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Stacking-ac4C: an
ensemble model using
mixed features for identifying
n4-acetylcytidine in mRNA

Li-Liang Lou1, Wang-Ren Qiu1*, Zi Liu1, Zhao-Chun Xu1,
Xuan Xiao1 and Shun-Fa Huang2*

1Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen, China, 2School of Information
Engineering , Jingdezhen University, Jingdezhen, China
N4-acetylcytidine (ac4C) is a modification of cytidine at the nitrogen-4 position,

playing a significant role in the translation process of mRNA. However, the

precise mechanism and details of how ac4C modifies translated mRNA remain

unclear. Since identifying ac4C sites using conventional experimental methods is

both labor-intensive and time-consuming, there is an urgent need for a method

that can promptly recognize ac4C sites. In this paper, we propose a

comprehensive ensemble learning model, the Stacking-based heterogeneous

integrated ac4C model, engineered explicitly to identify ac4C sites. This

innovative model integrates three distinct feature extraction methodologies:

Kmer, electron-ion interaction pseudo-potential values (PseEIIP), and pseudo-K-

tuple nucleotide composition (PseKNC). The model also incorporates the robust

Cluster Centroids algorithm to enhance its performance in dealing with

imbalanced data and alleviate underfitting issues. Our independent testing

experiments indicate that our proposed model improves the Mcc by 15.61%

and the ROC by 5.97% compared to existing models. To test our model’s

adaptability, we also utilized a balanced dataset assembled by the authors of

iRNA-ac4C. Our model showed an increase in Sn of 4.1%, an increase in Acc of

nearly 1%, and ROC improvement of 0.35% on this balanced dataset. The code

for our model is freely accessible at https://github.com/louliliang/ST-ac4C.git,

allowing users to quickly build their model without dealing with complicated

mathematical equations.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1267755/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1267755/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1267755/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1267755/full
https://github.com/louliliang/ST-ac4C.git
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1267755&domain=pdf&date_stamp=2023-11-29
mailto:qiuone@163.com
mailto:hsf65689@126.com
https://doi.org/10.3389/fimmu.2023.1267755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1267755
https://www.frontiersin.org/journals/immunology


Lou et al. 10.3389/fimmu.2023.1267755
1 Introduction

To date, over 170 modified nucleosides have been found in RNA.

These post-transcriptional modifications play a significant role in

molecular interactions and intermolecular relations. Introducing

subtle structural changes contributes to RNA’s functional diversity

by regulating translation efficiency, mRNA stability, and RNA-

protein interactions – all factors that are vital for cellular growth

and development (1, 2). Ac4C has been linked with various human

diseases, including inflammation, metabolic disorders, autoimmune

diseases, and cancer (3). Identifying and examining ac4C sites are

critical areas in biological and bioinformatics research. In early

studies, the identification of ac4C sites was mainly done through

experiments such as high-performance liquid chromatography

(HPLC) and HPLC-mass Spectrometry. However, as these

experimental methods require substantial time to detect ac4C in

mRNA, there is an urgent need for computer-based methods that can

identify ac4C sites accurately and reliably.

In recent years, four computational methods have been developed

to identify ac4C sites in human mRNA. The first one, PACES, was

developed by Zhao et al. (4). PACES utilizes position-specific

dinucleotide sequence Spectra and K-nucleotide frequencies as

coding methods, with random forest (RF) (5) deployed as a training

model to yield the outcomes. PACES (4) achieved an area under the

characteristic curve and the exact recall curve of 0.874 and 0.485,

respectively. The second approach is an integrated model (XGBoost)

(6, 7) proposed by Alam for predicting ac4C locations. The ROC and

PRC of the XGBoost model are 0.889 and 0.581, respectively.

