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This study aims to propose a wind power prediction method that achieves high
accuracy in order to minimize the impact of wind power on the power system and
reduce scheduling difficulties in systems incorporating wind power. The
importance of developing renewable energy has been recognized by society
due to the increasing severity of the energy crisis. Wind energy offers advantages
such as efficiency, cleanliness, and ease of development. However, the random
nature of wind energy poses challenges to power systems and complicates the
scheduling process. Therefore, accurate wind power prediction is of utmost
importance. A wind power prediction model was constructed based on an
improved tunicate swarm algorithm–extreme learning machine (ITSA-ELM).
The improved tunicate swarm algorithm (ITSA) optimizes the random
parameters of extreme learning machine (ELM), resulting in the best prediction
performance. ITSA is an enhancement of the tunicate swarm algorithm (TSA),
which introduces a reverse learning mechanism, a non-linear self-learning factor,
and a Cauchy mutation strategy to address the drawbacks of poor convergence
and susceptibility to local optima in TSA. Two different scenarios were used to
verify the effectiveness of ITSA-ELM. The results showed that ITSA-ELM has a
decrease of 1.20% and 21.67% in MAPE, compared with TSA-ELM, in May and
December, respectively. This study has significant implications for promoting the
development of renewable energy and reducing scheduling difficulties in power
systems.
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1 Introduction

Fossil fuels are considered the most widely used energy source worldwide so far. Still, due
to their limited reserves, they are prone to serious environmental pollution during use and
cannot meet the current world’s demand for sustainable energy development (Liu S. et al.,
2022; Zishan et al., 2023). Distributed power generation technology has emerged as an
important way to alleviate energy shortages and environmental pollution issues (Ai et al.,
2022; Mohale and Chelliah, 2022). Wind power generation, because of its pros of green, low-
carbon, and sustainable development, has become a more promising energy generation
method (Zhu et al., 2023). In recent years, nearly a hundred countries worldwide have built
wind power projects, with the wind power industry being the most developed in Asia,
Europe, and the Americas (Zuo et al., 2023). Moreover, the proportion of wind power in the
industrial structure of world energy resources is increasing yearly, which has a broad
development and application prospect (Liu X. F. et al., 2022; Jency and Judith, 2022; Zhuang
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et al., 2023). With the support of low-carbon and sustainable
development strategies, new power systems dominated by new
energy sources will achieve rapid and integrated development.

Against the backdrop of the existing energy structure, the
wind power’s proportion of the power grid will continue to
increase (Abdulrazaq and Vural, 2022; Xiong et al., 2022).
Unlike traditional thermal power units, wind power output is
influenced by external factors such as aging of internal devices,
geographical environment, and meteorological conditions
(Catalao et al., 2011). Moreover, wind power output has
significant non-stationary, stochastic, and intermittent
characteristics, which pose serious challenges to the safe and
reliable operation of the power system (Jia et al., 2023).
Therefore, the personnel of the system operation center will
take “wind abandonment” measures to ensure the reliability
and safety of the power system operation (Wei et al., 2022;
Zhu et al., 2023). The measures can lead to energy waste,
which is not conducive to improving new energy consumption
and reducing the competitiveness of new power systems
containing wind power (Liu et al., 2021a). Accurate wind
power output prediction results can facilitate relevant
departments to allocate electricity resources reasonably and
improve the safety of the operation (Ying et al., 2023).
Therefore, the power industry increasingly needs accurate
wind power output prediction methods.

Wind power output prediction methods can be categorized
based on the duration of the forecast into ultra-short-term,
short-term, medium-term, and long-term predictions (Yakoub
et al., 2023). Medium-term and long-term predictions can be
used to formulate power grid maintenance plans and annual
power generation plans for photovoltaic or wind farms,
determine the location of new photovoltaic or wind farms, and
evaluate photovoltaic or wind power resources (Ji et al., 2021). Ultra-
short-term prediction is mainly used to solve real-time scheduling
analysis of power grids (Hu et al., 2022). Short-term prediction is
primarily used for formulating unit generation plans and solving
peak shaving problems, which is also a key challenge in the
prediction field that this research institute needs to address
(Hong and Santos, 2023; Mohammadzadeh et al., 2023).

Extreme learning machine (ELM) is a fast, simple, and effective
machine learning algorithm with low computational complexity and
high prediction accuracy. The improved tunicate swarm algorithm
(ITSA) was proposed to optimize the weights and thresholds of ELM
and construct an ITSA-ELM wind power prediction model. The
analysis of the example results shows that this model can achieve an
accurate prediction of wind power.

