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To maximize the expected profits and manage the risks of renewable energy
system under electricity market environment, scenario-based- stochastic
optimization model can be established to generate energy bidding strategies,
in which the probabilistic scenarios of risk parameters are usually obtained by
using statistical or machine learning methods. This paper proposes a practical
multivariate statistical method for risk parameter scenario generation, which is
used by a wind energy system faced with uncertain electricity prices and wind
power productions, and it considers the correlation between dependent risk
parameters by using historical data directly. The probabilities of scenarios
containing correlated risk parameters are calculated by using multivariate
histograms, in which the asymmetric correlation between different parameters
existing in the historical data are preserved. Additionally, in order to make the
stochastic optimization problem with large numbers of scenarios tractable, a
multivariate scenario reductionmethod is used to trim down the scenario number.
By solving the stochastic optimization problem, optimal day-ahead bidding curves
for the wind energy system are generated, and Douglas–Peucker algorithm is
used to fit the bidding curves according to market requirements. Case studies
based on real world data in electricity markets are performed to prove the
effectiveness of the proposed risk parameter scenario generation method and
energy bidding strategies. Finally, conclusions and practical suggestions on future
research works are provided.
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1 Introduction

During the last two decades, the increasing penetration of wind power in the electric grid
has reduced carbon emissions significantly (Roga et al., 2022). However, the intermittence
and unpredictability of wind resources also posed challenge to wind energy systems
(AlAshery et al., 2020). Additionally, instead of selling wind power through power
purchasing agreements (PPAs) at a fixed price, an increasing number of wind energy
systems have committed themselves in the competitive electricity market to earn profits. In
this circumstance, wind energy systems need to not only handle the uncertainties of their
generations, but also face the volatility of the electricity prices in the electricity markets.
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To handle the uncertainties in electricity markets and maximize
the profits for wind energy systems, several solutions have been
proposed in the literature. Energy storage and demand response
technologies have been used to help wind energy systems handle the
uncertainties. A coordinated use of wind power and hydro-pump
storage was performed to mitigate the wind power imbalances in the
electricity market (De la Nieta et al., 2016). He et al. (2017) exploited
the complementary characteristics of wind energy and battery
storage, and developed optimal bidding strategies in joint energy
and regulation markets. The wind energy system could smooth its
power variations by establishing various demand response (DR)
agreements with DR aggregators (Wu et al., 2015). Another solution
is using financial tools given byHedman and Sheble, 2006, and it was
demonstrated that purchasing options was a financially competitive
way to hedge the risks for wind energy systems.

Additionally, instead of using deterministic optimizationmodels
for decision makers, robust optimization, stochastic optimization,
information gap decision theory (IGDT) can be used to handle the
uncertainties of the risk or random parameters, such as electricity
prices and renewable power generations (Baringo and Conejo, 2016;
Li et al., 2016; Deng et al., 2023; Wei et al., 2023). When it is difficult
to characterize the risk parameters by using discrete probability
distributions, a good choice is to use robust optimization because it
assumes that the risk parameters belong to deterministic uncertainty
sets. In the electricity market, since the historical data of electricity
prices and power generations are usually available, the risk
parameters can be modeled by using probabilistic models
effectively. Thus, stochastic programming has been widely used
by renewable energy systems to maximize their expected profits
in the electricity markets (Xiao et al., 2022). Moreover, stochastic
programming can be used to further improve the performance of
robust and IGDT-based decision-making problems considering risk
management (Daneshvar et al., 2020; Khodadadi et al., 2022).

The scenario generation of risk parameter is an important part
of stochastic programming, and its accuracy affects the performance
of the optimization results significantly. Kaut and Wallace, (2007)
presented several widely used scenario generation methods. In the
scenario generation process, the correlations between risk
parameters are usually characterized by using a variance-
covariance matrix (VCM) if they need to be considered, the
scenarios of each univariate variable were first generated
separately by using time series models or artificial neural
networks, and then the VCM is used to model the correlations
between different risk parameters (Morales et al., 2010). Based on
the VCN approach, a hybrid scenario generation method for
dependent spot electricity prices has also been developed by
using time series models and outlier detection method (Xiao and
Qiao, 2021). However, Vagropoulos et al. (2016) addressed that
although the VCM is suitable for elliptical distributions, such as the
normal or Student’s t-distribution, it might not work well if there are
asymmetric correlations between variables, because the VCM can
only measure the linear dependence between variables. The
asymmetric correlations between variables can be found in the
area of finance. It was shown that the correlations between
equity markets in different countries tend to increase in the bear
market but decrease in the bull market (Kaut, 2014). Therefore,
Vagropoulos et al. (2016) presented a heuristic algorithm for
generating dependent scenarios from a given copula, which is a

