Coal Science and Technology, 2023, 51(5): 284-293.

王碧茹, 贾 里, 王彦霖, 等. 污泥和煤泥的共燃烧行为研究[J]. 煤炭科学技术, 2023, 51(5): 284-293.

WANG Biru, JIA Li, WANG Yanlin, et al. Research on co-combustion behavior of sewage sludge and coal slime[J].

移动扫码阅读

污泥和煤泥的共燃烧行为研究

王碧茹,贾 里,王彦霖,程 鹏,郭晋荣,张 柳,金 燕 (太原理工大学电气与动力工程学院,山西太原 030024)

摘 要:山西省乃至全国大量煤泥和城市污泥处理面临前所未有的挑战。清洁燃烧技术是污泥-煤泥 协同处理的优选方法。为探究污泥-煤泥混燃过程中的相互作用,为清洁高效燃烧利用提供依据,采 用热重质谱联用技术(TG-MS),研究了污泥和煤泥单独燃烧和共燃烧过程中的燃烧特性和污染性气 体产物(CH₄、CO、CO₂、NH₃、HCN、NO、NO₂、H₂S、CH₃SH、COS、SO₂、CS₂、SO₃)的析出特性, 同时采用 Coats-Redfern 积分法对污泥和煤泥单独燃烧和共燃烧过程进行动力学特性分析,对两者的 相互作用机制进行了深入探讨。结果表明:在污泥和煤泥共燃烧过程中,存在很明显的交互作用。 污泥和煤泥相互促进,提高了整体的反应性能,其中煤泥掺混 20% 时燃烧特性最优,表明污泥比例 的增加不会对燃料整体的燃烧性能造成影响。污泥和煤泥的质均活化能 E_m 分别为 51.170 kJ/mol 和 78.538 kJ/mol,混燃时污泥可以降低混合样品的质均活化能 E_m ,协同作用使得混合样品的实际质均 活化能 E_m 低于计算值。污泥单独燃烧时动力学模型为(D3→D4);煤泥单独时的燃烧动力学模型为 (F1);混合样品的区间动力学模型为(D3→D1→D3/F1),表明交互作用可以改变燃烧过程中的反应 机理。当煤泥掺混 20% 时对温室气体(319.742%)的抑制效果最好;当煤泥掺混 80% 时对含硫气体 (636.492%)和含氮气体(534.811%)的抑制效果最好;表明相互作用对混合样品的气体生成有较大的 抑制作用,其中煤泥掺混 20% 时对污染性气体排放总量的抑制效果最强(319.740%)。

关键词:污泥;煤泥;热重-质谱;燃烧特性;共燃烧;清洁燃烧

中图分类号:TQ533 文献标志码:A 文章编号:0253-2336(2023)05-0284-10

Research on co-combustion behavior of sewage sludge and coal slime

WANG Biru, JIA Li, WANG Yanlin, CHENG Peng, GUO Jinrong, ZHANG Liu, JIN Yan

(College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: The treatment of the large amount of coal slime and municipal sewage sludge in Shanxi Province and even the country is facing unprecedented challenges. Clean combustion technology is the preferred method for sewage sludge-coal slime co-processing. In order to explore the interaction of sludge - coal mud combustion, provide a basis for cleaning and efficient combustion utilization. This paper uses thermal heavy mass spectral (TG-MS) to study the precipitation characteristics of combustion characteristics and pollutant gas products (CH₄, CO, CO₂, NH₃, HCN, NO, NO₂, H₂S, CH₃SH, COS, SO₂, CS₂, SO₃), in the combustion process in sludge and coal mud alone. The results show that there is a significant interaction in the process of coal burning in sludge and coal mud promote each other, improve the overall reaction performance, in which the combustion characteristics are optimal when the coal slime is blended 20%. It indicates that the increase in sludge ratio does not affect the average activation energy of the mixed sample, and the actual Em of the mixed sample is lower than the calculation. The kinetic model is (D3 \rightarrow D1 \rightarrow D3/F1), indicating interaction kinetic model of the mixed sample is (D3 \rightarrow D1 \rightarrow D3/F1), indicating interac-

tion the reaction mechanism during the combustion can be changed. When the coal slime is blended 20%, the inhibition of the greenhouse body (319.742%) is preferably inhibited; when the coal slime is blended 80%, the difference (636.492%) and the inhibitory inhibition containing traditional (534.811%); indicating interaction is a great inhibitory effect on the traditional form of integrated varieties, in which the inhibitory effect of the contaminant contaminated body content is most (319.740%) when the coal slime is blended 20%.

Key words: sewage sludge; coal slime; TG-MS; combustion characteristics; co-combusion; clean combusion

