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Abstract. The cell-mapping method, due to its global optimality, has been applied to solve multi-objective
optimization problems (MOPs) and optimal control problems. However, the curse of dimensionality limits its
application in high-dimensional systems. In this paper, the multi-parameter sensitivity analysis is investigated
to reduce the parameter space dimension, which broadens the application of cell mapping to MOPs in high-
dimensional parameter space. A post-processing algorithm for MOPs is introduced to help choose proper control
parameters from the Pareto set. The proposed scheme is applied successfully in the control parameter optimiza-
tion of an adaptive nonsingular terminal sliding-mode control for an antenna servo system on a disturbed carrier.
Moreover, as the existing global optimal tracking control with an adjoining cell-mapping method may gener-
ate tracking-phase differences, an optimal-sliding-mode combined-control strategy is proposed. By using the
combined-control strategy, the azimuth and pitch angles of the antenna system are controlled to catch up to a
target trajectory with the minimum cost function and to keep high-precision tracking after that.

1 Introduction

Cell mapping is a highly efficient numerical method for the
global dynamical characteristic analysis of nonlinear dynam-
ical systems. With the cell-mapping method, a state space
region is discretized into a set of cells, and the dynamical
behaviors described by an infinite number of point-to-point
mappings can be represented by a finite number of cell-to-
cell mappings. Then, long-term global dynamical charac-
teristics, including attractors, domains of attraction, equilib-
rium states, etc., can be obtained by studying short-term cell-
mapping relationships. The simple cell mapping (SCM) was
first proposed by Hsu (1980). After that, the cell-mapping
method was developed by a lot of scholars (Dellnitz and
Hohmann, 1997; Sun and Luo, 2012). Due to its power-
ful global analysis ability, cell mapping has been extended
to control optimization fields including multi-objective opti-
mization problems (MOPs) (Fernández et al., 2016) and op-
timal controls (Martínez-Marín and Zufiria, 1999).

One application of the cell-mapping method in control op-
timization fields is the solving of MOPs. In a control pro-

cess, multiple performance indexes are usually considered
to evaluate the control performance, such as overshoot, peak
time, or steady-state error. The design of control parameters
to meet multiple conflicting performance objective functions
simultaneously as far as possible yields the multi-objective
optimization problem. The traditional single-objective op-
timization problem has only one unique solution. But the
MOP has a set of solutions, which is called the Pareto set.
The corresponding optimization objective function values are
named the Pareto front. Many numerical algorithms for solv-
ing MOPs have been developed, such as the immune algo-
rithm (Chen et al., 2019), particle swarm optimization (Peng
et al., 2019; Zhang et al., 2022) and the genetic algorithm (Du
et al., 2016). These algorithms are mainly based on bionics.
Recently, the cell-mapping method was developed as an ef-
fective numerical method to solve MOPs. The cell-mapping
method to deal with MOPs is one kind of set-oriented method
with subdivision technology. It is global in nature and allows
one to approximate the entire set of global Pareto points.
Compared with other optimization methods, it can guaran-
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tee global optimality well to a great extent and can obtain
the Pareto set with one single run of the algorithm. Besides,
it is applicable to a wide range of optimization problems
and is characterized by an excellent robustness. The SCM
was firstly used for multi-objective optimal proportion inte-
gration differentiation (PID) control for a nonlinear system
with a time delay (Xiong et al., 2013). Then a hybrid al-
gorithm consisting of gradient-based and gradient-free laws
for MOPs was presented (Xiong et al., 2014), and a hybrid
method consisting of the genetic algorithm and SCM was
proposed (Naranjani et al., 2014). A post-processing strategy
to select control parameters from the Pareto set is shown by
Qin and Sun (2017). The algorithm first sets an ideal point
and then circles the ideal point with a radius to narrow the
selective area of optimal solutions. As mappings from dif-
ferent pre-image cells to their image cells need to be con-
structed in the cell-mapping method, it is easy to imagine that
the calculation task will grow rapidly when the dimension of
an analyzed dynamical system increases. Because the con-
struction of cell-to-cell mappings are naturally parallelizable,
the graph process unit (GPU) parallel technology was intro-
duced to the global analysis with the cell-mapping method
for high-dimensional nonlinear dynamical systems (Xiong et
al., 2015). The MOP design of a sliding-mode control with
a parallel simple cell-mapping method was studied (Qin et
al., 2017). The multi-objective optimal motion control of a
twin-rotor model helicopter based on the parallel simple cell-
mapping method was presented (Qin et al., 2020). The cell-
mapping method is an interesting alternative to the classical
mathematical programming method. It has been applied suc-
cessfully to lowly and moderately dimensional MOPs. How-
ever, the curse of dimensionality still exists even though the
GPU parallel technology is adopted. That is the main limita-
tion of the cell-mapping method in its application to MOPs
for more control parameters.

Another application of the cell-mapping method in con-
trol optimization fields is the solving of optimal control prob-
lems. Optimal controls have been widely applied in many en-
gineering fields (Lu et al., 2019). However, the analytic opti-
mal control solutions are usually difficult to find for complex
nonlinear systems, especially when the state space region
and control inputs are constrained. The cell-mapping method
provides an efficient numerical way to solve optimal control
problems for complex nonlinear dynamical systems. More
importantly, the cell-mapping method searches optimal con-
trol solutions in the whole state space region, which can guar-
antee the global optimality better compared with other meth-
ods. The SCM was firstly introduced to solve optimal con-
trol problems by Hsu (1985). The solving of fixed-final-state
(Crespo and Sun, 2000) and fixed-final-time (Crespo and
Sun, 2003) optimal control problems with SCM was studied.
To decrease discretization error, the adjoining cell-mapping
method was investigated to solve optimal control problems
by Zufiria and Martínez-Marín (2003). The optimal control
with the adjoining cell mapping performs closed-loop feed-

back control, which makes it applicable in real physical sys-
tems. As for optimal tracking control problems, even numer-
ical solutions are difficult to obtain. The SCM was used for
optimal control of tracking moving targets with a bounded
state space region by Crespo and Sun (2001), but it was lim-
ited to only low-dimension single-input–single-output sys-
tems. Recently, a subdivision strategy of adjoining cell map-
ping was proposed to deal with fixed-final-state global opti-
mal control problems for multi-input–multi-output (MIMO)
systems (Cheng and Jiang, 2021), and it was extended to
solve the global optimal tracking control for MIMO systems
(Tian et al., 2023). However, the low steady-state tracking
accuracy and the existence of phase differences between the
target trajectory and the real trajectory limit the application
of adjoining cell mapping to a wider range of optimal control
problems.

