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As the penetration rate of new energy in the power system gradually increases and
the complexity of cascading faults increases, it is of great significance for the
power system to comprehensively explore the chain of cascading faults in the new
energy power system and quickly determine the closely related lines in the
cascading faults. In response to the lack of consideration in existing research
of the changes in the importance of transmission lines after the introduction of
new energy, this paper proposes a cascading failure prediction index that
integrates the importance and operational status of transmission lines in new
energy power systems and applies it to the search for cascading failures in new
energy power systems. First, the development characteristics of cascading faults
were analyzed, and the main factors influencing cascading faults were identified:
the importance of the transmission line and operating status of the new energy
power system. Based on these factors, a prediction index for cascading faults was
established, and the accident chain was searched using this index. Then, the FP-
growth algorithm was used to analyze the lines in the fault chain concentration,
and based on the analysis results, the correlation relationship suitable for the
cascading failure lines in the new energy power system was determined. Finally, a
simulation was conducted on an IEEE 10machine 39 node system containing new
energy wind turbines, and the results verified the effectiveness of the proposed
indicators and strategies.
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1 Introduction

In recent years, major power outages have occurred frequently worldwide, mostly caused
by chain failures. As the proportion of new energy in the power system gradually increases,
cascading failures have become complex. Chain failures are mainly caused by the failure of
certain lines in the power grid and their withdrawal from operation, affecting the remaining
branches of the power grid (Deng et al., 2022). Therefore, a comprehensive exploration of
chain failures in the new energy power system and the analysis of closely related lines are of
great significance for effectively preventing chain failures and major power outages.

At present, the research methods for cascading faults in power systems are mainly
divided into two categories: the first type is based on complex system theory and complex
network theory (Jia et al., 2016). The complex system theory evaluates the risk of cascading
faults from an overall perspective by analyzing the self-organizing criticality of the power
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system. The models proposed based on this theory include OPA
model, CASCADE model, branch process model, and implicit fault
model. These models do not focus on the physical details of the
development process of cascading faults, but rather emphasize the
initial conditions and macroscopic characteristics of cascading faults
in the power grid, and therefore cannot describe the electrical
characteristics of the power grid in detail Actual grid operation
status. Complex network theory uses metrics such as degree values,
degree distributions, and betweenness centrality to describe
networks and the impact of network topology on cascading
faults. Models based on this theory include small world network
models, Watts construction models, Holme and Kim’s separated
center models, Motte and Lai models, Crucitti and Latora’s effective
performance models, etc. These models simplify the consideration
of physical processes in actual systems, Therefore, there is a gap
between the actual physical process and the actual operation status
of the power grid, which cannot be analyzed. The second type is
based on the theory of power system analysis, and the strategy of
pattern search is more closely related to the actual development
process of cascading faults. For example, Li et al. proposes a fault
chain model for AC/DC hybrid systems based on probabilistic
power flow and short-circuit ratio theory, fully considering the
impact of wind power uncertainty (Li et al., 2020). Huang et al.
proposes a power grid fault assessment model considering the
impact of typhoons based on existing power grid cascading fault
models based on fault chains (Huang et al., 2019). Zhu et al.
established a complete search model for the interlocking fault
chain of AC/DC systems in large power grids, pruning the search
based on the risk of line outage while ensuring accuracy and
improving search efficiency (Zhu et al., 2018).

The current research on cascading faults mainly focuses on pure
AC systems, considering the line distance and operating status of
traditional power grids. For example, Liu et al. defines the system
power flow entropy based on the entropy definition of the system
and the percentage of the specified load rate components in the total
number of components. The minimum load loss is obtained by
taking the minimum system loss load as the objective function, and
the severity index of load loss after a component failure in the ith
stage of cascading faults is standardized. A system brittleness
entropy index is proposed based on the combination of system
power flow entropy and load loss severity index after
standardization treatment. It can calculate the brittleness risk
entropy corresponding to different stages of cascading faults, and
be used to evaluate the impact of brittleness propagation process and
component faults on the power grid (Liu et al., 2012). Qi et al.
establishes a cascading failure model based on the power flow
transfer factor and line topology distance and uses the entropy
weight method to more comprehensively evaluate the risk of an
accident chain (Qi et al., 2016). Xu et al. proposes the identification
of critical power lines in the power grid based on the intermediate
value of power flow (Xu and Wang, 2019). The randomness and
volatility of new energy output (Wang et al., 2021) lead to
uncertainty in the inline power. Zeng et al. established a line
overload model accounting for fluctuations in new energy output
through stochastic power flow and analyzed the risk of cascading
faults in power systems containing wind power based on the
overload model (Zeng et al., 2014; ATHARI and Wang, 2018).
Ni et al. used the risk of line overload induced by fluctuations in new

energy as a weighting coefficient and combined it with power flow
transfer entropy to propose a weak link identification method for
transmission system cascading faults (Ni et al., 2019). The above
research mainly focuses on analyzing the impact of the randomness
of new energy output on the risk of line overload without fully
considering the impact of the introduction of new energy on the
importance of the line, resulting in incomplete accident chains.
Therefore, it is necessary to comprehensively consider the changes
in the importance and operational status of the line brought about by
the integration of new energy into the power grid to obtain a more
complete set of accident chains.

