

董书宁,李 智,郑士田,等.煤层底板导水通道钻孔超前探查与多元信息识别技术[J].煤炭科学技术,2023, 51(7):15-23.

DONG Shuning, LI Zhi, ZHENG Shitian, *et al.* Advanced drilling detection and multi-information identification of water-conducting channel of coal floor[J]. Coal Science and Technology, 2023, 51(7): 15–23.

煤层底板导水通道钻孔超前探查与多元信息识别技术

董书宁^{1,2,3},李 智^{1,2,3},郑士田^{2,3},郭小铭^{2,3},王宇航^{2,3} (1.煤炭科学研究总院,北京 100013; 2. 中煤科工西安研究院(集团)有限公司,陕西西安 710077; 3.陕西省煤矿水害防治重点实验室,陕西西安 710077)

摘 要:煤层底板多发育有各类导水通道,严重威胁着矿井的安全生产。为更加科学地建立底板导水 通道多元信息识别技术体系,预防底板突水,首先根据导水通道类型多样、位置不明、突水危害大 等特征和地面定向钻进区域探查技术的优点,提出了轨迹合理、目标层合理和探查区域最大化的探 查原则。其次总结分析了淮北矿区、淮南矿区、邢台矿区、黄河北煤田等区域导水通道探查过程, 发现在揭露导水通道时,岩屑、钻时、钻井液漏失量等直观指标和压水试验透水率、注浆参数等验 证性指标均与正常地层有明显差别。为此将钻探过程中多源信息判识指标分为定性和定量两大类。 根据钻遇导水通道时,岩屑和钻时2项定性指标的变化幅度,给出了对应的标准曲线,进而确定了 导水通道类型分类体系;接着综合分析钻井液漏失量和压水试验透水率2项定量指标在钻孔揭露导 水通道时的变化,提出了钻井液漏失量30 m³/h、压水试验透水率10 Lu 作为导水性分级的界限,据 此建立了通道导水性能双因素综合分级体系,将导水性划分为4个等级。最后以华北型煤田某典型 矿井为例,根据探查原则实施4个孔组对导水通道进行了超前探查,应用多元信息识别技术成功判 识出探查区域内的4条断层、2 处岩溶裂隙带和1 个陷落柱,并确定了导水通道的导水性等级。研究 成果对提升煤层底板导水通道识别和治理具有指导作用和重要意义。

关键词:超前探查;地面定向钻进;底板水害防治;导水通道

中图分类号:TD745 文献标志码:A 文章编号:0253-2336(2023)07-0015-09

Advanced drilling detection and multi-information identification of water-conducting channel of coal floor

DONG Shuning^{1,2,3}, LI Zhi^{1,2,3}, ZHENG Shitian^{2,3}, GUO Xiaoming^{2,3}, WANG Yuhang^{2,3}

(1. China Coal Research Institute, Beijing 100013, China; 2. CCTEG Xi'an Research Institute(Group)Co., Ltd., Xi'an 710077, China;

3. Shannxi Key Laboratory of Coal Mine Water Hazard Prevention and Control Technology, Xi'an 710077, China)

Abstract: The coal floor develops various water-conducting channels, which seriously threaten the safe production of mines. In order to establish a more scientific multi-information identification technology system for the water-conducting channels in the coal floor, and prevent floor water inrush. Firstly, the principles of reasonable trajectory, reasonable target layer and exploration area maximization are proposed based on the characteristics of the water-conducting channels and the advantages of the ground directional drilling area exploration technology. Diversified types, unclear locations, and significant water inrush hazards are the characteristics of water-conducting channels. Secondly, the summary analysis is conducted on the exploration process of water diversion channels in areas such as HuaiBei Mining Area, Huainan Mining Area, Xingtai Mining Area, and Huanghebei Coal Field. When revealing the water-conducting channels, there are significant differences in visual indicators such as rock debris, drilling time, drilling fluid leakage, and confirmatory indicators such as permeability and grouting parameters compared to revealing normal formations. Therefore, the identification indicators of multi-information

基金项目:国家重点研发计划资助项目(2017YFC0804102)

作者简介: 董书宁(1961—), 男, 陕西蓝田人, 研究员, 博士。E-mail: dongshuning@cctegxian.com

通讯作者: 李 智(1992—), 男, 陕西西安人, 助理研究员, 博士研究生。Tel: 029-87860973, E-mail: lizhi@cctegxian.com

during the drilling process are divided into two types: qualitative and quantitative. Based on the variation amplitude of two qualitative indicators, rock debris and drilling time, when encountering water-conducting channels, it gives corresponding standard curves, and determines the classification system for water-conducting channel types. Subsequently, a comprehensive analysis is conducted on the changes in the two quantitative indicators of drilling fluid leakage and permeability when encountering water-conducting channels. 30 m³/h of drilling fluid leakage and 10 Lu of permeability are proposed as the classification criteria for conductivity. Based on this, a dual factor comprehensive classification system for water-conducting channels conductivity is established, and the conductivity is divided into four levels. Finally, taking a typical mine in the North China coalfield as a case study, the principle of exploration is adopted to explore the water-conducting channels. The multi-information identification technology is applied to successfully identify four faults, two karst fracture zones and a collapse in the detection area, and determines conductivity levels of water-conducting channels. The research results have guiding effect and important significance for improving the identification and control of water-conducting channels.

