
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Balaji Krishnamachary,
Johns Hopkins University, United States

REVIEWED BY

Piergiorgio Cerello,
National Institute of Nuclear Physics of
Turin, Italy
Santosh Kumar Yadav,
Johns Hopkins Medicine, United States
Jingmian Zhang,
The Fourth Hospital of Hebei Medical
University, China

*CORRESPONDENCE

Xiaonan Shao

scorey@sina.com

RECEIVED 19 June 2023
ACCEPTED 16 November 2023

PUBLISHED 29 November 2023

CITATION

Ge X, Gao J, Niu R, Shi Y, Shao X,
Wang Y and Shao X (2023) New
research progress on 18F-FDG PET/CT
radiomics for EGFR mutation prediction
in lung adenocarcinoma: a review.
Front. Oncol. 13:1242392.
doi: 10.3389/fonc.2023.1242392

COPYRIGHT

© 2023 Ge, Gao, Niu, Shi, Shao, Wang and
Shao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 29 November 2023

DOI 10.3389/fonc.2023.1242392
New research progress on 18F-
FDG PET/CT radiomics for EGFR
mutation prediction in lung
adenocarcinoma: a review

Xinyu Ge1,2,3, Jianxiong Gao1,2,3, Rong Niu1,2,3, Yunmei Shi1,2,3,
Xiaoliang Shao1,2,3, Yuetao Wang1,2,3 and Xiaonan Shao1,2,3*

1Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University,
Changzhou, China, 2Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging,
Soochow University, Changzhou, China, 3Department of Nuclear Medicine, Changzhou Clinical
Medical Center, Changzhou, China
Lung cancer, the most frequently diagnosed cancer worldwide, is the leading

cause of cancer-associated deaths. In recent years, significant progress has been

achieved in basic and clinical research concerning the epidermal growth factor

receptor (EGFR), and the treatment of lung adenocarcinoma has also entered a

new era of individualized, targeted therapies. However, the detection of lung

adenocarcinoma is usually invasive. 18F-FDG PET/CT can be used as a

noninvasive molecular imaging approach, and radiomics can acquire high-

throughput data from standard images. These methods play an increasingly

prominent role in diagnosing and treating cancers. Herein, we reviewed the

progress in applying 18F-FDG PET/CT and radiomics in lung adenocarcinoma

clinical research and how these data are analyzed via traditional statistics,

machine learning, and deep learning to predict EGFR mutation status, all of

which achieved satisfactory results. Traditional statistics extract features

effectively, machine learning achieves higher accuracy with complex

algorithms, and deep learning obtains significant results through end-to-end

methods. Future research should combine these methods to achieve more

accurate predictions, providing reliable evidence for the precision treatment of

lung adenocarcinoma. At the same time, facing challenges such as data

insufficiency and high algorithm complexity, future researchers must

continuously explore and optimize to better apply to clinical practice.

KEYWORDS

radiomics, machine learning, deep learning, EGFR, positron-emission tomography/
computed tomography
Introduction

Lung cancer is responsible for the highest cancer-associated mortality worldwide,

among which lung adenocarcinoma, the most common pathological type, accounts for 40%

of all lung cancers (1–3). Because of the insidious onset of symptoms at an early stage,

advanced tumors have developed in nearly 80% of patients by the time of diagnosis, which
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results in a poor prognosis (4). Approximately 50% of Asian

patients with adenocarcinoma harbor epidermal growth factor

receptor (EGFR) mutations (5, 6). EGFR-mutant tumors exhibit

an increased response rate to tyrosine kinase inhibitors (TKIs)

versus EGFR wild-type tumors (7), while cisplatin-based

chemotherapy yields more optimal outcomes in patients with

EGFR wild-type lung cancer (8). Exon 19 deletion (19 del) and

exon 21 L858R missense (21 L858R) are the two most frequent

mutant isoforms of EGFR, which represent approximately 90% of

all mutations (9). It has been shown that the 19 del mutation is

more sensitive to TKIs than the 21 L858R mutation, leading to a

longer median survival time (10). Afatinib or osimertinib is

currently the first choice for treating patients with the 19 del

mutation, whereas erlotinib plus bevacizumab therapy is

recommended for patients with the 21 L858R mutation (11).

Therefore, identifying EGFR mutation status and subtypes before

treatment is crucial for offering accurate guidance regarding

individualized patient treatment strategies.

Molecular detection of tumor tissues obtained by biopsy or

surgical resection is the gold standard for identifying EGFR

mutations (12). Because of the high risk of invasive procedures

and the high heterogeneity of tumor tissues, pathological detection

is not always feasible (13). Detection of circulating tumor DNA

(ctDNA) has recently emerged as an alternative to EGFR mutation

testing, but plasma ctDNA mutation detection can be easily affected

by tumor burden and has a relatively high false-negative rate (14).

Therefore, a noninvasive, rapid, and accurate method is urgently

needed to identify EGFR mutations and subtypes.