full description of the correlation between marginal probability
distributions of multiple risk parameters, which is shown to have
better performance than the VCM-based method. Additionally,
Krishna and Abhyankar, (2023) employed regular vine copula to
model the temporal dependence structure of the wind power
forecast error, which has also achieved desired performance.
However, it was assumed that the target copula was known, but
obtaining the actual copula in practice is as complicated as
estimating multidimensional distribution functions (Vagropoulos
et al., 2016). To solve the aforementioned problems, this paper
proposes a multivariate scenario generation method that can
consider the asymmetric correlations between risk parameters by
using their historical data directly, and the probabilities of correlated
risk parameters are calculated by using multivariate histograms.

In order to characterize the risk parameters accurately, the
number of generated scenarios may be very large, which can
make the stochastic optimization problem intractable. To solve
this problem, Longin and Solnik. (2001) provided an algorithm
to reduce the number of scenarios while keeping the information of
risk parameters in the original scenario set as intact as possible.
However, the scenario reduction algorithm in (Longin and Solnik,
2001) was used for univariate stochastic processes, while the
scenario generation method proposed in this paper focuses on
multivariate stochastic processes. Therefore, in this paper, a
multivariate scenario reduction method is developed based on
the univariate one. Additionally, after the stochastic optimization
problem is solved, the Douglas–Peucker algorithm is used to fit the
bidding curves according to the actual requirements of the electricity
market.

The contributions of the conducted research work in this paper
are summarized as follows.

1) A practical multivariate statistical method of generating
scenarios is proposed for renewable energy management in
electricity markets, which is developed based on univariate
Seasonal Autoregressive Integrated Moving Average
(SARIMA) models and multi-dimensional histograms of
historical data. This method is capable of improving the
expected profits in electricity markets and capturing the
asymmetric correlations of different risk parameters without
complicated model estimation or strict joint distribution
assumptions.

2) The applicability of the proposed scenario-based stochastic
optimization model is improved by jointly employing
Douglas–Peucker algorithm and multivariate scenario
reduction approach. The Douglas–Peucker algorithm is used
to simplify the power bidding curves for satisfying the electricity
market requirements, and a multivariate forward reduction
approach is adopted to trim down the number of generated
scenarios for reducing the computational cost of solving the
problem.

The paper is organized as follows. Section 2 presents the short-
term electricity market framework and the optimization model for
generating the renewable energy management strategy. Section 3
presents the proposed multivariate statistical method. Section 4
provides case studies to validate the proposed statistical method
and energy management strategy. Section 5 concludes the paper.
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2 Market framework and model
description

2.1 Market framework

A pool-based electricity market in the United States consisting of
a day-ahead and a real-time energy market is considered in this
paper, which is also the typical market framework for most
provincial or regional spot electricity markets in China and
Europe. Figure 1 shows the time frame of a two-settlement
electricity market used by the participants in the Southwest
Power Pool (SPP) market of United States (Heitsch and
Romisch, 2003).

Suppliers including wind energy systems submit energy bidding
curves into the day-aheadmarket for each hour of the next operating
day. After the day-ahead market is closed, the market operator
aggregates the bidding curves of the wind farm to determine the
hourly day-head electricity price and the cleared energy volume for
each producer. The power deviations of the wind farm are settled at
the real-time price in the real-time energy market on the operating
day. According to the policy of Electricity Market, the day-ahead
bidding curve should be a non-decreasing curve and the number of
its price/quantity pairs should not exceed the maximum number
specified by SPP.

2.2 Mathematical formulation of the wind
energy system

In this paper, the wind energy system is considered as a price-
taker in the two-settlement electricity market facing three risk

parameters, including day-ahead energy price, real-time energy
price, and wind power generation. It is assumed that the bidding
strategy of wind energy producer cannot affect the electricity market
clearing results obviously. In this circumstance, the risk parameter
would be more suitable to be forecasted by using historical data. The
bidding problem of the wind energy system in the short-term
electricity market is modeled by using the stochastic optimization
technique as follows, in which the risk parameters are represented by
using scenarios.