Key words: advanced detection; ground directional drilling; prevention of floor water hazard; water-conducting channel

0 引 言

煤炭作为我国的主体能源,在社会经济发展中 具有举足轻重的作用。经过几十年来的持续开发, 我国中东部地区浅部煤炭资源逐步枯竭,已经进入 了下组煤开采阶段^[1],且采掘深度以 8~12 m/a 的速 度延伸^[2],下组煤开采过程中受到煤层底板灰岩含水 层的突水威胁不断加大^[3-4]。据统计华北地区 20% 的煤炭资源受底板岩溶水的威胁,部分老矿区受底 板突水威胁的煤炭资源甚至高达 50%~85%^[5-6]。煤 层底板广泛发育有岩溶裂隙带、断层和陷落柱等导 水通道^[7-9],随着矿井开采深度和开采规模的不断加 大,开采过程中煤层底板处于"三高一扰动"的复杂 应力环境^[10],陷落柱、断层或岩溶裂隙带等导水通 道在采动影响下,极易与下伏奥灰强富水充水含水 层连通,发生严重突水淹井事故,甚至造成人员伤 亡^[11-12]。

导水通道导致的突水具有隐蔽性、突发性和破 坏性强的特点^[13],围绕煤层底板突水机理与导水通 道探查治理,相关学者做了大量的研究[1417]。董书 宁等[18]综合考虑华北型煤田煤层埋深、底板承受水 压与底板岩层结构组合等判识指标,确定了底板水 害治理模式的选择准则。赵庆彪^[19]在对邯邢矿区下 组煤开采受奥灰水威胁的基础上,指出隐伏构造的 隐蔽性和难以探知性是导致底板突水的根本原因, 提出通过近水平钻孔探查隐伏构造,并根据浆液的 漏失量判断隐伏构造的位置,但并没有总结出定向 钻进探查导水通道需遵循的原则。赵家巍等^[20]从开 釆扰动、隐伏构造、承压水作用角度分析,根据典型 突水矿井地质条件及突水原因分析,建立了含隐伏 导水通道的概化力学模型,进而推导出煤层底板渗 流路径的扩展规律。董书宁等^[21]从宏观上构建煤层 底板水害超前区域治理理论框架与技术体系,针对 隐伏导水通道提出了判识指标和判识方法,但未对 各定性指标钻遇不同导水通道时的变化进行详细描 述,没有进一步利用定量指标的变化提出导水通道 导水性大小的分级体系。郑士田^[22]在潘集二矿导水 通道重大突水事故中利用地面定向钻进技术对突水 点快速探查,准确查明了陷落柱形态并成功封堵导 水通道。王进尚等[23] 以递进导升及断裂力学原理为 基础,建立了断层递进导升简化断裂力学模型,得出 底板隐伏断层在采动影响下,随着工作面的不断推 进,当导升高度达到底板破坏区的最小安全距离时 会发生突水。顾大钊等^[24]指出,为了实现对矿井水 源、水量、通道等水文地质信息的准确勘探和预测, 有必要研究地下水赋存的准确探测技术。此外,物 探方法也被广泛应用在导水通道的探查[25-26],但主 要以探查大型导水通道为主,中小型垂向导水通道 的识别精度仍不够高。总的来说,以上工作尚没有 提出系统详细的导水通道类型识别体系,也未形成 能够表征通道导水性大小的分级体系。

通过分析导水通道的特征与地面区域探查技术 的优点,提出了导水通道精准探查的原则。分析探 查工程中岩屑、钻时、钻井液漏失量和压水试验透水 率等指标,形成系统的导水通道类型分类体系和导 水性分级体系,为快速准确识别导水通道提供了科 学依据,进而为煤层底板水害的治理提供指导。

1 导水通道探查设计原则

煤层底板导水通道主要有以下特征^[27-29]:①通 道类型多样,有岩溶裂隙型、断层型、陷落柱型及复 合型导水通道;②褶曲轴部、岩溶发育区域以及大型 断层附近有利于导水通道的发育;③一般位置不明, 常规物探手段难以准确探查;④底板导水通道所引 发的突水具有突发性、水量大、危害性强的特点。

