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next-generation sequencing test
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Ming-Jin Zou1 and Li-Li Wang1,2*

1Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China,
2Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan,
Shandong, China, 3Department of Urology, The First Affiliated Hospital of Shandong First Medical
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Background: Recently, metagenomic next-generation sequencing (mNGS) has

been used in the diagnosis of infectious diseases (IDs) as an emerging and

powerful tool. However, whether the complicated methodological variation in

mNGS detections makes a difference in their clinical performance is still

unknown. Here we conducted a method study on the clinical application of

mNGS tests in the DNA detection of IDs.

Methods:We analyzed the effect of several potential factors in the whole process

of mNGS for DNA detection on microorganism identification in 98 samples of

suspected ID patients by amplification-based mNGS. The amplification-based

and amplification-free mNGS tests were successfully performed in 41 samples.

Then we compared the clinical application of the twomNGSmethods in the DNA

detection of IDs.

Results: We found that a higher concentration of extracted nucleic acid was

more conducive to detecting microorganisms. Other potential factors, such as

read depth and proportion of human reads, might not be attributed to

microorganism identification. The concordance rate of amplification-based

and amplification-free mNGS results was 80.5% (33/41) in the patients with

suspected IDs. Amplification-based mNGS showed approximately 16.7% higher

sensitivity than amplification-free mNGS. However, 4 cases with causative

pathogens only detected by amplification-based mNGS were finally proved

false-positive. In addition, empirical antibiotic treatments were adjusted in 18

patients following mNGS testing with unexpected pathogens.
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Conclusions: Amplification-based and amplification-free mNGS tests showed

their specific advantages and disadvantages in the diagnosis of IDs. The clinical

application of mNGS still needs more exploration from a methodological

perspective. With advanced technology and standardized procedure, mNGS

will play a promising role in the diagnosis of IDs and help guide the use

of antibiotics.
KEYWORDS
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1 Introduction

Infectious diseases (IDs) remain one of the leading causes of

morbidity and mortality among all patient populations worldwide

(Nii-Trebi, 2017). A wide array of pathogens causes IDs; however,

most infectious syndromes present with indistinguishable clinical

manifestations. Accurate etiological diagnosis of IDs is always

complex and challenging in the clinic (Messacar et al., 2017;

Sinha et al., 2018). Conventional clinical microbiological assays

usually refer to culture, immunological diagnostic experiments, and

special serology tests (such as 1,3-b-D-glucan and galactomannan

tests). By contrast, nucleic acid tests of pathogenic microorganisms

take advantage of higher sensitivity and specificity (Peker et al.,

2018; Olech, 2022). Metagenomic next-generation sequencing

(mNGS) is a novel molecular test for unbiased full-coverage

pathogen identification, which enables the simultaneous detection

of all potential microorganisms in one experiment (Gu et al., 2021;

He et al., 2022). Compared with routine targeted molecular tests

such as polymerase chain reaction (PCR) and loop-mediated

isothermal amplification (LAMP), mNGS is more suitable for the

detection of pathogens without prior suspicion and can even be

applied for novel or rare microorganism discovery (Han et al.,

2020). Therefore, the mNGS test can provide more diagnostic

evidence, especially for patients with emerging severe diseases or

uncommon types of infection. To date, mNGS has been applied in

clinical diagnosis as a powerful supplement to routine tests in a

variety of IDs, including infections of the lower respiratory tract,

bloodstream, and central nervous system (Dong et al., 2022; Li et al.,

2022; Tong et al., 2022).

