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Numerous factors influence the acoustic characteristics of seafloor sediments,

necessitating a comprehensive study that combines theoretical analysis,

laboratory measurements and in situ measurements to support acoustic

prediction and inversion. In this study, a porosity-based effective density fluid

model (P-EDFM) is established to analyze the variation of acoustic properties

with the porosity of seafloor sediments. On the biases of P-EDFM, the attribute of

measured sound velocity and acoustic attenuation coefficient of seafloor

sediment in Series 9B of the SAX99 was well interpreted within the frequency

range of 25-100 kHz. The in situ measured sound velocity ratio was well

predicated by the P-EDFM in the East China Sea and Yellow Sea. It reveals that

the in situ sound velocity ratio decreases with increasing bulk porosity and with

decreasing bulk density. The scattering and differences in the acoustic

attenuation coefficient measured in situ in seafloor sediments are found to be

greater than those observed for sound velocity. After considering the influence

of temperature in the P-EDFM, the prediction of in situ sound velocity aligns well

with themeasured dataset. While, the acoustic attenuation coefficient exhibits an

inflection point, increasing initially and then decreasing with changes in porosity,

similar to the observed pattern in Hamilton’s observation and estimation. By

incorporating temperature and frequency influences, the in situ measurements

of sound velocity of seafloor sediments are corrected into laboratory sound

velocities by using the P-EDFM. The result reveals the sediment samples’

sampling and transmitting process has a much greater impact on the sound

velocity of sandy sediment in the East China Sea compared to muddy sediment.

Overall, P-EDFM can predict the in situ sound velocity and sound attenuation

coefficient under different temperatures and frequencies, with a lower prediction

error for sound velocity compared to sound attenuation coefficient.
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1 Introduction

The sound velocity and acoustic attenuation coefficient of

seafloor sediments are crucial parameters in the fields of

underwater acoustics, geo-acoustics, and sedimentary acoustics

(Kim et al., 2018a; Buckingham, 2020; Yang and Jackson, 2020).

They determine wave speed, acoustic impedance, path and

distance of sound wave propagation. They are closely related to

the sediment physical and mechanical properties, as well as to the

measurement methods and environmental conditions. Currently,

three primary methods are employed for obtaining the acoustic

properties of seafloor sediments: geoacoustic inversion, laboratory

acoustic measurement, and in situ acoustic measurement (Tao

et al., 2006; Jackson and Richardson, 2007; Liu et al., 2019; Zou

et al., 2022). Due to these methods differing in terms of

measurement technology, frequency and environmental

conditions, challenges arise on how to effectively apply different

methods, diverse measurement datasets, and various fitting

empirical equations from different sea areas. As in situ acoustic

measurement technology improves, a series of in situ

measurements were conducted within the frequency range of 1

kHz to 50 kHz (Kim et al., 2018b; Megan et al., 2019; Li et al.,

2020; Wang et al., 2020; Wang et al., 2023) to establish a

connection between high-frequency laboratory acoustic

measurements ranging from 30 kHz to 1 MHz (Henfer et al.,

2009; Zimmer et al., 2010; Wang et al., 2018b; Tang et al., 2019)

and low-frequency geoacoustic inversion ranging from 0.1 Hz to 1

kHz (Ballard et al., 2018; Li et al., 2019; Belcourt et al., 2020). In

situ acoustic measurement causes significantly less disturbance to

seafloor sediments than laboratory acoustic measurement but with

the complex process and long operation period. Furthermore, to

obtain the physical characteristics of seafloor sediment and

acoustic characteristics across a wider frequency range, it is

necessary to collect sediment samples and transport them to the

laboratory for measurement and analysis (Buckingham and

Richardson, 2002; Kim et al., 2018c), conduct controlled

environmental state measurement research (Kan et al., 2019;

Zhou et al., 2019; Zou et al., 2021), and perform acoustic

characteristic measurements at various frequencies (Zimmer

et al., 2010; Yu et al., 2017; Wang et al., 2018b). The

aforementioned research emphasizes the significance of factors

such as physical properties of seafloor sediments, measurement

frequency and measurement environmental state in understanding

the differences in acoustic properties of seafloor sediments. These

factors play a crucial role in comparing, applying, and enhancing

the three marine acoustic detection methods.

