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The benefit of steel fiber on the mechanical behaviors of concrete has been well
accepted. The flexural behavior of steel fiber reinforced concrete (SFRC) is
complicated which depends on many factors, such as matrix properties, fiber
material properties, fiber geometries, fiber volume contents, and interface
properties. Thus, the investigations on the flexural behavior of SFRC are needed
to be expanded. In this study, the effects of fiber typewith varying shapes and aspect
ratios on the flexural performance of SFRC were investigated. Five steel fibers were
adopted in this study: milled fiber (M), corrugated fiber (C) and three hooked fibers
with aspect radios of 45 (HA), 55 (HB), and 65 (HC). Two volume fractions (0.4% and
1.0%) of steel fiber and two compressive strengths (normal and high strengths) of
matrix were considered. The load-deflection curves, energy absorption capacity
and equivalent flexural strength were discussed. The results show that the flexural
behavior of SFRC beams reinforced by 1.0% fibers is significantly higher than that of
the beams reinforced by 0.4% fibers. Hooked fiber reinforced beams performed the
best flexural load-deflection response compared to the beams reinforced by milled
fiber and corrugated fiber reinforced, and exhibited an increasing trend of flexural
performance as the fiber aspect ratio increased. The differences between
specimens with different fibers for high strength matrix are more obvious
compared to the normal strength matrix.
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1 Introduction

Due to its excellent durability and low cost, concrete is one of the most commonly used
building and construction materials (Rashiddadash et al., 2014). However, concrete is also a
quasi-brittle material with weak tension, flexure, impact strength, and poor resistance against
cracking due to a low strain capacity. The weak tensile behavior of concrete restricts its use in
projects where tensile and flexural behaviors are crucial. Different types of fiber are incorporated
into the concrete to prepare Fiber Reinforced Concrete (FRC), which helps to enhance the
toughness, shrinkage cracking, impact resistance, and durability of concrete (ACI Committee
544, 2018; Tabatabaeian et al., 2017; Liu et al., 2019; Kim and Shin, 2011; Zhang et al., 2023; Zeng
et al., 2023a). In order to improve the energy absorption capacity of concrete, many researchers
(Banthia and Sappakittipakorn, 2007; Yoo and Yoon, 2014; Chu et al., 2022; Chu et al., 2023b)
have conducted studies utilizing a variety of reinforcements, including fibers (such as steel,
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polymeric, and carbon fibers), fiber-reinforced polymers, steel
reinforcing bars, etc. Additionally, the steel fiber can improve the
bonding strength between steel bars and matrix, shorten the length
required for anchorage and lap of steel bars. This makes it easier and
faster to assemble precast concrete components by improving their
ability to connect (Chu and Kwan, 2021).

Among those fibers, the steel fiber is one of the most widely and
popular used fibers in both practice and research. The benefit of steel
fiber on mechanical behaviors of concrete has been well accepted
(Ahmed and Ansell, 2010; Meng et al., 2017; Yuan et al., 2018). First,
by preventing cracks from forming and spreading, the addition of
fibers enhances the non-linear structural behavior of concrete in
tension; second, due to their bridging effect, fibers may increase the
post-cracking residual strength; and third, due to their debonding
and pull-out failure mechanisms, fibers may enhance the concrete
toughness (Ding and Kusterle, 2000; Khaloo and Afshari, 2005; Zeng
et al., 2023b). As a result, SFRC has a wide-range of application
areas, e.g., industrial floors, hydraulic and marine structures, precast
products, pavements and overlays, tunnel linings and slope
stabilization work, repairing and retrofitting of reinforced
concrete structures (Pujadas et al., 2014; Blanco et al., 2016).

The energy absorption capacity of SFRC can be characterized
by the simple loading tests such as compression, tension and
flexure. The flexural test is more popular and effective, because
it is simpler to conduct and closer to the actual conditions in many
practical situations than the tension test (Dong et al., 2008). The
results of the flexural behavior of SFRC beams under quasi-static
and impact loads show that, an improvement in the post-peak
behavior was observed by increasing the fiber content. The
improvements in residual flexural performance following impact
damage were also a result of the increases in fiber content and
strength. As concrete strength rose, the flexural strength became

FIGURE 1
Photos of steel fibers: (A) M-fiber; (B) C-fiber; (C) HA-fiber; (D) HB-fiber; (E) HC-fiber.