由于煤层底板导水通道的以上特点,对其探查

方法要具有针对性和适用性,目前地面定向钻进是 快速准确探查导水通道最常用的手段。可以利用多 分支水平孔技术面状超前探查区域导水通道,再根 据导水通道类型与导水性的不同采取对应的注浆治 理工艺将其改造为隔水层段,以满足煤矿安全开采 需求^[30],导水通道探查设计应服从以下原则:

1)轨迹合理。在设计时应避开采空区及井下巷 道,避免影响对导水通道的判断。各钻孔设计方位 应尽可能与裂隙的优势发育方向斜交。

2)目标层合理。在物探基础上,探查目标层应 选择在导水通道最发育的含水层,层厚 6~10 m 为 宜且经过治理后能够满足突水系数的要求。

3)探查区域最大化。定向孔应设计多级分支对 区域内的导水通道进行全面探查,钻孔间距不大于 浆液扩散半径的2倍,既满足探查精度又保证治理 效果。

2 导水通道多元信息判识

结合地面定向钻进技术的特点,在探查导水通 道过程中揭露地层起伏或构造时,岩屑、钻时、钻井 液漏失量等直观指标和压水试验透水率、注浆参数 等验证性指标均与正常地层条件下有显著差异。结 合淮北矿区、淮南矿区、邢台矿区、黄河北煤田等工 程实践与理论分析^[8,18,31-32],将多源信息判识指标分 为定性和定量 2 大类,据此对导水通道进行分类,对 导水性进行分级,为准确识别各类导水通道提供科 学依据。

2.1 导水通道定性判识指标

2.1.1 岩屑指标

1) 岩屑变化标准曲线如图 1 所示, 在煤层底 板灰岩含水层顺层钻进过程中, 若岩屑在进尺超过 5 m 范围, 灰岩占比逐渐变化为其他岩性(泥岩、砂 岩等), 不调整轨迹继续钻进后又恢复灰岩岩性, 说 明揭露岩溶裂隙带或地层存在微小起伏, 定义该类

Fig.1 Rock debris standard curve

型为"岩屑-I"型。

2)在煤层底板灰岩含水层顺层钻进过程中,若 岩屑在进尺5m范围以内从灰岩突变为其他岩性, 通过调整钻孔轨迹后岩性中灰岩占比又恢复为 100%,且孔内无明显异响声,表明揭露的是断层构造, 定义该类型为"岩屑-Ⅱ"型。

3)在煤层底板灰岩含水层顺层钻进过程中,若 岩屑从灰岩占比由 100% 突变为泥岩、砂质泥岩、煤 等混杂岩性,甚至出现黄铁矿、方解石等煤层伴生物 质或钻井液失返,无法获得岩屑,同时孔内有明显异 响声,表明揭露陷落柱,定义该类型为"岩屑-Ⅲ"型。 2.1.2 钻时指标

由于不同岩石的硬度具有差异性,用单位长度 岩层所用的钻进时间可判别岩性的变化^[33]。我国华 北型煤田煤系地层主要有泥岩、砂岩、灰岩和煤层。 一般而言,煤层底板常见的岩层中,泥岩硬度低,砂 岩中等,灰岩最高,因此单位长度钻进泥岩钻时短、 砂岩次之,而灰岩钻时最长。钻时变化标准曲线如 图 2 所示。

1)与岩屑录井较为类似,在地层起伏条件下岩 性发生渐变,因此由灰岩地层到其他地层过渡时,钻 时录井表现为钻时逐渐减小,调整钻孔轨迹后钻时 快速恢复,钻时变化范围不大于 2 min/m,以此趋势 单次或反复出现,定义该类型为"钻时-I"型。

2)若钻时迅速减小但钻具并未放空(钻具放空 时钻时为0),持续钻进后钻时仍未有明显增加,调整 钻探轨迹后钻时缓慢恢复原速率,钻时变化范围大 于2min/m,定义该类型为"钻时-Ⅱ"型。

3)若钻时突然减小为 0, 说明钻具在该处放空, 该类型为"钻时-Ⅲ"型。

钻时与岩屑的变化可以直观地定性判识揭露通 道的类型,但对于不同通道导水性的分级需要定量 指标进行判识。

2.2 导水通道定量判识指标

2.2.1 钻井液漏失量

探查过程中揭露不同发育程度导水通道时钻井 液消耗量具有明显差别,如揭露陷落柱往往会发生 钻井液全部漏失现象^[18]。因此,钻井液漏失量可以 作为通道导水性判识的重要指标,揭露导水通道后 若钻井液漏失量 ≤30 m³/h,表明揭露的导水通道 空间有限,发育范围较小,该通道导水性定义为"漏 失-Ⅰ"型,如图 3 中①与④区域;若钻井液漏失量> 30 m³/h,甚至钻井液失返,表明揭露的导水通道较 "漏失-Ⅰ"型空间大,发育范围大,导水性好,该通道 导水性定义为"漏失-Ⅱ"型,如图 3 中②与③区域。

