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Human immunodeficiency virus type 1 (HIV-1) remains a significant challenge for

global public health as limited therapeutic options are available for HIV-infected

individuals receiving combination antiretroviral therapy. Additionally, individuals

with HIV-1/acquired immunodeficiency syndrome (AIDS) complications have

a reduced life expectancy. In recent decades, gene and cell-based strategies

have shown promise in achieving a functional cure for HIV-1 infection. The

outcomes of therapies with patients in Berlin and London have led to moderate

optimism for a highly effective HIV-1 treatment. This review categorizes current

strategies for HIV-1 treatment into RNA- and antibody-based therapies, cell and

genome editing approaches, and methods for eradicating latent reservoirs. These

findings demonstrate how the use of various anti-HIV-1 agents enhances our

understanding of HIV-1 infection and may provide important insights for potential

HIV-1 treatment.
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1 Introduction

Human immunodeficiency virus type 1 belongs to the family Retroviridae of the genus
Lentivirus. Two main types of the human immunodeficiency virus (HIV) exist, with HIV-1
being the first one discovered and the most common type found globally, whereas HIV type
2 is primarily found in West Africa (1). The viral genome (approximately 9.8 kb) consists
of nine open reading frames that encode 15 proteins and govern all processes involved
in the virus life cycle, including receptor binding, membrane fusion, reverse transcription,
integration, protease processing, and virus assembly (2). The HIV-1 RNA genome contains
structural genes (pol, gag, env), regulatory genes (tat, rev, vpr, nef ), and accessory genes (vpu,
vif ) (3, 4).

Scientific advancements suggest that the threat of an HIV pandemic to public health
may be eliminated by 2030, but currently, HIV-1 remains one of the most significant
problems for global public health (5). HIV-1 causes acquired immunodeficiency syndrome
(AIDS), and HIV-infected patients often suffer from opportunistic infections, cardiovascular
and neurological diseases, as well as AIDS-related illnesses such as Hodgkin’s disease,
non-Hodgkin’s lymphoma, lymphocytic leukemia, and other malignant and non-malignant
complications that shorten the lifespan (4, 6, 7).
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Approximately 79.3 million people have been infected with
HIV-1 since the beginning of the pandemic, and approximately
50% of them have died from AIDS, according to statistics from
the World Health Organization. In 2020, an estimated 1.5 million
people were newly infected, and around 690,000 people died from
illnesses related to AIDS, according to the Joint United Nations
Programme on HIV/AIDS (UNAIDS) (8).

Existing methods for treating HIV-1 can be divided into two
types: sterilizing and functional. The sterilizing method involves
the complete elimination of replicative HIV-1 proviruses from the
human body. The functional method, on the contrary, aims to
control the replication of HIV-1 in the long term and maintain
a normal level of CD4 + T cells, despite the presence of hidden
HIV-1 reservoirs (hidden integrated provirus) and the absence of
antiretroviral therapy (9–11).

Ideally, preventive HIV vaccines should prevent HIV infection
by ensuring sterilizing immunity via stimulation of high titers
of broadly neutralizing antibodies (12). Although such sterilizing
agent is still far from available, several efforts have been made
toward achieving functional cure of HIV-1 infection.

Currently, the standard treatment for HIV infection, known
as combination antiretroviral therapy (cART), involves regular
administration of a combination of antiretroviral drugs that block
various stages of the virus replication cycle (13). Standard cART
can greatly reduce the amount of virus in the blood of HIV-infected
patients (viremia) to levels that cannot be detected and turn a fatal
infection into a chronic disease that can be medically controlled
(4, 14).

Despite the remarkable efficacy of cART, there are still several
issues: (a) cART is unable to eradicate the hidden reservoir;
(b) patients rely on daily and strict adherence to the treatment
regimen; (c) potential side effects after negative drug interactions
may occur; (d) cART can lead to drug resistance and limited
therapeutic options in multi-class resistant HIV infection; (e) in
some countries, this therapy is economically inefficient, and some
individuals have limited access to antiretroviral drugs; and (f) there
are limitations due to social issues, such as "social stigma." Also, this
therapy has side effects, such as chronic inflammation, CVD, frailty,
etc. (15–17).

Therefore, in addition to cART, other promising approaches
to achieving functional cure of HIV-1 have been studied in recent
decades. Initially, gene therapy methods used RNA interference
(RNAi) to suppress the expression of viral mRNA or host
mRNA required for HIV-1 infection. This approach allowed
for the development of sequence-specific agents to compensate
for viral mutations, significantly expanding the number of
therapeutic options beyond cART (18). With the passage of
time, the technologies underlying the initial clinical trials of
gene therapy for HIV-1 have been complemented by alternative
gene therapy options such as the utilization of programmable
nucleases. Clustered Regularly Interspaced Short Palindromic
Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems,
when compared to other programmable nucleases, provide
enhanced efficacy and simplicity, and the capacity to execute
multiplex genome engineering to target different stages of the
virus’s life cycle (19, 20). The combination of CRISPR-Cas9 therapy
and cell therapy based on CCR5-depleted hematopoietic stem cells
(HSCs), in an attempt to recreate the CCR5132 mutation, could be
a valuable addition to the existing spectrum of cART (21).

The purpose of this review is to investigate certain important
techniques for treating HIV-1 using approaches in cell and gene
therapy. We will provide a brief overview of the molecular
mechanisms utilized in therapeutic approaches to combat HIV-
1, commonly used anti-HIV drugs, viral and cellular targets for
HIV therapy, and the current challenges in the use and delivery of
anti-HIV agents. HIV-1 treatment strategies have been categorized
into RNA therapy, antibody-based therapy, cell therapy, genome
editing strategies, and methods used to eradicate hidden reservoirs
(Figure 1). Taken together, these findings demonstrate how the
implementation of various agents advances our comprehension of
HIV-1 infection and can offer significant insights for future HIV-1
treatments.

2 RNA therapeutic strategies

2.1 RNA interference

The canonical pathway of RNA interference is initiated by
the recognition and cleavage of intracellular long double-stranded
RNA (dsRNA) intermediates or endogenous microRNAs (miRNA)
into small interfering RNAs (siRNAs) of 21-23 nucleotides by
the endoribonuclease Dicer (22, 23). The Argonaute protein,
specifically Ago2 in mammals, plays a crucial role in the RNA-
induced silencing complex (RISC) as an important component.
One of the siRNAs becomes loaded onto Ago2, and RISC then
utilizes the guide strand of the loaded siRNA to identify and
cleave the mRNA that is complementary to it in the middle of the
siRNA:mRNA duplex. Meanwhile, the non-targeted (passenger)
strand of the loaded siRNA is eliminated (24, 25). Formation of
the miRNA:mRNA duplex leads to the degradation of the mRNA
fragment by cellular exonucleases (26). Besides, the canonical
RNAi pathway functions in the cytoplasm, RNAi can also cause
suppression of gene-specific transcription in the nucleus (18).

Anti-HIV-1 RNAs can be separated into two main groups
according to their molecular targets: one group uses antisense
mechanisms to target viral RNA or host factors, while the
other group consists of RNA decoys and aptamers targeting
proteins and acting as steric or competitive inhibitors (27, 28).
There are different strategies to combat HIV-1 RNA, which use
various active agents. Some of these agents include antisense
oligonucleotides, small nuclear ribonucleoproteins U1, ribozymes,
endoribonucleases, RNA aptamers, small RNA duplexes such as
microRNAs, siRNAs, substrate RNA Dicer, short hairpin RNAs, and
Ago/shRNAs (29–31).

Synthetic mature siRNA or short shRNA can be used to
create artificial dcrRNA, which can be transfected into the cell,
or synthetic miRNA can be synthesized, which can be expressed
intracellularly from a transgenic construct (32). It is important
to note that there are no miRNAs that are currently known to
have anti-HIV properties, although some research groups have
explored potential molecular candidates for this purpose (33). The
therapeutic strategy known as "block and lock" also involves a more
in-depth discussion of long non-coding RNAs (lncRNAs).