TABLE 1 Properties of steel fibers.

Type of steel fiber Length (mm) Diameter (mm) Aspect radio Tensile strength (MPa)

Milled (M) 32 (2.6 ± 1.2)×0.4 700

Corrugated (C) 35 0.5 × 0.6 500

Hooked (HA) 35 0.75 45 1,180

Hooked (HB) 35 0.62 55 1,250

Hooked (HC) 35 0.55 65 1,325

Note: The values are the average value of three samples.

FIGURE 2
Particle size distribution of natural river sand and coarse
aggregates.

TABLE 2 Physical properties of coarse aggregate.

Bulk density (g/cm3) Water absorption (%) Crushed values (%)

2,731 21.69 28.79
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less dependent on the strain-rate (Yoo et al., 2015). The flexural
behavior of SFRC depends on many factors, such as matrix
properties (e.g., matrix strength, Poisson’s ratio, and stiffness),
fiber material properties (e.g., fiber strength, Poisson’s ratio, and
stiffness), fiber geometry (smooth, crimped, hooked end, twisted,
aspect ratio), fiber volume contents, and interface properties
(frictional, adhesion, and mechanical bond) (Dong et al., 2011;
Gao et al., 2019; Niu et al., 2022; Syed Safdar Raza et al., 2022; Liu
et al., 2023). The material, volume content, type and geometry of
fiber should be determined carefully to improve the flexural
behavior of SFRC (Teng et al., 2018; Zeng et al., 2022).

The volume fraction of steel fiber is one of the most important
factors affecting the mechanical properties of FRC. In addition to steel
fiber volume fraction, fiber type also has a great influence on flexural
behavior. Different types of steel fibers, i.e., straight, hooked-end, and
corrugated fibers were found to have beneficial effects on the flexural
behavior of concrete (Shin et al., 2021; Anh-Thang and Hoang, 2023).
The flexural strengths and post-peak ductility of concrete rise with an
increase in the volume fractions for different steel fibers (Christidis et al.,
2021). The post-peak behavior of concrete is strongly influenced by the
type of steel fibers. The best flexural behavior is generally produced by
the hooked-end SFRC. When concrete is reinforced with steel fibers

TABLE 3 Mix proportions of concrete matrix.

Materials Normal strength matrix (kg/m3) High strength matrix (kg/m3)

PC 267 411

Fine aggregate 708 603

Coarse aggregate 1,315 1,281

Water 160 156

HWR 0 7.5

Note: The water cement ratio of normal strength matrix and high strength matrix are 0.6 and 0.38 respectively.

TABLE 4 Compressive strengths of SFRC.

Matrix Fiber volume content (%) Type of steel fiber Notation Compressive
Strength (MPa)

Normal strength 0.4 Milled (M-) N-M-0.4 43.56

Corrugated (C-) N-C-0.4 44.08

Hooked A (HA-) N-HA-0.4 43.36

Hooked B (HB-) N-HB-0.4 41.48

Hooked C (HC-) N-HC-0.4 40.37

1.0 Milled (M-) N-M-1.0 44.10

Corrugated (C-) N-C-1.0 41.22

Hooked A (HA-) N-HA-1.0 45.82

Hooked B (HB-) N-HB-1.0 43.04

Hooked C (HC-) N-HC-1.0 41.34

High strength 0.4 Milled (M-) H-M-0.4 64.23

Corrugated (C-) H-C-0.4 63.17

Hooked A (HA-) H-HA-0.4 64.71

Hooked B (HB-) H-HB-0.4 61.51

Hooked C (HC-) H-HC-0.4 60.81

1.0 Milled (M-) H-M-1.0 66.15

Corrugated (C-) H-C-1.0 65.40

Hooked A (HA-) H-HA-1.0 68.31

Hooked B (HB-) H-HB-1.0 66.00

Hooked C (HC-) H-HC-1.0 64.30
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with hooked ends, the deflection-hardening reaction can be observed.
On the other side, the deflection-softening response is impacted by the
inclusion of straight steel fibers (Pajak and Ponikiewski, 2013; Li et al.,
2018a).