In brief, on the one hand, the cell-mapping method is
still limited by enormous calculations when dealing with
the MOP in high-dimensional parameter space. On the other
hand, the global optimal control with the cell-mapping
method is currently mainly focused on low-latitude single-
input–single-output dynamical systems. Even the subdivi-
sion strategy for adjoining cell mapping has been proposed to
solve fixed-final-state global optimal controls and global op-
timal tracking controls for MIMO systems; further research
should still be conducted. Therefore, in this paper, the MOP
with the cell-mapping method in high-dimensional parame-
ter space is studied, and the global optimal tracking control
with the cell-mapping method for nonlinear MIMO systems
is investigated. The proposed approaches are applied in the
control optimization for a MIMO antenna servo system on a
disturbed carrier.

This paper is organized as follows. The modeling
and adaptive nonsingular terminal-sliding mode control
(ANTSMC) design for the antenna servo system are de-
scribed in Sect. 2. In Sect. 3, the control parameters’
multi-objective optimization for ANTSMC based on multi-
parameter sensitivity analysis and simple cell mapping is il-
lustrated, and a post-processing algorithm for MOPs is intro-
duced. In Sect. 4, an optimal-sliding-mode combined-control
(OSCC) strategy is proposed and applied in the global opti-
mal tracking control for the antenna servo system. Finally,
Sect. 5 concludes the paper. The main contributions of this
paper are as follows:

1. The multi-parameter sensitivity analysis is adopted to
reduce the dimension of parameter space, which broad-
ens the application of the cell-mapping method to MOPs
in high-dimensional parameter space.

2. A post-processing algorithm for MOPs is introduced,
which can help to select proper control parameters from
the Pareto set.

3. An optimal-sliding-mode combined-control strategy is
proposed, which offers a widely applicable and efficient
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numerical way to solve optimal tracking control prob-
lems for nonlinear MIMO systems in engineering.

2 The system description and sliding-mode control
design

The antenna system on a mobile carrier has the advantage
of real-time communication without the limitation of geo-
graphical conditions. It has already been widely applied in
the fields of battlefield communications, emergency commu-
nication, rescue operations and television relay. An antenna
system on a mobile carrier consists of many components,
including an antenna, electrical motors, inertial navigation
devices and so on. As the carrier is always under external,
large disturbance, it is difficult to control the antenna atti-
tude quickly and accurately by means of the classical PID
strategy. Consequently, the dynamical modeling is necessary
for the control design. The sketch map of an antenna system
on a mobile carrier is shown in Fig. 1. Wire-cable vibration
isolation equipment B1 with a hysteretic-damping character-
istic is adopted to isolate the disturbance from the carrier.
To facilitate modeling, the whole system is simplified as a
multi-rigid-body system with four rigid bodies: the vibration
isolation equipment B1, the azimuth turntable B2, the pitch
turntable B3 and a carrier which is not depicted in Fig. 1.
There are 5 generalized degrees of freedom for this system
in total. The system can be described by the nonlinear multi-
body dynamical equations:
Aα1 Aα2 Aα3 Aα4 Aα5
Aβ1 Aβ2 Aβ3 Aβ4 Aβ5
A11 A12 A13 0 0
A21 A22 0 A24 0
A31 A32 0 0 A35



α̈

β̈

q̈1
q̈2
q̈3



=


−M3 sinq2+Mα

−M3 cosq2+Mβ

F − (m1+m2+m3)g
M2
M3

+

Rα
Rβ
R1
R2
R3

 . (1)

In Eq. (1), α and β are the relative rotation angles of B1 to
the carrier in X and Y direction, q1 is the relative translation
displacement of B1 to the carrier in Z direction, q2 is the az-
imuth rotation angle of B2 to B1, and q3 is the pitch rotation
angle of B3 to B2. M2(t) and M3(t) are azimuth and pitch
external-control moment inputs, respectively.Mα ,Mβ and F
are, respectively, the moments in X and Y direction and the
resultant force in Z direction acting on B2 arising from B1.
m1, m2 and m3 are the mass of B1, B2 and B3. The other co-
efficients in Eq. (1) contain large amounts of coupling terms
with the 10 variables and their trigonometric functions, as
well as the angular velocity and acceleration of the carrier.
So this MIMO system displays strong nonlinearity.

As the sliding-mode control possesses good robustness
against external disturbance, it is adopted to control the an-

Figure 1. The sketch map of the antenna system.

tenna attitude angles for this servo system. The control ob-
jective is to make the azimuth q2 and pitch q3 track a given
trajectory, and the control errors are set as

{
e2 = q2− q20

e3 = q3− q30
, (2)

where q20 and q30 are control targets. The non-singular
terminal-sliding mode variables are designed as

{
s2 = e2−β2| ė2 |

γ2 sgn(ė2)
s3 = e3−β3| ė3 |

γ3 sgn(ė3)
, (3)

where β2 > 0, β3 > 0, γ2 = p21/p22, and γ3 = p31/p32 (p21,
p22, p31 and p32 are positive odd integers, 1< p21/p22 <

2, and 1< p31/p32 < 2). To shorten reaching time and to
weaken chattering, an adaptive variable-speed exponential-
reaching law (Cheng and Jiang, 2019) is adopted

