Eq. (5) dominates,
and the overall runtime is O

(
n2
λn

4
q

)
.

We now show that the dynamics of an initial
state ρ under equivariant unitaries can be clas-
sically simulated even if ρ ̸= A (X). This gen-
eralizes similar approaches taken in [23] and [25]
for both free fermions and fermionic systems with
particle number symmetry. The Lemma as writ-
ten assumes the initial state is given in a basis
where the multiplicity indices have been traced
out; in Section 4 we will give concrete examples
on how one can compute this efficiently under a
variety of input models.

Lemma 3 (Simulating equivariant dynamics).
Let

O =
∑
i

oiAi (11)

be a projective measurement and

U =
∑
i

uiAi (12)

a unitary operator. Let ρ be a quantum state,
and let ρ(λ,qλ,pλ),(λ′,q′

λ
,p′

λ
) be the coefficients of the

state in the |λ, qλ, pλ⟩ basis. Assume we are given
the reduced density matrix

ρ̃λq0,q1
:=
∑
pλ

ρ(λ,qλ,pλ),(λ,q′
λ
,pλ) . (13)

Then,
ℓ (ρ) = tr

(
OUρU †

)
(14)

can be computed in time O
(
n2
λn

4
q

)
.

Proof. After going to the |λ, qλ, pλ⟩ basis, O and
U become block diagonal, so we can compute
tr
(
OUρU †

)
by restricting to fixed pλ0. To this

end, we compute

õλqλ,q
′
λ

:=
∑
i

oiF
i,λ
qλ,q

′
λ
. (15)

and
ũλqλ,q

′
λ

:=
∑
i

uiF
i,λ
qλ,q

′
λ
. (16)

Given the matrix elements F i,λqλ,q
′
λ
, this takes time

O
(
dim (X)2

)
= O

(
n2
λn

4
q

)
. Then we have

ℓ(ρ) = tr
(
OUρU †

)
=
∑
λ

tr
(
õλũλρ̃λ(ũλ)†

)
.

(17)
The right-hand side can be computed in time
O
(
nλn

ω
q

)
, as it is given by the matrix multiplica-

tion of nλ blocks each of size at most nq×nq.

In the above considerations, the group G and
representation R do not directly enter. In prac-
tice, however, we might want to start with those
two. The irreps of X are in one-to-one correspon-
dence with those of R. By a simple corollary of
the von Neumann bicommutant theorem, multi-
plicities of irreps in X are the dimensions of the
irreps of G, and the dimensions of the irreps of G
are the multiplicities of the irreps of A. We thus
have that:

dim(X) =
∑
λ

dimX(λ)2 =
∑
λ

multR(λ)2 . (18)

Thus, the problems discussed above become clas-
sically tractable if the number nλ of irreps of G
with non-zero multiplicity in R, as well as the
maximum multiplicity nq of an irrep λ in R, are
both polynomially small.

4 Permutation invariance on qubits
We will now apply the general algorithms of Sec-
tion 3 to the case where G is given by Sn and R
is the representation on n qubits acting by per-
mutations,

R(π) |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩
= |iπ−11⟩ ⊗ |iπ−12⟩ ⊗ · · · ⊗ |iπ−11⟩ .

(19)

A straightforward basis for the algebra of invari-
ant operators can be obtained by applying the
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Reynold’s operator in Eq. (2) to the Pauli basis.
Normalizing such that all operators Ai are sums
of unit norm Pauli terms, we obtain

Ai = 1
i1!ix!iy!iz!

·∑
π∈Sn

R (π)
(
σ⊗i1

1 ⊗ σ⊗ix
x ⊗ σ⊗iy

y ⊗ σ⊗iz
z

)
R−1 (π) ,

(20)
for every 4-tuple of positive integers

i = (i1, ix, iy, iz) : i1 + ix + iy + iz = n , (21)

where σ denote Pauli operators, and σ1 = id2.
Enumerating such 4-tuples shows that the di-

mension of the algebra X is of order O(n3).
Therefore, the algorithms of Section 3 would re-
duce the task of finding the ground state (en-
ergy) of a Hamiltonian to a polynomial runtime
in n, compared to exact diagonalization of the
full Hamiltonian with a runtime exponential in n.
Let us start with computing the ground state en-
ergy and ground state of a permutation-invariant
Hamiltonian H given as a vector hi in the basis
of symmetrized Pauli monomials.

Theorem 4 (Efficient classical computation
of the ground state of a permutation-invariant
Hamiltonian). The ground state and ground state
energy of a permutation-invariant Hamiltonian
on n qubits, given as hi in the basis of sym-
metrized Pauli monomials above, can be com-
puted in time O(n7) via Lemma 2. When ap-
plied to a single Hamiltonian for each system size
n, the bottleneck of the algorithm is the compu-
tation of the matrix elements F i,λqλ,q

′
λ

that takes
O(n7), but is independent on hi. Once the matrix
elements are computed, application of Lemma 2
only takes time O

(
n6). The output ground state

is given in the |λ, qλ, pλ0⟩ Schur basis for a fixed
pλ0.

Proof. The block-diagonal basis of the permuta-
tion representation R of G = Sn is known as
Schur basis, which we will review in Appendix A.
From this it is easy to see that the number nλ of
irreps with nonzero multiplicity is nλ = O (n),
and the maximal dimension nq of these irreps is
nq = O (n). Direct application of the algorithm
in Lemma 2, then leads to a runtime of O

(
n6)

for computing the ground state of Sn-equivariant
Hamiltonians in the Schur basis. All that remains
is the computation of the O(n6) many matrix ele-
ments F i,λqλ,q

′
λ

for a given n. To this end, we make

use of the fact that the Schur basis |λ, qλ, pλ0⟩
as well as the representation A both have ma-
trix product operator (MPO) representations. We
will here only give a sketch of the tensor-network
computation, and refer to Appendix C for the
details. The representations are of the form

⟨λ, qλ, p⃗λ |⃗l⟩ =

l0 l1 ln−1

(pλ)0 (pλ)1 (pλ)n−1

qλ , (22)

of bond dimension O(n), for each fixed value of
λ, and

⟨⃗l|Ai |⃗l′⟩ =

l′0 l′1 l′n−1

l0 l1 ln−1

i (23)

of bond dimension O(n3). With this, the overlap
in Eq. (3) in the computation of the matrix ele-
ments of F can be expressed as a tensor-network
diagram:

F i,λqλ,q
′
λ

= ⟨λ, qλ, pλ0|Ai
∣∣λ, q′

λ, pλ0
〉

=

(pλ0)0 (pλ0)1 (pλ0)n−1

(pλ0)0 (pλ0)1 (pλ0)n−1

qλ

q′
λ

i .
(24)

Contracting this tensor network from the left to
the right (for a fixed λ and p⃗λ0) is the same as a
sequence of n−1 vector-matrix multiplications of
dimension O(n5). This naive contraction already
yields a polynomial runtime, namely O(n10) for
each of O(n) contractions for each of O(n) values
of λ, yielding O(n12) in total. However, in Ap-
pendix C, we make use of a band-diagonal struc-
ture of the matrices to reduce the cost of a single
contraction from O(n10) to O(n5), yielding O(n7)
in total. In Appendix E, we also give an alterna-
tive combinatorial way of calculating the matrix
entries of F which has a slightly worse runtime
of O(n10) in total but is better parallelizable.

Remark 5. The output of the classical algorithm
in Theorem 4 is the ground state in the Schur
basis, which might not always be a useful de-
scription. However, from this output, we can be
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efficiently construct the ground state on n qubits
with a quantum computer via the Schur trans-
form [26, 27, 28]. Furthermore, we can construct
an efficient classical representation of a ground
state as a low-bond-dimension MPS as we dis-
cuss in Section 4.2 and Appendix D.

We now consider an application of Lemma 3 to
the symmetric group case.

Theorem 6 (Efficient classical simulation of per-
mutation-equivariant dynamics). Consider the
classical evaluation of ℓ (ρ) as in Eq. (14) us-
ing the same assumptions as Lemma 3 with sym-
metry group Sn. ℓ (ρ) can be calculated in time
O
(
n7).