In response to the shortcomings of current researchmethods, we
propose a cascading failure prediction index that integrates the
importance and operational status of new energy power system
lines. The main research content of this article includes the search
for a chain of failures in new energy power systems and an analysis
of the correlation relationships between chain failure lines. First, the
main factors leading to the expansion of cascading faults were
identified, and a prediction index for cascading fault accident
chain routes based on the importance and operating status of
new energy lines was proposed, which was used for accident
chain search. Then, by obtaining the set of accident chains, the
frequent pattern (FP) growth algorithm is used to analyze the lines
within them, and the linear correlation relationship of cascading
failures in the new energy power system is determined based on the
analysis results.

2 Cascading failures and accident chain

The accident chain model originates from safety science and is
made up of chains and correlations. The theory of accident chains
suggests that major accidents are rarely caused by a single cause but
are induced by relevant factors when multiple conditions are met
simultaneously. A power system blackout accident is not caused by a
single fault but rather by a chain effect of concurrent accident
sequences. Assuming that the power grid has n fault chains, the
set of fault chains L and the fault chains �Li are represented as

L � �L1, �L2, .., �Ln{ } (1)
�Li � Ti1, Ti2, Timi{ } (2)

In the formula, Tij is the jth intermediate link of the ith accident
chain, where j = 1, 2,., mi, and the intermediate link can be a branch
or a node.

The logical relationship between the system’s major power
outage accident, accident chain, and intermediate links in the
accident chain is shown in Figure 1. The logical relationship
between system power outage accidents and the set of fault
chains {LI} is an OR gate, while the logical relationship between
the fault chain and the set of intermediate links {Tij} is an AND gate.
The gradual triggering of intermediate links in the same accident
chain has directionality, and any triggering will lead to the triggering
of the accident chain and major power outage accidents.

Accident chain triggering is a small probability event in the
power grid, and the triggering probabilities of different accident
chains vary greatly. The process triggered by the accident chain has
different impacts on the safety of the power grid. Using risk
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assessment theory (Liu et al., 2016) to comprehensively evaluate the
different characteristics between the accident chains, the risk
assessment of the accident chain needs to determine the
probability of occurrence of each link in the accident chain. The
above set of fault chains provides all possible forms of cascading
faults, but the probability of each fault chain occurring is not the
same, so the criticality of lines in different fault chains also varies.

The diversity of causes and evolution modes of chain failures
allows them to be classified into different types (Fang et al., 2022).
The main driving factors for the evolution of chain faults include
overload dominant, coordination dominant, and structural
dominant. The coordinated dominant fault evolution refers to
the main driving factors of major power outages, which are the
unreasonable setting of secondary devices such as relay protection,
low equipment reliability, etc., leading to the expansion of chain
faults, caused by improper coordination of protection devices or
equipment in the system; Structural dominated fault evolution refers
to the significant damage to the power grid topology caused by
unexpected disconnection of interconnection lines between regional
interconnected power grids, premature operation of splitting devices
in the early stages of chain fault development, and other factors that
trigger major power outages. This is caused by structural issues or
design defects in the system. The most important type is the
overload-dominated type, and its evolution process is as follows:
when certain components of the power system are disturbed/faulty
and exit operation, the power flow passing through the faulty line
will transfer to the surrounding line. If the surrounding line is
affected by the overload protection action of the power flow, this will
cause a new round of component removal and power flow transfer,
and the above process will be repeated until a major power outage
occurs. In this evolutionary mode, the frequency and voltage
indicators of the power system have relatively small changes and
have little impact on cascading faults. Overloading of power flow
and the removal of certain lines are the main driving forces for the
evolution of cascading faults.

