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Drugs and chemotherapeutics have helped to manage devastating impacts of

infectious diseases since the concept of ‘magic bullet’. The World Health

Organization estimates about 650,000 deaths due to respiratory diseases

linked to seasonal influenza each year. Pandemic influenza, on the other hand,

is the most feared health disaster and probably would have greater and

immediate impact on humanity than climate change. While countermeasures,

biosecurity and vaccination remain the most effective preventive strategies

against this highly infectious and communicable disease, antivirals are

nonetheless essential to mitigate clinical manifestations following infection and

to reduce devastating complications and mortality. Continuous emergence of

the novel strains of rapidly evolving influenza viruses, some of which are

intractable, require new approaches towards influenza chemotherapeutics

including optimization of existing anti-infectives and search for novel

therapies. Effective management of influenza infections depend on the safety

and efficacy of selected anti-infective in-vitro studies and their clinical

applications. The outcomes of therapies are also dependent on understanding

diversity in patient groups, co-morbidities, co-infections and combination

therapies. In this extensive review, we have discussed the challenges of

influenza epidemics and pandemics and discoursed the options for anti-viral

chemotherapies for effective management of influenza virus infections.

KEYWORDS

influenza virus, influenza therapeutics, antiviral drugs, epidemics, pandemics, anti-
infectives, in vitro trials, clinical applications
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1269344/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1269344/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1269344/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1269344/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1269344&domain=pdf&date_stamp=2023-11-29
mailto:cameseko@yahoo.com
mailto:binod.biochem@gmail.com
https://doi.org/10.3389/fcimb.2023.1269344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1269344
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Meseko et al. 10.3389/fcimb.2023.1269344
1 History of development of anti-viral
and chemotherapeutics

Viral infections, at times, cannot be prevented but consequent

morbidity and mortality can be ameliorated with the use of selective

anti-infectives in the management of clinical signs, sequelae and

secondary complications. Although no antimicrobial by design is

virucidal as obtainable for bacterial and other microbial agents,

however anti-viral drugs act to limit viral load through inhibitory

activities on replication pathway and egress. All steps in the life

cycle of the virus starting with host cell entry, transcription,

translation, and integration to the point of release from the host

cell are steps that can be explored as molecular targets for antiviral

therapy (Wang-Shick, 2017). The effect of the actions of these

antagonists is a reduction in the burden of virus on host, and disease

progression. While antivirals may not actively prevent infection,

most of them are able to inhibit virus multiplication that allows the

host innate immunity to cope with while infection runs its course

(Raymund, 2011; Iwasaki and Pillai, 2014).

An era of viral chemotherapy began in 1950, when

thiosemicarbazones was found to have antiviral effect on vaccinia

virus when inoculated in fertile eggs and laboratory mice. However,

efforts on global eradication of the variola virus through

implementation of smallpox vaccination slowed down active

research in the use of antivirals and further exploration of the

antiviral compounds for orthopox (Hamre et al., 1950; De Clercq,

2010). However, in years that followed, breakthrough in the use of

animal models, laboratory propagation of viruses, molecular

biology and identification of viral enzymes that can be selectively

inhibited, provided impetus for further anti-infective research. The

major stimulus for the development of antiviral drugs happened

when HIV/AIDS emerged in 1983, which resulted in the use of anti-

retrovirals that targeted several viral enzymes (Littler and

Oberg, 2005).

Successful use of anti-infectives in the management of infection

with Human immunodeficiency virus (HIV), for instance, was

achieved by inhibiting replication of the virus to reduced levels in

the host and limiting its detection below the levels of significance in

plasma during the course of the antiretroviral (ARV) treatments

(Garcia et al., 2004). Successful management of HIV infection with

either single or combination therapy (highly active antiretroviral

therapy) have showed the potential impact of antivirals on over 12

million lives (Douglas et al., 2016). Other viral infections that have

been successfully managed with selection of anti-infectives include

Hepatitis, Lassa fever, Dengue and few tumorigenic agents.

Although no antivirals have been licensed by the US Food and

Drug Administration (FDA) for treatment of Ebola, an important

re-emerging disease, hyper immune serum or convalescent plasma

have been successfully used in the absence of effective antivirals or

monoclonal antibodies (Kaner and Schaack, 2016; van Griensven

et al., 2016). In the course of the largest outbreaks of Ebola virus

disease (EVD) in West Africa, some trial anti-infectives were

deployed. For instance, the World Health Organization, approved

brincidofovir developed by a North Carolina-based company

(Chimerix Inc.) for use in consenting and confirmed Ebola
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patients after the anti-viral was found to be effective in the

laboratory against Ebola virus in experimentally infected cells.

Unfortunately, all the four patients on trial treatment died of

illness consistent with EVD (Dunning et al., 2016). Similarly,

interferons, family of naturally occurring proteins already in use

for treatment of hepatitis B and C, were also used in EVD treatment

trials with variable outcomes (Sweiti et al., 2017). Interferons are

substances produced by the host cell in response to viral infection

and they have widespread potential as anti-viral including

compounds that also serve as interferon inducers. Exogenous

interferons have prophylactic anti-viral activity against infections

such as vaccinia, rhinovirus, and influenza (Wendell, 1982). When

interferon is used as anti-infective, it can inhibit infection by

preventing viral entry into target cells. Interferons also act by

blocking different stages of viral replication and are active against

many viruses. In the West Africa Ebola outbreaks, Interferon beta

particularly was described as potential reducer of the viral load,

faster in patients compared to control group. Patients, who did not

receive interferon, had significantly higher risk of dying compared

to those who received the treatment (Konde et al., 2017).

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide)

anti-infective, a pyrazinecarboxamide derivative (Figure 1) earlier

developed as anti-influenza drug (Avigan) by Toyama Chemical, was

successfully administered to a Cuban doctor who was infected by

EVD in Sierra Leone. Besides influenza and other RNA viruses, the

drug could inhibit a wide range of viruses including West Nile, foot-

and-mouth disease (FMD), Nipah, Zika, yellow fever, flaviviruses,

arenaviruses, enteroviruses, bunyaviruses, alphaviruses (Furuta et al.,

2009; Furuta et al., 2013; Caroline et al., 2014). The oral drug acts

through selective inhibition of RNA-dependent RNA polymerase

during infection of many RNA viruses and was also approved for

stockpiling to manage influenza pandemics in Japan in 2014. Other

important anti-virals with proven efficacy against influenza virus

include: Rimantadine, Amantadine, Oseltamivir, Zanamivir,

Ribavirin, Peramivir, Laninamivir and Baloxavir marboxil (Naesens

et al., 2016). Recent emergence of COVID-19, another important

respiratory infection has also shown the importance of anti-viral

options including naturally occurring anti-oxidants as complement to

vaccine innovations (Forcados et al., 2021).
2 Emerging influenza threat and bio-
risk reduction

Influenza infection, caused by influenza viruses, is common,

seasonal, and global (Kumar et al., 2018; Asha and Kumar, 2019).