Considering the influence of numerous factors on the acoustic

characteristics of seafloor sediments, there is a need to minimize the

impact of measurement methods by promoting in situ acoustic

measurements. In situ measurements are highly valuable, but they

still have limitations when it comes to complex marine

environments, deep-layered detection and diverse wave

propagation states. Laboratory measurements, on the other hand,

are widely employed to conduct simultaneous physical and acoustic

measurements (Hou et al., 2015; Wang et al., 2023), especially when

precise control over real seafloor sediment samples is required.
Frontiers in Marine Science 02
However, even with state-controlled measurement techniques,

laboratory measurements alone do not provide a complete

understanding of the different acoustic characteristics of seafloor

sediments. By combining theoretical model calculations and

analysis with limited in situ acoustic measurements and

laboratory acoustic measurements, it becomes possible to obtain

the general regularity and the specific differences of acoustic

characteristics of various seafloor sediments across broad seafloor

areas. Among of the various theories and models available (Jackson

and Richardson, 2007; Yu et al., 2017; Wang et al., 2018b), the grain

shearing model (GSM) (Buckingham, 1998) and the effective

density fluid model (EDFM) (Williams, 2001) are widely used for

analyzing seafloor sediment acoustics. The GSM effectively explains

sound speed dispersion and attenuation coefficients of seafloor

sediments observed in the SAX99 (Buckingham and Richardson,

2002). It also reveals the relationships between porosity and the

physical/acoustic properties of seafloor sediments (Buckingham,

2005). However, it is seldom employed to analyze the influencing

factors of sediment physical parameters and environmental state.

On the other hand, the EDFM can well explain dispersion and

attenuation characteristics observed in the SAX99 (Williams et al.,

2002) and at Jiaozhou Bay (Wang et al., 2018b). It can also well

reveal the influence of the environmental sates on the sound

velocity (Zou et al., 2015; Kan et al., 2019), as well as the

relationship between sound velocity and porosity (Zou et al.,

2018). However, even as a simplified model based on the Biot

theory (Biot, 1956a, 1956b), the EDFM still involves numerous

parameters and challenges associated with difficult-to-measure

parameters (Williams et al., 2002; Jackson and Richardson, 2007).

Schock (2005) proposed an approach based on porosity and average

particle size to express complex parameters like tortuosity factor,

permeability, and pore size, aiming to invert the acoustic physical

properties of seafloor sediments using the Biot model and Chirp

sonar measurement reflection loss. Since several parameters in the

theoretical model are related to the representative physical

parameter of porosity, expressing challenging-to-measure

parameters in terms of porosity can reduce measurement errors

and value-selected errors. This approach leads to simplified model

calculation relationships.

This research aims to elucidate the mechanisms, changes and

influences on the acoustic characteristics of seafloor sediments in

their true in situ state. To achieve this, a porosity-based effective

density fluid model (P-EDFM) is established to investigate the

influence of in situ acoustic characteristics of seafloor sediments

and their associated influencing factors. Using P-EDFM, the impact

of changes in porosity and density on the in situ sound velocity ratio

of the seafloor sediment is analyzed, along with their relationships.

Furthermore, the relationships between in situ sound velocity,

acoustic attenuation coefficient, and porosity in different sea areas

are explored. The study also addresses the influence of temperature

and frequency dispersion on sound velocity and proposes a

correction method to investigate the disparities between the in

situ acoustic measurement and the laboratory acoustic

measurement. The findings of this research provide valuable

support for acoustic prediction, geoacoustic inversion, and

underwater detection.
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2 Principle of P-EDFM

EDFM adopts effective elastic modulus Keff and effective density

reff establishes the expression of sound velocity (m/s) and sound

attenuation coefficient (dB/m) as follows:

cp = Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Keff =reff

q
 

h i
(1)

ap = 8:686*w* Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reff =Keff

q
 

h i
(2)

Keff = ((1 − n)=Kg + n=Kw)
−1 (3)

reff = rw
a(1 − n)rg + n(a − 1)rw + i(nrsFh=rwwk)

n(1 − n)rg + (a − 2n + n2)rw + i(nFh=wk)
(4)

