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The performance and operational stability of non-clogging pumps can be affected
by cavitation. To accurately identify the cavitation state of the non-clogging pump
and provide technical references for monitoring its operation, a study was
conducted on the optimization of Elman neural networks for cavitation
monitoring and identification using the Improved Lévy Flight Bat Algorithm
(ILBA) on the basis of the traditional Bat Algorithm (BA). The ILBA employs
multiple bats to interact and search for targets and utilizes the local search
strategy of Lévy flight, effectively avoiding local minima by taking advantage of
the non-uniform random walk characteristics of large jumps. The ILBA algorithm
demonstrates superior performance compared to other traditional algorithms
through simulation testing and comparative calculations with eight benchmark
test functions. On this basis, the optimization of the weights and thresholds of the
Elman neural network was carried out by the improved bat algorithm. This leads to
an enhancement in the accuracy of the neural network for identifying and
classifying cavitation data, and the establishment of the ILBA-Elman cavitation
diagnosis model was achieved. Collect pressure pulsation signals at the tongue of
the non-clogging pump volute through cavitation tests. Through the cavitation
feature extraction method based on Variational Mode Decomposition (VMD) and
Multi-scale Dispersion Entropy (MDE), the interference signal can be effectively
suppressed and the complexity of the time series can be measured from multiple
angles, thereby creating a cavitation feature data set. The improved cavitation
diagnosis model (ILBA-Elman) can realize the effective identification of the
cavitation characteristics of non-clogging pumps through a variety of
algorithm comparison experiments.
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1 Introduction

The centrifugal non-clogging pumps are essential components for offshore oil platform
production and fire protection. Due to the high sediment content in seawater, ocean currents
can also stir up sand, gravel, aquatic vegetation, and various suspended solids from the
seabed. Single-blade centrifugal non-clogging pumps offer excellent passage capacity, wear
resistance, and high efficiency. They provide reliable support for tasks on oil platforms,
including seawater cleaning, well maintenance, fire sprinkler systems, and sewage treatment
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(Noon et al., 2021; Li et al., 2023; Quan et al., 2021). The non-
clogging pump is characterized by strong conveying capacity, wear
resistance, and high efficiency. In actual operation, the non-clogging
pump may experience cavitation due to improper selection, harsh
operating environments, and poor ability to resist cavitation (Kan
et al., 2022). When the temperature remains constant in the
hydraulic machinery, a significant drop in internal liquid
pressure beyond a critical point leads to the formation of
numerous vapor bubbles. These bubbles flow along with the
liquid and continuously spread within the passage. Upon
reaching the high-pressure region, the bubbles rapidly collapse
under the high pressure. This collapse creates voids in the
original bubble positions, and the surrounding water rushes in,
generating a substantial impact force that damages the impeller and
the wall (Siano and Panza, 2018; Rauf et al., 2020; Li et al., 2022; Lang
et al., 2023). To prevent pump damage from cavitation, timely
recognition and warning of cavitation states are crucial. Kumar
et al. (2017) employed various analysis methods to extract feature
values and used automated algorithms to adjust the support vector
machine penalty factor, enhancing the accuracy of centrifugal pump
cavitation recognition. Neill et al. (1997) used acoustic emission
sensors to collect data signals from cavitation and normal pump
operation, concluding that bubble collapse leads to higher amplitude
and frequency in sound signals. Lu et al. (2022) defined a
dimensionless parameter of power ratio r, which divides the
vibration power in 1,200–1,400 Hz by the vibration power in
0–200 Hz, to judge the cavitation occurrence. Pressure pulsation
and electrical measurements are methods that can detect the
cavitation state, but each has advantages and disadvantages.
Currently, researches are mainly focused on acoustic and
pressure pulsation methods, which allow relatively convenient
and intuitive state recognition using test instruments (Lang et al.,
2022). The original test signal collected contains a lot of effective
information that cannot be used directly. It is necessary to extract
the features of the original signal through signal processing methods.
The primary feature extraction methods include time-domain,
frequency-domain, and time-frequency-domain methods. Azizi
et al. (2017) used a hybrid feature selection technique involving
empirical mode decomposition and generalized regression neural
network to enhance cavitation recognition accuracy.

The Bat Algorithm (BA) was a metaheuristic algorithm created
by Yang in 2010 based on swarm intelligence theory. This algorithm
imitates bats in nature to search for prey through echolocation. It
has the advantages of simple structure, few parameters, and strong
stability. Therefore, it has been widely used in fields such as function
optimization and pattern recognition (Yang and He, 2013).
Eskandari and Seifaddini (2023) proposed a hybrid binary bat
particle swarm optimization algorithm to improve the ability to
converge to global optimal solutions. Cui et al. (2019) designed two
new variants based on Principal Component Analysis, using the
golden section method to determine correlation and generation
thresholds, enhancing the effectiveness of a new strategy for bat
population to find optimal solutions. Elman neural network, as a
typical local regression network, is based on the basic structure of BP
network. It adds a continuation layer to the hidden layer as a one-
step delay operator to achieve the purpose of memory, thereby
enabling the system to adapt to time-varying characteristics and
enhancing the global stability of the network. It is commonly used to

solve fast optimization problems and is widely used in the field of
pattern classification and prediction (Alamgir et al., 2022).

This paper optimizes and improves the traditional bat algorithm
to enhance its optimization capability and avoid premature
entrapment in local optima. The improved bat algorithm is
combined with the Elman neural network to form a cavitation
recognition program (ILBA-Elman). Through the optimization of
weights and thresholds in the Elman neural network using the
improved bat algorithm, the accuracy of the neural network in
identifying cavitation data features is improved. The research
focuses on a single-blade centrifugal non-clogging pump,
conducting cavitation experiments on the test pump and
collecting pressure pulsation signals at the volute tongue. The
paper analyzes the cavitation characteristics of the test pump,
summarizes cavitation patterns, and uses Variational Mode
Decomposition (VMD) and Multiscale Dispersion Entropy
(MDE) to extract cavitation feature data samples. Finally, ILBA-
Elman is applied to diagnose and classify the cavitation state of the
test pump, providing a basis for cavitation identification and fault
diagnosis during the operation of non-clogging pumps on offshore
oil platforms.