Subsequently, the third method is Wang’s DeepAc4C (8) model,

which is built based on a convolutional neural network (CNN) (9)

and a hybrid feature that integrates physicochemical patterns and

nucleic acid distribution. The last prediction method is a gradient

boosting decision tree (GBDT) (10, 11) based on Kmer (12) nucleotide

composition, nucleotide chemistry NCP (13), cumulative nucleotide

frequency ANF (14), andminimum redundancymaximum correlation

mRMR (15). The model achieved ROC values of 0.875 and 0.880 on

the training and independent test datasets, respectively. Despite these

models showing commendable performance, considerable scope

remains for enhancing the predictive efficacy of all models, as

mentioned earlier. To improve the performance of ac4C site

identification, we have proposed a novel method based on integrated

learning Stacking (16) called Stacking-ac4C, as shown in Figure 1. This

approach consolidates K nucleotide composition Kmer, electronic

energy PseEIIP (17) based on normalized trinucleotide frequencies

and four nucleotides, along with trinucleotide occurrence frequencies

and six physicochemical indicators PseKNC (18). The ROC of the

proposed model on the cross-validation and independent test datasets

were 0.9540 and 0.9487, respectively, which shows excellent

performance compared to all the predictors, as mentioned earlier.

2 Materials and methods

2.1 Data collection and preprocessing

To develop a valuable and unbiased model, we extracted the

data from PACES (4), available at http://www.rnanut.net/paces/.
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These data were also used for training and testing the models of XG-

ac4C (7) and DeepAc4C (8), initially extracted by Danial Arango

from 2134 genes with positive and negative ac4C sites. All of these

genes were experimentally validated by high-throughput acRIP seq.

This study’s training dataset consists of 1160 positive and 10855

negative samples. The independent testing dataset comprises 469

positive samples and 4343 negative samples. To demonstrate the

model’s portability, the results were validated using a dataset

constructed from the iRNA-ac4C article, which was collected by

Arango et al. (19). Data can be obtained from the website http://lin-

group.cn/server/iRNA-ac4C/. During the experiment, the CD-HIT

(20) tool was used to remove sequence pair similarity larger than

0.8. The training dataset we obtained consists of 2206 positive

samples and 2206 negative samples. The independent testing

dataset consists of 552 positive samples and 552 negative samples,

which are balanced data. Finally, a balanced dataset with a sequence

length of 201bp was obtained. The specific information about the

dataset is shown in Table 1.
2.2 Sample formulation

Once the benchmark dataset has been prepared for the study,

the next important step is formulating the samples and extracting

the best feature set for constructing a robust and superior

computational model. In recent years, various feature encoding

strategies have been used to form biological sequence fragments,

such as PseKNC (17), One-hot (21, 22), physicochemical features,

and word2vec (23–25). This study selected some of the most

common feature encoding approaches , including six

physicochemical feature encoding strategies and the frequency of

occurrence of k-nearest neighbor nucleic acids, to describe RNA

fragments. Below, we elaborate on their respective principles

in detail.

2.2.1 Kmer nucleotide composition
The main idea of Kmer is the frequency of k nucleotides in an

RNA sequence. The RNA sequence R can be transformed into a

vector with 4k dimensions by using the Kmer frequency as follows:

Rk−mer = ½f k−mer
1 , f k−mer

2 ,…, f k−mer
i ,…, f k−mer

4 �T   (1)
TABLE 1 Data source distribution table.

Data
source

subdataset
Number of
Positive
Samples

Number of
Negative
Samples

PACES
(4)

Training 1160 10855

Testing 469 4343

Total 1629 15198

iRNA-
ac4C

(10, 11)

Training 2206 2206

Testing 552 552

Total 2758 2758
frontiersin.org

http://www.rnanut.net/paces/
http://lin-group.cn/server/iRNA-ac4C/
http://lin-group.cn/server/iRNA-ac4C/
https://doi.org/10.3389/fimmu.2023.1267755
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lou et al. 10.3389/fimmu.2023.1267755
Where f k−mer
i is the normalized frequency of occurrence of the

ith Kmer nucleotide in the sample sequence, and T denotes the

transposition of the matrix. f k−mer
i can be expressed as:

f k−mer
i =

N(t)
L − K − 1

  (2)

where N(t) is the number of Kmer type t in the RNA

sequence R.