Proof. As for the proof of Theorem 4, we can
compute the matrix elements F i,λqλ,q

′
λ

in time
O(n7). The remainder is straight-forward appli-
cation of Lemma 3 with nλ, nq = O(n).

Theorems 4 and 6 provide efficient end-to-end
classical algorithms if the output ground state,
or the input state (for computing the dynamics)
are given in the Schur basis. Prior work has also
shown similar results for Dicke states [29, 24]. It
may be desirable and more natural to process in-
puts and outputs of the algorithms that do not
explicitly depend on the Schur basis. In the fol-
lowing two subsections, we will discuss the algo-
rithms for two different input and output formats,
namely first as a quantum state, and second as a
matrix product state. These results are summa-
rized in Table 1

4.1 Input and output as Quantum State

In this subsection, we will describe how Theo-
rems 4 and 6 can be applied if the input or out-
put is directly given as a quantum state on n
qubits. Of course, this requires applying some
quantum gates, measurements, and state prepa-
rations. However, the necessary quantum com-
putation is of shallow depth and its function is
merely to prepare the state or to measure a clas-
sical shadow of the state, whereas the core of the
computation is classical.

Specifically, we use the shallow-depth quantum
circuit from Ref. [27, 26] implementing the Schur
transformation VSTO defined by:

VSTO |λ, qλ, pλ⟩ = |λ⟩ |qλ⟩ |pλ⟩ . (25)

Here, |λ⟩ , |qλ⟩ , |pλ⟩ are bitstring encodings of
λ, qλ, pλ, respectively, in the computational basis,
labeling the λ register, q register, and p register,
respectively.

Theorem 7 (Efficient classical preparation of
the ground state of a permutation-invariant
Hamiltonian). Given a Hamiltonian in the sym-
metrized Pauli basis as in Theorem 4, we can pre-
pare one of its ground states as a quantum state
to an accuracy ϵ in classical runtime O

(
n7) using

a quantum circuit of depth Õ
(
n poly log

(
ϵ−1)).

Proof. We first use Theorem 4 to get a represen-
tation of the ground state in the |λ, qλ, pλ⟩-basis,
given by λmin and |ψ∗⟩. We then prepare the
quantum state

|λmin⟩

∑
qλmin

ψ∗
qλmin

|qλmin⟩

 |pλmin0⟩ (26)

for some pλmin0 of choice. This prepara-
tion takes time O (n). The quantum ground
state is then obtained by applying VSTO to
the above state, which can be implemented in
time Õ

(
n poly log

(
ϵ−1)) on a quantum com-

puter [27].

Theorem 8 (Efficient classical simulation of
permutation-equivariant dynamics on a given
quantum state). Consider the classical evalua-
tion of ℓ (ρ) as in Eq. (14) using the same as-
sumptions as Lemma 3 with symmetry group
Sn, except instead of ρ̃ one is given ρ as a
quantum state. Then, ℓ (ρ) can be estimated
to additive error ϵ with probability 1 − δ via
Õ
(
∥O∥2

∞ ϵ−2n4 log
(
δ−1)) calls to a quantum

computer each of depth Õ
(
n poly log

(
ϵ−1)), up

to an additional time O
(
n7) in classical process-

ing.

Proof. This follows from using the Schur trans-
form [26, 27] to prepare ρ̃ (as defined in
Eq. (13)) from ρ, which can be done in time
Õ
(
n poly log

(
ϵ−1)) on a quantum computer.

Note that ρ̃ is a
⌈
log2

(
n2)⌉-qubit state as it only

acts on the registers labeled by irreps λ and their
basis vectors qλ, i.e., the multiplicity register pλ
has been traced out. Given a source of ρ, then,
a quantum computer can efficiently use classical
shadow techniques [30] to output a classical de-
scription of ρ̃ capable of estimating ℓ (ρ) to addi-
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Task Runtime Ref. Notes
Finding ground state:

Output specified in Schur basis O(n7) Thm. 4 O(n6) if F matrix is precomputed.
Output matrix product state∗ O(n7) Rem. 11 O(n6) if F matrix is precomputed.

Hamiltonian simulation:
Any input quantum state∗∗ Õ

(
|O|2∞ ϵ−2n4 log

(
δ−1)) Thm. 8 Added O(n6) time to process observable.

Input specified in Schur basis∗∗∗ O(n6) Thm. 6
Matrix product state input O(χωn3 + n7) Thm. 10 χ is the bond dimension.

∗Bond dimension of output O(n).
∗∗Requires low-depth circuit and single qubit measurements to measure the quantum state.
∗∗∗Previous work provides efficient algorithms for symmetric Dicke states [24, 29].

Table 1: Summary of runtimes and results for finding the ground state and simulating permutation invariant Hamil-
tonians on inputs of different forms. Throughout, n refers to the number of qubits, δ is the probability of success
and ϵ is the error of the outcome.

tive error ϵ with probability 1 − δ using

N = Õ
(∥∥∥ũ†õũ

∥∥∥2

shadow
ϵ−2 log

(
δ−1

))
(27)

samples of the state. Here, ∥·∥shadow is the
shadow norm, and õ and ũ are defined as in
Eqs. (15) and (16), respectively. As ũ†õũ is on⌈
log2

(
n2)⌉ qubits we have the general bound [30]∥∥∥ũ†õũ
∥∥∥2

shadow
≤ n4

∥∥∥ũ†õũ
∥∥∥2

∞
= n4 ∥O∥∞ , (28)

where ∥·∥∞ is the operator norm. We have then
reduced the problem to a purely classical one,
for which the classical runtime is given by Theo-
rem 6.

The sample complexity of this proce-
dure could potentially be improved to
Õ(∥O∥2

∞ ϵ−2n3 log
(
δ−1)) as ρ̃ only has n3

degrees of freedom. However, the block diagonal
structure over irreps is lost when transforming to
the bitstring encoding |λ⟩ |q⟩ |p⟩ via the Schur
transform, and thus we arrive at the sample
complexity given.

4.2 Input and Output as Matrix Product
States
The previous subsection implemented algorithms
with quantum states as outputs and inputs. In
that particular setting, the readout of a quan-
tum state requires some form of quantum com-
putation of low depth. Here we describe alter-
native algorithms where we give the inputs and
outputs purely classically as low-bond dimension
MPS, which are discussed in more detail in Ap-
pendix D. Let us start by giving the output of
Theorem 4 as an MPS.

Theorem 9. The output of Theorem 4 can be
given purely classically as an MPS of bond di-
mension O(n).

Proof. The output of Theorem 4 is a value of λ
and a vector ρqλ

. An MPO representation of the
ground state can be obtained by contracting ρ
with the MPO for the Schur basis in Eq. (22),

ρ

l0 l1 ln−1

(pλ)0 (pλ)1 (pλ)n−1

. (29)

As we mentioned around Eq. (22), the bond di-
mension of this MPO is O(n). We consider
this MPS representation in more detail in Ap-
pendix D.

Next, let us consider Theorem 6 with an MPS
as classical input.

Theorem 10. Consider a state ψ represented as
an MPS of bond dimension χ. The time evolved
expectation value ℓ (ρ) with ρ = |ψ⟩ ⟨ψ| as in The-
orem 6 can be computed classically in runtime
O(χωn3 + n7).

Proof. Denoting the MPS as tensor-network dia-
gram,

l0 l1 ln−1
, (30)

the reduced density matrix ρ̃λ as defined in
Eq. (13) is given by the overlap with twice
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Eq. (22):

qλ

q′
λ . (31)

The naive contraction of this tensor network from
left to right would need runtime O(n8χ4). How-
ever, using that the MPO in the middle is band
diagonal, the runtime reduces to O(n4χ4). We
discuss this contraction in more detail in Ap-
pendix D. After we have obtained ρ, we can pro-
ceed as in Theorem 6.

Remark 11. If the matrix F in Theorem 4 is
pre-computed, then this runtime is reduced to
O(χωn3 + n6).