Though mNGS may serve as a new diagnostic tool to overcome

the shortcomings of conventional methods, the complicated

methodological variation limits its widespread use in the clinic

(Simner et al., 2018). The workflow of mNGS involves multiple

processes, including sample collection, optional host cell depletion,

nucleic acid extraction, library construction, unbiased sequencing,

bioinformatics analysis, and report interpretation. Without

standard procedures, the complex processes in the mNGS test are

accompanied by many problems in the final result interpretation

(Gu et al., 2019; Gaston and Sinner, 2022). There still needs to be

adequate awareness of whether the differences in the processes of
02
mNGS detections affect their clinical performance. This study

explored the clinical application of amplification-based and

amplification-free metagenomic sequencing in DNA detection of

IDs. The major difference in the methodology of amplification-

based and amplification-free mNGS lies in whether a step of PCR

amplification is necessary for the library construction (Beagan et al.,

2021; Hsieh et al., 2021). Therefore, higher library content could be

easily obtained in amplification-based mNGS than in amplification-

free mNGS to provide more extensive sequencing data. The signal

amplification also enlarges the reads number of the causative

pathogens with shallow content, which has a significant meaning

in the clinical diagnosis of IDs. However, it also brings possible

contamination from aerosols of amplification products and bias

toward specific sequences of certain lengths and GC content

(Huptas et al., 2016; Luan et al., 2021). In the present study, we

used mNGS for DNA detection on 98 samples from patients with

suspected IDs. Amplification-based and amplification-free mNGS

tests were compared in 43 of these samples to detect possible

pathogens, sensitivity, and specificity for the clinical diagnosis of

IDs. In addition, we analyzed the effect of several potential factors in

the whole process of mNGS on microorganism identification for

DNA detection.
2 Materials and methods

2.1 Sample collection and processing

This study was approved by the Qilu Hospital Ethics Committee

and was performed following the Declaration of Helsinki. A total of 98

samples from 98 patients with suspected IDs were collected at Qilu

Hospital of Shandong University (Jinan, Shandong Province, China)

between August 2021 and April 2022. The clinical samples included

peripheral blood, sputum, urine, abscess, joint, pleural, peritoneal,

cerebrospinal, and bronchoalveolar lavage fluid (BALF). Peripheral

blood samples were collected in EDTA or BCT tubes (BD) and

centrifuged at 1,900 × g for 10 min to isolate plasma. Samples were

stored at 4° and tested within 7 days of collection. Among them, 43

samples were detected using both amplification-based and

amplification-free metagenomic sequencing.
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2.2 Host cell depletion and DNA extraction

Host cell lysis was selectively performed on sanguinous or

purulent samples. Briefly, the sample was incubated with saponin

solution at a concentration of 0.025% at room temperature for 5

min, then adding 1 unit of Turbo DNase (Sigma) at 37 ° for 15 min.

The DNase digestion was stopped according to the manufacturer’s

instructions. Before DNA extraction, samples were pretreated at

standard procedures according to their various types. One milliliter

of plasma/cerebrospinal fluid (CSF) or 800 ml of other body fluid

was pipetted into sterile tubes. All types of samples except for

plasma were performed on bead bashing with shaking at 700 r.p.m

for 30 min. Then DNA was extracted with a TIANamp Micro DNA

Kit (Tiangen Biotech) per the manufacturer’s instruction. The

extracted DNA was quantified using Qubit 3.0 fluorometer

(Thermo Fisher).
2.3 Metagenomic next-generation
sequencing

The DNA library for sequencing was prepared by enzymatic

fragmentation (except for plasma-derived cell-free DNA), end

repairing, terminal adenylation, and adaptor ligation using the

NGS library construction kit (Enzymatics) according to the

manufacturer’s protocol. For amplification-based library

preparation, adapter-ligated DNA was subjected to PCR

amplification with the following programs: initiation at 98 ° for 1

min, then 10 cycles of 98 ° for 20 s, 60 ° for 15 s, 72 ° for 30 s, and

final extension of 72 ° for 5 min. For both methods, final DNA

libraries were cleaned using Ampure beads (Beckman) and eluted in

buffer EB (Qiagen). Qualified libraries were sequenced on Nextseq

550 sequencer (Illumina) per the manufacturer’s instruction. For

each sequencing run, a negative control was included. The raw data

was pre-processed using bcl2fastq2 software for the depletion of

low-complexity and low-quality reads and trimming of adapters.