The most frequently used engineered miRNAs consist of two
21-nucleotide RNA strands with a two-nucleotide overhang at
the 3′ end of every single chain (27). Previous studies indicate
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FIGURE 1

Current strategies for HIV-1 treatment.

that dsRNA designs that require Dicer cleavage are more efficient
than conventional siRNAs that have been developed based on
sequence (34, 35). For the effective functioning of siRNA RISC,
it is necessary to choose the right guide chain, as well as to
ensure high thermodynamic stability of the siRNA ends, optimal
G/C content and the absence of immunostimulating sequences in
order to lower the chance of side effects (occurrence) (36–38).
short hairpin RNAs (shRNAs) are synthetic oligonucleotides that
contain a siRNA sequence followed by a 9-nucleotide loop and a
sequence complementary to the siRNA sequence (39, 40). After
being exported from the nucleus to the cytoplasm by Exportin-5,
shRNA triggers the mechanism of RNAi. Additionally, it has been
observed that shRNAs are 10 times more active than siRNA (41).
A database named HIVsirDB is available for free and can predict the
effectiveness of miRNAs against HIV-1. It encompasses 26 different
strains of HIV and 28 different types of cells (42). Hammerhead or
hairpin ribozymes can be constructed with ease, and unlike RNAi
molecules, they do not depend on the presence of cellular factors
such as Exportin-5, Drosha, or Dicer for processing or cleaving
complementary RNA target sequences. They are also similar to
aptamers in this regard (43). MazF endoribonuclease, derived from
Escherichia coli, cleaves single-stranded RNA at 5′-ACA positions,
providing an attractive tool for targeting HIV-1 RNA (31).

Single-stranded aptamers inhibit the activity of HIV-1 by
directly interacting with the key proteins required for the virus
replication cycle. They are generated from random sequence RNA
libraries by an iterative selection and amplification procedure
known as SELEX (Systematic Evolution of Ligands by EXponential
enrichment) (44). In addition, there are ASOs, which are also

single-stranded synthetic nucleic acids that bind to mRNA through
base pairing and either induce degradation of their targets through
an RNase-dependent mechanism or they can interrupt mRNA
splicing or translation through a mechanism of steric blocking (45).

U1 snRNP, an important element of the splicing mechanism,
is considered as a possible agent for the cure of the HIV-1 gene
due to its composition of seven main proteins (SNRPB, SNRPD1,
SNRPD2, SNRPD3, SNRPE, SNRPF, and SNRPG), which are
assembled into a heptamer ring to prevent polyadenylation (4).

2.1.1 Cellular and viral targets
Potential targets for therapy include structural genes (Pol,

Gag, Env), regulatory genes (Tat, Rev, Vpr, Nef), and accessory
genes (Vpu, Vif). These sites, including non-translated long
terminal repeats (LTRs), may be targeted at spliced and non-spliced
transcripts (18). Most strategies rely on manipulating RNAi to
target viral transcripts in the cytoplasm, but the HIV-1 promoter
can also be targeted to suppress gene transcription, leading to
epigenetic silencing of the integrated provirus (26, 46).

Experiments have proved that siRNAs and shRNAs can
be employed to target virtually all HIV-1 RNAs either upon
viral uncoating or upon transcription from the proviral DNA
(Figure 2B) (47, 48). The use of shRNAs or siRNAs that
are complementary to the target gene or LTR can lead to
significant reduction in the expression of viral proteins, thus
ensuring protection of HIV-1 sensitive cells, including CD4 + T-
cells, macrophages, monocytes and dendritic cells, through post-
transcriptional gene silencing (49–52). For instance, inhibition
of anti-HIV-1 miRNA transcription, constructed against gag and
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env in the viral genome (Figure 2A), has been detected in CD4-
positive cells (3, 53). Moreover, hammerhead ribozymes targeting
the HIV U5 and pol regions have been developed for the protection
of Jurkat T-cell lines and PBMCs against both laboratory strains
and clinical isolates of HIV (48). An RNA hammerhead ribozyme
(Rz2) targeting overlapping vpr and tat ORFs of HIV-1 has
also been developed and tested in macrophages, T-cell lines, and
primary T-cells (54). The HIV-1 encapsidation signal (9) is also
an attractive target for gene therapy based on antisense RNA (55).
Moreover, HIV genes encoding structural proteins (Gag, Pol, Nef,
Tat) have often been considered as targets for RNAi-based gene
therapy in clinical trials (26). Several early trials modified the viral
regulatory proteins Rev and Tat to act as transdominant negative
factors, in other words, these proteins blocked the export of viral
RNA from the nucleus of infected cells (56). Zhu et al. conjugated
an anti-CD4 aptamer with an siRNA molecule to target HIV-1
protease mRNA (Figure 2B) (57).

Targeting host cell cofactors required for HIV-1 infection is
a promising strategy for RNAi therapy because these endogenous
genes are less susceptible to mutational escape compared to viral
genes, which are prone to error-prone reverse transcription (18).
However, cellular targets must be carefully evaluated as these
molecules affect both cell growth and function, and also because
they may be significant for transmitting cell signals that are not
obvious in vitro (26).

The binding of the viral protein gp120 to the cellular receptor
CD4 and its co-receptors CCR5 and CXCR4 initiates membrane
fusion and subsequent cell entry by HIV-1 (58). Therefore, the
CD4 receptor, and the entry coreceptors CCR5 and CXCR4 have
been considered attractive targets for shRNA therapy to prevent
the initiation of HIV-1 infection and inhibit the fusion of the
host cell membrane with HIV-1 (see Figure 2B) (28, 39). For
example, one of the effective shRNAs targeting the R region
of HIV-1 LTR was validated in a humanized mouse model in
combination with shRNA targeting CCR5 mRNA (54). Previously,
Eekels et al. used multiple shRNAs targeting 30 human genes
involved in HIV-1 replication and identified TRBP, ALIX, and
AGT6 as the most suitable genes for long-term inhibition of
HIV-1 replication with minimal toxicity in shRNA-transduced T
lymphocyte cells (59). Several human proteins (cyclin T1, SOCS1,
and RNA helicase DDX3), including co-factors of viral integrase
(LEDGF/p75, importin-7, and chaperonin), elongation factors (P-
TEFb, Tat-SF1, and SPT5), were also mentioned as promising
candidates for RNA-based therapy (Figure 2B) (18).

2.1.2 Current status
Studies have shown that effective gene suppression is achieved

only with a small number of RNA agents (13). RNAi may exhibit
imperfection in RNA-RNA duplex formation, leading to off-target
effects on unrelated mRNA (60). Additionally, if the passenger
strand of the RNA molecule is loaded into RISC instead of the guide
strand, it can cause RNAi side effects (37, 61).

Currently, the main problem is the delivery of RNA substances
(as well as DNA plasmids, mini-circles and therapeutic transgenes)
to infected cells or HIV-sensitive ones. Delivery systems play
a fundamental role in facilitating the cellular uptake of RNA
molecules and protecting them from nucleases degradation,
thus minimizing the need for any chemical modifications that
may alter the specificity and functionality of RNA (62, 63).

Despite the successful application of anti-HIV-1 RNAi in vitro,
current delivery methods have not been able to translate these
achievements to in vivo conditions. Therefore, non-specific
delivery methods or ex vivo methods such as electroporation,
viral vectors, and nanoparticles are often used (18). Other
methods of delivering target RNA include tissue-specific adeno-
associated viruses (AAVs), nucleic acid aptamers, antibodies, and
nanoparticles composed of cationic polymers (such as poly-L-
lysine, polyethylenimine, polyamidoamine chitosan) and lipids.
However, each of these approaches has its own challenges that
require consideration in order to achieve optimal delivery solutions
(18, 64).