The disease is transmitted by inhalation of aerosols containing

virions via the respiratory mucosa (Iwasaki and Pillai, 2014; Asha

et al., 2021). More than one hundred years ago in 1918, a pandemic

emerged during World War I that killed more people than the arms

battle. The catastrophe was caused by an influenza virus which was

retrospectively identified as Influenza A/H1N1 (Oxford et al., 2002).

The virus belongs to the family Orthomyxoviridae and causes

respiratory disease that affects most animals and human of all

ages but is reported to be more severe in the young, the aged and
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immune-compromised individuals. In a typical influenza season in

the USA, illness and death are highest among adults aged ≥65 years,

and children aged <2 years. Persons with pre-existing medical

conditions are also at increased risk for influenza complications

(Thompson et al., 2003; Thompson et al., 2004). The seasonality of

influenza requires that susceptible persons including those with

underlining infection, concurrent or co-infections are helped to

manage complications. Annual vaccination is recommended for

people with chronic underlying diseases and for 65 years or older

individuals (Stiver, 2003). Many patient groups as well as

occupationally exposed persons are also advised to get regular

influenza vaccination and pre-immunity through annual

vaccination prior to influenza seasons. This is in order to prevent

development of clinical symptoms and spread of infection in the

larger population.

Since 1918 and probably before that time, Influenza virus has

continued to circulate in human with novel strains emerging and

re-emerging from animal reservoirs. Unfortunately, the 1918

pandemic happened before the medical applications of

chemotherapy and hence the usefulness of antivirals in managing

clinical outcomes could not be appropriated. There was also lack of

vaccine that could have prevented the pandemic, and hence about

50-100 million people died due to the impact of severe respiratory

symptoms (Taubenberger and Morens, 2006). The virus

subsequently caused more pandemics in the year 1957 (Asian flu)

and in 1968-69 (Hong Kong flu) resulting in large number of deaths

(Reid and Taubenberger, 2003). In 2009 another pandemic of

influenza virus (A(H1N1)pdm09) emerged in Mexico. Although

the pathogenicity of this novel strain was comparatively mild,

nonetheless, around 151,700 –575,400 respiratory and

cardiovascular deaths were linked to the infection that spread to

214 countries (Dawood et al., 2012). Before the 2009-H1N1

pandemic, there had been serious threats to public health from

interspecies transmission of Highly Pathogenic Avian Influenza
Frontiers in Cellular and Infection Microbiology 03
(HPAI)-H5N1 from poultry to human and 600 fatal cases out of

1000 infected people have been documented (WHO, 2018a). In

2013, subtype H7N9 emerged in China from poultry and caused

waves of morbidity and mortality more in humans, than in birds

where it exists in the form of Low Pathogenic Avian Influenza

(LPAI). Till May 2018, over 1,564 laboratory-confirmed human

infections with Avian Influenza A/H7N9 virus were reported (Gao

et al., 2013; WHO, 2014). Patients who contracted influenza A/

H5Nx and A/H7N9 infection were majorly treated with oseltamivir

since the virus was resistant to the M2 blockers. The therapeutic

effectiveness of neuraminidase inhibitors, however, can also be

compromised due to the emergence of drug resistant variants

(Marjuki et al., 2015).

In 2018, a patient was diagnosed with acute respiratory

infection (ARD) requiring hospitalization and for the first time

was associated with novel Influenza virus- A/H7N4 of avian origin.

The 68-year-old woman was from Jiangsu province in China with

pre-existing coronary heart disease and hypertension underscoring

the higher susceptibly for immuno-compromised individuals

(WHO, 2018b). Though it was alluded that the causative virus

was sensitive to adamantanes and neuraminidase inhibitors, it is a

reminder of active bio risk exposure to influenza from animals

particularly in occupationally exposed groups (WHO, 2018b). It

also highlights the important role that animal reservoirs play in

seeding potential pandemics to human requiring bio-surveillance

(Meseko et al., 2018). In many cases, human exposure arises from

environmental and occupational handling and contact with

animals, especially amongst farmers, veterinarians and traders at

live bird markets (LBMs). Thus LBMs, poultry farms and other

activities (games and recreations) that promote contact with

animals remain hubs for virus amplification, persistence,

dissemination and transmission to humans thus, requiring

targeted anti-infective interventions (Mao et al., 2017). Similarly,

the 2019 outbreak of SARS-CoV2 leading to the pandemic has
FIGURE 1

Chemical structures of common antiviral compounds used in the management of influenza infection.
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revealed our preparedness and is an alarm that a lot more needs to

be done for the management of future zoonotic outbreaks

(Menéndez, 2022).

Influenza virus is yet the most potent bio-risk pathogen far

above Ebola because of its ability for airborne transmission. The

frequency of infections with seasonal influenza virus, continued

outbreaks of the avian influenza A/H5Nx viruses in many countries,

emerging novel influenza virus strains some with markers of

antiviral resistance; underscore the importance of influenza virus

research and prevention with potent vaccines. It is imperative to

identify and stock pile effective anti-infectives to treat already

infected population as a component of bio-risk management. This

is desirable in saving life, preventing infection from spreading and

for safety concerns in the larger society.
3 Management of Influenza through
chemotherapeutics

Anti-infectives and antiviral therapy are promising treatment

option to limit the duration and severity of influenza infection. They

reduce negative impact of diseases often observed with endemic/

seasonal influenza and occasional emergencies associated with

pandemics. Since influenza viruses have several decades of history

of causing pandemics, it is imperative to be prepared to manage its

outbreaks before it spreads on a large scale and cross boundaries.

Early treatment with antivirals can significantly bring down the risk

for severe illness or death related to influenza, including from

strains responsible for pandemics (Siston et al., 2010). Hence,

treatment of influenza and associated symptoms within 48 hours

of onset with traditional chemotherapies such as oseltamivir, a

neuraminidase inhibitor (NAI), given at 75 mg daily, or twice in a

day can be effective. Another effective anti-viral is amantadine

(directed against viral M2 protein), which when given at 100 mg

twice daily can be used both as treatment and prophylaxis (Salyer,

2007). In recent time however, relative antimicrobial resistance has

been observed with some of the traditional and approved influenza

antivirals (oseltamivir, zanamivir, amantadine, and rimantadine).

Specifically, circulating A(H1N1)pdm09 strain that have now

become seasonal is resistant to amantadine and rimantadine

(CDC, 2010). Also in Japan in the course of 2013–2014 influenza

season, cluster of influenza A(H1N1)pdm09 virus showed cross-

resistance to the NAIs- oseltamivir and peramivir (Takashita et al.,

2015). Some of the resistance by seasonal influenza viruses arise due

to mutations in the viral polymerase gene through antigenic drifts

and shifts. These generate hemagglutinin (HA) and neuraminidase

(NA) antigenic variants giving rise to viral subtypes that can escape

from pre-existing antibody-mediated immune responses (Iwasaki

and Pillai, 2014).