The length and aspect ratio of steel fibers also significantly affect the
flexural behavior of concrete. The specimen with a low volume
proportion of medium-length fibers hybridized with long fibers
would exhibit the best flexural performance. When the replacement
ratio of short fibers was more than 1.0%, the combined use of long and
short fibers degraded the toughness and cracking behavior, whereas the
hybrid uses of long and medium-length fibers significantly enhanced
these characteristics (Li et al., 2018b; Niu et al., 2021). The use of long
and short fibers in combination decreased the fiber bridging capacity,
but the use of long andmedium-length fibers in combination enhanced
it (Doo-Yeol et al., 2017).

At present, although existing literature has studied the effect of
steel fibers on the flexural behavior of concrete, their adopted steel
fiber types, aspect ratios, dosages are still needed to be extended.

Specially, the effect of each factor on flexural behavior was rarely
analyzed from the point of view of equivalent flexural strength. In
order to further expand the engineering application of steel fibers,
the effects of different fibers on the flexural behavior of normal and
high strength concretes were investigated in this study. Three types
of steel fiber, i.e., milled, corrugated and hooked fiber were
considered. Two fiber volume fractions of 0.4% and 1.0%, aspect
ratios of 45, 55 and 65 for hooked steel fiber were adopted. Finally,
the equivalent flexural strength of those concretes has been fully
analyzed and evaluated.

2 Experimental program

2.1 Materials

Five steel fibers shown in Figure 1 were investigated in this study:
milled fiber (M), corrugated fiber (C) and three hooked fibers

FIGURE 3
Test setup of flexural behavior: (A) schematic representation and (B) photo.
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(HA, HB and HC) with aspect ratios of 45, 55, and 65, respectively.
The effect of adding steel fiber to concrete is to improve the flexural
resistance of concrete, particularly in the post-cracking stage of the
load-deflection response. Hooking effect of steel fiber exerts the
significant influences on the properties of SFRC. The mechanical
anchorage of steel fibers in SFRC is linked to the basic mechanism
enhancing the influence of hooked fibers on flexural performance.
End hooks of steel fibers could provide a stronger bridging force
across the concrete matrix in SFRC (Chu et al., 2023a). The steel
fibers produced by Shanghai Realstrong Fiber Co., Ltd. The
mechanical properties of steel fibers measured according to GB/T
228.1-2010 (GB/T 228.1-2010, 2010) are provided by the
manufacturer and listed in Table 1.

Locally manufactured ordinary Portland cement (PC) 42.5 was
utilized as binder. The coarse aggregates are crushed stones with
nominal sizes of 10–25 mm. Sieve size distribution of coarse
aggregate measured with reference to GB/T 14685-2011 (GB/T
14685-2011, 2011) is shown in Figure 2. The physical properties
of coarse aggregate determined according to GB/T 14685-2011 (GB/
T 14685-2011, 2011) are shown in Table 2. Natural river sand, with a
fineness modulus of 2.64, was used as fine aggregates. Sieve size
distribution of natural river sand measured with reference to GB/T
14684-2011 (GB/T 14684-2011, 2011) is shown in Figure 2. A high
efficiency water reducer (HWR), type of JKH-1, was used to achieve
the required workability of the concrete mixes.

2.2 Preparation of specimens

The normal strength concrete with nominal compressive
strength of 40 MPa and high strength concrete with nominal
compressive strength of 60 MPa (see Table 3) were served as
matrix. Five types of fiber with 0.4% and 1.0% volume contents
were introduced into the matrix. Thus, a total of twenty series of
bending specimens will be tested, as described in Table 4. The series
is labeled as matrix strength-fiber type-fiber volume content. For
example, the normal strength specimen with 0.4% HB-fibers is
labeled as N-HB-0.4. It should be noted that the added steel
fibers would significantly reduce the workability of concrete, and
result in a poor compaction. Whilst the entanglement of the rigid
fibers is definitely one contributing factor, another contributing
factor is the loosening of aggregate packing, which increases the
volume of voids between aggregate particles to be filled with paste
(Chu et al., 2019; Chu, 2021). Considering the influence of the
particle packing and the interaction between steel fibers and
aggregates, combined with previous mix design experience, the
mix proportions of each group of specimens was slightly adjusted
based on Table 3.