0 引 言

城镇化的加速进行导致城市污水排放量快速增 加,污泥产量也随之增加,污泥中还含有大量的重金 属、病原体等有害物质,给周边环境安全造成严重威 胁。根据 GB/T 23484—2009 城镇污泥处理厂污泥 处置分类,将污泥作为燃料进行燃烧是实现污泥减 量化、无害化、稳定化的最佳处置途径,同时也可以 将污泥实现资源化利用。污泥热值低,难以单独燃 烧,目前国内外学者对污泥的研究主要集中在与高 热值燃料的混合[1]。由于污泥本身的结构复杂,其有 机结构体系热解是非常复杂的热化学反应。利用热 化学分析技术对污泥热解进行动力学分析,深入揭 示热解过程的物理和化学变化。目前针对燃料的热 解过程建立了不同的热解动力学模型^[2],如单一反应 模型、等转化率模型等。叶聪等^[3]采用 FWO(Flynn-Wall-Ozawa)法计算污泥与稻壳水热炭混合动力学 特性,发现两者混燃有协同交互作用。陈繁荣等^[4] 采用 Coats-Redfern 积分法分析污泥与神木煤的热解 动力学,发现污泥的添加对神木煤的热解具有促进 作用,污泥质量分数90%时混合样品的热解特性最 优。阮敏等^[5] 也采用 Coats-Redfern 积分法对污泥与 石下江褐煤的掺烧过程中的动力学特性进行了研究。 另外,也有很多学者采用联用技术对污泥的热解/燃 烧过程开展研究。WANG 等^[6] 采用 TG-MS 技术对 污泥与稻壳共热解过程中的热降解行为和气态物质 的演化进行了探讨。DUAN等^[7]采用 KZDL-4A 快 速硫测定装置研究了有机钙化合物(OCC)对污泥燃 烧过程中硫的释放特性的影响。ZHOU 等^[8] 使用 Py-GC-MS 和 Py-FTIR 研究了污泥的热解过程,提出了 三阶段氮转化过程。

我国资源禀赋决定了当前和未来较长时间内, 煤炭将继续作为能源消耗的主力资源,随着环境控 制要求的提高,我国原煤入洗率逐年攀升,煤泥产量 不断增加。将煤泥用于燃烧发电是最有效的处理方 式之一^[9]。煤泥本身高固定碳的特点使其存在与污 泥混烧的潜力,国内也存在污泥-煤泥混合焚烧的实 例^[10],均证实了这种处置方式的可行性。目前,众多 研究均关注污泥与煤等高热值燃料的混烧特性和污 染物生成特性,对污泥与煤泥等低热值燃料混烧的 相关研究相对匮乏。由于煤泥低热值的特性,也使 得两者的混合燃烧将更加困难。实现污泥-煤泥焚烧 的大规模使用,对于实现污泥-煤泥的减量化、资源 化、无害化利用具有重大现实意义。采用热重质谱 联用技术(TG-MS)对污泥−煤泥耦合燃料的燃烧过 程进行在线监测,探究掺混比例对污泥-煤泥燃烧过 程中的燃烧特性、动力学特性、气体析出特性的影响, 探究相应的燃烧机理,揭示两者在混燃过程中的相 互作用,以期为污泥-煤泥协同清洁高效燃烧利用提 供理论指导。

1 材料和方法

1.1 样品制备

污泥 SS(Sewage Sludge)取自某污水处理厂,煤 泥 CS(Coal Slime)选用贫煤的煤泥,取自某选煤厂。 试验原料均选用空气干燥基样品,经 105 ℃ 干燥 24 h, 用磨煤机粉碎后过 100 目(150 μm)筛后封入样品袋 中保存。工业分析和元素分析结果见表 1,灰成分分 析结果见表 2。为了保证燃料的均匀性,混合样品在 磨煤机内以 910 r/min 的速度研磨 20 min 后,通过 100 目(网径 150 μm)筛子筛分。混合物根据其成分命名, 如 SS80CS20 代表含有 80%SS 和 20%CS 的混合物。

表 1 污泥和煤泥的工业分析与元素分析 Table 1 Proximate analysis and ultimate analysis of sludge and coal slime

样品	工业分析/%				元素分析/%				
	$M_{ m ad}$	$A_{\rm ad}$	$V_{\rm ad}$	FC_{ad}	С	Н	0	N	S
SS	2.44	47.33	47.44	4.04	26.18	3.94	17.09	4.22	1.24
CS	0.38	51.19	13.04	35.72	37.7	2.17	2.33	1.03	5.57

		Table 2	Ash ingredient ana	alysis of sludge ar	nd coal slime				
44 D									
作于百百	SiO ₂	Al_2O_3	CaO	Fe_2O_3	K ₂ O	MgO	P_2O_5		
SS	20.85	6.60	8.48	29.99	3.25	3.66	16.29		
CS	44.86	27.38	2.72	12.19	1.40	0	0.53		

表 2 污泥和煤泥的灰成分分析

1.2 试验过程

采用热重质谱联用系统(日本 thermo plus EV2/thermo mass photo)对不同的样品进行燃烧,评 估掺混比例对燃烧行为和气体排放特性的影响。在 试验过程中,将(4±0.05) mg 的样品置于 Al₂O₃ 坩埚 中,设置以 10 ℃/min 的升温速率从室温升高到 1 000 ℃, 输入气体流速为 300 mL/min 的空气,质谱仪测试范 围(m/z 为质荷比)为 0~400 m/z。根据国家标准与 技术研究院(NIST)数据库监测燃烧过程中生成的污 染性气态产物(质荷比)为 CH₄(15)、CO(28)、CO₂(44)、 NH₃(17)、HCN(27)、NO(30)、NO₂(46)、H₂S(34)、 CH₃SH(48)、COS(60)、SO₂(64)、CS₂(76)、SO₃(80)。

1.3 交互作用

SS 和 CS 混燃过程中, 用式(1)计算理论值, 用式(2)计算偏差值用于评价交互作用程度。偏差 D 为正值表示该过程受到相互作用的抑制。

$$Y_{\text{theo}} = \gamma_1 Y_1 + \gamma_2 Y_2 \tag{1}$$

$$\mathbf{D} = \left(Y_{\text{theo}} - Y_{\text{exp}}\right) / Y_{\text{exp}} \times 100\% \tag{2}$$