2.2.2 PseKNC
The pseudo-k-tuple composition PseKNC is similar to

SCPseDNC (26) and SCPseTNC (27), while PseKNC contains the

frequency of trinucleotide occurrences and fusion information of

six physicochemical indicators. The PseKNC contains a k-tuple

nucleotide composition, which can be defined as:

D = ½d1, d2,…d4k , d4k+1 ,⋯, d4k+l �T (3)

wqm−4k

o4k

i=1
fi+wol

j=1
qj
, (4k ≤ m ≤ 4k + l)

fm

o4k

i=1
fi+wol

j=1
qj
, (1 ≤ m ≤ 4)

8>><
>>:

(4)

where l is the number of total count levels (or hierarchies) of

correlations along the nucleotide sequence; fm   (u = 1, 2,…, 4k) is

the frequency of nucleotides o4k
i=1fi = 1 , w is the factor that qj

defined as:

qj =
1

L − j − 1o
L−j−1
i=1 q(RiRi+1,Ri+jRi+j+1), (j = 1, 2,…l  ;   l

< L)  (5)

Where q(RiRi+1s,  Ri+jRi+j+1) can be defined as:

q(RiRi+1,Ri+jRi+j+1) =
1
mo

m
v=1½Pv(RiRi+1) − Pv(Ri+jRi+j+1)�2 (6)

m is the number of physicochemical indices, i.e., six indices

(“rise”, “roll”, “translate”, “slide”, “slide “tilt”, “twist”) are set as

RNA sequences, and Pv(RiRi+1) is the value of the corresponding

physicochemical index (v = 1, 2,…,m). The physicochemical index

of the nucleotid (RiRi+1) is at position i. Pv(Rj+jRi+j+1) indicates the

corresponding value of the nucleotide (Rj+j  Ri+j+1) at position i + j.

2.2.3 PseEIIP
The electron-ion interaction pseudo-potential (EIIP) values for

nucleotides A, G, C, and T are as follows: A (0.1260), C (0.1340),
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G (0.806), and T (0.1335) (28). The EIIP values for the nucleotides

A, T, G, and C are denoted as EIIPA, EIIPT, EIIPG, and EIIPC,

respectively. The average EIIP values of the three nucleotides in

each sample were used to construct the eigenvectors, and the

formula can be expressed as:

V = ½EIIPAAA · fAAA, EIIPAAC · fAAC ,⋯, EIIPTTT · fTTT �  (7)

where fxyz denotes the normalized frequency of the i-th

trinucleotide, and EIIPxyz = EIIPx + EIIPy + EIIPZ denotes the

EIIP value of a trinucleotide and X, Y, Z ∈ ½A,C, G, T�.The
dimensionality of the vector representation is 64.
2.3 Feature fusion

Three feature codes, Kmer (12), PseEIIP (17), and PseKNC (17),

were combined to describe the ac4C locus samples, 48-D, 84-D, and

64-D feature vectors were obtained, respectively. These feature

vectors describe the adjacent positional correlation information of

the sequence and enhance the extraction of sequence information

by utilizing the physical and chemical properties of nucleotides. The

hybrid features are obtained by fusing these features to reach 196-D.