This study aims to achieve an accurate wind power output
prediction, and its main innovation points are given as follows:

(1) In response to the limitations to TSA, such as being prone to
falling into local extremum solutions and weak global
convergence performance, the reverse learning mechanism,
non-linear self-learning factor, and Cauchy mutation strategy
were introduced into TSA to propose ITSA.

(2) Aiming at solving the problem of ELM random parameters
affecting performance and being difficult to be selected, ITSA is
used to optimize ELM for improving its ability to characterize
the wind power uncertainty.

(3) The optimization ability of the proposed ITSA was verified
using different test functions, and its superiority in convergence
accuracy and stability was proven.

(4) The wind power prediction ability of ITSA-ELM was verified by
two numerical examples. This model has been proven to better
characterize the volatility of wind power randomness compared
to other models.

Next, Section 2 provides relevant literature analysis. Section 3
introduces the basic model. Section 4 proposes the ITSA algorithm.
Section 5 establishes a wind power processing prediction model and
explains the conducted simulation verification. Section 6 explains
the conclusion and implication.

2 Literature review

In recent years, research has focused on wind power output
prediction methods, which can be roughly divided into physical,
statistical, and data-driven methods combined with computational
intelligence (Tastu et al., 2011; Zhang et al., 2021). The physical
method refers to using wind turbine mathematical models to
calculate wind power output based on weather forecast data,
combined with sufficient on-site conditions of the wind farm
location (Yuan et al., 2021). Physical methods rely on accurate
weather forecast data and need to consider the specific on-site
conditions of wind farms, which increases the complexity of
retesting (Yu et al., 2022). Statistical methods are used to predict
wind power output by fitting the internal relationship between data
through statistical models. The time series model is a traditional
statistical model (Wang et al., 2021). Statistical methods require high
data requirements and require a large amount of historical data for
modeling and fitting. In some cases, historical data may be
insufficient or incomplete, leading to a decrease in prediction
accuracy. Data-driven methods have been applied in prediction
research, and commonly used methods include deep learning and
machine learning (Wang et al., 2021). The data-driven method
learns complex relationships between data through training models,
enabling the prediction of time series.

ELM has the characteristics of fast strong robustness and
learning speed in regression prediction (Yang et al., 2021). Wan
et al. (2016) suggested that the random generation of weights and
thresholds influences the predictive performance of ELM.
Detailed analysis was conducted using the standard ELM and
the optimized ELM by Shi et al. (2021). Adnan et al. (2023)
proposed to use the particle swarm optimization algorithm to
optimize probability regular ELM, based on which a prediction
model was constructed for piecewise prediction. Qi et al. (2020)
used the cuckoo search algorithm to optimize ELM to achieve
short-term wind power prediction. In conclusion, the
combination of an intelligent evolutionary algorithm and ELM
can improve the prediction performance of the original model
and achieve an accurate prediction. Zhao et al. (2016) focused on
short-term commercial load forecasting and a prediction method
based on peak-valley features, and the TSA-ELM model was
proposed.

The wind power output sequence has strong non-stationary
characteristics, and there is an urgent need for accurate models to
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characterize the wind power output sequence. Therefore, developing
an algorithm with strong convergence and high optimization
accuracy is necessary to optimize ELM weights and thresholds.
TSA proposed by Zhou et al. (2022) is a new swarm intelligence
optimization algorithm (Kaur et al., 2020). TSA can be used to solve
optimization problems. Considering extreme load growth,
Kommula and Kota (2022) focused primarily on proposing a
new method of TSA to optimize the integration of electrical
distribution networks. Ganti et al. (2021) improved TSA to
control the speed and torque errors of brushless DC motors.
Gharehchopogh (2022) used TSA to optimize the radial basis
function neural network to improve maximum system power
tracking in a photovoltaic system. Considering the limitations of
TSA, such as being prone to falling into local extreme solutions and
weak global convergence performance, this study proposes an ITSA
algorithm, improving the optimization ability through a reverse
learning mechanism, non-linear self-learning factor, and Cauchy
mutation strategy. ITSA is used to optimize the internal random
parameters of ELM.

This study aims to improve the wind power output prediction
accuracy. A precise prediction model based on ITSA-ELM is
constructed. The feasibility and effectiveness of the proposed
prediction model are verified through the wind farm’s actual
wind power output data. This study can enhance the ability to
characterize the uncertainty of wind power generation, thereby
providing decision-makers with more scientific and accurate
scheduling solutions.