Effective deployment of anti-infective would require continuous

Influenza antiviral surveillance to detect emerging resistance. The

susceptibility of neuraminidase inhibitor and influenza resistance

information study (IRIS), are crucial for monitoring occurrences of

resistance in influenza viruses. Antiviral resistance arising from

genetic mutations and re-assortment (drifts and shifts), gives rise to

novel subtypes or accumulation of mutations that presents changes
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in gene locus/protein domain and targets of chemotherapy.

Sometimes interspecies transmission between human and

reservoir animals accelerates emergence of a pool of variants that

are resistant to currently used anti-infective to which parent virus

were hitherto susceptible. It is therefore important not only to

devise novel strategies or develop new generation of effective drugs

but there is also an urgent need to understand the underlying

mechanisms and forces that drive anti-infective resistance (Hughes

and Andersson, 2015). Some antivirals against influenza are

currently approved as mono therapy in uncomplicated infections.

Clinicians may thereafter explore a number of options for

combination therapy according to clinical presentation and

response to treatment (WHO, 2018c). In intractable cases of

influenza virus infections that may arise due to complications of

co-infections, emergence of drug resistance strains, treatment

options may include options may include increasing the dose of

existing drugs (Davies, 2010; Dutkowski, 2010). In addition,

combination therapies including the existing and/or novel

antivirals, with distinct modes of action are very useful. In the

foray also include ethno-pharmaceuticals derived from many plants

and ethnic products that have been tested to reduce clinical

symptoms and complications of influenza and other respiratory

infections (Amber et al., 2017). The World Health Organization

(WHO) listed about 21,000 medicinal plants, most of which act as

immunomodulators with therapeutic potentials, as herbal,

traditional/Indigenous medicines (Mahima et al., 2012). Some in-

vivo studies have also shown the protective role of kolaviron (KV), a

bioflavonoid isolated from Garcinia kola. As a natural antioxidant

and anti-inflammatory agent, kolaviron has been shown to inhibit

acetylcholinesterase activities in the hippocampus and stratum of

wistar rats (Ijomone and Obi, 2013). In a challenge experiment on

BALB/c mice (Awogbindin et al., 2015), it was suggested that KV

may be effective in delaying clinical symptoms of influenza by

mechanism unrelated to those used by existing anti-influenza drugs

but closely associated to its antioxidant and immunomodulatory

functions. Similarly, the extract of the root-bark of the African

Baobab tree (Adansonia digitata Lin) was found to possess antiviral

property on respiratory virus of poultry and may be useful in

managing symptoms of influenza (Sulaiman et al., 2011).

Studies have shown that population susceptible to influenza

infection include solid organ transplant and recipient of

hematopoietic cell. These group are at higher risk of disease

severity and developing complications, prolonged viral shedding,

emergence of viral resistance, and deaths compared to the general

population (Kmeid et al., 2016). Novel approaches to anti-infectives

may be exploring gene therapy that may allow autologous

transplantations of a patient’s own genetically corrected stem

cells. This could be in the same vein with methods that efficiently

add new copies of relevant gene to the hematopoietic stem cells

leading to the safe and effective treatments for several primary

immune deficiency diseases (Kohn and Kuo, 2017). Gene editing

options may also attempt to identify alleles responsible for the

production of metabolites, which are either deleted or modified for

better chemotherapeutic response. Genome editing techniques is

currently employed to construct viral mutants, prevent virus
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infections, eradicate proviral DNA, and to inhibit viral replication

in infected cells (Okoli et al., 2018).

The changing map of viral chemotherapy underscores the need

for new approaches in viral anti-infectives. A better understanding

of the impact of mutations that result in antiviral resistance would

enhance therapy of critically ill patients. In countering antiviral

resistance to therapy, knowledge of potential permissive amino acid

mutations in circulating viruses makes anticipation of emergence of

non-compromising antiviral resistance feasible (van der Vries et al.,

2013). Influenza viruses have the propensity for continuous

antigenic shift and drift and the emergence of novel strains from

animal reservoirs with decrease in susceptibility to antivirals.

Influenza surveillance data on antiviral resistance patterns is

therefore necessary to evaluate case by case susceptibility and

selective clinical efficacy of antiviral. Anti-viral options and

development of new antiviral drugs is a continuous science of

discovery and selection of new anti-infective agents that are safe,

effective, and affordable in the management of influenza epidemics

and pandemics.
4 Viral chemotherapies: balancing
efficacy and safety

Vaccination is one of the most practical and effective way to

provide protection from influenza infections. The strategy however

appears a little slow when there is a rapid spread of virus during

pandemic situations. Although the vaccination is prophylactic in

nature, they may not be very effective in the elderly, the

immunocompromised and the infant high-risk groups, thus

alternative strategies to develop safe and potent chemotherapeutic

anti-influenza agents are needed in time.

An efficient chemotherapeutic drug should inhibit viral

replication selectively without being detrimental to the host when

used at a standardized concentration. Despite some current

limitations, existing chemotherapy offers a better approach to the

control of virus and has been formally licensed to be widely used

against specific viral infections. Originally it was thought to be very

difficult to interrupt the viral replication cycle without affecting the

host cellular metabolism, however, it is now understood that there

are several steps in the viral replicative cycle that differs from the

normal host cellular processes and thus can be potential therapeutic

targets for chemotherapeutic intervention (Figure 2).

Several antiviral compounds are formally licensed for clinical

use against influenza viruses. The clinical indications, dosage, and

mechanism of action of major ones are summarized in Table 1.

Antiviral drug against influenza was first discovered and

available in 1960s when the amantadine (an amino derivative of

adamantine) was approved for treatment and prophylaxis of

influenza A viruses with an efficacy of around 90% (Reuman

et al., 1989). In the 1990s, another drug, rimantadine (an analog),

was approved and showed fewer side effects than amantadine.

Extensive mechanistic studies on the action of adamantines led to

the discovery of a new influenza viral protein (M2) and studies on

the mutants resistant to rimantadine demonstrated that all mutant

strains had a mutation in the second splicing readout of the gene 7,
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encoding protein M2 (Lamb et al., 1981). The M2 protein that also

acts as an ion channel, is responsible for the internal acidification of

the virus which is essential at the early stage of viral trafficking in

endosomes and releasing its genetic material. The amantadine and

rimantadine increases the pH inside the endosomes by inhibiting

the transport of protons. This event hampers the separation of viral

ribonucleoprotein (RNP) fromM1 protein and subsequently on the

onset of viral genome transcription (Hay, 1996). Both drugs were

active against influenza A viruses and blocked their replication in

both cell lines and animal models, however, viral resistance soon

developed against them and they produced marked side effects

(Arruda and Hayden, 1996; Shigeta, 1997). Studies further showed

that the therapeutic efficacy of amantadine and rimantadine was

observed to be insignificant in infected individuals as well as

prophylaxis of healthy volunteers of a professional staff group

(Belshe et al., 1989; Hayden et al., 1989). While it may take 1 to 2

weeks for the influenza strains to acquire resistance in animal

models and cell lines, it may take just 2-4 days in humans after

beginning of the amantadine and rimantadine chemotherapy.