Human sequence data were filtered according to GRCh38/hg38 by

bowtie2 software. The remaining reads were aligned to a reference

NCBI RefSeq database and in-house curated microbial genomic

data using Burrows-Wheeler Aligner software to identify species,

reads count, and relative abundance of microorganisms. Quality

control filters: total reads > 10 million, GC ratio < 45%, Q20 > 85%,

Q30 > 80% for each sample after sequencing. Following automatic

pathogen detection, provisional reports were reviewed by a

laboratory physician to interpret the results. In this study, the

mNGS tests were laboratory-developed. Before being used in

clinical testing, the performance of the mNGS tests was validated

in accuracy, repeatability, and limit of detection. The performance

validation was shown as follows: accuracy rate = 100%, coefficient of

variation of reads number < 50%, limit of detection = 103 copies/

mL. The absolute values of correlation coefficients were higher than

0.9 in the detection of samples with serial dilution ratios. More

details on the performance validation of the mNGS tests were

shown in the supplemental file.
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2.4 Other clinical or investigational tests
for pathogen validation

Real-time PCR tests for Aspergillus and Pneumocystis

japonicum were conducted using a multiplex PCR assay kit

(XABT). PCR tests for Pseudomonas aeruginosa and Escherichia

coli were conducted using CapitalBio multiplex PCR assay kit

(CapitalBio Technology). PCR tests for Mycobacterium

tuberculos i s , Human betaherpesv irus 4 , and Human

betaherpesvirus 5 were conducted using corresponding PCR assay

kits (DAAN GENE), respectively. The Xpert tests were performed

using GeneXpert MTB/RIF detection system (Cepheid). Besides,

conventional clinical assays in this study included culture, smear,

tuberculous infection of T cell spot test (T-SPOT.TB),

immunoassay, 1,3-b-D-glucan test (G test), and galactomannan

test (GM test).
2.5 Statistical analyses

Statistical analyses were performed using the SPSS Version 23

software (IBM). Continuous data were compared using the

Student’s t and Mann-Whitney tests. A comparison of paired

continuous data was done using the McNemar test. Qualitative

data were compared using the chi-square test. Calculations of

sensitivity and specificity and their corresponding 95% CIs were

performed by the Wilson-Brown test. A p-value < 0.05 was

considered significant.
3 Results

3.1 Patient and sample characteristics

This study was conducted among 30 females and 68 males aged

21 to 92 years (mean = 58.7). Among the patients, 58 (59.2%) were

immuno-compromised due to organ transplantat ion,

chemotherapy, or drug-induced immunosuppression, and 83

(84.7%) were on antibiotics at the time of sample collection. A

total of 98 samples were collected, including 25 peripheral blood, 19

BALF, 15 CSF, 12 sputum, 11 joint fluids, 7 peritoneal fluids, 4

abscesses, 3 pleural fluids, and 2 urine samples. All the samples were

detected using amplification-based mNGS, while 43 of them were

detected by amplification-free mNGS at the same time. The

characteristics of the patients and samples are listed in Table 1.
3.2 Genus distribution of pathogen
identification in mNGS and possible
affected factors

In the enrolled 98 samples, the detection rate of possible

pathogens was 68.4% (67/98). Fifty-four pathogens were

identified in total according to the amplification-based mNGS
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detection. Bacteria were the most commonly identified pathogens

(n=34, 63.0%), followed by viruses (n = 12, 22.2%) and fungi (n = 8,

14.8%). No parasite was detected in these samples by the mNGS

test. The most common bacteria, fungi, and viruses were Klebsiella

pneumoniae, Pseudomonas aeruginosa, Candida albicans,

Aspe r g i l l u s flavu s , and Human be t ahe rpe s v i ru s 5 ,

respectively (Figure 1A).

We further analyzed whether potential factors in the whole

process of mNGS for DNA detection could affect the
Frontiers in Cellular and Infection Microbiology 04
microorganism identification in the 98 samples using

amplification-based mNGS. The median concentration of the

DNA extracted and libraries was 0.52 ng/ml (range 0.14 ~ 127 ng/

ml) and 25.51 ng/ml (range 0.58 ~ 60.6 ng/ml), respectively. The
mean read depth was 56.95 M (range 12.76 ~ 157.53 M). Of all the

sample types (n > 5), the detection rate of possible pathogens was

highest in sputum (11/12, 91.7%), then in BALF samples (17/19,

89.5%) (Figure 1B). Of all the primary diseases (n > 5), possible

pathogens were more frequently detected in hematological (18/20,

90.0%) and respiratory diseases (19/22, 86.4%) (Figure 1C). We

found that the detection of possible pathogens was significantly

correlated with the concentration of DNA extracted (Table 2). It

was more likely that a higher concentration of extracted nucleic acid

was more conducive to the detection of microorganisms (p = 0.021).