3 Extreme learning machine

ELM is a fast, simple, and effective machine learning algorithm
(Ding, 2015). The core idea of ELM is to randomly generate the
connection weights between the input layer and the hidden layer, as
well as the bias of the hidden layer, and then use regularization
methods to solve the connection weights between the output layer
and the hidden layer. Compared to traditional neural network
algorithms, ELM has the advantages of fast training speed, low

computational complexity, and high prediction accuracy (Zong
et al., 2013).

ELM has a wide range of applications in wind power prediction.
By using ELM, historical wind speed, direction, temperature, and
other meteorological data can be used to predict the future wind
power output. The fast training speed of ELM enables it to process
large-scale wind power datasets, and its high prediction accuracy can
improve the accuracy and reliability of wind power prediction (Wan
et al., 2014). The structural diagram of ELM is shown in Figure 1.

Since the thresholds and weights from the input layer to the
hidden layer of the ELM are generated randomly, so its learning
speed is fast.

The relationship between the input and output of ELM is
expressed as follows:

Z′
j � f xj( ) � ∑V

i�1
βi × g wi · xj + bi( ) j� 1, 2,/,N, (1)

where bi is the threshold from the input layer to the hidden layer for
extreme learning machine. βi is the connection coefficient from the
hidden layer to the output layer of the extreme learning machine. g is
the activation function.

During training, ELM takes the minimum error between
predicted and actual values as the objective function for training
and learning, which is expressed as follows:

o � min Z − Z′
���� ����. (2)

The smaller the result of the aforementioned equation is, the
closer the absolute value of the difference between the expected
output value and the true value is to 0. At this point, the problem can
be transformed as follows:

Hβ � Z, (3)
where H is the hidden layer node value, and the expressions of H, β,
and Z are as follows:

H w, b, x( ) �
g w1 · x1 + b1( ) / g wv · x1 + bv( )

..

.
1 ..

.

g w1 · xN + b1( ) / g wv · xN + bv( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×V

, (4)

β �
βΤ1
..
.

βΤv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

Z �
z1( )Τ
..
.

z1( )Τ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

. (6)

The expression of β′i obtained after training is as follows:

β′ � H+Z, (7)
where H+ is the generalized inverse matrix.

4 Method for optimizing ELM

The key parameters of ELM affect its predictive performance. This
paper uses an intelligent optimization algorithm to optimize the selection
of key parameter values for ELM to achieve optimal performance.

FIGURE 1
Structural diagram of ELM.
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4.1 Tunicate swarm algorithm

TSA mainly solves optimization problems by simulating the jet
propulsion walking mode and swarm intelligent behavior of the swarm
(Gharehchopogh, 2022). Tunicates are marine organisms that gather
together in groups and form complex structures. They adjust their
shape and position by adhering to or repelling each other, in order to
adapt to changes in the environment. Within the group, there is self-
organization and adaptability, allowing the group to achieve
optimization and adaptation through cooperation and coordination.
In TSA, the group adjusts its shape and position through the adhesion
and repulsion behaviors between individuals, which can be used to solve
the search and optimization processes in optimization problems.

TSA mainly considers the following three behaviors of
individuals in the capsule group.

(1) Avoiding search conflicts between individuals

The gravity, deep-sea advection, and individual competitiveness
were considered in the construction process of TSA to avoid search
conflicts among individuals in the encapsulated group. The updated
position of the individual in the obtained capsule group can be
expressed as follows:

PA � FG

FM
, (8)

FG � r1 + r2 − F, (9)
F� 2 ×r3, (10)

whereFG represents gravity; F represents deep-sea advection; r1, r2, and
r3 are random numbers within interval [0,1], respectively; and FM

stands for individual competitiveness, and it is expressed as follows:

FM � �smin + r1 × smax − smin�, (11)
where smin (smin = 1) represents the initial velocity of individuals in
the capsule group; smax (smax = 4) represents the speed at which other
individuals follow the optimal individual (Gharehchopogh, 2022).

(2) Approaching the optimal individual

The equation of distance Dp between the individuals in the
capsule group approaching the optimal individual is expressed as
follows:

Dp � Pbest − rand × PS x( )| |, (12)

where Pbest represents the optimal individual position in the capsule
group; rand represents a random number within the [0,1] interval;
PS(x) represents the position of other individuals in the capsule group.