Positron emission tomography (PET) imaging can visualize

tissues at the biochemical level and detect potential neoplastic

lesions earlier than computed tomography (CT) and magnetic

resonance imaging (MRI) (15), while PET/CT can simultaneously

provide metabolic and anatomical information regarding lesions.

Recently, the relationship between the conventional metabolic

parameters (such as maximum standardized uptake value

(SUVmax)) of 18F-fluorodeoxyglucose (FDG) PET/CT and EGFR

mutations were analyzed by many researchers, yet the results were

controversial, probably because of the small sample size and

complicated tumor microenvironment (16, 17).

First proposed by Lambin in 2012 (18), radiomics is continuously

being perfected. Currently, radiomics refers to the interpretation of

imaging data of regions of interest (ROIs), and thus, data with high-

resolution spatial features are created using automated high-

throughput feature extraction algorithms, which are further

analyzed and interpreted by statistics and machine learning

techniques, thereby supporting clinical decision-making (19). Over

the past decade, 18F-FDG PET/CT radiomics has been applied to

multiple aspects of cancer, such as the identification of benign and

malignant solitary pulmonary nodules (20), lung cancer pathological

typing and staging (21), prediction of gene mutation and molecular

phenotypes (22), and evaluation of efficacy and prognosis (23).

Amassed evidence substantiates the practicality and promising

benefits of 18F-FDG PET/CT radiomics for prognosticating EGFR

mutation classifications and subtypes (24). Radiomics methodology

significantly mitigates patient discomfort and potential complications

while delivering expedited diagnostic feedback and a comprehensive
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evaluation of tumor heterogeneity (25). Moreover, it serves as an

invaluable tool for the dynamic monitoring of disease progression.

Such advancements considerably improve patient experiences and

promote efficient allocation of medical resources, thereby paving

the way for developing tailored treatment regimens. This review

aimed to summarize the research progress on 18F-FDG PET/CT

radiomics for predicting EGFR mutation status and subtypes in

lung adenocarcinoma.
Literature search strategy

To gather information relevant to our topic, we conducted a

comprehensive literature search in PubMed, using the following

search terms: (((“Lung Neoplasms”[MeSH]) OR (Lung

adenocarcinoma[Title/Abstract]) OR (Squamous cell carcinoma

[Title/Abstract]) OR (Pulmonary Neoplasm[Title/Abstract]) OR

(Lung Cancer[Title/Abstract]) OR (Pulmonary Cancer[Title/

Abstract]) OR (NSCLC[Title/Abstract])) AND ((EGFR [Title/

Abstract]) OR (epidermal growth factor receptor[Title/Abstract])

OR (targeted therapy[Title/Abstract]))) AND ((radiomics [Title/

Abstract]) OR (deep learning[Title/Abstract]) OR (machine

learning [Title/Abstract]) OR (transfer learning [Title/Abstract])

OR (CNN [Title/Abstract]) OR (Convolutional Neural Networks

[Title/Abstract]) OR (features [Title/Abstract]) OR (radiogenomics

[Title/Abstract]) OR (Artificial intelligence [Title/Abstract]))AND ((“

Positron Emission Tomography Computed Tomography”[MeSH])

OR (emission-computed tomography [Title/Abstract]) OR (PET

[Title/Abstract])). Initially, we identified 83 articles. After a careful

review of titles and abstracts, we selected 26 articles that met

our topic.
Procedures and classification of radiomics

Traditional radiomics (TR) procedures mainly consist of image

acquisition, reconstruction, segmentation, feature extraction and

filtering, model establishment, and performance evaluation (26).

Multiple classifiers are used during the model establishment. Based

on the different classifiers, the radiomics were classified in this study

into traditional statistics-based radiomics (TSR), machine learning-

based radiomics (MLR, specifically shallow learning), and deep

learning (DL) to reflect iterations in omics technique. Figure 1

illustrates the differences in the procedures for the three

radiomics techniques.

TSR can identify the most valued features with non-zero

coefficients by extracting TR features (e.g., shape-based features,

histogram features, and texture features) and applying

mathematical-statistical methods integrated with algorithms such

as the least absolute shrinkage and selection operator (LASSO) (27).

A radiomics score (Rad-score) is then calculated and established for

each lesion with a linear combination of the selected features

correspondingly weighted by their coefficients. A classical logistic

regression (LR) approach is then adopted as the classifier to build

radiomics models. This method is the earliest, simplest, and most

interpretable omics technique.
frontiersin.org
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MLR is the most mature and mainstream approach that

establishes classification or prediction models using machine

learning algorithms after feature extraction and optimal radiomics

feature screening. Common machine learning classifiers encompass

random forest (RF), support vector machine (SVM), decision tree

(DT), Bayesian network (BN), and k-nearest neighbor (KNN)

algorithms (28). After MLR, there is a unique method named

deep learning-based radiomics (DLR) that can extract DL features

using artificial neural networks (ANNs), such as convolutional

neural networks (CNNs), and then construct models using

machine learning algorithms (29, 30).