Other important problems while administering amantadine

includes serious side effects such as dyspepsia, anorexia,

hallucinations, and sleeplessness. Studies involving rats have

revealed that amantadine also provided evidence of

embryotoxicity and teratogenicity thus limiting its usage in cases

of hepatic and renal diseases and in pregnant women (Horadam

et al., 1981; Dolin et al., 1982; Reuman et al., 1989). The side effects

due to rimantadine were similar but less noticeable than those of the

amantadine (Dolin et al., 1982). The surveillance studies for

amantadine and rimantadine resistant A (H3N2) viruses revealed

that the global frequency of resistance increased from 0.8% during

1991-95 to 12.3% in 2004 and a after a year to 96%, 72%, and 14.5%

in China, South Korea, and the United States, respectively (reviewed

in (Kumar et al., 2018)) (Bright et al., 2006). In Russia, the analogs

of amantadine (deitiforin) and rimantadine (adapromine), was

recommended owing to their broad spectrum of antiviral activity

as compared to rimantadine. The adapromine not only inhibited

influenza A and B viruses but also the rimantadine-resistant strains.

Although the efficacy was comparable to rimantadine, they both

were also associated with side effects.

In late 1990s, the second generation of anti-influenza drugs

called the neuraminidase inhibitors (NAI), were approved, and

found to act against influenza A viruses. The 2 major NAIs used for

treatments were the oseltamivir (widely used) and zanamivir (lower

patient acceptance rate). Oseltamivir gained more popularity and

became the choice of anti-influenza drug throughout the world. The

drug inhibits the activity of viral neuraminidase thus preventing the

viral budding and thereby restricting infection in respiratory tract

(Treanor et al., 2000). The clinical investigation data further

revealed that administration of oseltamivir decreased the disease

duration by 30% (2.9 days), when the treatment was started in the

first 36 hours after appearance offirst symptoms, and the side effects

such as sinusitis and bronchitis were significantly low (Treanor

et al., 2000). A study based on large number of patients showed that

oseltamivir treatment decreased the duration of disease to 3.1 days

when administered within 12 hours of onset of symptoms as

compared to 5.3 days when administered within 48 hours of
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TABLE 1 Chemotherapeutic drugs, year of approval, spectrum and their mechanism of action.

Drug/Intake Virus
Activity

spectrum
Mechanism of action

Antiviral
resistance

Amantadine
(Oral)

Influenza A virus
Viral penetration
inhibitors

Disruption of M2 ion channel function, virus uncoating and
assembly

Widespread

Rimantadine
(Oral)

Influenza A virus
Viral penetration
inhibitors

Disruption of M2 ion channel function, virus uncoating and
assembly

Widespread

Oseltamivir
(Oral)

Influenza A and B virus Viral release inhibitor Inhibits enzymatic activity of neuraminidase Uncommon

Zanamivir
(Inhaled, nebulized,
intravenous)

Influenza A and B virus Viral release inhibitor Inhibits enzymatic activity of neuraminidase Rare

Peramivir
(Intravenous)

Influenza A and B viruses Viral release inhibitor Inhibits enzymatic activity of neuraminidase Uncommon

(Continued)
F
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FIGURE 2

Schematic diagram showing various steps in the life cycle of influenza virus. The steps 1 to 7 are crucial targets for some of the currently used
antiviral strategies. The lower panel shows the time lines of development of major antiviral drugs and occurrences of influenza pandemics.
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onset of symptoms (Aoki et al., 2003). The studies based on

resistant viruses revealed that while only 1 to 2 passages were

sufficient to generate resistant strains due to amantadine and

rimantadine pressure, it took several more passages for the virus

to become resistant under the pressure of oseltamivir. The mutation

was observed to be in the neuraminidase (NA) and in the viral HA

that binds to the sialic acids (Mendel and Sidwell, 1998).

Zanamivir, another 2nd generation NAI, was shown to inhibit

the activity of neuraminidase of both influenza A and B viruses in

cell line (von Itzstein et al., 1993). The in vivo models further

validated its activity in mice and rats infected with influenza viruses

(Hayden et al., 1997). It was also shown that the drug acted best

when administered through the intranasal, intraperitoneal, or

intravenous routes and the activity was absent upon oral

administration since the drug could not be absorbed in the

gastrointestinal tract and did not reach the respiratory tract

(Hayden et al., 1997). Several other studies based on large

number of samples proved the effectiveness of zanamivir in

preventing the development of influenza infection significantly

and also reducing the time of manifestation of symptoms (Group,

1998; Calfee et al., 1999; Monto et al., 1999). Zanamivir has also

showed low toxicity and no serious side effects in clinical

investigations (Cooper et al., 2003). A comparative study on the

usage of oseltamivir and zanamivir in the treatment of pandemic

influenza revealed that both drugs had similar efficacy in terms of

relief of symptoms and adverse effects, however, the zanamivir

provided much faster relief in temperature normalization in

patients (Tuna et al., 2012).

Of the 5 currently used, major anti-influenza drugs, only 3 NAIs

(oseltamivir, zanamivir and peramivir) are approved for use by the

U.S. Food and Drug Administration (US-FDA) (FDA, 2018). The

M2 ion channel blockers (amantadine and rimantadine) are not

recommended by US-FDA owing to increasing resistance of

circulating influenza strains toward the drugs. The M2 blockers

are also found ineffective against the influenza B and C viruses

(reviewed in (Kumar et al., 2018)) (CDC, 2018). With each passing

year, the influenza viruses have also evolved to withstand the effect

of antiviral drugs by gaining resistance. The number of oseltamivir

resistant influenza has increased tremendously over the last few

years. The global circulation of oseltamivir resistant influenza A

(H3N2) and seasonal A(H1N1) viruses raised serious concerns

about the potency of the drug (Hayden, 2006; Hayden and de

Jong, 2011). The most recent example of oseltamivir resistance is

the pandemic strain A(H1N1) pdm09 viruses (Hurt et al., 2012).
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Another drug called the “Umifenovir (Arbidol)” gained

popularity in Russia and was recommended by the Russian State

Pharmacopoeial Committee for the effective treatment and

prophylaxis of influenza A and B viruses in both adults and

children. The broad-spectrum drug hindered viral replication and

its immunostimulant and interferon-inducing activity and was

better than the amantadine and rimantadine (Reviewed in

(Leneva et al., 2004)) (Brooks et al., 2012; Leneva et al., 2016).

Large population studies showed a high efficacy of the drug arbidol

in reducing duration of the disease as well as reducing the time of

symptoms such as headache, cough, rhinitis, and weakness in both

adults and children (Kiselev et al., 2015). Recent studies also showed

that arbidol inhibited both seasonal and pandemic H1N1 stain by

modulating the expression levels of inflammatory cytokines to

reduce viral replication and acute inflammation (Liu et al., 2013).