Where, h is the viscosity of the pore water, k is its permeability,

and a is the tortuosity. Kg and Kw are the bulk modulus of solid

grains and the bulk modulus of pore water, respectively, and n is the

bulk porosity of the sediment. rw, rg, and rs are the bulk densities of
the pore water, solid grains, and sediment, respectively, rs =
nrw + (1 − n)rg . i is the imaginary part factor of the complex

number, Re[] and Im[] represents the real part and imaginary

part of the measurement result. F is a dynamic viscosity correction

factor (Biot, 1956b; Williams, 2001), which is related to the detected

angular frequency w, pore size a, porosity n, pore water density rw.
The relationship between tortuosity and porosity (Boudreau,

1996) is as follows,

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 ln (n)

p
(5)

The permeability expression (6a) is the correction of Hovem

and Ingram formula by Schock (2005). According to the previous

model analysis and data process, here the correction formula for the

permeability can be written as Eq. (6b).
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k =
1

180
ffiffiffiffiffi
10

p d2n3

(1 − n)2
(6a)

k =
n

180(1 − n)
d2n3

(1 − n)2
(6b)

Based on the linearization transformation of the average particle

diameter d (unit: mm) and the porosity n of Schock (2005), an E1

formula can be obtained as

d = 25:5315−18:44n 0:299 < n < 0:841 (7)

The EDFM considering the porosity relationships of equations

(5)-(7) is defined as porosity based EDFM (P-EDFM). Compared

with the 9-parameter EDFM, P-EDFM has six parameters, the

reference value of particle bulk modulus Kg is 36GPa with a referred

range of 0.7~57GPa (Williams et al., 2002; Jackson and Richardson,

2007). Porosity n and the density of solid particles of seafloor

sediment rg can be directly measured. The density rw, viscosity h,
and the bulk elastic modulus of pore seawater Kw can be calculated

directly by applying the seawater state equation formula (Jackson

and Richardson, 2007) using the in situ measured environmental

state parameters.

The analysis of the measurement data of seafloor sediment in

Series 9B of SAX99 was performed using the porosity value of 0.37

and a particle volume elastic modulus of 36 GPa, as provided by

Buckingham (2002). The laboratory standard measurement

temperature conditions (23°C, 1 atm.) were considered, and the

P-EDFM was employed for calculations. Equations (6a) and (6b)

were compared, and Figure 1 demonstrates their ability to

simultaneously explain the frequency dispersion characteristics of

sound velocity within the range of 25-100 kHz and the relationships

between the acoustic attenuation coefficient and frequency for the

sandy seafloor sediment in Series 9B. However, certain calculation

errors were still present in both sound velocity and acoustic

attenuation coefficient. To account for the measured porosity
FIGURE 1

The acoustic characteristics of Series 9B in SAX99 (Buckingham and Richardson, 2002) based on P-EDFM.
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ranges reported in the same experimental area of SAX99 (0.359-

0.387, 0.34-0.48, and 0.41-0.52 for different measurement methods)

(Williams et al., 2002), the lower limit value of 0.34 was selected for

comparison, as shown in Figure 1. This selection reduced the errors

between the model-calculated sound velocity and acoustic

attenuation coefficient and the measured data, resulting in a

higher precision in explaining the measured acoustic

characteristic in Series 9B. Eq. (6b) provided higher precision

compared to Eq. (6a). Consequently, the P-EDFM successfully

explain the sound velocity and attenuation coefficient of Series 9B

in SAX99 using 6 parameters, supporting the validity of acoustic

prediction and inversion based on theoretical models derived from

Biot Theory.
3 Relationships between in situ sound
velocity ratio and porosity, density

The in situ sound speed at 17 representative sites was measured

in the East China Sea (ECS) during spring voyage in 2021, funded

by the National Natural Science Foundation of China Open

Research Cruise (Cruise No. NORC2021-02+NORC2021-301).

The seafloor sediment samples include various sediment types,

such as sand, sandy silt, silt, clayey silt, and silty clay. The in situ

sound speed ratio and physical parameters are listed in Table 1.The

depth of the ECS generally does not exceed 100 m. The temperature

of the bottom seawater varies at different depths and during

different seasons. For instance, the temperature at a depth of 60

m is approximately 3.6°C higher compared to that at 90 m. And the

bottom water temperature in autumn is around 4.7°C higher than

that in spring. Regarding the in situ and laboratory measurements

of seafloor sediments in the ECS, environmental factors primarily

change in temperature, with the pressure change being neglected

(considering 1 MPa for 100 m, which has a minimal impact of about

1‰ on the sound velocity of seawater and seafloor sediments).