From each mix, three cubes (100 mm × 100 mm × 100 mm) and
three beams (100 mm × 100 mm × 400 mm) were cast in steel
moulds. These specimens were demoulded after and transferred to a
curing chamber maintained at 20°C and 95% relative humidity for

FIGURE 4
Averaged flexural load-deflection curves of (A) normal strengthmatrix with different fiber types; (B) high strengthmatrix with different fiber types; (C)
normal strength matrix with different fiber aspect ratios; (D) high strength matrix with different fiber aspect ratios.
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28 days curing before testing. The cubes were tested in compression
as per CECS13: 2009 (CECS13, 2009) by using a 3,000 kN load-
controlled compression test machine. Only the peak loads were
recorded, and converted to compressive strengths by utilizing an
elastic analysis. The compressive strengths of all series specimens are
given in Table 4.

2.3 Flexural test

The beams (100 mm × 100 mm × 400 mm) were tested for
flexural toughness in a modified arrangement as per CECS13: 2009,
Figure 3A. As known, during a flexural toughness test, the specimen
would be suddenly damaged after the peak load, as the test machine
transfers large accumulated energy from specimen to itself. An
ordinary test machine cannot absorb so much energy on account
of the low stiffness, which results in failure of measuring the
descending branch of load-deflection curve. In order to prevent
the sudden damage of specimens, four rigid components were
installed between the top plate and bottom plate of the test
machine, as shown in Figure 3B. With such an arrangement, the
rigid components can bear the most energy after the peak load,
which ensures the measurement of whole load-deflection curve.
During the test, the load and deflection were recorded. A
displacement control mode with a loading rate of 0.1 mm/min

was adopted for the flexural test. Two Displacement transducers
were positioned one at each side of the steel frame to measure the
specimen deflection during loading. The results of the
measurements from the two LVDTs were averaged.

3 Test results and discussion

3.1 Load-deflection curves

The flexural response of all test series, displayed in load-
deflection curves, is illustrated in Figure 4. Where, the effect of
fiber type is illustrated in Figures 4A, B; while the effect of fiber
aspect ratio is illustrated in Figures 4C, D. Each load-deflection curve
in the figure is averaged from three or four specimens. The average
curve is achieved by Origin software, which had been successfully
used by one previous study (Chen et al., 2022).

As illustrated in Figures 4A, B, in comparing the flexural
behavior according to the fiber type, HB fiber reinforced
specimens generated the best load-deflection response and the
highest load carrying capacity both in specimens with 0.4% and
1.0% fibers. All test series specimens with 0.4% fibers exhibited the
similar load-deflection response, but HB-0.4 series specimens
produced rather higher load carrying capacity compared with C-
0.4 and M-0.4 series specimens. The test series specimens with 1.0%

FIGURE 5
Effect of fiber type on toughness for (A) normal strength matrix with 0.4% fibers, (B) normal strength matrix with 1.0% fibers, (C) high strength matrix
with 0.4% fibers and (D) high strength matrix with 1.0% fibers.
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fibers exhibited different load-deflection characteristics, since HB-
1.0 series specimens produced a significant higher load carrying
capacity compared with other series. It should be noted that the load
carrying capacity of HB-0.4 series specimens is even higher than that
of C-1.0 and M-1.0 series specimens.

It can be seen from Figures 4C, D, as the fiber aspect ratio
increases from 45 to 65, most of test series show an increasing trend
in load carrying capacity. All test series specimens with 0.4% fibers
exhibited a deflection-softening behavior, but HC-0.4 series
specimens produced a higher load carrying capacity compared
with HB-0.4 and HA-0.4 series. For the series specimens with
1.0% fibers, HC-1.0 series specimens generated a deflection-
hardening behavior while HB-1.0 and HA-1.0 series specimens
resulted in a deflection-softening response. It is noted that the
effect of aspect ratio in high strength matrix is greater than that
in normal strength matrix.

3.2 Energy absorption capacity (toughness)

SFRC is known as high energy absorbing materials, which will
mitigate the hazards for structures subjected to dynamic loads, such
as impact, blast, and seismic. Thus, it is necessary to compare the
energy absorption capacity of SFRC for such applications. The effect

of fiber type on energy absorption capacity is illustrated by
toughness values in Figure 5, while the effect of fiber aspect ratio
is illustrated in Figure 6. Detailed information of the energy
absorption capacity of SFRC is also documented in Table 5,
which give the averaged values of toughness, defined as the area
up to a certain deflection under the load-deflection curve.