The arbidol has also been shown to inhibit other virus infection,

such as zika virus entry, as reported in recent studies (Fink et al.,

2018). The world has, by now, seen a changing influenza antiviral

landscape, and urgently need the development of novel

chemotherapeutics against both emerging and remerging

influenza viruses.
5 Potency of influenza antivirals

The global presence of oseltamivir resistant H3N2 and H1N1

strains are the signs of the limitation of antivirals against influenza

viruses. There is therefore an urgent requirement for development

of new antivirals with novel mechanisms of action and newer drug

combinations to effectively manage the outbreaks of influenza. The

development of novel NAIs and other pharmacological groups have

shown promising outcome towards better management of influenza

infections in adverse situations.
5.1 Neuraminidase inhibitors

Although oseltamivir is still recommended for treatment of

influenza infections globally, there are more recently developed

NAIs such as the peramivir and laninamivir which were approved

for use in Japan in 2010. The US-FDA first issued an emergency use

authorization (EUA) for the usage of peramivir in 2009-2010

pandemic period based on the safety data in clinical trials, and in

December 2014 approved it for the treatment of influenza infections
TABLE 1 Continued

Drug/Intake Virus
Activity

spectrum
Mechanism of action

Antiviral
resistance

Favipiravir/
T-705
(Oral)

Influenza A, B, C and other
RNA viruses

Viral replication
inhibitor

Inhibits the activity of RNA dependent RNA polymerase of
influenza viruses

Not reported

Laninamivir
(Inhaled)

Influenza A and B viruses Viral release inhibitor Inhibits enzymatic activity of neuraminidase Rare

DAS181 (Inhaled) Influenza A and B viruses
Viral penetration
inhibitors

Sialidase activity that destroys receptor for HA Not reported
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in adults (FDA, 2014). It was approved for use in both Japan and

South Korea since 2010. It was approved for an intravenous

administration in patients with acute uncomplicated influenza.

Although it is high cost as compared to oseltamivir and the route

of administration made it less popular in patients with mild

infections, yet it is very useful for the critically ill patients or

patients who are unable to tolerate other administration routes

(Alame et al., 2016). Peramivir has been shown to bind to

neuraminidase (NA) enzyme more tightly as compared to other

NAIs and restricts the growth the both influenza A and B virus in

in-vitro studies (reviewed in (Hata et al., 2014)).

Laninamivir is comparatively a new NAI with structural

similarities with zanamivir. The drug has long retention time and

a single dose is sufficient for one week unlike zanamivir or

oseltamivir which needs to be administered twice daily (Ishizuka

et al., 2010). The drug became highly popular in Japan due to its

ease of single-dose administration. It could treat patients infected

with seasonal influenza including those resistant against oseltamivir

as revealed in a clinical trial (Watanabe et al., 2010). Compound 23b

shows a potent inhibitory activity against neuraminidase from

H5N1 subtype but nontoxic to MDCK cells (Wang et al., 2020).
5.2 Drugs acting against other viral
components

Several small organic compounds such as quinones (Larson

et al., 2012), an antibiotic stachyflin (Yoshimoto et al., 1999) and

derivatives of benzamide and podocarpic acid (Luo et al., 1997;

Staschke et al., 1998) have been shown to be effective in blocking the

hemagglutinin mediated membrane fusion during influenza virus

infection. They have been shown to have strain specificity and

associated cytotoxicity in in-vitro models. A new drug called the

DAS181, is a novel HA inhibitor that prevents virus attachment to

epithelial cells by enzymatically removing the sialic acid receptors

(Malakhov et al., 2006). The drug is effective even at nanomolar

concentrations with minimal cytotoxic effects and is effective

against both influenza A and B viruses (Moss et al., 2012). Since

the drug removes both the human-like a2,6- and avian-like a2,3-
linked sialic acids from cellular receptors, it acts as a broad range

sialidase that works even for the viruses resistant to adamantines

and NAIs. Nitazoxanide is a thiazolide compound that is known to

have antiviral activity against influenza and other RNA viruses.

They work mainly by inhibiting the influenza virus replication by

hindering the maturation of hemagglutinin protein (Rossignol et al.,

2009). Favipiravir (T-705) is another antiviral that has inhibitory

activity against both NAI and adamantine resistant viruses by

inhibiting the influenza RNA polymerase (Furuta et al., 2009). It

is effective against all the influenza virus types (A, B, C) at very low

concentrations and even works for other RNA viruses at higher

concentrations (Furuta et al., 2009). Several other therapeutic

options against influenza such as the CHCl3 extract of Ferula

assa-foetida, pyrazole-based compound BPR1P0034, human

monoclonal antibody termed A06, have been shown to be potent

and beneficial as revealed in different studies (reviewed in (Khanna

et al., 2012)). VX-787, a viral PB2 inhibitor, has been revealed to
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work against several strains of influenza A viruses and is effective

both as prophylaxis and treatment (Byrn et al., 2015). Another

potential antiviral drug candidate 1,3-dihydroxy-6-benzo [c]

chromene (D715-2441) was shown to specifically bind to the PB2

protein thus significantly reducing the action of influenza RNA

polymerase of the H1N1, H3N2, H5N1, and H7N9, as well as

oseltamivir-resistant strains having H274Y NA mutation (Liu et al.,

2018). This drug was also shown to provide a synergistic antiviral

effect when used with zanamivir (Liu et al., 2018). Nucleozin and

Naproxen are the nucleoprotein (NP) inhibitors and have shown

antiviral activity mostly by inhibiting the NP binding to RNA in

influenza A viruses (Cheng et al., 2012; Lejal et al., 2013). Certain

influenza-NS1 inhibitors such as NSC125044 and Baicalin, have

been shown to act as inhibitors of viral replication by re-establishing

the antiviral effect of interferon and altering the binding domain of

the NS1 protein respectively (Jablonski et al., 2012; Nayak et al.,

2014). A recent study has demonstrated the promising activity of an

antiviral compound FA-6005 that specifically targets the amino acid

residue 41, and inhibits the activity of the vRNP complex of both

influenza A and B viruses. The drug puts hindrance at various stages

in the life cycle of influenza virus by reducing the NP/vRNP export,

impairing the trafficking of circulating RNPs in the cytoplasm,

hampering the virus uncoating process and disrupting the budding

of daughter virions (Yang et al., 2021). OA-10, another newly

discovered triterpene out of 11 oleanane-type derivatives, showed

potent antiviral activity against replications of the IAV H1N1,

H5N1, H9N2 and H3N2 in lung cell cultures (Ye et al., 2020).

The A77 1726 also inhibited the replication of three IAV subtypes

(H5N1, H1N1, H9N2) in multiple cell types (Wang et al., 2020).