ṡ =−ε
1

1+ c1 |e|
sgn(s)− (k+ c2 |e|)s, (4)

where k > 0, ε > 0, c1 > 0, and c2 > 0. The adaptive
variable-speed exponential-reaching law has two parts:
− (k+ c2 |e|) is the exponential-reaching item, which can
adjust the reaching speed according to the value of e. c2
should be assigned a relatively large value to shorten the
reaching time. −ε 1

1+c1|e1|
is the constant-reaching item. It is

less than ε if the coefficient c1 is assigned a relatively large
value, which can weaken the chattering effectively. However,
a too-large value of c1 will result in a small value of the
constant-reaching item, which may lead to the increase of
the reaching time again. Therefore, c1 should be assigned
a relatively small value, while c2 should be assigned a rel-
atively large value. The control inputs M2 and M3 can be
derived by the adaptive nonsingular terminal-sliding mode
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Table 1. The value ranges of ANTSMC parameters.

Parameters Range Parameters Range

β2 0.1–1 c21 1–10
β3 0.1–1 c22 5–500
γ2 1.1–1.9 c31 1–10
γ3 1.1–1.9 c32 5–500
ε2 1–10 k2 1–50
ε3 1–10 k3 1–50

control (ANTSMC) as follows:

M2 =−R2−A24

( ε2

1+ c21 |e2|
sgn(s2)

+ (k2+ c22 |e2|)s2− q̈20+
1

β2γ2
|ė2|

2−γ2
)

M3 =−R3−A35

( ε3

1+ c31 |e3|
sgn(s3)

+ (k3+ c32 |e3|)s3− q̈30+
1

β3γ3
|ė3|

2−γ3
)
, (5)

where β2 > 0, β3 > 0, 1< γ2 < 2, 1< γ3 < 2, k2 > 0, k3 >

0, ε2 > 0, ε3 > 0, c21 > 0, c22 > 0, ε31 > 0, and ε32 > 0.

3 Multi-objective optimization based on sensitivity
analysis and cell mapping

To improve the control performance of ANTSMC,
control parameter optimization is necessary.
The designed control parameter vector is k =[
ε2,ε3,β2,β3,γ2,γ3,k2,k3,c21,c31,c22,c32

]
, and the

value ranges of these parameters are shown in Table 1. As
can be seen from the table, there are multiple control pa-
rameters within wide value ranges which have an influence
over the control performance. For example, the steady-state
error is usually affected by the sliding-mode surface pa-
rameters β2, β3, γ2 and γ3. The overshoot and peak time
are affected by the reaching-law parameters γ2, γ3, k2, k3,
c21, c31, c22 and c32, and they are always conflicting. As the
controlled system is strongly nonlinear, how to adjust the
12 control parameters to meet multiple objective functions
simultaneously as far as possible is a thorny problem. The
design of the control parameters to meet multiple conflicting
objectives in an optimal manner leads to a multi-objective
optimization problem (MOP).

The overshoot, peak time and steady-state error are usu-
ally used to characterize the performance of the closed-loop
feedback control. The MOP in this paper can be described as

min
k∈�

F=min
k∈�

{
Oq2 ,Oq3 ,Tpq2

,Tpq3
,Eq2 ,Eq3

}
, (6)

where � is the set of the control parameter vector k, Oqi
is the overshoot of qi , Tpqi is the peak time of qi , and Eqi

evaluates the steady-tracking error of qi and has the form

Eqi =

∫ Te

Ts

(qi(t)− qi0)2dt, (7)

where Ts is a certain moment when the tracking control is in
the steady state, and Te is the end time. In order to ensure
good control performance, the objective functions are con-
strained by[
Oq2 < 1%,Oq3 < 1%,Tpq2

< 3s,Tpq3
< 3s,

Eq2 < 10−6,Eq3 < 10−6
]
. (8)

In the simulation in this paper, the end time is set as Te = 5 s,
and Ts is set as Ts = 4 s to ensure that the tracking control
has been in the steady state. The carrier is assumed under the
disturbance that its angular velocities inX, Y andZ direction
move sinusoidally with an amplitude of 10◦ and a period of
2 s.

The cell-mapping method to deal with MOPs can find the
global and fine structure of the Pareto set through one single
run of the program. Although the global optimality can be
guaranteed well, the computational time required increases
dramatically when the dimension of the design parameter
space increases. Consequently, it is poorly suited to dealing
with MOPs in high-dimension parameter space due to the
curse of dimensionality. In this paper, we consider the use of
sensitivity analysis technology to realize the dimensionality
reduction of the parameter space effectively.

3.1 Sensitivity analysis

There are 12 control parameters in the ANTSMC design for
the antenna system. Direct optimization of the 12 control pa-
rameters will consume too much computation, which is not
cost-effective and is even unfeasible. In fact, these parame-
ters may have different influences on the change of the ob-
jective function values. When these parameters change si-
multaneously, some may play relatively important roles in
the system output response compared with the others. Con-
sequently, it is easy to imagine that the relatively important
control parameters can be optimized first and the others after
that. In this way, the dimensionality of the parameter space is
reduced, which greatly economizes the computational cost,
and the approximate MOP solutions can be obtained with
sufficient accuracy.