2.2 RNA-vaccines

An mRNA vaccine is a synthetic vaccine that uses a DNA
template to transcribe mRNA, which in turn triggers an immune
response to the target pathogen. mRNA vaccines can be designed
to express almost any antigen sequence, and the innate immune
system’s ability to recognize viral RNA sequences enables the
effective elicitation of an innate response along with the generation
of cytokines and chemokines, that are crucial for a successful
adaptive immune response (65, 66). It has also been shown
that COVID-19 vaccines based on the mRNA platform have
excellent immunogenicity and are able to stimulate B-cell and T-cell
responses (67).

mRNA vaccines can be divided into several types, including
self-amplifying mRNA vaccines (SAM), DC-mRNA vaccines, non-
replicating mRNA vaccines, and mRNA vaccines against cancer.
SAM vaccines create auxiliary equipment for the formation of
double-stranded RNA and intermediates for replication and other
products, and do not require mechanisms for replicating their
RNA after introduction into cells (68, 69). They require a less dose
to elicit a better immune response compared to non-amplifying
RNA vaccines. SAM vaccines can be engineered by single-stranded
positive-sense alphaviruses and delivered as virus replicon particles
(VRP). mRNA is delivered through different strategies such as
electroporation, cationic liposomes, or cationic Nano emulsion,
and it carries the code for an RNA-dependent RNA polymerase
together with the immunogen, which collectively contribute to a
lasting immune response. The immune response can be measured
by the number of Th1-type T cells generated after vaccination
(70). All mRNA vaccines share common structural elements: cap,
5′UTR, 3′UTR, ORF, and poly(A) tail. They are generated through
enzymatic transcription of a DNA template, and to create a vaccine,
it is just required to change the sequence encoding the target
antigen (71, 72).

2.2.1 Delivery to cells
Delivery of mRNA vaccine into antigen-presenting cells (APCs)

is a limiting factor for vaccine efficacy (71). mRNA vaccine
against HIV, containing free mRNA, faces challenges in stability
preservation and penetration into the cytoplasm of APCs during
transportation. Various strategies have been employed to enhance
the delivery of HIV mRNA vaccine into APCs (73). The method
of vaccine administration influences the immune response and
mRNA uptake. Utilizing different strategies, such as mRNA
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FIGURE 2

Human immunodeficiency virus type 1 (HIV-1) genome (A) and RNA-based inhibitors targeting various stages of the HIV-1 replicative cycle (B).
Scissors illustrate RNA molecules. The RNAs can specifically bind to the mRNA encoding the host (pTEFb, tat-SF1, SPT5, cyclin T1, CCR5, LEDGF,
Importin-7, Chaperonin) factors or HIV genes and regulatory regions (gag, rev, pol, tat), then the target mRNA degradation is initiated. Pol,
polymerase enzyme; Gag, group-specific antigens; Env, envelope surface glycoprotein gp160, precursor; Tat, trans-activator of transcription; Rev,
regulator of expression of virion proteins; Vpr, viral protein R; Nef, negative regulatory factor; Vpu, viral protein U; Vif, viral infectivity factor; PR, pol
includes protease; RT, reverse transcriptase; IN, integrase. Gag consists of MA, matrix; CA, capsid, NC, nucleocapsid; p6 domains (not shown). The
Env spike protein has a surface part (SU) and transmembrane (TM) part. CCR5 is known as C-C chemokine motif receptor type 5.

delivery into dendritic cells (DCs) or through nanoparticle carriers,
can improve mRNA penetration into APC cytoplasm and induce
a high level of immune response, holding promise for the
development of effective HIV vaccines (74–76).

2.2.2 Current status
Recent advancements in mRNA technology have led to

increased utilization of vaccination experiments against HIV using
improved delivery methods. However, clinical trials conducted on
therapeutic vaccines against HIV-1 did not demonstrate significant
clinical impact, despite achieving safety and efficacy in eliciting an
immune response (77, 78).

2.3 CRISPR/Cas9

A variety of CRISPR-Cas systems have been identified, though
only a select few have been leveraged as instruments for scientific
research (20). Class 1 systems deploy a complex of multiple Cas
proteins, while Class 2 systems utilize a single effector Cas protein
(79, 80). The CRISPR-Cas9 system is most commonly utilized
within human cells. The two-component RNA system, made up
of CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA),
has been streamlined into a single guide RNA (sgRNA) that aligns

with a specific target sequence (81). For Cas9 to bind and cleave
DNA, a protospacer adjacent motif (PAM) sequence is necessary; it
lies downstream from the target sequence and results in either blunt
or staggered double-strand breaks (DSBs) (20). Either homology-
directed repair (HDR) or non-homologous end joining (NHEJ) can
be employed for gene modification within mammalian cells (82).

A significant objective in combatting HIV-1 using the
CRISPR/Cas9 strategy is to reduce or disable intact proviral
sequences of HIV-1 (4). The fusion protein deficient in Cas9
(dCas9), in combination with sgRNAs targeting specific effector
domains of DNA sequences, has been employed for gene
activation or suppression of transcription (Figure 3) (83). Genome
engineering supports the advancement of cell therapy, including
a universal approach to introduce both CAR transgenes and
CRISPR-Cas9 ribonucleoproteins (RNPs) into primary human
T cells using engineered lentiviral particles (84). Additionally,
a dual gene therapy strategy has been developed, involving
a conditional suicide gene and CCR5 knockout, to overcome
limitations associated with CCR5 knockout alone and receptor
switching (85).

2.3.1 Cellular and viral targets
The CRISPR/Cas9 strategy targets LTR as one of the most

commonly used sites for removing HIV-1 proviral DNA (Figure 3)
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FIGURE 3

CRISPR/Cas approaches to attack HIV-1 or host-specific genes participating in the life cycle of the virus. LTRs, long terminal repeats; sgRNA, single
guide RNA; PAM, protospacer adjacent motif; DSB, double stranded break; NHEJ, non-homologous end joining; KO, knockout; SAM, synergistic
activation mediator; KRAB, Krüppel-associated box repressor; dCas9, nuclease-deactivated Cas9. NHN and RuvC are Cas9 catalytic domains that
cut single-stranded DNA at the target site. MS2 protein via designed aptamers binds to the dCas9/VP64 fusion protein and involves additional
activation domains (HS1 and p65).

(86). Moreover, the CRISPR/Cas9 mechanism can also be used
to remove regulatory genes of HIV-1, including tat and rev (87).
For example, Herskovitz et al. developed a collection of gRNAs
targeting the consensus sequence of the HIV-1 viral transcription
regulator, tat (88). The integrated HIV-1 provirus is similarly
controlled by an internal antisense lncRNA expressed from the nef
gene located at the 3′ end of the viral genome, which makes the
promoter region in nef a useful target for targeted CRISPR/Cas9
deletion or gene suppression (89). The CRISPR/Cas9 system can
inhibit virus replication by targeting host factors and coreceptors,
including CCR5 and CXCR4 (Figure 3) (90). In one of these
approaches, HSCs are extracted from patients and transfused
after CRISPR/Cas9 treatment through deletion in receptor genes.
Bogerd et al. used a Cas9-based approach to induce the expression
of restriction factors APOBEC3G (A3G) and APOBEC3B (A3B) in
human cells (91). The CRISPR knockout screening approach can
be used to identify new host genes involved in the virus replication
cycle (92).

For the "shock and kill approach," it was shown that the use
of dCas9 aimed at LTR, together with the synergistic activator
mediator (SAM) system, allowed to increase the activity of LTR-
controlled gene expression. After that, the research team analyzed
possible non-targeted effects leading to changes in transcription
profiles associated with the use of dCas9-SAM. The authors
demonstrated that of the tested genes, only two were significantly

activated. Despite the fact that this study was limited by the small
size of replication and the fact that further trials in other cell models
(and possibly in vivo) would be required, this was the first evidence
indicating the safety of this strategy for possible future therapeutic
applications (Figure 3) (93).

dCas9 fused with the KRAB transcriptional repression domain
was adopted to inhibit provirus activation. It was demonstrated
that when LRA cells were stimulated, HIV-1 expression decreased
by up to 60% compared to the control after delivery of specific
gRNAs designed to direct dCas9 to the LTR promoter regions.
This effect was associated with the presence of repressive epigenetic
modifications, which indicates the possibility of developing a
CRISPR system for the "block and block" approach (Figure 3) (94).

