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The unique immune ecosystems
in pediatric brain tumors:
integrating single-cell and
bulk RNA-sequencing

Liangliang Cao †, Wanqun Xie †, Wenkun Ma †, Heng Zhao,
Jiajia Wang, Zhuangzhuang Liang, Shuaiwei Tian*,
Baocheng Wang* and Jie Ma*

Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, Shanghai, China
Background: The significant progress of immune therapy in non-central nervous

system tumors has sparked interest in employing the same strategy for adult

brain tumors. However, the advancement of immunotherapy in pediatric central

nervous system (CNS) tumors is not yet on par. Currently, there is a lack of

comprehensive comparative studies investigating the immune ecosystem in

pediatric and adult CNS tumors at a high-resolution single-cell level.

Methods: In this study, we comprehensively analyzed over 0.3 million cells from

171 samples, encompassing adult gliomas (IDH wild type and IDH mutation) as

well as four major types of pediatric brain tumors (medulloblastoma (MB),

ependymoma (EPN), H3K27M-mutation (DIPG), and pediatric IDH-mutation

glioma (P-IDH-M)). Our approach involved integrating publicly available and

newly generated single-cell datasets. We compared the immune landscapes in

different brain tumors, as well as the detailed functional phenotypes of T-cell and

myeloid subpopulations. Through single-cell analysis, we identified gene sets

associated with major cell types in the tumor microenvironment (gene features

from single-cell data, scFes) and compared them with existing gene sets such as

GSEA and xCell. The CBTTC and external GEO cohort was used to analyze and

validate the immune-stromal-tumor patterns in pediatric brain tumors which

might potentially respond to the immunotherapy.

Results: From the perspective of single-cell analysis, it was observed that major

pediatric brain tumors (MB, EPN, P-IDH-M, DIPG) exhibited lower immune

contents compared with adult gliomas. Additionally, these pediatric brain

tumors displayed diverse immunophenotypes, particularly in regard to myeloid

cells. Notably, the presence of HLA-enrichedmyeloid cells in MBwas found to be

independently associated with prognosis. Moreover, the scFes, when compared

with commonly used gene features, demonstrated superior performance in

independent single-cell datasets across various tumor types. Furthermore, our

study revealed the existence of heterogeneous immune ecosystems at the bulk-

RNA sequencing level among different brain tumor types. In addition, we
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identified several immune-stromal-tumor patterns that could potentially exhibit

significant responses to conventional immune checkpoint inhibitors.

Conclusion: The single-cell technique provides a rational path to deeply

understand the unique immune ecosystem of pediatric brain tumors. In spite

of the traditional attitudes of “cold” tumor towards pediatric brain tumor, the

immune-stroma-tumor patterns identified in this study suggest the feasibility of

immune checkpoint inhibitors and pave the way for the upcoming tide of

immunotherapy in pediatric brain tumors.
KEYWORDS
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1 Introduction

The therapeutic strategy targeting the specific component in the

immune ecosystem has achieved remarkable advances in recent

years (1, 2). Considering the distinct immune microenvironment

and the molecular and immunological characters of pediatric brain

tumors, it should be more rigorous to apply the scientific findings of

their adult counterparts in them (3–5). Recent studies have shown

that there are significant differences in immune compositions

between children and adults at the levels of bulk RNA and DNA

methylation. However, these deconvolution-based methods are

unable to directly measure and achieve a high-resolution

depiction of the immune composition landscape (6). The direct

and systematic mapping of immune ecosystems in pediatric brain

tumors, including the detailed immunophenotypes of immune cells,

is still lacking. Therefore, a full understanding of the tumor

microenvironment (TME) compositions of the CNS at the single-

cell level is the essential precondition of the successful application

of immunotherapy.

As the major immune components infiltrating into the TME,

myeloid cells play important roles in modulating the antitumor

functions (7). Some therapeutic strategies redirecting them are

ongoing. In order to clearly understand their various functional

phenotypes among different cancer types, Zhang et al.

systematically investigated the unique and recurrent phenotypes

of myeloid across 15 tumor types and identified some potential

targets, for example, LAPM3 cDCs and TNF+ mast cells. The CNS

hosts the heterogeneous populations of myeloid cells, including

microglia and border-associated macrophage. It is conceivable

that the functions of microglia are distinct and highly diverse in

different ages and pathological conditions (8–10). Klemm et al.

found that microglial (MG) and bone marrow-derived myeloid

(BMDM) exhibited a multifaceted polarization phenotype and

diverse transcriptional programming in adult gliomas and brain

metastases (4) and acquired tumor-associated signatures with the

dysregulations of hypoxia and inflammatory molecules (9, 11).

Recently, the mystery of the TME in pediatric brain tumors was

unveiled. The TME of medulloblastoma (MB) was analyzed
02
systematically, and several myeloid clusters were identified (12).

In addition, the polarization characters (M1/M2) and prognostic

value in MB were investigated by multiple fluorescence

immunohistochemistry (13). However, the identification of

recurrent functional phenotypes spanning multiple pediatric

brain tumor types is still lacking, which will undoubtedly affect

the fully understanding of heterogeneity and evolution of

the TME.

Different from depicting the state of certain cell type, the

systematical identification of constant and specific immune cell

pairings of immune, stromal, and tumor cells across the diverse

tumor types will provide priori knowledge for cancer immunity

before immunotherapy (14). Krummel et al. identified 12 immune

archetypes in over 10 tumor types with 10 immune cell features,

mainly focusing on non-CNS cancer types (15). Considering the

unique immune characteristics of the central nervous system

(CNS), phenotypic differences between children and adults, the

predominance of malignant cells in CNS tumors, and the potential

benefits of immunotherapy in treating pediatric brain tumors, it

remains unknown whether a distinct immune-stromal-tumor

ecosystem exists.

In this study, combining with the published and newly

generated scRNA-seq data, we mapped the landscapes of the

TME across six major brain tumor types and comprehensively

analyzed the immunophenotypes of T cells and myeloid cells in

different cancer types. Different from the definitions of myeloid

cells using a single gene in previous studies, we combined the

marker genes with mostly affected pathways to discover the

recurrent function phenotypes across different brain tumors. In

addition, considering the unique stromal composition and

predominance of malignant cells in pediatric brain tumors, we

constructed the gene features of different cell types (namely, scFes)

including the tumor-related features based on single-cell

analysis and finally identified 12 immune-stromal-tumor

patterns. We believe this study will provide a comprehensive

compendium to understand the complexity of the TME and

potential strategies for the upcoming tide of immunotherapy in

pediatric brain tumors.
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2 Materials and methods

2.1 Single-cell RNA-seq datasets collected
in this study

We collected published scRNA-seq data covering four pediatric

brain tumor types (ependymoma (EPN), medulloblastoma (MB),

IDH-mutation glioma (P-IDH-M), and H3K27M-mutation glioma

(DIPG)) and two adult gliomas [IDH-wild glioma (adult-IDH-W)

and IDH-mutation glioma (adult-IDH-M)] (Figure 1A).

To supplement the publicly available data and study the

immune components in the “cold” tumors (16, 17), we collected

five specimens of MB (including three unpublished datasets

generated previously and two newly produced) (18) and obtained

the snRNA-seq data using the 10x Genomics platform (19) (Table

S1). The study protocol was approved by the Ethics Committee of

Xinhua Hospital Affiliated to Shanghai Jiao Tong University School

of Medicine, and the written informed consents were obtained from

all patients.
2.2 Primary scRNA-seq data preprocessing

2.2.1 Data qualification and transformation
For the newly generated snRNA-seq data from 10x Genomics,

the Cell Ranger (version 3.0, 10x Genomics Inc.) was used for the

alignment and quantification of sequencing reads against the

GRCh38 human reference genome. The cells with fewer than 2,000

UMI counts, less than 200 detected genes and >10% mitochondrial

gene count, were filtered out. DoubletFinder with default parameters

was applied to remove the potential doublets (20).