This brings us to the next problem of how to assess the in-
fluence of each control parameter on the objective functions
of the decision maker. The main purpose of parameter sen-
sitivity analysis is to evaluate the importance of each input
parameter to the system output. There are two main methods
for sensitivity analysis: single-parameter sensitivity analysis
and multi-parameter sensitivity analysis. Among them, the
multi-parameter sensitivity analysis method allows the situ-
ation in which multiple parameters change simultaneously,
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which has global significance. The Sobol method (Sobol
and Kucherenko, 2009) is a classical and sophisticated and
the most widely used multi-parameter sensitivity analysis
method. It is a sort of Monte Carlo method based on variance
and has the advantages of fast convergence and good stabil-
ity. It also has good applicability in the situation of obvi-
ous multiple-parameter interactions in the strongly nonlinear
systems. Moreover, the first-order, second-order and high-
order global sensitivity coefficients can be obtained simulta-
neously. The Sobol method divides the total variance into the
independent variance and the interaction variance between
different parameters. A function Y = f (X1X2, . . .,Xn) can
be divided into a set of functions with increased dimensions,
and the first-order sensitivity coefficient of a parameter Xi
can be expressed as

Si =
V [E(Y |Xi)]

V [Y ]
, (9)

where E (Y |Xi) is the conditional expectation, and V is the
variance. The total sensitivity coefficient of Xi is denoted as

STi =
E [V (Y |X∼i)]

V [Y ]
= 1−

V [E(Y |X∼i)]
V [Y ]

(10)

where X∼i is all the parameters in X except Xi .
To avoid a sampling-centralization phenomenon, Latin hy-

percube sampling (LHS) is adopted, which can better cover
the parameter space region with a small number of sam-
ples. LHS is widely used in the probability statistics of com-
plex systems with random input characteristics. In multi-
parameter sensitivity analysis, LHS is an important and com-
monly used parameter sample acquisition method. The main
idea of LHS is to make uniform equal-probability stratifica-
tion for each dimension of the parameter space and then to
select samples from each layer randomly. In order to improve
computation speed, two-time independent samples (Saltelli,
2002) are executed. The generated vector samples are scram-
bled and rearranged subsequently.

To execute parameter sensitivity analysis of ANTSMC for
the antenna servo system, 10 000 groups of control parame-
ters are sampled, and two independent samples are taken. In
Fig. 2, the sensitivity coefficient of β2 for the objective func-
tion Oq2 is presented. When the number of samples is over
about 2000, the sensitivity coefficient of ε2 holds steady at
approximately 0.15. The sensitivity coefficients of other con-
trol parameters for different objective functions follow the
similar regular pattern. The sensitivity analysis result of each
control parameter for different objective functions is shown
in Table 2. It can be seen from the table that, among all the
control parameters, β2, ε2 and c22 have a relatively large in-
fluence on Oq2 , while β2, β3, ε2, ε3 and c32 have a relatively
large influence on Oq3 . The control parameters related to q2
also have an influence on Oq3 , which is due to the existence
of couplings. β2, γ2 and c22 have a greater impact on peak
time Tpq2

, while β3, γ3 and c32 have a greater impact on Tpq3
.

Figure 2. Sensitivity coefficient convergence curve of β2 for Oq2 .

Eq2 is mainly affected by β2 and γ2, while Eq3 is mainly af-
fected by β3 and γ3, which is consistent with the fact that the
steady-state performance of the sliding-mode control only
depends on the parameters of the sliding-mode surface.

To make the sensitivity analysis results more visible, it is
assumed that, if the sensitivity coefficient of a parameter for
an objective function is greater than 5 %, the parameter is
considered to be important to this objective function; if the
sensitivity coefficient is less than 1 %, the parameter is con-
sidered to negligible in relation to this objective function; if
the sensitivity coefficient is between 1 % and 5 %, the param-
eter is relatively minorly important to this objective function.
According to multi-parameter sensitivity results, the impor-
tance of each parameter to different objective functions is
evaluated and also shown in Table 2. The symbols I, M and N
indicate important, minorly important and negligible, respec-
tively. Table 2 shows that there are four parameters which
have no important impact on all objective functions, namely
k2, k3, c21 and c31. In fact, the maximal one among the sen-
sitivity coefficients of the four control parameters for one
objective function is merely 3.16 %. This means that the 4
control parameters have quite a small influence on all the ob-
jective functions compared with the other 8 parameters when
the 12 parameters change simultaneously. Consequently, it
can be easily deduced that the MOP described by Eq. (6)
can be simplified approximately as the optimization of eight
relatively important parameters firstly and the other four pa-
rameters next. In this way, the dimension of the parameter
space decreases from 12 to 8, which makes the MOP with
the cell-mapping method achievable.

3.2 Multi-objective optimization with simple cell mapping

The cell-mapping method to solve MOPs can obtain the
Pareto optimal set through one single run of the algorithm
and can ensure the global optimization well. With the cell-
mapping method, a region in the parameter space is dis-
cretized into uniform cells. An infinite number of points in
the parameter space can be represented by a finite number of
cells. In simple cell mapping (SCM), the characteristics of a
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Table 2. Parameter sensitivity analysis results and importance evaluation. The sensitivity coefficients playing important roles are highlighted
in bold.

Parameters Oq2 Oq3 Tpq2
Tpq3

Eq2 Eq3

β2 15.10 % (I) 8.64 % (I) 12.04 % (I) 1.59 % (M) 41.61 % (I) 2.78 % (M)
β3 0 % (N) 14.61 % (I) 0 % (N) 9.66 % (I) 0 % (N) 42.34 % (I)
γ2 4.94 % (M) 0.70 % (N) 32.36 % (I) 1.99 % (M) 53.95 % (I) 0.85 % (N)
γ3 0 % (N) 4.22 % (M) 0 % (N) 12.81 % (I) 0 % (N) 50.49 % (I)
ε2 48.05 % (I) 9.43 % (I) 4.16 % (M) 0.78 % (N) 3.12 % (M) 0.16 % (N)
ε3 0 % (N) 44.79 % (I) 0 % (N) 4.25 % (M) 0 % (N) 2.06 % (M)
c21 1.81 % (M) 0.02 % (N) 2.05 % (M) 0.03 % (N) 0.56 % (N) 0.04 % (N)
c22 29.37 % (I) 0.15 % (N) 46.23 % (I) 0.43 % (N) 0.29 % (N) 0 % (N)
c31 0 % (N) 1.08 % (M) 0 % (N) 3.54 % (M) 0 % (N) 0.86 % (N)
c32 0 % (N) 15.42 % (I) 0 % (N) 61.51 % (I) 0 % (N) 0.28 % (N)
k2 0.73 % (N) 0.08 % (N) 3.16 % (M) 0.29 % (N) 0.47 % (N) 0 % (N)
k3 0 % (N) 0.86 % (N) 0 % (N) 2.12 % (M) 0 % (N) 0.14 % (N)

cell are represented by the characteristics of its center point.
The Pareto optimal set is obtained by constructing cell-to-cell
mappings in the parameter space and extracting the periodic
cells.