2.3.2 Current status
Although off-target effects are detected in all genome editing

systems, the high occurrence of unpredictable off-target effects in
the CRISPR/Cas9 technology is a serious drawback (95). Other
limitations of this strategy include the requirement for a short PAM
near the target locus, the complexity of packaging into AAV vectors
due to the large size of the most popular, Streptococcus pyogenes,
Cas9 (SpCas9), and the fact that CRISPR-induced DSBs often
provoke apoptosis, leading to DNA damage and cellular toxicity
(96–98). A sterilizing cure approach would require delivery of Cas9
and gRNA to all HIV-1 reservoir cells in vivo, but unfortunately,
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the effectiveness of Cas9 and gRNA delivery appears suboptimal
(99). Additionally, immune reactions against the non-human Cas9
protein can complicate this strategy for in vivo HIV inactivation
(91). Gene therapy and stem cell transplantation are high-cost
and need advanced technologies. Nevertheless, recent studies show
that the target gene may be gag. Thus, a study by Trisha H.
Burda et al. found that SIV-induced rhesus monkeys receiving
AAV9 CRISPR-Cas9 and two gRNAs were detected on SIV regions
known as EBT-001. It was shown that there are signs of editing of
SIV proviral DNA in all major viral reservoirs. EBT-001 was well
tolerated in various dosages without obvious toxicity (when taking
higher doses, a short-term increase in the level of liver enzymes
was observed, which later returned to normal). Overall, this study
confirms the potential of AAV9 delivered by CRISPR-Cas9 with
dual gRNA, similar to EBT-001, in strategies aimed at eradicating
HIV (100).

2.3.3 Supplement on genome editing methods
In recent years, the three main gene editing tools that

use nucleases–transcription activator-like effector nucleases
(TALENs), zinc finger nucleases (ZFNs), and CRISPR/Cas9–have
been widely used in studies on the treatment of HIV/AIDS
(83). These methods include inhibiting host factors, weakening
transcription and replication of HIV-1, inactivating HIV LTR,
suppressing proviral HIV expression, and eliminating latent HIV-1
provirus (4). A previous clinical trial involving 12 HIV-infected
patients showed that introducing ZFN-modified autologous
CD4 + T cells containing mutated CCR5 is a safe approach to
combatting HIV (101). TALENs, in turn, are also site-specific
nuclease-based tools used for first-generation genome editing
approaches with greater safety than ZFNs (4). According to
previous results, CRISPR/Cas9 is a more effective genome
editing method for HIV treatment compared to ZFN and
TALEN approaches (4, 102). Most CRISPR-based tools have
undergone intensive review (103–106). A comparison of different
nuclease-based genome engineering platforms has also been
conducted (107).

3 Antibody based therapies and
vaccines

T-cells, including CD4 + and CD8 + cell populations, and
B-cell lymphocytes are very important members of the adaptive
immune system. During the infectious response, CD8 + T cells
are necessary for the direct destruction of infected cells, while
CD4 + T cells promote the induction of CD8 + T cells and
support the maturation of highly specific antibodies produced
from B-lymphocytes (108, 109). B-cells undergo iterative cycles
of proliferation, immunoglobulin mutation, and antigen selection
for the generation of highly specific antibodies in specialized
immune cells in the secondary lymphoid organs (germinal
centers or GCs) (70, 108). After an antigen challenge, GCs
activate the B-cells by antigen-specific B-cell surface receptors
(BCRs) (110). Each GC generally focuses on one specific antigen
and can produce a limited amount of antigen-specific B cells
(108). This process contrasts with the early B-cell responses to
antigens in the extrafollicular spaces that result in short-lived

antibody-producing cells (plasmablasts) secreting non-mutated
antibodies (70, 111). Eventually, the B-cells depart the GC
and might turn out to be either plasmablasts, or memory
B-cells (112).

The antibody response to the viral Env, Gag, and Pol proteins,
along with detection of p24 protein and viral RNA, can be used
for tracking the early stages of HIV-1 progression (113). B-cells
respond to HIV-1 infection for the first time within ∼1 week
after viral RNA can be detected in the plasma and the immune
response is initially observed in the form of virion-antibody
immune complexes; subsequently free IgM antibodies to gp41
have been detected (114, 115). Protective neutralizing antibodies
(NAbs) develop slowly and do not appear until 8–12 weeks after
HIV-1 infection (114, 116). NAbs are produced against viral
Env to neutralize the particular viral strain infecting the patient
(autologous virus) (117). Only years after HIV-1 infection, could
cross-reactive antibodies, able to neutralize heterologous viral
isolates, frequently be found (114, 116). HIV-1-specific antibodies
can also interact with the Fc gamma receptors (FcγRs) that have the
potential to inhibit HIV-1 spread via antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis
(ADCP), and antibody-dependent cell-mediated virus inhibition
(ADCVI) (116, 118).

In fact, the development of a safe and effective protective
vaccine against HIV-1 remains one of the highest priorities for
global public health and the best long-term tool for controlling
HIV-1 transmission (119). Preclinical and clinical trials have
evaluated various approaches to creating HIV-1 vaccines, but the
results have generally been unsatisfactory (120). Since vaccines
were invented, five basic approaches have been used in the
development of viral vaccines; however, the two most effective
approaches (attenuated and inactivated organisms) have not been
proven optimal for HIV vaccine development (12, 121, 122).
Further, HIV vaccine development has shifted direction toward
cellular immunity to induce HIV-specific cytotoxic T-lymphocyte
(CTL) production. These cells recognize HIV epitopes on the
cell surfaces and arrest the proliferation of HIV infection
through apoptosis or the secretion of chemokines and cytokines,
subsequently interfering with the next rounds of viral replication
(12, 70). For instance, one of the approaches to T-cell-based
vaccine development involves the induction of non-classical Major
histocompatibility complex E (MHC-E) restricted CD8 + T-
cell responses by a modified cytomegalovirus (CMV) vector
(123, 124). Other approaches to vaccine development have used
DNA plasmids and other viruses as vectors to deliver viral
genes (lentiviral vectors, integrase-defective lentiviral vectors,
recombinant adenovirus type 5 vectors) (12, 125, 126). Although
DNA vaccines are safe because DNA plasmids stay episomal and
act as expression vectors produced by peptides that can induce
cellular immunity, they are not able to induce reliable T-cell
levels or antibody responses (12). To boost the immune responses
during DNA vaccination, the use of molecular adjuvants is also
being explored (127, 128). Some approaches have used mRNA
as a vector, also resulting in the induction of polyfunctional
antibody responses (70, 127). A vaccine platform of mRNA
incorporated into lipid nanoparticles (mRNA-LNPs) has lately
been characterized for infectious diseases, notably for SARS-CoV-
2 and for HIV (129). The strength of this approach, in addition
to the positive aspects of using mRNA (e.g., Env–Gag mRNA
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designed by Zhang et al. in vaccine development, lies in the
induction of both follicular helper cells (Tfh) and B-cells in the
GC response (67, 120). Currently, tests are being conducted on
various animal models, and the data obtained are hopeful for
future use in humans (68, 70). However, it may be years before
the most important scientific contribution made by the response
to the SARS-CoV-2 epidemic can be applied to HIV vaccine
research (130).

Vaccine development efforts are focused on the induction of
neutralizing antibodies (NAbs), in particular broadly neutralizing
antibodies (bNAbs) that cover 50–90% of transmitted viruses
(131, 132). The serum of a small percentage of individuals
(10–30%) living with HIV contains bNAbs, which has provided
evidence that a bNAb-inducing vaccine is possible (118, 133).
Broad neutralizing antibodies (bnAbs) neutralize multiple
HIV-1 strains by targeting conserved epitopes of the virus
(Figure 4) (134). The classification of HIV-1 reactive bnAbs
includes naturally occurring and engineered antibodies (137).
Moreover, there are twenty types of broadly neutralizing
antibodies (bnAbs) that have been divided into six categories
according to the specific Env residues they interact with.
There’s also another class of bnAbs that targets the gp41
membrane proximal external region (MPER) (135, 136).
bsAb molecules can also be separated into a class of IgG-
like molecules and a class of non-IgG-like molecules (137).
Additionally, first-generation antibodies (b12, 2G12, 4E10,
and 2F5) and second-generation bnAbs (PG9, PG16, CH01,
PGT145, PGT121, PGDM1400, 10-1074, 10E8, VRC01,
3BNC117, and CH103) with improved neutralizing ability
and flexibility in technological manipulation have been
classified (138, 139).