To investigate what feature fusion would arrive at the optimal

training results, we compare the four combinations of PseKNC,

Kmer, PseKNC+PseEIIP, and Kmer+PseKNC+ PseEIIPPSEEIIP

encoded in the Stacking model validated by 10-fold cross-

validation and measured by Sn, Sp, Acc, Mcc, ROC, and PRC, as

shown in Table 2. Where the evaluation metrics (Acc, Mcc, ROC,

PRC) derived from training the Stacking algorithm model with the

coding approach (Kmer+PseKNC+PSEEIIP) in cross-validation are

higher than the mean values of the evaluation metrics derived from

training with the previous four coding approaches by 5.135%,

3.865%, 3.62%, and 4.575%. This may be because multiple feature

sets can utilize the advantage of one of the local features to

compensate for the disadvantage of another local feature due to

compensating for the disadvantage of the other local feature, so that

the individual local features can be fused more effectively, thus,

significantly enhancing the robustness of multiple feature sets.
2.4 Stacking classification algorithm

A stacking model is not, strictly speaking, an algorithm but a

strategy for model integration. As shown in Figure 2, the Stacking

integration algorithm can be understood as a two-layer integration,
TABLE 2 Comparison of cross-validation performance between Stacking algorithms trained with different feature combinations.

Feature Sn Sp Acc Mcc ROC PRC

PseKNC 0.8455 0.7944 0.8188 0.6395 0.9071 0.8985

Kmer 0.8783 0.8280 0.8532 0.7062 0.9258 0.9112

PseEIIP 0.8616 0.8220 0.8410 0.6826 0.9220 0.9143

PseKNC+PseEIIP 0.8642 0.8049 0.8340 0.6692 0.9167 0.9066

Kmer+PseKNC+PseEIIP 0.8922 0.8840 0.8881 0.7749 0.9541 0.9534
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where the first layer contains several base classifiers, also called base

classifiers, which provide the predicted results (meta-features) to

the second layer. In contrast, the second layer classifier is a logistic

regression, which takes the results of the first layer classifiers as

features to fit the predicted results.

The base classifiers of Stacking are usually obtained by training

different learning algorithms. Stacking can also be considered a

particular and specific combination strategy, typical of learning

methods (16). In the Stacking training phase, the data used to train
Frontiers in Immunology 04
one layer of classifiers are also used to generate data for the second

layer of classifiers, which runs the risk of overfitting. Thus, we used

cross-validation to train the data and reduce this risk.
2.5 Imbalance data processing

The dataset of the PACES article is an unbalanced dataset with a

ratio of positive and negative samples of 1 to 10, which results in the
Training data

(x1 , y1)
(x2 , y2)

…
(xn , yn)

Base
Learner 1

Base
Learner 2

Base
Learnern

…

predicted data
(x,y)

…

Meta
learner

Forecast
results

Testing data
…

FIGURE 2

Stacking algorithm logic structure diagram.
FIGURE 1

The scheme diagram for establishing Stacking-ac4C.
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amount of information from the positive samples not being able to

counteract the amount of information from the negative samples

during the training of the Stacking-ac4C model, leading to a large

number of misclassifications of the positive samples when the

model is doing independent testing. Therefore, an algorithm is

needed to reduce the imbalance between the number of positive and

negative samples. Furthermore, data resampling is the most

representative method to classify unbalanced data. In this study,

we experimented with the two resampling widely adopted

techniques: oversampling and undersampling (29). Due to the

large number of negative samples of ac4C data with 415

nucleotide sequences in length, the use of the oversampling

method is likely to lead to overfitting of the model, so we chose

the cluster center method among the undersampling methods. This

method first clusters the majority class samples using the K-means

clustering algorithm and then reduces the number of majority class

samples using the center of mass of each cluster to represent the

clusters. Table 3 compares the number of positive and negative

samples before and after processing by the clustering centroid

algorithm, and it can be clearly seen that after processing using

the clustering centroid algorithm, the number of negative samples

and the number of positive samples in the training set and test set

are reduced to the same level, which indicates that the clustering

centroid algorithm significantly reduces the number of negative

samples of ac4C nucleotides.
2.6 Measures to prevent overfitting

To prevent the overfitting problem of the model, we used two

measures. First, we used Stacking integrated learning, which is a

method that combines the prediction results of multiple

heterogeneous models to greatly reduce the variance of the model

and avoid overfitting. Second, we added L2 regularization to the

second layer of the LR model of the Stacking-ac4C model. Through

L2 regularization, a “regular term” is added after the loss function to

prevent overfitting of the model. This effectively prevents the model

from assigning too much weight to any feature, thus helping to

avoid overfitting (30).
Frontiers in Immunology 05
2.7 Metrics formulation

To fully evaluate the performance of the model, 10-fold cross-

validation and independent tests were used to evaluate the

performance of the proposed model. In addition, the six metrics

for evaluating the performance are specificity (Sp), sensitivity (Sn)