DL, different from the TR represented by TSR and MLR, relies

on multilayer nonlinear neural networks and bypasses the

cumbersome feature extraction and selection procedures to

automatically learn features from images, by which prediction

models are established according to the “end-to-end” workflow

without any human intervention (31).
Prediction of EGFR mutations by the
TSR model

Before the emergence of radiomics, the clinical characteristics of

patients with lung adenocarcinoma were frequently applied to predict

EGFR mutation status, and multiple clinical characteristics (e.g.,

female, non-smoker, and adenocarcinoma histology) were related

to EGFR mutations (32). It has also been shown that several CT

features, such as maximum tumor diameter, tumor location, density,

ground-glass opacity, pleural traction, and air bronchogram, denote

EGFR mutation status in lung adenocarcinoma (33). A recent study

has illustrated that tumors with reduced long diameters have a

slightly higher risk of EGFR mutations though tumors with
Frontiers in Oncology 03
ground-glass opacity have markedly risk of EGFR mutations (34).

Yip et al. (35, 36) demonstrated that PET radiomic features have great

potential to predict EGFR mutation status by quantifying the tumor

metabolic phenotype. However, the radiomics features usually can

only reflect information regarding the image and cannot

comprehensively reflect the patient’s condition. To increase the

model’s accuracy in identifying EGFR mutation status and

subtypes, several researchers incorporated clinical information,

including CT features, into 18F-FDG PET/CT radiomics models (34).

In recent years, it has been revealed that the diagnostic

performance and goodness-of-fit of models utilizing clinical

features integrated with TR features are more optimal, with

greater clinical benefit in predicting EGFR mutations. Eight

studies on TSR are listed in Table 1, six of which used combined

models of radiomics and clinical features (22, 34, 37, 40–42) and

achieved superior performance as compared to single radiomics

models and single clinical feature models, with the area under the

curve (AUC) values of the test set results ranging from 0.81 to 0.87.

These data demonstrate the effectiveness of this integrated imaging

tool in predicting EGFR mutations.

Regarding discriminating the main subtypes of EGFR

mutations, studies have shown a relatively low predictive accuracy

of 18F-FDG PET/CT radiomics to distinguish the 19 del mutation

from 21 L858R. Li et al. (22) reported AUC values of 0.708 and

0.652 in predicting the 19 del mutation and 21 L858R mutation in

the training and testing sets, respectively. In the study of Zhang et al.

(40), after clinical information was integrated into the predictive

model, only one PET feature could discriminate between the 19 del

mutation and 21 L858R mutation, showing low predictive ability

(AUC = 0.661). Additionally, Nair et al. (38) suggested that PET/CT

features were superior (AUC = 0.86) for discriminating mutations

in exons 19 and 21 compared to CT features alone. However, this
FIGURE 1

The differences in the procedures for the three radiomics.
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study had a smaller sample size of only 21 patients and lacked an

independent test set. It was considered that the poor predictive

performance for EGFR mutation subtypes was mainly attributed to

overfitting of the trained model caused by inherent technical

limitations of TSR, such as but not limited to the possible loss of

essential information with the use of single LASSO regression due to

high dimensionality of the radiomics features (43).

Radiomics has rapidly developed as an emerging field, but TSR

continues to be used mainly due to its advantages of good

interpretability and easy application in clinical practice. TSR can

effectively transform the data into scores, usually in the form of a

nomogram (23, 34, 39), which allows intuitive calculation and easier

understanding and analysis of the associations and differences

between the data. However, its limitation is the low predictive

efficacy of the traditional logistic regression model relative to most

machine learning classifiers, which is also why the use of MLR is

becoming increasingly common.

Prediction of EGFR mutations by the
MLR model

Most machine learning algorithms aim to develop an optimal

model to solve one problem. The selection of machine learning
Frontiers in Oncology 04
classifiers requires comprehensive consideration of multiple factors

such as data characteristics, model performance, computational

resources, and usage, and experiments are necessary to determine

the optimal classifier (44, 45). Studies on EGFR mutation

identification in lung cancer based on different machine learning

classifiers are presented in Table 2.

LR is a simple and easily implementable algorithm for binary

classification problems. Zhang et al. (47) found that the fusion of

PET and CT image features did not significantly enhance the

classifier’s performance compared to using only PET image

features. Furthermore, simple and efficient classifiers tend to be

more advantageous in situations with limited data. Therefore, they

utilized a small amount of single-mode PET images, employed

various methods to extract features and perform dimensionality

reduction, and then input the most significant features into the LR

model for classification. This approach ultimately yielded the

highest AUC value of 0.843. This method used less data than

previous research but achieved better results.

The RF algorithm, one of the most classical machine learning

algorithms, is a decision tree-based ensemble learning algorithm

that integrates the results obtained by several weak classifiers to

improve the model performance. Gao et al. (46) found that

compared with LR and SVM, the RF performed best among the
TABLE 1 Studies on applying 18F-FDG PET/CT TSR in predicting EGFR mutations in patients with lung adenocarcinoma.