2 Bat algorithm and its improvement
method

2.1 Basic bat algorithm mechanism

Bats utilize echolocation techniques to communicate with each
other, navigate in dark environments, avoid obstacles, and detect the
location of prey. A bat colony emits loud sound waves and
determines the position of prey by listening to the signals
reflected back from surrounding objects (Bajaj et al., 2022). In
the process of searching for prey, bats search for the optimal
solution by changing the frequency, loudness, and emissivity of
sound waves (Yang and Hossein, 2012). The bat sound wave
frequency, velocity, and position updating process are
represented by Eqs 1–3.

f i � f min + f max − f min( ) p rand (1)
vt+1i � vti + xti − xbest( ) p f i (2)

xt+1i � xti + vt+1i (3)
Where fi represents the bat sound wave frequency, rand is a

random number in the range of [−1, 1] following a uniform
distribution, vi

t and xi
t denote the bat individual flight velocity

and position, respectively. xbest represents the global optimal
position of the bat population.

After the global search phase, the algorithm proceeds to the local
search phase where bat positions are updated according to Eq. 4.

xti � xbest + εAave (4)
rt+1i � r0i p 1[ − exp −γt( )] (5)

At+1
i � αAt

i (6)
Where γ and α represent the sound wave emission coefficient

and sound wave loudness attenuation coefficient, respectively.
Subsequently, the global best solution is updated, and the
termination condition is checked. If the specified optimization
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accuracy or maximum number of iterations is reached, the optimal
solution is outputted.

2.2 Improvement methods for the bat
algorithm

The Bat Algorithm is highly effective in solving complex
problems. However, like other metaheuristic algorithms, it has
some limitations that hinder its success rate in optimization
problem-solving. While the initial search mechanism of the Bat
Algorithm allows the bat population to quickly and thoroughly
search for prey, if the current best solution is not in the vicinity of the
global optimum, the algorithm may prematurely converge to a local
optimum (Bezdan et al., 2022). Additionally, the local search phase
can result in a large number of bats congregating near the current
best bat, reducing individual diversity and causing the algorithm to
converge prematurely around a local extremum (Deotti et al., 2020).

To overcome these limitations, the Bat Algorithm (BA) is
optimized and designed primarily in two aspects. Firstly, the
improvement lies in the formulation of the new bat position,
which is determined by Eq. 7.

xt+1i � xti + xtb1 − xtb2( )rand + xtb3 − xtb4( )rand + xtb5 − xtb6( )rand
(7)

Where xb1
t, xb2

t, xb3
t, xb4

t, xb5
t, xb6

t represent six randomly selected bats
from the bat population, i.e., xb1

t ≠ xb2
t ≠ xb3

t ≠ xb4
t ≠ xb5

t ≠ xb6
t. This

represents a diversification strategy, and if the newly generated position
is better than the current position, the bat position is updated.

Secondly, a series of modifications have been made along the
basic logic of the Bat Algorithm. Simplify the update procedure of
the bat position, improve the efficiency of the bat approaching the
prey effectively by not considering the velocity v in the original bat
algorithm, the efficiency of bats effectively approaching prey is
enhanced. The new position update is represented by Eq. 8.

xt+1i � xti + x* − xti( )f i (8)
Where x* represents the bat current best position, which is the
position closest to the prey discovered by the bat population at the
moment. This equation, as it disregards the influence of velocity on
prey search, may lead to a decrease in diversity and insufficient local
search capability in the later stages of the search.

Therefore, to address this limitation, a new mathematical
formula based on Lévy flights is introduced. Lévy flight is a type
of random walk where the step length is drawn from the Lévy
distribution. Due to its variance characteristics, significant
displacements can occur in this random walk, and the resulting
trajectory often exhibits self-similarity, with long jumps interspersed
with shorter jumps at all scales. Many metaheuristic algorithms
adopt Lévy flights to escape local optima (Vashishtha and Kumar,
2021). It is a more effective randomization strategy than traditional
uniform distribution, and some typical features of Lévy flights have
been observed in the flight behaviors of various animals and insects
in nature (Campeau et al., 2022). To prevent excessive random step
lengths that may reduce search accuracy during the Lévy flight
process, the Mantegna method is used to generate random step
lengths that follow the Lévy distribution. The position update of
Lévy flight is shown in Eq. 9.

xt+1i � xti + ∂ x* − xti( )⊕ Lévy β( ) (9)
Where represents the tensor product, β is the Lévy flight exponent,
and it is set to 1 < β ≤ 3. ∂ represents the step size control amount.
Where (x*-xi

t) approximates the current bat position to the location
where the bat population has discovered the best solution and scales
the Lévy flight accordingly to an appropriate magnitude for each
position dimension. After generating the new position, the bat
compares it with its current position rather than the current best
position, effectively avoiding the neglect of high-quality solutions.

In practical application, in order to prevent the search accuracy
from being too large, the Mantegna method is used to generate a
random step that obeys the Lévy distribution. The step size s is
realized by Eq. 10.

s � u

v| |1/β (10)

Where u and v are drawn from a normal distribution, i.e., u ~ N (0,
σu

2) and v ~ N (0, σv
2). σu

2 is generated using Eq. 11.

σu � Γ 1 + β( ) sin πβ/2( )
βΓ 1 + β( )/2 β−1( )/2[ ]⎧⎨⎩ ⎫⎬⎭1/β

(11)

Where Γ is the gamma function, and σu
2 = 1.