The first bnAb (b12) was discovered in 1991, and in
recent years, there has been an increase in the number (more
than 100) of available bnAbs through the introduction of
new technologies like Env-specific sorting of individual B-cells,
proteomic deconvolution, antibody cloning and high-throughput
neutralization assays (118, 138, 140, 141). New technologies enable
the construction of antibodies with two, three or four different
binding sites on a single molecule (142). Thus, bsAbs are designed
either to recognize two different HIV-1 env epitopes through
the single-stranded variable fragment (scFv) of two independent
bNAbs or to interact with cellular receptors with one scFv and
one HIV-1 env epitope with another scFv. Bispecific (bsAbs)
and trispecific bNAbs (tsAbs) represent a promising alternative
to bNAb combination therapy because they recognize multiple
targets on the viral Env protein (137). Some information about
bnAbs is freely accessible on a website known as the Broadly
Neutralizing Antibody Electronic Resource (bNAber), which is
aimed at motivating researchers to design a reliable HIV vaccine
(143). On the other hand, clinical and preclinical studies, for
instance, the RV144 vaccine efficacy study, highlighted non-
neutralizing antibodies (nNAb) that have no neutralizing activity
in vitro, but may play an important role in protecting against viral
infection in vivo (123, 124). Several human monoclonal antibodies
with broadly neutralizing activities have been observed (F105, b12,
2F5, and 4E10) that are specific to the CD4+ T-cell binding site
on gp120 or gp41 and demonstrate antiviral protection against
different HIV clades (A, B, C, and D) in vitro or in experiments
with neonatal macaques (144, 145). BG505 SOSIP is a well-studied,

almost native recombinant HIV envelope trimer (Env) that holds
promise as part of a successive anti-HIV immunogenic scheme for
the induction of bnAbs (123, 146).

3.1 Viral and cellular targets

Effective HIV-1 vaccines depend upon T-cell-mediated
immunity (CMI) focused on rather conserved viral proteins, which
include Gag and Pol and/or non-neutralizing antibodies targeting
the virus envelope, to prevent cell-to-cell transmission of the virus
(147, 148). HIV-1 virions contain about 10–14 trimeric envelope
glycoproteins (Env) on its surface, which mediate the penetration
of the virus into host cells (149). Every HIV envelope spike protein
(Env) comprises three external gp120 subunits that are non-
covalently bound to three gp41 subunits attached to the membrane
(Figure 4) (128). The Env glycoprotein is strongly glycosylated,
and a dense shell of host-derived N-glycans protects the epitopes
of the viral protein from antibody interactions (150). The new
antibody group has been helpful in identifying a highly structured
epitope present only on the trimeric envelope and including the
conserved V2 and V3 regions that are symbolically represented in
Figure 4 (116). Xu and group designed highly potent trispecific
antibodies by combining the specificity of PGDM1400, VRC01,
and 10E8v4 to interact with the membrane-proximal external
region (MPER)-, CD4-, and V1/V2-binding sites (Figure 4) (151).
bnAbs are thought to break through the glycan protection of the
HIV trimer env in five regions, each of which is probably involved
in the env function: the CD4 binding site (CD4bs), the variable
loop 2 (V2)-apex, the V3-glycan, the glycoprotein (gp)41/gp120
interface, and the membrane proximal external region (MPER)
(Figure 4) (152–154). It is believed that the apical region V2 is
participating in maintenance of the metastability of the spike
Env protein (155). The V3 glycan site is formed partially by the
co-receptor site CCR5 and partially by the surrounding masking
glycans (156). The interface region for glycoproteins gp120 and
gp41 includes the fusion peptide (FP) and the cleavage site of gp160
into gp120 and gp41 (152, 157). In turn, MPER is part of the fusion
machinery (152, 158).

3.2 Restrictions

Firstly, it is improbably that the HIV vaccine will be sufficient
to stop a persistent HIV-1 infection (12). Secondly, HIV infection
gradually disrupts the body’s immune response, which is necessary
for the effectiveness of the vaccine (159). The ever-changing
antigenic variations of HIV represent the third major problem for
vaccine development (139). For, instance, based on whole-genome
sequences, HIV is classified into three major groups: major (M),
outlier (O), and non-M/non-O (N), and their prevalence varies
according to geographical regions (12). Nine of the HIV subtypes
belonging to group M form HIV subtypes or "clades" (A–D, F–H,
J–K), which differ by ∼25–35% in their env sequences and ∼15%
in their gag sequences (12, 123, 160). Moreover, the evolution of
HIV-1 in infected individuals begins shortly after infection (123).
New approaches to creating multivariate vaccines will probably be
needed. The development of antibody production techniques is also
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FIGURE 4

Broadly neutralizing antibodies target the HIV trimer Env in five regions: the CD4 binding site (CD4bs), V1/V2-binding sites, V3-glycan, glycoprotein
(gp)41/gp120 interface, and the membrane proximal external region (MPER).

strongly linked to the cost (138, 161). Other key difficulties are the
delivery and stability of antibodies for HIV therapies.

4 Cell therapies

T-lymphocytes in the immune system can identify invading
pathogens when they’re exposed to the pathogen’s specific
immunogenic component, known as an antigen (162, 163). T-cell
activation during infection happens through the T-cell receptor
(TCR), which includes the CD3 receptor and either the CD4 or
CD8 co-receptors. The CD4 receptor is utilized by helper T-cells to
activate their ability to release cytokines, while cytotoxic T-cells use
the CD8 receptor to enhance their capacity to kill cells (164). Once
activated, T-cells start to multiply quickly, but after the infection
is resolved, the population of activated T-cells, which was formed
by clonal expansion, reduces and ultimately undergoes apoptosis
(165). After this phase, a small group of memory cells remains.
These cells can recognize the same antigen, quickly expand clonally,
and differentiate to trigger a powerful and specific adaptive immune
response (143, 151, 166). During ripening in the thymus, T cells that
recognize their own peptides are destroyed to prevent autoimmune
reactions (167). Additionally, the cytotoxic T-lymphocyte (CTL)
response is a crucial aspect of host immunity against HIV infection
(168, 169). It is generally believed that in elite controllers (a rare
set of individuals who can control HIV replication for extended
periods without anti-HIV treatment), the control of the virus is
mostly mediated by the CD8 + T-cell response (170–172). CTLs
also have the ability to direct the lysis of infected cells via major
histocompatibility complex class I (MHC-I) molecules. However,
HIV can potentially decrease the surface expression of MHC-I on
infected cells to avoid this immune response (173, 174).

Chimeric antigen receptor (CAR) is an engineered TCR known
to bind with a specific antigen, and after introducing CARs
into T-lymphocytes, CAR T-cells can be obtained. The CAR
transgene is a synthetic chimeric receptor comprising an scFv
of the antibody and T-cell signaling domain(s), whereas another
approach includes using a TCR transgene derived from a native

TCR that has been partially modified to increase its affinity for the
target antigen (Figure 5) (175). For most CAR T-cell therapies,
cells are extracted from the peripheral blood mononuclear cells
(PBMCs) of the patients by apheresis or leukapheresis (164). This
sample represents a diversity of immune cells, including B-cells,
macrophages, monocytes, natural killer (NK) cells, and T-cells. The
first stage of preparation requires the identification of a subset of
T-cells from the PBMCs, and this can be achieved by magnetic
bead selection or selective expansion (176, 177). Anti-CD3 or a
combination of anti-CD4 and anti-CD8 antibodies can be used for
T-cell selection (178). Activated T-cells are then grown in culture
to achieve the required number of cells and transduced with the
CAR cassette (179). Gene delivery can be accomplished by stable
integration of the cassette into the genomic DNA of the host T-cell
assisted by viral vectors (e.g., lentiviral vectors) and by non-viral
transfer or non-integrating transient delivery (180). Afterward, cell
material is collected and cryopreserved at -120◦C, and then the
sample is returned to the clinic for intravenous infusion into the
patient (Figure 5) (164). As an example, CD8 + T cells are harvested
from HIV patients and transduced with CAR genes; after testing
specificity and efficacy against HIV in vitro, functional HIV-specific
CAR T cells are re-injected into patients to destroy HIV-infected
cells (17).