A significant difference in energy absorption capacity is noted
for the different fiber volume contents studied, thus the different
scales are used for the toughness axes of the graphs in Figures 5, 6. As
shown in Figure 5A and Table 5, the toughness values of different
fiber reinforced specimens at peak point are almost same in all series
with 0.4% fibers, since the effect of fiber type on energy absorption
capacity is not significant before the peak point. However, as the
definitive deflection increase, the noticeable differences among those
series start to occur and gradually increase. The HB-fiber provides
the highest toughness, while the M and C fibers provide a similar
lower toughness. For example, the toughness values at peak point are
0.6594 N·m, 0.6758 N·m and 0.6077 N·m for N-M-0.4, N-C-0.4 and
N-HB-0.4, respectively; while the toughness values at point L/
150 are increased to 12.5754 N·m, 11.4017 N·m and 17.8386 N·m
for N-M-0.4, N-C-0.4 and N-HB-0.4, respectively. In comparison to
M- and C- fibers, the end hooks of HB-fibers provide the mechanical
interlock during the fiber pullout process in addition to frictional
bond for straight fibers. This explains why, on a macro level, using

FIGURE 6
Effect of fiber aspect ratio on toughness for (A) normal strengthmatrix with 0.4% fibers, (B) normal strengthmatrix with 1.0% fibers, (C) high strength
matrix with 0.4% fibers and (D) high strength matrix with 1.0% fibers.
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HB-fibers improves flexural toughness. The increased resistance to
the pullout load at the micro-scale ultimately led to the enhanced
flexural toughness of the specimens in this study (Chu et al).

As shown in Figure 5B, the same general trend can be observed
for the specimens with 1.0% fibers. However, the toughness values
are rather higher than specimens with 0.4% fibers. Meanwhile, the

differences between specimens with different types of fiber are more
obvious. The toughness values at peak point are 0.9139 N·m,
1.2058 N·m and 1.1321 N·m for N-M-1.0, N-C-1.0 and N-HB-
1.0, respectively; while toughness values at point L/150 are
increased to 14.7324 N·m, 19.5144 N·m and 36.3603 N·m for
N-M-1.0, N-C-1.0 and N-HB-1.0, respectively.

Figures 5C, D show the effect of fiber type on the toughness of
the high strength matrix, the same general trend can be observed for
the specimens compare to Figures 5A, B. It is noted that, compared
to the normal strength matrix, the differences between the
specimens with various fiber types are more remarkable. For
example, the EL/150 of H-HB-1.0 is 41.0156 N·m, 2.67 and
3.05 times higher than that of H-M-1.0 and H-C-1.0,
respectively; while the EL/150 of N-HB-1.0 is 2.47 and 1.86 times
higher than that of N-M-1.0 and N-C-1.0.

As shown in Figure 6 and Table 5, as the fiber aspect ratio
increases, the energy absorption capacity of specimens gradually
increases, except EL/150 and EL/600 of the high strength matrix
with 0.4% fibers. The toughness values of all specimens at peak
point are almost the same except the normal strength matrix with
1.0% HC-fibers, since the deflection capacity and energy
absorption capacity of H-HC-1.0 increase obviously when
compared to other series. As the definitive deflection
increases, the differences among those specimens with various
fiber aspect ratios gradually increase. For example, (Figure 6B),
the Epeak of N-HA-1.0, N-HB-1.0 and N-HC-1.0 are 0.6391 N·m,
1.1321 N·m and 5.0807 N·m, respectively; while the EL/150 of
N-HA-1.0, N-HB-1.0 and N-HC-1.0 are 26.4567 N·m,
36.3603 N·m and 39.0589 N·m, respectively. The toughness
values of the high strength matrix are higher than that of
normal strength matrix, e.g., (Figure 6D) EL/150 of H-HA-1.0,
H-HB-1.0 and H-HC-1.0 are 27.3772 N·m, 41.0156 N·m and
48.0129 N·m, respectively. The length of HC-fiber is larger, the
adhesion between HC-fiber and matrix is stronger, and fiber
pulling out needs more energy. Thus the toughness of HC-series
is better than that of HA- and HB-series.

3.3 Flexural parameters of SFRC

In this study, five characteristic points in flexural load-
deflection curves of SFRC are adopted to analyze the flexural
behavior of SFRC, as shown in Figure 7. The first peak point is
defined as a point where the slope is zero, L/600 and L/150 (where
‘L’ is the span of the beam) recommended by ASTM standard C
1609/C 1609M-05 (ASTM C1609, 2012). L/300 and L/200 are
additionally recommended in this study since the three points
including the first peak point, L/600 and L/150 are not enough to
describe the flexural behavior of SFRC at serviceability. The load
at the peak point is notated as Ppeak, while that at the other points
are notated as PL/m, m is selected as 600, 300, 200 and 150 in this
study, and the corresponding deflections (deflection capacity) are
notated as δpeak and δL/m.