Max
Π

πW �
∑NT

t�1
∑NΩ

w�1
prtwdt λDtwW

D
tw + λr+twΔ+

tw − λr−twΔ−
tw[ ]

+βW ζ − 1
1 − α

∑Nw

w�1
prwηw⎡⎣ ⎤⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Subject to:

0≤WD
tw ≤Wmax, ∀t,ω (2)

Δ+
tw − Δ−

tw � Δtw

Δtw � dt Wac
tw −WD

tw( )
0≤Δ+

tw ≤W
ac
twdt

0≤Δ−
tw ≤WD

twdt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∀t,ω (3)

WD
tw � WD

tw′ ∀t,ω,ω′: λDtw � λDtw (4)
λDtw − λDtw′( ) WD

tw −WD
tw′( )≥ 0, ∀t,ω (5)

ηw ≥ 0
ζ − ∑NT

t�1 λDtwW
D
twdt[ + λrtwΔ+

tw − λrtwΔ−
tw]{ ∀t,ω (6)

where πw is the expected profit of a wind energy system, WD
tw is the

power offered by a wind energy system in the day-ahead market for

FIGURE 1
Time frame of the two-settlement SPP market.
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scenario w in a time period t, ζt is the auxiliary variable used to
compute the conditional value at risk (CVaR) in a time period t, ηtw
is the auxiliary variable used to compute the CVaR for a scenario w
in a time period t, CVaR refers to at α confidential interval, Δtw is the
total deviation of energy incurred by a wind energy system with
respect to the schedule for scenario w in a time period t, Δ+

tw is the
positive deviation of wind energy for scenario w in a time period t,
Δ−
tw is the negative deviation of wind energy for scenario w in a time

period t, λDtw is the day-ahead energy price for scenario w in a time
period t, λr+tw is the real-time energy price of positive deviations for
scenario w in a time period t, λr−tw is the real-time energy price of
negative deviations for scenario w in a time period t, Wac

tw is the
actual wind power production for scenario w in a time period t,
Π � WD

tw, ζ , ηw{ } is the decision variable set of the stochastic
optimization model, and the objective function consists of two
terms: 1) the expected profit, which is equal to the total revenue
form selling power in the day-ahead and real-time markets minus
the cost of buying power from the real-time market; and 2) the
CVaR multiplied by a risk aversion parameter βw, which is
determined by the risk aversion degree of the wind energy
system. Constraint (2) limits the wind power bid capacity in the
day-ahead market. Constraints (3) limit the positive and negative
power deviations caused by the uncertainty of wind energy.
Constraint (4) gives the same bid capacity for the same day-
ahead price scenario on the bidding curve. Constraint (5)
constitutes the non-decreasing property for the bidding curve.
Constraints (6) are used to compute the CVaR for risk management.

3 Proposed multivariate statistical
modeling and scenario reduction
methods

In practice, when a stochastic model contains multiple risk
parameters, it is complex to generate scenarios by sampling the
estimated joint distribution of these variables. To avoid this
problem, this paper proposes a practical multivariate scenario
generation method for the stochastic optimization involving
correlated risk parameters, which is easier to be understood and
implemented. By using the proposed method, the univariate
scenarios of each risk parameter are obtained by using univariate
SARIMA models, while the probabilities of the multivariate
scenarios containing correlated risk parameters are calculated
based on the histograms.

3.1 Univariate scenario generation by using
SARIMA models

According to the univariate SARIMA model, a univariate
stochastic processY � ∑T

t�1yt can be mathematically expressed as (7).

1 − ∑p
g�1

ϕgB
g⎛⎝ ⎞⎠ 1 −∑P

i�1
ΦiB

iS⎛⎝ ⎞⎠ 1 − B( )d 1 − BS( )Dyt

� 1 −∑q
h�1

θhB
h⎛⎝ ⎞⎠ 1 −∑Q

j�1
ΘjB

jS⎛⎝ ⎞⎠εt

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7)

where ϕ1, ϕ2,/,ϕp are p autoregressive parameters; θ1, θ2,/,θq are
q moving average parameters; Φ1,Φ2,/,ΦP are P seasonal
autoregressive parameters; Θ1,Θ2,/,ΘQ are Q seasonal moving-
average parameters; εt represents the error term of uncertain
parmater, which is an independent normal stochastic process;
and B is the backward shift operator defined as follows.