Author Year Samples Radiomics features Training set Testing set

Li et al. (22) 2022

179
(EGFR+: 105, EGFR-: 74;

19 del: 46,
21 L858R: 53)

2 PET radiomics features;
4 CT radiomics features

mutant/wild model
PET/CT + clinical:

AUC= 0.882;
19 del/21 L858R model:
PET/CT: AUC = 0.708

mutant/wild model
PET/CT + clinical:

AUC= 0.837;
19 del/21 L858R model:
PET/CT: AUC = 0.652

Zhao et al. (37) 2022 88
6 PET radiomics features;
6 CT radiomics features

PET/CT + clinical:
AUC = 0.864

–

Nair et al. (38) 2021

50
(EGFR+: 21, EGFR-: 29;

19 del: 11,
21 mut: 10)

14 PET/CT radiomics features

mutant/wild model:
PET/CT:

AUC = 0.8713 ± 0.05
exon19/21 model:

PET/CT:
AUC = 0.860 ± 0.07

–

Yang et al. (39) 2021
114

(EGFR+:51,
EGFR-:63)

7 PET/CT radiomics features PET/CT: AUC = 0.866 –

Chang et al. (34) 2021
583

(EGFR+: 295,
EGFR-: 288)

30 PET/CT radiomics features;
12 PET features;
15 CT features

PET/CT: AUC= 0.76;
PET/CT + clinical:

AUC= 0.84

PET/CT: AUC= 0.75;
PET/CT + clinical:

AUC= 0.81

Zhang et al. (40) 2020

173
(EGFR+: 71, EGFR-: 102;

19 del: 29,
21 L858R: 38)

2 PET radiomics features;
4 CT radiomics features

PET/CT: AUC= 0.868,
PET/CT + clinical:

AUC= 0.866

mutant/wild model
PET/CT: AUC= 0.769,
PET/CT + clinical:

AUC= 0.827,
19 del/21 L858R model:

AUC = 0.661;

Zhang et al. (41) 2020
248

(EGFR+: 133,
EGFR-: 115)

5 PET radiomics features;
5 CT radiomics features

PET/CT: AUC= 0.79;
PET/CT + clinical:

AUC= 0.86

PET/CT: AUC= 0.85;
PET/CT + clinical:

AUC = 0.87

Li et al. (42) 2019
115

(EGFR+: 64,
EGFR-: 51)

2 PET radiomic features;
4 CT radiomic features

PET/CT: AUC= 0.805;
PET/CT + clinical:

AUC= 0.822
–

AUC, area under the curve; EGFR, epidermal growth factor receptor; 19 del, 19 deletion; 21 L858R, 21 L858R missense; PET, positron emission tomography; CT, computed tomography.
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three radiomics models of CT, PET, and PET/CT (testing sets AUC:

0.726, 0.678, and 0.704). Yang et al. (54) adopted the RF algorithm

to develop a predictive model for EGFR mutations and determined

its AUC values of 0.77 and 0.71 in the training set and testing

set, respectively.

XGBoost algorithm, derived from the RF algorithm, is a gradient-

boosting decision tree-based model algorithm with a strongmodeling

effect and ultrafast computational speed. It increases computational
Frontiers in Oncology 05
efficiency with its parallel computation and cache optimization. Also,

there is greater stability associated with the XGBoost algorithm due to

its application of a regularization technique in the training process.

Liu et al. (55) employed XGBoost to predict EGFR mutations and

found that the 18F-FDG PET/CT radiomics model achieved

satisfactory capability for identifying EGFR mutation status

(AUC = 0.87). It was reported by Koyasu et al. (56) that a stronger

performance was observed with a radiomics model employing
TABLE 2 Studies on applying 18F-FDG PET/CT MLR in predicting EGFR mutations in patients with lung adenocarcinoma.

Author Year Samples Model Training set Testing set

Gao et al. (46) 2023
515

(EGFR+:313,
EGFR-:202)

RF, LR, SVM AUC=0.760 AUC=0.730

Zhang et al. (47) 2023
115

(EGFR+:64,
EGFR-: 51)

LR, RF, SVM, Adaboost AUC=0.843 –

Zuo et al. (48) 2023
767

(EGFR+:450,
EGFR-: 317)

LGBM, XGB, RF,LR –

mutant/wild model:
AUC=0.80;

19 del/21 L858R model:
AUC=0.76

Yang et al. (49) 2022
313

(EGFR+:181,
EGFR-:132)

SVM, DT, RF

mutant/wild model:
AUC=0.881;

19 del/21 L858R model:
AUC19 del=0.849;
AUC21 L858R=0.851

mutant/wild model:
AUC=0.926;

19 del/21 L858R model:
AUC19 del=0.859;
AUC21 L858R=0.805

Agüloğlu et al. (50) 2022
159

(EGFR+:59,
EGFR-:100)

RF, NB, KNN, LR, SVM, DT AUC=0.751 AUC=0.797

Shiri et al. (51) 2022 136 RF AUC=0.92–0.94 –

Ruan et al. (52) 2022
100

(EGFR+:46,
EGFR-: 54)