Several parameters are used to describe the flexural behavior of
SFRC with different fibers. The flexural toughness (energy
absorption capacity), which is equivalent to the area under the
load-deflection curve up to δpeak, is defined as Epeak; while the
flexural toughness up to δL/m, is defined as EL/m.

TABLE 5 SFRC toughness (N·m).

Notation Epeak EL/600 EL/300 EL/200 EL/150

N-M-0.4 0.66 7.67 10.45 11.68 12.58

N-C-0.4 0.68 7.12 10.32 10.99 11.40

N-HA-0.4 0.40 5.26 8.58 11.73 14.67

N-HB-0.4 0.61 6.41 10.37 14.22 17.84

N-HC-0.4 0.51 6.71 12.54 17.79 22.51

N-M-1.0 0.91 6.92 10.57 12.92 14.73

N-C-1.0 1.21 8.80 13.34 16.84 19.51

N-HA-1.0 0.64 7.58 14.08 20.11 26.46

N-HB-1.0 1.13 9.50 18.98 27.84 36.36

N-HC-1.0 5.08 9.28 19.22 29.53 39.06

H-M-0.4 0.62 5.97 7.74 8.83 8.88

H-C-0.4 0.40 6.93 10.02 10.76 11.18

H-HA-0.4 0.36 5.77 11.20 16.90 22.86

H-HB-0.4 0.67 8.04 12.87 15.94 18.46

H-HC-0.4 0.49 6.51 13.52 21.47 -

H-M-1.0 0.85 7.61 11.77 13.98 15.38

H-C-1.0 0.76 7.06 10.08 12.11 13.43

H-HA-1.0 0.79 7.64 14.45 20.93 27.38

H-HB-1.0 0.62 9.30 21.73 31.83 41.02

H-HC-1.0 0.82 9.63 22.10 35.18 48.01

FIGURE 7
Typical flexural load-deflection curves of SFRC.
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The equivalent flexural strength at δpeak and δL/m are notated as
fpeak and fL/m, respectively. fpeak can be calculated by:

fpeak � Ppeak ×
L

b × h2
(1)

where, L (in mm) is the span length of specimen under test; b (in
mm) is the width of the specimen; h (in mm) is the height of the
specimen; Ppeak (in N) is the load at the peak point.

fL/m can be calculated by using the equivalent flexural strength
method, which provides a more significant characterization scheme
for FRC (Gao et al., 2014; JG/T 472-2015, 2015). This method locates
the first peak point and divides the load-deflection curve into two
regions: pre-peak and post-peak. As δpeak is rather small (always less
than 0.1 mm), δL/m (0.5, 1.0, 1.5 and 2.0 mm in this study) is always
located in the region of post-peak. The corresponding equivalent
flexural strength fL/m adopts the post-crack strength, which is
given by:

fL/m � EL/m − Epeak

L/m − δpeak
×

L

b × h2
(2)

where, δpeak is the deflection at peak point; Epeak is the flexural
toughness up to a deflection of δpeak; EL/m is the flexural toughness
up to a deflection of δL/m;m has different values ranging from 150 to
3,000 (600, 300, 200 and 150 are selected in this study).

Although the computing method of fL/m is in fact according to
the PCS method, it should be noted that the notations of the
parameters in Eq. 2 are quite different to the PCS method.

3.4 Equivalent flexural strength

The effect of fiber type on equivalent flexural strength is
illustrated in Figure 8, while the effect of fiber aspect ratio is
illustrated in Figure 9. Table 6 documents the detailed
information of equivalent flexural strength. Five deflection points
(peak, L/600, L/300, L/200 and L/150) are selected from the load-
deflection curves as previously explained. fpeak is calculated from the
flexural load at the peak point by using Eq. 1, while fL/m is calculated
from the flexural loads at different deflection points (L/600, L/300, L/
200 and L/150) using Eq. 2.