式中: y₁和 y₂分别为掺混样品中 2种样品的质量 比, %; Y₁、Y₂分别为对应样品的气体生成量, A/mg; Y_{theo} 为理论值; Y_{exp} 为实际值。

1.4 燃烧动力学方程

燃烧动力学分析主要用于探索燃烧反应机理、 燃烧反应速度及其影响因素。为深入细致地研究燃 烧现象,对 SS、CS 及其掺混样品的燃烧结果进行燃 烧动力学分析,从而有效控制燃烧反应。燃烧动力 学方程可以表示为

$$d\alpha/dT = (A/\beta)\exp(-E/RT)f(\alpha) \qquad (3)$$

式中: a 为转化率, $a = (m_0 - m_1)/(m_0 - m_\infty)$; T 为反应温 度, \mathbb{C} ; β 为加热速率, $\mathbb{C}/\min, \beta = dT/dt$; A 为指前因子, min⁻¹; E 为表观活化能, kJ/mol; R 为反应气体常数, 8.314×10⁻³ kJ/(mol·K)。Coats-Redfern 积分法被广 泛用于研究燃烧过程中的动力学。用 Coats-Redfern 积分法对式(3)进行处理得到:

 $\ln\left[g\alpha/T^2\right] = \ln\left[(AR/\beta E)(1 - 2RT/E)\right] - E/(RT) \quad (4)$

式中: g(a) 为 f(a) 的积分形式。对一般的反应区的 E 而言, 2RT/E<<1, (1-2RT/E)可以忽略不计。一般 来说, 峰两侧的反应机理不同, 选取了 10 种常见的 反应机理函数^[11]进行拟合得到热解反应动力学方程 式。相应的反应机理函数及其数学表达式见表 3。

表 3 反应动力学模型及其表达式 Table 3 Reaction kinetic model and expression

Table 5 Reaction kinetic model and expression						
反应模型	编号	$f(\alpha)$	g(a)			
化学反应 n=1	F1	1-α	$-\ln(1-\alpha)$			
化学反应 n=2	F2	$(1-a)^2$	$(1-\alpha)^{-1}-1$			
化学反应 n=3	F3	$[(1-\alpha)^3]/2$	$(1-\alpha)^{-2}$			
一维扩散	D1	0.5α	α^2			
二维扩散	D2	$-\left[\ln(1-\alpha)\right]^{-1}$	$\alpha + (1-\alpha)\ln(1-\alpha)$			
三维扩散,球形对称	D3	$1.5(1-\alpha)^{2/3}[1-(1-\alpha)(1/3)]^{-1}$	$[1-(1-\alpha)^{1/3})]^2$			
三维扩散, 柱形对称	D4	$1.5(1-\alpha)^{1/3}[1-(1-\alpha)(1/3)]^{-1}$	$1-1.5\alpha - (1-\alpha)^{2/3}$			
随机成核和随后生长 n=1/2	A2	$2(1-\alpha)[-\ln(1-\alpha)]^{1/2}$	$[-\ln(1-\alpha)]^{1/2}$			
随机成核和随后生长 n=1/3	A3	$3(1-\alpha)[-\ln(1-\alpha)]^{2/3}$	$[-\ln(1-\alpha)]^{1/3}$			
随机成核和随后生长 n=1/4	A4	$4(1-\alpha)[-\ln(1-\alpha)]^{3/4}$	$[-\ln(1-\alpha)]^{1/4}$			

混合样品的质均活化能(E_m)通过加权平均法计

$$E_{\rm m} = \sum E_i x_i \tag{5}$$

式中:xi为不同反应阶段的重量损失百分比,%;Ei为

对应阶段的反应活化能, kJ/mol。

2 结果与讨论

2.1 热重分析

图 1 为煤泥、污泥及其混合样品在升温速率 10 ℃/min 下燃烧的 TG 曲线和 DTG 曲线。从 TG 曲线可以发现, SS 燃尽后剩余 47.1%, CS 燃尽后剩 余 50.7%, 与工业分析的结论基本一致。比较几种掺 混样品的 TG 曲线发现, 燃料掺混燃烧的失重曲线处 于 2 种燃料单独燃烧曲线之间, 随着掺混样品中 SS 比例的增加, TG 最终的失重率减小, 这是因为相对 于 CS 而言, SS 样品中的挥发份含量多, 灰分含量少, 燃烧完全的残余量少。同时发现, 随着 SS 比例的增 加, TG 曲线整体向低温侧偏移, 表明混合物中 SS 越 多, 混合物整体更容易燃烧。

从 DTG 曲线可以看到, 样品失重过程中的几个 阶段存在一定的重叠, 假定峰值为分界温度。SS 单 独燃烧过程中可以分为 3 个阶段:①水分的失重 (70~145 ℃), 占总失重的 4.8%; ②挥发分的失重 (145~350 ℃), 占总失重的 56.1%; ③固定碳的失重 (350~530 ℃), 占总失重的 33.6%。说明在 SS 的整 个燃烧过程中以挥发分的析出和燃烧为主, 大量有 机质在此阶段裂解, 如蛋白质、糖类等^[12]。在 CS 单 独燃烧过程中, 温度在 390~690 ℃ 内存在一个大的 失重峰, 占到总失重的 94.0%, 由于 CS 中的挥发分 含量较低, 且析出缓慢, 导致挥发分和焦炭的燃烧没 有明确的界限。