A new type of power system with new energy as the main body,
large-scale wind and solar power is replaced by conventional units
through inverter grid connection, which reduces system inertia,
reduces disturbance resistance, and increases the difficulty of
frequency control. The asynchronous power grid interconnected
by high-voltage direct current transmission between large regions
has improved the security of cross regional power grids, but the

support capacity of AC power grids in each region has decreased,
and frequency stability has become more prominent. The power
system is always subjected to external disturbances during
operation, which can lead to power imbalance, transient
frequency response, and significant spatiotemporal distribution
characteristics. When the electrical distance between new energy
and synchronous machines is relatively close, the voltage support
characteristics of the power grid are strong, and new energy and
reactive power compensation overvoltage do not play a dominant
role. The problem of new energy machine terminal voltage
exceeding the limit caused by the power angle swing
characteristics of synchronous machines is more serious. At the
same time, after a power grid failure, the power grid experiences
continuous DC commutation failure or locking, resulting in a
change in the grid structure and a shift in power flow. After the
transfer of power flow in the power grid, it may cause long-term
overload or transient low voltage and high current of the AC line,
causing the AC line to be cut off; It may also cause local low voltage
or local high voltage, and new energy units may be disconnected due
to high voltage crossing failure or low voltage crossing failure.

With the large-scale integration of new energy into the power system,
cascading faults in power systems containing new energy exhibit
characteristics different than those of traditional power systems. On
the one hand, new energy equipment has characteristics such as strong
randomness and uncertainty, and lines with new energy equipment are
more susceptible to faults in other lines, whichmay lead to chain failures.
On the other hand, the different positions of new energy units in the
power grid can cause changes in the importance of the line, making
searching for chain failures and accident chains more complex. In
summary, this article proposes a cascading failure prediction index
that integrates the importance and operational status of new energy
power system lines and designs a fault chain search strategy.

3 Cascading failure accident chain
prediction

3.1 Establishment of the initial fault set

The identification of the initial fault link is the primary step in
establishing a cascading failure accident chain model. For the new
energy power system, an initial fault indicator is established based on

FIGURE 1
Dynamic logic diagram of a system power outage and accident chain.
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the distance between the line and the new energy unit and the impact
index of power flow transfer entropy. By selecting a branch that is
prone to subsequent faults to be the initial fault branch, the speed
and accuracy of initial fault identification can be improved.

a) Transmission capacity of line i. Each line in the power grid has
different structural importance, with lines closer to new energy units
having higher structural importance. Line faults with higher
structural importance are more likely to lead to cascading faults.
To measure the importance of transmission lines in the topology of
new energy power systems, this article defines the transmission
capacity of power and load nodes on (s, t) branch i as:

ki∈ s,t( ) � CiL min

ai∈ s,t( )L line
max

(3)

In the formula, Ci is the maximum transmission capacity including
branch i; Lmin is the shortest transmission distance between branch i
and new energy units; and L line

max is the length of the line with the longest
transmission distance in the power grid. When there is a change in
power between the power source and the load node pair (s, t), the power
change ai∈(s,t) including branch i reflects the contribution of branch i to
the power load node pair, which is:

amn∈ s,t( ) � Xms −Xns −Xmt +Xnt

xmn
(4)

The formula: Xms represents the values of the mth row and sth
column in the reactance matrix of the power network nodes, and
XnsXmt, Xnt are defined similarly; xmn is the reactance value of the
branch Lmn in the power network.

b) Entropy impact index of power flow transfer based on the distance
between the line and new energy units. To measure the importance of
branches in the operation status of the power system, this article combines
the concept of power flow transfer entropy in reference (Cao et al., 2021)
to determine the impact of branch disconnection on other branches of the
system. The concept of power flow transfer entropy is as follows: first,
when branch i is disconnected, branch k shares the power flow increment
of branch i transfer. Then, the impact rate of branch i on branch k’s power
flow transfer is defined. Then, the power flow transfer entropy of the
branch is defined based on the power flow distribution entropy of the
node. Finally, the vulnerability index of branch consequences is defined
based on the power flow transfer entropy. When the power flow impact
rate of each branch is equal, the power flow transfer entropy reaches the
maximum value, the possibility of each branch crossing the limit is the
lowest, and the node disturbance impact that the system bears is the
smallest; When the impact of the power flow is all concentrated on a
single line, the minimum entropy of the power flow transfer is 0, which is
most likely to cause branch out of limit faults. The relevant formulas are
defined as follows:

If branch i is disconnected, the impact value ηki on the
transmission margin of branch k is:

ηKi �
Δp

Ki

p
Kmax

− p
ko

� p
Ki
− p

Ko

p
kmax

− p
Ko

(5)

In the formula, Pk,max is the maximum active power that branch
k can bear; Δ Pki is the amount of active power transfer shared by
branch k after branch i is disconnected; Pk0 is the initial active power
of branch k; and Pki is the active power borne by branch k after
branch i is disconnected.

The ratio dk of the transmission margin influence value of
branch k to the sum of the transmission margin influence values
of all branches is defined as:

dk � ηki
∑
k∈N

ηki
(6)

In the equation, N represents the set of all other branches in the
system except for branch i.