These sediment types exhibit porosity ranging from 0.384 to 0.692,

and sound velocity ratio ranging from 0.974 to 1.070 (Wang et al.,

2023). These values align with the measurement datasets recorded

on the continental shelf and continental slope of the North Pacific

Ocean (Hamilton, 1971), the datasets in the South China Sea (SCS)

(Wang et al., 2018a; Liu et al., 2019) and the datasets in the Yellow

Sea (YS) (Kan et al., 2011; Liu et al., 2019). By utilizing the sound

velocity ratio to analyze the relationships between acoustic and

physical characteristics of different seafloor sediment types, the

influence of in situ temperature variations at different measurement

stations can be mitigated (Kan et al., 2019; Zou et al., 2021).
Frontiers in Marine Science 04
Moreover, the wide ranges in porosity, density, and sand content

in Table 1 also provide indicators of the scattering and complexity

of seafloor sediment acoustic properties. Regression fitting reveals

the following empirical relationships between the in situ sound

velocity ratio Rv and porosity n and density rs in the ECS (Wang

et al., 2023) as follows:

Rv = 0:8394n2 − 1:212n + 1:4108 R2 = 0:8559 (8)

Rv =  0:2397r2
s − 0:6425rs + 1:3891 R2 = 0:8621 (9)

The relationship between the average particle diameter d (unit:

mm) and porosity n of the ECS samples is expressed as Eq. (10). The

P-EDFM with Eq. (10) being applied is called ED group P-EDFM.

The E1 group P-EDM with Eq. (7) is used as a comparison.

d = 22:2775−14:732n R2 = 0:8968 0:384 ≤ n ≤ 0:692 (10)

Based on the results illustrated in Figure 2, the calculation curve

of the ED group P-EDFM exhibits high consistency with the

measured values in the ECS and closely aligns with the empirical

relationships expressed by Eq. (8). Although the E1 group P-EDFM

does not exhibit as high interpretation accuracy as the ED group, it

effectively explains the variations of in situ acoustic values with

respect to porosity. The in situ dataset in the YS is taken as a

comparison, as shown in Figure 2. The relationships between the in

situ sound velocity ratio and porosity in the ECS and YS slightly

differ, and generally conform to the rule that the in situ sound

velocity ratio decreases with increasing porosity. Porosity is a

comprehensive parameter that plays a crucial role in

characterizing the physical and acoustic characteristics of seafloor

sediments. Density, which is closely related to porosity, is another

important parameter for describing the physical and acoustic

characteristics of seafloor sediments. The relationship between

density and the in situ sound velocity ratio in the two sea

areas exhibits similarity. P-EDFM also can explain the trend

of the in situ sound velocity ratio increasing with increasing

density. Additionally, the interpretation accuracy of the sound

velocity ratio and density obtained by ED group P-EDFM closely

matches the empirical relationships expressed by Eq. (10),

surpassing the calculation curve of E1 group P-EDFM, as

depicted in Figure 2.

The above observations indicate that the physical and acoustic

characteristics of seafloor sediments exhibit both similarities and

regularities across different sea areas, albeit with minor numerical

differences. Through the application of the P-EDFM with the ED

group’s fitted empirical equation, the interpretation accuracy of the

ECS’s measurement data surpasses that of the E1 group, further
TABLE 1 Characteristics of 17 in situ acoustic measurement samples of seafloor sediments in the ECS.

Items Porosity Density (g/cm3) Sand content (%) Sound velocity ratio

Maximum 0.692 2.01 80.50 1.070

Minimum 0.384 1.53 0.30 0.974

Average ± Standard deviation 0.526±0.114 1.80±0.18 36.18±34.63 1.016±0.036
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confirming the overall similarity exists in the empirical

relationships of physical and acoustic characteristics of seafloor

sediments, but numerical differences exist among different sea areas.