4.3 Applications to machine learning

Though it is widely believed that general quan-
tum machine learning models are more expressive
than their classical counterparts [31], it is known
that generic quantum machine learning models
are untrainable [32, 33, 34, 7, 35, 36, 37, 11]. This
gives a strong motivation for constructing quan-
tum machine learning models from symmetry-
equivariant time dynamics [13] which are be-
lieved to be efficiently trainable [36, 37]. This
was formally proven for Sn-equivariant models in
Ref. [4].

As a specific application of our results, we now
consider one of the learning problems for which
a variational quantum algorithm was given in
Ref. [4]. We emphasize that here, just as in
Lemma 3, we do not require that the input states
ρi respect the symmetries of the model. For sim-
plicity we assume the quantum input setting of
Theorem 8, but a similar theorem can be given
for MPS inputs.

Corollary 12 (Efficient classical simulation of
permutation-invariant models). Consider a bi-
nary classification problem with labels yi ∈
{−1, 1} and empirical loss

L̂ (θ) = − 1
M

M∑
i=1

yiℓθ (ρi) , (32)

where ℓθ (ρi) is as in Eq. (14) with a θ-dependent
U and otherwise the same assumptions as in The-
orem 8. L̂ can be estimated to additive error ϵ at

P points in time

Õ
(
M ∥O∥2

∞ ϵ−2n5 log
(
P

δ

)
+MPnω+1 + n7

)
(33)

with total probability of success at least 1 − δ.

Proof. This follows immediately from Theorem 8
with δ → δ

P by the union bound.

Corollary 12 implies that the loss of these mod-
els can be estimated completely classically when
the states ρi are given as certain classical shad-
ows or matrix product state descriptions, even if
they do not respect the symmetries of the model.
As a point of comparison, consider the runtime
of using a variational quantum algorithm to per-
form this binary classification task. Assume the
variational circuits are of depth Ω

(
n3) as re-

quired in Theorem 3 of Ref. [4] to ensure con-
vergence. Then—taking Ω

(
∥O∥2

∞ ϵ−2
)

samples
for each measurement to achieve an overall shot
noise of O (ϵ)—this yields an overall runtime of
Ω
(
MP ∥O∥2

∞ ϵ−2n3
)
. For P sufficiently large,

compare this to the time O
(
MPnω+1) algorithm

found for the classical algorithm where, even if
quantum states are given as input, a classical
shadow representation can be measured in quan-
tum depth only Õ

(
n poly log

(
ϵ−1)). Unlike the

quantum algorithm, this algorithm can be paral-
lelized over irreps (i.e., over nλ) easily, giving an
effective runtime O (MPnω) = o

(
MPn3). Even

for P small, given many QPUs capable of run-
ning depth ∼ n quantum circuits, the classical
algorithm parallelizes more effectively than the
quantum algorithm as the required shadow to-
mography can be straightforwardly parallelized
over shots.

5 Conclusion
We have specified a general framework for classi-
cally simulating highly symmetric quantum sys-
tems. Specializing to the symmetric group, we
showed that these techniques yield an efficient
classical algorithm for finding the ground state of
quantum systems obeying an Sn symmetry, eval-
uating dynamics, and simulating Sn-equivariant
quantum machine learning models. We hope that
this framework sets the foundations for the future
study of classical characterizations of symmetric
quantum systems. Potential applications include
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the physical analysis of symmetric quantum sys-
tems [9, 38, 39, 40] and implementation of al-
gorithmic primitives for measuring entanglement
[41], performing measurements with distributed
sensors [42], and learning or testing quantum
states [43, 44, 45].

A major remaining open question is to what
extent the classical algorithms we have proposed
for the case of qubit permutation invariance carry
over to the more general highly symmetric many-
body quantum systems. The approach we pre-
sented in Section 3 already works for general
symmetry groups and representations. However,
the computation of the matrix elements of F ,
as well as the representations of ground and ini-
tial states as matrix product states or quantum
states was only described for the case of qubit per-
mutation invariance. The perhaps most obvious
generalization to other symmetry groups of rep-
resentations is to consider permutation-invariant
systems consisting of n d-dimensional qudits in-
stead of qubits. We sketch this generalization in
Appendix G. As it turns out, all algorithms we
have proposed generalize with polynomial run-
times, however, the exponents become very large
for large d. Specifically, the computation of the
matrix elements F , which is the bottleneck for
many of our algorithms, takes time O(n2d2−1) in
this case.

It should be noted that the rather large ex-
ponents of the polynomial runtimes (O(n7) for
qubits and O(n2d2−1) for qudits) do not come
from the method we use, but from the way we
phrase the problem itself: Specifying a symmetric
Hamiltonian alone needs O(n3) data for qubits,
and O(nd2−1) data for qudits, so when measuring
the runtime in the size of the input data, the scal-
ing is just a little more than quadratic. For more
efficient algorithms we would need to restrict the
input to a subset of permutation-invariant Hamil-
tonians/operators, for example to Hamiltonians
that are sparse in the symmetrized Pauli basis,
or k-local Hamiltonians for constant k.

Our results indicate that care must be taken
when constructing quantum algorithms to solve
problems described by strongly symmetric quan-
tum systems to ensure no equally efficient clas-
sical algorithm exists, as was demonstrated in
Corollary 12. One approach to avoid classical
simulation methods is to consider smaller symme-
try groups as illustrated in Figure 1(a). Indeed,

complexity theory arguments [46, 47] suggest that
solving the ground state problem for systems
with sufficiently small symmetry groups—such as
translational invariance—is expected to be diffi-
cult. It is also reasonable to expect quantum algo-
rithms for strongly symmetric quantum systems
to offer polynomial speedups in appropriately se-
lected scenarios, such as has been demonstrated
in Ref. [48]. Notably, the tensor contraction al-
gorithms outlined in Theorem 4 currently have
a runtime of O(n7), which in terms of the num-
ber of qubits n is not as optimal as quantum al-
gorithms. We hope this work sparks further in-
vestigation into how problems involving symmet-
ric quantum systems may produce a practical use
case for quantum algorithms.
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A The Schur basis
In the presence of permutation invariance, the action of operations can be fully understood by ana-
lyzing a much smaller subspace of the larger Hilbert space. To precisely understand the form of that
subspace, we turn to the Schur–Weyl decomposition of n qubits into subspaces corresponding to irre-
ducible representations of the symmetric and unitary groups labeled by Young diagrams. Schur–Weyl
duality offers a means to perform this decomposition by considering the natural representations of the
permutation group and n-fold unitary group acting on n qubits [27, 49]. To describe the Schur basis
and the resulting Schur transform, first we note the natural action of a permutation operation R(π)
acting on qubits:

R(π) |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ = |iπ−11⟩ ⊗ |iπ−12⟩ ⊗ · · · ⊗ |iπ−11⟩ (34)

as in the main text.
Similarly, a unitary U ∈ U(2) acting as the n-fold product Q(U) takes the form

Q(U) |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ = U |i1⟩ ⊗ U |i2⟩ ⊗ · · · ⊗ U |in⟩ . (35)

Schur–Weyl duality takes advantage of the fact that Q(·) and R(·) are each others’ commutants,
stating that the subspace of (C2)⊗n decomposes as

Q(U)R(π) ∼=
⊕
λ

ρλ(U) ⊗ σλ(π), (36)

where λ runs over the set of partitions of n into at most two elements, and ρλ(·) and σλ(·) are irreducible
representations of the unitary group U(2) and the symmetric group Sn, respectively. Note that irreps
of both of these groups are indexed by partitions. More generally, for the space (Cd)⊗n of n qudits of
dimension d, the λ would span over partitions of n into at most d elements. Partitions can equivalently
be enumerated by Young diagrams. For example for the setting of 4 qubits, we have the 3 Young
diagrams below that appear in the decomposition above:

λ = (4, 0) : ,

λ = (3, 1) : ,

λ = (2, 2) : .

