唐佳伟,张 锁,刘兆峰,等.吸附法去除矿井水中 F 研究进展[J].煤炭科学技术, 2023, 51(5): 269-283.

TANG Jiawei, ZHANG Suo, LIU Zhaofeng, et al. Research progress in the removal of fluoride ions from mine wa-

移动扫码阅读

吸附法去除矿井水中 F⁻研究进展

ter by adsorption method[J]. Coal Science and Technology, 2023, 51(5): 269–283.

唐佳伟^{1,2},张 锁³,刘兆峰^{1,2},张海琴^{1,2},包一翔^{1,2},侯福林³,郭 强^{1,2},曹志国^{1,2},李井峰¹ (1.国家能源集团煤炭开采水资源保护与利用全国重点实验室,北京 102211;2.北京低碳清洁能源研究院,北京 102211; 3.神华新街能源有限责任公司,内蒙古鄂尔多斯 017200)

摘 要:氯离子广泛分布于我国的地表河流与地下水体中,尤其是在西部黄河流域的沿黄矿区,矿井 水中普遍存在着氟超标的问题,对当地生态环境和人体健康造成潜在的威胁。我国的氟污染现状多 处于低浓度污染水平,常规水处理技术难以有效去除。吸附法凭借其吸附效率高、操作便捷等优点 被认为是去除低浓度氟离子的有效方法。综述了目前常用的炭基、矿物类、金属类及金属有机骨架 类(MOFs)吸附材料去除氟离子的研究现状,归纳并总结了不同因素对吸附材料的除氟效率和吸附机 理的影响。重点分析了吸附法在矿井水处理的应用效果与运行成本,展望了吸附法应用低浓度(<10 mg/L)、 大水量的含氟矿井水处理中的发展方向。总体而言,针对吸附法去除氟离子的研究中仍存在较大的 改进空间。在吸附机理方面,应从吸附材料特性、氟离子的赋存形态和吸附材料与氟离子之间的相 互作用机制等方面继续深入探究。而在吸附法应用方面,应以实际工程需求为导向,开发绿色安全 的低成本吸附材料。基于上述研究,提出了吸附法除氟应用矿井水处理的研发方向,在明确当地政 策及水质水量的原则下,重点开发以天然/废弃(矿)物和炭基、铝基或其他新型高分子吸附材料为基 础的低成本、高效率的环境友好型改性吸附剂。并保证吸附材料在制备加工、投产应用以及循环再 生的全生命周期的稳定性、经济性与安全性,从而提高吸附法在实际含氟废水应用的竞争力,提升 吸附法的应用潜力。

关键词:矿井水处理;吸附法;氯离子;吸附机理;环境友好型改性吸附剂

中图分类号:X752 文献标志码:A 文章编号:0253-2336(2023)05-0269-15

Research progress in the removal of fluoride ions from mine water by adsorption method

TANG Jiawei^{1,2}, ZHANG Suo³, LIU Zhaofeng^{1,2}, ZHANG Haiqin^{1,2}, BAO Yixiang^{1,2}, HOU Fulin³, GUO Qiang^{1,2}, CAO Zhiguo^{1,2}, LI Jingfeng¹

(1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102211, China; 2. National Institute of Low Carbon and Clean Energy, Beijing 102211, China; 3. Shenhua Group Xinjie Energy Co., Ltd., Ordos 017200, China)

Abstract: Fluoride ions are widely distributed in surface rivers and groundwater bodies in China, especially in the mining areas along the Yellow River in the western Yellow River basin that there is a widespread problem of excessive fluoride in the mine water, which poses a potential threat to the local ecological environment and human health. The status quo of fluoride pollution in China is mostly at a low concentration pollution level, which leads to it difficult to remove efficiently through conventional water treatment technologies. The adsorption method is considered to be an effective way to remove low concentration fluoride ions because of its high adsorption efficiency and convenient operation. The research status of fluoride removal by commonly used adsorption materials such as carbon based, minerals, metals and metal organic frameworks (MOFs) was reviewed and summarized before summarizing the influence of different factors on the fluoride removal efficiency and adsorption mechanism of these adsorption materials. Then the application effect and operation cost of ad-

收稿日期:2022-11-03 责任编辑:黄小雨 **DOI**: 10.13199/j.cnki.cst.2022-1835

基金项目:国家能源集团科技创新资助项目 (GJNY-21-129);煤炭开采水资源保护与利用全国重点实验室自主研发资助项目 (SHGF-16-20) 作者简介: 唐佳伟(1992—), 男, 北京人, 工程师, 博士。Tel: 010-57337332, E-mail: 20062356@ceic.com

sorption method in mine water treatment were emphatically analyzed, and the development direction of adsorption method in the treatment of low concentration (<10 mg/L) and high water content fluorine-containing mine water was prospected. In general, there are still some deficiencies in the study of fluoride removal by adsorption. In terms of adsorption mechanism, it should be further investigated from three aspects which includes the characteristics of adsorption materials, the occurrence form of fluoride ions and the interaction mechanism between adsorption materials and fluoride ions. For the engineering application of adsorption method, the demand of engineering application should be regarded as the guidance. Based on the above discussion, the research and development direction of removing fluoride ions from mine water by adsorption method is proposed, which is to focus on the development of low cost and high efficiency environmentfriendly modified adsorbents based on natural/waste (ore) and carbon-based, aluminum-based or other new polymer adsorption materials under the principle of clarifying local policies and water quality and quantity. In addition, it is necessary not to improve the selective adsorption performance of the modified adsorbent for fluoride ions, but also to ensure the stability, economy and safety of the adsorbent in the whole life cycle of preparation, processing, production and recycling, thereby improving its competitiveness of the adsorption method in the actual application of fluoride containing wastewater and enhancing the application potential of the adsorption method.

Key words: mine water treatment; adsorption method; fluoride ion; adsorption mechanism; environmentally friendly modified adsorbent

0 引 言

氟是人体必需的微量元素之一,但氟摄入过量 会影响人体健康[1]。典型废水如电镀、金属加工、电 子制造、煤炭开采等行业会排放大量氟超标废水,导 致我国三分之一的主要河流以及 60% 的地下水受到 氟离子(F⁻)污染^[2-4]。我国的西北、东北和淮海平原 地区是受氟离子污染较为严重的地区,其地表水 F 质量浓度一般在 1.1~10.0 mg/L^[5]。我国部分煤矿 的矿井水同样存在着严重的氟超标现象,其质量浓 度一般在 1.1~10.0 mg/L^[6]。随着国家对煤矿矿井水 要达到资源化回收利用的严格要求,部分地区要求 煤矿矿井水出水氟化物质量浓度要满足《地表水环 境质量标准》(GB 3838-2002) III 类标准, 即氟化物 质量浓度小于 1.0 mg/L, 可以说, 氟含量超标已成为 制约我国煤矿矿井水资源利用水平的主要因素之一。 为此,我国已持续颁布了相关法规政策,大力促进生 态保护和环境治理发展。例如《"十四五"生态环境 保护监管规划》、《水污染防治行动计划》等政策文件 从顶层设计和国家规划层面全面推进生态环境治理 以及水环境治理。由此可见,开展深度除氟技术研 究对提升区域水环境质量标准,实现煤矿矿井水等 工业废水污染治理与资源化利用尤为必要。

目前, 沉淀法、离子交换、膜法以及吸附法是除 氟的主要技术手段。沉淀法适用于高浓度的含氟废 水处理, 并且往往需要投加大量的化学药剂, 易造成 严重的二次污染^[7]。而针对低浓度的(<10 mg/L)含 氟废水, 离子交换法具有超高的氟化物的去除能力, 而昂贵的树脂限制了该方法的大规模使用^[8]。膜法 不需要使用化学药剂并且具有较高的 F 截留能力, 但是膜工艺可能会将一些有益的离子和矿物质也去 除掉, 后续仍需设置一些再矿化工艺来回收^[9]。相比 之下,吸附法更适合低浓度范围内的氟化物去除,具 有操作方便,去除效率高,再生性能良好等优点。 DEHGHANI等^[10]研究了单壁和多壁碳纳米管的除 氟性能,证实了即使F⁻的浓度仅有 1.0 mg/L 时,单壁 和多壁碳纳米管也有较好的除氟效果,最大吸附量 分别为 2.83 和 2.40 mg/g。BRAIK等^[11]研究了高岭 石在天然水体中的脱氟能力。当初始氟化物浓度仅 为 2.0 mg/L 时,高岭石也能达到 73%的去除率。吸 附法已经成为众多除氟技术中最具应用前景的一种 方法^[12]。

为厘清现阶段吸附法除氟工艺应用现状,并为 含氟矿井水的治理提供可借鉴的经验,详细梳理了 以炭基、矿物类、金属以及 MOFs 等不同类型吸附 材料去除水中 F 的研究现状,讨论了影响吸附效率 的主要因素,总结了不同吸附剂对氟化物去除机制, 并结合国内外研究现状,重点剖析了吸附法在矿井 水处理的应用效果与运行成本,最后对吸附法处 理低浓度、大水量的含氟矿井水的发展方向进行 展望。