LR, SVM AUC=0.746 AUC=0.741

Huang et al. (30) 2022
138

(EGFR+:64,
EGFR-: 74)

CNN AUC=0.91 AUC=0.85

Wang et al. (43) 2021
238

(EGFR+: 126,
EGFR-: 112)

KNN, SVM, Adaboost
19 del/21 L858R model:

AUC=0.87
–

Shiri et al. (53) 2020 300 SVM, KNN, DT, QDA, MLP, SGD, LR, NB, GNB, RF, AB, BAG AUC=0.82 –

Yang et al. (54) 2020
174

(EGFR+:109,
EGFR-:65)

RF

mutant/wild model:
AUC=0.77;

19 del/21 L858R model:
AUC=0.82

mutant/wild model:
AUC=0.71;

19 del/21 L858R model:
AUC=0.73

Liu et al. (55) 2020
148

(EGFR+: 75,
EGFR-: 73)

XGB

mutant/wild model:
AUC=0.93;

19 del/21 L858R model:
AUC19 del=0.91;
AUC21 L858R=1.0

mutant/wild model:
AUC=0.87;

19 del/21 L858R model:
AUC19 del=0.77;
AUC21 L858R=0.92

Koyasu et al. (56) 2020
138

(EGFR+:38,
EGFR-:100)

RF, XGB AUC=0.659 –

Jiang et al. (57) 2019
80

(EGFR+:30,
EGFR-:50)

SVM AUC=0.953 –
KNN, K-nearest neighbor; DT, decision tree; QDA, quadratic discriminant analysis; MLP, multilayer perceptron; SGD, stochastic gradient descent; LR, logistic regression; NB, naive Bayes; GNB,
Gaussian naive Bayes; RF, random forest; AB, adaptive boosting; BAG, bagging; SVM, support vector machine; XGBoost, eXtreme gradient boosting; Adaboost, adaptive boosting; LGBM, light
gradient boosting machine classifier; CNN, convolutional neural network. Bold indicates the best performance model.
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XGBoost and multiple types of imaging features as compared to RF,

and this model showed the most optimal performance in the

classification of EGFR mutations (AUC = 0.659).

SVM, another frequently used supervised learning algorithm,

accomplishes satisfactory nonlinear data-fitting because SVM is a

very commonly used strong learner with excellent performance in

finding the optimal solution in high-dimensional space using a

kernel function. After a comparison, Ruan et al. (52) revealed that

the SVM model outperformed the LR model in EGFR mutation

identification, and particularly, the SVM model based on the radial

basis kernel function exhibited the most optimal performance in the

testing set (AUC = 0.741). Yang et al. (49) retained the radiomics

features and clinical factors to establish integrated models. The

SVM model exhibited a stronger performance than the RF and DT

models, yielding an AUC value of 0.926 in the testing set. Jiang et al.

(57) found that combining qualitative and quantitative features

outperformed qualitative or quantitative features alone, and the

SVM model achieved excellent performance with a high AUC

of 0.953.

The naive Bayes (NB) algorithm is a supervised learning

algorithm based on Bayes’ theorem that is computationally

efficient, rapid, and simple to operate. Agüloğlu et al. (50) found

that the NB machine learning algorithm established using the

GLZLM_GLNU feature and clinical data contributed to the most

successful prediction of EGFR mutations (AUC = 0.751). Shiri et al.

(53) developed models using multimodal PET/CT image features

and trained them using multiple machine learning methods for

EGFR mutation prediction, achieving an AUC value of 0.82, which

was increased to 0.94 by ComBat harmonization (51). Further

optimization, such as data correction, may improve the model’s

performance in case of unsatisfactory results.

Studies have demonstrated the potential of 18F-FDG PET/CT

radiomics to discriminate EGFR subtypes. Liu et al. (55) obtained

two sets of prognostic radiomics features for specific EGFR

mutation subtypes and found that their XGBoost classifier for the

19 del and 21 L858R mutations yielded a prediction accuracy of 0.77

and 0.92 with respect to AUC values, respectively. The study of

Yang et al. (54) utilized an RF classifier, and the resultant AUC

values of the models for discriminating 19/21 site mutations were

0.82 and 0.73 in the training test and testing set, respectively.

Wang et al. (43) developed a PET/CT radiomics model using an

Adaboost classifier and reported its predictive value for EGFR

mutation subtypes (AUC = 0.86). Adaboost is also an ensemble

learning algorithm that can train a weak classifier through multiple

iterations, improving overall accuracy. Zuo et al. (48) discovered

that the XGBoost classifier combined with SVM feature selection

method achieved the best performance in predicting EGFR subtypes

(AUC reached 0.76, 0.63, and 0.61 in the internal test cohort and

two external test cohorts, respectively). Also, Yang et al. (49)

revealed that the SVM model was superior to the RF model and

the DT model, achieving AUC values of 0.805 and 0.859 for

predicting the 19 del and 21 L858R mutations in the testing set,

respectively. Based on the results of subtype prediction, the

predictive performance for the exon 21 mutation was more

optimal than that for the exon 19 mutation, and the overall

results for MLR were also superior to those of TSR.
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Particularly, with the continuous development of AI

technologies, DL, represented by CNNs, has shown satisfactory

performance. Radiomics gradually relies on DL techniques to

address challenges and limitations in routine radiomics

workflows, including automated detection and segmentation

procedures and harmonizing images by synthetic generation (58).