A consequence of the above is that there exists a basis indexed by |λ, qλ, pλ⟩ called the Schur basis
where the actions of Q(·) and R(·) are separated [27]:

Q(U) |λ, qλ, pλ⟩ = ρλ(U) |λ, qλ, pλ⟩ , (37)
R(π) |λ, qλ, pλ⟩ = σλ(π) |λ, qλ, pλ⟩ , (38)

where we have implicitly projected onto the subspace indexed by λ. Here, ρλ(U) and σλ(π) act
only on the qλ and pλ space, respectively. ρλ(U) and σλ(π) are respectively the linear transformations
corresponding to the irreducible representations of Ud and Sn for the irreducible representation indexed
by λ. The above also presents a useful fact about permutation invariance. Namely, such an operation
will act invariantly on the permutation register |pλ⟩ thus significantly reducing the degrees of freedom
of a problem. The Schur transform USch is a unitary transformation that acts as a change of basis
from the computational to the Schur basis described above. The Schur transform can be efficiently
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⟩|0000
!
"
| ⟩0001 + & ⟩0010 + | ⟩0100 + | ⟩1000

!
#
| ⟩0011 + | ⟩0101 + & ⟩1001 + | ⟩0110 + | ⟩1010 + | ⟩1100

!
"
| ⟩0111 + & ⟩1011 + | ⟩1101 + | ⟩1110

⟩|1111
!
"
| ⟩01 − | ⟩10 ⟩|00

!
"
| ⟩01 − | ⟩10 | ⟩01 + | ⟩10

!
"
| ⟩01 − | ⟩10 ⟩|11

!
"
| ⟩01 − | ⟩10 | ⟩01 − | ⟩10

𝒏 = 𝟐

𝒏 = 𝟑

𝒏 = 𝟒

Figure 2: Graphical depiction of Schur decomposition for n = 4 qubits. There are three Young diagrams of at most
two rows for 4 qubits. Due to the presence of permutation invariance, we can restrict attention to the darker colored
subspaces which correspond to a single subspace over the multiplicity of the permutation irreps. To project onto this
darker colored subspace, we use the Young symmetrizer (Eq. (41)).

implemented on a quantum computer running in time Õ (npoly(d, logn, 1/ϵ)) for error ϵ on qudit
systems of local dimension d [27]. We follow the notation of Ref. [27]:

|λ, qλ, pλ⟩ =
d−1∑

i1,i2,...,in=0
[USch]λ,qλ,pλ

i1,i2,...,in
|i1⟩ |i2⟩ · · · |in⟩ . (39)

As noted in the main text, the total degrees of freedom reduces to
(n+3

3
)

in settings with permutation
invariance. To see this, note that the dimension of the |qλ⟩ register for a partition (a, b) is equal to
a− b+ 1. Therefore, we have

DOF =
⌊n/2⌋∑
k=0

(
2k + 1 + n− 2

⌊
n

2

⌋)2
=
(
n+ 3

3

)
(40)

degrees of freedom. A similar calculation can be performed via a stars-and-bars counting argument.
The above is also enumerated by the tetrahedral numbers [50].

To expand and manipulate individual basis states indexed by the |qλ⟩ register, one can use the Young
symmetrizer Πpλ

to project onto an explicit basis for each λ [27, 51]. Here, pλ is a particular Young
tableau for the Young diagram λ. The Young symmetrizer projects onto a subspace isomorphic to the
subspace spanned by |qλ⟩:

Πpλ
= dim(λ)

n!

 ∑
c∈Col(pλ)

sgn(c)R(c)

 ∑
r∈Row(pλ)

R(r)

 , (41)

where Row(pλ) and Col(pλ) are the set of permutations which permute integers within only rows and
columns of the Young tableau pλ, respectively [27, 51]. An example of the basis found via application
of the Young symmetrizer is shown in Figure 2. Throughout our study, we consider the Young tableau
formed by filling entries in order first column-wise and then row-wise to be the “canonical" basis that
we study. As an example, for 4 qubits, there are the following Young tableaus in our “canonical" basis:

1 2 3 4 , 1 3 4
2

, 1 3
2 4

. (42)
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B General formalism using tensor-network diagrams
In this and the two subsequent appendices, we discuss the tensor-network based methods used in
Section 4 of the main text in more detail. As a preparation, we will here recap the general formalism
from Section 3 in a tensor-network language.

An associative algebra on a vector space B is determined by a linear multiplication map B⊗B → B,
whose structure coefficients form a 3-index tensor,

aa bb

c

. (43)

Here, a and b label basis vectors at the input of the multiplication map, and c is at the output. In our
setting, there are three different relevant algebras, namely X, the group algebra of Sn, and the group
algebra of SU(2). A representation of the algebra on a vector space V is determined by a linear map
V ⊗B → V , whose structure coefficients are again a 3-index tensor,

a

ll m
. (44)

As depicted, we will often use different line styles for different vector spaces such as B and V ; here we
made the V -indices thick. Again, there are three different relevant representations: The representation
A of X, the representation R of Sn, and the representation (1

2)⊗n of SU(2), all of which act on the
n-qubit Hilbert space. The statement that a Hamiltonian (or an arbitrary operator) H is invariant
under the symmetry representation R can be written as

RH

a

ll m
=

R H

a

ll m
. (45)

The commutativity of the representation A of X with the representation R of Sn reads

RA

ab

ll m
=

R A

a b

ll m
. (46)

Since by construction A spans the whole commutant of R, H can be parametrized by some X-element
h as

H
ll m =

h

A
ll m

. (47)

Eq. (45) then follows through Eq. (46).
Next, let us describe how to obtain the ground state energy and ground state via Theorem 4 from

the main text using the matrix F . To this end, we use a central theorem of representation theory [52]:
1) Every finite-dimensional *-algebra (which includes group algebras and the algebra X) is isomorphic
to a direct sum of full matrix algebras, and 2) every (unitary) representation is isomorphic to a direct
sum of irreducible representations, which are projections onto one of the matrix-algebra summands.
The two isomorphisms, which we call O and S, respectively, are unitary matrices,

O
λa
q

q′
,

S
λl
q

p
. (48)

Accepted in Quantum 2023-11-17, click title to verify. Published under CC-BY 4.0. 15



Here, the index a labels basis elements of the algebra, the irrep index λ labels irreducible representations
of the algebra, internal indices like q and q′ label basis vectors within an irreducible representation
λ, and the multiplicity index p labels the different copies of a fixed irreducible representation λ, if λ
occurs multiple times in the representation. Note that indices with different bond dimensions were
drawn with different line styles, such as thick for irrep, dotted for internal, and ticked for multiplicity
indices. Note that the bond dimension of the internal and multiplicity indices can depend on the value
λ of the nearby irrep index, so the diagrams are not classical tensor-network notation but a slightly
generalized version thereof. In this notation, the isomorphism can be written as

O∗O∗

O
= ,

SS∗

O∗
= . (49)

The small black dot on both right-hand sides is a δ-tensor, which is 1 if the irrep labels at all indices
are equal, and 0 otherwise. The free lines represent identity matrices. The three identity matrices
on the right-hand side of the left equation are matrix multiplication: Each matrix is represented by a
double-index, and the second index of the first matrix is contracted with the first index of the second
matrix.

We now use the isomorphism O of the symmetry group algebra, and the isomorphism S of its repre-
sentation. Let us quickly recall what this means for the symmetry group Sn and its qubit permutation
representation R, even though the discussion here in principle works for general symmetries. As de-
scribed in the first appendix, the irreps λ are Young diagrams and the internal indices label Young
tableaux pλ. The dimension of the multiplicity index q is only non-zero for Young diagrams with one
or two rows. In this case, we can label the irrep by a half-integer 0 ≤ λ ≤ n

2 corresponding to the
Young diagram with two rows of lengths (n/2 + λ, n/2 − λ), but also to a SU(2) representation. We
now let H̃ denote the Hamiltonian (or an arbitrary invariant operator) H conjugated with S,

H̃
:=

H SS∗ . (50)

Eq. (45) in this block-diagonal basis then becomes

H̃

=
H̃

. (51)

By contracting the left two open internal indices on the left-hand side with copies of a normalized
vector v and applying a δ-tensor to the left two irrep indices, we find

H̃
=

H̃

v
v∗

Eq. (51)=

H̃

v∗ v =
h̃

, (52)

where

h̃

:=
H̃

v∗ v . (53)

Note that v is actually a collection of vectors, depending on the value λ of the irrep. Plugging in
Eq. (50) and Eq. (47), we find

h̃

=

h

F (54)
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with

F :=
A

SS∗
v∗ v . (55)

F is in fact the isomorphism O for the algebra X. The tensor h̃ can be interpreted as a collection of
matrices h̃λ for different irreps λ. As can be easily seen from Eq. (52), the ground state energy of H is
the minimum over λ of the ground state energies of h̃λ. Furthermore, the ground states are given by

ψ = Sv
λminsmin

, (56)

where smin is the ground state of h̃λmin , and v is an arbitrary vector. Of course, there cannot be an
efficient classical description which works for all ground states, since the dimension of v (and therefore
the ground state degeneracy) is exponentially large in n. However, as we will later give a low-bond
dimension MPS description for a full basis of ground states in Eq. (67).