SS80CS20、SS50CS50、SS20CS80三个掺混样 品燃烧过程中,大致可以分为4个失重阶段:①水分 的失重(70~160 ℃),分别占总失重的 3.6%、2.8%、 2.0%; ②挥发分的失重(160~345℃), 分别占总失重 的 43.4%、28.4%、12.7%; ③燃烧过程中生成的焦炭 的失重(345~465℃),分别占总失重的25.1%、 18.3%、11.2%;④内部碳的失重(465~670℃),分别 占总失重的 23.2%、45.5%、68.8%。对比发现, SS 的 挥发分燃烧温度远低于 CS, 一方面是由于 SS 的挥 发分含量较高,低沸点小分子有机物含量较高,另一 方面是由于 SS 本身的孔隙结构较为发达,有利于挥 发分的析出。随着 CS 比例的增大,固定碳失重峰向 低温区偏移,挥发分的燃烧温度区间变宽,说明添加 CS 可以减缓挥发分的析出,同时促进固定碳的燃烧。 CS含量的增加还导致了主要燃烧过程的变化,在 CS 添加比例 50% 时,混合样品的主要燃烧过程开始 由固定碳主导,并且随着 CS 比例的进一步增大,固 定碳的主导作用增强。为综合评价 CS、SS 及其混 合物的燃烧特性,引入综合燃烧特性指数 S,计算方 法如下:

$$S = (dw/dt)_{\text{max}} \times (dw/dt)_{\text{mean}} / (T_i^2 T_f)$$
 (6)

式中: $(dw/dt)_{max}$ 为最大失重速率, %/°C; $(da/dt)_{mean}$ 为平均失重速率, %/°C; T_i 为着火温度, °C, 由 TG 切 线法求得; T_f 为燃尽温度, °C, 这里将样品失重占到 总失重 95% 时对应的温度定义为燃尽温度。表 4 是 由各个样品在 10 °C/min 的加热速率下的热重图像 计算得到的燃烧特性参数。

图 1 SS 与 CS 混合燃烧的 TG 曲线和 DTG 曲线 Fig.1 TG and DTG combustion curves of CS and SS

由表 4 可知, SS 与 CS 的燃烧特性参数相差较 大,主要是两者的组成结构不同造成的。SS 的 O/C 较高,含有较多的含氧基团,具有高反应性,因此 SS 具有较低的 T;;CS 中含有较高的灰分含量,无机矿物 的分解延迟了反应终止,因此 CS 具有较高的 T_f。就 混合物而言,燃烧特性参数均介于两者之间。随着 CS 比例的增加,低温区的最大失重速率逐渐减小, 高温区的最大失重速率逐渐增大,燃烧的主导过程 向高温区偏移,同时 CS 比例的增加导致综合燃烧特性指数逐渐减小。其中,SS80CS20 的 *T_i* 比 CS 单独 燃烧时降低了 269 ℃,综合燃烧特性指数是 CS 单独 燃烧时的 4.42 倍,是 SS 单独燃烧时的 85.48%,表明

交互作用会促进两者的燃烧。这表明污泥比例的增加,不会对燃料整体的燃烧特性造成影响。在实际燃烧过程中,在不影响锅炉效率的前提下可以适度增加污泥比例。

表 4 样品的燃烧特性指数 Table 4 Sample combustion characteristic index

	T_i /°C	$T_{\rm f}$ °C	$(\mathrm{d}\alpha/\mathrm{d}t)_{\mathrm{max}}/(\%\cdot\mathrm{^{-1}})$	$(\mathrm{d}\alpha/\mathrm{d}t)_{\mathrm{mean}}/(\%\cdot^{\circ}\mathrm{C}^{-1})$	$S/(10^{-8} \mathrm{K}^{-3} \cdot \mathrm{min}^{-2})$
SS	221	522	0.51/0.22	7.08	1.86
SS80CS20	225	635	0.38/0.14	9.35	1.59
SS50CS50	365	659	0.18/0.31	9.32	0.75
SS20CS80	455	668	0.06/0.33	5.96	0.40
CS	494	707	/0.39	5.31	0.36

2.2 排放特性分析

在 10 ℃/min 的加热速率下,用 TG-MS 监测燃 烧过程中的常见的温室效应气体(CO, CO_2, CH_4), 释放曲线如图 2 所示。从图 2a 中可以看出,所有样品 的释放曲线都是双峰结构,但温度区间有所差异。SS 分别在 304 ℃ 和 391 ℃ 达到峰值; CS 分别在 404 ℃ 和 544 ℃ 达到峰值,此外在 800 ℃ 后又有 CO,的产 生;混合样品的峰值温度分别在 307、432、558 ℃ 左 右。从低温到高温的燃烧过程中,CO2的来源可能是 依次样品本身吸附的 CO₂、羧基、芳香族中一些弱键、 醚键、稳定的含氧杂环和碳酸盐的分解^[13-14]。CO的 排放趋势与 CO2 极其相似, 如图 2b 所示, 这是由于 CO,和CO存在直接的相互转化(如式(7)所示)^[13], 两者的生成是一个综合竞争的过程。图 2c 是 CH4 气体的排放曲线, CH₄的释放温度范围很广, 说明 CH4是由不同的脂肪烃演变而来。一般来说,在 250~450 ℃CH₄的生成归因于长链烷基断裂分解, 450~550 ℃ 是由于甲基等相对稳定的化学键的二 次裂解,由芳香族分子的缩聚反应而来^[15]。

$$CO+C(O) \leftrightarrow C_{f}+CO_{2}$$
 (7)
式中: CO 为由表面氧络合物一次解析产生的游离气
态一氧化碳; C(O)为表面结合的氧络合物; C_f 为的
表面活性位点。