图 3 漏失量与透水率类型分区 Fig.3 Zone of leakage and permeability types

2.2.2 压水试验透水率

钻孔压水试验是将清水压入钻孔试验段,根据 一定时间内压入的水量和施加压力大小的关系,测 定岩体相对透水性的试验。通过压水试验可以测定 并评价岩体透水性能,从而分析岩体完整性和发育 程度,反映揭露导水通道的导水情况^[34]。压水试验 的结果用透水率的大小反映。

在揭露导水通道后进行压水试验,若压水试验 获得的透水率≤10 Lu,说明通道连通性差,通道导水 性定义为"透水-Ⅰ"型,如图 3 中①与②区域;若压 水试验获得的透水率>10 Lu,或压水压力为 0,表明 揭露的导水通道较"透水-Ⅰ"型通道连通性强,导水 能力好,通道导水性定义为"透水-Ⅱ"型,如图 3 中 ③与④区域。

2.3 导水通道分类体系

根据导水通道类型和导水性对其进行科学分类 是指导煤层底板水害治理的重要前提条件。前文总 结出岩屑、钻时、钻井液漏失量和压水试验透水率4 个主要判识指标,其中岩屑和钻时用于定性判识导 水通道的类型,钻井液漏失量和透水率用于定量确 定导水通道的导水性。

1)导水通道类型分类体系。结合 2.1 节中岩屑 和钻时指标提出目标含水层中通道类型的分类体系, 见表 1。

表 1 导水通道类型分类体系 Table 1 Classification system of water-conducting

channel types				
岩屑类型	钻时类型	导水通道类型		
岩屑−Ⅰ型	钻时−Ⅰ型	非导水通道		
岩屑−Ⅰ型	钻时−Ⅱ型	岩溶裂隙带		
岩屑−Ⅱ型	钻时−Ⅱ型	小型断层		
岩屑−Ⅱ型	钻时−Ⅲ型	大中型断层		
岩屑-Ⅲ型	钻时−Ⅱ型	半胶结陷落柱		
岩屑-Ⅲ型	钻时−Ⅲ型	未胶结或局部胶结陷落柱		

2)导水性分级体系。钻井液漏失量和透水率指标可以定量的对导水通道导水性进行分类,进而指导导水通道的治理。根据我国现阶段主要底板水害治理区揭露导水通道时以上指标的情况^[12,20],提出钻井液漏失量 30 m³/h,压水试验透水率 10 Lu 作为导水性分级的界限。据此对导水通道的导水性能建立双因素综合分级体系,见表 2。

表 2 导水通道导水性分级体系

Table 2 Classification of hydraulic conductivity of waterconducting channel

漏失量类型	透水率类型	导水性
漏失−Ⅰ型	透水-I型	一级
漏失−Ⅰ型	透水−Ⅱ型	二级
漏失−Ⅱ型	透水-I型	三级
漏失−Ⅱ型	透水−Ⅱ型	四级

一级导水性:漏失量 <30 m³/h,透水率 <10 Lu。 表现为钻井液漏失量小或无消耗,压水压力在短时 间内上升,说明通道发育空间有限,通道间连通性差, 导水性弱,不需要专门进行注浆加固。

二级导水性:漏失量≤30 m³/h,透水率>10 Lu。 表现为钻井液漏失量小,压水试验时水压上升缓慢, 说明通道发育空间有限,但通道间连通性好,导水性 一般,注浆加固过程中注浆材料选择水泥、粉煤灰等 常规材料即可。

三级导水性:漏失量>30 m³/h,透水率≤10 Lu。 表现为钻井液漏失量大,压水压力在短时间内上升, 说明通道发育空间大,但通道间连通性差,导水性一 般,注浆加固过程中注浆材料选择水泥、粉煤灰等常

规材料即可。

四级导水性:漏失量>30 m³/h,透水率>10 Lu。 表现为钻井液漏失量大或失返,压水试验水压上升 缓慢,说明通道发育空间大,且通道间连通性好,导 水性强,注浆加固过程中注浆材料除水泥、粉煤灰等 常规材料,还应加入粗砂等骨料,对导水通道进行快 速封堵。