Finally, let us consider the time evolution of a pure state |ψ⟩ under an invariant unitary U . More
precisely, we want to calculate the time-evolved expectation value ⟨ψ|UOU † |ψ⟩ of an invariant operator
O. We find

⟨ψ|UOU † |ψ⟩ = ψ∗ ψU U∗O =

ψ∗ ψ

u u∗o

F F F ∗
S∗ S

. (57)

As usual, we cannot efficiently contract this tensor network, since the internal p-index and the n-qubit
indices have an exponential bond dimension in n. However, once we have the reduced density matrix

ρ̃

λq′ q

:=

ψ∗ ψ

S∗ S

λq
′ q

, (58)

the remaining contraction is fast, dominated by the contraction between F and u or o which takes
time O(n6). If ψ is given as many copies of the quantum state, then ρ̃ can be obtained by tomography
on the λ and q-subspace, as described in the main text. If ψ is given classically as an MPS, then we
show later around Eq. (69) how time evolution can be performed efficiently.

Note that time evolution can also be performed if U is defined through an invariant Hamiltonian
H = A(h) via U = eitH . In this case, we calculate h̃ as in Eq. (54), exponentiate the individual h̃λ,
and plug eit̃h into Eq. (57) instead of u and F .

C Tensor-network method for calculation of the entries of F

In this Appendix, we show how to efficiently calculate the explicit matrix F defined in Eq. (55). We
cannot directly efficiently contract the tensor network on the right-hand side since the two indices
shared between A and S have bond dimension 2n. In order to make contraction efficient, we will write
A and S as MPOs and then contract the tensor network horizontally from qubit to qubit. Let us start
by writing A as an MPO,

A
l⃗⃗l m⃗

i⃗

=

√
i0!ix!iy!iz!
n!2n · + + +

0
0
0

ix
iy
iz

l0 l1 ln−1

m0 m1 mn−1

. (59)
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The global prefactor on the right-hand side was not included in the definition of A in the main text,
but is necessary for the normalization in Eq. (90). The arrows over the indices on the left-hand side
indicate that they correspond to collections of indices on the right-hand side. We have also used a
triple-line for the X-index i⃗, to indicate that it is labelled by a triple (ix, iy, iz). The bond dimension
of all three horizontal indices is n, and the tensor with the + label is defined as

+
jx
jy
jz

ix
iy
iz

l

m

=
(id2)lmδix,jxδiy ,jyδiz ,jz + (σx)lmδix,jx+1δiy ,jyδiz ,jz

+ (σy)lmδix,jxδiy ,jy+1δiz ,jz + (σz)lmδix,jxδiy ,jyδiz ,jz+1
. (60)

Note that the value of δa,b is understood to be zero unless 0 ≤ a, b < n. We can see that the value of
the bottom, middle, and top horizontal index in Eq. (59) is the count of Xs, Y s, and Zs up to this
point, respectively. To achieve this, the value of the bottom horizontal indices of a + tensor increases
by 1 from left to right if the two vertical indices are in an X configuration, and analogously for the
middle and top horizontal indices.

In order to write S as an MPO, we make use of the fact that the commutant of the representation
R of Sn is spanned by the representation (1

2)⊗n of SU(2). Thus, the isomorphism S is the same for
both those representations, just that the internal and multiplicity indices are exchanged. Now, the
representation (1

2)⊗n is a tensor product of on-site representations, and thus an MPO,

(1
2)⊗n

l⃗ m⃗

u

= r0 r1 rn−1
u

l0 l1 ln−1

m0 m1 mn−1

. (61)

Note that u labels an element of SU(2), so this is a tensor network with a continuous bond dimension,
which might not be directly suitable for practical computation but still makes sense formally. In our
case all the ri are the spin-1

2 representation, but we will discuss the following few steps for arbitrary
representations. In order to get the isomorphism S for the overall representation (for us (1

2)⊗n), we
start by block-diagonalizing the individual ri. We end up with many copies of the isomorphism O for
the group algebra of SU(2). Those copies of O need to be pulled through all the δ-tensors. When
doing this, the δ-tensor splits up into two copies of a tensor C,

OO

O∗

= C∗ C
. (62)

C exists since the group algebra together with the δ-tensor forms a Hopf algebra. When writing the bi-
algebra axiom in the block-diagonal basis, one can see that the left-hand side for a fixed configuration
of irrep indices is a projector P between all three left internal indices to all three right internal indices.
So C can be defined as an isometry such that CC† = P . The index connecting the two copies of C
has a bond dimension which depends on the three irreps, and will be referred to as fusion index. The
entries of C are known as the Clebsch-Gordon coefficients. We can now use this equation to pull the
isomorphism O through all the δ-tensors in Eq. (61). As a result, we obtain S as

S
λl⃗
q

p⃗
=

s0 s1 sn−1

0

p′′
0 p′′

1
p′′
n−1

λ

p0 p1p′
0 p′

1 p′
n−1

q

l0 l1 ln−1

. (63)
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For our present situation where the group is SU(2), the Clebsch-Gordon coefficients are well-known
and can be computed efficiently up to p bits of precision (i.e., up to additive error exponentially small
in p) in time poly (n, p) by the Racah formula [53]. Note that the fusion index is always trivial, that
is, it has dimension either 0 or 1. All local representations ri are equal to spin-1

2 such that all the local
si can be chosen equal to the identity. With those simplifications, we get,

S
λl⃗
q

p⃗
= 1

2
1
2

1
2

0 λ

p0 p1

l0 l1 ln−1

q
. (64)

The tensor product of the spin- c2 representation with the spin-1
2 representation is c

2 ⊗ 1
2 = c−1

2 ⊕ c+1
2 .

Thus, any two consecutive irreps pi, pi+1 in the sequence p0, . . . , pn−1 = λ must differ by ±1
2 , otherwise

the MPO above yields 0. Such a sequence exists if and only if (2λ) mod 2 = n mod 2 and λ ≤ n
2 .

In fact, one can directly see the correspondence between such sequences p⃗ and the Young tableaux for
the Young diagram with two rows of lengths (n/2 + λ, n/2 − λ): Starting at an empty diagram, we fill
its fields consecutively with the numbers 0, . . . , n− 1. In the ith step, the number i is appended to the
first row if pi = pi−1 + 1

2 , and added to the second row if pi = pi−1 − 1
2 . Note that a representation

of the Schur-Weyl basis equivalent to this MPO has also been used in Ref. [54], and was originally
presented in Ref. [27].

Let us now plug the derived MPO representations in Eq. (64) and Eq. (59) into Eq. (55). For the
vector v, we choose a fixed basis vector corresponding to a valid sequence p⃗ = (p0, . . . , pn−1) depending
on λ,

F

λ
qq′

i⃗

= + + +

∗ ∗ ∗
p0 p1

p0 p1

1
2

1
2

1
2

1
2

1
2

1
2

λ

λ

0

0

000

q′

q

i⃗ . (65)

The maximal possible value of the pi is O(n), and thus the bond dimension of the horizontal q-indices
is O(n) as well. We can already see that contracting the tensor network from the left to the right has
polynomial runtime. The contraction becomes even faster by the following considerations. For a fixed
λ′ = λ± 1

2 , consider the Clebsch-Gordon tensor,

1
2

λ λ′

l

q q′

, (66)

as collection of matrices Mqq′ for different values of l. Those matrices are simultaneously constant-
width block-diagonal. The + tensor is also band-diagonal, and the bond dimension of the vertical
indices is O(1). Since there are 5 horizontal indices each of bond dimension O(n) and all tensors are
band diagonal, adding one column of tensors to the contraction takes time O(n5). Since there are n
qubits/contraction steps, as well as O(n) different values of λ, the total runtime for the contraction is
O(n7).