To reduce or balance the high cost of data acquisition, several

researchers have proposed DLR to integrate the feature outputs

from the DL networks with classical machine learning classifiers.

Huang et al. (30) constructed a DLR model to predict EGFR

mutations using three-dimensional (3D) CNN, and they found

that this DLR model was superior to TR (AUC: 0.79 vs. 0.68). DLR,

as a transition between TR and DL, extracts and classifies advanced

features and image data using multilayer neural networks,

improving the accuracy of data analysis. There are few studies on

DLR in this field, and additional studies may be required in the

future to continually explore and validate the feasibility and

performance of this proposal.

EGFR prediction models established using machine learning

algorithms can identify EGFR mutation status and subtypes,

displaying satisfactory discrimination, prediction accuracy,

correction performance, and gain values. There have been more

reports on MLR in the last few years, and the machine learning

algorithms applied in this method have also been more mature than

those of TSR. In the field of machine learning, there is no single

algorithm that performs best in all situations. The performance of

an algorithm depends on various factors, such as the data’s

characteristics, the problem’s complexity, and the algorithm’s

parameter tuning. For a specific problem, it is necessary to

experimentally compare different algorithms’ performance to

determine which is the most suitable. Generally, MLR selects the

optimal combination to achieve stronger results using multiple

feature screening and multiple classifiers. Based on our summary,

RF and SVM are the classifiers that usually perform best in

prediction efficacy. In radiomics, fusion using the stacking

algorithm is an effective approach (59) because it incorporates the

obtained multiple results of classifiers, where the prediction results

of various models are selected as a new input and then trained into

one model to improve the classification performance. No studies

concerning this approach in MLR have been performed, but this

approach may become more common with advanced technologies

and data accumulation.
Prediction of EGFR mutations by
the DL model

Radiomics features can be classified into two types: the first refers

to predefined or manually extracted features established by an image

processing expert, also known as traditional features; the second refers

to deep features, and several DL algorithms assign a task in their

extraction layer to self-design and select features without any human

intervention (31, 58). TSR and MLR extract similar and traditional

features, which mainly differ concerning different classifiers, while DLR

and DL extract deep features. Several studies have suggested that deep

features are superior to traditional features (60, 61).
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Recently, DL has shown great potential in improving feature

engineering in medical imaging and classification and prediction

accuracy (62). Several investigators are now focusing on applying

DL models in predicting EGFR mutation status, which has shown

promising performance. Xiao et al. (63) proposed a deep learning

framework based on the EfficientNet-V2 model. First, 32 2D views

are extracted from each 3D cube of lung nodules. Then, deep

features are extracted from these 32 views to predict whether EGFR

is mutated. The results show that this deep learning model

outperforms the radiomics model, with AUCs of 83.64% and

82.41%, respectively, effectively predicting EGFR mutations.

Using the robust deep convolutional neural network structure,

the squeeze-and-excitation residual network (SE-ResNet) module,

Yin et al. (64) developed two DL models (SECT and SEPET) for

EGFR mutation identification in CT and PET images, respectively.

They also integrated the results of SECT and SEPET using stacked

generalization and increased the AUC value to 0.84, which was

significantly higher than that of either SECT or SEPET.

In another study, Chen et al. (65) applied the Stack DL model to

effectively integrate anatomical bioimaging data from PET/CT

images with clinical data, which displayed a strong predictive

ability for EGFR mutations (AUC = 0.85 ± 0.09) and was

superior to the ResNet PET/CT model (AUC = 0.81 ± 0.07) and

the radiomics model (AUC = 0.60 ± 0.06). The most optimal

features were constructed from the image data rather than

selected from a predefined and limited set of feature candidates.

With sufficient training data, CNN will outperform the feature

selection scheme.

Mu et al. (66) developed an 18F-FDG PET/CT-based DL model

using the 2D small-residual-convolutional-network (SResCNN),

which accurately classified EGFR mutation status. Also, after

constructing an integrated model that included EGFR-DLS (DL

score) and histological and clinical features (smoking), the

integrated model showed superior performance to the DL or

clinical model (AUC = 0.88, 0.83, and 0.78, respectively). Overall,

the multitask artificial intelligence system incorporating DL clinical

features achieved relatively satisfactory results in predicting EGFR
Frontiers in Oncology 07
status. This finding illustrates that incorporating multiple data can

partly enhance the model’s predictive accuracy.

At present, the use of 18F-FDG PET/CT DL models for EGFR

mutation status prediction has been scarcely studied, while its use in

EGFR mutation subtype identification has not been discussed.