1 吸附剂类型

1.1 炭基及其改性材料

1.1.1 活性炭

活性炭具有高孔隙率,大比表面积和高催化活性的特点,在水体净化中得到了广泛的使用。但原生的活性炭对F的亲和力不强,去除效率较低。为增强活性炭对F的吸附能力,可通过活性炭表面改性添加有机分子、金属氧化物或纳米颗粒等手段来修饰活性炭。例如,柠檬酸改性商业颗粒活性炭后, 其除氟能力提高了2倍,最大的吸附容量可达 1.65 mg/g^[13]。与常用的硫酸、硝酸等无机酸改性方 法相比,选择柠檬酸作为替代常规无机酸改性剂,可 以避免引入额外的毒性物质。AIVAREZ 等^[14] 将氢 氧化镧负载在颗粒活性炭上制备镧改性活性炭 (GAC-La),其除氟能力是未改性颗粒活性炭的 5 倍, 吸附能力可以达到 9.98 mg/g,在 1 h 内就可以实现 92.6% 的 F⁻去除率。图 1 揭示了 GAC-La 的高效除 氟能力的机理,这主要归因于活性炭表面的羟基官 能团提供了大量的镧位点,可有效吸附络合氟化物, 提高活性炭的吸附能力。活性炭作为诸多改性吸附 剂的载体,可以从工业或农业废弃物中合成而来,例 如橡胶木、锯末、椰子壳、油棕纤维等,具有明显的 经济效益与环境效益^[15-16]。总体而言,活性炭廉价 易得,具有较高的经济效益,适合在较小规模或应急 事故中使用。

1.1.2 骨 炭

骨炭是指动物骨骼经过脱脂、脱胶、高温灼烧、 分拣等多道工序碳化制得的活性炭,主要在贫困或 低收入国家应用广泛^[17-18]。它的性质很大程度上取 决于原料的来源和制备条件,例如热解温度、加热速 率和停留时间等。ALKURDI等^[19]通过羊骨来合成 骨炭,以 10 ℃/min 的升温速率分别探究 500、 650、800和900℃热解温度条件下所制备的骨炭对 氟和砷去除效率的影响。结果表明,热解温度是控 制骨炭样品表面特性的有效因素。热解温度的升高 会导致骨炭表面负电荷、灰分含量、结晶度和孔径明 显的变化。尤其是骨炭表面的负电荷数量会随着热 解温度的升高而增加,进而对骨炭和 F⁻之间静电相 互作用起到了抑制作用。因此,当热解温度为650℃ 时,F⁻的去除效率最高(2.33 mg/g)。另一方面,由牛 骨制成的骨炭在热解温度为350℃时,可以达到 10.56 mg/g的 F⁻吸附容量^[20]。造成这种的原因,可 能是不同原料来源的骨炭具有不同的比表面积、孔 径和形态。

为了提高吸附容量或者使骨炭具有更多的水处 理功能,可采用类似活性炭改性的方式,如掺杂对 F⁻ 具有高度亲和力的镧制备出可有效吸附 F⁻的改性骨 炭吸附材料。有研究表明改性骨炭对 F⁻的最高吸附 量为 13.6 mg/g^[21]。一般来说,骨炭吸附 F⁻的吸附容 量在 1.33~11.9 mg/g。在商业骨炭中掺入 Ag 可使 改性骨炭具有除氟抗菌的双重性能^[22]。并且简单的 热处理就可以恢复骨炭的除氟能力^[23]。但受风俗 习惯与宗教信仰的限制。骨炭不适合大规模的推广 使用^[24]。

1.1.3 石墨和石墨烯

石墨和石墨烯在除氟领域常被用作支撑材料。 它们具有多孔结构、超高的比表面积和丰富的表面 官能团。石墨和石墨烯与亲氟物质结合制备成的复 合吸附剂具有良好的除氟能力。XU 等[25] 利用共沉 淀法在膨胀石墨(EG)表面通过 Al2O, 和 Fe3O4 原位 生长制备出一种以 EG 为基底层, Fe₃O₄ 为中间分离 层, Al₂O₃ 为吸附层的 Al₂O₃-Fe₃O₄-EG 复合纳米吸附 剂(图 2a),具有良好的除氟效率。在经历 2 次循环 后,除氟效率仍然可以达到 91.4%,残留的 F 低于 1.5 mg/L。Fe₃O₄的添加还使吸附剂具有良好的固液 分离特性。氧化石墨烯(GO)来源于石墨烯,它的表 面存在丰富的官能团,这利于吸附过程,但是吸附后 难以再生利用是 GO 需要解决的难题。现有的报道 表明,可以通过在 GO 表面上加入其他官能团来克 服这个难题。例如,对 GO 材料进行胺功能化修饰, 以提高 F⁻的去除效率^[26]。未功能化的 GO 材料具 有 2.451 mg/g 的除氟能力, 而胺功能化的 GO 材料 的除氟能力可以达到 40.001 mg/g。还有通过简单的 声化学 Cu₂O 修饰 GO 制备出的 Cu₂O-RGO 复合材 料,在 pH = 9 时吸附容量达到 34 mg/g^[27]。如图 2b

所示, 连续 6 次的循环测试, 吸附剂的去除效率仅下 降了 13.7%。很多纳米级别的吸附剂对污染物显示 出很高的吸附能力, 但是纳米颗粒在吸附后很难收 集, 且对 pH 值的要求较高, 这限制了这些吸附剂在 实际中的应用。而 CHEN 等^[28] 制备出的锆-壳聚 糖/氧。

图 2 Al₂O₃-Fe₃O₄-EG 吸附剂制备过程及 Cu₂O-RGO 吸附剂 循环除氟性能^[25,27]

Fig.2 Al₂O₃-Fe₃O₄-EG nano interlayer adsorbent and cyclic performance test of fluorine removal of Cu₂O-RGO^[25,27]

1.1.4 碳纳米管

碳纳米管(CNT)是一种具有特殊结构的一维量 子材料,可分为单壁碳纳米管和多壁碳纳米管。有 学者对比了常规条件下单壁和多壁碳纳米管的除氟 性能。结果显示,单壁碳纳米管吸附除氟达到平衡 时,最大吸附容量为 2.83 mg/g,高于多壁碳纳米管 (2.4 mg/g)。出现吸附差异的原因源于单壁碳纳米 管的比表面积为 700 m²/g,高于多壁碳纳米管的比表 面积(270 m²/g),具备更多的吸附位点。但是 CNT 应用过程存在着分散性较差的弊端。对此,RUAN 等^[29]发现羟基磷灰石(HAP)可有效解决 CNT 分散 性差的问题。CNT 引入 HAP 后,可以增加后者的比 表面积,从而提供更多的可与 F⁻进行离子交换的表 面羟基离子。图 3a—图 3c 分别为 CNT、HAP 和 CNT-HAP 的表面 SEM 图,可以看出 HAP 表现出微 弱的层状形态和致密的内部结构,而 CNT-HAP 在引 入 CNT 后有利于 HAP 的成核与结晶,表现出更为 明显的层状形态,具备更多的吸附位点,使 CNT-HAP 复合材料的吸附除氟容量高达 11.05 mg/g^[30]。 YAN 及 ARCIBAR 等^[31-32] 首次将羟基磷灰石/多壁 碳纳米管(HA-MWCNTs)复合材料用于实际废水的 处理试验,当吸附剂剂量为 2.0 g/L 时,HA-MWCNTs 可以将 F⁻浓度从 8.79 mg/L 降低至约 0.25 mg/L,去 除率可以达到 97.15%(图 3d),证明了碳纳米管基复 合材料具有去除废水中 F⁻的应用潜力。

1.2 矿物类及其改性材料

1.2.1 沸 石

沸石是一种硅酸盐矿物,具有良好的离子交换 性和吸附分离性能,常被用作吸附剂或者催化剂载 体。沸石的外表面通常表现为负电性,对阳离子具 有较好的吸附能力,而对阴离子几乎不具有吸附能 力。因此,许多学者通过对沸石表面进行改性,来逆 转沸石表面的电荷,使沸石具有吸附阴离子的能力。 VELAZQUEZ 等^[33] 探究了不同沸石结构和单一或 复合金属改性沸石对 F⁻去除效率的影响。分别利用 Fe、Zr及Fe/Zr混合物对斜发沸石(ZC)、丝光沸石 (ZM)和凌沸石(ZCH)进行改性,结果表明富铁锆 (Fe/Zr)改性沸石材料的吸附容量最高,依次为:ZM- $Fe/Zr(3.5 \pm 0.15 \text{ mg/g}) > ZCH-Fe/Zr(2.6 \pm 0.02 \text{ mg/g}) >$ ZC-Fe/Zr(1.8±0.10 mg/g)(图 4)。在 ZM-Fe/Zr 分子 筛材料表现出最显著的氟吸附的情况下,观察到 pH 值在轻微酸性范围内,经吸附热力学与动力学验证, 进一步证实沸石分子筛吸附反应存在明显的放热和 物理脱氟过程。YANG等^[34]验证了双金属氧化物 改性沸石的优越性,通过将 MnO₂、TiO₂复合金属氧 化物负载天然沸石,制备出的锰钛改性沸石在 pH = 7,初始 F 浓度为 10 mg/L 时,最大吸附容量为 2.175 mg/L。其他的类似改性方法如铝系^[35]、氯化 钙[36] 以及壳聚糖改性天然沸石[37] 等,使带负电的沸 石表面转变为带正电荷的外表面,使沸石具有亲氟 能力。与天然沸石相比,合成沸石具有更高的吸附 容量。GAN 等^[38] 以纳米埃洛石 (HNT) 为前体, 以 NaOH 为改性剂, 通过水热法合成了具有三维分层结 构的花状沸石。合成的高纯度沸石对F表现出更强 的吸附性能,吸附容量高达161 mg/g。因此,对天然 沸石或者合成沸石进行适当的改性手段可以显著提 高沸石的除氟能力。