However, other potential factors, such as read depth, GC ratio,

adaptor ratio, Q20, and Q30, had no significant differences in the

groups of pathogen detected and not detected (p > 0.05). Therefore,

under the corresponding quality control, these factors might not be

attributed to the microorganisms’ identification in mNGS. In

addition, there was also no significant correlation between the

proportion of human reads, library concentration, the

transformation efficiency of the library, amplification efficiency,

and pathogen detection (p > 0.05) (Table 2).
3.3 Consistency of pathogen identified in
amplification-based and amplification-free
mNGS

Out of the 98 patients, we compared the performance of

amplification-based mNGS to amplification-free mNGS in 43 cases

(Table 1). Among them, 2 samples failed for amplification-free mNGS

detection because of insufficient library yield. The median

concentrations of libraries were 40.39 ng/ml (range 20.10 ~ 274.72

ng/ml) and 134.90 pg/ml (range 24.86 ~ 1012.93 pg/ml) in amplification-

based and amplification-free mNGS, respectively. The read depth and

number of non-human data in amplification-based mNGS were

obviously higher than in amplification-free mNGS (p < 0.001). The

two methods had no significant difference in Q30 (Table 3). In these

cases, the detection rate of potential pathogens was 67.4% (29/43) in

amplification-based mNGS and 51.2% (21/41) in amplification-free

mNGS. The results of the two mNGS methods were completely

matched in 30 (73.2%) cases, partially matched in 3 (7.3%) cases,

andmismatched in 8 (19.5%) cases (Figure 2A). The agreement rates of

bacteria, fungi, and virus identification were 62.5% (10/16), 80.0% (12/

15), and 87.5% (7/8), respectively (Figure 2B). In the 8 discordant cases,

amplification-free mNGS tests showed negative results, while

amplification-based mNGS reported extra pathogens in all these

cases. These microorganisms involved Hepatitis B virus, fungi such

as Pneumocystis jirovecii and Aspergillus flavus, and bacteria such as

Stenotrophomonas maltophilia, Pseudomonas aeruginosa,

Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus

epidermidis, Escherichia coli, Citrobacter braakii, Klebsiella aerogenes,

and Enterobacter cloacae complex.
TABLE 1 Patient and sample characteristics.

Patient characteristics n = 98 n = 43

Age (years)

Mean (Range) 58.7
(21~92)

57
(23~91)

Gender, n (%)

Female 30 (30.6) 29 (67.4)

Male 68 (69.4) 14 (32.6)

Days hospitalized, median (Range) 14 (2~16) 13(0~60)

30-day mortality, n (%) 5 (5.1) 5 (11.6)

Immuno-compromised, n (%) 58 (59.2) 27 (79.4)

On empiric antibiotics at time of sample collection,
n (%)

83 (84.7) 34 (79.1)

Primary diseases, n (%)

Hematological diseases 20 (20.4) 15 (34.9)

Respiratory diseases 22 (19.4) 16 (37.2)

Neurological diseases 12 (12.2) 2 (4.7)

Gastrointestinal disease 11 (11.2) 2 (4.7)

Urological diseases 5 (8.2) 2 (4.7)

Cardiac disease 3 (3.1) 1 (2.3)

Endocrine disease 4 (4.1) 11 (2.3)

Other 10 (10.2) 4 (9.3)

Sample type, n (%)

Peripheral blood 25 (25.5) 21 (48.8)

BALF 19 (19.4) 14 (32.6)

CSF 15 (15.3) 2 (4.6)

Sputum 12 (12.2) 3 (7.0)

Joint fluid 11 (11.2) 0

Peritoneal fluid 7 (7.1) 1 (2.3)