The algorithm resulting from all the modifications described
above is referred to as the Improved Lévy Flight Bat Algorithm
(ILBA), or simply ILBA. ILBA overcomes some of the limitations of
the traditional BA. It promotes effective exploration of the search
space during the global search phase using Eq. 7 and conducts a local
search using Eqs 8, 11, enabling the algorithm to find the optimal
solution and allowing the bat population to approach the prey as
accurately as possible during the iteration process. As in the final
stages of the iteration, bats in the population tend to converge
towards each other, both equations ensure sufficient exploration of
the search space around the best solution, greatly facilitating the
ability of ILBA to escape local optima across different iterations.
ILBA retains all the premises adopted by BA and further assumes: 1)
Initially, each bat interacts with six other bats in the population to
acquire crucial signals as feedback, aiming to approach the prey as
quickly as possible. 2) After completing this operation, the current
bat continues to approach the bat identified as closest to the prey,
eventually being able to perform a Lévy flight around it to be the first
to reach the prey.

The basic steps of the ILBA algorithm are as follows:

Step 1: Initialize algorithm parameters and define the evaluation
function, define the auxiliary parameter for Lévy flight using Eq. 10.

Step 2: Bat population initialization, calculate the initial fitness
value for each individual.

Step 3: Select six bats to interact with the current bat. Generate new
solutions using Eq. 7, calculate the fitness of each bat, and identify
the best individual.

Step 4: Determine the ultrasonic frequency fi of each bat based on
Eq. 1. Update the flight positions of the bats using Eq. 8. Calculate
the fitness of each bat using the evaluation function and identify the
best individual.
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Step 5: Perform local search. If rand > ri, generate a local solution
using Lévy flight. Utilize Eqs 9, 11 to search for the best solution,
update the flight positions of the bats, calculate the fitness of each bat
using the evaluation function, and identify the best individual.

Step 6: Update the local new solution: Generate a random number
rand_ At

i for each bat individual i. If rand_ Ai < At
i and f(xi

t) <
f(xbest), accept the new solution.

Step 7: Adjust the pulse emission rate ri
t and loudness At

i of each
bat according to Eqs 5, 6.

Step 8: Update the global best solution and check the termination
condition.

3 Simulation experiments

3.1 Test functions

To validate the efficiency of the ILBA algorithm, multiple sets of
test functions are selected in this study. The information of the test
functions is presented in Table 1.

The test functions include single-peak (F1, F2, F3, F4 and F5),
multi-modal (F6 and F7), and fixed-dimension multi-modal (F8)
benchmark functions, which effectively evaluate the performance of
the algorithm. The range in the function information represents the
boundaries of the search space, with the minimum value being the
optimal solution for the function. The dimension space of the first
seven functions is set to 30 dimensions, and the last fixed-
dimensional multi-modal benchmark function is set to
2 dimensions, which puts forward higher requirements on the
optimization calculation ability of the test algorithm.

Experimental comparisons are conducted between the
proposed Improved Lévy Flight Bat Algorithm (ILBA), Bat

Algorithm (BA), and Particle Swarm Optimization (PSO). All
three algorithms belong to meta-heuristics, among which PSO is
a search algorithm that simulates the foraging behavior of birds
in groups. During the calculation, the particle swarm algorithm is
initialized as a random group of particles, and in each iteration
the particles update themselves by tracking two extreme values:
one is the optimal solution found by the particle itself, and the
other is the optimal solution found by the entire population. PSO,
like other evolutionary algorithms, realizes the search for the
optimal solution of complex space through cooperation and
competition between individuals in the concepts of
“population” and “evolution.” The software MATLAB R2021b
is used for operation programming, and the basic parameters of
each algorithm are shown in Table 2.

3.2 Analysis of experimental results

Set the initial population of bats to 30, with 500 iterations.
Repeat the experiments 30 times and record the average,
maximum, minimum, and standard deviation values,
synchronize the three algorithms for testing. The results are
presented in Table 3.

From the observations in Table 3, it can be seen that the ILBA
algorithm shows significant improvement in convergence accuracy
compared to the traditional BA and PSO algorithms. The traditional
algorithms perform poorly in higher-dimensional solutions, making
it difficult to reach near-optimal values. However, the ILBA
algorithm demonstrates better accuracy and is able to overcome
these challenges. The PSO algorithm shows higher convergence
accuracy compared to the basic BA algorithm, but there is still a
certain gap compared to ILBA. The ILBA algorithm consistently
outperforms the other two algorithms and achieves better results in
various complex function tests. This is due to the improvements in
the global search equation and the introduction of Lévy flight

TABLE 1 Test function information.

Function name Function number Function expression Range Minimum value

Schwefel’s2.2 F1
f(x) � ∑n

i�1
|xi| +∏n

i�1
|xi|

[−10, 10] 0

Schwefel’s1.2 F2
f(x) � ∑n

i�1
(∑n
j−1

xj)2 [−100, 100] 0

Schwefel’s2.21 F3 f(x) � max i {|x|, 1≤ i≤ n} [−100, 100] 0

Rosenbrock F4
f(x) � ∑n−1

i�1
[100(xi+1 − x2i )2 + (xi−1)2]

[−30, 30] 0

Noise F5
f(x) � ∑n

i�1
ix4i + random[0, 1) [−1.28, 1.28] 0

Rastrigin F6
f(x) � ∑n

i�1
[x2

i −10 cos(2πxi)+10]
[−5.12, 5.12] 0

Ackley F7
f(x)� −20 exp(−0.2

�����
1
n ∑n
i�1
x2
i

√
)2 − exp(1n∑n

i�1
cos(2πxi))+20+e

[−32, 32] 0

Shekel’s Foxholes F8
f(x) � ( 1

500 + ∑25
j�1

1
j+∑2

ι�1(xi−αij)6
)−1 [−65, 65] 1
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strategy in the ILBA algorithm, enabling better search for the
optimal solution.