图 3 CNT、HAP 及 CNT-HAP 吸附剂的 SEM 图像及 HA-MWCNTs 吸附剂添加量对 F⁻去除率影响^[27,32] Fig.3 SEM images of CNT, HAP and CNT-HAP absorbents and the effect of HA-MWCNTs adsorbent addition on F⁻ removal effiency ^[27,32]

图 4 FeZr 改性大杰滞石去保F 的性能分析。 Fig.4 Performance analysis of FeZr modified natural zeolite for fluoride removal^[33]

1.2.2 黏 土

黏土是由多种水合硅酸盐和一定量的氧化铝、 碱金属氧化物和碱土金属氧化物组成。黏土类矿物 比表面积大、化学和机械稳定性好,其独具的层状结 构和高阳离子交换能力使得黏土类矿物表现出优良 的除氟能力。常见的用于除氟的黏土类矿物表现出优良 的除氟能力。常见的用于除氟的黏土类矿物包括膨 润土、高岭石、蛭石和硅藻土等。MUDZIELWANA 等^[39]合成了一种利用 Mn²⁺插层的膨润土制成的低 成本吸附剂,并用于地下水除氟。在初始 F⁻浓度为 5.4 mg/L, pH = 8.6 的条件下, F⁻去除率可达 57%, 且 重复再生 5 次后仍有较高的去除效果。通过 MgO 改性的膨润土在 pH 为 3~10 内均具有较高的除氟 效率^[40]。但是 HCO₃的存在会与 F⁻竞争吸附位点,导 致 F⁻去除率的降低。KAYGUSUZ 等^[41] 开发了一种 新型的海藻酸铝-蒙脱土复合吸附剂, F⁻最大吸附容 量可以达到 31 mg/g, 且溶液中其他常见的阴离子如 Cl⁻、CO₃²⁻、NO₃对去除效果影响极低。还有使用多 羟基铁改性的高岭土用于除氟研究, 改性后的高岭 土的表面积增至 100 m²/g, 除氟效率超过 90%, 远高 于未改性的去除率(11%)^[42]。

1.2.3 羟基磷灰石

羟基磷灰石(HAP)是钙磷灰石的自然矿物化, 微溶于水,具有良好的生物相容性和表面吸附性,可 作为医疗、环境等领域的绿色环保材料。HAP具有 特殊的六方晶型,内部存在大量通道,存在着大量的 Ca²⁺、OH 离子,是一种性能优异的无机离子吸附交 换材料。SANI等^[43]通过在 HAP 表面上生长水滑石 纳米粒子(*n*-HT),开发了纳米水滑石/羟基磷灰石复 合材料(*n*-HT/HAP),并与单一成分的水滑石(cHT) 和 HAP 比较除氟性能。结果显示,在 F⁻初始浓度为 5 mg/L 或 20 mg/L 时,*n*-HT/HAP 的除氟效率可以达 到 98%,吸附容量为 3.65 mg/g。*n*-HT/HAP 的除氟 性能仅略优于 cHT(除氟效率为 97%,吸附容量 3.53 mg/g)。但是 HAP 的存在使得 n-HT/HAP 具有 很好的耐酸碱性,极大地拓展了应用范围。AYINDE 等^[44] 通过微波和超声组合改性方法合成了具有除氟 和除菌双重功能的 Ag-MgO/纳米羟基磷灰石(Ag-MgOnHAP)复合材料。该吸附剂在反应 60 min 后就 可以实现超过 90% 的 F 去除效率。还有学者通过 简单的湿化学法原位合成了一种新型羟基磷灰石-蒙脱石(HAP-MMT)纳米复合材料,相比 HAP 材料, HAP-MMT 的 F 吸附容量提高了 2 倍以上(16.7 mg/g)^[45-46]。这是因为 MMT 层的扩展和 MMT 层插 入到 HAP 层中, 使复合材料具有了剥离性质。为了 降低生产 HAP 的成本,可以选择生物材料作为合成 HAP的潜在来源。MTAVANGU等^[47]就利用一种 贝壳废弃物-鸟蛤壳作为合成 HAP 的前体材料,合 成了 HAP 改性吸附剂,并用于饮用水的除氟过程。合 成的 HAP 改性吸附剂的最大吸附容量为 14.053 mg/g, 但是需要较长的接触时间,限制了其实际应用潜力。 1.2.4 其他矿物类材料

ZHANG 等^[36] 基于坡缕石(HP)研发了一种具有价格低廉且制备过程简便的除氟吸附剂(La-Al-TAP),作为一种无定型结构的吸附材料,其表面积达到95.58 m²/g,相比改性前(34.31 m²/g)提高了1.7倍。 且吸附过程中释放到溶液中的*C*(La³⁺) < 5 μg/L、 *C*(Al³⁺) < 0.20 mg/L,证明了其实际应用的安全性。 WANG 等^[48]用磷酸盐改性方解石,使方解石表面形成了纳米 HAP 涂层。改性方解石的除氟能力随着 磷酸盐浓度的增加而增强。即使在低 F 浓度下(< 1 mol/L),改性后的方解石的除氟效率也明显优于未改性方解石。此外,该团队创新地使用固态核磁共振方法探究了改性方解石的除氟吸附机制。如图 5 所示,基于 FNMR 光谱的化学位移推断吸附法去除 F 过程中的反应和产物种类,揭示了改性方解石表面 基团与 F⁻的反应过程。

此外,随着废弃矿物资源化的研究日趋广泛,诸 多学者致力于粉煤灰应用水处理工艺的研究,且已取 得部分成效。周珊等^[49]采用粉煤灰处理高氟废水,当 灰水质量比1:20、溶液 pH 调整为3,搅拌时间30 min 后,氟离子质量浓度可从260 mg/L 降低至83.2 mg/L。 BEHERA等^[50]以一种煤矿废弃物页岩粉末作为吸 附剂,并用 KOH 改性,最终制备出的改性吸附剂的 除氟效率可以达到92.23%。虽然粉煤灰或其他废弃 矿物材料处理含氟废水的过程可将其直接投入或简 单改性后应用,达到以废治废之目的。但是吸附材 料本身具备吸附量小、投加量大,极易产生二次污染

等问题。因此,学者们更多致力于将此类矿物材料 开发成与其理化性质相近的新型吸附材料。MOR-IYAMA等^[51]提出了一种将粉煤灰转化为人工沸石 的新工艺,包括高温、加压处理和脱水过程,所制备 的沸石具有较高的离子交换性能。王代芝等^[52]通 过 Ca(OH)₂改性粉煤灰制备改性吸附剂处理含氟废 水,除氟效率最高可达 98%,展现了良好的应用潜力。

1.3 金属类吸附材料

1.3.1 铁/铝基及其氧化物和氢氧化物

铁基和铝基吸附剂是应用较多的除氟吸附材料。常见的有铁(氢)氧化物、铁矿石和活性氧化铝等^[53-54]。铁氧化物表面含有大量的不饱和配位点,易与水中的OH[、]H₂O 配合使表面生成活性OH 基团,并与F⁻进行反应,反应过程如式(1)和(2)所示。 KUMAR等^[55]通过试验证实了粒状氢氧化铁在 pH 为弱酸性时对F⁻的吸附容量为7 mg/g。杨小洪等^[56] 对比了几种铁矿石的除氟效率,结果显示在相同条 件下,铁矿石除氟效率的高低为水铁矿>磁铁矿>针 铁矿>赤铁矿。其中磁铁矿易于磁性分离回收,常被 用作吸附载体用于去除污染物的研究。

$$Fe \cdot OH + F^{-} \leftrightarrows Fe \cdot F + OH^{-}$$
 (1)

 $\operatorname{Fe}(\operatorname{OH})^{2^{+}}(\operatorname{aq})+F^{-} \leftrightarrows \operatorname{Fe}F^{2^{+}}+\operatorname{OH}^{-}$ (2)

活性氧化铝由于比表面积大 (50~300 m²/g)、化 学稳定性好且存在大量的晶格缺陷,使其对 F⁻具有 较强的吸附能力,这也是目前应用最为广泛的 F⁻吸 附材料之一^[57]。一般认为,活性氧化铝除氟的过程 是通过静电吸附作用将 F⁻吸附到表面,与羟基发生 配体交换作用来实现吸附去除的目的^[58]。YANG 等^[59] 以异丙氧基铝 (Al(O-i-Pr)₃) 为前驱体制备高比 表面积(339 m²/g)氧化铝吸附剂, 20 min 内对 F⁻的吸 附容量可达 135 mg/g。YU 等^[58] 合成了 γ 相介孔氧 化铝, F⁻最大吸附量为 8.25 mg/g, 在 pH 为 3 时, 去 除效率可以达到 90%。HUANG 等^[60] 采用 H₂O₂ 对 空心管状结构的氧化铝表面进行羟基化改性, 通过 增加活性位点的方式使吸附材料的 F⁻吸附容量提高 至 600 mg/g。此外, 还有大量的研究将铁基和铝进 行复合, 如 KABIR 等^[61] 合成了用于去除 F⁻的 Al-Fe-Mg 纳米复合材料, 在 400 ℃ 下的最佳煅烧制备温度下, 复合吸附剂最大吸附容量达到了 90.68 mg/g, 表现出 良好的吸附性和再生性。然而, 在采用铝基制备吸 附剂时, 仍需考虑铝离子溶出的潜在影响, 主要体现 在后续水处理工艺及其排放后对生态及人体健康 方面。