Therefore, in the application, on the one hand, the empirical

relationships should be applied with the fitting formula obtained

from the domestic sea area as far as possible; on the other hand, this

difference also reveals the slight variations and scattering in the

seafloor sediment characteristics of different sea areas.

Based on the analysis provided, it is evident that P-EDFM can

effectively explain the variation of sound velocity and porosity

measured in the laboratory, as well as the relationships between

sound velocity ratio and porosity and density measured in situ.

However, porosity, as a macro parameter, can only partially

represent the general trends and common differences in seafloor

sediments, and it may not fully capture the individual differences

among sediment samples. The heterogeneity and anisotropy of

factors such as pore size, pore channel connectivity, particle size,

and particle shape within individual samples can lead to differences

in density, elastic modulus, and sound transmission losses along the

actual acoustic wave propagation path. These variations contribute

to the disparities and scattering observed in the acoustic

characteristics among different seafloor sediment samples. The

scattering of the in situ sound velocity ratio in different sea areas

can be accurately predicted by adjusting and optimizing parameters

such as permeability, tortuosity factor, or pore size in the EDFM.

However, P-EDFM limits the adjustment of these parameters and

does not allow for arbitrary optimization. Although it may be

challenging to accurately explain the specific differences among

each seafloor sediment sample, P-EDFM can be applied to describe

the overall trends of the porosity/density and acoustic

characteristics of seafloor sediments, eliminating the ambiguity

and subjectivity associated with manually adjusting or optimizing.

Additionally, the establishment and application of empirical

relationships usually should be restricted with the influence of

environmental state and measurement frequency both in

laboratory and in situ. Compared with the empirical

relationships, the prediction and calculation of P-EDFM consider

the effects of environmental conditions and measurement frequency

and eliminate their influences to some extent.
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4 In situ acoustic characteristics
of seafloor sediments and its
influencing factors

4.1 In situ acoustic characteristic analysis
based on P-EDFM

Physical parameters, such as porosity and density of seafloor

sediments, are typically obtained in laboratory conditions at room

temperature. However, variations in seasons and geographical

locations can introduce temperature differences in these physical

parameters. To account for this, measurements are often

standardized or assumed to be at 23°C. In situ measurements of

seafloor sediment in the YS and ECS typically utilize similar methods

and are conducted at a main frequency of 30-33 kHz (Liu et al., 2019)

using similar methods. The dataset for in situ measurements reveals

that the temperature of bottom seawater ranges from 8.5-17.9°C.

Figure 3 illustrates the relationships between porosity and sound

velocity and attenuation at different in situ temperatures. This

analysis takes into account the impact of temperature, which is a

significant factor to consider when comparing results obtained in

different seasons and at various seafloor depths. Currently, there is no

effective method to correct for the temperature effect on the sound

attenuation coefficient, as the velocity ratio correction method is used

specifically to address the impact on sound velocity (Zou et al., 2021).

In the in situ acoustic measurements conducted in the YS and

ECS, the temperatures were 10.00±0.91°C and 16.96±1.06°C,

respectively. The YS exhibited a lower average temperature and a

smaller temperature scattering. There was a slight difference and

small scattering in the in situ sound velocity data obtained from the

two sea areas, with 0.095±0.026 in the YS and 1.016±0.036 in the ECS.

But there were observed significant differences and large scattering in

the in situ sound attenuation coefficient with 6.29±2.37 dB/m in the

YS and 4.24±3.87 dB/m in the ECS. For sediments with the same

porosity, the sound attenuation coefficient of sediments was generally

higher in the YS compared to the ECS.

The influences of different in situ temperature and its range

were taken into account of the actual in situ measurement data in
FIGURE 2

Relationships between in situ sound velocity ratio and porosity/density analyzed by P-EDFM.
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the two sea areas in the ED group P-EDFM, as shown in Figure 3.