3 工程示例

3.1 工程背景

华北型煤田某典型煤矿位于安徽省淮北市,东 部有较大的复背斜,中部为复向斜,井田构造较为复 杂。主采山西组6号煤层,煤层回采受到底板太原 组薄层灰岩含水层和奥陶系灰岩含水层威胁。煤层 底板共发育12层太原组薄层灰岩(L₁ ~ L₁₂),平均厚 度1.32 ~ 12.17 m,岩溶发育程度差异极大,Ⅲ631 工 作面曾发生过陷落柱突水,经物探解析区内发育多 条断层并存在底板低阻异常区,底板导水通道的存 在严重威胁着矿井的安全生产。

3.2 导水通道探查概况

结合第1节导水通道探查原则,利用地面定向 钻进技术针对III63采区部分工作面进行导水通道探 查。D1、D2、D3孔组实钻轨迹如图 4 所示。D4 孔 组实钻轨迹如图 5 所示。

3.3 导水通道识别与分类

3.3.1 导水断层

在 D1 孔组和 D2 孔组的探查过程中,根据判识标准识别出了导水断层 4条,与采掘过程中实揭的断层 SF1~SF4 位置基本一致,位置如图 4 所示。

以 D1 主孔为例进行分析。岩屑指标方面: D1 主孔于井深 739 m 开始沿 L₃ 灰岩含水层钻进, 灰岩 含量 100%, 自 1 020 m 岩屑由灰白色灰岩突变为灰 黑色灰岩且夹杂泥岩颗粒, 1 022 m 岩屑完全变为泥 岩, 调整钻孔轨迹, 1 058 m 岩性恢复为灰白色灰岩。 岩性变化期间没有发生异响。岩屑变化过程与图 1 中岩屑-II 型标准曲线基本一致, 据此判定 1 020 m 附近存在断层。

钻时指标方面:如图 6 所示, D1 主孔在从 739 m 进入太原组灰岩后正常钻时为 6~8 min/m, 钻进至 1 020 m 钻时突然加快到 2~4 min/m, 1 058 m 钻时 恢复到 6~8 min/m, 钻时变化期间没有发生钻具突 然放空的现象, 且钻时变化范围大于 2 min/m, 继续 钻进, 1 058~1 190 m 钻时为 6~8 min/m, 期间也没 有发生钻具突然放空的现象。钻时变化趋势与图 2

图 4 D1、D2、D3 孔组探查轨迹平面 Fig.4 Detection track of D1、D2、D3 hole groups

图 5 D4 孔组探查轨迹平面 Fig.5 Detection track of D4 hole groups

中钻时-Ⅱ型标准曲线基本一致。

根据以上分析, D1 主孔岩屑和钻时变化类型为 岩屑-Ⅱ型和钻时-Ⅱ型,结合表1定性识别出1020m 附近存在小型断层。

根据 2.2 节的判识指标, D1 主孔在 1 020 m 附近 钻探过程中钻井液漏失量为 2 m³/h,属于"漏失-I"型;压水试验透水率为 7.39 Lu,属于"透水-I" 型。根据表 2 确定出该处断层导水性为一级,是发 育空间有限,通道间连通性差的小型断层,不需要专 门进行注浆加固。继续钻进至终孔 1 190 m 岩性为 纯灰岩,未发生漏失。

3.3.2 导水岩溶裂隙带

在 D2 孔组和 D3 孔组的探查过程中, 根据判识标准识别出了导水裂隙发育带 2 处(图 4)。

以 D3-2 孔为例进行分析。岩屑指标方面: D3-2 孔自孔深 600 m 处沿 L₃ 灰岩含水层钻进, 灰岩含量 100%, 从 860 m 开始灰岩比例逐渐下降, 到 1 008 m 岩屑完全变为泥岩,在1026m岩屑中灰岩含量增加 至20%,至1060m恢复为纯灰岩。岩性变化期间没 有发生异响,继续钻进至终孔1200m仍为灰岩岩性。 岩屑变化过程如图7所示,与图1中岩屑-II型标准 曲线基本一致,判定1008m附近揭露岩溶裂隙带。

钻时指标方面:如图 7 所示, D3-2 孔从 600 m 进 入太原组灰岩正常钻时为 6~8 min/m, 钻进至 1 008 m 钻时突然加快到 3 min/m, 1 008~1 060 m 钻时 2~ 4 min/m, 调整轨迹后 1 061 m 钻时恢复为 6~8 min/m, 钻时变化范围大于 2 min/m, 钻时变化期间没有发生 钻具突然放空的现象。钻时变化趋势与钻时-Ⅰ型 判识标准基本一致。钻时变化趋势与图 2 中钻时-Ⅱ型判识标准基本一致。继续钻进至终孔 1 200 m, 钻时为 6~8 min/m, 期间也没有发生钻具突然放空 的现象。