For previously published scRNA-Seq data, the quality-passed

cells from the original publications were used for downstream

analysis. Count data generated based on 10x Genomics

Chromium were normalized by the NormalizeData function from

the Seurat packages (version 4.1.1) (21). The TPM data generated

based on Smart-seq2 were log2-transformed.

2.2.2 Comparing two methods identifying known
cell types

The Cluster-based method was based on the Seurat pipeline,

and two or more marker genes were used to annotate the cell types

(for example, MBP, MOG, and PLP1 were combinedly to mark the

mature oligodendrocytes). Another method named “positive

selection” (cells with positive expression of known markers) were

performed according to the expression of single marker gene (for

example, oligodendrocytes were annotated if the expression level of

“MBP” was higher than the average level). Then, the cell numbers,

mean expression level of markers, and mean enrichment scores of

mark pathway were compared.

2.2.3 Clustering per dataset
Two-run clustering was performed on every dataset to reduce

the technical noise. The first-run clustering was to obtain the coarse
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cell types. The percentages of mitochondrial genes and heat shock

protein genes were calculated and added using the AddMetaData

function. The cell-cycle score of each cell was scored by the

CellCycleScoring function for the G2/M and S cell-cycle phases.

The 10x Genomics-based dataset was renormalized by the

SCTransform function, and the donor effect, number of UMIs,

percentage of mitochondrial transcripts, percentage of heat shock

protein genes, and cell-cycle scores were regressed out. The top

2000 genes were identified as highly variable genes (HVG) and used

for principal component analysis (PCA). The Shared Nearest

Neighbor (SNN) graph was built with the top 15 principal

components, and the cells were clustered using the Louvain

algorithm with default parameters. The primary cell types were

annotated according to the marker genes. Then, the second-run

clustering was performed on each cell type as the pipeline of first-

run clustering. The resolution parameter of clustering was set to 50

to construct the mini-clusters to find out and exclude the

contaminant cells or doublets. The reminding cells were kept for

the downstream analysis.
2.3 Ro/e analysis for the tissue abundance
of T-cell subpopulations

To characterize the tissue distribution of a specific T

subpopulation, odds ratios (ORs) were calculated and used to

indicate preferences. We constructed a 2 × 2 contingency table.

This table included the number of cells belonging to the target T-cell

subpopulation i in tissue j, the number of cells of T cell i in other

tissues, the number of cells of non-i T cells in tissue j, and the

number of cells of non-i T cells in other tissues. To determine the

significance, Fisher’s exact test was applied to this contingency table,

allowing us to obtain the OR and corresponding p-value. The p-

values were then adjusted using the BH method implemented in the

R function p.adjust. Consequently, a higher OR with a value above

1.5 indicated a preference for the target T-cell subpopulation i to

distribute in tissue j. Conversely, a lower OR with a value below 0.5

indicated a preference for T cell i not to distribute in tissue j.
2.4 Conduction of two independent RNA-
seq cohorts of pediatric brain tumors

2.4.1 RNA-seq cohorts of pediatric brain
tumors from the Children’s Brain
Tumor Tissue Consortium

Transcriptomic data and clinical data were downloaded from the

USCS XENA portal https://xena.ucsc.edu/as FPKM units. Overall, 11

pediatric brain tumor types, namely, anaplastic astrocytoma (AA),

astrocytoma (AS), atypical teratoid rhabdoid tumor (ATRT), choroid

plexus papilloma (CPP), craniopharyngioma (CPG), diffuse intrinsic

pontine glioma (DIPG), ependymoma (EPN), ganglioglioma (GG),

medulloblastoma (MB), oligodendroglioma (OG), and primitive

neuroectodermal tumor (PNET), were used in this study. In total,

679 pediatric samples were included for further analysis.
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2.4.2 Independent external cohort of pediatric
brain tumors from GEO

We collected 44 public datasets using Affymetrix protocol

(U133 Plus 2.0 Array) from the GEO (total samples number =

2,331). The adult patients were excluded. CEL files were processed

using the gcRMA package and log2 transformation for consistent
Frontiers in Immunology 04
normalization. The criteria of quality control were set as low

correlation (<0.8) and similarity (outlier distribution via k-means

analysis) with each tumor type. Finally, out of 2,331 samples, 1,245

were retained for further analysis. The batch effect was removed

with the preservation of tumor characters using the combat

function of the sva package.
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FIGURE 1

Overview of the single cells from the major pediatric brain tumors and adult gliomas. (A) Summary of the workflow used to analyze the immune
components and functional phenotypes of myeloid and T cells, construct gene features, and identify the immune. (B) The included sample numbers
and cell counts. (C–H) (Ependymoma, medulloblastoma, pediatric IDH-mutation glioma, H3K27M-mutation glioma, adult IDH-wild glioma, adult
IDH-mutation glioma) Uniform Manifold Approximation and Projection (UMAP) plot of the analyzed single cells and dot plot of marker genes for
each cell type. Each color represents one cell type. (I) Pie chart showing the relative size of each cell type. (J) The comparison of immune
components among the major pediatric brain tumors and adult gliomas.
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2.5 Purified cell type compendium
including immune, stromal, and
tumor cell lines

We collected 76 RNA-seq gene expression datasets (1911

samples) based on the GPL570 platform from GEO to create a

cell compendium, including sorted T cells, B cells, NK cells,

granulocytes, endotheliocytes, oligodendrocytes, pericytes,

medulloblastoma cells, glioma cells, and ependymoma cells. CEL

files were downloaded and processed using the gcRMA package

and log2 transformation for consistent normalization.
2.6 Discrimination of MG and BMDM
in 10× datasets based on
machine-learning method

Due to the low expression rates of classical MG and BMDM in

10× datasets, a pipeline based on random forest was constructed.

Previous studies reported that MG and BMDM in the gliomas and

brain metastases always increased the other core gene set signals

but still maintained their cell type specificity. Therefore, we

hypothesized that some stable core genes maintaining the

specificity of MG and BMDM might exist across different brain

tumors and could be detected by different platforms. Then, we

constructed a machine-learning pipeline based on random forest

to discriminate the MG and MBDM in MB (Figure 3A). For EPN,

the IDH wild glioma which had paired 10× and Smart-seq2 data,

the Smart-seq2 datasets were used to identify the MG and BMDM

through the Seurat pipeline with the classical markers. First, the

cells of IDH wild glioma and ependymoma from Smart-seq2

were clustered via the Seurat pipeline. The resolution

parameters were set at 0.3 and were defined as MGs and

BMDMs according to their respective markers (Figures S3A-C).

Then, the classifications based on the random forest of IDH wild

and ependymoma were conducted, and their ability of

discriminating the MG and BMDM in the smart-seq datasets

were validated (Figures S3B, C). Then, the classifications were

applied to the pared 10× data of EPN and IDH-wild gliomas. After

that, the classifications based on the annotated Smart-seq2

datasets were constructed using the randomForest function from

the randomForest package with default parameters. The

classifications were evaluated with the cmdscale functions. Then,

the classifications were used to predict the cell types in the 10x

Genomics datasets of corresponding tumor types (EPN the IDH

wild glioma).

The differential expression genes (DEGs) between MG and

BMDM of EPN the IDH wild glioma were analyzed respectively

with the FindMarker function (logFC >0.25, adjust p value <0.01).