Although three retrieved articles (Table 3) demonstrated clear

discrimination of EGFR mutations, all of them acquired section

samples from 3D input images and thus obtained sufficient data to

train 2D-CNN de novo, which would result in the loss of rich 3D

anatomical information (67). In addition, DL-dependent methods in

radiomics face some problems and need to address new challenges,

one of which is the limited size of the data set. Generally, DL training

requires less human input than traditional ML algorithms, but

effective DL often involves a mass of training data.

In medical imaging, obtaining such many training samples is

generally difficult. This limitation can theoretically be addressed by

the similarity of visual features in the problem domain using the

transfer learning (TL) strategy (44). Indeed, although TL is effective

in DL, its application is limited because of the lack of new pre-

trained models for medical imaging (68, 69). In recent years,

scholars have also proposed leveraging unlabeled data (i.e., semi-

supervised learning) to address the issue of small sample sizes,

including techniques like pseudo-labeling and Generative

Adversarial Networks (GANs) (70, 71). The potential value of

these innovative approaches in predicting EGFR mutations

remains an area ripe for further exploration and research in the

future (72). Second, considerable computational resources are

usually required to train DL models, including central processing

units (CPUs), graphics processing units (GPUs), and memory. If

computational resources are limited, TR may be a more optimal

choice. The lack of interpretability of DL network-based models is

an additional issue that remains incompletely addressed, and this

algorithm is usually called the “black box” (73). The high

performance of deep neural networks is achieved at the cost of

high complexity and many parameters. Although one can, in

principle, follow every processing step, one cannot understand the

internal decision-making process because many parameters make it
TABLE 3 Studies on applying 18F-FDG PET/CT DL in predicting EGFR mutations in patients with lung adenocarcinoma.

Author Year Samples Model Training set Testing set

Xiao et al. (63) 2023
150

(EGFR+:57,
EGFR-: 93)

EfficientNet-V2 – AUC%=83.64 ± 2.41

Chen et al. (65) 2022
147

(EGFR+:37,
EGFR-: 110)

ResNet
StackPET-CT+ clinical:

AUC=0.85 ± 0.09
–

Yin et al. (64) 2021
301

(EGFR+:153,
EGFR-: 148)

SE-ResNet
StackPET-CT:
AUC=0.86

StackPET-CT:
AUC=0.84

Mu et al. (66) 2020
681

(EGFR+:312,
EGFR-:369)

SResCNN
DLS+ clinical:
AUC=0.88

DLS+ clinical:
AUC=0.88
ResNet, residual network; SE-ResNet, squeeze-and-excitation residual network; SResCNN, small-residual-convolutional-network; DLS, deep learning score.
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difficult to obtain meaningful explanations of model behaviors in

this way.

There is insufficient ability for traditional machine learning

techniques to process raw data, while DL models are well-suited

for model training with large-scale data in the current big data era,

and their high accuracy is due to their multilayer structure that

can capture complex relations in the data and process high-

dimensional and nonlinear data (31). DL models can learn more

representative features than TR models, which is critical for

stronger analytical performance. TR methods require rigorous

procedures, such as detection, segmentation, feature extraction,

and selection, which are cumbersome and time-consuming (74).

DL can greatly improve efficiency through its “end-to-end”

learning mode. Furthermore, radiomics features can be easily

affected by artificial segmentation and scanning parameters,

while DL models can adaptively learn features based on the

data, thus effectively improving the model’s robustness and

generalization ability (29). Currently, several visualization

methods have been developed to interpret the decision-making

process of DL models. The most common method is using

gradient-weighted class activation mapping (Grad-CAM) to

generate “heatmaps” for input images, showing the influence

weights of different parts of the image on the classification

results, thereby explaining the learning process (75). In

summary, deep learning and machine learning are advantageous

in different applications. The most suitable approach in practice

often depends on the specific requirements and constraints of the

task. In the era of precision medicine, MLR will combine with DL

to achieve automated imaging analysis and diagnosis, thereby

improving diagnostic accuracy and efficiency. The advantages and

disadvantages of the three types of radiomics are listed in Table 4.
Limitations and prospects

Identifying EGFR mutation status in lung adenocarcinoma

using 18F-FDG PET/CT radiomics is promising, but limitations

remain. First, the scanner and scanning parameters have not yet

been standardized, and there has been no consensus on delineating

lesional ROIs, which will partly affect the objectivity and

reproducibility of experiments. As a standardization guideline, the

Image Biomarker Standardization Initiative (IBSI) has proposed

uniform standards for image quality, feature extraction, and

preprocessing modalities to ensure the robustness and

reproducibility of experiments (76, 77). Also, data sharing is a

huge obstacle for researchers. Sharing training parameters instead

of data is a simple solution (78, 79).