根据以上分析, D3-2 孔岩屑和钻时变化类型为 岩屑-Ⅰ型和钻时-Ⅱ型,结合表1定性识别出1008~ 1026 m 范围存在岩溶裂隙带。结合 D3 孔组其他钻 孔情况, 判识 D3 孔组末端存在岩溶裂隙发育带。

根据 2.2 节的判识指标, D3-2 孔在 1 008 m 附近 钻探过程中钻井液未发生明显漏失, 为"漏失-I"型; 进行压水试验, 透水率为 0.355 Lu, 为"透水-I"型。 根据表 2 识别出该处通道导水性为一级, 是发育空 间有限, 通道间连通性差的岩溶裂隙发育带, 不需要 专门进行注浆加固。继续钻进至终孔 1 200 m 岩性 为纯灰岩, 未发生漏失。

3.3.3 导水陷落柱

某工作面回采至 135 m 时发生底板出水,水呈 浑浊状,稳定水量约 170 m³/h,推测工作面发育有隐 伏导水通道。在 D4 孔组探查过程中,根据判识标准 识别出 1 个导水陷落柱,位置如图 5 所示。

D4-1 孔自孔深 680 m 处沿 L₃ 灰岩含水层钻进, 灰 岩含量 100%, 正常钻时 7 min/m 左右, 钻进至 765 m 钻井液发生大量漏失, 漏失量大于 50 m³/h, 岩屑颗粒 大小不一, 岩性杂乱。钻进至 779 m 钻井液失返, 无 法获取岩屑。孔内发生"噼啪"声异响, 继续顶漏钻 进至 788 m 钻井液仍失返并发生塌孔卡钻现象, 起 钻准备注浆。779~788 m 钻时加快至 2 min/m, 未出 现钻具放空现象。D4-1 孔岩屑变化符合岩屑-Ⅲ型 标准曲线, 钻时变化趋势与图 2 中钻时-Ⅱ型判识标 准基本一致。判定 779~788 m 进入陷落柱边缘裂 隙带。

根据以上分析, D4-1 孔岩屑和钻时变化类型为 岩屑-Ⅲ型和钻时-Ⅱ型, 结合表 1 定性识别出 779~ 788 m 范围存在半胶结陷落柱。D4 孔组其他钻孔对 疑似陷落柱位置继续进行探查, 在附近位置同样发 生钻井液全漏与钻时突然加快的现象。

根据 2.2 节的判识指标, D4-1 孔在 779~788 m 钻井液发生失返, 为"漏失-Ⅱ"型; 进行压水试验, 压 力为 0, 为"透水-Ⅱ"型。根据表 2 识别出该处通道 导水性为四级, 是发育空间大, 通道导水性强的陷落 柱。治理过程中注浆材料除水泥外, 还应选用骨料 对其进行封堵。

4 结 论

1)根据煤层底板导水通道的特征,利用地面定 向钻进区域探查技术的优点,提出导水通道超前钻 探设计应服从轨迹合理、目标层合理和探查区域最 大化的原则。

2)确定了导水通道多元信息判识指标为:以岩 屑和钻时为主的定性指标与以钻井液漏失量和压水 试验透水率为主的定量指标。以此为基础提出了导水通道类型定性分类体系,又根据钻井液漏失量是 否大于 30 m³/h 和压水试验透水率是否大于 10 Lu 建立了导水性分级体系。

3)通过分析华北型煤田某典型煤矿的水文地质 条件与水害特征,结合探查设计原则,实施了该煤矿 部分工作面导水通道探查工程,利用导水通道判识 指标和多元信息识别技术在研究区内准确识别出4 条导水断层,2处岩溶裂隙发育带和1个导水陷落柱, 并确定了它们的导水性等级。

参考文献(References):

[1] 何满潮. 深部建井力学研究进展[J]. 煤炭学报, 2021, 46(3): 726-746.

HE Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society, 2021, 46(3): 726–746.