The objective function value corresponding to the center
point of each cell is calculated firstly, and the free gradient
law (Qin et al., 2017) is adopted to construct one-step simple
cell mapping. Let zkn represent the cell corresponding to its
center point parameter vector kn. The free gradient law de-
termines the image cell of a cell zkn by comparing the objec-
tive function values of the cell with those its neighborhood
cells. If there exists a neighborhood cell zki whose objec-
tive function value satisfies the conditions F (ki)≤ F (kn) and
F (ki) 6= F (kn), zki is regarded as the image cell of the pre-
image cell zkn . If there exists more than one neighborhood
whose objective function values satisfy the aforementioned
condition, the maximally dominant cell in the neighborhood
is treated as the image cell. The mapping relationship can be
expressed as

zkn = C
s (zki ) . (11)

If there exists no image cell of zkn , zkn is recognized as a
periodic cell under the concept of MOP with SCM, and the
corresponding control parameter group is considered to be a
Pareto optimal candidate. All the information of the Pareto
optimal set is contained in the one-step cell mappings. After
all the periodic cells are found, the dominance relationship
checking is instituted to avoid the local Pareto optimal solu-
tions, which can ensure the global optimality. Each periodic
cell is compared with other periodic cells, and only those pe-
riodic cells which are not dominated by any other periodic
cell constitute the Pareto optimal set.

To improve calculation speed, the subdivision technology
and GPU parallel technology are adopted. Recall the MOP
described in Eq. (6). The parameter space region is firstly dis-
cretized as 58 relatively coarse cells. The objective function
values corresponding to every center point vector of these

cells are firstly calculated by GPU parallel technology, and
the constraint condition described by Eq. (8) is checked. If
the constraint condition is satisfied, the corresponding cell is
considered to be processed next to find its image cell. If the
constraint condition is not satisfied, the corresponding cell
is discarded. After the mapping relationship judgment, 153
coarse periodic cells are found whose center vectors repre-
sent the Pareto optimal set candidates.

Then each coarse periodic cell is further discretized as 58

smaller cells. Consequently, the final partition scale of the
parameter space region is 258. The calculation of objective
function values, the constraint condition judgment and the
search for periodic cells are executed again. The final Pareto
optimal set contains 1012 fine cells after the dominance re-
lationship checking. Figure 3a and b show the projections
of the Pareto set on 3D sub-spaces (β2, γ2, ε2) and (ε3, β3,
c32). The projections of the Pareto front on 2D planes (Tpq2

,
Eq2 ) and (Oq3 , Tpq3

) are exhibited in Fig. 3c and d, respec-
tively. The Pareto front displays the contradictory relation-
ship between different objective functions well. The parallel
calculation is instituted on a GPU device (NVIDIA GeForce
GTX 1080Ti graphics card), which has 3584 cores with a
frequency of 1480 MHz.

3.3 Post-processing algorithm

A set of points in the parameter space which represent the
Pareto optimal solutions is obtained after the MOP solving.
Usually, the multi-objective optimal control design generates
hundreds or thousands of Pareto optimal solutions. How the
decision maker selects appropriate control parameters from
the Pareto set is a post-processing issue. In this paper, a
post-processing algorithm for MOPs is introduced. For every
objective function Fi , the difference between the maximum
value Fmax

i and the minimum value Fmin
i is recognized first.

Then it is divided equally by a fixed positive integer N :

hi =
(
Fmax
i −Fmin

i

)
/N, i = 1,2, . . .,nF, (12)
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Figure 3. The projections of the Pareto set on 3D sub-spaces
(a) (β2, γ2, ε2) and (b) (ε3, β3, c32) and the projections of the Pareto
front on 2D planes (c) (Tpq2

, Eq2 ) and (d) (Oq3 , Tpq3
). The color

code indicates the level of (a) c22, (b) γ3, (c) Oq2 and (d) Eq3 : red
in the color code indicates the highest level, while dark blue indi-
cates the lowest level.

where nF is the total number of the objective function. Sub-
sequently, the weight coefficient ηi is designed for every ob-
jective function according to the willingness of the decision
maker, and a distance ri is set as

r
j
i = F

min
i + jηihi, i = 1,2, . . .,nF ,j = 1,2, . . .,N. (13)

The region
[
Fmin
i , r

j
i

]
is used to pick the Pareto front and the

corresponding Pareto optimal solutions.
With the post-processing algorithm, the Pareto front

obtained by solving the MOP of the ANTSMC pa-
rameters is processed. N is assigned as 100, and
ηi as (0.8,0.8,0.4,0.4,0.3,0.3), which corresponds to
(Oq2 ,Oq3 ,Tpq2

,Tpq3
,Eq2 ,Eq3 ). After the post-processing al-

gorithm, the top 22 % of the Pareto optimal solutions are
picked up from the original 1012 ones. Figure 4a and b show
the projections of the Pareto set on 3D sub-spaces (β2, γ2,
ε2) and (ε3, β3, c32) after post-processing, while Fig. 4c
and d show the projections of the Pareto front on 2D planes
(Tpq2

, Eq2 ) and (Oq3 , Tpq3
) after post-processing. The objec-

tive functions fall in the following range:

0≤Oq2 ≤ 0.0014%, 0≤Oq3 ≤ 0.021%,

0.376≤ Tpq2
≤ 0.416, 0.305≤ Tpq3

≤ 0.369,

3.682× 10−11
≤ Eq2 ≤ 1.684× 10−10,

0.796× 10−9
≤ Eq3 ≤ 1.672× 10−9. (14)

These remaining control parameter groups after the post-
processing algorithm possess relatively balanced and close
performance under the setting of the weight coefficient ηi .