(31, 32), Accuracy (ACC) (31, 32), correlation coefficient (MCC),

the area under the receiver operating characteristic curve (ROC)

(33, 34), and Precision-Recall Curve (PRC) (35–37), defined as

follows:

Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+FN
TP+FN+FP+TN

Mcc =
TP*TN−FP*FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP+FN)*(TN+FN)*(TP+FP)*(TN+FP)
p

 

8>>>>>><
>>>>>>:

(8)

TP, FN, TN, and FP denote true positive, false positive, true

negative, and false negative, respectively. Sn and Sp denote model

correctness, Acc is used to measure the Accuracy between ac4C and

non-ac4C sequences; Mcc is a metric commonly used to evaluate

the classification performance of unbalanced data. In addition,

since the data is imbalanced with a ratio of 1:10, another visual

way to compare the current models is to compare the working

characteristic ROC curves. The area under the ROC curve is also an

important metric for assessing model performance. The higher the

ROC, the better the performance.
3 Results

3.1 Classifiers combination

Models such as logistic regression (38), random forest (39),

KNN (40), SVM (41), and neural networks have been experimented

with and illustrated in paper XG-ac4C, paper iRNA-ac4C, and

paper DeepAc4C; however, the results obtained using these models

alone are not satisfactory; therefore, it is necessary to combine these

models using a stacking approach. In Stacking Integration, selecting

the optimal combination of base classifiers is an effective integrative

learning strategy to improve the accuracy and robustness of the

models. In this study, we used five standard machine learning

algorithms as base classifiers, including logistic regression

(Logistic), support vector machine (SVM), random forest (RF), k-

nearest neighbor (KNN), and multilayer perceptron (MLP) (42)

algorithms. To elucidate the learning advantage of the present

model, we first evaluate the prediction performance of the base

model on human AC4C locus data measured with 10-fold cross-

validation and metrics mentioned in 3.5. Their optimal parameters

are determined by a Bayesian net parameter learning method

during the 10-fold cross-validation. This process can be

implemented in Python using BaysSearchCV (43, 44), which tries

all combinations of parameter values provided by the user and

selects the best values from them. We attempted various parameter

settings using the BaysSearchCV method and ultimately

determined the optimal parameters. The optimal parameters for
TABLE 3 PACES dataset before and after imbalance treatment of the
number of positive and negative samples in the dataset.

Whether
or not

imbalance
treatment

is
performed

subdataset
Number of
Positive
Samples

Number of
Negative
Samples

no Training 1160 10855

Testing 469 4343

Total 1629 15198

yes Training 1148 1148

Testing 467 466

Total 1615 1614
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these classifiers are explained in Table 4. Subsequently, we selected

five different single classifiers as the base classifier and then

generated six combinations of the base classifiers.