- [2] 秦 波. 基于ABAQUS的深部巷道围岩变形破坏规律及应用研究[D]. 青岛: 青岛理工大学, 2013: 1-2.
 QIN Bo. Deformation and failure regularity of deep roadway and application research based on ABAQUS [D]. Qingdao: Qingdao Technological University, 2013: 1-2.
- [3] LIN Gang, DONG Donglin, LI Xiang, et al. Accounting for mine water in coal mining activities and its spatial characteristics in China[J]. Mine Water and the Environment, 2020, 39: 150–156.
- [4] 曾一凡,刘晓秀,武强,等.双碳背景下"煤-水-热"正效协同 共采理论与技术构想[J].煤炭学报,2023,48(2):538-550.
 ZENG Yifan, LIU Xiaoxiu, WU Qiang, *et al.* Theory and tech-nical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China coal society, 2023, 48(2): 538-550.
- [5] 靳德武. 我国煤层底板突水问题的研究现状及展望[J]. 煤炭科 学技术, 2002, 30(6): 1-4.
 JIN Dewu. Research status and outlook of water outburst from seam floor in China coal mines.[J]. Coal Science and Technology, 2002, 30(6): 1-4.
- [6] 袁 亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业 大学学报(社会科学版), 2018, 20(1): 3-12.
 YUAN Liang. Strategies of high efficiency recovery and energy saving for coal resources in China[J]. Journal of China University of Mining & Technology(Social Sciences), 2018, 20(1): 3-12.
- [7] 李永军,彭苏萍. 华北煤田岩溶陷落柱分类及其特征[J]. 煤田地 质与勘探, 2006, 34(4): 53-57.
 LI Yongjun, PENG Suping. Classifications and characteristics of Karst collapse columns in North China coalfields[J]. Coal Geology Exploration, 2006, 34(4): 53-57.
- [8] 郑士田.两淮煤田煤层底板灰岩水害区域超前探查治理技术[J].煤田地质与勘探, 2018, 46(4): 142-146,153.
 ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in cola seam floor in Huainan and Huaibei coalfields[J]. Coal Geology & Exploration, 2018, 46(4): 142-146,153.

- [9] 陈忠辉, 胡正平, 李 辉, 等. 煤矿隐伏断层突水的断裂力学模型及力学判据[J]. 中国矿业大学学报, 2011, 40(5): 673-677.
 CHEN Zhonghui, HU Zhengping, LI Hui, *et al.* Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J]. Journal of China University of Mining & Technology, 2011, 40(5): 673-677.
- [10] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石 力学与工程学报, 2005, 24(16): 2803-2813.
 HE Manchao, XIE Heping, PENG Suping, *et al.* Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.
- [11] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年: 成因·机理·防治[J]. 煤炭科学技术, 2019, 47(11): 1-29.
 YIN Shangxian, LIAN Huiqing, LIU Deming, *et al.* 70 years of investigation on Karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J]. Coal Science and Technology, 2019, 47(11): 1-29.
- [12] 武 强,郭小铭,边 凯,等.开展水害致灾因素普查防范煤矿水害事故发生[J].中国煤炭,2023,49(1):3-15.
 WU Qiang, GUO Xiaoming, BIAN Kai, *et al.* Carrying out general survey of the water disastercausing factors to prevent the occurrence of coal mine water disasters.[J]. China Coal, 2023, 49(1): 3-15.
- [13] 张党育,蒋勤明,高春芳,等. 华北型煤田底板岩溶水害区域治 理关键技术研究进展[J]. 煤炭科学技术, 2020, 48(6): 31-36. ZHANG Dangyu, JIANG Qinming, GAO Chunfang, *et al.* Study progress on key technologies for regional treatment of Karst water dam-age control in the floor of North China Coalfield[J]. Coal Science and Technology, 2020, 48(6): 31-36.
- [14] 张玉军,张志巍,肖 杰,等.承压水体上煤层底板下位隐伏断 层采动突水机制研究[J].煤炭科学技术,2023,51(2):283-291.

ZHANG Yujun, ZHANG Zhiwei, XIAO Jie, *et al.* Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology, 2023, 51(2): 283–291.

[15] 王克勤. 隐伏陷落柱突水的快速治理技术研究[J]. 能源与节能, 2020(6): 126-127,166.

WANG Keqin. Research on the rapid treatment technology of water inrush from hidden collapse column[J]. Energy and Energy Cons-ervation, 2020(6): 126–127,166.

- [16] ZHANG Tianjun, PANG Mingkun, JI Xiang, *et al.* Dynamic response of a non-darcian seepage system in the Broken Coal of a Karst Collapse Pillar[J]. Mine Water and the Environment, 2021, 40: 713-721.
- [17] XU Zhimin, SUN Yajun, GAO Shang, *et al.* Comprehensive exploration, safety evaluation and grouting of karst collapse columns in the Yangjian coalmine of the Shanxi province, China[J]. Carbonates and Evaporites, 2021, 36(1): 1–12.
- [18] 董书宁,郭小铭,刘其声,等.华北型煤田底板灰岩含水层超前 区域治理模式与选择准则[J].煤田地质与勘探,2020,48(4): 1-10.

DONG Shuning, GUO Xiaoming LIU Qisheng, et al. Model and

selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration, 2020, 48(4): 1–10.

 [19] 赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭 学报, 2014, 39(6): 1112-1117.
 ZHAO Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J].

Journal of China Coal Society, 2014, 39(6): 1112-1117.