Figure 8A shows the effect of fiber type on equivalent flexural
strength of the normal strength matrix with 0.4% fibers; while
Figure 8B shows the equivalent flexural strength of the normal
strength matrix with 1.0% fibers. The same arrangement is used
for the series of the high strength matrix in Figures 8C, D.

As shown in Figure 8A, the order of equivalent flexural
strength among test series with 0.4% fibers is as follows:
fpeak > fL/600 > fL/300 > fL/200 > fL/150, which indicates the load

FIGURE 8
Effect of fiber type on equivalent flexural strength for (A) normal strengthmatrix with 0.4% fibers; (B) normal strengthmatrix with 1.0% fibers; (C) high
strength matrix with 0.4% fibers; (D) high strength matrix with 1.0% fibers.
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resistance of SFRC is reduced as the deflection increases. The
effect of fiber type on equivalent flexural strength is insignificant
for the series with 0.4% fibers, only fL/200 and fL/150 of HB-series
have a higher value than that of M- and C- series. For example,
the fL/150 of N-M-0.4, N-C-0.4 and N-HB-0.4 are 1.8863 MPa,
1.7103 MPa and 2.6758 MPa, respectively.

In Figure 8B, the order of equivalent flexural strength among
test series with 1.0% fibers is still as follows: fpeak > fL/600 > fL/300 >
fL/200 > fL/150. However, since the load resistance of N-HB-1.0 is
mildly reduced after the peak point, the difference of fL/m for HB-
series is minor. The fpeak, fL/600, fL/300, fL/200 and fL/150 of N-HB-
1.0 are 6.877 MPa, 5.6993 MPa, 5.6954 MPa, 5.5671 MPa and
5.4540 MPa, respectively. A significant difference in equivalent
flexural strength is noted for the test series with different types of
1.0% fibers. Their order is as follows: HB- > C- > M-fibers. For
example, the fL/150 are 2.2099 MPa, 2.9272 MPa and 5.4540 MPa
for N-M-1.0, N-C-1.0 and N-HB-1.0, respectively.

The same general trend can be observed from Figures 8C,D for
the high strength matrix. It is noted that, with different types of fiber,
the differences among those high strength specimens are more
notable compare to that among those normal strength specimens.
For example, the fL/150 are 1.3319 MPa, 1.6773 MPa and 2.7695 MPa
for H-M-0.4, H-C-0.4 and H-HB-0.4, respectively; while the fL/150

are 2.3072 MPa, 2.0149 MPa and 6.1523 MPa for H-M-1.0, H-C-
1.0 and H-HB-1.0, respectively.

Figure 9A shows the effect of fiber aspect ratio on the equivalent
flexural strength of normal strength matrix with 0.4% fibers; while
Figure 9B shows the equivalent flexural strength of normal strength
matrix with 1.0% fibers. The same arrangement is used for the series
of high strength matrix in Figures 9C, D.

As shown in Figure 9A, the HB-fiber provides the highest fpeak
for the test series with 0.4% fibers, while the HC-fiber provides
the highest fL/m. The difference of fL/m is not notable, which
indicates that the fiber aspect ratio has less effect on fL/m than
fiber type. For example, the fL/600, fL/300, fL/200 and fL/150 of N-HC-
0.4 are 4.0246 MPa, 3.7622 MPa, 3.5571 MPa and 3.3771 MPa,
respectively. The same general trend for the specimens with 1.0%
fibers can be observed from Figure 9B, and the difference of fL/m is
less than that with 0.4% fibers. For example, fL/600, fL/300, fL/200
and fL/150 of N-HC-1.0 are 5.5663 MPa, 5.7663 MPa, 5.9059 MPa
and 5.8588 MPa, respectively. Similar general trend can be
observed from Figures 9C, D for the high strength matrix. It
is noted that the range of fL/m is wide for the test series of H-HB-
0.4. The fpeak, fL/600, fL/300, fL/200 and fL/150 are 6.877 MPa,
4.8228 MPa, 3.8613 MPa, 3.1888 MPa and 2.7695 MPa,
respectively.