Moreover, the intersection of DEGs was regarded as the conserved

DEGs of MG and BMDM fit on the 10x Genomics platform. The

Seurat object of MB and IDH-mutation glioma based on the 10x

Genomics platform, only containing the conserved DEGs, was
Frontiers in Immunology 05
conducted and analyzed with the Seurat pipeline. All the

conserved DEGs were used as HVGs when the PCA was

performed. The resolution parameters were set at 0.2.
2.7 Identification of immunophenotypes of
myeloid cells in different tumor types

2.7.1 Clustering myeloid cells
To reduce the noises from different platforms and studies, a

five-step procedure was applied (22). First, after extracting

myeloid and clustering with default parameters, respectively, the

aov package was used to perform the analysis of variance

(ANOVA) and obtain the F values of every gene. The percentile

ranks of F values was calculated. Second, genes were ordered

ascendingly by the median of percentile ranks across different

datasets. Third, excluding the ribosome genes, cell-cycle genes,

and heat shock protein genes, the top 2000 genes detected in over

half of datasets were identified as informative genes. Fourth, in

order to comprehensively analyze the myeloid subsets of the major

brain tumors, we integrated two independent datasets by Seurat

for each tumor type (MB, EPN, P-DH-M glioma, and adult IDH

mutation glioma) to obtain a larger cell number (16, 17) (Figures

S4A-E). Due to the large samples of adult IDH wild gliomas a

recent study provided, we just selected the primary samples for the

analysis of the myeloid subset (23). We integrated the myeloid

compartments by the PrepSCTIntegration function from the

Seurat package to obtain a large cell number in these “cold”

tumors. The parameters of k.weigh and k.filter were set

according to the cell counts. Fifth, the informative genes were

used as HVGs when the PCA was performed and the resolution

parameter was set from 0.1 to 2 to obtain the different cluster

numbers. The Davies–Bouldin index (DBI) was to determine the

best number of clusters.

2.7.2 Functional annotation of myeloid cells with
marker genes and pathways

For the purpose of functional comparison of myeloid subsets

among different brain tumors, we use the marker genes and most

affected pathways to define their functional phenotypes. Marker

genes combined with most affected pathways were used to

comprehensively annotate the myeloid cells from different

tumor types. First, the FindAllMarkers function from the Seurat

package was used to find out the marker genes, and the gene

ontology (GO) analysis was performed with the clusterProfile

package (version: 4.2.2) based on marker genes to determine the

affected pathways (24). In addition, the gsva function from the

GSVA package (Version:1.42.0) was performed on the expression

data to obtain the matrix of cells and pathways (25). Then, the

differential pathways of each clusters were analyzed with the

limma package (3.50.3) (logFC >0, adjust p value <0.05) (26).

Then, the intersected pathways of GO analysis and differential

pathways from GSVA were ranked according to the enrichment
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score and the marker genes in the top intersected pathway were

ranked by logFC. The intersected pathway with maximal

enrichment score and containing top10 marker genes was

determined as the marker pathway. The corresponding marker

genes with the maximal logFC were used as the marker genes. A

bubble plot was made to compare the median −log10 of q value

and median gene counts of specific pathway in different clusters. A

heat map was to compare the mean of z-score-transformed

expression value of the marker genes determined in this study

and those previously reported.
Frontiers in Immunology 06
2.8 Similarity analysis of clusters from
different tumor types

The integrated gene expression matrices were z-score-

transformed averaged per cluster. Thus, the original gene by cell

expression matrix was converted to the gene by cluster expression

matrix. Matrices of EPN, MB, pediatric IDH mutation, adult IDH

wild, and adult IDH mutation were combined by column, and only

genes present in all datasets were retained. The combined matrix

was used for hierarchical clustering with the hclust function, and
B

C

D

E

F

A

FIGURE 2

The immune phenotypes of T cells in the major pediatric brain tumors. (A) The evaluation of T-cell subpopulation in medulloblastoma including the
UMAP plot of the identified T-cell subsets, dot plot of marker genes for each cell type, histogram for the relative size of each subset among different
molecular subtypes, and Kaplan–Meier plot for terminal CD8 effector memory T cells. (B) Forest plot shows none of the T-cell subpopulations are
independent factors of prognosis. (C) Evaluation of the T-cell subpopulation in ependymoma including the UMAP plot of the analyzed single cells,
dot plot of marker genes for each cell type and histogram for the relative size of each subset among different molecular subtypes and prognosis
groups. (D) Point plot shows that none of the T-cell subpopulations have significant changes between recurrence and non-recurrence groups. (E)
Heatmap reveals the tissue prevalence of each T-cell subpopulation by Ro/e score. (F) Heatmap shows the expression percentage of immune
checkpoint molecules in T cells of ependymoma, medulloblastoma, and adult IDH wild gliomas. The "ns" represents "not significant".
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the dendrograms were created by as.ggdend from the dendextend

package (27).
2.9 Construction of gene features (scFes)
describing TME properties

In order to obtain the gene features of classical cell types that

could be applied to different tumor types and different platforms, a

five-step procedure was applied. First, the common adult and

pediatric tumor types including adult IDH-W and adult IDH-M

gliomas, EPN, MB, DIPG, and P-IDH-M were incorporated in, and

most tumor types contained two types of datasets based on 10x

Genomics and Smart-seq2 platforms. Second, the gene features of

specific cell type were identified per dataset using the FindMarkers

function. The threshold values were determined according to

the cell types. The rigorous parameters were chosen for the

common cell types, such as myeloid cells, T cells, CD4, CD8, B

cells, NK cells, oligodendroglia cells, endothelial cells, and pericytes

(adjust p value <10e-20, min.pct >0.3, and logFC >1 for Smart-seq2;

adjust p value <10e-10, min.pct>0.1, and logFC >0.25 for

10x Genomics). The relatively loose threshold values were chosen

for the subpopulations of major cell types, such as MG, BMDM,

naïve T cells, CD4 memory cells, CD8 memory cells, and CD8

effector cells (adjust p value <10e-10, min.pct >0.3, and logFC>1 for

Smart-seq2; adjust p value <10e-10, min.pct >0.1, and logFC >0.25

for 10x Genomics). Third, the intersected gene features of every cell

type from each dataset were obtained. The gene features of cytotoxic

CD8 T cells were chosen from the genes existed in three quarters of

datasets containing this cell type. Due to the heterogeneity of tumor

components in different tumor types, genes meeting the threshold

values of common cell types in more than one tumor types were

selected as the conserved tumor features.
2.10 Construction of gene features of
immune-stromal patterns

In order to extend the immune-stromal-tumor patterns in the

external dataset (GEO), the gene signatures were generated by DEG

analysis between the specific archetype and each of the other 11

archetypes, using limma and Voom (p value <0.05, logFC >1)(15).

The intersection between the top 3,000 genes by logFC of each of 11

DEGs per archetype was assigned as an initial gene features. If the

initial gene features had more than 20 genes, coefficients of variation

(CV) were calculated and the top 20 genes with the lowest CV and

detected in at least 80% of cells of corresponding archetype were

defined as the archetype gene features. If the initial gene features

were less than 20 genes, the initial gene features were defined as

archetype gene features.
2.11 Multiplex immunohistochemistry

For multiplex immunohistochemistry (mIHC) staining (CD11b,

HLA-DQA1, and CD1E for cluster 2 in medulloblastoma, and CD11b,
Frontiers in Immunology 07
CD3, and MAG for immune patterns), co-staining of the selected

markers was performed using a Four-Color Fluorescence Kit

(Recordbio Biological Technology, Shanghai, China) based on the

tyramide signal amplification (TSA) technology according to the

manufacturer’s instruction. All the slides were scanned using a

Pannoramic P-MIDI (3DHISTECH, Hungary). The positive cell

numbers were calculated by HALO 3.3 software (Indica Labs, USA).
3 Results

3.1 Low immune infiltration of pediatric
brain tumors

To dissect the tumor ecosystems in children, in addition to the

accessible public data, we collected five medulloblastoma specimens

from four patients for snRNA-seq based on 10x Genomics. The

predominant functional phenotypes of T cell and myeloid subsets

and immune-stomal-tumor patterns in children were investigated

(Figure 1A). In total, more than 0.3 million cells from 171 samples

covering adult gliomas and four major pediatric brain tumor types

were included (Figure 1B).