在整个燃烧过程中,未能监测到 CS₂和 SO₃的 生成,含硫气体产物(SO₂、H₂S、CH₃SH、COS)的排 放曲线如图 3 所示。由于 CS 样品中的硫含量较高, 主要对 CS 单独燃烧过程中的含硫气体释放规律进 行分析。可以看出,含硫有机化合物断裂会首先产 生 H₂S 气体,在燃烧过程中被氧化生成大量 SO₂,再 经过气体间的二次反应向其他含硫气体转化,和 ZHANG 等^[16] 的结论基本一致。从低温到高温的燃烧过程中,H₂S 气体的来源依次是样品本身溶解的硫蒸气、烷基硫、芳香硫、稳定的含硫杂环以及硫酸盐的分解^[17]。由于 SS 中较高的挥发分含量,低沸点含硫有机物的相对含量较多,且燃烧较为迅速,未能体现出明显的含硫气体排放先后顺序。与 CS 不同的是,SS 在>800 ℃ 时有 SO₂ 气体的析出,是由于在碳素和矿物质的作用下,硫酸盐在此时分解析出 SO₂^[18-19]。混合样品的 COS 排放曲线明显受到两者共同作用的影响,此外,随着 CS 比例的增大,混合样品的其他 3 种含硫气体排放趋势向 CS 单独燃烧时的气体排放规律靠近,当 CS 比例为 50% 时完全表现为 CS 的性质。

图 4a-图 4d 分别为 NO₂、NH₃、NO、HCN 的排 放曲线。由于 SS 样品中的氮含量较高,因此主要对 SS 的排放趋势进行分析。在燃烧过程中,含氮气体 的生成 NH₃>HCN>NO>NO₂, 均以双峰结构存在, 分 别出现在挥发分的燃烧阶段(145~350℃)和固定碳 的燃烧阶段(350~530 ℃),其中 NH,的第一个峰强 度远远高于第二个峰。结果表明,样品 SS 中的挥发 性氮主要生成了 NH₃,认为本次试验中 NH₃是氮氧 化物的主要前驱体,这是由于中低温条件下,胺氮化 合物脱氨基和脱氢生成 NH,和 HCN 的活化能相当, 它们的生成存在竞争关系^[20], 而 SS 中较高的 CaO 含量会促进样品中含氮化合物向 NH, 的转化, 同时 对 HCN 向 NH, 的转化也有一定的促进作用^[21]。由 于 CS 中的 CaO 含量很少, CS 生成的 NH₃ 和 HCN 峰强度相当, NH, 的第一个峰略高于 HCN 可能是 CS 中的胺类氮含量高于腈类氮、杂环氮的含量导致 的。在 500~700 ℃ 间 NH, 和 HCN 主要来源于含 氮化合物的裂解^[20]。3种混合样品的含氮气体释放

曲线均为两者的结合。

用积分法计算的燃烧过程中各种气体生成量见 表 5。从表 5 中可以看出,在 5 种样品的燃烧过程中, CO₂、CO、NH₃为主要气体,三者总和均占到所有气 体总量的 93% 以上。就混合样品而言,CO₂、CO、 SO₂、NO₂、HCN 的生成量随 CS 含量的增加而增加, NO、NH₃ 的趋势则相反,还存在 CH₄、CH₃SH、COS 和 H₂S 三种气体在掺混 50% 时生成量最大。随着样 品 CS 含量的增加,含硫气体总量和含氮气体总量均 呈现先增后减的趋势,且都在 CS 掺混最多时达到最 小值,与前期根据样品本身硫、氮含量预估的趋势不 符。这是由于部分硫、氮以热稳定的无机或有机物 形式存在于固体产物灰中,在燃烧过程中难以释放。 将 SS、CS 单独燃烧的生成气体总量分析发现,基本 与样品中的碳、硫、氮含量趋势相符,表明在气体生 成过程中,相互作用的影响较大。结果表明,当 CS 比例为 20% 时,相互作用对温室气体排放的抑制作 用最强;当 CS 比例为 80% 时,相互作用对含硫气体 和含氮气体的抑制作用最强。总的来说,在混合燃 烧时,可以有效降低气体污染物的释放。

2.3 动力学分析

以不同掺混比的掺混样品为研究对象,通过对 ln(g(a)/T²)和1/T拟合直线得到活化能 E和指前因 子 A。为准确评价动力学,按DTG曲线峰值点将燃 烧过程分为多个阶段,选用相关系数 R2最大的模型, 计算燃烧过程中的动力学参数。计算结果见表 6。 从样品的失重过程中可以看出,样品燃烧的主要阶 段是挥发分、生物炭、内部碳的反应,因此可以忽略 由干燥和残余成分降解引起的动力学过程。