Several studies have also shown the effect of short interfering

RNA (siRNAs), ribozymes and DNAzymes that specifically targets

the vital genes of influenza viruses to block their replication in cell

line and mice models (Kumar et al., 2012; Rajput et al., 2012; Kumar

et al., 2013; Asha et al., 2018).
5.3 Drugs acting against host cell factors to
block viral infection

There are several drugs that are known to target the host cellular

factors to block the influenza virus infection at several stages of

infection. DAS181 is a sialidase that cleaves residual sialic acid from

the cell surface of cells thus preventing the virus entry into target

cells. A polypeptide, Aprotinin, prevents host proteases that cleave

viral HA, thus interfering with viral binding and fusion as shown in

an in vitro as well as in vivo study (Ovcharenko and Zhirnov, 1994;

Zhirnov et al., 2011). Similarly, Bafilomycin A1 and Concanamycin

A are antibiotics that dampen the process of endocytosis and fusion

by inhibiting vacuolar H+ATPase activity that pumps protons from

the cellular cytoplasm to the interior of the endosomes (Muller

et al., 2011). Further, the inhibitors of key pathways such as the Raf/

MEK/ERK pathway (U0126) and NF-kB transcription factor

pathway (Acetylsalicylic acid) play crucial roles in reducing the

viral load in experimental studies mainly by reducing the nuclear

export of viral ribonucleoprotein (Mazur et al., 2007; Droebner

et al., 2011).
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5.4 Antiviral combinations and small
molecular therapy against influenza

The constant evolution of influenza viruses and rapid resistance

development against the existing antivirals has become a global

concern and part of the broad subject of Antimicrobial Resistance

(AMR). Thus, to overcome the limitations of monotherapy and to

combat the emerging drug-resistant strains, a combination

treatment seems a better therapeutic option. A combination

therapy with one or two or more drugs targeting different viral

proteins or host proteins may prove to be a superior and potent

option to treat influenza infections (Figure 2) (Dunning et al., 2014).

Small molecule combination therapy is an exciting alternative

option for the treatment of influenza as it comes with an

advantage of enhancing the overall efficacy and possibility of

lower individualized dosages thus increasing the tolerance on

patients. The combination therapy also supports reduced drug

toxicity. It can either target the same viral protein, two or more

viral proteins of influenza or it can also target host and virus

associate molecular mechanisms (Shen et al., 2015; Batool

et al., 2023).
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A summary of several combinations of drugs with the subtype

of influenza virus is shown in Table 2.
6 Reverse genetics, gene therapies,
new approaches and prospects

Reverse genetics is a versatile technique which can be used to,

among other things, generate re-assortant viruses. This can be done

by transfection of cells with plasmids that contain viral genome, or

through the combination of plasmids that code for different viral

sequences and aided by helper virus (Stobart and Moore, 2014).

New viruses can thus also be generated from cloned cDNA that

contain point mutations, thereby capable of substituting gene

segments, giving rise to a new virus strain different from the

original parent virus (Neumann et al., 2002).

The influenza virus genome is highly segmented, and this makes

it easy for strains to exchange RNA segments, thereby producing a

virus different in antigenicity, pathogenicity, and other important

biological characteristics. This also makes it easy for nucleotide

substitution during gene replication (Webby and Webster, 2001),
TABLE 2 Combinatorial approach towards management of influenza infections.

Drug combinations
Influenza
subtype

Activity spec-
trum

Experimental con-
dition

Ref.

Double drug combination

Rimantadine + Ribavirin

H1N1
H3N2

Virus yield inhibition In vitro (Hayden et al., 1980)

H1N1
H3N2
B

Virus yield inhibition In vitro (Hayden et al., 1984)

Amantadine + Ribavirin

H5N1 Virus yield inhibition In vitro (Smee et al., 2009)

H1N1 Virus yield inhibition In vitro (Nguyen et al., 2010)

H5N1 Virus yield inhibition In vivo (Smee et al., 2009)

Zanamivir + Rimantadine
H1N1
H3N2

Virus yield inhibition In vitro (Govorkova et al., 2004)

Oseltamivir carboxylate + Amantadine

H1N1
H3N2
H5N1

Virus yield inhibition In vitro
(Ilyushina et al., 2006; Nguyen et al.,
2010)

H1N1
H3N2
H5N1

Virus yield inhibition In vivo
(Masihi et al., 2007; Smee et al.,
2009)

Oseltamivir carboxylate + Ribavirin

H1N1 Virus yield inhibition In vitro (Nguyen et al., 2010)

H1N1
B
H5N1

Virus yield inhibition In vivo (Smee et al., 2006; Smee et al., 2009)

Oseltamivir + Favipiravir
H1N1
H3N2
H5N1

Virus yield inhibition In vivo (Smee et al., 2010)

Tripple drug combination

Oseltamivir carboxylate + Amantadine +
Ribavirin

H1N1
H3N2
H5N1

Virus yield inhibition In vitro
(Nguyen et al., 2009; Nguyen et al.,
2010)
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thereby leading to frequent antigenic drift and antigenic shift and

this accounts for Influenza viruses’ abilities to produce epidemics

and pandemics around the world. Thus, the possibility for the

Highly pathogenic avian influenza H5N1 and the pandemic

influenza have great possibilities to produce human infections,

thereby necessitating a different approach to vaccine production

and efficacy.

For the annual influenza vaccination, the vaccine is usually

developed by the reassortment of the viral backbone segments of a

highly productive influenza vaccine strain (donor) the

hemagglutinin and neuraminidase segments from the virulent

epidemic strain. This method involves a laborious screening of

vaccine strain re-assortants but with the advent of reverse genetics,

researchers are now able to design and produce influenza viruses of

the required genotypes. Currently, there are several methods to do

this, all based on reverse genetics (Jung et al., 2010; Engelhardt,

2013). These methods can be broadly divided into helper-virus

dependent and helper-virus independent methods.

The helper-virus dependent methods include ribonucleoprotein

transfection, nucleic-acid ribonucleoprotein reconstitution and

viral vector-based ribonucleic acid reconstitution. The helper-

virus independent methods, on the other hand, include plasmid-

only reverse genetics system, ribonucleoprotein transfection-based

helper virus independent reverse genetics system and viral vector-

based helper virus independent reverse genetics system. Reverse

genetics has therefore provided vaccine researchers with new

techniques for designing vaccines against influenza viruses and

proffering better preparedness against influenza pandemics. The

versatility of this technique is shown by a team in Arizona which

used a one-plasmid reverse genetics system to create a plasmid in

which eight cassettes were ligated, giving profound advantages in

generating recombinant influenza viruses for vaccine production as

well as other important studies like virus characterization (Zhang

et al., 2009). The success of these techniques and the attendant

opportunities notwithstanding, influenza vaccine production

system is still recommended to be cell culture or egg-based, with

requisite quality controls (WHO, 2003).
6.1 Reverse genetics to understand
pathogenicity factors

Reverse genetics can be used for a myriad of studies in

vaccinology apart from the production of influenza vaccines.