- [20] 赵家巍,周宏伟,薛东杰,等. 深部承压水上含隐伏构造煤层底 板渗流路径扩展规律[J]. 煤炭学报, 2019, 44(6): 1836–1845.
 ZHAO Jiawei, ZHOU Hongwei, XUE Dongjie, *et al.* Expansion law of seepage path in the concealed structural floor of coal seam in deep confined water[J]. Journal of China Coal Society, 2019, 44(6): 1836–1845.
- [21] 董书宁,刘其声,王 皓,等. 煤层底板水害超前区域治理理论 框架与关键技术[J]. 煤田地质与勘探, 2023, 51(1): 185-195.
 DONG Shuning, LIU Qisheng, WANG Hao, *et al.* Theoretical framework and key technology of advance regional control of water inrush in coal seam floor[J]. Coal Geology & Exploration, 2023, 51(1): 185-195.
- [22] 郑士田.地面定向钻进技术在煤矿陷落柱突水防治中的应用[J].煤炭科学技术, 2018, 46(7): 229-233.
 ZHENG Shitian. Application of ground directional borehole technology to control prevention karst collapsed column water inrush in coal mines[J]. Coal Science and Technology, 2018, 46(7): 229-233.
- [23] 王进尚,姚多喜,黄浩.煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J].煤炭学报,2018,43(7):2014-2020.
 WANG Jinshang, YAO Duoxi, HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society, 2018,43(7):2014-2020.
- [24] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报, 2021, 46(10): 3079-3089.
 GU Dazhao, LI Jingfeng, CAO Zhiguo, *et al.* Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society, 2021, 46(10): 3079-3089.
- [25] 温亨聪,刘宝宝,杨海涛.煤矿导水通道超前探查研究[J].煤炭 技术,2020,39(12):118-121.
 WEN Tingcong, LIU Baobao, YANG Haitao. Research on advanced exploration of coalmine water-conducting channels[J].
 Coal Technology, 2020, 39(12): 118-121.
- [26] 鲁晶津.工作面隐伏含水断层电透视异常特征模拟研究[J].煤炭科学技术, 2016, 44(8): 168-175.
 LU Jingjin. Simulation study on electrical penetration anomalous features of hidden water-bearing fault in working face[J]. Coal Science and Technology, 2016, 44(8): 168-175.
- [27] 孙运江, 左建平, 李玉宝, 等. 邢东矿深部带压开采导水裂隙带 微震监测及突水机制分析[J]. 岩土力学, 2017, 38(8): 2335-2342.

SUN Yujiang, ZUO Jianping, LI Yubao, *et al.* Micro-seismic monitoring on fractured zone and water inrush mechanism analys-

is of deep mining above aquifer in Xingdong coalmine[J]. Rock and Soil Mechanics, 2017, 38(8): 2335–2342.

- [28] 刘泽威,刘其声,刘 洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探, 2020, 48(2): 141-146.
 LIU Zewei, LIU Qisheng, LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration, 2020, 48(2): 141-146.
- [29] 郭惟嘉,张士川,孙文斌,等. 深部开采底板突水灾变模式及试验应用[J]. 煤炭学报, 2018, 43(1): 219-227.
 GUO Weijia, ZHANG Shichuan, SUN Wenbin, *et al.* Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining[J]. Journal of China Coal Society, 2018, 43(1): 219-227.
- [30] HU Weiyue, ZHAO Chunhu. Evolution of water hazard control technology in China's coal mines[J]. Mine Water and the Environment, 2021, 40: 334–344.
- [31] 陈军涛,张 毅,武善元,等.黄河北煤田顶底板定向注浆关键 技术[J].煤矿安全,2021,52(5):104-111.
 CHEN Juntao, ZHANG Yi, WU Shanyuan, *et al.* Key technology

of directional grouting in roof and floor of coal field in the north of the Yellow River[J]. Safety in Coal Mines, 2021, 52(5); 104–111.

- [32] DONG Shuning, ZHENG Liwei, TANG Shengli, et al. A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000–2019[J]. Mine Water and the Environment, 2020, 39: 3–12.
- [33] 薛 硕,吴吴晟,倪朋勃,等.钻时和扭矩变换方法在岩性变化 判断中的应用探讨[J].录井工程,2021,32(2):26-30.
 XUN Shuo, WU Haocheng NI Pengbo, *et al.* Discussion on application of drilling time and torque conversion method in lithology change identification[J]. Mud Logging Engineering, 2021, 32(2):26-30.
- [34] 王锦国,周志芳,黄 勇.基于压水试验资料的岩体透水性分形 特征研究[J]. 岩石力学与工程学报, 2003, 22(4): 562-565.
 WANG Jinguo, ZHOU Zhifang, HUANG Yong. Study on permeability of rock mass based on water pressure test data by using fractal theroy[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 562-565.