1.3.2 稀土类金属及其氧化物

稀土类金属具有较大的离子半径,核外电子空 轨较多,并且稀土类金属(水合)氧化物对羟基氧的 极化作用较小,表面羟基易于解离,具有独特的亲氟 性,可有效去除水体中氟离子。KUMAR等^[62]将一 种含有很多活性位点的丝瓜(LC)与纳米 CeO,结合, 合成了生物相容性好,结构多孔,可重复利用的 LC-Ce吸附剂。研究表明与未改性的 LC 相比, LC-Ce 吸附剂表现出更好的除氟能力,吸附容量达到了 212 mg/g。其吸附机制如图 6 所示, 涉及到配体交换、 络合、以及吸附剂和F之间的静电相互作用。 LIAO 等^[63] 合成了硅酸钡、硅酸镍、硅酸铋、硅酸钙、 硅酸镁和硅酸铈 6 种硅酸盐吸附剂,并将它们用于 锌电解液中的 F 去除。结果表明硅酸铈吸附剂的除 氟效果最好,最大吸附容量为45.537 mg/g,吸附剂中 的 Ce 会与 F⁻发生络合, 形成 Ce-F 键。DONG 等^[64] 制备出一种负载镧的磁性阳离子水凝胶(MCH-La)。 MCH-La 具有快速的吸附动力学,在 10 min 内就可以 实现 93% 的 F⁻去除率, 最大吸附容量为 136.78 mg/g。 但是它的吸附过程高度依赖溶液 pH, 仅在 pH 为 2.8~4.0的酸性环境内才具有可观的去除效果。 CHEN 等^[65] 通过简单的共沉淀法合成了磁性 Mg-Al-La复合吸附材料。当 Mg-Al-La 物质的量之比为 16:1:1时,制备出的复合吸附剂对F⁻的最大吸附 容量可以达到 65.75 mg/g。该吸附剂仅用到了少量 的 Al 和稀土 La, 最大化地降低了成本并提高了安全 性能。ZAIDI 等^[66] 将 CeO, 和 Al₂O₃ 纳米颗粒相结 合, 通过调节 Al 浓度来优化 Ce-Al 二元氧化物, 该实 验保持 Ce 含量固定, 当 Ce 和 Al 物质的量比从 1:6 增加到1:9时,吸附剂对氟化物的吸附容量呈现先 增加后减小的趋势。当Ce与Al物质的量比为1:6

时,吸附容量最高。从材料的微晶尺寸来看,摩尔比为1:3时,吸附剂的尺寸最小,表面积最大,但对F⁻的吸附量并没有表现出最高的吸附能力。这是归因于 Ce 和 Al₂O₃之间的协同关系,且 Ce-Al 二元氧化物对 F⁻表现出极高的吸附能力,吸附量为 384.6 mg/g。 但这只是在强酸性条件下(pH = 2.4)才能发生。因此, Ce-Al 二元氧化物的研究还需要进一步的减少 对 pH 的依赖,以增强在实际工程应用中的竞争力。

稀土金属氧化物除氟效果好,但成本较高,将其 负载于其他吸附剂上可以达到增加吸附效率和降低 成本的目的,这也是目前研究的主要方向。

1.3.3 其他金属类

用于去除 F⁻的金属类材料还有钙、锆、钛、镁等 金属及其金属氧化物。GEORGE 等^[67] 制备了钙、镁 改性活性 Al₂O₃(AA)变体,分别为 CMAA650 和 CMAA 850。在中性条件下,AA、CMAA650 和 CMAA850 的最大除氟能力分别为 2.48、2.61 和 2.74 mg/g。钙 镁的改性减少了铝的浸出,提高了吸附剂的安全性。 酸活化活性 Al₂O₃ 也可以显著提高其对 F⁻的吸附能 力,例如硫酸^[67] 和硝酸^[68]。OLADOJA 等^[69] 将不同 的 Mg 掺入颗粒基质(硅砂)中合成了一种复合材料, 解决了细粉形式下 MgO 难以固液分离的难题。硅 砂很好的固定了 MgO,复合材料表现出 9.03 mg/g 的 除氟能力。锆基材料也可用于氟化物的去除。水合 形式的四价锆可以生成带有丰富 OH⁻,并参与氟的 取代。DOU 等^[70] 通过试验验证了水合氧化锆在 pH=4 的酸性条件下,F吸附容量可达 124 mg/g,该 吸附剂通过带电表面与氟化物之间的静电作用以及 表面羟基与 F⁻的交换达而起作用。层状双金属氢氧 化物因其独特的结构特性表现出良好的除氟性能, 基于此,LYU 等^[71] 进一步研究了煅烧过的 Mg-Al-CO₃ 层状双金属氢氧化物去除 F⁻的效果及其影响因 素,结果显示,500 °C 下煅烧的材料吸附性能最好, 但是溶液中的共存离子会降低除氟效果,其影响大 小顺序为: $PO_4^{-} > CI^{-} \approx SO_4^{-} > Br^{-} \gg NO_3^{-}$ 。

金属基及其氧化物、氢氧化物类吸附材料对 F⁻ 具有较强的亲和能力,是极具潜力的除氟材料。而 以钙、镁、钛、锆等其他金属氧化物及氢氧化物吸附 材料的改性研究也趋向于增加比表面积、表面活性 基团等、降低制备成本等方向发展。

1.4 金属有机骨架化合物

金属-有机骨架(MOFs)材料是由金属离子或金 属簇和有机配体在一定的温度和压力条件下通过自 组装配位形成的多孔晶体材料,具有比表面积大、孔 隙率高、热稳定性好等优点,已广泛的应用于催化、 吸附、分离等领域[72-73]。赵瑨云等[74]采用水热合成 法制备了一种毛线团状球形结构的 La-MOFs 吸附 剂,最可几孔径为15.84 nm,吸附容量达到最大值 43.1 mg/g。且 La-MOFs 对 F⁻的吸附动力学遵循准 二级动力学反应模型,吸附反应为多级控制过程。 朱晖等[75] 分别以硝酸铝和 1,3,5-苯三钾酸、对苯二 甲酸,以及氧化石墨烯(GO)为原料通过水热法制备 了 3 种 MOFs 吸附材料, 吸附容量均远高于常用的 活性氧化铝吸附剂,且循环使用5~7次后同样试验 条件下仍可保持 50% 的氟去除率,具备良好的再生 能力。其中,掺杂 GO 的 MOFs 材料具备最优的稳 定性与吸附性,在 293 K时的最大吸附容量为 63.29 mg/g, 且溶液 pH几乎对吸附效果无影响, 对 F的吸附动力学遵循准二级动力学反应模型。 MOFs 材料作为一种新型的多孔结晶材料,具有吸附 动力学快、吸附容量高、选择性好,已在氟化物、重 金属离子、微污染物去除方面逐步展开了研究。但 是, MOFs 材料的高昂成本及高温、高湿环境的不稳 定性仍阻碍着 MOFs 材料的进一步应用前景。

2 吸附法除氟影响因素及除氟机理

影响吸附法除氟的因素有 pH、温度、接触时间、 吸附剂投加量以及溶液中共存阴离子等。对于吸附 法实际应用过程,温度、吸附接触时间以及加药量等

276

可通过基础设施及工艺参数优化进行便捷响应。而 溶液 pH 及共存离子则需要针对不同水质需求选择 特定的吸附剂进行处理。张曼等^[76]通过研究发现, 在酸性(pH < 5)条件下,活性碳对F-吸附效果更好, 而在弱酸性或中性条件下,活性氧化铝对F 的吸附 效果较好,除氟效率为最高达到 85.9 %(pH=7)。这 主要归因于酸性条件下,活性氧化铝表面带正电,有 利于静电吸附 F⁻, 然而, pH 过低会促进 AlF²⁺、AlF⁺ 络合物的形成,影响水中 F⁻的去除效果。郜玉楠等^[77] 探究了微米氧化锆/沸石分子筛吸附氟的性能,结果 表明随着 pH 从 3 提升至 7 后, 吸附容量逐渐升高直 到达到平衡态,吸附量和去除率最高分别可达到 0.36 mg/g 和 95.48%。强酸环境下, 大量 H⁺的存在 抑制了 HF 的水解, 使得吸附剂无法与 F 配位交换。 相反,由于OH「与F下形成了竞争关系,抢夺F的吸附 点位,降低了吸附效率。溶液中存在的 Cl⁻, SO₄²⁻, NO₅等阴离子会与 F⁻存在竞争吸附的现象, 抢占吸附 材料的活性位点。凌梅[78] 以稀土类金属吸附剂 (La₂O₂CO₃)为对象,考察了不同阴离子对F⁻吸附效率 的影响,结果进一步证实溶液中的 HCO3和 SO4-会极 大地影响除氟效率,影响大小排序为: HCO3 > SO4 > NO₃ > Cl⁻。张艳素^[79] 基于铁锆复合氧化物吸附剂 去处地下水中 F⁻的研究也揭示了腐植酸、HCO₃和 SO₄²⁻等对吸附效果的潜在影响。

针对不同条件下吸附剂除氟效果的差异,应从 吸附剂的吸附机理上分析。结合吸附过程的动力学、 热力学方程以及仪器分析表征等多种手段揭示吸附 过程的除氟机制是目前最成熟的研究手段。例如, LAI 等^[80] 在探究镧改性沸石的除氟机理时, 基于吸 附等温线和吸附动力学的分析揭示了试验结果与 Langmuir 等温线模型相符,吸附过程更符合准二级 动力学模型。吸附过程是吸热的自发性过程。 CHEN 等^[81] 研究了 pH 值对不同初始浓度的 La-Zr 磁性复合材料除氟效果。结果显示,随着 pH 值从 2 升高到 3,吸附量增加;在 pH=3 左右时,吸附量不 在增加,而是保持稳定。然后通过 Zeta 电位分析可 知,该吸附剂材料的等电点为3(pH_{zoc}=3),当pH < 3时,吸附剂的表面电荷为正,对阴离子氟化物吸附 有利;当pH>3时,吸附剂的表面变为负值,对F的 吸附变得不利。吸附剂去除氟化物的途径有以下 3种:①F⁻在本体溶液扩散到吸附剂外表面;②F⁻逐 渐被吸附到吸附剂的外表面; ③吸附的 F⁻进入吸附 剂的内表面。这个过程涉及到复杂的物理或化学吸