There is the need to understand the pathogenicity factors of

influenza viruses and reverse genetics is making these studies

much easier to accomplish. The roles of the influenza proteins

like hemagglutinins, neuraminidase, polymerase basic proteins,

polymerase acidic protein, nuclear export proteins and others,

and the effect of any kind of mutations on the genes coding for

these proteins have been well studied with the use of reverse

genetics techniques (de Jong et al., 2006; Conenello et al., 2007).
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6.2 Reverse genetics in understanding of
influenza immunity

Understanding how influenza viruses attack and respond to

host specific immunity to ensure survival and propagation is very

important. The release of pro-inflammatory cytokines and

chemokines and the infiltration of immune cells constitute the

innate response against influenza viruses, which eventually leads to

adaptive humoral and cellular influenza-specific responses

(Schmolke and Garcia-Sastre, 2010; Asha et al., 2021). The

understanding of how influenza viruses are able to evade these

responses has been made easier through the use of reverse genetics.

The knowledge accruing from these studies in turn become very

useful in the design of modified influenza viruses that are able to

overcome the viruses defense mechanisms and generate immunity

that is effective in neutralizing the pathogenic virus. The goal of

researchers is to design a universal influenza vaccine that is able to

produce cross-neutralizing immune response targeting the highly

conserved internal proteins of the virus and able to induce effective

cytotoxic immunity against any influenza strain. This is achievable

through the understanding of epitope immuno-dominance, a study

that is also aided by the use of reverse genetics.
6.3 Understanding the drug-resistance
mechanisms of influenza viruses

Resistance to some antiviral drugs by influenza viruses has been

reported, for example, against the NA inhibitor zanamivir and the

M2 blocker amantadine (Whitley et al., 2013; Yen et al., 2013).

There is the need to understand the mechanisms of the reported

resistance in order to design new drugs that can factor in these

resistance factors and be more effective. This understanding is made

easier through the use of reverse genetics tools.
6.4 Viral vaccine vectors and
immunotherapies

Vectors are becoming increasingly important in vaccine

development and immunotherapies. The current deeper

understanding of influenza virus has made it possible to use the

modified strains for this purposes, and especially in cancer

immunotherapy (Restifo et al., 1998). The same tools are being

applied in vaccines against HIV/AIDS (Li et al., 1993a), malaria (Li

et al., 1993b) and certain bacterial diseases (Gilleland et al., 1997).

All this is made possible by the advances in the use of reverse

genetic applications. Since the organisms are constantly evolving,

however, there is the need to continue advancing the tools available

through reverse genetics and expanding the body of knowledge for

the benefit of mankind and animals.
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7 In vitro studies of influenza anti-
infective

The influenza virus polymerase acidic (PA) protein, essential in

viral RNA transcription and viral replication, is a promising

antiviral target. RO-7 is a novel PA protein endonuclease

inhibitor (Jones et al., 2017) that has been studied for its potential

role in inhibiting influenza A and B viruses in Madin-Darby Canine

Kidney (MDCK) and multiple influenza strains A (H1N1, H3N2,

H5N1, H7N9, H9N2) and B viruses. A lethal BALB/c mouse model

of RO-7 using 5MLD50 of A/California/04/2009 A(H1N1)pdm09 or

B/Brisbane/60/2008 showed increased survival, reduced viral load

in the lungs, decreased morbidity, and reduced lung pathology

compared to controls (McKimm-Breschkin et al., 2018).

A Japanese research team demonstrated that the

transmembrane Ca2+ channel is the key receptor for influenza A

virus (IAV). In laboratory studies using cultured human cells, IAV

binds to Ca2+ channels to trigger an influx of Ca2+, viral entry and

infection while inhibition of the Ca2+ channels prevent IAV-

induced Ca2+ influx and entry of the virus. Using mice models,

the team found a dose-dependent reduction in the number of

replicated viral progeny when administered with calcium channel

blockers (CCB) intranasally. When infected with higher amounts of

IAV, CCB prolonged survival while the untreated group died within

5 days of infection (Fujioka et al., 2018).

Polyclonal antibodies, derived from either hyperimmunized

animals or humans, have been utilized to prevent or treat several

infectious diseases. The transchromosomic (Tc) bovine platform

technology is able to rapidly create fully human immunoglobulins

using a triple knockout of bovine immunoglobulin (Ig) genes and

replacement with human Ig genes (Dye et al., 2016). In a murine

model of influenza A(H1N1)pdm09 virus, the dosage of SAB-100

(Tc-bovines hyperimmunized with a tri-valent seasonal influenza

split virion) was evaluated. A single prophylactic dose of SAB-100 at

1.33, 4, or 12 mg/kg provided 100% protection. A single therapeutic

dose with 12, 24, or 48 mg/kg dose of SAB-100 provided 100%

protection. A study using another animal model investigated the

effect of sub-therapeutic doses of SAB-100 (1.5 mg/kg) and

oseltamivir (0.3 mg/kg) either alone or co-administered at 12

hours after infection. Mice administered the with combination

therapy had 90% survival, while 60% survival was observed in

mice that received SAB-100 alone, and 40% survival was observed

in mice that received oseltamivir alone (McKimm-Breschkin

et al., 2018).
8 Clinical trials and outcomes of
influenza therapeutics

8.1 Intravenous zanamivir

From 2011 - 2015, clinical trials to evaluate the safety and

efficacy of intravenous zanamivir (IVZ) in treating hospitalized

patients with severe influenza were done. For the Phase II clinical

trial, patients with confirmed influenza were given 600 mg IVZ
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twice a day (adults) or weight-based or age-adjusted dose twice a

day (pediatrics) for 5 to 10 days (Marty et al., 2014). For the Phase

III studies, patients with confirmed influenza enrolled within 6 days

of flu illness were given 300 IVZ or 600 IVZ twice a day for 18 days

or oseltamivir (OS) 75 mg twice a day for 5 - 10 days. The study

showed an approximate 0.5-day improvement in time to clinical

response (vital sign resolution, hospital discharge) in the 600 mg

IVZ group compared to oseltamivir (not significant, not superior),

but there was no difference in the median change in viral load

(Marty et al., 2017). In a study previously reported at Options for

the Control of Influenza- IX, 133 pediatric patients in Japan aged

between 4 and 12 years old that presented within 48 hours of flu

illness were randomly given one of four: oral oseltamivir, inhaled

zanamivir, intravenous peramivir, or inhaled laninamivir.

Peramivir had shorter time for viral clearance when compared to

oseltamivir (adjusted P = 0.035) but there were no significant

differences in HAI titer increase between treatments (McKimm-

Breschkin et al., 2018).
8.2 Umifenovir

Umifenovir (Arbidol), a fusion inhibitor specifically targeting

hemagglutinin, is licensed in Russia and China for treatment and

prophylaxis of both influenza A and B. Umifenovir produces

antigen-specific antibodies and is able to induce interferon-

production and stimulate macrophages (Glushkov et al., 1999).