3.3 Algorithm iteration process analysis

Figure 1 depicts the iteration process of the Particle Swarm
Optimization (PSO) algorithm, Bat Algorithm (BA), and Improved
Lévy Flight Bat Algorithm (ILBA) under eight different test
functions. The left side of each graph shows a three-dimensional
view of the test function, while the right side displays the
convergence curves of the three algorithms. The x-axis represents
the number of iterations, and the y-axis represents the minimum
value reached by the algorithm during the iteration process.

Overall, in different dimensions, the ILBA algorithm has higher
accuracy and faster convergence speed than the BA algorithm and
the PSO algorithm, and can quickly find the optimal solution in a
shorter iteration step. The overall convergence performance of the
BA algorithm is the worst, and the accuracy is low, it is easy to fall
into the local optimal solution trap prematurely in the process of
solving complex functions, resulting in large errors in calculation
results. The BA algorithm can be faster than the PSO algorithm in
only a small part of the lower convergence accuracy environment.
This may be due to the search strategy based on acoustic emissivity
and loudness in the early stage of the bat algorithm, which led to bat
swarms gathering near the local optimal solution and unable to
reach the global optimal solution. Although the PSO algorithm can
achieve high convergence accuracy in most cases, its convergence
speed is relatively slow, and it cannot converge to a smooth-running
stage in time in a limited number of iteration steps. From a specific
point of view, as shown in Figures 1A–E, the ILBA algorithm can
converge to a higher accuracy under the high-dimensional single-
mode benchmark function test; under the high-latitude multi-modal
benchmark function test, as shown in Figure 1G, Although the
accuracy of the ILBA algorithm and the PSO algorithm is close when
the number of convergence steps is high, ILBA can improve the
convergence accuracy again soon; Although the three algorithms all
stop converging after a short number of steps, the ILBA algorithm
obviously achieves higher convergence accuracy. In actual
engineering, the efficiency of global optimization is particularly
critical. Achieving higher accuracy within a shorter number of
iterations is conducive to shortening the calculation cycle and
saving computing resources. The ILBA algorithm benefits from
the improved global and local search and step size adjustment
strategies of the bat algorithm. The bat can quickly jump out of
the trap of the local extremum and continue the optimization
process, so that the improved bat algorithm can quickly converge
in the early stage of iteration.

TABLE 2 Algorithm parameter setting.

Algorithm name Parameter settings Parameter description

ILBA NP = 30, A0 = 1, A∞ = 1, r0 = 0, r∞ = 1, Fmax = 1, Fmin = 0, β = 1.7 Experimental Value

BA NP = 30, α = 0.9, Fmax = 1, Fmin = 0, γ = 0.9, r0 = 0.7 Reference Value

PSO NP = 30, wmax = 0.9, wmin = 0.2, c1 = 2, c2 = 2 Reference Value

TABLE 3 Comparison of benchmark function results.

Function Value PSO BA ILBA

F1 Average Value 1.54E−01 3.31E+01 6.15E−02

Maximum Value 5.99E−01 1.69E+02 2.53E−01

Minimum Value 6.47E-03 7.80E+00 1.13E−03

Standard Deviation 1.50E−01 3.75E+01 7.01E−02

F2 Average Value 7.94E+01 5.11E+01 5.82E−02

Maximum Value 1.40E+02 8.16E+01 4.10E−01

Minimum Value 3.15E+01 2.28E+01 1.27E−06

Standard Deviation 3.56E+01 1.47E+01 9.90E−02

F3 Average Value 1.15E+00 1.17E+01 1.87E−02

Maximum Value 1.80E+00 2.32E+01 6.36E−02

Minimum Value 7.81E−01 2.24E+00 6.22E−05

Standard Deviation 2.23E−01 5.20E+00 1.76E−02

F4 Average Value 1.05E+02 8.78E+02 2.91E+01

Maximum Value 4.77E+02 1.49E+03 2.94E+01

Minimum Value 2.66E+01 2.30E+02 2.90E+01

Standard Deviation 8.54E+01 3.33E+02 1.03E−01

F5 Average Value 1.97E−01 4.22E+01 3.81E−03

Maximum Value 4.03E−01 5.57E+01 8.84E−03

Minimum Value 1.01E−01 2.40E+01 7.79E−04

Standard Deviation 7.13E−02 8.70E+00 2.08E−03

F6 Average Value 5.53E+01 2.79E+02 8.52E−03

Maximum Value 8.86E+01 3.29E+02 6.63E−02

Minimum Value 3.17E+01 2.24E+02 6.72E−07

Standard Deviation 1.33E+01 2.41E+01 1.59E−02

F7 Average Value 3.63E−01 1.02E+01 2.23E−02

Maximum Value 1.50E+00 1.92E+01 1.09E−01

Minimum Value 4.00E−03 3.12E+00 1.78E−04

Standard Deviation 5.65E−01 7.26E+00 2.12E−02

F8 Average Value 3.33E+00 2.93E+00 1.13E+00

Maximum Value 1.08E+01 1.08E+01 4.95E+00

Minimum Value 9.98E−01 9.98E−01 9.98E−01

Standard Deviation 2.33E+00 2.11E+00 7.09E−01
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4 Single-blade non-clogging pump
cavitation experiment and data
acquisition

4.1 Test equipment and methods

The test pump selected in this paper is a single-blade centrifugal
non-clogging pump with a rated power of 2.2 kW. Its main design
parameters are: head Hd = 13.8 m, flow Qd = 20 m3/h, speed n =
2,940 r/min, specific speed ns = 132. The non-clogging pump is
driven by a three-phase asynchronous motor with a rotation
frequency of 49 Hz. The test in this paper was carried out on the
closed test bench of the Machinery Industry Drainage and Irrigation
Machinery Product Quality Inspection Center (Zhenjiang). The test
bench was carried out in accordance with the standard of GB/T
3216-2016 “Hydraulic Performance Acceptance Test of Rotary
Power Pump Grade 1, Grade 2 and Grade 3”. The precision of
the test bench is level 1. The layout diagram of the test bench is
shown in Figure 2.