Therefore, considering the influence of the transmission margin
on branch i, the power flow transfer entropy Hi is:

Hi� − ∑
k∈N

dk ln dk (7)

Based on the power flow transfer entropy Hi of the branch
transmission margin, combined with the initial power flow Pi0 of
branch i, the shortest transmission distance Lmin between branch i
and new energy units, and the length L line

max of the longest
transmission distance in the power grid, the impact index of
power flow transfer entropy Ci based on the distance between
branch i and new energy units is defined as:

Ci � Pi0L line
max

HiL min
(8)

According to Equation 8, the greater the initial power flow borne
by branch i is, the closer it is to the new energy unit, and the smaller
the power flow transfer entropy is, the greater the impact of branch
i’s interruption on the system, which is more likely to cause
subsequent system failures.

c) Initial fault indicator. Based on the transmission capacity of the
above line and the impact index of power flow transfer entropy
based on the distance between the line and the new energy unit,
the initial fault index of branch i is defined as:

Ei � Ci × ki∈ s,t( ) (9)
We set an appropriate selection threshold based on the initial

fault indicator, select the branches with larger indicator values to
form the key branch set, and use the key branch set that is prone to
causing subsequent cascading faults as the initial fault branch set.

3.2 Prediction of intermediate links

The higher the penetration rate of new energy in the power grid is,
the stronger the dependence of the power grid on new energy, and the
fluctuation of the output of new energy units leads to uncertainty in the
transmission power of the line. Therefore, the more new energy units
connected to line i, the greater the probability of line i failure. The
intermediate number of lines refers to the number of times the
transmission line passes through the shortest path formed between
all generator buses and load buses in the power grid, which can reflect
the importance of the transmission line in the topological structure of
the power grid. The formula is as follows:

bi �
∑

k≠j∈V
Nkj i( ) 1 + β( )

∑
k≠j∈V

Nkj
(10)
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In the formula, i is the line number,∑
k≠j∈V

Nkj is the number of
shortest paths formed between all generator buses and load buses in
the network, V is the set of nodes in the network, ∑

k≠j∈V
Nkj(i) is

the number of times the transmission line i passes through the
shortest path between all generator buses and load buses in the
network, and β is the ratio of new energy power to the total power of
the grid in the input power of the generator bus.

The load rate γi of line i is defined as:

γi �
Pi

Pi,max

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (11)

In the formula, Pi is the power borne by the line.
By quantifying the above-influencing factors and combining

them with the proportion of new energy equipment, the
intermediate link prediction indicators can be obtained:

Di � ω1γi + ω2bi (12)
In the formula, ω1 and ω2 are the weights of the line correlation

coefficient, and the line dielectric constants are generally taken as
ω1 = 0.5 and ω2 = 0.5.

3.3 Criteria for the end of the accident chain
search

When studying major power outages both domestically and
internationally, we found that the process of major power outages
caused by cascading faults is often accompanied by phenomena such

as power line overload and bus voltage fluctuations. These
phenomena ultimately lead to instability or system disconnection
in the entire power system. After the system is disconnected, the
power balance between various subsystems is disrupted, leading to a
series of voltage and frequency fluctuations. In severe cases, this may
result in the inability of the power flow to converge or lead to large-
scale power outages. In addition, to ensure the continued operation
of various subsystems, it is usually necessary to cut off some
generator sets and loads, but these operational measures may
further expand the power outage range. Notably, even if there is
no significant load loss during system disconnection, the power
network will still fall into a relatively dangerous operating state,
which poses a potential risk of major power outages. Therefore,
system disconnection or nonconvergence of power flow has been
recognized as a criterion for power outage accidents. The process of
generating a chain of failures is shown in Figure 2.

4 Association analysis

We analyze the correlations between multiple lines in the
accident chain set of cascading faults, and the information
contained in the accident chain set is discovered. The correlation
here refers to the frequent occurrence of certain lines in various
development modes of chain failures, which exhibit a relatively close
connection between the front and back in the accident chain and
exhibit certain regularity. Many scholars at home and abroad have
researched this topic and proposed many theories and algorithms

FIGURE 2
Flow chart of accident chain generation.
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for correlation analysis. This article uses the FP-growth algorithm to
explore the correlation in the accident chain.

First, we explain the relevant concepts in correlation analysis:
a) Item or candidate: An item in the database that has a unique

identifier. Assuming the database is composed of m attributes (A,
B,., M), then the first order itemset is {{A}, {B},. . ., {M}}. The second
order term set is formed by pairing elements of the first order term
set, namely, {{A, B}, {A, C}., {A, M},., {B, M},., {L, M}}, and so on.

b) Support: Refers to the percentage of the number of supports
XY corresponding to the antecedents and antecedents of a rule and
the total number of AllSamples recorded.