Figure 4. The projections of the Pareto set on 3D sub-spaces
(a) (β2, γ2, ε2) and (b) (ε3, β3, c32) and the projections of the
Pareto front on 2D planes (c) (Tpq2

, Eq2 ) and (d) (Oq3 , Tpq3
) af-

ter post-processing. The color code indicates the level of (a) c22,
(b) γ3, (c) Oq2 and (d) Eq3 . Red in the color code indicates the
highest level, while dark blue indicates the lowest level.

We choose one group from them arbitrarily to carry out the
time domain simulation, namely β2 = β3 = 0.06, γ2 = 1.62,
γ3 = 1.66, ε2 = 3.4, ε3 = 6.2, c22 = 490 and c32 = 470. The
other four control parameters are optimized with the same
manner and are set as c21 = ε32 = 5, k2 = 36 and k3 = 16. To
verify the effectiveness of parameter optimization, the feed-
back control is instituted with two different groups of control
parameters. They are the optimized parameters above and
the original unoptimized parameters which are adjusted ar-
tificially (Cheng and Jiang, 2019): k2 = k3 = ε3 = 5, ε2 =

2, β2 = β3 = 0.5, γ2 = γ3 = 1.5, c21 = c31 = 5 and c22 =

c32 = 500. Figure 5 shows the time history curves and the
steady-state error curves of q2 and q3 under the two groups of
control parameters. By using the optimized parameters, the
peak time Tpq2

decreases from 1.497 to 0.386 s, while Tpq3
decreases from 1.377 to 0.343 s. The steady-state error index
Eq2 decreases from 3.282×10−9 to 5.721×10−11, whileEq3

decreases from 3.913× 10−8 to 9.415× 10−10. The control
performance was improved significantly by the optimization
design.

4 Optimal-sliding-mode combined-control strategy

The optimal control input is designed to drive a dynamical
system from an initial state to the predesigned terminal state
so that a designed cost function reaches the extreme value
(maximum or minimum). In the next section of this paper,
the optimal control objective is set to make the cost func-
tion reach the minimum value. However, it is usually diffi-
cult to solve optimal control problems analytically for com-
plex nonlinear dynamical systems. When the control input is
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Figure 5. Numerical simulations of (a) q2 and (b) q3 responses in
the two groups of control parameters. The corresponding steady-
state error of (c) q2 and (d) q3.

bounded, even numerical optimal control solutions are quite
difficult to obtain. That is an important factor that limits the
application of optimal controls in engineering.

4.1 Algorithm

The cell mapping offers an efficient numerical way to solve
optimal control problems. With the cell-mapping method, the
continuum state space region is firstly discretized into a finite
number of cells. Simultaneously, the bounded control inputs
are also uniformly discretized. For each cell, the cell-to-cell
mappings are constructed under different control input levels.
Based on the constructed mapping database, the global opti-
mal control solutions can be searched out. The cell-mapping
method to deal with optimal control problems has univer-
sal applicability for linear and nonlinear dynamical systems.
Moreover, it can ensure the global optimality of optimal con-
trol solutions as the search is instituted in the whole state
space region. In addition, all the optimal control solutions
of different controllable cells can be obtained, and uncon-
trollable cells can be recognized with one single run of the
program.

The adjoining cell-mapping method, as an improvement
of the simple cell-mapping method in dealing with optimal
control problems, can construct the mapping database with
smaller discretization error and can search the optimal con-
trol solution more efficiently. Furthermore, the closed-loop
feedback control can be performed, which guarantees robust-
ness in relation to the external disturbance. In the adjoin-
ing cell mapping, to deal with optimal control problems, the
bounded external-control input is uniformly discretized as

U=
{
u1,u2, . . .,uNu

}
,

where Nu is the total discretization number. Let zi(n) repre-
sents the nth image cell of a previous image cell zi(0); the
one-step adjoining cell mapping can then be described as

zi(n)= Ca (zi(0),uj
)
. (15)

After the mapping database is constructed, the discrete op-
timal control table (DOCT) can be constructed by a back-
stepping search strategy. As a result, every cell is assigned
an optimal control input and an optimal cost function value.
Those cells with the initial maximum index function value
are recognized as uncontrollable cells.

Due to the existence of dimension disasters, the opti-
mal control with the cell-mapping method is mainly ap-
plied in two-dimensional single-input–single-output system
over quite a long time. The two-level subdivision strategy
can make the cell-mapping method feasible to solve fixed-
terminal-state optimal control problems for multi-input–
multi-output (MIMO) systems. The state space region of in-
terest can first be first discretized into relatively coarse cells,
and the mapping database can then be constructed with GPU
parallel technology. The optimal control inputs for all the
controllable coarse cells can be searched for by means of the
back-stepping search strategy, and the uncontrollable cells
can be identified. Then the feedback control is instituted from
a controllable initial state, and the integral trajectory starting
from the initial coarse cell will cross several coarse cells in
the state space before it reaches the cell where the target set
is located. The region consisting of these continuous cells in
the state space is further discretized, and the search is exe-
cuted again to obtain the fine DOCT.

As for the trajectory-tracking optimal control problem,
the target set is not fixed but is instead constantly changing
over time. So the cell-mapping method to deal with fixed-
terminal-state optimal control problems is no longer applica-
ble. When the cell in which the target set is located changes,
it is necessary to construct a new DOCT. Naturally, it is imag-
ined that the target trajectory can be discretized into a se-
ries of points, namely, a series of cells in this paper. Then
the trajectory-tracking optimal control problem can be trans-
formed into a sequence of fixed-terminal-state optimal con-
trol problems, and the two-level subdivision strategy for the
adjoining cell-mapping method can still be adopted to ob-
tain optimal control solutions with a high computational effi-
ciency. Based on this idea, a global optimal tracking control
strategy with an adjoining cell-mapping method (OTCACM)
is introduced (Tian et al., 2023). By using an adaptive crite-
rion to judge the availability of adjoining cell-mapping pairs,
the cell-mapping method is extended to solve optimal track-
ing control problems for MIMO systems for the first time.