Abscess 4 (4.1) 1 (2.3)

Pleural fluid 3 (3.1) 1 (2.3)

Urine 2 (2.0) 0

Host cell depletion, n (%) 43 (43.9) 7 (16.3)
BALF, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid.
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3.4 Comparison of diagnostic performance
between amplification-based and
amplification-free mNGS

Forty-one patients with both amplification-based and

amplification-free mNGS results were categorized into ID and

non-ID (NID) groups according to the final clinical diagnoses

with a retrospective and in-depth review. The overall agreement

of mNGS tests in the diagnosis of ID was 78.0% (32/41). Then we

compared the clinical performance of these two mNGS methods in

the diagnosis of IDs (Figures 3A, B, n = 41). We found that the

amplification-based mNGS test achieved approximately 16.7%

higher sensitivity than amplification-free mNGS (91.7% vs 75.0%,

p = 0.031). However, 4 cases with causative pathogens only detected

by amplification-based mNGS were finally proved false-positive

considering the results of routine culture/PCR tests, clinical

characteristics, and therapeutic effects of the patients

comprehensively. Even so, based on the results of this study,

there was no significant difference in specificity or negative

predictive value (NPV) between these two mNGS methods

(Figures 3C, D). Compared with routine diagnostic tests (culture

and PCR), both amplification-based and amplification-free mNGS

significantly improved the detection rate of causative pathogens in

ID patients (p = 0.001 and p = 0.006, respectively). In addition, the

two mNGS methods presented similar specificity and NPV with

routine diagnostic tests of IDs.
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3.5 Clinical impact of amplification-based
and amplification-free mNGS on
antibiotic treatment

Then we analyzed the true-positive samples to explore whether

the antimicrobial drug regimens changed following mNGS tests in

the clinic. Among the 24 ID patients detected by both mNGS

methods, 8 cases were prompted for specific pathogens by

conventional assays. Due to the shorter feedback time of mNGS

than conventional methods, empirical antibiotic treatments were

adjusted in 18 patients following the mNGS tests. Compared with

the amplification-free mNGS test, 4 more ID patients could be

detected with causative pathogens by amplification-based mNGS, 2

of which adjusted empirical antibiotic treatment (Figure 4).
4 Discussion

With recent technical development and lower costs, mNGS has

become increasingly available for pathogen identification in the

clinic. The main advantage of mNGS lies in its unbiased and

hypothesis-free detection. mNGS test has been reported to

achieve a high detection rate of causative pathogens in the

diagnosis of IDs (Tao et al., 2022; Wei et al., 2022). The detection

rate of suspected pathogens in mNGS varies from sample type and

the study cohort (Han et al., 2019). Our results showed that 68.4%
B C

A

FIGURE 1

Genus distribution of mNGS results in 98 suspected ID patients. (A) Genus distribution of bacteria, fungi and virus detected by mNGS. (B) mNGS
results of different sample types. (C) mNGS results of different primary diseases. BALF, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid.
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(67/98) of patients were detected with possible pathogens by mNGS.

Of all the sample types (n > 5), the detection rate was highest in

sputum (11/12, 91.7%), then in BALF (17/19, 89.5%) and blood

samples (20/25, 80.0%). After interpreting the mNGS results

considering the whole diagnosing and treating process, up to

40.8% (40/98) of patients were positive for causative pathogens in

mNGS tests and diagnosed with IDs. The positive rate for causative
Frontiers in Cellular and Infection Microbiology 06
pathogens was highest in BALF (15/19, 78.9%), then in sputum

samples (9/12, 75.0%). However, the positive rate of blood samples

decreased to 36.0% (9/25) (Supplementary Figure 1). The

microorganisms detected in mNGS, which were finally

interpreted as low or no pathogenicity, mainly included viruses

with low load in blood and possible primary colonization bacteria

from the upper respiratory tract. As a full-cover pan-pathogen

detection method, the clinical interpretation of mNGS requires a

comprehensive understanding of IDs and sufficient knowledge

of microbiology.