由表 6 可知, 混合样品在第一阶段的 E 值随着 CS 质量分数的增加而降低,第二、三阶段的 E 值则 下降,表明 CS 的加入抑制了挥发分的燃烧,有利于 生物炭和固定碳的反应。CS 单独燃烧时的质均活 化能是 SS 单独燃烧时的 1.53 倍, SS20CS80 样品的 质均活化能比 SS 单独燃烧时增大了 2.06%, 其余混 合样品均低于 SS 单独燃烧时的质均活化能, 表明 SS 中的矿物质促进了 CS 的燃烧^[22-23],同时 CS 的燃 烧又进一步促进了 SS 的燃烧化学反应, 二者相互促 进,提高整体的燃烧特性。对于 SS 燃烧,动力学过 程由 D4 和 D3 控制, CS 燃烧模型为 F1, 表明在 SS 燃烧的整个过程中燃烧反应都由三维扩散过程控制, 在 CS 燃烧过程中由一维化学反应控制整个过程。 与文献中分析得到的煤泥反应机理一致^[24]。随着 CS比例的增加,3个混合样品的区间动力学模型分 别为 $D3 \rightarrow D1 \rightarrow D3$ 、 $D3 \rightarrow D1 \rightarrow D3$ 和 $D3 \rightarrow D1 \rightarrow F1$ 。 表明两者的交互作用可以改变混燃过程中的反应机 理。关于混合样品的燃烧过程,可以解释为:第一阶 段,挥发分由颗粒内部向周围扩散,高浓度的挥发分 抑制了氧扩散到固相表面,因此燃烧反应由三维扩 散过程控制;第二阶段,挥发分物质几乎完全降解, 生成的生物炭堵塞了样品的孔隙,抑制了氧向样品 内部扩散,燃烧反应受到一维扩散过程的控制;第三 阶段,随着生物炭的降解,孔隙结构逐渐扩大,对于

图 3 SS 与 CS 单独/混合燃烧时的含硫气体析出曲线 Fig.3 Sulfur-containing gas release curves at SS and CS alone / mixed combustion

Fig.4 Nitrogen-containing gas release curve at SS and CS alone / mixed combustion

Tab	le 5 Gas generat	Gas generation amount and deviation D during combustion						
样品	SS	CS	SS80CS20	SS50CS50	SS20CS80			
CO ₂ 生成量/(10 ⁻¹⁰ A·mg ⁻¹)	376.544	396.697	62.853	144.255	139.226			
CO生成量/(10 ⁻¹⁰ A·mg ⁻¹)	121.529	575.178	77.150	127.728	105.512			
CH ₄ 生成量/(10 ⁻¹⁰ A·mg ⁻¹)	3.159	4.710	2.061	0.898	2.895			
温室气体总量/(10 ⁻¹⁰ A·mg ⁻¹)	501.232	976.585	142.064	272.881	247.633			
偏差D	—	_	319.742	170.781	255.976			
SO ₂ 生成量/(10 ⁻¹⁰ A·mg ⁻¹)	1.572	13.946	0.558	2.862	0.675			
H ₂ S生成量/(10 ⁻¹⁰ A·mg ⁻¹)	0.215	0.402	0.371	0.094	0.110			
CH ₃ SH生成量/(10 ⁻¹⁰ A·mg ⁻¹)	1.343	6.869	1.177	0.319	0.999			
COS生成量/(10 ⁻¹⁰ A·mg ⁻¹)	0.481	0.242	0.514	0.342	0.645			
含硫气体总量/(10 ⁻¹⁰ A·mg ⁻¹)	3.611	21.459	2.620	3.617	2.429			
偏差D	_	_	174.069	246.558	636.492			
NO ₂ 生成量/(10 ⁻¹⁰ A·mg ⁻¹)	1.437	0.665	0.350	0.612	0.707			
NH3生成量/(10 ⁻¹⁰ A·mg ⁻¹)	64.722	44.949	13.535	21.375	5.766			
NO生成量/(10 ⁻¹⁰ A·mg ⁻¹)	11.464	2.722	2.715	4.672	2.486			
HCN生成量/(10 ⁻¹⁰ A·mg ⁻¹)	13.504	30.690	3.909	6.098	3.871			
含氮气体总量/(10 ⁻¹⁰ A·mg ⁻¹)	91.127	79.026	20.509	32.757	12.830			
偏差D	—	_	332.526	159.720	534.811			
生成气体总量/(10 ⁻¹⁰ A·mg ⁻¹)	595.970	1 077.070	165.193	309.255	262.892			
偏差D	_	_	319.740	168.831	268.961			

表 5 燃烧过程中的气体生成量及偏差 D

表 6 样品的燃烧动力学参数

Table 6 Sample combustion dynamics parameters							
样品	<i>T</i> /°C	适用模型	$E/(kJ \cdot mol^{-1})$	A/\min^{-1}	R^2	$E_{\rm m}/({\rm kJ}{\cdot}{\rm mol}^{-1})$	
00	145 ~ 350	D4	62.077	2 339 517	0.983 1	51 170	
55	350 ~ 530	D3	32.728	3 381	0.990 1	51.170	
CS	390 ~ 690	F1	78.538	7 510 838	0.9869	78.538	
	160 ~ 345	D3	66.835	5 119 610	0.9870		
SS80CS20	345 ~ 465	D1	16.749	297	0.996 1	42.019	
	465 ~ 670	D3	22.936	237	0.985 1		
	160 ~ 345	D3	61.141	557 301	0.985 8		
SS50CS50	345 ~ 465 I	D1	18.324	191	0.987 1	51.032	
	465 ~ 670	D3	57.877	54 020	0.9878		
SS20CS80	160 ~ 345	D3	47.871	4 510	0.980 9		
	345 ~ 465	D1	23.165	109	0.934 0	52.223	
	465 ~ 670	F1	57.757	325 329	0.991 8		