To analyze the TME components of each tumor type, we

evaluated the major current methods identifying known cell

types, namely, clustering-based (CB) method and positive

expression of marker genes (PEMG) method. We found that the

CB method performed better overall (Figure S1). For the datasets

based on 10x Genomics or Smart-Seq2, the CB method was able to

identify more cells than the PEMG method in most tumor types,

which was important for the “cold” tumor types. Our data indicated

that the “cold” tumor types like MB and EPN also contained the

major classical immune cells, such as T cells (PTPRC, CD3D), B

cells (CD79A, IGHG1, MZB1), and NK cells (KLRB1) (Figures 1C–

H). In addition, the immune components varied significantly

among the different brain tumors (Figure 1I) and were lower in

the pediatric brain tumors (MB, EPN, and pediatric IDH-M) than

those in the adult brain tumors (IDH-W and adult IDH-M)

(Figure 1J). Similar with the previous studies, myeloid cells were

predominant among all the immune cells in brain tumors, and MB

and EPN held a relatively higher rate of CD8 T cells among all the

tumor types (6). However, the functional phenotypes of them in

pediatric brain tumors are still unknown.
3.2 Targeting the T cells may not be the
optimal strategy for MB and EPN

According to the previous studies on various types of tumors,

certain subsets of T cells, including effector T cells, memory T cells,

and exhausted T cells, have been found to have specific functions in

either eliminating or tolerating tumor cells within the tumor

microenvironments (22, 28, 29). Due to the extremely low

contents of T cells in IDH mutation glioma and H3K27 mutation

glioma, we focused on the characteristics of T cells in the MB, EPN,

and adult IDH wild glioma (Figures 2A, B, S2D). In order to explore

the phenotypes of T cells in MB and EPN, we defined the
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subpopulations of T cells according to the knownmarkers identified

in a recent study of T-cell atlas. The results revealed that T cells in

MB mainly consisted of CD8 effector memory T cells (CD8 Tem,

GZMH), CD8 terminal effector memory T cells (terminal CD8

Tem, FGFBP2), CD4 memory T cells (CD4 Tm, IL7R), regulatory T

cells (Treg, FOXP3), and naive T cells (Tn, CCR7, and SELL)

(Figures 2A, S1A) (22). Different molecular subtypes of MB held a

heterogeneous composition of T-cell subpopulations (Figure 2A).

Moreover, CD8 Tem formed the majority of T cells in all of the

subtypes (Figure 2A). We also found that the higher scores of CD8

Tem markers were associated with a survival advantage in MB,

whereas an opposite effect was observed in CD4 Tm and Tn (Figure

S2B). However, the univariate Cox analysis revealed that the T-cell

subpopulations did not significantly correlate with prognosis

(Figure 2B). Considering that Kaplan–Meier (KM) analysis is a

non-parametric method and Cox regression is a semiparametric

method that takes multiple factors into account, the results of Cox

analysis may indeed be considered to have higher credibility (30). In
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EPN, T cells mainly consisted of CD8 Tem, CD8 Tm, CD4 Tm, and

Tn. The subpopulations of T cells were evenly distributed in

different molecular subtypes (Figures 2C, S2C). Moreover, both

the group with a follow-up period of over and less than 5 years, as

well as the recurrence and non-recurrence groups, exhibited similar

percentages of T-cell subtypes (Figure 2C). There was also no

significant difference in the percentages of four subpopulations

between the recurrence and not recurrence groups (Figure 2D).

We next quantified the tissue enrichment of T-cell subsets

among the different tumor types by integrating the different T-

cell data from different datasets (Figures S2E-G). The IFIT3+ T cells

and Treg identified within the three tumor types were preferentially

enriched in adult IDH-W gliomas (Figure S2H). The Ro/e analysis

also demonstrated the preferences (Figure 2E). Based on the

comparison of expression percentage of immune checkpoints, we

observed that classical molecules like PD1, CTLA4, TIM3, and

LAG3 and newly reported molecules like CD161 were extremely

low in these brain tumors, which might partly explain the difficulty
B

C D
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FIGURE 3

Evaluation of traditional immune phenotypes of myeloid cells in pediatric and adult brain tumors. (A) Summary of the workflow used to discriminate
the microglial and BMDM in the 10x data. (B) The comparison of 10x and Smart-Seq2 platforms across the different brain tumors. (C) Evaluation of
MG and BMDM in 10x data of medulloblastoma. The UMAP plot displays the consistency between the predicted MG and BMDM and the clusters.
The dot plot shows the expression of classical markers in the MG and BMDM. UMAP plots of marker genes show the expression of classical markers
in the cells. (D) The relative size of MG and BMDM across the different brain tumors. (E) Two-dimensional butterfly plot visualization of classical
tumor-related pathway scores in pediatric and adult brain tumors. Colors represent different tumors. (F) The M1 and M2 scores of the different
clusters across the different brain tumors.
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for their clinical transformation in brain tumors (Figure 2F) (31).

Overall, the low contents of T cells and low expression rates of

immune checkpoints indicated that the traditional immunotherapy

strategies targeting the local T cells in the tumor microenvironment,

such as immune checkpoint blockade, may not be the optimal

treatment strategy for pediatric MB and EPN.
3.3 Assessment of known functional
phenotypes of myeloid cells

Tumor-associated macrophages (TAM) were regarded as a

potential target in the future immunotherapy. We next accessed

the characteristics of known phenotypes of myeloid cells, such as

MG, BMDM,M1, and M2, in the major pediatric brain tumors. The

previous studies reported that the MG and BMDM in brain tumors

showed distinct transcriptomic profiles and inflammatory

polarization tendency, which are additionally influenced by the

underlying disease type (4). However, it was apparent from

Figure 3B that the expression percentages of classical MG and

BMDM markers (P2RY12 and TMEM119 for MG, and ITGA4 and

SELL for BMDM) from the 10x platform were significantly lower

when compared with those from the Smart-Seq2 technique (4, 9,

23). The results revealed that identified MGs and BMDMs were

largely consistent with clusters obtained from the Seurat pipeline,

indicating that the internal characteristics of MG and BMDM were

basically preserved across different conditions (Figures S3A–C).

When evaluating the classical markers in MG and BMDM,

predominance in the expression levels and percentages of markers

remained in the corresponding cell types (Figures S3D, E).

Similarly, they were also highly consistent with the cluster results

of Seurat (Figures 3C, S3F). The results showed that the ratio of MG

and BMDM varied among brain tumors, and MG comprised the

vast majority of myeloid cells (4), especially for the pediatric and

adult IDH mutation gliomas (Figure 3D). However, the rough

classification of MG and BMDM still lacks guidance for the

functional phenotypes.

Previous studies reported that myeloid subsets on glioblastoma

(GBM) were significantly enriched in classical inflammatory signals

and metabolic pathways (4, 9, 23). The butterfly plot revealed a

significant enrichment of hypoxia in myeloid cells of ependymoma,

when compared with other brain tumors (Figure 3E). Similar with

the myeloid cells of adult brain tumors, myeloid cells of

medulloblastoma were significantly enriched in oxidative

phosphorylation and TNFa pathways while deficient in hypoxia

signals. Classical inflammatory hallmarks (IFNa response and

TNFa-signaling) were enriched in myeloid cells of pediatric IDH

mutation gliomas, indicating the anti-tumorigenic phenotypes of

these cells in the microenvironment.

Then, we investigated the M1 and M2 signature scores in the

clusters of all the tumor types (Figure S3G). We found the co-

expression of both M1 and M2 gene signatures in most of myeloid

subsets from EPN, pediatric IDH-M glioma, and IDH-W glioma.

Additionally, certain clusters exhibited both lower M1 and M2 gene

feature scores, suggesting that the categorization of M1 andM2may

not be entirely applicable for the classification of myeloid brain
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tumors (Figure 3F) (23, 32). Therefore, this defective classification

of myeloid cells in brain tumors suggested that it was significant to

further uncover the function in a specific tumor microenvironment.
3.4 Comparative analysis of functional
states of myeloid subsets from pediatric
and adult brain tumors

In order to comprehensively analyze the myeloid subsets of the

major brain tumors, we integrated two independent datasets. The

results revealed that the batch effects were removed (Figures S4A–

E). The best number of clusters was evaluated by DBI (Figure S4F).