Due to the complicated methodological variation in the

processes of mNGS detection, the clinical application of mNGS is

confronted with more challenges in the practical aspects (Mitchell

and Simmer, 2019; Diao et al., 2022). Firstly, though with relatively

high sensitivity, the mNGS test could not detect any pathogens in

many ID patients (Qian et al., 2022). In previous clinical studies, the

sensitivities of mNGS tests ranged from 66.7% to 90% (Han et al.,

2020; He et al., 2022; Tao et al., 2022). The present study detected no

plausibly causative pathogen in approximately 16 (16.3%, 16/98)

patients that were finally diagnosed as IDs (Data not shown). Many

interferences may lead to a false-negative result in the mNGS test. In

the pre-analytic process, special sample characteristics such as

hemolysis and jaundice, inappropriate sampling timing, and

sample type are common causes of false negatives (Wang et al.,

2020). Furthermore, here we explored whether potential factors in

the whole analytic process of the mNGS test could affect the

microorganism identification for DNA detection. Among the

relevant parameters, we found that a higher concentration of

DNA extracted was more conducive to detecting microorganisms.

Sufficient content of nucleic acid could efficiently ensure the

detection of causative pathogens, especially for pathogens with

very low loads in the primary samples. Nevertheless, even with

adequate nucleic acid input, the high proportion of human host

DNA might mask the pathogen-derived sequences (Hasan et al.,

2016; Marotz et al., 2018). However, we found no obvious

correlation between the proportion of human reads and

microorganism identification in this study. In addition, other

parameters such as read depth or library concentration were not

significantly attributed to the pathogen detection in mNGS.

Actually, without standard procedures, the proposal design of

mNGS tests varies from the beginning of nucleic acid extraction.

Therefore, the interpretation of mNGS results in the clinic still

needs more considerations from a methodological perspective.

Secondly, another major limitation of mNGS is the possibly

higher rate of false positives in the diagnosis of IDs compared with

routine methods (Huang et al., 2020). In previous clinical studies,

the specificities of mNGS tests ranged from 59% to 81.4% (Han

et al., 2020; He et al., 2022; Tao et al., 2022). In this study, the mNGS

testing showed similar performance overall. In the mNGS test,

potential exogenous contamination of microbial reads may derive

from the reagents, consumables, environment, operations in the

experiment, and strong positive samples in the same run (Bal et al.,

2018; Zinter et al., 2019). Therefore, a template-free control is

recommended to undergo all steps of the mNGS workflow in each

run. In addition, signal amplification of specific pathogens in

bioinformatic analysis could also bring risks of false positives
TABLE 2 Possible factors affecting pathogen identification in mNGS.

Factors
Pathogen
detected

Not
detected

p-
value

Sample number 67 31 –

Nucleic acid concentration
(ng/ml), median (range)

0.66 (0.23~127)
0.37
(0.14~12.80)

0.021*

Library concentration (ng/
ml), mean (range)

27.33
(0.79~57.80)

21.57
(0.58~60.60)

0.084

Transformation efficiency
(%), median (range)

3936.08
(230.07~10181.80)

3464.29
(146.44~11000)

0.103

Amplification efficiency
(%), median (range)

38 (6~120) 43 (1~157) 0.789

GC ratio
(%), median (range)

42.80
(41.33~60.16)

42.88
(41.60~56.23)

1.000

Adaptor ratio
(%), median (range)

20 (13~22) 20 (15~22) 0.347

Read depth, mean (range)
58.79
(127.61~157.53)

53.05
(18.98~100.40)

0.300

Q20 (%), median (range)
98.58
(94.64~98.84)

98.51
(96.53~98.99)

0.485

Q30 (%), median (range)
96.42
(90.31~98.09)

96.26
(90.09~97.38)

0.268

Non-human read number
(M), median (range)

1.88 (0.28~23.33)
0.85
(0.21~31.38)

0.304

Proportion of human reads
(%), median (range)

97.27
(22.33~99.11)

97.28
(26.88~99.23)

0.682
*p < 0.05.
TABLE 3 Possible affecting factors in the process of amplification-based
and amplification-free mNGS.