We built an integrated model stacking to integrate all base models

to get better results. The base and combinedmodels are evaluated using

independent test data. As shown in Table 5, the average Acc (0.8574) of

the Stacking Integration Classifier model is improved by 7.22%

compared to the average Acc (0.7852) of the Single Classifier model,

which indicates that the Stacking Classifier, has better accuracy than

the single classifier. The Stacking Integration Classifier model achieves

an average Mcc and an average ROC of (0.71625) and (0.9289),

increased by 13.18% and 5.87% more than the Single Classifier

model, respectively, which indicates that the Stacking Integration

Classifier model is more suitable for handling unbalanced data. The

Stacking integrated model obtained better performance than the Single

models, indicating that the integration model strategy improved the

performance of the models, which may be because the Stacking

Integration Classifier model uses different types of models for

training, thus fusing the strengths of different models and improving

the model’s generalization ability.
3.2 Sequence composition analysis

To investigate the distribution and preference of nucleotides of

ac4C, we used the online tool Weblogo (45, 46) to mine the

conserved motifs of ac4C sequences. Figures 3 and 4 show the

conserved motifs of the ac4C sequence and the distribution and

preference of ac4C nucleotides. Figure 4 is a highly enriched motif

(CXX) in the ac4C-containing sequence, similar to the experimental

results of Arango et al. (19). They utilize transcriptome-wide

approaches to investigate ac4C localization and function in

mRNA. They find that cytidine-containing mRNA codons are

enriched in acetylated transcripts compared to other non-

acetylated transcripts, which can enhance mRNA translation.
3.3 Stacking-ac4c model

The use of multiple heterogeneous models under appropriate

integration strategies can achieve complementarity of models under
Frontiers in Immunology 06
training data compared to integration within a single model, thus

significantly improving the reliability and efficiency of the model. In

addition, machine learning models such as Logistic, KNN, SVM,

RF, and MLP have been used in many bioinformatics fields and

have made significant progress. Therefore, in the current study, a

heterogeneous inheritance model stacking was used, 10 models

were trained, and the simple averaging method was considered as

the final result (Table 6).

The Stacking-ac4C model combined Kmer, PseEIIP, and PseKNC

as the input of the model, as shown in Figure 5. The base model of the

stacking model has SVM, Logistic, KNN, RF, and MLP composition,

and the two-layer model meta-learner is LR after the training is

completed; the model was validated. Table 6 shows the Acc values of

the model training results set and the model test results set’s Acc, Mcc,

and ROC values. For the 10 unbalanced training datasets, the

maximum Acc (0.9087) was obtained on Cycle 3 and Cycle 4, and

the minimum Acc (0.8435) on Cycle 6. The maximum Acc (0.8862)

was obtained on Cycle 8 and the minimumAcc (0.8544) on Cycle 9 for

the independent test values. The relatively small variance of the training

set and the independent test values indicate that the model is stable.
3.4 Comparison with published models

In this section, we will compare the proposed model with some

existing ac4C site prediction models, namely PACES, XG-ac4C, and

DeepAc4C. To validate the robustness and superiority of the

proposed Stacking-ac4C, the three existing methods and our

method were performed on the independent data set. As shown

in Table 7, DeepAc4C shows a 7.53% improvement in ROC and a

15.61% improvement in Mcc, indicating that the Stacking-ac4C

model has better imbalance data handling capability. Compared to

XG-ac4C, the Stacking-ac4C model has an increase in ROC of

5.97% (Table 7), indicating that Stacking-ac4C has excellent

stability and generalization ability. The low Sn and high Sp of

PACES and XG-ac4C models may be due to the fact that the dataset

used extracted specific motif sequences and ignored positive

samples that did not match the feature. In addition, the reason

for the lower Acc and Sp of DeepAc4C compared to XG-ac4C may

be that the DeepAc4C model was trained with balanced data, but

the test data was 1:10 unbalanced data.
3.5 Comparison of results in the
second data

To validate the superior generalization ability of our tissue-Specific

model compared to existing tools, a dataset was constructed for testing

iRNA-ac4C. The ratio of positive to negative samples in this dataset is

1:1. These datasets are available from http://lin-group.cn/server/iRNA-

ac4C/ (10). We performed independent tests on the four existing

methods along with Stacking-ac4c, and the results of the final

independent tests are listed in Table 8. The corresponding ROC

curves are shown in Figure 6C. All models showed relatively high

results in Sp but relatively low results in Sn, especially the first three

models, which may be due to training on a highly unbalanced dataset,
TABLE 4 The optimal parameter settings for the Stacking-ac4c
base model.