The results showed that the myeloid cells in EPN were the most

heterogeneous because of the largest cluster numbers (Figure S4A).

Except for the pediatric IDH mutation gliomas which had no

significant pathways via ssGSEA, the marker pathways of each

myeloid cluster across the pediatric and adult brain tumors

uncovered the common perturbation of functional modules, such

as leukocyte activation and interferon response, and exclusive

pathway perturbation in brain tumors, such as pathways related

to cilium organization and endocytosis in ependymoma

(Figure 4A). Then, we investigated marker genes in different

clusters to find out the myeloid clusters with similar expression

levels of marker genes but defined as different myeloid subsets

(Figure 4B). For example, similar expression levels of NDRG1,

LDHA, MHCII molecules, interferon genes, GPM6A, C9, and

SRGAP2 were discovered in different myeloid subpopulations,

indicating the similar functional states in different brain tumors.

The previously reported markers were also compared among

different tumor types, for example, the homeostasis myeloid

subpopulation with high expression levels of P2RY12 and

CX3CR1 in gliomas and cluster 2 marked with the pathway of

“GTPase signal transduction” in ependymoma (9), the activated

microglial subsets highly expressing CD83 and TNF in GBM, and

the clusters6 marked with pathways of “positive cytokine

production” in ependymoma (23) (Figure 4C).

To quantify their similarities, we calculated the correlations

between the average transcriptome of each cluster in different

tumor types. As expected, the same major lineages from different

cancer types, such as cycling, monocyte-like, hypoxia-related,

cytokine-stimulated, and interferon-related subpopulations, were

clustered together, further demonstrating the shared myeloid

lineages between pediatric and adult brain tumors (Figures 5A).

Then, we used the angiogenic and phagocytic signatures, a

dichotomous functional phenotype, to access the functional

phenotypes of each cluster across the different tumor types (33).

As expected, some clusters exhibited significantly preferential

signature scores. However, most clusters in pediatric brain tumors

had a similar score in the two phenotype signatures (Figure S5A).

Using the public clinical data, we investigated the relationship of the

different myeloid lineages with patient prognosis. The clusters

highly expressing HLA genes were negatively associated with

prognosis in multiple tumors except for EPN (Figures 5B–D, S5C,

D). Furthermore, the HLA gene-enriched cluster in MB was the

independent factor of prognosis (Figure 5E) and it had better
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performance than molecular subtypes and traditional histology

when predicting the 5-year survival (Figure 5F). Then, we

determined three markers to define this cluster (Figure S5B). By

conducting subtyping analysis on medulloblastoma, it was found

that this cluster exhibited significant subtyping preferences,

primarily existing in the G3 and SHH subtypes (Figure 5G). The

mIHC staining of tumor sections further confirmed the existence of

this subset (Figure 5H).
3.5 Establishment of TME gene
expression signatures

To analyze TMEs using the transcriptomic data, the gene

expression signatures (scFes) of immune and stromal components

were constructed via combining multiple datasets of different tumor

types from 10x and Smartseq2 platforms to find out the conserved

gene signatures (Methods, Figure S6A, Table S2). We compared the
Frontiers in Immunology 10
scFes with the previously reported gene sets and found only small

overlap among them (Figures S6B–I). To confirm the cell type-

specific expression patterns of scFes, 1,891 RNA-seq profiles of

sorted cell subpopulations across multiple GEO datasets were

conducted and the final scFes were highly cell type specific and

showed effective segregation, with high expression scores for cell

types associated with each signature (Figures 6A, B). In addition, we

evaluated scFes in the averaged expression data of cell line (34) and

found that scFes performed better when marking CD8 T cells and

Treg (Figures S6J, K). Furthermore, we conducted validation and

comparison of scFes with published counterparts in independent

scRNA datasets of various tumor types at the single-cell level. Our

analysis revealed that scFes effectively identified cell types annotated

by classical markers and outperformed gene features of certain cell

types from GSEA (35), xCell (36), and recently published studies

(15) (Figures 6C, D, S7A, B).

Considering the important roles of tumor cells and the unique

role of OG in the cell networks of the brain TME depicted by the
B C

A

FIGURE 4

Annotation of the myeloid subsets from the major pediatric and adult brain tumors. (A) The names of the different clusters. The most affected terms
in each cluster are represented in a dot plot, with the size of the dot corresponding to the number of genes per term and the color of the dots
corresponding to the q value of enrichment after –log10 transformation. (B) The selected genes with different colors are used as the marker genes.
Color-coding is consistent with the tumor types. (C) The previously reported marker genes of myeloid subpopulations in the different clusters across
the different brain tumors.
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single-cell datasets, the gene signatures of tumor components

correlated with the recruitment of immune cells (named as

“positive immune recruitment” (positive-IR) and “negative

immune recruitment” (negative-IR) which were positively and

negatively correlated with the expression level of CD45,
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respectively) and OG were also explored to create a holistic

approach describing the TME of brain tumors. We accessed the

two tumor features in a newly produced dataset of

medulloblastoma, which was a kind of well-known “cold” tumor,

and found that they were predominantly existed in the specific
B
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FIGURE 5

Identification of the potential targeted myeloid subsets. (A) Hierarchical clustering shows the similarity of clusters across the different brain tumors.
(B) Kaplan–Meier survival curves generated with each cluster signature score of EPN using GSE126025. (C). v. (D). Kaplan–Meier survival curves
generated with each cluster signature score of the medulloblastoma using GSE85217. (E) The forest plot reveals that the cluster 2 of
medulloblastoma is the independent factor of prognosis. (F) The ROC curve shows a higher AUC value of cluster 2 of medulloblastoma than
classical histology and molecular subtypes. (G) The percent of Cluster2 in medulloblastoma was significantly higher in SHH subgroup. (H) The mIHC
demonstrates the existence of cluster 2 in the two samples of MB.The "*" represents "P value < 0.05".
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tumor clusters, and the negative-IR score was significantly higher,

indicating the tumor components might contribute to the deficiency

of immune components in medulloblastoma (Figures 6D, E, S8A).

Furthermore, we accessed the two tumor features and OG

features in two independent bulk RNA datasets of pan-cancer

(Figures 6F–H). The results revealed that the positive-IR score

was significantly higher in the tumor group and might be

associated with better prognosis (Figures 6F, S8B) whereas the

negative-IR score was significantly lower in the tumor group

(Figure 6G), according to the fact of the activated immune system

in brain tumors compared with immune-privileged normal brain

(Figure 6H). OG scores were significantly associated with prognosis

(Figure S8D), but whether this correlation was influenced by clinical

parameters such as WHO classification, metastasis state, and the

history of radiotherapy and chemotherapy still required data with

more comprehensive clinical information. In addition, the relatively

higher positive-IR score in EPM, MB, and pediatric IDH-mutation

gliomas might partially account for the lower immune content

when compared with adult brain tumors (Figures 1J, 6I). Moreover,

the paradox between the higher positive-IR and lowest immune

content in DIPG, and some exceptions of the correlations between

immune recruitment feature scores and immune cell feature scores,

indicated the existence of other factors affecting the immune

recruitment in addition to the tumor cells (Figures 6I–J). The OG

feature score was higher in the normal brain, suggesting that the

developmental program promoting the formation of mature

oligodendrocytes was blocked in tumors (37, 38). Furthermore,

the higher OG feature score was associated with better prognosis

(Figure 6H). However, the tumor-related features and this exclusive

stromal component of CNS were always ignored in the current

studies of the TME and deserved further study.
3.6 Coarse classification of immune
patterns in pediatric brain tumors

A recent study identified 12 immune archetypes across

multiple cancers types but only including one pediatric brain

tumor type (15). A holistic survey of the immune archetypes in

pediatric brain tumors is still lacking. As expected, the cell types

varied among the different tumor types (Figure 7A). We next

explored the primary archetypes by following the same pipeline

but including the unique stromal component—the OG feature.