附原理。在总结不同吸附剂去除氟化物的作用机制 后,F 的去除机制如图 7 所示。对于常规的沸石、活 性炭类吸附材料,可利用材料本身丰富的孔道及其 孔道内贮存的离子基团等进行吸附以去除水中 F⁻。 对于复合材料而言,不同成分间的相互掺杂会产生 新的吸附过程,如协同作用、离子络合和位点置换。 常见的例如层状双氢氧化物,当浸入溶液中时,层间 的阴离子如 NO₃, CI⁻等可以被 F⁻替代,重组结构。 纵然吸附剂材料不尽相同,但是除氟机理仍是离子 交换、静电作用、扩散等作用主导^[82]。除氟机理的继 续探索依旧是研究除氟吸附剂的一个重要组成部分, 尤其是在解释吸附剂材料表面物化性质、反应过程 的自发性以及外界环境对吸附过程的影响,以期为不 同类型水质的含氟废水适配不同类型的吸附材料。

图 7 吸附法去除 F⁻的吸附机理示意 Fig.7 Schematic of the adsorption mechanism for removal of fluoride by adsorption

3 吸附法除氟应用效果分析

实际含氟废水成分复杂,水质波动大,包括残余 含氟工业原料及生产半导体集成电路过程生产的高 氟类工业废水、含氟矿井水及地下水等,涵盖面之广, 其所面对的排放标准也不尽相同。目前大多数研究 仍聚焦于实验室模拟配水方式来评价吸附剂的除氟 效果,难以反应其在实际废水处理中的效果。基于 此,笔者梳理了不同类型吸附材料在实际废水中的 应用研究现状,总结了不同类型吸附材料在多种条 件下对不同浓度含氟废水的处理效果,见表1。可以 发现,以沸石、活性炭、膨润土和羟基磷灰石及其改 性类材料是应用较为广泛的吸附材料。例如,羟基 磷灰石/多壁碳纳米管吸附剂可以将初始浓度为 8.79 mg/L降低至0.25 mg/L,F⁻去除率高达97.15%^[29]。 当氢氧化钙纳米棒的吸附剂用量为2.0 g/L时,可以 对初始氟化物浓度为550 mg/L的高酸性电镀工业废 水实现99.27%的去除率^[83]。另一方面,以天然矿物 或其改性材料为主的吸附材料,如辉沸石、镧改性沸 石及壳基HAP,在处理相对较低浓度(<10 mg/L)的 含氟废水时,处理效果虽然比纳米材料吸附剂或高 浓度含氟废水的处理效果差,但仍然可以保持 22%~65%的去除效果,在低浓度含氟废水的实际处 理上展现了一定优势。

在评价吸附剂应用效果时,再生性能和安全性 能是评价吸附剂实际运行中的关键参数。关于再生 和安全性能的探究已有一些研究,但尚不全面。使 用酸溶液或碱溶液再生是最常用的再生手段,如 NaOH 是最常用的除氟吸附剂的再生剂。因为碱性 条件下会存在大量的 OH⁻与 F⁻产生竞争。但再生效 率并不是一直与碱浓度成正比。但需要注意的是, 解吸剂不能破坏吸附剂的自身结构。还有一些吸附 剂具有极高的吸附容量,但却面临着改性剂浸出的 问题,这极大地限制了吸附剂的应用前景。Al、Zr、 La 等元素大量浸出会对环境产生负面影响,危害人 类健康。因此,吸附剂的再生性能和安全性能与吸 附效率同样重要,尤其是实际工程运行工序,其运行 稳定性与浸出毒性等分析应予详细测试,确保出水 水质满足相应标准。

4 吸附法在矿井水处理中的发展方向

4.1 吸附法除氟工程应用分析

目前,含氟矿井水的处理已经形成了化学沉淀 法、离子交换、吸附法和膜法的主流工艺。其中首先 以化学沉淀法进行高氟水的一级处理,将氟化物含 量降低至原浓度的 2% 以下,随后根据水质水量特点 选择离子交换或吸附法进行深度去除。

表 2 总结了典型的吸附法应用矿井水除氟工程 案例,包括工艺路线及与运行效果分析。首先,案例 1 分别采用了活性氧化铝和羟基磷灰石(HAP)为吸 附剂,一次应用效果证实 HAP 相比活性氧化铝具有更 经济的运营和再生成本,对于 F⁻含量略超过 1.0 mg/L 的矿井水具有明显的经济性。案例 2 针对 F⁻为 8.0 mg/L 的含氟矿井水,分别验证了聚合氯化铝和羟 基磷灰石单独及组合应用除氟的效果,结果表明采 用 2 种药剂组合的方式在长期应用的基础上具有综 合成本和去除效果的双重优势,可避免单一药剂出

表 1 常见吸附材料在实际废水中的应用效果^[26,29,40,46,80,83-93]

 Table 1 Application effect of common adsorbent materials in actual wastewater^[26,29,40,46,80,83-93]

废水 类别	F ⁻ 初始质 量浓度/ (mg·L ⁻¹)	吸附材料	应用效果	参考文献	废水 类别	F ⁻ 初始质 量浓度/ (mg·L ⁻¹)	吸附材料	应用效果	参考文献
工业废水	550	氢氧化钙 纳米棒	处理了高酸性电镀工业 废水,可以达到99.27% 的F ⁻ 去除效率	[83]	工业废水	5	改性膨润土	处理了含氟矿井水,当 吸附剂剂量为1g/L时, 去除率可以达到87.8%, 氟化物浓度为0.63 mg/L	[90]
工业废水	148.2	铝土矿纳 米复合 材料	在高酸性铅锌冶炼废水 中进行了评估,结果表 明,当CI ⁻ 、SO ₄ ⁻ 浓度超 过1000 mg/L和其他重金 属(Zn、Pb和Mn)共存时 初始F ⁻ 的吸附量也能达 到80 mg/g	[84] ,	工业废水	5	辉沸石	处理了埃塞俄比亚地区 的高浓度含氟废水,去 除率可以达到30%	[86]
工业废水	98.05	镧改性沸石	处理了工业硫酸锌废水, 当吸附剂用量为15 g/L时 可以使初始F浓度从 98.05 mg/L降低至 44.09 mg/L	, [80]	地下水	>4 000	AC/Al ₂ O ₃ 复合材料	吸附容量和去除效率仅 为0.48 mg/g和5.05%	[91]
工业 废水	24.38	活性炭	处理了玻璃行业废水, 除氟效率为66.11%	[85]	地下水	29.05	镧改性膨润土	处理了天然地下水,使 F 浓度从29.05 mg/L降低 至1.61 mg/L	[40]
工业 废水	20.6	辉沸石	处理了埃塞俄比亚地区 的高浓度含氟废水,去 除率可以达到20%	[86]	地下水	4	AC- Al(OH) ₃ (AC由 <u>枣茎合成)</u>	处理了地下水,可使F 浓度降低至0.98 mg/L	[92]
工业 废水	20	改性沸石	处理了矿井水,氟化物 去除率达72.7%	[87]	地下水	3.10	胺官能化GO	处理了实际地下水样品, 使实际F ⁻ 浓度从3.10 mg/L降低至1.24 mg/L	[26]
工业废水	11	活性炭	处理了造船行业废水, 除氟效率为65.45%	[85]	地表水	3.29	売基HAP吸附 剂	当吸附剂剂量为6 g/L, 吸附时间为12 h时,去 除效率65%	[46]
工业 废水	8.79	HA-MWCNTs	处理了兰州铀浓缩厂的 实际废水,可使F ⁻ 浓度 由8.79 mg/L降低至 0.25 mg/L	[88]	饮用水	4.50	GO/纳米复合 材料	F ⁻ 浓度从4.50 mg/L降低 至(0.202 ± 0.05) mg/L	[88]
工业废水	8.79	羟基磷灰石/多 壁碳纳米管	处理了实际核工业废水, 从8.79 mg/L降低至0.25 mg/L(去除率为97.15%)	[29]					
工业 废水	7.59	沸石锆粉	处理了玻璃工业废水, 用沸石锆粉在脉冲超声 连续超声和搅拌的模式 下,分别使F浓度降低 至148_159和171mg/I	` [89]	饮用水	0.2 ~ 1.2	多壁碳纳米管	去除效率为 71.8%~83.3%	[93]

现的出水不达标或 TDS 超标问题。案例 3 采用的高效碳基磷石灰石在处理低浓度超标含氟矿井水时同样具有不错的吸附效果,但一次投资需平衡设置调酸系统、除氟再生系统等辅助设施,适用性受到了一定限制。

由于吸附法工程运用产生的已公开的经济性分 析数据较少,根据公开可查阅的资料显示,HAP 和铝 基吸附剂是吸附法的核心材料,根据水质水量规模, 统筹考虑物料成本,能源基建成本,设备投资成本, 人力及再生成本等,来最终选取廉价的天然矿物吸 附材料或高效吸附剂。虽然针对大规模、低浓度的 含氟矿井水而言,廉价的天然矿物吸附材料(如 HAP、 硅藻土等)常常作为工程运用的首选。然而,在实际 运行过程中,天然矿物材料也存在着吸附容量差,需 频繁再生的问题,对长期的运营仍是一笔不小的成 本挑战。