D Time evolution and ground state using MPS
In this appendix, discuss the two algorithms from Theorems 9 and 10, which are classically end to end
using MPS as input or output, in more detail. Let us start by Theorem 9 giving an MPS description of
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the ground states of an invariant Hamiltonian by combining Eq. (56) and Eq. (64). A basis of ground
states is labelled by valid sequences p0, . . . , pn−1 = λmin. For every such sequence, the ground state is
given as an MPS of bond dimension O(n),

ψmin
l⃗ =

p0 p1

1
2

1
2

1
2

0 λmin
smin

l0 l1 ln−1

. (67)

Next, let us discuss Theorem 10, which calculates the time-evolved expectation value giving an initial
state ψ as an MPS,

ψ
l⃗ =

A0 A1 An−1

l0 l1 ln−1

, (68)

of bond dimension χ. We first note that for u representing an invariant unitary U = A(u), U |ψ⟩ is
again an MPS of bond dimension χO(n3) due to the MPO representation of A in Eq. (59). An invariant
observable O = A(o) can be written as an MPO as well, so the expectation value ⟨ψ|UOU † |ψ⟩ can
be evaluated as a product of MPS and MPO from left to right in polynomial time. However, the most
efficient way to calculate that expectation value is to build on the method presented around Eq. (58).
The reduced density matrix ρ̃ in Eq. (58) can be computed efficiently using the MPO representation
of S in Eq. (64),

ρ̃

λq′ q

= ∗ ∗ ∗

A∗
0 A∗

1 A∗
n−1

A0 A1 An−1

1
2

1
2

1
2

1
2

1
2

1
2

0

0

q′

q

λ . (69)

As usual, this tensor network can be contracted from the left to the right. There are five independent
horizontal indices, two of them of bond dimension χ, and three of bond dimension O(n). As argued
above, the Clebsch-Gordon coefficients are band-diagonal. This is even true if the irrep indices are
not fixed, since they can only change by ±1

2 . The runtime of adding the ith column of tensors to the
contraction is thus dominated by contracting the MPS tensors Ai, which takes time O(χwn3). Since
there are n steps, the total runtime is O(χwn4).

E Alternative combinatorial method for calculation of the entries of F

In Appendix C, we have presented a tensor-network method for calculating the matrix entries F i,λ
qλ,q

′
λ

used in the main text to efficiently simulate permutation symmetric Hamiltonians. In this section, we
present an alternative method that calculated these matrix elements in polynomial runtime O(n10)
using combinatorics. Even though the runtime scaling for this method is slower, it may be more
approachable and insightful for people without tensor-network background.

We also like to remark that in this method, the matrix entries are calculated individually, each taking
a runtime of O(n4). This might help if the given Hamiltonian is sparse in the symmetrized Pauli basis.
In this case it suffices to calculate only the matrix elements for the non-zero Pauli monomials. For
example, consider a family of permutation invariant Hamiltonians that is k-local for a constant k. In
this case, we only need the matrix elements for a constant number of Pauli monomials and thus in this
case (since the Schur basis has dimension O(n3)) the relevant matrix elements can also be calculated
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in O(n7). In contrast, restricting to a sparse subset of symmetrized Pauli monomials does not directly
lead to an improvment of the O(n7) runtime of the tensor-network based algorithm.

The combinatorial formula for the matrix elements that we will derive in this appendix is as follows.

Lemma 13. Recalling that λ is given by a Young diagram, we choose pλ0 to be the standard Young
tableaux for that diagram, with numbers increasing first in the column direction and then in row
direction, as shown in Eq. (42). Then the tensor components F i,λ

qλ,q
′
λ

discussed in the main text for the
completely symmetrized Pauli representation are given by:

F i,λ
qλ,q

′
λ

=
∑

f11,fxx,fyy ,fzz ,
g010,g111,g0x1,g1x0,
g0y1,g1y0,g0z0,g1z1

/Eq. (71)

1√(n−2λ1
qλ

)(n−2λ1
q′

λ

) i2fxx+2fyy+2fzz+2g1z1−g0y1+g1y0

· λ1!(n− 2λ1)!
f11!fxx!fyy!fzz!g010!g111!g0x1!g1x0!g0y1!g1y0!g0z0!g1z1! ,

(70)

where the sum is over a set of 12 non-negative integers fulfilling the constraints

g010 + g0z0 + g0x1 + g0y1 = n− 2λ1 − qλ,

g010 + g0z0 + g1x0 + g1y0 = n− 2λ1 − q′
λ,

g111 + g1z1 + g1x0 + g1y0 = qλ,

g111 + g1z1 + g0x1 + g0y1 = q′
λ,

2f11 + g010 + g111 = i1,

2fxx + g0x1 + g1x0 = ix,

2fyy + g0y1 + g1y0 = iy,

2fzz + g0z0 + g1z1 = iz

(71)

and λ1 is the length of the second row of λ.

Proof. Following Appendix A, we can project onto the space with an Sn irrep λ and a fixed multi-
plicity label pλ0 using the Young symmetrizer in Eq. (41). Acting with the Young symmetrizer on a
computational basis state yields a superposition of basis states with the same number of 0s and 1s.
Let us write λ = (λ0, λ1) for the lengths of the first and second row of λ. Then we see that applying
the Young symmetrizer yields 0 unless the number of 1s is between λ1 and λ0. This is because the
row symmetrizer does not change the number of 1s, and the antisymmetrizer on λ1 length-2 columns
yields 0 if any columns are 00 or 11. Thus, the irrep basis states can be obtained by applying the
Young symmetrizer to states with λ1 + qλ ones, where 0 ≤ qλ ≤ n− 2λ1. Specifically, we can use

|λ, pλ0, qλ⟩ = Πλ:pλ0 |xqλ
⟩ , (72)

with
|xqλ

⟩ := |01⟩⊗λ1 ⊗ |0⟩⊗n−2λ1−qλ ⊗ |1⟩⊗qλ . (73)

Let us first evaluate ∑
r∈Row(pλ0)

R(r) |xqλ
⟩ = Πr→c

(∣∣∣Σqλ
λ0

〉
⊗ |1⟩⊗λ1

)
, (74)

where |Σy
x⟩ denotes the equal-weight superposition of all computation basis states on x qubits with

x− y zeros and y ones, which (up to normalization) is also known as Dicke state on x qubits [55, 56].
Πr→c denotes the permutation of qubits needed to obtain the "column-standard" Young tableau pλ0
from an analogous "row-standard" Young tableau where the numbers first increase in the row direction
and then in column direction. In other words, if we think of the qubits being associated to the tiles of
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the Young diagram λ, then the qubits in the first row are in state
∣∣∣Σqλ

λ0

〉
, and the qubits in the second

row are in state |1⟩⊗λ1 .
Next, for a two-row standard Young tableau pλ0, we have∑

c∈Col(pλ0)
sgn(c)R(c) = (id2 −τ)⊗λ1 ⊗ id⊗n−2λ1

2 = (|Ψ⟩ ⟨Ψ|)⊗λ1 ⊗ id⊗n−2λ1
2 , (75)

where |Ψ⟩ is the 2-qubit singlet state

|Ψ⟩ = 1√
2

(|01⟩ − |10⟩) , (76)

and τ denotes the swap operator acting on two qubits. The qubits in the second row of λ in the state
of Eq. (74) are fixed to |1⟩, so applying |Ψ⟩ ⟨Ψ| to each of the first λ1 columns has the same effect as
applying |Ψ⟩ ⟨Ψ| (|0⟩ ⟨0|⊗ id2). Applying |0⟩ ⟨0| to the first λ1 qubits of

∣∣∣Σqλ
λ0

〉
yields |0⟩⊗λ1 ⊗

∣∣∣Σqλ
λ0−λ1

〉
.