The CYG1102F pressure pulsation sensor is selected for
collecting the pressure pulsation signals in the experiment. The
sensors V1 and V2 are placed at two different positions in the
horizontal direction of the volute casing to collect the pressure
pulsation data.

In order to verify the reliability of the test in this paper, three
external characteristic tests were carried out on the test pump under
different flow conditions. By changing the adjustment mode of the
outlet valve, each time at an interval of 0.1 Qd, record the
performance parameters of the experimental pump. Figure 3
shows the external characteristic curve of the test pump under a
standard atmospheric pressure. According to the error bar analysis
under different working conditions, it can be seen that the minimum
error in head and efficiency appears at the rated flow rate (20 m3/h).
The repeatability test results show the stability and reliability of the
test equipment and test results.

The sampling frequency in this experiment is set to
24,000 Hz, with a single sampling time of 0.05 s. The
experiment is conducted under the rated flow rate of 20 m3/h

FIGURE 1
Change trend of algorithm iteration. (A) F1 Iteration Process. (B) F2 Iteration Process. (C) F3 Iteration Process. (D) F4 Iteration Process. (E) F5 Iteration
Process. (F) F6 Iteration Process. (G) F7 Iteration Process. (H) F8 Iteration Process.
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and the rated rotational speed of 2,940 r/min for the single-blade
non-clogging pump. At the beginning of the experiment, the inlet
valve is fully open, and the outlet valve is adjusted to stabilize the
flow rate at 20 m3/h. The vacuum pump is then turned on to
gradually reduce the inlet pressure and induce cavitation in the
pump. To maintain a stable flow rate, the outlet valve is
continuously adjusted in real-time until the end of the
experiment. Throughout the experiment, the signals of the
pump inlet and outlet pressures, flow rate, and volute casing
pressure pulsation are synchronously collected.

4.2 Experimental results

The calculation formula for the Net Positive Suction Head
Available (NPSHa) in the device is given by:

NPSHa � pin − pv
ρg

(12)

where pin is the pump inlet pressure and pv is the saturated vapor
pressure of water at 25°C, which has a value of 3,469 Pa.

In actual engineering, it is usually considered that the head of the
centrifugal pump drops by 3% as the basis for the onset of cavitation
(Arendra et al., 2020). In this paper, the cavitation development process is
divided into three stages according to the head drop ratio: non-cavitation
(NPSHa= 7.49 m), cavitation inception (head drop 3%,NPSHa= 1.89 m)
and severe cavitation (head drop 6%, NPSHa = 1.76 m). Carry out
cavitation test on the test pump, as the inlet pressure decreases, the head
initially remains stable or even shows an increasing trend. However, as
the inlet pressure further decreases, the head rapidly drops.

Analyze the collected pressure pulsation signal data. Since the
pressure pulsation signal data is huge and the processing is
cumbersome, the main variables are dimensionally processed and
the pressure pulsation value is converted into the pressure pulsation
coefficient CP. The expression formula is as follows:

Cp � p − �p
0.5ρv2

(13)

Where p is the transient static pressure value, �p represents the
average static pressure value, and v represents the impeller
peripheral speed.

Analyze the collected pressure pulsation signal data and use Cmor
wavelet transform to compensate for the lack of time axis in
conventional Fourier transform, and the time-frequency domain
diagram of the pressure fluctuation under different cavitation stages
is obtained, as shown in Figure 4, the left and right are the wavelet
transform diagrams of the V1monitoring point and the V2monitoring
point respectively. It can be seen from the figure that when the
monitoring point V1 close to the tongue is not in cavitation, since
the dynamic and static interference between the blade and the volute
tongue is the main cause of the pressure pulsation transformation, the
pressure pulsation amplitude signal is mainly concentrated at one times
the blade frequency (49 Hz), the amplitude of the secondarymain signal
is concentrated around double and triple the leaf frequency, and the
maximum overall amplitude does not exceed 0.08.With the decrease of
the inlet pressure, the periodic cavitation collapse makes the internal
flow structure become complicated, and the signal amplitude at high

FIGURE 2
Single-blade non-clogging pump closed test stand.

FIGURE 3
Repeatability test.
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frequency drops sharply when the cavitation is incipient, and the overall
amplitude is concentrated around one times the leaf frequency, and the
amplitude ratio is greater than that of the cavitation state has increased
significantly, increasing by 0.125. As the cavitation process intensifies,
the accumulation of gas in the pump interferes with the continuity of
the flow field. In the severe cavitation stage, the overall amplitude is still
concentrated at the one-time vane frequency and further increases, and
the maximum value is at one-time vane frequency (49 Hz). The
amplitude reached 0.2, and at the same time, the amplitude near the
second leaf frequency increased compared with the initial stage of
cavitation. The amplitude change of the pressure pulsation signal at the
monitoring point V2 is not so drastic compared with the monitoring
point V1 close to the diaphragm. On the whole, when there is no
cavitation, the amplitude of the pressure pulsation signal at V2 is
concentrated around the double leaf frequency and double leaf
frequency. As the cavitation intensifies, the amplitude of the signal
around the double leaf frequency increases. The amplitude and range of
the signal amplitude are increasing, and themaximum signal amplitude
reaches 0.11 near 49 Hz. The overall transformation law is similar to
that of V1, but due to the large flow channel area around the
V2 monitoring point, the liquid flow is relatively smooth and the

impact is small, and the overall amplitude change is not as obvious as
that at V1. The position close to the volute tongue is most strongly
affected by the dynamic and static interference between the impeller and
the tongue in the test, and it can represent the characteristic signal of the
non-clogging pump in the cavitation process, so the monitoring point
V1 near the volute tongue is selected. The obtained pressure pulsation
signal is further analyzed to extract the representative signal of
cavitation characteristics.