Base
model

Best setting

LR random_state=30, max_iter=1100

SVM C= 1.6134, kernel=‘rbf’, degree=0.2651,tol=0.078

KNN n_neighbors=20, leaf_size=17

RF
max_depth=10, min_samples_Split=10,
min_samples_leaf=1, random_state=30

MLP
activation=‘relu’, alpha=1e-05, batch_size=37, beta_1 = 0.9,
beta_2 = 0.999, epsilon=1e-08, hidden_layer_sizes=(11),

learning_rate_init=0.021, max_iter=8532, momentum=0.58
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where two models learned more information from negative samples

than from positive samples. In addition, compared with iRNA-ac4C,

the Sn of Stacking-ac4C increased by 4.1%, which indicates the high

sensitivity of the model; the Acc increased by nearly 1%, which

indicates a more Accurate model; and the ROC increased by 0.49%,

which indicates the superior stability and generalization ability of the

Stacking-ac4C model. Meanwhile, the Stacking ac4C model is used in

the dataset http://www.rnanut.net/paces/ and datasets http://lin-

group.cn/server/iRNA-ac4C/. The above results are superior to other

models, indicating that this model has good generalization ability.

To further evaluate the effectiveness of the Stacking

architecture, we compared Stacking with five popular traditional
Frontiers in Immunology 07
machine learning algorithms, including logistic regression (LR), k-

nearest neighbor (KNN), support vector machine (SVM), random

forest (RF), and multilayer perceptron (MLP) algorithms. For a fair

comparison, the models were trained using the dataset constructed

from the iRNA-ac4C article and evaluated using an independent

test dataset. Figures 6A, B show the Acc and Mcc of five popular

traditional machine learning algorithms, and Figure 6C shows the

ROC of five popular traditional machine learning algorithms. This

shows that Stacking-ac4C achieves the best scores on Acc, Mcc, and

ROC, indicating that compared to traditional classifiers, the

proposed model outperforms the ac4C recognition of

traditional classifiers.
FIGURE 3

Nucleotide positive sample sequence diagram.
TABLE 5 Independent test performance comparison between different combinations of base classifiers on unbalanced datasets.

Classification model
Base-Classifier
Combination

Sn Sp Acc Mcc ROC PRC

Single
classifier

(1) LR 0.8148 0.8051 0.8148 0.6297 0.8652 0.8374

(2) Knn 0.4347 0.9315 0.6831 0.4219 0.8419 0.8115

(3) SVM 0.8244 0.7473 0.7859 0.5734 0.8438 0.8092

(4) RF 0.8672 0.8544 0.8608 0.7217 0.9295 0.9307

(5) MLP 0.6788 0.8844 0.7816 0.5755 0.8706 0.8532

Stacking Integration Classifier

(1)+(2)+(3)+(4) 0.8505 0.8737 0.8621 0.7303 0.9303 0.9368

(1)+(2)+(3)+(5) 0.7388 0.8694 0.8041 0.6134 0.8766 0.8514

(1)+(2)+(4)+(5) 0.8480 0.8801 0.8640 0.7284 0.9400 0.9383

(1)+(3)+(4)+(5) 0.8501 0.8822 0.8662 0.7327 0.9410 0.9373

(2)+(3)+(4)+(5) 0.8501 0.8908 0.8704 0.7401 0.9371 0.9303

All 0.8501 0.9015 0.8758 0.7526 0.9487 0.9503
frontie
Bold values indicate the best results.
FIGURE 4

Nucleotide negative sample sequence diagram.
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4 Summary

Four models were built to identify the ac4C locus in human

mRNA. However, there is still room to improve the performance of

these predictors. In this study, a new predictor, Stacking-ac4C, is
Frontiers in Immunology 08
developed, which utilizes three coding methods (i.e., Kmer,

PseKNC, and PseEIIP) and uses the Stacking-based algorithm in

the classification method to identify ac4C sites. In addition, the

results tested in an independent test set of PACES article data

showed that Stacking-ac4C outperformed other existing tools.
TABLE 6 Performance of the ten models trained on the unbalanced dataset.