唐佳伟等:吸附法去除矿井水中F研究进展

radie 2 - rradical engineering appreation of denuormation												
来水水质	出水水质	吸附材料	工艺流程	工艺规模及成本分析	评价	参考 文献						
矿井水,	<i>C</i> (F ⁻) > 1 mg/L	活性氧化铝	井下来水 ↓ 预沉调节池	总投资2 870.11万元,占 地面积2 025 m ² ,运行成 本1.959 元/t,再生成本 0.825 3 元/t	易受水中HCO ₃ 的干扰, 出水F浓度难以达到 《地表水环境质量标 准》(GB3838—2002) Ⅲ类标准	[94]						
C(F`)> 1 mg/L	<i>C</i> (F ⁻) < 1 mg/L	羟基磷灰石	斜管沉淀池 ↓ 无阀过滤池 ↓ 预沉调节池	总投资1872.66万,占地 面积1055.25 m ² ,运行 成本1.159 元/t,再生成 本0.0047元/t	占地面积更小,一次性 投资成本低,出水F浓 度可达到《地表水环境 质量标准》(GB3838— 2002)Ⅲ类标准	[94]						
	C(F ⁻) < 1 mg/L	聚合氯化铝	-	单独使用聚合氯化铝, 达标排放成本 2.6元/t	可能产生水中TDS质量浓度超过1000mg/L							
含氟矿井水, <i>C</i> (F ⁻) > 8 mg/L,		羟基磷灰石	原水 → 初沉池 → 混凝沉淀	单独使用羟基磷灰石, 达标排放成本3.39元/t	羟基姆灰石吸附能力 有限,可能造成水质 波动时出水不达标的 问题,需设置二级吸	[95]						
水量2万 m ³ /d		聚合氯化 铝+羟基磷 灰石	加止而上/丁 "汉阳14巴	聚合氯化铝+羟基磷灰石 梯级联用,综合运行成 本3.76元/t	可避免过量加药导致 的TDS显著增高和水质 波动导致出水不达标的 问题							
矿井水, <i>C</i> (F ⁻)> 1 mg/L, 水量 5 000 m ³ /d	<i>C</i> (F ⁻) < 1 mg/L	高效碳基磷 石灰石	井下来水 预沉调节池 高密度澄清池 ● ● 「方泥浓缩池 除铁锰过滤器 ● ● 「方泥浓缩池 ● 「除鉄锰过滤器 ● ●<	全工艺综合运行成本1.5 元 调酸系统、除氟再生系统 再生废水钙基化除氟加药 投资费用较高	元/t,其中需要配备除氟 、高氟废水化学预沉器、 装置等配套设施,一次	[5]						

表 2 除氟实际工程应用案例分析 able 2 Practical engineering application of defluorination

4.2 吸附法除氟应用前景

随着我国西部地区煤炭产量不断增加,西部地 区煤矿矿井水量将会持续增加,预计 2035 年将达到 47.4 亿 m^{3 [2]}。而我国高氟矿井水有又主要分布在神 东、宁煤、淮南、鹤壁等矿区,其共同特征是 pH>7, 矿井水呈偏碱性^[82]。2021 年,国家发展改革委联合 生态环境部等九个部门印发了《关于推进污水资源 化利用的指导意见》,明确指出我国污(废)水资源化 利用发展方向。可以预见,矿井水资源化利用仍然 是掣肘煤矿可持续发展的难题。

吸附法处理含氟类矿井水的发展前景除了受到 新材料、新技术发展的影响外,还与国家政策、煤炭 行业的发展紧密相关。因此,根据我国煤炭行业发 展趋势,吸附法应用矿井水除氟工艺发展应在"因地 制宜"的原则前提下针对性开展,如图 8 所示。

首先,根据不同地区的相关政策、矿区所执行的 排放标准、当地的环境承载量以及水质水量规模开 发应用不同的除氟工艺,实现矿井水分级处理、分质

利用。

其次,对于西部典型的聚集型煤炭基地而言,吸 附法处理大水量低浓度(<10 mg/L)的含氟矿井水时, 研发思路应在加强相关基础理论研究的基础上,围 绕天然/废弃(矿)物材料和新型环保的高效吸附剂 2 种思路开展。①充分利用天然矿物材料(如沸石、煤 矸石等)或废弃物(粉煤灰、矿渣、钢渣等)的廉价易 得性,从改造负载基理化性能(如孔径和表面官能团) 提升吸附法除氟效率;②针对性开发以炭基、铝基或 其他新型高分子吸附材料,充分考虑杂盐复杂水质 条件下 F⁻去除机制,如溶液 pH、其他阴离子浓度等 因素。探究并优化吸附容量、吸附与再生效率,评估 吸附材料的稳定性与安全性,以开发相应的吸附材 料或装备,根据水质水量特点,可实现不同种类的天 然矿物吸附材料与高效吸附剂的梯级、联用处理。

最后,实现吸附工艺与煤矿原有的全流程水处 理工艺耦合。统筹考虑矿区水处理工艺及场地等因 素,以设施改扩建或一体式装备嵌入等灵活的药剂

Fig.8 Development prospect of the application of adsorption method in the mine water fluoride removal technology

投加方式,完善除氟吸附材料的工业应用与推广。

尽管目前基于多种吸附载体的改性吸附药剂取 得了丰硕的研究成果,但是受限于制备工序的繁简 和物料应用成本,吸附法在实际工程运行上仍需克 服上述发展瓶颈。相信未来随着新技术、新方法的 不断更新,在以工程实际需求为导向的前提下充分 挖掘吸附法除氟工序的全生命周期管理与实施的可 行性与经济性,开发低成本、高吸附效能的环境友好 型吸附材料,并将之作为水生态文明建设的重点领 域范畴,以不断推进技术进步与产业升级。

5 结 论

1)伴随着国家相关政策执行标准的日趋严格以 及人们对环境保护的更多关注,以1.0 mg/L为F[#] 放标准的产业会进一步增多。炭基、天然矿物、金属 以及 MOFs 等吸附材料对水中 F⁻的去除研究已取得 诸多成果。稀土类金属及其氧化物、MOFs 等材料 虽具有更出色的吸附能力,但受限于材料制备工序 及成本,尚不具备广泛应用于实际工程中的条件。 氧化铝、羟基磷灰石等吸附材料在实际工程中展已 现出了良好的去除效果及应用前景。

2)运行成本和安全性能是吸附法实际运行中的 核心要素。运行成本不仅包括原材料及改性工艺方 法,还应开展吸附剂再生研究,实现吸附剂多次循环 利用。此外,改性吸附材料实际应用过程应避免由 材料本身带来的二次污染问题,在聚焦吸附剂本身 的吸附性能及成本性的同时,还应该多关注吸附材 料本身的安全性能研究。

3)吸附法应用矿井水处理中应以天然(废弃)矿 物材料物化改性以及安全高效的吸附剂开发为主要 研究方向。加强吸附机理深入研究,控制关键制备 要素,开发适用于不同水质水量环境下的吸附剂及 配套装备,嵌入到全流程水处理工艺,实现矿井水全 流程绿色、高效、低成本处理。

参考文献(References):

- [1] 张 颖,张 磊,李喜林. 纳米ZrO₂-SRB颗粒对酸性铬和氟污染 地下水的修复[J]. 环境工程学报, 2020, 14(5): 1170-1179.
 ZHANG Ying, ZHANG Lei, LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J].
 Chinese Journal of Environmental Engineering, 2020, 14(5): 1170-1179.
- [2] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J].煤炭学报, 2021, 46(10): 3079–3089.
 GU Dazhao, LI Jingfeng, CAO Zhiguo, *et al.* Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society, 2021, 46(10): 3079–3089.
- [3] 顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术, 2021, 49(1): 11-18.
 GU Dazhao, LI Ting, LI Jingfeng, *et al.* Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology, 2021, 49(1): 11-18.
- 【4】 张海琴,包一翔,唐佳伟,等. 神东矿区天然矿物中的氟化物浸出 规律研究[J]. 煤炭科学技术, 2023, 51(2): 436-448.
 ZHANG Haiqin, BAO Yixiang, TANG Jiawei, *et al.* Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology, 2023, 51(2): 436-448.
- [5] 苏双青,赵 焰,徐志清,等. 我国煤矿矿井水氟污染现状及除氟 技术研究[J]. 能源与环保, 2020, 42(11): 5-10.
 SU Shuangqing, ZHAO Yan, XU Zhiqing, *et al.* Status quo of fluoride pollution of coal mine water in China and research onfluoride removal technology[J]. China Energy and Environmental Protection 2020, 42(11): 5-10.
- [6] 桑树勋,袁 亮,刘世奇,等.碳中和地质技术及其煤炭低碳化应 用前瞻[J].煤炭学报,2022,47(4):1430-1451.
 SANG Shunxun, YUAN Liang, LIU Shiqi, *et al.* Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022, 47(4): 1430-1451.
- [7] HUANG H, LIU J, ZHANG P, et al., Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chem Eng J, 2017, 307: 696–706.