5 Numerical simulation of cavitation in
a single-blade non-clogging pump

5.1 Meshing and independence verification

The non-clogging pump belongs to the impeller rotating
machine, and there are rotating domain and static domain inside.
This paper adopts the numerical simulation calculation of the whole
flow field, that is, all the liquid flow areas in the pump are calculation
domains. UG software is used to model the single-vane test pump in
3D, which is mainly divided into five main parts: impeller, pump

FIGURE 4
Wavelet transform map of pressure pulsation monitoring points. (A) V1 Non-cavitation. (B) V2 Non-cavitation. (C) V1 Cavitation inception. (D)
V2 Cavitation inception. (E) V1 Severe cavitation. (F) V2 Severe cavitation.
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chamber, volute, inlet pipe section and outlet pipe section. The
ANSYS ICEM 19.0 software is used to divide the entire numerical
calculation model into a hexahedral structured grid. In numerical
simulation, the more and denser the grid, the more accurate the
calculation structure will be, but this will require too much
computing power of the computer and cause a lot of waste of
computing resources. Therefore, grid division needs to find a
balance between calculation accuracy and efficiency. According to
the data in Figure 5A, with the increase of the number of grids, the
calculated head of the model pump is stable at about 13.8 m, and the
value of the head is getting closer and closer to the head at the rated
flow rate. When the number of grids exceeds 11.5 × 106, the head
basically tends to be stable. Considering the calculation cost, the
number of grids selected for this simulation is 11.5 × 106. The grid
numbers of the model pump inlet, outlet, impeller, pump cavity and
volute are 2191800, 657900, 2678650, 2938552 and 3043422,
respectively. Considering the leakage loss of the mouth ring of
the front pump chamber and the disk friction loss of the front
and rear pump chambers, all the grids near the wall are encrypted
when drawing the grid, so that the global y+ is in the range of 0.3~82,
which meets the turbulence model calculation requirements. The
computational domain grid and blade surface y + are shown in
Figures 5B–D.

5.2 Numerical simulation of cavitation

Due to the generation and collapse process of cavitation will affect
the turbulent development, resulting in the imbalance between the
turbulent kinetic energy generation term and the dispersion term in the

cavitationflowduring cavitation flow, the SST k-ω turbulent flowmodel
is adopted, which has better accuracy and stability than the standard
k-ω model on the near-wall surface (Fu et al., 2020; Mousmoulis et al.,
2021). Under the condition of steady state without cavitation, the
calculation medium is clear water at 25°C under standard
atmospheric pressure, and the solid wall is set as a non-slip wall.
Since the impeller and volute are all carbon steel castings, the surface
roughness is set as 50 μm. The boundary conditions of themodel are set
according to the test conditions. The inlet boundary condition is set to
the total pressure inlet, the turbulence intensity at the inlet is set to 2%,
and the outlet boundary condition is set to the flow outlet. Since the
turbulence intensity at the outlet is set to 5%, the reference atmospheric
pressure is set to a standard atmospheric pressure of 101.325 kPa.
Considering the calculation time and calculation accuracy
comprehensively, in the simulation process, the time step is set to 1/
ω, equivalent to 0.003248 s, the iteration step is set to 2,000 steps, and
the convergence accuracy is 10−6. The solver settings are the same for all
the different flow case points.

Figure 6 illustrates a numerical simulation and experimental
comparison of the NPSHa curve, where arrows A and B indicate the
points of a 3% and 6% head drop in the pump performance during
the cavitation process. The figure also displays three-dimensional
schematic representations of the distribution of bubble volumes
within the impeller passage at these two distinct cavitation stages in
the numerical simulation. The critical NPSHa obtained by the test
and simulation is 1.89 and 1.77 m, respectively, and due to the
rougher wall surface of the test and the influence of the leakage of the
mouth ring, the head test value corresponding to the critical NPSHa

point is slightly lower than the simulated value. From the point of
view of the overall trend of the curve, the variation trend of the

FIGURE 5
Mesh independent verification and water body structure grid. (A) Mesh independent verification. (B) Impeller. (C) Volute. (D) Distribution of y+ on
blade surface.
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simulation and the test is basically consistent, which verifies the
accuracy of the numerical calculation. As shown in Figure 7, the
cavitation volume fraction distribution of the impeller and the
central section of the single-blade non-clogging pump at different
stages of cavitation. It can be seen from the figure that in the non-
cavitation state, there is no bubble distribution on the central section
of the impeller and the pump. When the inlet pressure gradually
decreases and the critical cavitation state is reached, bubbles begin to
appear near the leading edge of the blade suction surface. Obvious
cavitation distribution, the length of the cavitation is continuously
extending, and gradually diffuses to the downstream position of the
suction surface. When the inlet pressure drops to a certain level and
the pump suffers from severe cavitation, the cavitation at the inlet of
the vane has been filled with the downstream of the suction surface,
and even diffuses along the volute flow path to the pressure surface

of the impeller. Due to the particularity of the asymmetry of the
single-blade impeller, the cavitation volume distribution gradually
develops from the leading edge to the trailing edge along the suction
surface, and finally the cavitation blocks the entire impeller flow
channel. A large number of cavitation will affect the normal flow of
liquid in the pump, hinder the impeller blades from doing work on
the fluid in the pump, and cause the pump lift and efficiency to
decrease, making it unable to work normally.

6 Validation of cavitation diagnosis
model

In this chapter, the cavitation eigenvector is extracted from the
pressure pulsation signal near the septum tongue collected in the

FIGURE 6
NPSHa curve.

FIGURE 7
Cavitation volume fraction distribution of impeller and pump center section. (A) Non-cavitation. (B) Cavitation inception. (C) Severe cavitation. (D)
Non-cavitation. (E) Cavitation inception. (F) Severe cavitation.
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cavitation test of the single-blade non-clogging pump.Using the feature
signal extraction method of Variational Mode Decomposition (VMD)
+ Multiscale Dispersion Entropy (MDE), the complexity of the time
series is measured from multiple angles, and the most representative
feature vector in the original signal is extracted as a test ILBA-Elman
Dataset for the cavitation recognition program.