Cycle index
Validation results Independent test results

Acc Mcc ROC PRC Acc Mcc ROC PRC

1 0.9000 0.8008 0.9681 0.9702 0.8771 0.7548 0.9488 0.9624

2 0.8957 0.7910 0.9520 0.9558 0.8676 0.7153 0.9392 0.9511

3 0.9087 0.8157 0.9748 0.9708 0.8831 0.7767 0.9583 0.9688

4 0.9087 0.8175 0.9656 0.9622 0.8887 0.7797 0.9553 0.9584

5 0.9000 0.7994 0.9564 0.9605 0.8608 0.7486 0.9523 0.9542

6 0.8435 0.6869 0.9373 0.9374 0.8830 0.7464 0.9492 0.9396

7 0.8734 0.7474 0.9498 0.9353 0.8751 0.7402 0.9509 0.9323

8 0.8777 0.753 0.9483 0.9571 0.8862 0.7524 0.9472 0.9591

9 0.8777 0.751 0.9425 0.9288 0.8544 0.7517 0.9389 0.9243

10 0.8952 0.7866 0.9463 0.9556 0.8821 0.7603 0.9465 0.9501

Avg 0.8881 0.7749 0.9541 0.9534 0.8758 0.7526 0.9487 0.9503
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Predictor 1

Predictor 2
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FIGURE 5

Framework diagram of Stacking ac4C stacked ensemble classifier.
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Similarly, the testing results in an independent test set of iRNA-

ac4C article data showed that Stacking-ac4C also outperformed

other existing tools. The benchmark test dataset and source code

can be downloaded from https://github.com/louliliang/ST-ac4C.git.

However, the proposed model still has some shortcomings. First,

Stacking integrated learning, despite improving the sensitivity of the

model in predicting real ac4C loci, lacks the application of a deep

learning model on ac4C loci compared to DeepAc4C. Secondly,

although the model achieved good results on both PACES and

iRNA-ac4C data, the accuracy of the model in the PACES dataset

appeared to be insufficient compared to the XG-ac4C model. In

addition, a comparison of Tables 7 and 8 shows that the model is

suitable for dealing with unbalanced datasets specific to motifs, and

the enhancement effect on balanced baseline datasets is not great. In

future work, we will further experiment with other approaches to

enable our model to outperform existing predictors. In conclusion,

Stacking-ac4C is an effective tool for identifying ac4C sites in

mRNA and contributes to our functional understanding of ac4C

in RNA.
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FIGURE 6

Independent test results on the balanced dataset of the basic machine learning model.
TABLE 8 Results of independent tests of published models on balanced data sets.

Tools Sn Sp Acc Mcc ROC

PACES 0.0598 1.0000 0.5299 0.1760 \

XG-ac4C 0.3587 0.8243 0.5915 0.2070 \

DeepAc4C 0.1007 0.9710 0.5362 0.1470 0.8030

iRNA-ac4C 0.7670 0.8291 0.7981 0.5970 0.8800

Stacking-ac4C 0.8080 0.8080 0.8080 0.6159 0.8835
frontie
Bold values indicate the best results.
TABLE 7 Results of independent tests of published models on unbalanced data sets.

Tools Sn Sp Acc Mcc ROC PRC

PACES 0.1513 0.8920 0.8835 0.2763 0.8741 0.4852

XG-ac4C 0.5824 0.9439 0.9045 0.4918 0.8890 0.5815

DeepAc4C 0.8222 0.7734 0.7979 0.5965 0.8734 0.8535

Stacking-ac4C 0.8501 0.9015 0.8758 0.7526 0.9487 0.9503
Bold values indicate the best results.
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