Support X, Y( ) � P XY( ) � number XY( )
num AllSamples( )

(13)

c) Frequent term: Refers to k-order candidate options that
occur no less than the preset minimum support threshold in the
dataset. At the same time, k-order candidates with occurrences

less than the set minimum support threshold are called
nonfrequent terms.

Then, the following are the detailed steps of the FP growth
algorithm, the FP-Growth algorithm flowchart is shown in Figure 3:

a) Build FP tree: First, the FP-growth algorithm traverses the
dataset once, calculates the frequency of each item, and sorts the
items in descending order of frequency. Subsequently, these sorted
items are used to construct an FP tree. The FP tree is a compact data
structure where each node represents an item, and the number of
occurrences of that item in the dataset is recorded on the node. Each
item and its corresponding frequency form a header table.

b) Build the conditional pattern base: For each item, the FP-
growth algorithm constructs its corresponding conditional pattern
base. The conditional pattern base refers to the collection of all prefix
paths ending with the current item. Each prefix path corresponds to
a frequency, while the other items in the path form a new itemset.

c) Recursive construction of the FP tree: For each item, a new FP
tree is recursively constructed by utilizing its conditional pattern
basis. This process iterates until no more conditional pattern bases
can be constructed.

d) Mining frequent patterns from FP trees: By traversing the FP
tree, all frequent patterns can be discovered. Starting from the root
node of the tree, we gradually construct frequent patterns along
different paths. Each path corresponds to a frequent pattern, and we
can form a complete frequent pattern by adding each item on the
path one by one.

The main advantage of the FP-growth algorithm is that it avoids
the generation process of candidate sets, thereby reducing
computational and storage costs and making it more efficient in
processing large-scale datasets. In addition, this algorithm can fully
utilize the structure of the FP tree to quickly discover frequent
patterns. At the same time, it also supports recursive construction
and mining of conditional pattern bases for frequent patterns.

Finally, the key path mining process is carried out as shown in
Figure 4. First, we identify the initial fault and generate a set of chain
failures based on corresponding indicators. Then, the data of the
accident chain are formatted, and the appropriate minimum support
is selected. A frequent itemmining program based on the FP-growth
algorithm is used to mine the frequent items of the accident chain,
obtaining a set of frequent items that have a strong correlation with
the initial fault. The lines contained in the frequent item set have
strong correlations with the evolution of cascading failures.

5 Example analysis

On the basis of the IEEE39 node system structure, the
synchronous units connected to Bus 30, Bus 31, Bus 33, and Bus
38 were replaced with doubly fed asynchronous wind turbines of the
same generation capacity, and corresponding reactive power
compensation and protection devices were configured for the
wind turbines to obtain the IEEE39 node system containing new
energy equipment, as shown in Figure 5.

The power generation and load capacity of the IEEE39 node
system with renewable energy equipment are shown in Table 1.
Among them, the power generation of the wind turbine connected
to bus 30 is 250MW, the power generation of the wind turbine
connected to bus 31 is 520MW, the power generation of the wind

FIGURE 3
FP-Growth algorithm flowchart.
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turbine connected to bus 33 is 632MW, and the power generation of
the wind turbine connected to bus 38 is 830 MW. The total power
generation of wind turbines is 2232 MW.

Based on the relevant formulas in section 3.1, using Python
software and DIgSILENT software, the values of the transmission
capacity index and the power flow transfer entropy impact index of
the line are first obtained. The values of the above two indicators are
multiplied to obtain the initial fault index value. The initial fault
index value is listed in descending order to obtain the initial fault
index of some lines, as shown in Table 2. The initial fault index
threshold is set to 0.3.

From Table 3, it can be seen that after the disconnection of lines
26–28, the intermediate link prediction index of lines 21–22 is
relatively large, which can be used as the next level of
disconnection line. Continue to calculate the intermediate link
prediction index, and obtain the relevant index values as shown
in Table 4.

According to the indicators mentioned in reference (Li and Jin,
2018) and section 3 of this article, the lines of the IEEE39 node
system containing renewable energy equipment were traversed.
Reference (Li et al., 2020) first starts with DC power flow and
combines matrix theory to propose a method for determining the
power flow transfer area and calculating the power flow transfer
amount based on network topology structure; Then, based on the
above methods, the distribution entropy of power flow transfer and
the sensitivity entropy of load impact were defined, and a
comprehensive evaluation index for key lines was proposed by
combining the two entropy indicators mentioned above; Finally,
this indicator is used to identify key lines in power grid cascading
faults. The chain of cascading faults was screened according to the
same threshold, as shown in Table 5 and Table 6, respectively.