FIGURE 9
Effect of fiber aspect ratio on equivalent flexural strength for (A) normal strength matrix with 0.4% fibers; (B) normal strength matrix with 1.0% fibers;
(C) high strength matrix with 0.4% fibers; (D) high strength matrix with 1.0% fibers.
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4 Conclusion

This study investigated the influence of fiber type and aspect
ratio on the flexural performance of Steel Fiber Reinforced Concrete
(SFRC) with two volume fraction contents (0.4% and 1.0%) in
different matrix (normal and high strength). The five steel fibers
were milled fiber (M), corrugated fiber (C), three hooked fibers (HA,
HB and HC) with aspect ratios of 45, 55, and 65, respectively. The
SFRC produced the different load-deflection curves according to the
varying fiber types and aspect ratios. The following conclusions can
be drawn from the experimental study conducted. Through the
comparison of flexural behavior of SFRC with M, C, and HB fibers,
the influence of fiber type on the flexural performance was analyzed;
while the influence of fiber aspect ratio was analyzed by using SFRC
with HA, HB, and HC fibers. This study can provide reference for
engineering applications under complex stress states with high anti-
cracking requirements. Additionally, the findings of this study can
serve as a foundation for the application of steel fibers in both
normal- and high -strength concrete.

(1) The hooked steel fiber reinforced specimens generated the best
load-deflection responses than milled steel fiber and corrugated
steel fiber. The post-peak ductility of hooked steel fiber
reinforced concrete shows an increasing trend as the fiber
aspect ratio increases. The deflection-hardening behavior of

SFRC with 1.0% HC-fibers can be observed, while other
SFRC performed a deflection-softening response.

(2) The energy absorption capacity of specimens with 1.0% fibers
was significantly higher than that with 0.4% fibers. The Epeak of
all test series are similar. The order of EL/m based on fiber type is
observed to be as follows: HB-fibers > C-fibers > M-fibers. The
EL/150 of high strength concrete with 1.0% HB-fibers is 2.67 and
3.05 times higher than that with 1.0% M-and C-fibers,
respectively. The EL/150 of normal strength concrete with
1.0% HB-fibers is 2.47 and 1.86 times higher than that with
1.0% M-and C-fibers, respectively. The order of EL/m based on
fiber aspect ratio is as follows: HC-fibers > HB-fibers > HA-
fibers. The EL/150 of high strength concrete with 1.0% HC-fibers
is 1.75 and 1.17 times higher than that with 1.0% HA-and HB-
fibers, respectively. The EL/150 of normal strength concrete with
1.0%HC-fibers is 1.48 and 1.07 times higher than that with 1.0%
HA-and HB-fibers, respectively.

(3) The effect of fiber type on equivalent flexural strength for test
series with 0.4% fibers is less than that with 1.0% fibers. The
order of fL/m based on fiber type is observed to be as follows: HB-
fiber >C-fiber >M-fiber. The HB-fiber provides highest the fpeak
for test series with different fiber aspect ratios, while the HC-
fiber provides the highest fL/m.

(4) The different effects of fiber type and aspect ratio on flexural
behavior of concrete are more obvious in high strength concrete
than in low strength concrete.
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TABLE 6 Equivalent flexural strength of SFRC (MPa).

Notation fpeak fL/600 fL/300 fL/200 fL/150

N-M-0.4 6.29 4.60 3.14 2.34 1.89

N-C-0.4 5.73 4.27 3.10 2.20 1.71

N-HA-0.4 4.94 3.15 2.57 2.35 2.20

N-HB-0.4 5.93 3.85 3.11 2.84 2.68

N-HC-0.4 5.15 4.02 3.76 3.56 3.38

N-M-1.0 5.77 4.15 3.17 2.58 2.21

N-C-1.0 6.36 5.28 4.00 3.37 2.93

N-HA-1.0 5.54 4.55 4.22 4.02 3.97

N-HB-1.0 6.88 5.70 5.70 5.57 5.45

N-HC-1.0 5.93 5.57 5.77 5.91 5.86

H-M-0.4 5.61 3.58 2.32 1.77 1.33

H-C-0.4 5.58 4.16 3.01 2.15 1.68

H-HA-0.4 5.54 3.46 3.36 3.38 3.43

H-HB-0.4 6.88 4.82 3.86 3.19 2.77

H-HC-0.4 5.93 3.90 4.06 4.29 -

H-M-1.0 6.33 4.57 3.53 2.80 2.31

H-C-1.0 5.83 4.24 3.02 2.42 2.01

H-HA-1.0 6.33 4.58 4.34 4.19 4.11

H-HB-1.0 7.23 5.58 6.52 6.37 6.15

H-HC-1.0 5.90 5.78 6.63 7.04 7.20
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