Within the temperature range, the in situ sound velocity exhibits

good conformity in measurement with the P-EDFM prediction,

while the interpretation of the in situ acoustic attenuation

coefficient varies significantly. An inflection point is observed at

porosity of approximately 0.45, which aligns with previous

observations and estimations made by Hamilton (1980) and Liu

et al. (2019). While this analysis offers theoretical model support for

the in situ measurement dataset, it does not effectively explain the

scattering characteristics of the acoustic attenuation coefficient for

porosities around 0.4, which are 10dB/m larger than the theoretical

prediction. The scattering and measurement error of the acoustic

attenuation coefficient may be larger than those of the sound

velocity of seafloor sediments. This highlights the need for more

comprehensive discussions and verifications regarding

measurement accuracy and the factors influencing acoustic

attenuation. Therefore, considering environmental factors,

conducting more extensive and in-depth measurements of the

acoustic attenuation coefficient will yield more comprehensive

datasets. These data will help to clarify the in situ acoustic

attenuation characteristics of seafloor sediments and test the

applicability of P-EDFM.
4.2 Difference of sound velocity
characteristics between in situ
measurement and laboratory measurement

During the spring survey in the ECS, laboratory measurements

were conducted on 17 samples to determine the sound velocity

following the in situ measurement. As shown in Figure 4, the

measured sound velocity in the laboratory was found to be higher

than the in situ sound velocity. Among the 17 samples, the
Frontiers in Marine Science 06
absolute difference between the laboratory and in situ sound

velocities was much larger for the 9 sandy samples compared to

the other 8 muddy samples (ie. silty and clayey sediments). The

original in situ measurements at each station in the ECS had

similar depths and temperatures, with an average in situ

measurement temperature of 16.96±1.06°C and a measurement

frequency of 33 kHz. In the laboratory, the collected samples were

measured at a temperature of 22.0°C and a frequency of 100 kHz.

As mentioned previously, the influence of pressure factors can be

disregarded due to the shallow water depth. Therefore, apart from

the disturbances caused by transitioning from the in situ to the

laboratory measurements, differences in temperature and

frequency also contribute to the influence of dispersion,

temperature effect, and sample disturbance on the physical and

acoustic properties of seafloor sediments.

A fixed sound velocity ratio correction method is employed to

adjust the in situ temperature sate to the laboratory temperature

state (Kan et al., 2019; Zou et al., 2021). The temperature-corrected

in situ sound velocity values, compared with the laboratory-

measured sound velocities, are presented in Figure 4. Even the

temperature correction eliminates the influence of temperature

differences between the seafloor in situ and laboratory

measurements, significant differences still exist in the original

measurements of sandy seafloor sediment samples.

Due to lacking measured values of sound velocity variations at

different frequencies in the same state, theoretical calculations are

used to obtain the theoretical sound velocity ratio, which is then

applied to frequency correction. Only general regularities are

examined, without conducting specific correction analyses for

each sample. Each porosity of the 17 samples is inputted into the

P-EDFM to obtain the theoretical sound velocities at 100 kHz and

33 kHz respectively. The theoretical sound velocity ratio, R ft, is then

obtained, based on that all the original in situ measurement values
FIGURE 3

Calculation of the relationships between in situ sound velocity/acoustic attenuation coefficient and porosity of seafloor sediment based on P-EDFM
within in situ temperature range.
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are corrected to the laboratory measurement values using the

following formula:

Rft = cpf 1
0 =cpf 2

0 (11)

R = kf Rft (12)

cpf 1 = R� cpf 2 (13)

Where, R ft is the theoretical sound velocity ratio at two

frequencies of f1 and f2, where f1 corresponds to high frequency of

100 kHz and f2 corresponds to low frequency of 33 kHz. cpf1′ and
cpf2′ are the theoretical calculated sound velocities of high and low

frequencies respectively. k f is the correction coefficient of sound

velocity ratio at different frequencies, which represents the

difference between theoretical calculat ion and actual

measurement, where the value here selects 1. cpf1 and cpf2 are

respectively the sound velocity of seafloor sediment after

frequency correction and the sound velocity of seafloor sediment

under the actually measured frequency state. Here cpf2 is the in situ

measured sound velocity at 33 kHz.