SS80CS20和 SS50CS50而言,前期生物炭的生成量较大,现阶段孔隙较小,因此仍由三维扩散过程来控制,对于 SS20CS80而言,多孔结构提供了充足的氧气通道,燃烧过程由化学组分的燃烧来控制。

根据我国煤种的结渣程度最优分割准则,即采 用灰熔点、碱酸比 B/A、硅比 G、 $m(SiO_2)/m(Al_2O_3)$ 四 个判别指标来预测结渣。其中,碱酸比 $B/A=[m(Ca)+m(Fe_2O_3)+m(Na_2O)+m(K_2O)]/[m(SiO_2)+m(Al_2O_3)+m(Al_2$ 壮沐和南邳测

m(TiO₂)], 硅比 G=[m(SiO₂)×100]/[m(SiO₂+m(Fe₂O₃)+m (CaO)+m(MgO)], 判别标准及判别结果见表 7。由表 7 可知,本研究中采用样品的结渣程度都较为严重。 在一定程度上,添加 CS 可以缓解炉内的结渣。

农 /							
Table 7 Slag level prediction							
样品	灰熔点 <i>T</i> ₂/℃	碱酸比B/A	硅比G	$m(SiO_2)/m(Al_2O_3)$	结渣程度		
SS	1 1 50	1.653	33.11	3.16	严重		
CS	1 378	0.226	75.05	1.64	中等		
SS80CS20	1 1 5 5	1.087	41.15	2.38	严重		
SS50CS50	1 170	0.619	53.53	1.93	严重		
SS20CS80	1 201	0.350	66.31	1.72	中等		
	>1 390	< 0.206	>78.8	<1.87	轻微		
判别指标 ^[25]	1 390 ~ 1 260	0.206 ~ 0.4	78.8 ~ 66.1	1.87 ~ 2.65	中等		
	<1 260	>0.4	<66.1	>2.65	严重		

结 3 论

1)混合样品的燃烧特性均在两者之间,在混燃 过程中, SS 与 CS 相互促进, 提高整体的燃烧特性, 其中混合样品 SS80CS20 的燃烧特性最优。这表明 污泥比例的增加,不会对燃料整体的燃烧特性造成 影响。

2)相互作用对混合样品的气体生成有较大的抑 制作用。当 CS 掺混 20% 时对温室气体的抑制效果 最好,偏差为319.742%;当CS 掺混80% 时对含硫气 体和含氮气体的抑制效果最好,偏差分别为 636.492% 和 534.811%。

3)SS 和 CS 的质均活化能 Em 分别为 51.170 kJ/mol 和 78.538 kJ/mol, 混燃时 SS 可以降低混合样品的质 均活化能,协同作用使得混合样品的实际质均活化 能低于计算值。

4)相互作用会改变燃烧过程中的反应机理。SS 单独燃烧过程中由三维扩散过程(D3→D4)主导,CS 单独燃烧过程由一级化学反应(F1)控制,混合样品 中前两个阶段的动力学模型一致(D3→D1),在第三 阶段 SS80CS20 和 SS50CS50 由三维扩散过程主导 (D3→D1→D3), 而 SS20CS80 由一级化学反应主导 $(D3 \rightarrow D1 \rightarrow F1)_{\circ}$

参考文献(References):

[1] 印献栋. 污泥处理方法与资源化利用[J]. 中国资源综合利用, 2020, 38(7): 91-93.

YIN Xiandong. Research on sludge treatment method and resource utilization[J]. China Resources Comprehensive Utilization, 2020, 38(7): 91-93.

[2] 贺 凯,张玉龙,时剑文,等.煤低温氧化过程中元素转化行为的 292

动力学分析[J]. 煤炭学报, 2016, 41(6): 1460-1466. HE Kai, ZHANG Yulong, SHI Jianwen, et al. Kinetic analysis of element evolution during low-temperature oxidation of coal[J]. Journal of China Coal Society, 2016, 41(6): 1460-1466.

- [3] 叶 聪, 邢献军, 张学飞, 等. 城市污泥与稻壳混合燃烧特性与动 力学[J]. 过程工程学报, 2020(3): 362-370. YE Cong, XING Xianjun, ZHANG Xuefei, et al. Combustion characteristics and kinetics of municipal sludge and rice husk hydrochar[J]. The Chinese Journal of Process Engineering, 2020(3): 362 - 370
- [4] 陈繁荣, 王元哲, 程 帆, 等. 神木煤与生活污泥共热解特性及动 力学分析[J].煤化工,2019,47(4):55-60. CHEN Fanrong, WANG Yuanzhe, CHENG Fan, et al. Co-pyrolysis characteristics and dynamics analysis of shenmu coal and sewage sludge [J]. Coal Chemical Industry, 2019, 47(4): 55-60.
- [5] 阮 敏,曾志豪,祖丽胡玛尔·塔依尔,等.市政污泥与石下江褐 煤混合燃烧动力学及协同特性研究[J].煤炭转化,2021,44(1): 43 - 50

RUAN Min, ZENG Zhihao, TAYIER Zulihumaer, et al. Co-combustion kinetics and synergistic characteristics of sewage sludge and Shixiajiang lignite[J]. Coal Conversion, 2021, 44(1): 43-50.