Thus, we find:
|λ, pλ0, qλ⟩ = Πλ:pλ0 |xqλ

⟩ = |Ψ⟩⊗λ1 ⊗
∣∣∣Σqλ

n−2λ1

〉
. (77)

Now, we are ready to evaluate

F i,λ
qλ,q

′
λ

:= ⟨λ, qλ, pλ0|Ai

∣∣λ, q′
λ, pλ0

〉
= (⟨Ψ|⊗λ1 ⊗

〈
Σqλ
n−2λ1

∣∣∣)
 ∑
pi∈Pi

pi

(|Ψ⟩⊗λ1 ⊗
∣∣∣∣Σq′

λ
n−2λ1

〉)

= 1√(n−2λ1
qλ

)(n−2λ1
q′

λ

)
 ∑
s∈Sqλ

n−2λ1

⟨Ψ|⊗λ1 ⊗ ⟨s|


 ∑
pi∈Pi

pi


 ∑
s′∈S

q′
λ

n−2λ1

|Ψ⟩⊗λ1 ⊗
∣∣s′〉

 ,

(78)

where we used Sxy to denote the set of bitstrings of length y with exactly x ones. This is a sum
over (more than) exponentially many terms. Similarly to the previous Appendix, it can be evaluated
efficiently by realizing that many summands have equal value. Thus, we instead sum over the different
possible values multiplied with the number of summands with that value, which can be counted using
combinatorics. Each summand is an overlap of two product states with a product operator in between.
More precisely, we have a product of first λ1 two-qubit overlaps, and then n−2λ1 single-qubit overlaps.

For each summand in Eq. (78), let us denote by Lab with a, b ∈ {1, x, y, z} the subset of two-qubit
pairs:

Lab := {(2l, 2l + 1) : (pi)2l = σa, (pi)2l+1 = σb, 0 ≤ l < λ1} , (79)

and let us write fab = |Lab| for the number of elements in those subsets. The according overlap

⟨Ψ| (σa ⊗ σb) |Ψ⟩ (80)

is 0 if a ̸= b, so we only need to consider subsets where a = b. The number of summands for given
numbers faa is the number of decompositions of the first λ1 qubit pairs into the four subsets Laa with
a ∈ {1, x, y, z}, which equals

λ1!
f11!fxx!fyy!fzz!

. (81)

The value which the overlap on the first λ1 qubit pairs contributes to each summand only depends on
the numbers faa. The overlap in Eq. (80) is given by 1 if a = b = 1, and −1 if a = b otherwise. Thus,
the overall contribution to each summand is

(−1)fxx+fyy+fzz . (82)
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Next, let us consider the n−2λ1 single-qubit overlaps. For each summand in Eq. (78), let us denote
by Kiaj for i, j ∈ {0, 1} and a ∈ {1, x, y, z} the subset of the last n− 2λ1 qubits

Kiaj := {l : (pi)2λ1+l = σa, sl = i, s′
l = j, 0 ≤ l < n− 2λ1} , (83)

and let us write giaj = |Kiaj | for the number of elements in those subsets. The according overlap

⟨i|σa |j⟩ (84)

is only non-zero if i = j for a ∈ {1, z} and i ̸= j for a ∈ {x, y}, so we can restrict to summands where
only those 8 subsets are non-empty. The number of summands for given numbers giaj is the number
of decompositions of the set of the last n− 2λ1 qubits into the 8 subsets Kiaj , and is thus given by

(n− 2λ1)!
g010!g111!g0x1!g1x0!g0y1!g1y0!g0z0!g1z1! . (85)

The contribution of the overlap on the last n − 2λ1 qubits to each summand only depends on the
numbers giaj . The single-qubit overlap in Eq. (84) evaluates to 1 for g010, g111, g0X1, g1X0 and g0z0,
−1 for g1z1, i for g0y1, and −i for g1y0. Thus the overall contribution to each summand is

(−1)g1z1(−i)g0y1(i)g1y0 . (86)

Overall, the number of summands for given faa and giaj is the product of Eq. (81) and Eq. (85), and
the value of each summand is given by the product of Eq. (82) and Eq. (86). Plugging this into Eq. (78)
yields Eq. (70). The constraints in Eq. (71) are explained as follows. The first four constraints are
due to the fact that the number of zeros and ones in s and s′ is determined by qλ and q′

λ, respectively.
The last four constraints correspond to the fact that the number of Pauli operators σ1, σx, σy, σz in
pi is given by i1, ix, iy, and iz, respectively.

In a similar fashion to the previous Appendix, we can easily evaluate the runtime this method
achieves in calculating all of the matrix elements. Note that each component is a sum over four
independent variables due to the constraints, yielding a runtime of O

(
n4). Taking into account the

O
(
n6) tensor components of F yields the final runtime of O

(
n10). Once again, it seems likely that

the O
(
n4) runtime for a single tensor component can be reduced to a smaller exponent. We will leave

this open to further investigation.

F Ground state energy via structure coefficients

In this appendix, we will give an alternative algorithm for finding the ground state energy only. The
runtime of this algorithm is slower than for the algorithm presented in the main text. Yet it might help
the reader develop further intuition for why the computation is tractable in polynomial time. It is also
simpler in that it does not require any knowledge of the Schur transform at all, but only determining
the structure coefficients of the algebra X.

F.1 Algorithm for general symmetry groups

Let us start by phrasing the alternative ground-state energy algorithm for general symmetry groups
and representations.

Lemma 14 (Finding the ground state energy of symmetric Hamiltonians). Consider a subalgebra X
of dimension N , and assume that the structure constants of X in some preferred basis are known. Let
H ∈ A(X) be a Hamiltonian given in the preferred basis as in Eq. (4). Then the ground state energy
of H can be found in time O (Nω).
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Proof. Consider the operator with indices:

ĥjk :=
∑
i

hiX
i,j
k , (87)

which is nothing but the regular representation of h for the algebra X. Then we have that their
ground state energies are equal:

GSE(H) = GSE(ĥ) , (88)

or, in tensor-network notation (c.f. Eq. (43)),

ĥ
ll m :=

h

X
ll m

. (89)

This is because the regular representation is faithful, and the ground state energy of an operator is
the same in any faithful representation. Since X has dimension N , the ground state energy of ĥ can
be found in time O(Nω).

An advantage of this algorithm is that the only necessary information are the structure constants
of X; no knowledge of the irreps of X is needed. However, due to this we have poor scaling with the
number of irreps nλ, as the direct sum structure of X is not necessarily known. Another disadvantage
of this approach is that it only gives the ground state energy, rather than the ground state itself (in a
representation that is not the regular representation).

F.2 Algorithm for qubit permutation invariance

Let us now apply the algorithm in Lemma 14 to the case of qubit permutation invariance.

Corollary 15. The ground state energy of a permutation-symmetric Hamiltonian on n qubits, given as
hi in the basis of symmetrized Pauli monomials above, can be computed in time O

(
n3ω) via Lemma 14.

Proof. All that is needed for applying Lemma 14 are the structure constants of the algebra X, which
are computed in the following. Let us start by showning how these structure coefficients are computed
in general, given only the representation A. If we normalize A such that it defines an orthonormal set
of operators,

A

A∗

a

b

=
aa

bb

, (90)

we can calculate X via

X

aa bb

c

= A AA∗

a b

c

. (91)

Here, we use the fact that by definition of X, A is a faithful definition of X. Note that the ∗ denotes
complex conjugation of the tensor. We cannot directly efficiently contract the tensor network on the
right-hand side of Eq. (91), since the thick indices have a bond dimension of 2n. This problem can
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be solved by realizing that A can be written as an MPO, as we have seen in Eq. (59). Plugging this
MPO representation into Eq. (91), we obtain

X

i⃗⃗i j⃗⃗j

k⃗

=

+ + +

+ + +

+
∗

+
∗

+
∗

000

000

000

i⃗

j⃗

k⃗

, (92)

where we have vertically shrinked the + tensors and the distance between the horizontal indices, and
∗ denotes complex conjugation. We see that now the tensor network can be contracted efficiently
by contracting in the horizontal instead of the vertical direction. Indeed, the overall horizontal bond
dimension is n9, so contraction can be performed in polynomial runtime. To further speed up com-
putation, we note that the values of each pair of horizontal indices on the left and right of a + tensor
differ by at most 1. Thus, the tensor + is constant-width band-diagonal in its horizontal indices,
independent of the value of its vertical indices. Thus, the matrix corresponding to a column of three
+ tensors is band-diagonal as well. Applying a band-diagonal matrix to a vector of bond dimension
d takes time O(d). Thus, contracting the above tensor network takes n steps of runtime O(n9), so
runtime O(n10) in total.