However, it should be noted that the OTCACM may gen-
erate phase differences between the target trajectory and the
system’s real response trajectory. Before the target trajectory
is cached up, the current system trajectory and the target tra-
jectory are not in the same cell. Consequently, transforma-
tion of the trajectory-tracking optimal control to a sequence
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of fixed-terminal-state optimal controls is appropriate. How-
ever, after the current system trajectory and the target tra-
jectory are in the same cell, real-time tracking for the target
trajectory in the time domain is necessary to ensure a high
control accuracy. It can be imagined that, on the one hand,
if the target trajectory changes relatively slowly with time,
the system response trajectory under optimal controls may
shuttle back and forth around the target cell, which will re-
sult in the chattering phenomenon. The chattering amplitude
and tracking error depend on the discretization scale of the
state space region, namely, the size of cell; on the other hand,
if the target trajectory changes relatively quickly with time,
in some situations, such as the optimal control with mini-
mum energy consumption, the resulting control input by OT-
CACM may be not insufficient to drive the system to catch
the target cell quickly, which will result in the obvious phase
lag phenomenon.

Based on the above analysis, an optimal and sliding-mode
combined-control strategy (OSCC) is proposed. The OSCC
employs the OTCACM law before the target trajectory is
cached up and the ANTSMC law with optimized control pa-
rameters after the target trajectory is cached up. Let z8 rep-
resent the fine cell under the subdivision scale in which the
current target state is located, while z1 is the cell in which the
current target state is located. The OSCC can be described as

uOSCC =

{
uOTCACM, z1 6= z8
uANTSMC, z1 = z8

. (16)

Note that the OSCC strategy combines the global optimal-
ity of the optimal control with cell mapping and the small
steady-state tracking error of the sliding-mode control. With
OSCC, a controlled system can be driven to catch up a target
trajectory with the minimum cost function value and keep
tracking for the target trajectory with a high accuracy after
that.

Equation (16) means that the cells in which the current
target state and system state are located need to be identified.
If they are same, the ANTSMC law is adopted. If not, the
OTCACM law is adopted. To detail the general procedure of
OSCC, let M denote the database storing the information of
all adjoining cell-mapping pairs described by Eq. (15), and
let J denote the database storing the incremental cost func-
tion value Jijk from a pre-image cell zi in relation to its kth
adjoining image cell under a control input uj . If a cell can
reach the target cell where the target trajectory is located in
after the n-step adjoining cell mapping, it is denoted as an n-
step controllable cell. The initial optimal control input u∗i and
the optimal cumulative cost function J ∗i are assigned consid-
erably large values. Those cells whose u∗i and J ∗i are never
updated throughout are recognized as uncontrollable cells.
The general procedure of OSCC is shown in Algorithm 1.

Algorithm 1 The general procedure of OSCC.

1: Discretize the state space region into Nc cells
2: Construct M and J in GPU
3: Find the target cell. Set it as n-step controllable cell (n= 0) and

its cost function J ∗
i
= 0

4: while (there is a cell whose J ∗
i

can be updated to a smaller
value) or (n < Nc) do

5: Find all the mappings in M that enter into the n-step control-
lable cell and the corresponding incremental costs Jijk from
J. Calculate J ∗

i
for every pre-image cell by adding Jijk and

J ∗
i

of its image cell
6: if (J ∗

i
of a pre-image cell is smaller than before) then

7: Update J ∗
i

and u∗
i

8: n= n+ 1. Set the cells whose J ∗
i

and u∗
i

are updated as
n-step controllable cells

9: end if
10: end while
11: The coarse cells crossed by the evolution trajectory from the

current state to the target cell constitute a new region
12: go to 1 so that the fine DOCT is constructed
13: for (t = 0 to Te) do
14: if (z1 = z8) then
15: Closed-loop feedback control with ANTSMC law
16: else if (z1 6= z8) then
17: if (z8 remains unchanged) then
18: The fine DOCT remains unchanged
19: else if (z8 changes) and (the coarse target cell remain un-

changed) then
20: go to 3 so that a new fine DOCT is reconstructed
21: else if (z8 changes) and (the coarse target cell

changes) then
22: go to 11 so that a new rough and fine DOCT are recon-

structed
23: end if
24: Closed-loop feedback control under the fine DOCT
25: end if
26: end for

4.2 Simulations

Recalling the system in Eq. (1), the control target is set to
drive the azimuth angle q2 and pitch angle q3 to track a sinu-
soidal motion with an amplitude of 30 degrees and a period
of 5 s: q20 = q30 = 30◦ (2πt/5). The bounded state space re-
gion for (q2, q̇2,q3, q̇3) is set as [−180◦,180◦]× [−6,6]×
[−90◦,90◦]× [−3,3] with the initial state (−60◦,0,60◦,0).
The external-control torque inputs M2 and M3 are con-
strained in [−25,25]. A quadratic index function which in-
tegrates control error and external energy consumption is set
to estimate the optimal control performance:

J =

∫ Te

0

(
a2e

2
2 + b2M

2
2 + a3e

2
3 + bcM

2
3

)
dt , (17)

where a2 = a3 = 1, b2 = 0.01, and b3 = 0.025. The initial
coarse discretization scale of the state space region is 314,
while the fine discretization scale is 54. The external-control
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Figure 6. The feedback control evolution trajectories in the time
domain under OSCC for (a) q2 and (b) q3. The projections of
the phase space evolution trajectory on 2D planes (c) (q2, q̇2) and
(d) (q3, q̇3).