∇dyt � 1 − B( )dyt (8)
The details on the parameter estimation and adjustment of the

univariate SARIMA models are given in (Rockafellar and Uryasev,
2000). In this paper, the scenarios of the three risk parameters in the
stochastic bidding model of the wind energy system, i.e., day-ahead
energy price, real-time energy price, and wind power generation, are
obtained separately by using the univariate SARIMA model (11).

3.2 Joint probability calculation for
correlated parameters

Denote the scenario w containing the three risk parameters in
each time period t as Ztw � λDtw, λ

r
tw,W

ac
tw{ } (w� 1,/,NΩ), where

the scenarios of each risk parameter are generated by the univariate
SARIMAmodel. Then, the probability of Ztw needs to be calculated.
If the risk parameters in Ztw are mutually independent, the
probability of Ztw will be equal to the product of the marginal
probabilities of all the risk parameters. However, if the variables are
correlated, the calculation of the probability of Ztw should consider
the correlations between variables.

Since the historical data of the risk parameters contain the intact
information of their correlations, multidimensional histograms of
the risk parameters are built to capture this kind of information.
Then, the probabilities of different scenarios can be calculated using
the frequencies of data in the grids.

The multivariate histograms are built by dividing the
multidimensional historical data of each variable into bins with
equal width. The bin width for the data of the kth variable is
commonly determined as follows (Box et al., 2008).

hk� 3.5σkn
−1/2+NK (9)

where hk is the bin width for the kth variable; σk is the standard
deviation of the kth variable; n is the sample size of the historical
data of stochastic parameters; andNK is the dimensionality of data.
Eq. 9 indicates that the bin width for each variable increases with the
dimensionality and the variance of the historical data, but decreases
with the simple size n.

Once the multivariate histogram is built, the frequency of
the historical data in each grid of the histogram can be obtained.
Then the probability of a scenario l, prl, is assigned to be
proportional to the frequency of the grid containing the
scenario l as follows.

prl � fSl∑NΩ
w�1fSw

(10)

where Sl represents the grid containing the scenario l; fSl is the
frequency of the historical data in the grid Sl; and the denominator
represents the data size, which makes the sum of the probabilities of
all scenarios to be 1.
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The proposed method is a practical general framework for
generating scenarios based on univariate statistical model, and its
main advantage is not requiring complex modeling of joint
probability distribution for multiple risk parameters, which
makes it easy to be implemented. However, the disadvantage is
that, the proposed statistical method might be not so accurate as the
complicated one based on joint probability distribution function
estimation, and the modeling capability of some complicated
statistical models cannot be fully utilized.

The commonly used method of generating scenarios for a
multivariate stochastic process containing correlated parameters is
using the VCM to adjust the scenarios generated by the univariate
scenario generation method and historical data. The details of the
VCM-based multivariate scenario generation method are given in
Morales et al. (2010). The VCM-based scenario generation method is
suitable for elliptical distributions, such as the normal distribution or
the Student’s t-distribution. However, this method may not work well
if the correlations between stochastic parameter are asymmetric due to
the statistical assumption.

The procedures of the VCM-based multivariate scenario
generation method and the proposed multivariate scenario
generation method are depicted in the flowcharts in Figure 2. For
the VCM-based scenario generation method, the standard normal
errors are cross-correlated. As a result, the correlations between

variables are considered in the scenario value calculation process,
while the probabilities of all the scenarios are equal. However, for the
proposed scenario generation method, the probabilities are
recalculated by using the multivariate histograms.

3.3 Multivariate scenario reduction for
correlated parameters

To characterize the risk parameters accurately, the scenario set
generated by using the proposed method is usually very large. This
may render the stochastic optimization problem intractable. To
solve this problem, an appropriate scenario reduction algorithm
needs to be designed to reduce the number of scenarios and the
reduced scenario set should retain the information contained in the
original scenario set as intact as possible.

In Longin and Solnik (2001), a univariate scenario reduction
algorithm based on the concept of probability distance was
proposed. The probability distance quantifies the closeness of two
different scenario sets. However, the algorithm in Longin and Solnik
(2001) cannot be used directly for multivariate scenario reduction.
In this paper, a multivariate scenario reduction algorithm is
developed based on the univariate one in Longin and Solnik (2001).