Retrospective observational studies done in 2010–2011 (Leneva

et al., 2009) and 2014–2015 flu seasons with 5,287 hospitalized

influenza patients were given 4 × 200 mg umifenovir or 2 × 75 mg

oseltamivir within 48 hours of onset of flu symptoms. Fever

duration in patients treated with umifenovir (< 2 years old) was

4.13 days and 2.45 days (> 65 years old) as compared to 3.67 and

4.27 for age-matched controls. No significant differences were seen

in the duration of illness and main symptoms of influenza between

the umifenovir and oseltamivir treated groups.
8.3 Pimodivir

Pimodivir is a first of its kind inhibitor of the PB2 subunit of

IAV polymerase complex developed to treat IAV including H1N1

(pandemic) and H5N1 (avian) strains (Fu et al., 2016). A Phase II

study evaluated the safety and efficacy of pimodivir in adults 18 - 65

years of age with uncomplicated IAV infection who presented with

less than 48 hours of symptom onset. Patients were randomly given

placebo, pimodivir 300 mg, pimodivir 600 mg, or the combination

pimodivir 600 mg/oseltamivir 75 mg for 5 days. Pimodivir 600 mg

resulted in a greater decrease in qRT-PCR area under the curve

(AUC) for viral load from day 1–8, compared to 300 mg [-4.5 (−8.0;

−1.0); 0.012 vs −3.6 (−7.1; −0.1); 0.044 log10 copies/ml]. The

pimodivir and oseltamivir treatment showed further reduction

when compared to pimodivir 600 mg (−4.1 log10 copies/mL, −7.4

to −0.7, P = 0.017) but the difference was not associated with

improved clinical benefit. The dosage 600 mg was selected for Phase

III studies (McKimm-Breschkin et al., 2018). In March 2017, the US
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Food and Drug Administration granted pimodivir Fast Track

Designation due to its potential for treatment of influenza A

infections (Finberg et al., 2019).
8.4 Oseltamivir, amantadine, and ribavirin

Triple combination of oseltamivir, amantadine, and ribavirin

was synergistic and effective against several influenza A virus

subtypes (H1N1, H3N2, and H5N1) (Nguyen et al., 2009). A

randomized, blinded, multi-center Phase II study designed to

enroll participants that were either 65 years of age or older, had a

chronic medical condition, and/or were obese with confirmed

influenza A or B, were randomly administered either oseltamivir

alone OR the combination of oseltamivir, amantadine, and ribavirin

for 5 days. The primary endpoint of the study was the percentage of

participants with virus detectable by PCR in a nasopharyngeal swab

at day 3. Eighty of 200 (40.0%) participants in the combination arm

had virus detectable at day 3 compared to 97 of 194 (50.0%) (95%

C.I. 0.2–19.8%, P = 0.046) in the control arm, but the difference was

not associated with clinical benefit (McKimm-Breschkin

et al., 2018).
8.5 Danirixin

Danirixin (DNX), also known as GSK1325756, is an oral

selective, competitive reversible inhibitor of CXC chemokine

receptor 2 (CXCR2) developed as an anti-inflammatory agent for

the treatment of severe asthma and chronic obstructive pulmonary

disease (COPD) (Busch-Petersen et al., 2017). Because CXCR2 is a

key receptor in the chemotaxis of neutrophils to areas of

inflammation, DNX is also in development for uncomplicated

influenza and for intravenous (IV) therapy for patients

hospitalized with influenza. A randomized double-blind placebo-

controlled clinical trial in outpatients with uncomplicated PCR-

confirmed influenza evaluated the safety and tolerability of 75 mg

DNX with and without 75 mg of oseltamivir given twice daily for

five days. In all treatment groups, mean peripheral neutrophils

decreased from baseline to day 3 and resolved by day 8 with a trend

toward shorter median times to resolution of all influenza

symptoms in the DNX + oseltamivir group (112 hours) than in

the oseltamivir only group (267 hours). A study on hospitalized flu

patients is underway (NCT02927431).
8.6 Baloxavir marboxil

Baloxavir marboxil (S033188) is a potent, selective small

molecule inhibitor of the cap-dependent endonuclease that is

essential during viral mRNA biosynthesis of influenza A and B

viruses. The active form, S-033447 (Uehara et al., 2016), can inhibit

viral mRNA synthesis thereby preventing protein production of the

flu virus. In the Phase II trial, influenza-confirmed adult patients

were given a single dose of 10, 20 or 40 mg or placebo and a quick
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decrease in the viral load of 3 to 4 log10 by 24 hours was observed

with earlier resolution of fever and all symptoms compared to the

placebo group (mean ∼50 vs. 77 hours). In addition, a negative

correlation was observed between drug dose and a change in virus

titers at day 2 and day 3 (McKimm-Breschkin et al., 2018). The drug

was approved in 2018 by the US FDA and Japan’s Ministry of

Health, Labour and Welfare for treatment of uncomplicated

influenza in patients aged 12 years and older. In a randomized

placebo-controlled phase III trial on over 2,000 patients, baloxavir

showed a superior efficacy in a single dose to placebo and similar

efficacy to oseltamivir for reducing influenza symptoms in the high-

risk outpatients (Ison et al., 2020).
8.7 Nitazoxanide

In two completed randomized double-blind placebo-controlled

Phase III trials (NCT01610245), oral NTZ 600 mg given twice daily

alone for 5 days was compared with NTZ in combination with

oseltamivir, and with oseltamivir alone. Study showed no difference

in the time to resolution of symptoms between the NTZ,

oseltamivir, and NTZ and oseltamivir combination vs. placebo

(McKimm-Breschkin et al., 2018).
8.8 Monoclonal antibodies

A growing pipeline of broadly neutralizing antibodies is being

developed in people exposed to infectious diseases, including

influenza, COVID-19 and respiratory syncytial virus (RSV).

Several combinations may potentially be able to protect against

pandemic strains of respiratory viruses. MHAA4549A, a human

immunoglobulin G1 (IgG1) monoclonal antibody, can bind to a

highly conserved epitope on the stalk of IAV hemagglutinin (HA)

and block the HA-mediated membrane fusion in the endosome,

promoting antibody-dependent cellular cytotoxicity (ADCC) of the

infected cell. It can neutralize all known human IAV strains (Gupta

et al., 2016). In a Phase II study, subjects were given single-dose of

either 400, 1200, or 3600 mg of MHAA4549A intravenously up to

36 hours after inoculation with IAV (McBride et al., 2017; Deng

et al., 2018). No PK drug–drug interaction between MHAA4549A

and oseltamivir was observed (Deng et al., 2018) and only the 3600

mg group showed significantly reduced viral burden by RT-PCR

and TCID50 assay (McBride et al., 2017).
9 Conclusion

Antivirals and chemotherapeutics are essential complement in

clinical management of influenza. Some drugs discovered many

years ago may still be useful but of interest is the emergence of novel

drugs and drug combinations that has proven very effective.

Outcome of clinical management of influenza showed that early

treatment with antivirals can significantly bring down the risk for

severe illness or death. Thus, influenza epidemic and pandemic can
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be mitigated with a combination of viral chemotherapeutics in

addition to prior vaccination and other public health measures.
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