Figure 7. The control moment inputs (a)M2 and (b)M3 in the time
domain under OSCC.

inputs M2 and M3 are uniformly dispersed with 50 levels
each, which generates 2500 different control torque input
combinations for (M2,M3). The construction of the cell-
mapping database is instituted on the GPU device (NVIDIA
GeForce GTX 1080Ti graphics card).

The feedback control evolution trajectories of q2 and q3
in the time domain under OSCC are shown in Fig. 6a and b.
The dashed green and solid red lines represent the target tra-
jectory and the real system response trajectory, respectively.
It can be easily seen that both q2 and q3 catch up the target
trajectories with the optimal performance index function and
perform remarkable tracking with high control accuracy after
that. The projections of the phase space evolution trajectory
on 2D planes (q2, q̇2) and (q3, q̇3) are presented in Fig. 6c
and d, respectively. After catching up the target ellipse tra-
jectories in the phase space, the two practical trajectories co-
incide well with them. The control moment inputs M2 and
M3 in the time domain under OSCC are shown in Fig. 7.

For comparison, the feedback control evolution trajecto-
ries of q2 and q3 in the time domain under OTCACM (Tian et
al., 2023) are exhibited in Fig. 8a and b. It is obvious that the
tracking for q20 almost fails due to the existence of serious

Figure 8. The feedback control evolution trajectories in time do-
main under OTCACM for (a) q2 and (b) q3. The projections of
the phase space evolution trajectory on 2D planes (c) (q2, q̇2) and
(d) (q3, q̇3).

phase lag, while the tracking for q30 is effective. This hap-
pens as the cost function index described by Eq. (17) implies
as small an input energy consumption as possible. Compared
with the pitch turntable, the azimuth turntable possesses a
relatively large moment of inertia. Therefore, the azimuth
motor cannot drive the azimuth turntable to catch up the tar-
get trajectory timeously under the same control input level as
the pitch motor. The projections of the phase space evolution
trajectory on 2D planes (q2, q̇2) and (q3, q̇3) are presented
in Fig. 8c and d, respectively. There exists a large deviation
between the practical trajectory and the target elliptical tra-
jectory on the (q2, q̇2) plane. The chattering phenomenon is
obvious in the tracking for q30, which is due to the fact that
the target trajectory changes relatively slowly with time. The
phenomena of phase lag and chattering are consistent with
the previous analysis.

The minimum time, minimum energy consumption and
minimum quadratic performance index tracking controls are
instituted, respectively, for the antenna servo system with
three different algorithms, namely, OTCACM, ANTSMC
and OSCC. The comparisons of cost function value J and the
steady errors e2 and e3 are shown in Table 3. The control ac-
curacy increases obviously under OSCC compared with that
under TCSCM, while the performance index function value
decreases obviously under OSCC compared with that under
ANTSMC.

5 Conclusion

In this paper, the cell-mapping method is applied in the con-
trol optimization for an antenna servo system on a disturbed
carrier.

To conquer the curse of dimensionality in the cell-mapping
method for solving MOPs, the multi-parameter sensitivity
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Table 3. Control performance comparison of three control algorithms.

Algorithm Minimum time Minimum energy Minimum quadratic index

Index J e2 e3 J e2 e3 J e2 e3
OTCACM 1.62 s 1◦ 0.3◦ 142.99 – 1◦ 223.68 – 1◦

ANTSMC 2.16 s 0.0002◦ 0.001◦ 1276.6 0.0002◦ 0.001◦ 416.12 0.0002◦ 0.001◦

OSCC 1.71 s 0.0002◦ 0.001◦ 559.73 0.0002◦ 0.001◦ 237.65 0.0002◦ 0.001◦

analysis is implemented to realize the dimension reduction
of the parameter space. A post-processing algorithm is also
proposed to provide a reference in order for the decision
maker to select proper control parameters from the Pareto
set. The ANTSMC control parameters for the antenna servo
system are optimized effectively with the proposed scheme.
In addition, the OSCC strategy is introduced to overcome the
tracking-phase difference phenomenon in the existing OT-
CACM. The OSCC combines the global optimality of op-
timal controls with cell mapping and the high tracking ac-
curacy of the sliding-mode control. Simulation results show
that, with the OSCC strategy, the antenna attitude angles are
driven to catch up the target trajectories successfully with
the global optimal cost function index and keep high ac-
curacy tracking after that. The proposed approaches in this
paper make the cell-mapping method more practical in the
control optimization field, providing widely applicable and
effective numerical solutions for control optimization prob-
lems for nonlinear dynamical systems in engineering.

Appendix A: Notation

B1 Vibration isolation equipment
B2 Azimuth turntable
B3 Pitch turntable
qi Degrees of freedom for Bi
qi0 Target trajectory for qi
ei Control error of qi
βi Sliding-mode surface parameter for qi
γi Sliding-mode surface parameter for qi
ki Reaching-law parameter for qi
εi Reaching-law parameter for qi
ci1 Reaching-law parameter for qi
ci2 Reaching-law parameter for qi
Oqi Overshoot of qi
Tpqi Peak time of qi
Eqi Steady-tracking error index of qi
E (Y |Xi) Conditional expectation
V Variance
ηi Weight coefficient for MOP

post-processing
z8 The fine cell in which the target state is

located

z1 The fine cell in which the system state is
located

Jijk Incremental cost function from a pre-image
cell zi in relation to its kth adjoining image cell
under control input uj

u∗i Optimal control input for a cell zi
J ∗i Optimal cumulative cost function for

a cell zi
ANTSMC Adaptive nonsingular terminal-sliding

mode control
DOCT Discrete optimal control table
LHS Latin hypercube sampling
MIMO Multi-input–multi-output
MOP Multi-objective optimization problem
OSCC Optimal-sliding mode combined control
OTCACM Optimal tracking control with adjoining

cell-mapping technology
SCM Simple cell mapping
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