Factors
amplification-
based mNGS

amplification-
free mNGS

p-
value

Sample number 43 41 –

Library
concentration
(pg/ml), median
(range)

40390
(20099~274720)

134.90
(24.86~1012.93)

<
0.001***

Read depth
(M), mean (range)

65.53
(18.53~157.53)

34.67
(10.33~94.17)

<
0.001***

Number of non-
human data (M),
median (range)

1.46 (0.21~26.16) 0.31 (0.10~7.42)
<
0.001***

Q30 (%), median
(range)

96.19 (88.82~97.03) 95.51 (93.97~97.20) 0.547
***p < 0.001.
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(Breitwieser et al., 2019). Notably, the PCR amplification process in

mNGS might be accompanied by the problems of aerosol

contamination or bias towards specific sequences of certain

lengths and GC content. In the present study, we compared the

clinical application of amplification-based and amplification-free

mNGS in IDs. We found that the two methods showed an

agreement in 80.5% (33/41) of samples, including 14 negative and

19 positive cases. Of the 8 discordant cases, 4 cases of bacterial

infections detected only by amplification-based mNGS were finally

proved false positive. Conversely, the amplification-based mNGS

test showed approximately 16.7% higher sensitivity (91.7% vs

75.0%) than amplification-free mNGS. The amplification-free

mNGS test was unable to detect Pneumocystis jirovecii, Aspergillus

flavus, and Klebsiella aerogenes in 3 blood samples, respectively, and

Hepatitis B virus in 1 peritoneal fluid. It was likely due to the higher

content of the library and more significant numbers of non-human

data obtained in amplification-based mNGS, which provided much
Frontiers in Cellular and Infection Microbiology 07
adequate microbial sequencing data for samples with low content of

pathogen-derived DNA.

In this study, the amplification-based and amplification-free

mNGS tests showed their specific advantages and disadvantages in

differentiating ID and NID patients. Among the 24 true-positive

samples clinically diagnosed as infectious diseases, eight were

positive in culture or PCR. The concordance rate of the mNGS

tests and culture/PCR was 100% in the eight samples, which showed

that mNGS might exhibit high accuracy in detecting culture or

PCR-positive samples. Furthermore, both methods could

significantly improve the detection rate of causative pathogens

compared with conventional diagnostic methods of IDs. There

were also some limitations in this study. The patient number of

the study cohort was relatively small, and the types of samples and

diseases were diverse. In addition, the comparison of the two mNGS

methods was also subject to more complicated factors than just the

simple process of PCR amplification. In summary, the clinical
B

A

FIGURE 2

Concordance between amplification-based and amplification-free mNGS tests. (A) Samples were categorized as matched, partially matched and
mismatched. Distribution of various infections in mismatched and partially matched groups were elucidated. (B) Detailed information of various
infections in matched group.
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B

C

D

A

FIGURE 3

Comparison of diagnostic performance between amplification-based and amplification-free mNGS tests. (A) Modified 2×2 contingency tables according to the
final clinical diagnosis. (B) The positive rates of mNGS and reference tests for ID and NID groups. (C) Distribution of various infections by two mNGS tests in ID
group. (D) True positive rate and false positive rate of amplification-based mNGS in the mismatched group. ID, infectious disease; NID, non-infectious disease.
FIGURE 4

Clinical impact of mNGS tests on antibiotic treatment of ID patients. (+/+) represents both amplification-based and amplification-free mNGS
positive, (+/-) represents only amplification-based mNGS positive, (-/-) represents both amplification-based and amplification-free mNGS negative.
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application of mNGS still needs further exploration from a

methodological perspective. So far, mNGS could not replace the

current standard of routine diagnostic methods but should instead

be used as an adjunct to these methods. mNGS could be considered

when the standard of routine testing is unrevealing and can be used

as a last resort effort to try to discern an infectious process.

Alternatively, it may be considered for critically ill or severely

immunocompromised patients where timely diagnosis is

imperative for improved outcomes. At this point, further evidence

is still required to establish its use in routine clinical care. With

advanced technology and standardized procedure, mNGS will play

a promising role in the diagnosis of IDs and, to a certain extent, help

guide the use of antibiotics.
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