Compare the selected accident chains in Table 5 and Table 6 of
the article, it can be found that under the same threshold setting, the
accident chain search model proposed in this article can identify
more accident chains. One reason is that the model in reference (Li
et al., 2020) sets that the system will undergo splitting after some
lines are disconnected, and the power flow transfer situation after
the above line disconnection is no longer considered. The selection
range of the initial line is small, while the model in this paper only
sets a threshold for the selection of the initial faulty line, resulting in
a larger search range. The second reason is that reference (Li et al.,
2020) mainly considers the impact of network topology changes on
power flow transfer, only proposing relevant indicators for power
flow transfer, without considering the structural importance of the
line itself in the power grid, and without considering the impact of
new energy access on the development of cascading faults. When
searching for fault chains in power grids containing new energy, it is
easy to miss some lines and the obtained fault chains are not
comprehensive enough.

Taking the minimum support = 3, we construct an FP tree
according to the steps described in Section 4, and grow from the
empty set to obtain the FP tree shown in Figure 6. The header
pointer table shown in Figure 5 contains the element items
contained in the dataset and their occurrence times and connects
all similar element items in the FP tree through a curve. A straight
line connecting nodes represents the relationship between a parent
and a child, with the parent on top.

Correlation analysis is performed on the lines in the
IEEE39 node cascading fault chain set containing new energy
equipment using the FP-growth algorithm, as shown in Table 7.

FIGURE 4
The key route excavation process.

FIGURE 5
IEEE39 node system diagram with renewable energy equipment.

TABLE 1 Power generation and load capacity of IEEE 39 node system including
renewable energy equipment.

Index Unit (MW)

Total power generation 6,140

Coal power generation 1,068

Nuclear power generation 1,840

Other energy generation 1,000

Wind turbine power generation 2,232

Total load capacity 6,097.1
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TABLE 2 Sorting table of initial fault indicators of the line.

Line Line transmission capacity indicators Entropy impact index of tidal current transfer Initial fault indicator

L26−28 0.9263 0.9133 0.8460

L16−21 0.7698 0.9867 0.7596

L01−39 0.9685 0.4169 0.4038

L16−24 0.4233 0.8326 0.3524

L03−18 0.4695 0.6587 0.3093

From Table 2, it can be seen that the initial fault index of lines 26–28 is much greater than 0.3, and it can be considered that lines 26–28 are prone to subsequent chain faults. So, based on the

intermediate link indicators, we continue to calculate the relevant indicator values for lines 26–28, as shown in Table 3.

TABLE 3 Index values of other lines after removing the initial faulty line 26–28.

Line Line dielectric index Line load rate Intermediate link prediction indicators

L21−22 0.312 1.023 0.1596

L16−19 0.269 0.864 0.1162

TABLE 4 Index values of other lines after cutting off the line 26–28 and the line 21–22.

Line Line dielectric index Line load rate Intermediate link prediction indicators

L22−23 0.269 1.290 0.1735

L16−24 0.302 1.139 0.1720

From Table 4, it can be seen that after the disconnection of lines 26–28 and 21–22, the indicator values of lines 22–23 are relatively high. Therefore, lines 22–23 are selected as the next level of

disconnection line, and the fault chain search continues until the total number of disconnected lines reaches the specified number or the power grid flow does not converge.

TABLE 5 Accident chains screened based on literature (Li and Jin, 2018) indicators.

Number Number

1 23–24, 21–22, 02–03, 26–27, DFIG 08, 08–09, 01–39 6 05–06, 06–07, 10–13, 02–03, 21–22, 14–15, DFIG 10

2 02–25, 21–22, 22–23, DFIG 07 7 07–08, 05–06, 04–14, 08–09, 03–04, 01–02

3 28–29, 16–19, 21–22, 16–24, 26–29, 02–03 8 01–39, 21–22, 22–23

4 01–02, 21–22, DFIG 05,22–23 9 04–14, 05–06, 06–07, 15–16, 16–19, DFIG 10,02–25

5 08–09, 21–22, 22–23, 02–03, 17–27, DFIG 07, 16–19

TABLE 6 The accident chain selected based on the indicators in this article.