Hematopoietic stem cells (HSCs) perform two important
functions: their ability to self-renew and the ability to differentiate
into various hematopoietic lines, including lines that have the
ability to kill HIV-infected cells (T-cells and NK-cells) (181).
Hematopoietic stem cell transplantation (HSCT) has become a
promising candidate for achieving a functional cure for HIV,
mainly due to the clinical experience of the Berlin patient and
the London patient (182–184). Both patients received HSPCs from
donors with a naturally occurring 32 base pair deletion in the
CCR5 gene corresponding to the second extracellular loop of the
receptor (CCR5132), resulting in a non-functional gene product
that is not expressed on the cell surface due to frameshift and early
termination (185, 186). The stable viral remission in these patients
after cART interruption is presumably explained by a combination
of a conditioning regimen that provided donor chimerism,

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2023.1259995
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1259995 November 23, 2023 Time: 17:39 # 10

Sorokina et al. 10.3389/fmed.2023.1259995

FIGURE 5

Allogeneic and autologous blood stem cell transplantation.

destruction of host latent reservoirs during donor cell engraftment
and almost full substitution of the host immune system by
homozygous CCR5132 donor cells (187–189). While the positive
outcomes of these two patients’ therapies constitute a significant
landmark in the effort to cure HIV, this method includes several
limitations (risk of morbidity and mortality, limited prevalence of
CCR5132 donors, HIV mutation via a CCR5- to CXCR4 tropism
shift) (16, 190). These limitations make allogeneic HSCT unfeasible
for the vast majority of people living with HIV (187). HIV-specific
CAR expression from genetically modified autologous HSPCs has
the potential to bypass the limitations of the allogeneic HSCTs.
Previously CD4ζ based CAR-modified HSPCs were differentiated
into functional T-cells as well as NK cells in vivo in humanized
mice, moreover, these cells are HIV-resistant (191). In addition,
NK-cells can identify and eliminate HIV-infected signals using
the mechanism of antibody-dependent cell-mediated cytotoxicity
(ADCC) (191, 192). Novel genetically modifying HSPCs to express
CD4 CAR are long-lived and proliferate in multiple tissues relevant
to HIV infection and cancer (lymphoid germinal centers, brain, and
gastrointestinal tract) for almost 2 years and have demonstrated
multiphasic engraftment in macaques (187). All commercially
accessible adoptive T-cell therapies have been autologous (cells
derived directly from the patient), as the allogeneic approach has
been shown to be complex to design through early HLA typing and
stem cell technology (193).

In early clinical trials the first generation of CAR constructs
had a single intracellular signaling domain from the CD3ζ of the
TCR, fused to either the extracellular CD4 region (CD4ζ-CAR),
or to the scFv of isolated monoclonal antibodies (scFv-CAR) (6,
181, 194). The second generation also has a CD28 signal, which
promotes cell proliferation and cytokine secretion (195). The third
generation of CARs supplemented the 4-1BB and OX40 regions
to favor cell survival and to extend the persistence of CAR T-cells

in vivo (Figure 6) (196). The latest generation, recognized as T-cells
redirected for Universal cytokine-mediated destruction (TRUCKs),
has been developed lately and carries specific cytokine signals that
make CAR T cells resistant to the immunosuppressive effects of
the tumor microenvironment (TME) (196, 197). However, when
employing a panel of HIV-specific (CD4-based) CARs expressing
distinct intracellular domains (ICDs) it was shown that only HIV-
resistant, 4-1BB-stimulated CAR4 T-cells restrict HIV infection
in vivo (198).

The 2016 study included 28,992 patients. The average number
of CD4-T cells at the beginning of treatment was 249 cells/ml. The
average observed CD4 count after 6, 9, and 12 months was 382,
402, and 420 cells/µl. The two main factors explaining the change
in CD4 count after 6 months were the stage of AIDS and the CD4
count at the beginning of cART. The median observed CD4 count
at 6, 9, and 12 months was 382, 402, and 420 cells/µl. The two main
factors explaining the change in the number of CD4 after 6 months
were the stage of AIDS and the number of CD4 at the beginning of
cART (199).

Additionally, with the discovery in the last few years of
many potent bNAbs against HIV, CAR T therapy relying on
bNAbs is thought to be a promising strategy for the treatment
of HIV infection (200). Direct comparisons between bNAb- and
CD4ζ-based CARs, or between bNAbs, have illustrated certain
distinctions in breadth and potency and indicate that at least some
antibody-derived scFVs may be more suitable than others for CAR
T-cell administration (194).

4.1 Viral and cellular targets

Compared to CAR-T cells targeting tumor antigens such as
CD19 and CD20, both of those are similarly expressed in healthy
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FIGURE 6

T-cells with CARs or transgenic TCRs targeting viral antigens displayed on HIV-infected cells. Immunoreceptor tyrosine-based activation motifs
(ITAMs) are signaling motifs for adaptive immune responses regulation. CAR, chimeric antigen receptor; TCR, T-cell receptor; HLA, human leukocyte
antigen.

tissues, HIV-1-specific CAR-T cells target HIV-1 Env, that is
expressed only on the surface of virus-producing cells (200). There
are also two shared strategies for targeting HIV, one of which
involves CD4 to target cells expressing HIV Env, while the second
strategy involves aspects to prevent HIV infection of CD4-based
CAR-T cells (6). Scholler et al. stated that, in general, CD4 receptor-
based CAR T-cells exhibit a half-life of longer than 16 years with
a stable engraftment level and safety (201). A recent study has
demonstrated that primary T-cells transduced with a multispecific
CAR (targeting the CD4-binding site gp120 and the co-receptor
gp120 binding site) can potently inhibit cellular HIV infection
by up to 99% in vitro and >97% in vivo (17, 202). To avoid
identification of CD4-CARs HIV-1 as target cells, CD4-CARs
are engineered to co-express HIV-1 fusion inhibitors, such as
membrane-bound peptide C or peptides from the heptad repeat-
2 domain of gp41 (203, 204). Alternative constructs have been
developed for co-expression of shRNA targeting CCR5 and the
LTR sequence to inhibit HIV-1 entry and to facilitate viral RNA
degradation (205). The other strategy for avoiding infection of
CD4ζ CAR T-cells is to modify the antigen-recognition part of
the CAR molecule (181). Also, in vitro data showed that V1/V2-
specific cars outperform CAR targeting CD4bs glycan and V3 on
Env SIV. The transfer of anti-SIV CAR T cells to SIV-infected
animals gave neither protection nor viral control. Unlike CAR-T-
cell cancer therapy, CAR therapy against HIV requires a greater
improvement in viral control.

Despite the recent FDA (Food and Drug Administration)
approval of CAR-T cell therapy for B-cell leukemia and extensive
research efforts in the field of cancer immunotherapy, about seven
clinical trials of CAR-T cells against HIV have been initiated, five of
which are currently in active status (NCT03240328, NCT04648046,

NCT03617198, NCT01013415, NCT05077527), one completed
(NCT03980691) and one in status unknown (NCT04863066) while
clinical trials have previously confirmed the safety and efficacy of
CAR-T cells against HIV validity of carcinotherapy.1

4.2 Restrictions

T-cells with CARs against the HIV envelope can increase
the adaptive immune response, but are ineffective in controlling
viremia (194). Another possible obstacle to CAR-therapy of HIV
infection is an extremely low level of expression of the viral
envelope on the surface of HIV-infected cells, moreover, the
development of CAR-T-cell therapy is associated with a number
of problems, including weak cell expansion, short vitality in vivo
and significant side effects in patients (cytokine storms and
neurological toxicity) (206). Strategies for improving the function
and persistence of CART cells have been thoroughly researched
for CARS based on CD19 and other tumor-specific antigens. In
addition, research supporting the concept has shown the HSPCs are
capable of lifelong engraftment and ensure the proper development
of CAR-T cells in vivo (191). Although stem cell-based CAR-T-cell
therapy against HIV has proven to be possible and effective in a
humanized mouse model, there are limitations in the use of this
model, which include a deficiency of the lymphoid structure and
a graft vs. host reaction (207). Difficulties with the application of
the CAR antibody are related to possible immunogenicity and the
design of anti-idiotypic antibodies that can inhibit their activity
(208). There is a risk that CAR may likewise attack healthy cells

1 https://www.clinicaltrials.gov
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expressing the same or identical target antigen, that is recognized
as an "off-target" effect (17).