The most commonly used probability distance for scenario
reduction is the Monge-Kantorovich distance, which is obtained by
solving the Monge–Kantorovich mass transportation problem for two
probability distributions, and details on this problem are provided in
Longin and Solnik (2001). For the single-stage stochastic programming
problem of the wind energy system in this paper, the Monge-
Kantorovich distance DK can be equivalently determined as follows.

DK F, F′( ) � ∑
w∈ΩS\Ω

πw min
w′∈ΩS

v w, w′( ) (11)

where Ω is an initial set of scenarios according to probability
distribution F; ΩS (ΩS ∈ Ω) is a reduced set of scenarios according
to a probability distribution F′; and v(w,w′) is the cost function of
two scenarios, which is a norm in Eq. 11. Further information on the
derivation of (15) can be found in (Scott, 1992).

Based on Eq. 11, several heuristic algorithms can be utilized for
generating reduced scenario sets that are close enough to the original
set. Specifically, two different heuristic algorithms can be developed,
namely, the backward reduction and the forward selection,
depending on whether the subset ΩS is built by eliminating or
selecting scenarios from the initial set Ω.

In this paper, the forward scenario reduction algorithm is used,
and for the proposed multivariate scenario reduction algorithm, the
cost function in Eq. 11 is calculated as follows:

v w, w′( ) � λ′ w( ) − λ′ w′( )���� ���� (12)

where λ′(w) � λ1′(w),/, λ′k(w),/λNK
′ (w){ } represents the scenario

containing correlated parameters, and λ′k(w) is the normalized value of
the kth risk parameter in Scenario w. The NK risk parameters are
normalized when used for calculating the probability distance, because
different risk parameters may have different units or variances, which do
not need to be considered in the univariate scenario reduction algorithms.

In the proposed stochastic model, since only three parameters
are considering by the wind energy system, it is fine to use Eq. 11 to

FIGURE 2
Flowcharts of (A) the VCM-based multivariate scenario
generation method and (B) the proposed multivariate scenario
generation method.
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reduce the scenarios. However, for a complex scenario considering
more risk parameters, Eq. 11 might not work well. In this
circumstance, other scenario reduction methods, such as the one
using objective function as cost function or the method based on
generative adversarial network, might have better performance
(Morales et al., 2009; Dong et al., 2022).

3.4 Energy bidding curve fitting according to
market requirements

Based on the proposedmultivariate scenario generation method,
the optimization model can be solved to obtain the optimal day-
ahead bid capacity for each day-ahead energy price scenario w in
each time period t. Then, the optimal day-ahead bidding curves can
be obtained. However, if the number of day-ahead energy price
scenarios in the time period t is larger than the maximum number of
price/quantity pairs specified by electricity market operator, the
generated bidding curve will not satisfy the market requirements. To
solve this problem, the Douglas–Peucker algorithm is used to fit the
curves in this paper (Dupačová et al., 2003).

The function of the algorithm is to find a simplified curve with
fewer points when a curve composed of line segments is given. The
algorithm is implemented based on a specified maximum distance
between the original points and the simplified curve, which consists
of a subset of the points that defined the original curve. In Dupačová
et al. (2003), the implement procedures of this algorithm are
described in detail, and the required segment number of the
wind power bidding curve is set as the termination criteria for
the adopted algorithm (Saalfeld, 1999).

4 Case studies

Case studies for a wind energy system participating in the short-
term electricity market are carried out to demonstrate the
effectiveness of the proposed multivariate statistical method and
energy management strategy. The installed capacity of the wind
farm is 30 MW, and the historical wind energy data can be obtained
from the official website of National Renewable Energy Laboratory
(NERL). The historical data of electricity prices are obtained on the
website of Southwest Power Pool (SPP) market of the United States.
In Sections 4.1–4.3, the historical data from 1 January to
31 December 2015 are utilized to generate the scenarios for the
risk parameters on 1 January 2016, which is operating day when the
wind power is delivered. In Section 4.3, actual profits from 1 January
to 31 August 2016 are calculated to compare the proposed scenario
generation method with the VCM-based one with the same
univariate scenario generation results. The optimization problem
is solved by using Gurobi 6.5 in MATLAB. The computer used for
simulation studies has a 3.16-GHz, 4-core CPU and an 8-GB RAM.