Number Number

1 26–28, 21–22, 22–23, 16–19, DFIG 05, 05–06, 06–07, DFIG 07, DFIG
10, DFIG 08

7 17–27, 21–22, 23–24, DFIG 07, 16–19, DFIG 05, 02–03, 02–25,
DFIG 08

2 16–21, 23–24, DFIG 07 8 17–27, 21–22, 23–24, DFIG 07, 02–03, 10–13, DFIG 10, DFIG 08,
26–28

3 01–39, 21–22, 22–23, 09–39, 16–19, DFIG 05, DFIG 07, DFIG 10, DFIG
08, 04–05

9 15–16, 21–22, 22–23, 16–19, DFIG 05, 05–06, 06–07, DFIG 07, DFIG
10, DFIG 08

4 16–24, 21–22, DFIG 07 10 16–19, DFIG 05, 02–03, 21–22, 26–27, 23–24, 01–39

5 03–18, 21–22, 22–23, 16–19, DFIG 05, 13–14, 04–05, DFIG 07, DFIG
08, DFIG 10

11 05–06, 21–22, 16–24, DFIG 07, 10–13, 10–11, 16–19, DFIG 05, DFIG
10, DFIG 08

6 07–08, 05–06, 13–14, 21–22, 23–24, DFIG 07, DFIG 05, DFIG 08, DFIG
10, 08–09

12 14–15, 21–22, 16–24, DFIG 07, 05–06, 06–07, 04–14, DFIG 08, DFIG
05, DFIG 10
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The correlation analysis results of the accident chain set are obtained
by using the FP tree algorithm to search for frequent itemsets, with a
minimum support of 3 set for frequent itemsets. Firstly, combined
with Figure 6, search for the prefix path of line 2–25. In the figure
above, search for the first 2–25 from left to right. By tracing up to the
root node, you can obtain the first prefix path as {16–19, 17–27}.
Then, search for the second 2–25, and then trace up to the root node
to obtain the second prefix path as {19–33, 16–19, 17–27}. Then,
search for the third 2–25, and then trace up to the root node to
obtain the third prefix path as {19–33, 17–27}, Finally, search for the
fourth 2–25, and then trace back to the root node to obtain the
fourth prefix path as {19–33}.

Then, based on the support of each prefix path in the search line
2–25mentioned above, it can be concluded that the support of prefix
paths {16–19, 17–27} is 1, {19–33, 16–19, 17–27} is 3, {19–33, 17–27}
is 1, and {19–33} is 1. By adding the support of each line in the prefix
paths above, it can be concluded that the support of lines 16–19 is 4,
lines 17–27 are 5, and lines 19–33 are 5. Due to the fact that the
support of these three lines is greater than the minimum support of
3, these three lines can be used as a combination in the third order
frequent term set.

By analyzing the correlated lines in the table, we find that in the
IEEE39 node system, frequent items such as lines 2–30, 6–31, and
19–33 are the outgoing lines of new energy generators. Frequent
items such as lines 17–27, 16–19, 21–22, and three to four are load
supply lines. In the IEEE39 node system, lines 17–27, 16–19, and
19–33 are a set of transmission cross-sections. These lines have a
strong correlation with the evolution of cascading faults in power

systems containing new energy, which can easily lead to large-scale
power outages. Therefore, certain measures should be taken to
ensure the safe and stable operation of these lines.

After calculation and simulation, 30 accident chains were
obtained, and the probability table of closely related lines
appearing in the same accident chain is shown in Table 8. At the
same time, any combination of 7 lines was selected to obtain the
probability of appearing in the same accident chain as shown in
Table 9. From Table 8, it can be seen that the probability of closely
related line combinations appearing in the same accident chain is
higher than 50%, while in Table 9, the probability of any
combination of lines appearing in the same accident chain is
mostly lower than 50%, with only one combination having a
slightly higher probability than 50%. This indicates that during
the occurrence of chain failures, these line combinations have a
higher probability of consecutive failures. By comparing the
calculated line combinations with the line combinations obtained
using the FP Growth algorithm, it can be found that the combination
of tight lines is roughly the same, verifying the correctness and
effectiveness of the FP Growth algorithm.

Calculate the probability of each line appearing in each accident
chain searched in this article, and rank it from high to low to obtain
the probability of some lines appearing as shown in Table 10. The
more times a line appears in the accident chain, the easier it is for
chain faults to spread to the line or cause other line faults, and the
higher the criticality of the line. Lines with a probability of
occurrence higher than 0.65 are designated as critical lines. It can
be seen that the lines in the table are all critical lines, and adding

FIGURE 6
FP-tree structure.

TABLE 7 Accident chain set correlation analysis results of IEEE 39 node system including new energy equipment.

1st order frequent term 2–30, 2–25, 25–37, 1–39, 17–27, 16–19, 6–31, 19–33, 22–35, 21–22, 3–4, 5–6

2nd order frequent term 2–30, 1–39; 17–27, 19–33; 2–25, 3–4; 22–35, 21–22; 17–27, 16–19; 3–4, 5–6

3rd order frequent term 17–27, 16–19, 19–33; 2–25, 3–4, 5–6
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certain protective measures to these lines can reduce the occurrence
of large-scale chain failures.