5 Eradication of latent reservoirs

5.1 Establishment of HIV-1 reservoirs

Latent HIV reservoirs are the central barrier preventing a
HIV-1 cure. A large number of cell types, including CD4 + T-
cells, macrophages, and dendritic cells, are susceptible to HIV-1
infection, but CD4 + memory T-cells (primarily memory T-cells
or TCMs and transient memory T-cells or TTMs) are widely
considered as typical latent reservoirs for HIV-1, because of
their active and resting physiological state, and the dynamic
process of transforming effector cells into memory cells (209–
211). HIV-1 reservoirs share a broad spectrum of anatomical
localizations, including the lymph nodes, gut-associated lymphoid
tissue (GALT), liver, genital tract, and brain (212). For instance,
astrocytes and microglia are considered to be macrophage-like cells
in the central nervous system (CNS) that are possible reservoirs of
viruses in the brain (192). Viral DNA has also been found in HSCs
from patients undergoing cART, which may indicate that these
cells are involved in the persistence of HIV-1 (213). Some latent
regions are shielded from cART penetration (the brain, testicles,
and lymph node B-cell germinal centers) and present additional
challenges to HIV treatment (214, 215). There is a lot of data
from in vitro, in vivo, and animal models, but there is still no gold
standard for defining the size of the latent reservoir (216). However,
along with other techniques, digital droplet PCR assays can now
detect intact, cell-associated, full-length genomic HIV DNA with
increased sensitivity (217–219).

Human immunodeficiency virus type 1 reservoirs are a highly
heterogeneous pool of infected cells that can be in different states of
viral activation: (a) deep latency, in a state where no viral RNAs are
expressed, (b) low transcriptional activation, when small amounts
of viral RNAs are produced but not translated, or (c) dynamic
viral activation, in this case there is a high level of expression of
HIV-1 RNAs and a proportion of these RNAs are later translated
into protein (193). The maintenance of the latent reservoir exists
via clonal expansion of HIV-infected cells or through infection of
long-term reservoir cells with both intact and defective proviruses
(212, 220). It is suggested that the expansion of latently infected
cells could be propelled by survival advantage and homeostatic
cytokines such as IL-7. Moreover, latently infected CD4 + T-cells
with antigen-specific TCR can divide in response to recurring
exposure to antigens (220). Two primary models are proposed to
clarify the latent infection of memory T-cells: the pre-activation and
post-activation latency models (216). The pre-activation latency
model posits that resting CD4 memory T-cells are infected with
HIV-1 before being reactivated by environmental stimuli. However,
this model might be inefficient due to the instability of the pre-
integration complex, characterized by non-integrated linear and
cytoplasmic forms of the viral genome with a half-life of about 1–
6 days (221–223). The post-activation model suggests that activated
CD4 T-cells are infected by HIV-1 while returning to a resting state,
which results in the integration of the proviral genome into the
host cell. This avoids creating favorable conditions for optimal viral

TABLE 1 The main latency reversing agents (LRAs) able to eradicate the
latent HIV-1 reservoirs and latency promoting agents (LPAs) to make the
proviral state of HIV-1 deeper.

Latency-promoting agents (LPAs)

siPromA (218–220)

ASP RNA (221)

lncRNA NRON (222)

Small molecule inhibitors (LEDGIN, BET
family proteins BRD4, Torin1, and pp242)

(223–225, 230)

dCA (238)

Latency reversing agents (LRAs)

Histone deacetylase inhibitors (HDACis),
Histone methyltransferases inhibitors
(HMTis), DNA methyltransferases inhibitors
(DNMTis)

(189)

Immune checkpoint inhibitors (226, 235–237)

lncRNAs HEAL and MALAT1 (41, 74, 239)

SMAC mimetic compounds (232)

Toll-like receptor (TLR)-7 agonists (240, 241)

Protein kinase stimulators, Cytokines,
CRISPR/Cas9, ZFN

(233)

TLR agonists (241)

gene expression, preventing the quick eradication of the infected
T-cell (223, 224). Nevertheless, recent research implies that the
relationship between T-cell activation and HIV-1 latency might
not be as strongly correlated as previously assumed (216). This
perspective proposes an additional model, suggesting that HIV-1
latency established in activated CD4 T-cells shortly after infection
ensures greater survival capacity and possibly a return to a resting
memory state. This process may facilitate the creation of long-lived
latent reservoirs (224).

The selection of the HIV-1 integration site may contribute to
the establishment of HIV-1 latency mechanisms in activated CD4
T-cells. HIV enters the host and replicates locally at the site of
entry, then HIV rapidly circulates to the lymph nodes (within a few
days) and further (within a few weeks) into the bloodstream (225).
HIV-1 integration appears to be random, but prefers the introns of
transcriptionally active genes found in gene-dense regions of the
nuclear outer envelope near the nuclear pores (213). For example,
pyrosequencing was used to identify 40,569 integration sites in
Jurkat cells and another study revealed 6,719 integration sites in
CD4 T-cells in a research study involving 13 individuals (226–228).
The latency of HIV-1 is controlled by various related mechanisms
acting at the transcriptional and post-transcriptional levels, and
depends on the transcription program of the host cell (229, 230).
In the latent period, the HIV-1 promoter is largely controlled
by epigenetic mechanisms, including DNA methylation and post-
translational histone modifications such as acetylation, methylation
and crotonylation (213). Additionally, there are cellular cofactors
of HIV-1 integration such as lens epithelium-derived growth factor
(LEDGF/p75) (231).

The other possible interpretation of latency can be derived from
the theory of stochastic gene expression. According to this theory,
random mutations in a critically important HIV-1 Tat region can
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TABLE 2 The main advantages and limitations of HIV-1 cure strategies.

HIV-1 cure strategies Advantages Limitations References

RNA interference Small size and low capacity to trigger
adaptive immune responses

RNAi side effects; off-target events; poor
stability; insufficient delivery

(22, 27, 46, 51)

Antibodies Reduced toxicity; Potency for the
activation of a broad immune
response against HIV-1

Delivery and stability; low-efficiency; high cost (69, 80, 127, 238)

Cell therapy Capability of destroying latently
infected cells

Poor cell expansion; short in vivo viability; side
effects

(148, 158, 163)

Latency reversing agents and latency
promoting agents

Targeting and reactivation of latent
HIV-1 reservoirs

Delivery system; Low efficacy in the clinic;
adverse effects and toxicity

(194, 230)

Genome editing Reduction of proviral sequences Off-target effects; large size and PAM
requirement for Cas9; non-optimal delivery;
adverse immune reactions; expensive
technologies

(249–252, 258, 259)

inhibit active HIV-1 transcription independently of the target cell
activation (232, 233). The majority of investigations on this subject
have been performed in vitro, which leaves a lot of questions
about the level to which the different triggers contribute to the
establishment of latency in vivo (216).

Strategies for the functional treatment of HIV, based on the
"block and lock" approach, aim to induce transcriptional gene
silencing (TGS) using latency-promoting agents (LPAs). This
approach intends to block viral replication and lock the viral
promoter into a dormant state through repressive epigenetic
modifications (212). Epigenetic silencing can be initiated through
various RNAs molecules (such as siRNAs, shRNAs, and lncRNAs)
and small molecule inhibitors (including LEDGIN, epigenetic
reader bromodomain and the extraterminal (BET) family proteins
BRD4, Torin1, and pp242) (234–237). RNA-directed TGS results
in the attraction of additional proteins in the nucleus, forming
the RNA-induced transcriptional silencing (RITS) complex. This
complex leads to the increase of repressive epigenetic markers such
as histone and CpG methylation and the reduction of histone
acetylation at the promoter (212).

The other strategy is the “shock and kill” approach when the
latent HIV is reactivated by latency reversal agents (LRAs) followed
by eradication of the cells with reactivated virus, achieved by
enhancing the cytotoxic effect, immune clearance and additional
procedures (210, 242). In these studies, the first generation of LRAs
successfully induced viral RNA production, but only certain agents
were able to cause the protein and viral particle generation (220).
The next generations of LRAs in preclinical data demonstrate that
small molecule antagonists of apoptosis (second mitochondria-
derived activator of caspase or SMAC mimetic compounds) trigger
the reversal of the latency (243). A number of LRAs have been
developed based on in vitro and ex vivo systems, including
HDAC inhibitors (HDACis), histone methyltransferases inhibitors
(HMTis), and DNA methyltransferase inhibitors (DNMTis) (210).
Immunostimulatory approaches based on Toll-like receptor (TLR)-
7 agonists have displayed direct latency reversal activity in non-
human primates, but their efficacy has not been confirmed in
subsequent studies (244, 245). A further class of LRAs includes
compounds that modulate protein kinases in signaling pathways
upstream of the transcription factors that bind the LTR (246).
Cytokines and LRA compounds can also be used in combination

TABLE 3 Combinatorial strategies for functional treatment of HIV-1.