The three markers (ITGAM for myeloid, CD3 for T cell, and MAG

for OG) were used for primary classification, and the DBI was

used to determine the optimal cluster number. The primary

classification contained eight clusters (Figures 7B, S9A, Table

S3), including the six previously reported immune archetypes

and two new small clusters (named myeloid stromal centric and

T-cell stromal centric archetypes). The expression level of the

three markers varied significantly among the eight clusters

(Figures S9B–D). The immune archetypes were highly tumor

specific (Figure 7C) and significantly associated with

prognosis (Figure 7D).

Based on this, we next investigated the characteristics of tumor

biology among the eight clusters. The immune stromal-rich and
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immune-rich clusters were characterized by the elevated expression

scores of antitumor cytokines, M1, MHC molecules, and

costimulatory molecules, demonstrating an immune-active TME

compared with the immune stromal desert and immune desert

clusters. However, the coexistence of the highest score of protumor

factors, such as protumor cytokines, M2, and checkpoint molecules,

indicated the reprogramming of the immune microenvironment in

these two clusters (Figure 7E). The transcriptomic programs of

interferon-stimulated genes (ISGs) and immune escape and

chemokines also demonstrated the lasting but exhausted tumor

immunology in them (Figures S9E, F). Conversely, the enrichment

with transcriptomic programs of the cell cycle in the immune

stromal desert and immune desert clusters was consistent with

the increased capacity of tumor proliferation (Figures S9F, 7E). In

addition, the GSEA and PROGENy analysis also revealed the

differential enrichment of tumor-related pathways among the

eight clusters (Figures S9G, 7F). The increased PI3K pathway

activation in the immune desert cluster calculated with

PROGENy analysis suggested the potential targeted therapy for

this subset (Figure 7F). The differential sensitivity to the vinblastine

and cisplatin, which were used as the traditional chemotherapy,

might provide the possibility to the individualized treatment

(Figures 7G, H) (39). Finally, we further confirmed the eight

clusters via mIHC assays in the tumor tissues including five MBs,

three EPNs, five CPGs, two CPPs, five ASs, three DIPGs, and two

GGs (Figure 7I).
3.7 Immune archetypes based
on 9-features

Unlike in the non-CNS tumor types, no CD4-biased or CD8-

biased tumors existed in the pediatric brain tumors when analyzed

with gene sets from scFes and Combes et al. (Figures S10A, B).

Considering the fact that coarse classification of stromal

components (CD44 and CD90) used in the previous study

might contain malignant cells (15) and the malignant cells

might negatively or positively affect the immune recruitment,

the tumor-related features (positive IR and negative IR) were

also included. MG is the exclusive cellular components in the

brain, and their phenotypes might be highly diverse in different

pathological conditions, Therefore, the BMDM and MG features

were also included for further classification. Similarly, the DBI was

used to determine the optimal cluster number (Figure S10C).

Finally, 12 immune-stromal-tumor patterns (namely, 12 clusters)

were identified with nine features (Figures 8A, S10D, Table S3).

The marker genes and gene features from scFes demonstrated

predominant cell types in each cluster (Figures 8B, C).

Furthermore, we obtained the DEGs of 12 clusters and

conducted an external cohort including 1,245 children and a

similar composition of tumor type with Children’s Brain Tumor

Tissue Consortium (CBTTC) to validate the 12 clusters (Table S4).

After removing the batch effect, the similar archetypes were

validated in the external dataset (Figures S10E, F). Similar with

the coarse classification based on the 9-feature, the predominant

archetypes varied among the major pediatric brain tumors, and
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the relative composition of archetypes by tumor types was similar

in CBTTC and GEO (Figure 8D). The inconsistency of individual

archetypes between the two datasets, such as IR-tumor rich in

high-grade glioma and tumor recruitment BMDM bias in
Frontiers in Immunology 13
ependymoma, might come from the discrepant composition of

pathological or molecular subtypes. Compared with the

interaction pair of some cell types in the non-CNS tumors (15),

the immune component tended to synchronous change maybe
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FIGURE 6

Construction the gene features of different cell types in the TME. (A) UMAP of the purified cell samples marked with the original cell annotation. (B)
UMAP of purified cell samples in the space of the scFes scores. (C) UMAP overlays of the feature scores of major cell types in the single-cell dataset
of MB (newly produced). (D) UMAP plot of the newly produced single cell data. Each color represents one cell type. (E) UMAP overlays of the tumor-
related features. (F) Box plot shows the signature score-positive immune recruitment in GSE50161 including the medulloblastoma, ependymoma,
glioblastoma multiforme, pilocytic astrocytoma, and normal brain. (G) Box plot shows the signature score-negative immune recruitment in
GSE50161 including the medulloblastoma, ependymoma, glioblastoma multiforme, pilocytic astrocytoma, and normal brain (H) Box plot shows the
OG signature score in GSE50161 including the medulloblastoma, ependymoma, glioblastoma multiforme, pilocytic astrocytoma, and normal brain. (I)
Box plot shows the comparison of tumor-related signature scores across the different brain tumors. (J) Heatmap reveals the correlations between
the tumor-related signature score and scFeg scores of different immune cell types. "***" represents the "P value <0.001".
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due to the unique immune recruitment mechanism (Figure 8E).

Finally, we used the TIDE score to evaluate the immune response

of immune archetypes. Immune-rich and immune stromal-rich

clusters had a high response rate over 50% (Figure S10G), whereas
Frontiers in Immunology 14
the further classification, namely, 12 clusters, obviously had better

ability to discriminate the responsive and non-responsive subsets.

Surprisingly, immune-rich, immune-rich tumor recruitment, and

immune stromal tumor recruitment with a high TIDE score had a
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FIGURE 7

Investigation of the immune patterns based on the myeloid, T-cell, and oligodendrocyte features (3-feaure) in the CBTTC dataset. (A) Radar plot shows
the signature score of major cell types across the major pediatric brain tumors. (B) The eight clusters based on the 3-feature. (C) Histogram for the
relative size of each immune patterns among the different pediatric brain tumors. (D) Kaplan–Meier survival curves generated with signature scores of
eight clusters (34). (E) Box plot shows the differences in the major immune-related processes across the eight immune patterns. (F) Relative signaling
pathway activity scores in tumor cells measured from RNA-seq by PROGENy. (G) The drug sensitivity analysis of vinblastine and cisplatin among the
different immune patterns. (H) Kaplan–Meier survival curves generated with the OG signature score using the CBTTC dataset. Box plot shows the OG
signature score in GSE50161 including the medulloblastoma, ependymoma, glioblastoma multiforme, pilocytic astrocytoma, and normal brain. (I) mIHC
demonstrated the eight immune patterns across the different brain tumors. "**" and "***" respectively represent the "P value <0.01" and "P value <0.001".
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high response rate over 75% and immune desert nearly did not

respond to immune checkpoint inhibitors (40). Moreover, all the

craniopharyngioma (CPG) might respond to PD-1 or CTLA

inhibitors (Figure S10H; Figures 8F–G). Therefore, pediatric

brain tumors exhibit a distinct immune ecosystem, suggesting

that CPG could potentially serve as a candidate for traditional

immune therapy, such as immune checkpoint inhibitors.
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4 Discussion

Pediatric brain tumors are the leading cause of cancer-related

deaths in children, and the prognosis of certain tumor type remains

abysmal, for example, the survival time of DIPG is always measured

in just months. In spite of the advances in the combination of

multidisciplinary diagnosis and treatment, surgery, and systemic
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FIGURE 8