From Table 11, compared with the results of references (Xu
and Zhi, 2016; Shan et al., 2018), the identification results of this
article have more than half of the same lines, which verifies the
rationality of the fault chain search in this article. Reference
(Shan et al., 2018) first defines the unit entropy comprehensive

load rate by integrating the comprehensive load rate and power
flow entropy of the power grid; Then, based on the HITS
algorithm, the importance index of power grid nodes was
defined, and a line outage consequence evaluation model was
established by combining the unit entropy comprehensive load
rate and the importance index of power grid nodes; Then, the
probability of line breaking due to power flow exceeding the limit
was defined, and a relative probability evaluation model for line
breaking was constructed based on the fault chain of the line
itself; Finally, based on the consequences of line disconnection
and the probability of line disconnection, the fragile line index of
the power grid was defined. Reference (Shan et al., 2018) suggests
that the power flow impact on the line comes from random load
fluctuations, without considering the importance of the line in
terms of the new energy topology structure relative to the entire
network, resulting in the omission of lines 4–14, 4–5, 22–23, and
16–24. These lines can break under N-1 accident conditions.
Reference (Xu and Zhi, 2016) uses the DC power flow method to
quickly estimate the power flow increment and load rate of other

TABLE 8 Probability of closely related line combinations appearing in the accident chain.

Closely related line combinations The probability of appearing on the same accident chain

02–30, 01–39 0.520

17–27, 19–33 0.863

02–25, 03–04 0.905

22–35, 21–22 0.556

17–27, 16–19 0.883

03–04, 05–06 0.895

17–27, 16–19, 19–33 0.503

02–25, 03–04, 05–06 0.556

TABLE 9 Probability of occurrence of any combination of lines in the accident chain.

Any combination of lines The probability of appearing on the same accident chain

25–26, 07–08 0.095

04–05, 28–29 0.135

22–23, 01–02 0.188

02–25, 14–15 0.266

17–18, 05–06 0.505

25–26, 07–08, 03–04 0.036

22–23, 01–02, 10–11 0.163

TABLE 10 Probability of partial lines appearing in the accident chain.

Line Probability

22–23 0.830

16–19 0.789

17–27 0.753

16–24 0.733

19–33 0.652

TABLE 11 Line identification results using different methods.

Method Line identification results

Proposed method 17–27,4–5,22–23,16–24,16–19,19–33,2–25,3–4,5–6,6–11,10–13,23–24,10–11,4–14,4–5

Reference Shan et al., 2018 method 19–33,2–25,3–4,5–6,6–11,10–13,23–24,17–27,16–19,10–11,13–14,26–27,21–22,15–16

Reference Xu and Zhi, (2016) method 23–24,10–11,4–14,2–3,22–23,16–24,17–27,16–17,19–33,2–25,3–4,5–6,6–11,10–13
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lines in the system when the line is disconnected. The weighted
power flow impulse entropy is used to reflect the influence of the
target line on the transfer power flow caused by other line
disconnections, and the weighted power flow distribution
entropy is used to reflect the impact of the target line
disconnection on the load rate distribution of the system line.
By combining weighted power flow impact entropy and weighted
power flow distribution entropy, a comprehensive vulnerability
index for transmission lines is defined to identify vulnerable lines
in power grid fault propagation. Reference (Xu and Zhi, 2016)
focuses on considering the impact of line disconnections on the
power flow transfer process of fault propagation, thus missing
lines 4–5 and 16–19. These line disconnections have a significant
impact on the uniformity of the electrical structure of the power
grid. The identification results of this method indicate that the
importance and operational status indicators of the integrated
new energy power system can be used to search for more
comprehensive cascading failure lines.

6 Conclusion

We propose a cascading failure prediction index based on the
importance and operating status of new energy power system lines,
conduct a fault chain search and analyze the correlation relationship
between cascading failure lines using the FP-growth algorithm. The
prediction indicators for cascading faults include the line
transmission capacity, power flow transfer entropy impact index
based on the distance between the line and new energy units,
structural importance and load rate of the line containing new
energy, and more factors that affect cascading faults. The initial fault
link and intermediate development link of accident chain prediction
are separated, and in the previous part, the initial faults with a low
probability of occurrence are filtered out, accelerating the search
speed of the accident chain. The latter part is based on a risk-first
strategy, which leads the search process toward a higher risk of
cascading failures. The method of line correlation analysis can
calculate the correlation between multiple lines. In the FP-
Growth algorithm, support and the relationship between before
and after are considered to ensure the effective screening of line sets
that are prone to cascading faults and have a strong correlation. By
comparing the simulation results of this article with the results of
other literature, we show that the set of accident chains obtained by
the proposed indicators is more complete. Line correlation analysis
can be used to effectively identify strongly correlated lines in a new
energy power system.
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