F.3 Alternative combinatorial method for computing the structure coefficients of X

In this Appendix we give an alternative combinatorial algorithm for calculating structure constants
of the algebra X, similar to the algorithm used in Appendix E. Again, the algorithm is slower than
the tensor-network method in Appendix F.2, namely O(n15). However, it might have the advantage
of being more accessible to readers not familiar with tensor network.

Lemma 16. The structure coefficients Xi,j
k of the completely symmetrized Pauli representation are

given by:

Xi,j
k =

∑
{fab}a,b∈{1,x,y,z}
/Eq.(94),Eq.(95)

k1!
f11!fxx!fyy!fzz!

kx!
f1x!fx1!fyz!fzy!

ky!
f1y!fy1!fxz!fzx!

kz!
f1z!fz1!fxy!fyx! (i)

fxy+fyz+fzx(−i)fyx+fxz+fzy

(93)
where the variables in the sum are non-negative integers subject to the constraints∑

a∈{1,x,y,z}
fab = jb ,

∑
b∈{1,x,y,z}

fab = ia, (94)

and
f11 + fxx + fyy + fzz =: k1,

f1x + fx1 + fyz + fzy = kx,

f1y + fy1 + fxz + fzx = ky,

f1z + fz1 + fxy + fyx = kz.

(95)

Proof. For calculating the structure constants X, we first note that

Aj = 1
i1!ix!iy!iz!

∑
π∈Sn

R(π)
(
σ⊗i1

1 ⊗ σ⊗ix
x ⊗ σ⊗iy

y ⊗ σ⊗iz
z

)
R−1(π) =

∑
pi∈Pi

pi , (96)

where Pi is the set of Pauli words with ia times σa for a ∈ {1, x, y, z}. Now we evaluate the product:

Ai ·Aj =
∑

pi∈Pi,pj∈Pj

pipj =
∑

k,pk∈Pk

∑
pi∈Pi,pj∈Pj :

pipj=αpi,pj ,pk
·pk

αpi,pj ,pk · pk. (97)
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This is a sum over products of exponentionally many Pauli words. The idea to evaluate this is that
many of the summands have equal value, so it suffices to sum over a few different values multiplied
by the number of summands with that value.

For every summand, define the subsets of qubits Lab for a, b ∈ {1, x, y, z},

Lab := {l : (pi)l = σa, (pj)l = σb, 0 ≤ l < n}, (98)

and let
fab := |Lab| (99)

be the numbers of elements in those subsets. Since every Pauli operator il at a qubit l is paired with
some other Pauli operator jl, fab fulfill the constraints in Eq. (94). The multiplication algebra of Pauli
operators directly implies Eq. (95).

Let us now count how many Pauli words there are in the sum for a fixed set of numbers fab and
a fixed resulting Pauli word pk. Every triple pi, pj , pk corresponds to a decomposition of each kc-
element set of qubits {l : (pk)l = σc} for c ∈ {1, x, y, z} into four subsets Lab for the four different
combinations a, b ∈ {1, x, y, z} with σaσb ∝ σc under the Pauli algebra. For each c, the number of
decompositions into the corresponding four subsets is given by

kc!∏
a,b:σaσb∝σc

fab!
. (100)

In total, the number of decompositions into four subsets for different c is given by

k1!
f11!fxx!fyy!fzz!

kx!
f1x!fx1!fyz!fzy!

ky!
f1y!fy1!fxz!fzx!

kz!
f1z!fz1!fxy!fyx! . (101)

Finally, the prefactor αpi,pj ,pk in Eq. (97) only depends on the fab. Using the Pauli algebra,

σxσy = iσz σyσz = iσx σzσx = iσy

σyσx = −iσz σzσy = −iσx σxσz = −iσy ,
(102)

it is given by
αpi,pj ,pk = (i)fxy+fyz+fzx(−i)fyx+fxz+fzy . (103)

Using Eq. (101) and Eq. (103) in Eq. (97) directly yields Eq. (93).

Let us quickly discuss the complexity of the computation of Xi,j
k . In the summation of Eq. (93),

we sum over 16 variables within a range of the order n, so if we naively evaluate the sum, we already
obtain a polynomial runtime O(n16). However, due to the constraint Eq. (94), we can reduce the
summation to only 9 variables fab with a, b ∈ {x, y, z}. Eq. (95) poses another three independent
constraints, reducing the summation to 6 variables. Thus, an individual entry Xi,j

k can be calculated
in O(n6) runtime, whereas all O(n9) coefficients together take runtime O(n15).

G Permutation invariance for qudits
In this appendix, we sketch the generalization of the proposed algorithms to permutation invariant
systems with n d-dimensional qudits instead of qubits. In this case, the dimension of the symmetrized
basis is dim(X) =

(n+d2−1
d2−1

)
= O

(
nd

2−1
)
. This can be derived by utilizing a stars and bars counting

argument, representing the number of ways to place d2 − 1 bars among n stars. Let us now determine
the numbers nλ and nq that determine the runtimes of our algorithms, and can also be used to rederive
dim(X) = O(nλn2

q). The irreducible representations of SU(d) are identified with Young diagrams with
d− 1 rows, which can be labelled by a sequence j = {ji}0<i<d−1 with ji ≥ ji+1 where ji is the number
of boxes in the ith row. The representation acting on a single qudit is the d-dimensional fundamental
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irrep, corresponding to a Young diagram with only one box, which we denote by d. The overall
representation is R = d⊗n In order to decompose it into irreps, we only need to know the tensor
product of an arbitrary irrep j with the fundamental irrep d. It is given by a direct sum of at most
d + 1 irreps with at most x + 1 boxes, if x is the number of boxes of j. Specifically, the direct sum
consists of irreps which are obtained by adding a box to any row, as well as an irrep obtained by
removing a box from every row (as long as these operation still yield valid Young diagrams). So we
see that for n qubits, the irreps in the decomposition of R are Young diagrams with at most n boxes.
The number of these Young diagrams is O(nd−1). The maximum dimension of an irrep is O(n

d(d−1)
2 ),

as can be seen from the asymptotics of the formula

|λ| =

 ∏
1≤i<j≤d

(λj − λi + j − i)

 / [ d∏
m=1

m!
]

(104)

given in Ref. [27], with λk ≈ n(k/d).
Let us now look at how the computation of the matrix elements F via Eq. (24) carries over to the

case of qudits. Analogous to Eq. (23), the symmetrized Pauli basis for qudits can be represented as
an MPO of bond dimension O

(
nd

2−1
)
. This MPO is still band-diagonal. Next, the tensors in the

MPO representation in Eq. (23) are the Clebsch-Gordan coefficients C(λ′,q′
λ)

(λ,qλ),(d,qd), which can be found
in Section 18.2.6. of Ref. [57]. For an appropriate choice of basis, C band diagonal. That is, for a fixed
λ and qλ, there is a constant number of λ′ and q′

λ with C
(λ′,q′

λ)
(λ,qλ),(d,qd) ̸= 0. For the λ part, this follows

from the fact that tensor product with the fundamental representation yields at most d+1 irrep factors
as discussed above. Overall, the total bond dimension in Eq. (24) is O(n2

qn
d2−1) = O(n2d2−d−1). Since

the overall matrix (consisting of twice C and the tensor +) is band diagonal, a single vector-matrix
multiplication in the contracting of Eq. (24) from left to right takes time O(n2d2−d−1). Since there are
O(nλ) = O(nd−1) involved irreps, and the contraction consists of n vector-matrix multiplications, the
total runtime is O(n2d2−1). So we see that we do get a polynomial runtime also for qudits, but the
exponents explode quickly with increasing local dimension, for example we have O(n17) for qutrits.
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