- [8] SAMADI M T, ZARRABI M, SEPSHR M N, et al. Removal of fluoride ions by ion exchange resin: kinetic and equilibrium studies[J]. Environ Eng Manag J, 2014, 13(1): 205–214.
- [9] MENG C, ZHENG X, HOU J, et al. Preparation and defluoridation effectiveness of composite membrane sorbent MFS-AA-PVDF[J]. Water Air Soil Poll, 2020, 231(2): 1–10.
- [10] DEHGHANI M H, HAGHIGHAT G A, YETILMEZSOY K, et al. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes [J]. J Mol Liq, 2016, 216: 401-410.
- [11] BRAIK S, AMOR T B, MICHELIN L, et al. Natural water defluoridation by adsorption on Laponite clay[J]. Water SCI Technol, 2022, 85(6): 1701–1719.
- [12] GAI W Z, DENG Z Y, A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism[J]. Environ SCI-Wat Res, 2021, 7, 1362–1386.
- [13] RASHID U S, BEZBARUAH A N, Citric acid modified granular activated carbon for enhanced defluoridation[J]. Chemosphere, 2020, 252: 126639.
- [14] VENCES-ALVAREZ E, VELAZQUEZ L H, CHAZARO-RUIZ L F, *et al.* Fluoride removal in water by a hybrid adsorbent lanthanum–carbon[J]. J Colloid Interf SCI, 2015, 455: 194–202.
- [15] CHOONG C E, KIM M, YOON S, et al. Mesoporous La/Mg/Siincorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water[J]. J Taiwan Insf Chem E, 2018, 93: 306–314.
- [16] SAINI A, MAHESHWARI P H, TRIPATHY S S, et al. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment[J]. J Water Process Eng, 2020, 34: 101136.
- [17] LEYVA-RAMOS R, RIVERA-UTRILLA J, MEDELLIN-CASTILLO N A, et al. Kinetic modeling of fluoride adsorption from aqueous solution onto bone char[J]. Chem Eng J, 2010, 158(3): 458-467.
- [18] NIGRI E M, MAYER D A, MARIA A P C, et al. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies[J]. Environ SCI Pollut R, 2017, 24(3): 2364–2380.
- [19] ALKURDI S S A, AL-JUBOORI R A, BUNDSCHUH J, et al. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal[J]. Environ Pollut, 2020, 262: 114221.
- [20] ZHAO P, HAN E H, SONG Y, et al. Synergistic effect of F⁻ions and scratch on the dynamic corrosion behavior of ZTi60[J]. Corrosion Sci, 2022, 203: 110355.
- [21] ZUNIGA-MURO N M, BONILLA-PETRICIOLET A, MEND-OZA-CASTILLO D I, *et al.* Fluoride adsorption properties of cerium-containing bone char[J]. J Fluorine Chem, 2017, 197: 63–73.
- [22] DELGADILLO-VELASCO L, HERNANDEZ-MONTOYA V, CERVANTES F J, et al. Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment[J]. J Environ Manage, 2017, 201: 277–285.
- [23] NIGRI E M, BHATNAGAR A, ROCHA S D F. Thermal regeneration process of bone char used in the fluoride removal from aqueous solution[J]. J Clean Prod, 2017, 142: 3558–3570.
- [24] MIRETZKY P, CIRELLI A F. Fluoride removal from water by

chitosan derivatives and composites: a review[J]. J Fluorine Chem, 2011, 132(4): 231–240.

- [25] XU C, LI J, HE F, et al. Al₂O₃-Fe₃O₄-expanded graphite nanosandwich structure for fluoride removal from aqueous solution [J]. Rsc Adv, 2016, 6: 97376–97384.
- [26] JEYASEELAN A, GHFAR A A, NAUSHAD M, et al. Design and synthesis of amine functionalized graphene oxide for enhanced fluoride removal[J]. J Environ Chem Eng, 2021, 9(4): 105384.
- [27] BOTSA S M, BASAVAIAH K, Defluoridation in aqueous solution by a composite of reduced graphene oxide decorated with cuprous oxide via sonochemical[J]. Arab J Chem, 2020, 13(11): 7970-7977.
- ZHANG J, CHEN N, SU P, et al. Fluoride removal from aqueous solution by Zirconium-Chitosan/Graphene Oxide Membrane[J].
 React Funct Polym, 2017, 114: 127–135.
- [29] RUAN Z, YIAN Y, RUAN J, et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution[J]. Appl Surf SCI, 2017, 412: 578–590.
- [30] TANG Q, DUAN T, LI P, *et al.* Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube[J]. Front Chem, 2018, 6: 104.
- [31] SUJANA M G, ANAND S. Fluoride removal studies from contaminated ground water by using bauxite[J]. Desalination, 2011, 267(2-3): 222-227.
- [32] ARCIBAR-OROZCO, ARCIBAR-OROZCO J A, FLORES-RANGEL J R, et al. Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution[J]. Environ Technol, 2018, 41(12)
- [33] VELAZQUEZ-PENA G C, OLGUIN-GUTIERREZ M T, SOLACHE-RIOS M J, et al. Significance of FeZr-modified natural zeolite networks on fluoride removal[J]. J. Fluorine Chem, 2017, 202: 41–53.
- [34] YANG B, SUN G, QUAN B, et al. An Experimental Study of Fluoride Removal from Wastewater by Mn-Ti Modified Zeolite[J]. Water-Sui, 2021, 13(23): 3343.
- [35] TEUTLI-SEQUEIRA A, SOLACHE-RIOS M, MARTINEZ-MIRANDA V, et al. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process[J]. Water Air Soil Poll, 2015, 226(8): 1–15.
- ZHANG Z, TAN Y, ZhONG M, Defluorination of wastewater by calcium chloride modified natural zeolite[J]. Desalination, 2011, 276(1-3): 246-252.
- [37] PENG S, ZENG Q, GUO Y CH, et al. Technology, Biotechnology, Defluoridation from aqueous solution by chitosan modified natural zeolite[J]. J Chem Technol Biotechnol, 2013, 88(9): 1707–1714.
- [38] TIAN Z, GAN Y. In situ synthesis of structural hierarchy flowerlike zeolite and its application for fluoride removal in aqueous solution[J]. J Nanomater, 2019, 3: 1–11.
- [39] MUDZIELWANA R, GITARI W M, AKINYEMI S A, et al. Synthesis, characterization, and potential application of Mn 2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation[J]. Appl Water Sci, 2017, 7: 4549–4561.
- [40] THAKRE D, RAYALU S, KAWADE R, et al. Magnesium incor-

porated bentonite clay for defluoridation of drinking water[J]. J Hazard Mater, 2010, 180(1-3); 122–130.

- [41] KAYGUSUZ H, COSKUNIRMAK M H, KAHYA N, et al. Aluminum alginate-montmorillonite composite beads for defluoridation of water[J]. Water Air Soil Poll, 2015, 226(1): 1–9.
- [42] MUSCHIN T, ZULCHIN H, JIA M J C, Adsorption Behavior of Polyhydroxy - Iron - Modified Coal - Bearing Kaolin for Fluoride Removal[J]. ChemistrySelect, 2021, 6(13): 3075–3083.
- [43] SANI T, ADEM M, FETTER G, et al. Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite[J]. Water Air Soil Poll, 2016, 227(3): 1–8.
- [44] AYINDE W B, GITARI W M, MUNKOMBWE M, et al. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater[J]. Phys Chem Earth, Parts A/B/C, 2018, 107: 25–37.
- [45] FERNANDO M S, WIMALASIRI A, RATNAYAKE S P, et al. Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water[J]. RSC Adv, 2019, 9(61): 35588– 35598.
- [46] MTAVANGU S G, MAHENE W, MACHUNDA R L, et al. Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water[J]. Results in Engineering, 2022, 13: 100379.
- [47] LYU Y, SU X, ZHANG S, et al. Preparation and characterization of La (III)-Al (III) co-loaded hydrothermal palygorskite adsorbent for fluoride removal from groundwater[J]. Water Air Soil Poll, 2016, 227(12): 1–9.
- [48] WANG J, REN C, WANG H, et al. Mechanisms of fluoride uptake by surface-modified calcite: A 19F solid-state NMR and TEM study[J]. Chemosphere, 2022, 294: 133729.
- [49] 周 珊,武明丽. 粉煤灰-石灰法处理含氟废水的研究[J]. 煤炭 科学技术, 2006(2): 60-62.
 Zhou Shan, Wu Mingli. Research on fly ash limestone method to treat waste water with fluorine content[J]. Coal Science and Technology. 2006(2): 60-62.
- [50] BEHERA B, SAHU H. Modified mine waste as an adsorbent for fluoride removal from contaminated water[J]. Petrol Sci Technol, 2022, 41(4): 493–506.
- [51] MORIYAM R, TAKEDA S, ONOZAKI M, *et al.* Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution [J]. Fuel, 2005, 84(12/13): 1455–1461.
- [52] 王代芝,周 珊,赵桂芳.用改性粉煤灰处理含氟废水的试验
 [J].粉煤灰综合利用,2005(4):26-28.
 WANG Daizhi, ZHOU Shan, ZHAO Guifang. Removal of fluoride from wastewater by adsorption of modified fly ash[J]. Fly Ash Comprehensive Utilization, 2005(4):26-28.
- [53] BAVDA A R, BAPAT P S, JOSHI V B, et al. Investigating the chemistry of alumina based defluoridation using safe H+ source[J]. Int. J. Hydrogen Energy, 2018, 43(47): 21699–21708.
- [54] CHAUDHARY M, BHATTACHARYA P, MAITI A. Synthesis of iron oxyhydroxide nanoparticles and its application for fluoride removal from water[J], Journal of Environmental Chemical Engineering, 2016 (4): 4897–4903.
- [55] KUMAR E, BHATNAGAR A, JI M, *et al.* Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)[J]. Water

Res, 2009, 43(2): 490–498.

[56] 杨小洪,魏世勇,李永峰.几种铁氧化物吸附氟的能力及影响因素的研究[J].湖北民族学院学报(自然科学版),2009,27(3): 248-253.