Further investigation of the immune patterns (12 clusters) based on the nine features in the CBTTC dataset. (A) UMAP displays the 12 immune patters
in the CBTTC cohorts. Each dot represents a single cluster. (B) The heatmap shows the mean expression levels of the marker genes of predominant
cell type in each cluster using the integrated CBTTC dataset. (C) Box plot shows the differences in the major cell types across the different immune
patterns. (D) Pie charts display the relative size of immune patterns in the major tumor types. Color-coding is consistent with A. (E) Bubble plot
reveals the signature scores of multiple cell types and immune related molecules in the 12 clusters. (F, G) The prediction of response rates in each
cluster and tumor type.
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therapy, the therapy-related long-term adverse events, such as

hearing loss and neurodevelopment and neurocognitive disorders,

are still the troubling complications. The extensive immunotherapy

using cytokines, certain immune cells (T cell, DC, NK) and immune

checkpoint inhibitors (ICIs) in the non-CNS cancers spurred the

interest in pediatric brain tumors to minimize long-term

morbidities (41–43). In this study, we firstly presented a holistic

survey of major pediatric brain tumors from the single-cell

perspective, including the immune cell abundances, identification

of functional phenotypes of T cells and myeloid cells, and the

immune-stromal-tumor patterns. In this study, we evaluated CB

and PEMG to identify known cell types. Although the expression

levels of myeloid marker gene (ITGAM) in all the tumor types were

relatively lower in the CB method, the enrichment scores of the

mark pathway were even higher when comparing with those of the

PEMG method. The PEMG method seemed to identify more OG

cells probably because of the relatively rigorous criterion of OG

identification in the CB method—high expression of three marker

genes (MBP, MOG, PLP1)—whereas the PEMG method just

identified the cells expressing single marker genes. To construct a

global tumor niche atlas of different tumor types, we performed cell

clustering and marker gene identification using Seurat. In our study,

we primarily utilize the marker genes employed in the original

research to annotate the cells in the public datasets. The

identification of malignant cells is determined by the deficient

expression of established stromal marker genes or marker genes

associated with mature neural or OG cells within the non-immune

cell population. As we know, some tumors, like medulloblastoma,

have typical copy number variations; the malignant cells were

mainly inferred based on overall copy number variations in the

bioinformatics analysis process. Since pediatric brain tumors

generally have lower copy number variations compared with

adult tumors (44), and existing copy number variation algorithms

developed for single-cell data, such as inferCNV (45) and copyKAT

(44), may not be suitable for identifying malignant cells with low

copy number variations, we did not use a copy number variation-

based strategy in our study. Moreover, we included a wide range of

brain tumors in our analysis. To ensure consistent analysis

strategies for each tumor type and dataset, and to avoid

discrepancies caused by different analysis approaches, we

employed the clustering analysis combined with feature genes

which demonstrated higher universality and achieved effective

clustering. Our study provides an essential step towards fully

understanding the TME in the major pediatric brain tumors

before mechanically applying the current immunotherapy strategy

on them.

Here, we revealed the distinct characteristics of the TME in the

major tumor types (MB, EPN, IDH-mutation, and H3K27M-

mutation) in children, which contained fewer immune cells than

those in adults. Consistent with the previous study investigating the

immunophenotypes of pediatric brain tumors via multicolor FACS,

the EPN held higher infiltrating myeloid and T cells than MB

(Figure 1J) (46). The strategy targeting the T cells has demonstrated

non-persistent clinical responses in adult IDH-wild gliomas (47,

48). Although another study reported that Group 3 MB might

respond better than SHHMB when applied with the PD-1 inhibitor
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in murine, the extremely low contents of T cells and expression

percentage of PD-1 in MB and EPN suggested that the current

strategy targeting the T cells in pediatric brain tumors should be

more cautious (Figures 1J, 3F) (49).

In spite of tremendous challenges of immunotherapy in pediatric

brain tumors, some opportunities still exist. An unprecedented

number of studies have demonstrated the myeloid lineage-

associated resistance mechanisms in the resistance to therapy (50,

51). Developing the therapeutic strategies targeting myeloid

subpopulations, as the dominated immune cells in the TME, is of

enormous potential to complement the current immunotherapy

strategies (52). For example, depleting CD73 in mice could

decrease the immunosuppressive macrophage subset but increase

the immunostimulatory subpopulations to enhance the anti-PD1

effectiveness (53). However, the diverse functions of myeloid cells are

highly dependent on the different neuropathological conditions. Our

study showed that classical cancer-related hallmarks in the myeloid of

children and adult were highly heterogenous. The cytokine-enriched

clusters were the shared myeloid type among the different tumors,

indicating the common response to pathological conditions

(Figure 5A) (9, 12, 54). Unlike those in adult brain, the myeloid

subsets highly expressing interferon-related genes were not detected

in children. Although we did not detect the clusters significantly

highly expressing CD73, we uncovered a DC-like subpopulation

highly expressing HLA genes and CD1E, which was associated

with worse prognosis, and was an independent prognostic indicator

of MB patient survival. This observation suggested that this myeloid

subset was a potential target, but the strategy of targeting the myeloid

subpopulation should be tailored according to their functional

phenotypes in different tumor types.

Malignant cells are the major component of brain tumors.

Parsing the relations among the immune and stromal components

and tumor cells is essential to clearly understanding the feasibility of

immunotherapy in pediatric brain tumors. In this study, we identified

the common tumor-related features across the different tumor types

which were correlated with the expression level of CD45 and found

that they were significantly correlated with multiple immune cell

types (Figure 6J). Interestingly, the negative immune recruitment and

positive immune recruitment labeled the same tumor clusters

(Figure 6E). Previous studies reported that cells often presented a

dynamic equilibrium state of promoting or inhibiting a certain

pathway or function, rather than simply promoting or inhibiting it

(55, 56). In this study, we hope to quantify the immunosuppressive

and immune recruitment ability of tumor cells in different tumor

types through the gene feature scores. These tumor clusters exhibited

synchronous immune recruitment and immune rejection features,

indicating a close association between these tumor cells and the

formation of the immune microenvironment. This association may

have different effects on various types of immune cells, such as TAMs

(57), T cells (58), and B cells (59).

The coarse classification-8 clusters, with distinct characteristics of

myeloid, T-cell, and oligodendrocyte infiltration, indicated that the

different traditional chemotherapy and immunotherapy strategies

should be applied (Figures 7G, S10G). Interestingly, the integration

of tumor-related features and myeloid subpopulation features helped

to further discriminate the subsets potentially responding to the
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immune checkpoint inhibitors. Moreover, immune components

including the cells, co-stimulators, and MHC molecules were

extremely low in the clusters enriching tumor-rejected features

(Figure 8E), suggesting the essentiality of fully considering the

negative effect on the antitumor immunity and the potential roles

of the malignant cells and myeloid subsets in the process of cancer

immunology (60–62). Consistent with the previous studies,

immunophenotypes of pediatric brain tumors may be less

immunosuppressive than those of adult brain tumors, such as

craniopharyngiomas and low-grade gliomas, which might light the

path to the immunotherapy in pediatric brain tumors, especially for

those tumors with high recurrence (Figure 8G) (46, 63, 64).
4.1 Limitations

While our research involved various single-cell datasets of

pediatric brain tumors and conducted a thorough analysis of the

tumor microenvironment, we regret that a more comprehensive

subgroup analysis cannot be performed. This limitation stems from

insufficient biological samples, limited size of single-cell data

samples, and the absence of molecular subtyping labels for

specific tumor types in publicly available datasets. In addition,

unlike adult tumors, pediatric brain tumors have a wide variety

but low incidence rates. Whether based on public databases or

newly generated data from our own samples, the sample size is

small. Furthermore, according to the previous studies, scRNA was

able to identify higher percentages of immune cells (19). Therefore,

the integration analysis was performed in order to maximize the

sample size and neutralize the inconsistency of the two different

sequencing platforms. However, the potential error caused by

sequencing technology and algorithm factors is still unavoidable

in our study. It is still worth further in-depth study.
5 Conclusions

In this study, we systematically compared the immunophenotypes

of immune cells in the major pediatric brain tumors with those in

adult gliomas by integrating the public and newly produced single-cell

data and depicted the immune patterns in pediatric brain tumors.