Combination of different siRNAs or siRNAs
with ribozymes, aptamers and antiviral
proteins (such as RevM10)

(24)

Latency re-activators in CAR T-cell therapy (183)

Combined or bispecific CARs (164, 165)

Combination of CCR5 gene editing, bNAbs
and CAR T-cells

(149, 180)

The combined use of LRAs (63, 264)

Combination of LRAs (265, 266)

LRA combinations with vaccines (267, 268)

CRISPR-Cas9 with antiviral drugs or RNAi
molecules

(258)

with recombinant macromolecules (CRISPR/nuclease deficient
Cas9 (dCas9) and zinc finger proteins) to reverse HIV latency (247).
The main LPAs and LRAs are summarized in Table 1.

In persistent viral infections, the large volume of antigens
continually stimulates T-cells, leading to a gradual loss of
functionality known as T-cell exhaustion (248). During this
phase, there is an increased expression of immune checkpoint
molecules (ICs) on T-cells. These molecules include programmed
cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), T-cell
immunoglobulin and immunoreceptor tyrosine-based inhibitory
motif domain (TIGIT), T-cell immunoglobulin and mucin domain
3 (TIM-3), CD160, and 2B4 (CD244) (19). IC expression leads
to suppression of the immune response and serves as a marker
for HIV latently infected cells with a higher tendency to viral
transcription (249). Immune checkpoint blockade in HIV has been
intensively studied (250, 251). For example, PD-1 or Interleukin-
10 (IL-10) blockade have been shown to reactivate CD4 + T-cell
function in vitro and to restore NK-cell support (252).

5.2 Viral and cellular targets

Latency-promoting agents target the NF-κB sites, the
interaction complex of LEDGF/p75 and HIV integrase, Tat,
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and the mammalian target of rapamycin (mTOR) signaling
pathway as an important modulator of HIV-1 latency, triggering
recruitment of chromatin-remodeling complexes, including
DNA methyltransferase 3 alpha (DNMT3a), histone-lysine
N-methyltransferase enzyme (EZH2) and histone deacetylase 1
(HDAC-1) (212). For instance, SiPromA was identified in 2005 as
the first anti-HIV agent to induce TGS, because it targeted NF-κB
sites in the HIV-1 promoter (253–255). Further, HIV-1 encoding
antisense protein (ASP) was identified. ASP RNA recruits the
repressive Polycomb group 2 complex (PRC2) to the 5′ LTR HIV-1
promoter, resulting in repressive epigenetic modifications (an
increase in H3K27me3 marks and a decrease in RNA polymerase
II occupancy) (212, 256). Moreover, an lncRNA named NRON was
found in resting CD4 + T-cells suppressing viral transcription by
causing degradation of Tat (248). However, the virus promoter can
be activated by lncRNA HEAL and lncRNA MALAT1 (257–259).
McBrien et al. used a provocative method to activate HIV-1
provirus. They used the drug N-803 to induce IL-15, a protein
that promotes viral transcription, and an antibody to deplete
the CD8 + T-cells that appear to play a role in stabilizing viral
latency (260).

5.3 Restrictions

A major barrier to HIV-1 eradication is the multiplex
mechanism of establishing HIV latency, and the way the latent
reservoir recovers and produces infectious HIV virions when
ART is terminated (228). Targeting and reactivating latent cells
is problematic because of the highly heterogeneous nature of the
viral reservoirs. In addition, some studies indicate controversial
effects of LRA on NK cell function and on cytotoxic T-cell
lymphocytes (CTLs) (213). Escape mutations in dominant CTL
epitopes prevent the targeting of induced cells and certain LRAs
suppress CTL function (261). The eradication strategy requires
better LRA penetration into the tissues by improving the drug
delivery system and, most importantly, enhancing the killing of
LRA-activated cells by stimulating the CD8 + T response (194). In
addition to low efficacy in the clinic, other disadvantages of many
LRAs are their adverse effects and toxicity (237).

6 Conclusion

According to the latest update (March 2022) from the U.S.
National Institutes of Health (see text footnote 1), 630 clinical trials
associated with HIV-1 therapy have been initiated. Although some
clinical trials have shown that gene-based therapeutic approaches in
combination with conventional therapies can eliminate the HIV-1
virus, most gene-based clinical tests are still in the early stages (4).
All mentioned advantages and limitations of HIV-1 cure strategies
have been included in Table 2.

As with cART, strategies combining multiple antiviral
approaches should be considered to avoid the escape of HIV-1
mutants (Table 3). Although, there is evidence that viruses have
developed mechanisms to escape the RNAi defensive mechanism,
RNAi-based therapeutics can be enhanced by using a combination
of different siRNAs or by coupling the siRNAs with ribozymes,

aptamers and antiviral proteins (such as RevM10) (28). Strand
selection can be biased by constructing asymmetric siRNAs or by
chemical modifications at one or both ends of the siRNA (4). Dicer-
independent Ago/shRNAs have the potential to demonstrate an
improved safety profile and to reduce off-target effects compared to
conventional shRNAs, but identifying their overall benefit requires
additional laboratory testing (60, 262, 263).

To date, the accumulated data indicate that no single factor
will define the ultimate achievement of a bNAb-inducing HIV-1
vaccine, that probably requires a combination of effective priming
of B-cell precursors, optimization of Env design and presentation,
as well as sustained enhancement of heterologous Env (120). To
resolve the problems of antibody delivery and stability, antibodies
may be conjugated with cell-penetrating peptides (CPPs) derived
from various sources to penetrate the cell cytoplasm (269). Smaller
antibodies such as Fabs, scFvs and single-domain antibodies or
sdAbs (with Fc removed) have also been created for this goal (138,
270, 271). Modifications that increase the half-life, potency, Fc-
receptor (FcR) binding, and polyfunctionality are thought to bypass
the several disadvantages of bnAbs (272).

Combined or bispecific CARs may be necessary to overcome
the well-documented capacity of HIV-1 to mutate and escape
treatment or host immune responses, for example, bispecific CARs
have displayed improved efficacy against several primary HIV-1
isolates compared to single CD4ζ CARs and this approach deserves
additional in vivo studies (273, 274). CAR approaches for people
with HIV may be improved with a combination of therapies,
such as CCR5 gene editing, the use of individual bNAbs targeting
various regions of the viral envelope and the development of next-
generation CAR T-cells capable of acting on multiple antigens
(181, 191). The incorporation of co-stimulatory domains, including
CD28, 4-1BB, CD28 + 4-1BB, OX40, ICOS, and CD27, or the
engineering of CD4-ζ CARs in second- and third-generations could
increase the proliferation and killing efficiency of these cells (181,
275, 276). In addition, the use of latent re-activators in CAR-T
cell therapy could potentially allow CAR-T cells to act on latent
reservoirs, since these CAR-T cells are able to move into various
types of tissue reservoirs, including the central nervous system,
which is a potentially significant refuge for latent HIV (276).

The combined use of LRAs with synergistic effects is currently
an actively studied area of research (9, 172). Combined approaches,
which include LRAs with several different types of mechanisms,
are being studied to obtain more effective shocks (277, 278). HIV
reservoirs are often hidden in sites, such as lymphatic, gut or brain
tissues, but the development of nanoparticle-packed cART drugs or
CRISPR-Cas9 system have the ability to directly target the provirus
and to destroy the HIV reservoirs (265). LRA combinations with
vaccines targeting conservative HIV-1 epitopes have also generated
interesting results (266, 279).

CRISPR-Cas9 can be combined with other anti-HIV therapies
(antiviral drugs or RNAi molecules) to reduce viral replication, but
these combinations also increase the genetic threshold at which
viral escape can occur (99). Current efforts are focusing on reducing
the number of CRISPR off-targets by creating alternative Cas9
variants (SaCas9, Cas12a, Cas13a, Cas13d, base editors and prime
editing systems) and improving the architecture of gRNAs (239,
280, 281). Moreover, non-viral delivery systems also have been
extensively investigated and reviewed (63, 240, 264, 267, 268).
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Eventually, the high initial cost of cell and gene therapies will
become more cost-effective than conventional cART, if a single
treatment can be sufficient (31). Combined cell and gene therapies
have come a long way, and their great potential will open up new
opportunities for the development of HIV cures.
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