- [6] WANG T, CHEN Y C, LI J P, et al. Co-pyrolysis behavior of sewage sludge and rice husk by TG-MS and residue analysis[J]. Journal of Cleaner Production, 2019, 250: 119557.
- [7] DUAN F, ZHANG L, HUANG Y. Sulfur release and migration characteristic of sewage sludge combustion under the effect of organic calcium compound addition[J]. Energy & Fuels, 2017, 31(5): 5525-5532.
- [8] ZHOU P, XIONG S, ZHANG Y, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18181-18188.
- [9] 杨方亮.煤炭资源综合利用发电现状分析与前景探讨[J].中国 煤炭,2020,46(10):67-74.

YANG Fangliang. Current situation analysis and prospect discus-

sion on comprehensive utilization of coal reG sources for power generation [J]. China Coal, 2020, 46(10): 67–74.

[10] 严 伟,何绪庆. 污泥-煤泥混合水煤浆在循环流化床内焚烧的 实验研究[C]//2014全国染整可持续发展技术交流会论文集. 北 京:中国纺织工程学会, 2014: 169-176.

YAN Wei, HE Xuqing. Experimental study on incineration of sludge - mixed water cry coal slide in circulating fluidized bed [C]// 2014 National Dyeing and Fix Sustainable Development Technical Exchange Conference. Beijing: China Textile Engineering Society, 2014: 169–176.

- [11] WANG T, FU T, CHEN K, et al. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses[J]. Bioresource Technology, 2020, 311: 123527.
- [12] 孟 涛,邢小林,陈传恒,等. 污泥-烟煤混合燃料燃烧特性与动力学研究[J]. 热力发电, 2021, 50(5): 87–93.
 MENG Tao, XING Xiaolin, CHEN Chuanheng, *et al.* Study on co-combustion characteristics and kinetics of mixing fuel of sludge and coal[J]. Thermal Power Generation, 2021, 50(5): 87–93.
- [13] LUO L, LIU J X, ZHANG H, et al. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 64–74.
- [14] 吴亚男. 污泥含碳官能团模型化合物的构建及其热解机理研究[D]. 杭州: 浙江工业大学, 2018.
 WU Yanan. Construction of carbon-containing functional groups model compound of sewage sludge and study on its pyrolysis mechanism [D]. Hangzhou: Zhejiang University of Technology, 2018.
- [15] WANG M, LI Z, HUANG W, et al. Coal pyrolysis characteristics by TG-MS and its late gas generation potential[J]. Fuel, 2015, 156(15): 243–253.
- [16] ZHANG H, GONG Z, LIU L, et al. Study on the migration characteristics of sulfur and nitrogen during combustion of oil sludge with CaO additive[J]. Energy & Fuels, 2020, 34(5): 6124–6135.
- [17] 李佳佳,金 权,李 梅. 宁东鸳鸯湖矿区高硫煤热解硫的迁移 规律[J]. 煤炭转化, 2018, 41(5): 12-18.
 LI Jiajia, JIN Quan, LI Mei, *et al.* Sulfur transformation during pyrolysis of high-sulfur Ningdong Yuanyanghu coal[J]. Coal Conversion, 2018, 41(5): 12-18.
- [18] 赵 亮.石墨热分解CaSO4反应机理研究[J]. 洁净煤技术, 2020,

26(6): 168–174.

ZHAO Liang. Study on the reaction mechanism of thermal decomposition reaction of $CaSO_4$ and graphite [J]. Clean Coal Technology, 2020, 26(6): 168–174.

- [19] 刘 豪,邱建荣,徐朝芬,等.煤灰氧化物与钙基固硫产物的高 温多相反应机理[J].中国电机工程学报,2007,27(32):29-34.
 LIU Hao, QIU Jianrong, XU Zhaofen, *et al.* Heterogeneous reactions mechanism of oxides in coal ash and calcium-based desulfurization residues at high temperature[J]. Proceedings of the Csee, 2007, 27(32): 29-34.
- ZHANG J, TIAN Y, CUI Y N, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study[J]. Bioresource Technology, 2013, 132: 57-63.
- [21] LIU H, ZHANG Q, HU H, et al. Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2759–2766.
- [22] 洪 晨,王志强,邢 奕,等.添加剂对煤粉-污泥混合燃烧特性的影响及动力学[J].煤炭学报,2016,41(11):2853-2859.
 HONG Chen, WANG Zhiqiang, XING Yi, *et al.* Effects of different additives on co-combustion of pulverized coal-sludge and kinetic analysis[J]. Journal of China Coal Society, 2016, 41(11): 2853-2859.
- [23] 魏砾宏,齐 弟,李润东,等. 碱金属对煤燃烧特性的影响及动力学分析[J]. 煤炭学报, 2010, 35(10): 1706-1711.
 WEI Lihong, QI Di, LI Rundong, *et al.* Effects of alkali metal on combustion of pulverized coal and kinetic analysis[J]. Journal of China Coal Society, 2010, 35(10): 1706-1711.
- [24] 吕 帅, 吕国钧, 蒋旭光, 等. 印尼褐煤湿煤末(煤泥)热解和燃烧特性及动力学分析[J]. 煤炭学报, 2014, 39(3): 554-561.
 LYU Shuai, LYU Guojun, JIANG Xuguang, *et al.* Pyrolysis / combustion characteristics and kinetic analysis of Indonesia lignite sludge[J]. Journal of China Coal Society, 2014, 39(3): 554-561.
- [25] 王 丹.煤与污泥的混燃特性研究[D]. 武汉:华中科技大学, 2011.

WANG Dan. Investigation on the co-combustion characteristics of sludge and coal [D]. Wuhan: Huazhong University of Science and Technology, 2018.