6.1 Variational mode decomposition (VMD)

The Variational Mode Decomposition (VMD) is a non-
recursive and nearly orthogonal adaptive decomposition method
that incorporates the decomposition process of a signal into a
variational framework. It aims to find the optimal solution by
searching the constrained variational model, thereby achieving
the adaptive decomposition of the signal (Kumar et al., 2021).
The variational solving constraint model is defined by Eq. 14.

min
uk{ }, ωk{ }

∑
k
∂t δ t( ) + j

πt( ) p uk t( )[ ]e−jωkt
����� �����2

2

{ }
s.t.∑k

k�1
uk � f t( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (14)

Where {uk} = {u1, u2, ···, uk,} represents the k mode components
obtained from the decomposition, and {ωk} = {ω1, ω2, ···, ωk,}
represents the central frequencies of each mode component.

When solving constrained variational problems, it is common to
introduce the Lagrange function. This is done by utilizing Eq. 15.

L uk{ }, ωk{ }, λ( ) � α∑k
k�1

∂t δ t( ) + j
πt

( ) p uk t( )[ ]e−jωkt
������� �������2

2

+ f t( ) −∑
k

uk t( )
���������

���������2
2

+〈λ t( ), f t( ) −∑
k

uk t( )〉
(15)

Where α represents the quadratic penalty operator, f(t) represents
the input signal, and λ(t) represents the pulse function.

By utilizing the Alternating DirectionMethod of Multipliers, the
saddle point of the Lagrange function can be found. This allows us to
obtain the optimal solution to the constrained variational model,
resulting in the mode components uk and central frequencies ωk, as
given by Eqs 16, 17, respectively.

u
∧n+1
k ω( ) � f

∧
ω( ) − ∑i≠k u

∧
i ω( ) + λ

∧
ω( )
2

1 + 2α ω − ωk( )2 (16)

ωn+1
k �

∫∞
0
ω u

∧
k ω( )

∣∣∣∣∣∣ ∣∣∣∣∣∣2dω∫∞
0
u
∧
k ω( )

∣∣∣∣∣∣ ∣∣∣∣∣∣2dω (17)

6.2 Multiscale dispersion entropy (MDE)

Dispersion entropy is an algorithm used to measure the
complexity and irregularity of a time series. It calculates the
irregularity of a time series based on the sample space dispersion
entropy and an adaptive threshold. On the other hand, multiscale
dispersion entropy calculates the dispersion entropy at different
scales, capturing the dynamic characteristics of the sequence at
different time scales. By combining the coarse-grained multiscale
dispersion entropy with dispersion entropy, a more comprehensive
description of the complexity and regularity of a time series can be
achieved. Compared to multiscale sample entropy, multiscale
dispersion entropy has advantages in signal feature extraction
(Dhandapani et al., 2022). The basic principles of multiscale
dispersion entropy are described below.

First, the time series of the initial signal is expressed as: {u(i), i =
1, 2, ···, L}, The sequence is subjected to composite coarse-graining,
and the kth coarse-grained sequence under the scale factor τ is

TABLE 4 Center frequency under different decomposition levels.

Decomposition layers k Center frequency

3 0.0035 0.131 0.317

4 0.0035 0.131 0.2035 0.322

5 0.0035 0.079 0.133 0.206 0.322

6 0.0032 0.022 0.131 0.203 0.317 0.35

7 0.0031 0.021 0.1292 0.147 0.206 0.319 0.362

TABLE 5 Dispersion entropy under different cavitation conditions.

Cavitation state Dispersion entropy value of each modal component

IMF1 IMF2 IMF3 IMF4 IMF5

Non-cavitation 2.040 3.797 4.088 4.232 4.229

Cavitation inception 1.818 2.504 3.180 3.711 4.130

Severe cavitation 1.930 2.469 3.115 3.481 3.989
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denoted as xk
t. The calculation formulas for the sequence are given

by Eqs 18, 19 as follows.

x τ( )
k,j � 1

τ
∑k+jτ

i�k+ j−1( )
u i( ), 1≤ j≤ L/τ, 1≤ k ≤ τ (18)

xτk � x τ( )
k,1 , x

τ( )
k,2 ,/{ } (19)

Then, for each scale factor τ, the Multiscale Dispersion Entropy
(MDE) is defined as shown in Eq. 20.

MDE X,m, c, τ( ) � 1
τ
∑τ
k�1

DE xτk ,m, c, d( ) (20)

Where X represents the initial time series.
Unlike traditional methods such as multiscale permutation

entropy, MDE calculates the coarse-grained sequences for each
scale factor τ and computes their dispersion entropy and average.
This approach reduces the fluctuations in entropy values caused by
increasing values of τ (Minhas et al., 2021).

6.3 Decomposition and feature extraction of
pressure pulsation signals

In VMD decomposition, there are two main parameters: the
number of modes k and the quadratic penalty factor α. The value of
k directly affects the effectiveness of signal decomposition. If k is too
large, it will increase computational cost and decrease decomposition
efficiency. On the other hand, if k is too small, it may result in mode
mixing (González-Cavieres et al., 2021). In this study, α is set to 2000,
and the value of k is determined using the center frequency method.
Different values of k (3, 4, 5, 6, 7) are chosen, and the central frequencies
of each mode component are analyzed, as shown in Table 4. It can be
observed that when k is larger than 5, the central frequencies become
similar, indicating over-decomposition. Therefore, in this study, k = 4 is
chosen as the optimal number of mode components. The dispersion
entropy of each mode component is computed for k = 4, as shown in
Table 5. According to the principle of minimum entropy, a smaller
entropy value indicates a lower probability of generating new patterns in
the decomposed sequences. This implies that the decomposed sequence
has fewer frequency components and a lower possibility ofmodemixing,
resulting in better decomposition performance, it can be seen that
IMF1 component is selected as the object for feature extraction.