Second, similar to multidisciplinary teams in the clinical

treatment of lung cancer, integrating different features is also

conducive to constructing prediction models (80), yielding the

concept of multi-omics (81). Combining knowledge from

different fields and multiple disciplines, such as imaging,

pathology, statistics, and clinical data, and the convergence of old

and new techniques is a worthwhile objective for the future.
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Additionally, the current studies on radiomics are mostly

single-center, small-scale retrospective studies, and prospective

studies and external independent validation are scarce, which

may lead to the overfitting of data and insufficient generalization

ability of models. Thus, multi-center collaboration will be necessary

to build large databases to increase models’ accuracy. Furthermore,

limited specificity and sensitivity are the inherent bottlenecks in the

application of the tracer 18F-FDG in predicting lung cancer driver

genes, and new imaging methods and new molecular probes such as

18F-MPG are required to improve the model performance (66, 82).

Furthermore, there are currently few studies on the application

of PET/CT in identifying EGFR mutation subtypes, and two binary

classification models are adopted in most studies on EGFR

mutation subtypes. The ternary classification model can be

directly applied in the future to obtain richer information that

better describes the true situation of the samples, thus improving

the prediction accuracy of models. However, the training and

evaluation of ternary classification models are more complicated,

requiring additional data and a longer time.

Moreover, habitat imaging is an important component of

radiomics and a hot topic in cancer quantitative imaging. This

generally refers to the analysis of different sub-regions within a
TABLE 4 Advantages and disadvantages of different types of radiomics.

Radiomics
type

Advantages Disadvantages

TSR

1. Methods are based on
explicit assumptions and
statistical models, and the
results can be
mathematically
demonstrated.
2. The data are easy to
interpret and understand
and can provide meaningful
biological results.
3. The requirement for data
is low, and a mass of data is
not required.

1. Provides a poor fit to
complex data relations.
2. The analytical
performance for high-
dimensional data is limited,
and complex nonlinear
relations are poorly
processed.
3. Extensive feature
engineering may be
required, which requires
researchers to have extensive
knowledge of biology.

MLR

1. Accuracy is high with
satisfactory applicability.
2. The model is more
interpretable and
comprehensible.
3. High-dimensional data
and nonlinear relationships
can be processed.

1. Overfitting is easy in
insufficient training data or
noise.
2. Only labeled data can be
processed.
3. Adjusting parameters is
difficult and requires the
strong technical skills
of researchers.

DL

1. High performance for
large-scale and high-
dimensional data processing.
2. Data features can be
automatically learned with a
satisfactory fit to complex
data relationships.
3. Unstructured data
processing performance
is satisfactory.

1. Poor interpretability with
difficulty in understanding
the results.
2. Requires substantial
computational resources and
data.
3. There are strict
requirements for training
data, and poor data quality
may affect the results.
TSR, traditional statistics-based radiomics; MLR, machine learning-based radiomics; DL,
deep learning.
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tumor. These sub-regions are referred to as “habitats”, each of

which may represent different biological characteristics and

pathophysiological processes within the tumor (83). By analyzing

these habitats, we can better understand the heterogeneity of the

cancer, thereby facilitating the development of personalized

treatment plans.

Lastly, although these models have clear advantages, their

widespread clinical application still faces multiple challenges, such

as data heterogeneity, interpretability of the models, difficulties in

clinical integration, the need for external validation, regulatory

barriers, economic considerations, and ethical and privacy

concerns (84). In the future, we can further explore these models’

practical application potential and clinical translation ability

through prospective clinical research.
Conclusions

Radiomics is a well-established research method, forming a

complete theoretical system and research process, but AI-based

radiomics in medicine remains in the initial stage and is not widely

utilized. With the advancement of machine learning methods and

the continuous development of DL technologies, identifying EGFR

mutation status by radiomics in lung adenocarcinoma will continue

to be an area of intense clinical medicine research, providing more

precise imaging diagnosis and individualized therapeutic guidance

for patients.
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Glossary

19 del exon 19 deletion

21 L858R exon 21 L858R missense

3D three-dimensional

AB/Adaboost adaptive boosting

ANN artificial neural networks

AUC area under the curve

BAG bagging

BN Bayesian network

ctDNA circulating tumor DNA

CNN convolutional neural network

CPU central processing unit

DL deep learning

DLR deep learning-based radiomics

DLS DL score

DT decision tree

EGFR epidermal growth factor receptor

FDG fluorodeoxyglucose

GANs Generative Adversarial Networks

GNB Gaussian naive Bayes

GPU graphics processing unit

Grad-CAM gradient-weighted class activation mapping

IBSI image biomarker standardization initiative

KNN k-nearest neighbor

LASSO least absolute shrinkage and selection operator

LR logistic regression

MLP multilayer perceptron

MLR machine learning-based radiomics

MRI magnetic resonance imaging

NB naive Bayes

PET positron emission tomography

QDA quadratic discriminant analysis

Rad-score radiomics score

ResNet Residual network

RF random forest

ROI region of interest

SE-ResNet Squeeze-and-excitation residual network

SGD stochastic gradient descent

SResCNN small-residual-convolutional-network

(Continued)
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SUVmax maximum standardized uptake value

SVM support vector machine

TKI tyrosine kinase inhibitors

TR traditional radiomics

TSR traditional statistics-based radiomics

XGBoost eXtreme gradient boosting
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