These results revealed that specific immune patterns might respond to

the PD-1 or CTLA inhibitors. For the relative “cold” tumors, such as

MB and EPN, targeting the myeloid subpopulations might also be a

potential method.
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SUPPLEMENTARY FIGURE 1

The comparison of two methods-clustering-based (CB) method and positive
expression of marker genes (PEMG) method. X axis represents the parameters

of marker genes, cell types and corresponding marker pathways, and the y
axis represents the ratio of the parameters between the twomethods. The red

line represents the mean ratio of all parameters.

SUPPLEMENTARY FIGURE 2

(A). UMAP overlays of the feature scores andmarker genes expression level of
T cell subpopulations in the single cell dataset of Medulloblastoma. (B).
Kaplan–Meier survival curves generated with signature score of each T cell
subpopulation in the medulloblastoma. (C). UMAP overlays of the feature

scores and marker genes expression level of T cell subpopulations in the
single cell dataset of ependymoma. (D). Identification of T cell subpopulations

in the adult IDH-wild glioma. UMAP shows the identified T cell subsets, and

dotplot shows the marker genes of each subpopulations. (E). The integration
of T cells from the different datasets GSE155446 (medulloblastoma),

GSE125969 (ependymoma) and GSE182109 (adult IDH-wild glioma). (F).
The T cell subpopulations identified in the integrated T cell dataset. (G). The
marker genes of each identified subpopulation of T cell. (H). The comparison
of percentages of T cell subpopulations among the different tumors.

SUPPLEMENTARY FIGURE 3

(A).The UMAP plot shows the clusters of myeloid compartments from the

H3K27M-mutation based on smart-seq2. The dotplot displays the classical
marker genes of MG and BMDM in each cluster. (B). The UMAP plots

respectively show the clusters of myeloid compartments from the adult
IDH-wild gliomas based on smart-seq2 and displays the discrimination

between MG and BMDM. The dotplot displays the classical marker genes of

MG and BMDM in each cluster. (C). The UMAP plots respectively show the
clusters of myeloid compartments from the ependymoma based on smart-

seq2 and displays the discrimination between MG and BMDM. The dotplot
displays the classical marker genes of MG and BMDM in each cluster. (D–F).
Evaluation of MG and BMDM in the 10X data of medulloblastoma, adult IDH-
wild glioma and IDH-mutation glioma. The UMAP plot displays the

consistency between the predicted MG and BMDM and the clusters. The

dotplot shows the expression of classical markers in the MG and BMDM.
UMAP plots of marker genes shows the expression of classical markers in the

cells. (G). The UMAP plots shows the clusters of myeloid cells from the
ependymoma, medulloblastoma, pediatric IDH-mutation glioma, adult IDH-

mutation glioma and adult IDH-wild gliomas.

SUPPLEMENTARY FIGURE 4

(A–D). The evaluation of myeloid subpopulations in ependymoma,
medulloblastoma, pediatric IDH-mutation and adult IDH-mutation. The

UMAP plots show the integration of the single cells from the different
sources and the clusters of integrated myeloid datasets. The dotplots

display the marker genes of each cluster. (E). The UMAP plots shows the
clusters of myeloid cells from the adult IDH-wild gliomas. (F). The line charts

show the optimal cluster number (dotted line) and the minimum value of
Frontiers in Immunology 18
Davies-Bouldin index (DBI) of different integrated myeloid datasets of each
tumor type. X axis represents the cluster number, and Y axis represents

the DBI.

SUPPLEMENTARY FIGURE 5

(A). Heatmap display the phagocytosis and angiogenesis scores in each
cluster across the different tumors. (B). Dotplot shows the marker genes

(HLA-DQA1 and CD1E) in the cluster2 of medulloblastoma. (C). Kaplan–Meier
survival curves generated with each clusters signature score of adult IDH-

mutation glioma using the CGGA dataset. (D). Kaplan–Meier survival curves

generated with each clusters signature score of adult IDH-wild glioma using
the CGGA dataset.

SUPPLEMENTARY FIGURE 6

(A).The intersections of marker genes of major cell types across the different
datasets. (B–I). Upset plot reveals the intersections of gene features from

scFes and other gene features from different sources. (J, K) Heatmap and

hierarchical clustering of mean expression levels in the purified cell lines
collected by previous study (34).

SUPPLEMENTARY FIGURE 7

(A). UMAP overlays of the feature scores of major cell types in the

independent single cell dataset of ependymoma. (B). UMAP overlays of the
feature scores of major cell types in the independent single cell dataset of

adult IDH-wild glioma.

SUPPLEMENTARY FIGURE 8

(A).The tumor cells in the medulloblastoma were sampled and the heatmap
shows that the expression levels of negative-IR genes in the most of tumor

cells are higher those of positive-IR genes. (B–D). The positive-IP scores(B),
the negative-IR scores(C) and OG(D) scores were associated with the

better prognosis.

SUPPLEMENTARY FIGURE 9

(A). The line chart shows optimal cluster number (dotted line) and the

minimum value of DBI. X axis represents the cluster number, and Y axis
represents the DBI. (B–D). The violin plots respectively show the expression

levels of three markers among the 8 clusters. (E). Heatmap and hierarchical
clustering of median chemokine gene expression per cluster in the CBTTC

cohort. (F). Dotplot shows the median chemokine gene expression per

cluster of tumor related processes in the CBTTC cohort. (G). A heatmap
showing top and bottomHallmark Pathways with the top 20 variances among

the 8 clusters.

SUPPLEMENTARY FIGURE 10

(A). Heatmap and hierarchical clustering of CD4 and CD8 features from scFes.

(B). Heatmap and hierarchical clustering of CD4 and CD8 features from the

recently published article(引文). (C). The line chart shows optimal cluster
number (dotted line) and the minimum value of DBI. X axis represents the

cluster number, and Y axis represents the DBI. (D). The heatmap shows the 12
clusters based on the 9 features via hierarchical clustering. (E). The PCA plot

reveals the batch effect among the different RNA-seq datasets from GEO and
the removal of batch effect with the preservation of corresponding tumor

characters. (F). The heatmap shows the mean expression levels of the marker

genes of predominant cell type in each cluster using the integrated GEO
dataset (G). The prediction of response rates in each cluster (8 clusters). (H).
The TIDE score among the different clusters (12 clusters).
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Glossary

TME tumor microenvironment

CNS center nervous system

scRNA-seq single-cell RNA sequencing

MG microglial

BMDM bone marrow-derived myeloid

scFes gene features based on single-cell data

BBB blood–brain barrier

TAM tumor-associated macrophage

P-IDH-M pediatric IDH-mutation

IDH-W IDH-wild

HVG highly variable genes

PCA principal component analysis

SNN shared nearest neighbor

AA anaplastic astrocytoma

MB medulloblastoma

EPN ependymoma

AS astrocytoma

ATRT atypical teratoid rhabdoid tumor

CPP choroid plexus papilloma

CPG craniopharyngioma

DIPG diffuse intrinsic pontine glioma

EPN ependymoma

GG ganglioglioma

OG oligodendrocyte

PNET primitive neuroectodermal tumor

DEGs differential expression genes

DBI Davies–Bouldin Index

logFC log fold change

CV coefficient of variation

CB clustering-based

PEMG positive expression of marker genes

GBM glioblastoma

mIHC multiple immunohistochemistry

negative-PR negative immune recruitment

positive-PR positive immune recruitment

CD8 Tem CD8 effector memory T cells

terminal CD8 Tem CD8 terminal effector memory T cells

CD4 Tm CD4 memory T cells

(Continued)
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Treg regulatory T cell

Tn naive T cell

ISG interferon-stimulated gene
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