After frequency corrections based on equations (11)-(13), the in

situ measured sound velocity of muddy sediments closely matched

the laboratory measured sound velocity, as depicted by type A in

Figure 4. However, sediments primarily composed of sandy

material still exhibit significant differences, as shown by type B in

Figure 4. The physical properties of the sediments in the two zones

are presented in Table 2. The two types exhibit significant variations

in the porosity and composition content even there are from the

same sea area. Considering the substantial difference in sandy

particle percentage and the sound velocity variations after

temperature and frequency corrections between the two types, it

becomes evident that sandy sediments are more susceptible to
Frontiers in Marine Science 07
disturbance due to their loose particle packing and are more

affected by perturbations. The pore water in sandy sediments is

more likely to flow, and the loose framework is prone to

deformation and reconstruction, resulting in more significant

errors caused by disturbance effects. Compared to sandy

sediments, muddy sediments are denser, more viscous and firmly

fixed in the sampling pipe. As a result, the disturbance effect is

relatively weaker, making corrections easier between the in situ and

laboratory states. This observation aligns with the fact that sampling

sandy sediments is challenging due to their susceptibility to

seawater erosion, vibration, and detachment, making it difficult to

obtain more effective and intact samples. Li et al. (2013) highlighted

that the processes of sample collection, transportation, and

truncation have an impact on in situ and laboratory

measurements. However, due to the difficulty in qualitatively and

quantitatively analyzing patterns, these processes are typically

handled with great care to minimize disturbances in the samples.

Specifically, efforts are made to measure the samples as soon as

possible after collection to reduce disturbances resulting from

subsequent transportation, partitioning, and other procedures.

Hence, sandy sediments are more suitable for in situ

measurements or in situ simulation measurement experiments to
FIGURE 4

Comparison of sound velocity measured in situ and in laboratory before and after temperature correction and frequency correction.
TABLE 2 Characteristics of type A and B of 17 in situ samples of seafloor
sediments in ECS.

Parameter

Average ± Standard deviation

8 samples of type
A

9 samples of type
B

porosity 0.638±0.001 0.425±0.001

silt and clay content
(%)

98.89±0.94 32.66±8.68
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reduce influences of sampling disturbances. This enables the further

correction of measured data more precisely to apply for other

various measurement environments and frequency states.
5 Conclusions

This study employed P-EDFM to investigate the influence of

physical parameters, including porosity and density, as well as

temperature environment, and measurement frequency on the in situ

sound velocity and sound attenuation coefficient of seafloor sediments.

P-EDFM offers a less parametric theoretical model for analyzing the

acoustic and physical properties of seafloor sediments. P-EDFM

elucidates the relationships between the in situ sound velocity ratio,

acoustic attenuation coefficient, and porosity of seafloor sediments. It

also analyzes the influence of temperature and frequency dispersion,

providing a novel approach for evaluating, predicting, correcting and

inverting acoustic and physical property parameters of seafloor

sediments. These advancements offer convenience and contribute to

the progress in this field of research. Some meaningful conclusions are

drawn as follows:
Fron
(1) The sound velocity ratio of seafloor sediments and bottom

seawater measured in situ in the ECS and YS exhibits decreases

with increasing porosity and with decreasing density. This

characteristic can be well explained by P-EDFM.

(2) The scattering and variation of the in situ acoustic

attenuation coefficient of seafloor sediments are

significantly greater than those observed in the sound

velocity. Based on the ED group P-EDFM calculation, the

interpretation of the in situ sound velocity using the

empirical relationships between the average particle size

and porosity in the ECS is highly accurate. However, the

interpretation of the in situ acoustic attenuation coefficient

is slightly less accurate. It is also observed that the acoustic

attenuation coefficient initially increases and then decreases

with changes in porosity.

(3) By comparing and analyzing the in situ and laboratory

measurement results in the ECS and YS, P-EDFM is used to

consider the effect of temperature variation and frequency

dispersion, enabling the prediction of sound velocity and

acoustic attenuation coefficient at different temperatures

and frequencies more precisely. And the prediction error of

sound velocity is lower than that of the sound attenuation

coefficient.

(4) After applying temperature correction and frequency

correction, the sound velocity of muddy seafloor sediments

demonstrates consistency between laboratorial and in situ

measurements. Conversely, for sandy seafloor sediments in

the ECS, the sound velocity remains higher than the in situ

measurements even after correction. This indicates that the

disturbing factors in the sampling and laboratory

measurement of sandy seafloor sediments cannot be

disregarded. Therefore, when studying sandy seafloor

sediments, it is advisable to utilize in situ measurement

techniques or conduct in situ simulation experiments.
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