The Multiscale Dispersion Entropy (MDE) is used to extract
features from the optimal mode component IMF1 of the pressure
pulsation signals in three different cavitation states. The scale factor
is set to 20, and the extraction results are shown in Figure 8.

FromFigure 8, it can be observed that as the scale factor increases, the
differences in MDE values between different cavitation states become
smaller, leading to overlapping and crossing phenomena. If a larger scale
factor is chosen to extract feature vectors, it may result in the mixing of
feature information, thus affecting the final cavitation diagnosis. On the
other hand,when the scale factor is too small, itmay not capture sufficient
feature information. Therefore, in this study, the MDE values under the
first 10 scale factors are selected to construct the feature sample set. Thus,
the VMD + MDE method is used to extract cavitation representative
features of pressure pulsation signals, decomposing the originally complex
and disordered time-domain signals to extract a traceable entropy
distribution. By comparing the entropy distribution under different
cavitation stages, the recognition and classification of pressure
pulsation signals can be achieved, and the entropy distribution can be
established as a basic dataset for training the cavitation diagnosis model.

6.4 Model diagnostics

The dataset of 300 samples is randomly divided into a training
set and a test set in a 4:1 ratio, with 240 samples used for training and
60 samples used for testing. The three cavitation states in the dataset
are labeled as 1, 2, and 3, respectively. The ILBA algorithm is used to
optimize the weights and thresholds of the Elman neural network.
The ILBA-Elman cavitation diagnostic program is established, and
the training set is used to train the model to obtain the best model
parameters and optimal network for diagnosing cavitation in the test
set. The test results are shown in Figure 9. After training, the neural
network achieves a cavitation identification accuracy of 96.67% for
the 60 samples in the test set, while the baseline Elman neural
network model only achieves a cavitation state identification
accuracy of 90% for the test set.

FIGURE 8
MDE feature extraction results.

FIGURE 9
Sample test error comparison.
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To validate the superiority of the proposed ILBA-Elman cavitation
diagnosismethod, the sample feature data extracted byMDE is inputted
into the ILBA-Elman, BA-Elman, and PSO-Elman models for
calculation and testing. To ensure the universality of the
computational results, the tests are repeated 10 times. The results
are shown in Table 6.

From Table 6, it can be observed that all three models
demonstrate good performance in terms of classification
accuracy. However, the proposed ILBA-Elman model in this
paper shows advantages in both computation time and accuracy.
Based on this analysis, it can be concluded that the proposed
cavitation diagnosis model, which combines VMD with MDE
feature extraction and utilizes the improved Lévy flight bat
algorithm with Elman neural network, achieves good results in
the recognition and classification of cavitation features in non-
clogging pumps. It can strike a balance between high
classification accuracy and low computation time cost.

7 Conclusion

In order to realize the pattern recognition of the cavitation
process of non-clogging pumps, this paper proposes a program for
identifying the cavitation characteristics of non-clogging pumps
based on the improved Lévy flight bat algorithm. The
effectiveness of the proposed method was verified through
experiments and the following conclusions were drawn:

1. By making improvements to the conventional bat algorithm, the
interaction among initial state bats positions was enhanced, and
the Lévy flight was introduced to optimize the bat position update
formula. This enhancement has increased the efficiency of bat
searching, effectively avoiding local optimal situations.

2. The cavitation tests on a single-blade non-clogging pump are
conducted to collect pressure pulsation signals at the volute
tongue, and the data is analyzed based on wavelet transform.
It was found that the dynamic and static interference between the
blades and the spacer tongue is the main cause of pressure
pulsations. As cavitation intensifies, the periodic collapse of
the bubbles makes the liquid flow in the pump become
cluttered. The accumulation of gas interferes with the fluidity
of the flow field, leading to an increase in the amplitude of the
high-frequency part. The distribution of vapor volume in the
impeller channel under cavitation condition was analyzed
through numerical simulation, and the accuracy of the
experiment was verified by comparing it with experimental data.

3. By employing Variational Mode Decomposition and Multiscale
Dispersion Entropy to extract feature vectors, interference signals
were effectively suppressed. This approach assessed the
complexity of time series from multiple perspectives. The

complex and disordered pressure pulsation time domain
signal is transformed into a traceable entropy distribution,
which improves the accuracy of cavitation recognition.

4. The ILBA-Elman cavitation recognition program was trained
and subsequently tested for cavitation data identification and
diagnosis in single-blade non-clogging pumps. The BA-Elman
and PSO-Elman models were tested for comparison. The
results revealed that the ILBA-Elman model outperformed
the other models in terms of accuracy and timeliness in
identifying the cavitation development stages in non-
clogging pumps. The improved Bat Algorithm helps the
Elman neural network to identify the cavitation feature
information more accurately.
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Nomenclature

BA Bat Algorithm

ILBA Improved Lévy Flight Bat Algorithm

VMD Variational Mode Decomposition

MDE Multi-scale Dispersion Entropy

PSO Particle Swarm Optimization

SST k-ω Shear stress transport k-ω turbulence model

CFD Computational fluid dynamics

fi Bat individual sound frequency

vi
t Bat individual flight velocity

xi
t Bat individual flight position

xbest Global optimal position of the bat population

ε A random number in the range of [−1, 1]

rit Sound wave emission rate

Ai
t Loudness of the sound waves

γ Sound wave emission coefficient

α Loudness of the sound waves

s Random step size following the Lévy distribution

� The tensor product

β Lévy flight exponent

∂ Step size control amount

Γ Gamma function

NP Number of bat populations

w Inertia weight

c Learning factor

Hd Design head

Qd Design flow rate

n Design speed

ns Specific speed

E Comprehensive uncertainty

ER Random uncertainty

ES System uncertainty

NPSHa Net positive suction head available

CP Pressure pulsation coefficient

α Quadratic penalty operator

f(t) Input signal

λ(t) Pulse function

ωk Central frequencies

τ Scale factor

k The number of modes
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