4.1 Scenario generation results of risk
parameters

The scenario generation results of wind power productions and
energy prices are given in this part, and this process is

implemented by using MATLAB econometrics toolbox. The
wind energy system is considered as a price-taker in the
optimization model, therefore, the wind power productions are
independent with day-ahead or real-time energy prices. Two
thousand scenarios of wind power production are obtained by
using a univariate SARIMA model, and the scenario number is
reduced to 5 by using the univariate forward scenario reduction
method given in Longin and Solnik (2001). The scenario
generation and reduced results for 1 day are shown in Figure 3
and the probabilities of reduced wind power scenarios in the first
hour are given in Table 1.

A total of 2,000 scenarios for day-ahead and real-time energy
prices are first generated based on univariate SARIMA models
separately. It should be noted that, the scenario number is so
large that most trajectories of the scenarios overlap with each
other. In this circumstance, the specific trajectories of original
generated wind power scenarios cannot be observed and only the
boundary of the generated scenarios can be seen in Figure 3. By
contrast, when the scenario number is finally reduced to be 5, the
trajectories of the reduced scenarios in deep blue are much easier to
be judged. In order to consider the correlation between day-ahead
and real-time energy prices, a multivariate histogram is built by
based on historical data by using (13), and the probabilities of
scenarios containing these two variables are calculated by using (14).
The multivariate histogram is given in Figure 4, and the scenarios for
the correlated parameters are given in Figure 5.

FIGURE 3
Scenario generation and reduction results for wind power
production.

TABLE 1 Reduced scenarios of wind power production for the first hour.

Scenario value (MW) Probability

3.56 0.121

6.75 0.132

9.68 0.176

12.49 0.327

22.29 0.244
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4.2 Correlation analysis for scenarios of day-
ahead and real-time energy prices

The historical data of hourly day-ahead and real-time energy
prices from 1 January to 30 December 2016 are given in Figure 6,
and it is shown that, when the day-ahead or real time energy prices
are in different intervals, the correlations between these two
variables are different. For instance, when the real-time energy
price is very high, its correlation with the day-ahead energy price
seems to be weak. In this case, the conditional correlation between
day-ahead and real-time energy prices needs to be analyzed in detail,
and the Pearson correlation coefficient of day-ahead and real-time
prices rdr are calculated by using the historical data and scenario
generation results when either day-ahead or real-time prices are in
different intervals, which are shown in Figures 7, 8.

In Figures 7, 8, the interval length and the increment are set to be
10 and 1, respectively, and the values on the X-axis are the midpoints
of energy price intervals. For instance, the first value on X-axis of
Figure 7 is 20, which is the midpoint of this day-ahead price interval.
Therefore, if the interval length is 10, the corresponding day-ahead
price interval would be within the range of [15, 25], and the
conditional rdr when day-ahead price is in this interval is shown
on the Y-axis.

As is shown in Figures 7, 8, for the historical day-ahead energy
prices in different intervals, the maximum and minimum
conditional rdr are 0.252 and 0.065, respectively. For the
historical real-time energy prices in different intervals, the
maximum and minimum conditional rdr are 0.57 and −0.24,
respectively. It can be seen that rdr is more sensitive to the value
of real-time energy price, and it will decrease significantly when real-
time energy price is very high. Therefore, if the scenario generation
results could characterize this kind of asymmetric correlation better,

FIGURE 4
Multivariate histogram built by using historical data.

FIGURE 5
Scenario generation results of day-ahead and real-time energy
prices for the 18th hour on 1 January 2016.

FIGURE 6
Historical data of day-ahead and real-time energy prices.

FIGURE 7
Conditional rdr in different day-ahead price intervals based on
historical data, scenarios generated by using proposed method, and
scenarios generated by using VCM-based method.
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the corresponding stochastic optimization model will be more
suitable for solving the actual problem.

In Figure 7, since the rdr based on historical data does not vary
significantly with different day-ahead price intervals, the proposed
scenario generation method does not show advantages over the
VCM-based one for characterizing the correlation. However,
Figure 8 shows that rdr based on the proposed method follows
that of the historical data much better when real-time prices are in
different intervals. Therefore, the proposed method can characterize
the symmetric correlation existing in the historical data more
effectively than the VCM-based scenario generation method.