YANG Xiaohong, WEI Shiyong, LI Yongfeng. Fluoride adsorption capacity and influence factors of several iron oxides[J].
Journal of Hubei Minzu University (Natural Sci Edition), 2009, 27(3): 248–253.

- [57] DU J, SABATINI D A, Butler E C, et al. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27.
- [58] YU C, LIU L, WANG X, et al. Fluoride removal performance of highly porous activated alumina[J]. J. Sol-Gel Sci Technol, 2023, 106, 471–479.
- [59] YANG C, GAO L L, WANG Y X, et al. Fluoride removal by ordered and disordered mesoporous aluminas[J]. Microporo Mesop Mat, 2014, 197(10): 156–163.
- [60] HUANG L, YANG Z H, ZHANG Z X, et al. Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride[J]. Microporo Mesop Mat, 2020, 297: 110051.
- [61] KABIR H, GUPTA A K, DEBNATH D. Synthesis, optimization and characterization of mesoporous Mg-Al-Fe tri-metal nanocomposite targeting defluoridation: Synergistic interaction of molar ratio and thermal activation [J]. J Mol Liq, 2018, 268: 376–385.
- [62] NEHRA S, RAGHAV S, KUMAR D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study[J]. Environ Pollut, 2020, 258: 113773.
- [63] LIAO Z, ZHAO S, DAI Y, et al. Removal of Fluorine from Zinc Electrolyte by Cerium Silicate[J]. J Sustain Metall, 2021, 7(4): 1425–1433.
- [64] DONG S, WANG Y. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal [J]. Water Res, 2016, 88: 852–860.
- [65] ZHAO W, CHEN Y, ZHANG W. J. A. P. J. O. C. E. Rapid and convenient removal of fluoride by magnetic magnesium-aluminum-lanthanum composite: Synthesis, performance and mechanism[J]. Aaia-Pac J Chem Eng, 2017, 12(4): 640–650.
- [66] ZAIDI R, KHAN S, FAROOQI I, et al. Investigation of kinetics and adsorption isotherm for fluoride removal from aqueous solutions using mesoporous cerium–aluminum binary oxide nanomaterials[J]. Rsc Adv, 2021, 11(46): 28744–28760.
- [67] SINGH P K, SAHARAN V K, GEOEGE S. Studies on performance characteristics of calcium and magnesium amended alumina for defluoridation of drinking water[J]. J Environ Chem Eng, 2018, 6(1): 1364–1377.
- [68] KUMARI U, BEHERA S K, MEIKAP B C. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater[J]. J Hazard Mater, 2019, 365: 868–882.
- [69] OLADOJA N A, CHEN S, DREWES J E, et al. Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater[J]. Chem Eng J, 2015, 281: 632–643.
- [70] XUN, LIUZ, DONGY, et al. Controllable synthesis of mesopor-

ous alumina with large surface area for high and fast fluoride removal[J]. Ceram Int, 2016, 42(14): 15253–15260.

- [71] LYU L, HE J, WEI M, et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO₃ layered double hydroxides [J]. J Hazard Mater, 2006, 133: 119–128.
- [72] ZHAO X, ZHENG M, GAO X, et al. The application of MOFsbased materials for antibacterials adsorption, Coord[J]. Chem. Rev., 2021, 440: 213970.
- [73] LIU B, LIU M, XIE Z, LI Y, ZHANG A. Performance of defective Zr-MOFs for the adsorption of anionic dyes[J], J Mater Sci, 2022, 57: 5438–5455.
- [74] 赵瑨云,胡家朋,刘瑞来,等. La-金属有机骨架化合物的制备及 其除氟性能研究[J]. 化学通报, 2021, 84(1): 75-80.
 ZHAO Jinyun, HU Jiapeng, LIU Ruilai, *et al.* Fabrication of La-MOFs adsorbents and its fluorine removal performance[J].
 Chemistry, 2021, 84(1): 75-80.
- [75] 朱 晖. Al-MOF吸附材料的制备及其去除水中氣离子的研究[D]. 镇江: 江苏科技大学, 2021.
 ZHU Hui. Study on the preparation of Al-MOF adsorption material and its removal of fluoride from water[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
- [76] 张 曼,李多松,王 可.吸附法去除火电厂冲灰水氟离子的研究[J].广东化工,2011,38(3):152-153.
 ZHANG Man, LI Duosong, WANG Ke. Study on removing fluoride ion in ash sluicing water of thermal power plant by adsoption process[J]. Guangdong Chemical Industry, 2011, 38(3): 152-153.
- [77] 郜玉楠, 茹雅芳, 王 静, 等. 微米氧化锆/沸石分子筛处理高氟 地下水的研究[J]. 中国给水排水, 2020, 36(3): 49-53.
 GAO Yunan, RU Yafang, WANG Jing, *et al.* Treatment of high fluoride groundwater by micron zirconia/zeolite molecular sieve[J]. China Water & Wastewater, 2020, 36(3): 49-53.
- [78] 凌 梅. 两种La₂O₂CO₃吸附剂对氟离子的吸附研究[D]. 哈尔 滨: 哈尔滨工业大学, 2016.
 LING Mei. Research on F⁻ adsorption by two types of La₂O₂CO₃ adsorbent[D]. Harbin Institute of Technology, 2016.
- [79] 张艳素. 铁锆复合氧化物去除砷氟的性能研究及机制探讨[D]. 北京林业大学, 2012.
 ZHANG Yansu. Arsenic and Fluoride Removal from Water by an Iron-Zirconium Oxide: Performance and Mechanism[D]. BeiJing Forestry University, 2012.
- [80] LAI Y, KAI Y, CHAO Y, et al. Thermodynamics and kinetics of fluoride removal from simulated zinc sulfate solution by La(III)modified zeolite[J]. T Nonferr Metal Soc, 2018, 28(4): 783–793.
- [81] CHEN P, ZHANG W, LI M, et al. Facile synthesis of magnetic La-Zr composite as high effective adsorbent for fluoride removal [J]. Rsc Adv, 2016, 6(42): 35859–35867.
- [82] 刘 航,彭 稳,陆继长,等.吸附法处理含氟水体的研究进展[J].水处理技术,2017,43(9):13-18.
 LIU Hang, PENG Wen, LU Jizhang, *et al.* Research progress of fluoride-containing wasterwater treatment by adsorption method[J]. Technology of Water Treatment, 2017, 43(9): 13-18.
- [83] CHAUDHARY M, and MAITI A. Defluoridation by highly efficient calcium hydroxide nanorods from synthetic and industrial

wastewater [J]. Colloid Surface A, 2019, 561: 79-88.

- [84] ALHASSAN S I, WANG H, HE Y, et al. Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of Fremoval[J]. J Hazard Mater, 2022, 430: 128401.
- [85] BONYADI Z, KUMAR P S, FORONTAN R, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater [J]. Korean J Chem Eng, 2019, 36(10): 1595–1603.
- [86] GOMEZ-HORTIGUELA L, PINAR A B, PEREZ-PARIENTE J, et al. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Micropor Mesopor Mat, 2014, 193: 93–102.
- [87] 翟 宇,李占五,邓寅生,等.改性沸石吸附矿井水中氟离子的 试验研究[J].煤炭科学技术,2010,38(9):121-124.
 ZHAI Yu, LI Zhanwu, DENG Yansheng, *et al.* Experiment research on modified zeolite applied to adsorb fluorine ion from mine water[J]. Coal Science and Technology, 2010, 38(9): 121-124.
- [88] SINGH N, KUMARI S, KHAN S. Improved fluoride removal efficiency using novel defluoridation pencil[J]. Mater Today Commun, 2021, 28: 102521.
- [89] SAVARI A, HASHEMI S, ARFAEINIA H, et al. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed& continuous sonication and stirring[J]. Adv Powder Technol, 2020, 31(8): 3521-3532.
- [90] 何瑞敏,苏双青,赵 焰,等.环境矿物材料对矿井水中氟化物的吸附性能研究[J].煤炭技术,2022,41(8):111-114.
 HE Ruimin, SU Shuangqing, ZHAO Yan, *et al.* Adsorption performance research of environmental minerals on fluoride ion in mine water[J]. Coal Technology, 2022, 41(8): 111-114.
- [91] FIORITO S, EPIFANO F, PALUMBO L, et al. Efficient removal of tartrazine from aqueous solutions by solid sorbents[J]. Sep Purif Technol, 2022, 290: 120910.
- BAKHTA S, SADAOUI Z, BOUAZIZI N, et al. Functional activated carbon: from synthesis to groundwater fluoride removal [J].
 Rsc Adv, 2022, 12(4): 2332–2348.
- [93] ANSARI M, KAZEMIPOUR M, DEHGHANI M, et al. The defluoridation of drinking water using multi-walled carbon nanotubes[J]. J Fluorine Chem, 2011, 132(8): 516–520.
- [94] 莫文锋. 某矿矿井水处理厂除氟工艺探讨[J]. 建材与装饰, 2019(8): 199-200.
 MO Wenfeng, Discussion on defluorination technology of mine water treatment plant[J]. Construction Materials & Decoration, 2019(8): 199-200.
- [95] 刘奇林,张 鑫,金红亮,等.一体化除铁除氟技术在农村饮水 安全工程中的运用[J].河南水利与南水北调,2018,47(5): 54-55.

LIU Qilin, ZHANG Xin, JIN Hongling, *et al.* Application of intergrade defluoridation technology for iron removal to rural drinking water safety project [J]. Henan Water Resources and South-to-North, 2018, 47(5): 54–55.