4.3 Out of sample test by using real-world
data

In this section, the data of electricity price from 1 January to
31 December 2015 are utilized to generate day-ahead bidding curves
for the wind energy system, and the actual profits from 1 January to
August 31 in 2016 are calculated to test the performance of the
proposed method. The number of reduced scenarios for wind power
is 5, and the number of reduced scenarios for day-ahead and real-
time energy prices is 25. Therefore, there are 125 scenarios for the
optimization problem during each time period t.

First, the day-ahead bidding curves are generated based on the
results of the optimization model for wind energy systems, which
has been fitted by using Douglas-Peucker algorithm according to
market requirements. Day-ahead bidding curves for several hours
on 1 January 2016 are given in Figure 9, and the number of price/
quantity pairs for these bidding curves does not exceed 10, which is
the maximum number specified by SPP. The bidding curves in
different time periods are not the same due to the time-varying
electricity prices and wind power productions. Moreover, it is shown
that all the bidding curves are non-decreasing, which indicates a
large power quantity tends to be sold at a higher price. This kind of
property for the bidding curve is determined by constraints (4) and
(5) in the proposed stochastic optimization model.

FIGURE 8
Conditional rdr in different real-time price intervals based on
historical data, scenarios generated by using proposed method, and
scenarios generated by using VCM-based method. FIGURE 9

Day-ahead bidding curves for typical hours.

FIGURE 10
Actual profits obtained by using two kinds of scenario generation
methods.

FIGURE 11
Profit improvement by the proposed scenario generation
method.
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Based on the generated bidding curves, the actual wind power
bid capacities are obtained, and the actual profits of 8 months are
calculated. Then the actual profits obtained by using the proposed
scenario generation method are compared with the profits obtained
by using the VCM-based scenario generation method. The actual
profits and profit improvement are given in Figures 10, 11
separately.

The total profits of the wind energy system by using the VCM-
based scenario generation and the proposed scenario generation
method are $1,357,468.4 and $1,376,496.3, respectively. Therefore,
the wind energy system’s profits can be increased by approximate
1.4% when using the proposed scenario generation method.
However, among the 8 months in 2016, there are still 2 months
in which the proposed method does not perform better than the
VCM-based one, this is because there are uncertainties in the real-
time that cannot be handled by using the scenario generation
method. These abnormal energy prices are usually caused by
some unexpected factors in the real-time market, such as
lightning, component failures (Yin, 2011). However, the
information of these unexpected factors is not available for the
market participants on the day before the operating day, when the
market participants need to submit the bidding curves.

5 Conclusion

This paper proposes a practical multivariate scenario generation
method considering the correlation between dependent risk
parameters in the short-term electricity market for a wind energy
system. In this method, the probabilities of correlated parameters are
calculated by using multivariate histograms, and the asymmetric
correlation between variables existing in the historical data can be
preserved.

Case studies are performed to prove the effectiveness of the
proposed scenario generation method. First, the correlation between
day-ahead and real-time energy prices are analyzed, and it is shown
that the conditional correlation coefficient of day-ahead and real-
time prices varies significantly when the real-time prices are in
different intervals. Simulation results show that the proposed
scenario generation method can preserve this kind of asymmetric
correlation more effectively than the VCM-based scenario
generation method. In order to reduce the number of scenarios,
a multivariate scenario reduction method is developed to trim down
the scenario number. By solving the stochastic optimization model,
day-ahead wind power bidding curves are generated, and
Douglas–Peucker algorithm is used to fit the bidding curves
according to electricity market requirements. Based on the
generated bidding curves, the actual profits are calculated and the
results indicate the proposed statistical method and scenario-based
stochastic optimization model can make the wind energy system
earn more profits.

In the future research, the scenario-based stochastic
optimization for other types of decision makers, such as virtual
power plant and prosumer aggregator with flexible resources, would
be further investigated. In this case, other statistical models, such as
Generalized Autoregressive Conditional Heteroskedasticity model
and machining learning, can be adopted to implement and analyze
the proposed scenario generation framework under more

complicated conditions with other risk parameters, such as
electric demands, solar power productions, reserve prices, etc
(Batlle and Barqun, 2004; Hu and Li, 2022).
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