(3) Convergence to the optimal individual

The individuals in the capsule group always converge toward the
optimal individual direction, expressed as follows:

PS x( ) � Pbest + PA × Dp rand≥ 0.5,
Pbest − PA × Dp rand< 0.5.{ (13)

In order to save the current first two optimal solutions and
update the positions of other search individuals based on the best

search individual’s position, the group behavior of coated animals is
expressed as follows:

PS x+1( ) � PS x( ) + PS x+1( )
2 + r1

. (14)

4.2 Improved tunicate swarm algorithm

TSA can solve optimization problems through mathematical
modeling. Its core idea is to achieve group optimization and
adaptation through cooperation and coordination. This algorithm
shows potential in solving complex optimization problems and can
be applied in multiple fields, such as engineering optimization,
machine learning, and data mining. However, the convergence
performance of TSA needs to be improved, and it may also fall
into local optima, making it difficult to find global optima. This
study focuses on improving the TSA in the early, middle, and late
stages. Furthermore, it is to improve the convergence ability and
search performance of TSA.

Improvement 1: The reverse learning mechanism has been
widely applied to population initialization, enabling the initial
population to better approximate the current solution. For any
solution Xi � [U1

i , U
2
i . . . ,U

D
i ], its inverse solution can be defined

as �Xi � [ �U1
i , �U

2
i , . . . , �U

D
i ], and its inverse individual can be calculated

as follows:

�U
j
i � upj + lowj − Uj

i , (15)
where �Uj

i is the jth variable of the reverse individual. Uj
i is the jth

variable of the individual. u is the random value of (0, 1).
Improvement 2: The search method has been introduced in the

iterative process of the non-linear self-learning factor balance
algorithm (Hsu et al., 2011). Non-linear self-learning factors
enable discoverers to search more comprehensively in the search
space near the current location, promoting individuals to obtain
better solutions.

The non-linear self-learning factor is expressed as follows:

J t( ) � Jmax + Jmax − Jmin( ) × exp −25 ×
h

M max
( )( )3

, (16)

where Jmax and Jmin are the upper and lower limits of the weight
inertia J, respectively, with Jmin = 0.4 and Jmax = 0.9 (Li et al., 2021).

At this point, the position update formula is expressed as
follows:

PS x( ) � Pbest + J t( ) × PA × Dp rand≥ 0.5
Pbest − J t( ) × PA × Dp rand< 0.5.{ (17)

Improvement 3: To increase the diversity of the individual space
and address the issue of getting trapped in local optima during
optimization, the Cauchy mutation operation is introduced in each
iteration. The formula for updating the new location can be
expressed as follows:

Xd
i �

N − i

N
Cauchy 0, 1( )xd

i t( ) + rand2 xd
j t( ) − xd

k t( )( ), (18)
Cauchy � tan π rand1−0.5( )( ), (19)

whereXd
i is the search position after mutation; and rand1 and rand2

are random numbers belonging to 0 to 1, respectively.
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4.3 Optimization process of ITSA

The flowchart of ITSA is shown in Figure 2. The detailed steps
for iterative optimization of ITSA are described as follows.

Step 1: Set parameters such as population size and iteration times.

Step 2: Use a reverse learning mechanism to obtain the position of
the initial population and calculate individual fitness values.

Step 3: The ITSA algorithm starts iterative optimization, updating
the optimal individual position and fitness value in ITSA.

Step 4: Calculate the distance between other individuals in the
capsule group and the optimal individual according to Eq. 11.

Step 5: Calculate the non-linear self-learning factor and update the
individual position according to Eq. 17.

Step 6: Use the Cauchy mutation strategy to adjust the position of
individuals in the capsule group, calculate the individual fitness

value after positional variation, and further update the optimal
individual position and fitness value.

Step 7: Determine whether the termination conditions of ITSA
(referring to meeting the set accuracy requirements) are met. If the
termination conditions are met, terminate the algorithm operation;
otherwise, return to Step 4.

4.4 Verification of ITSA

The benchmark testing functions are selected for feasibility
verification of the algorithm, which are often used in feasibility
analysis studies of algorithms. In addition, we selected
representative comparative algorithms to achieve objective
analysis of the algorithm. Particle swarm optimization (PSO)
is the most classic intelligent optimization method and is often
chosen as a comparison method (Khare and Rangnekar, 2013).
The moth flame optimization (MFO) algorithm is a new type of
swarm intelligence optimization algorithm proposed in recent
years with certain representativeness (Mirjalili, 2015). The
standard TSA algorithm was also used as a comparative
algorithm to verify the effectiveness of improvement measures.
Table 1 shows the benchmark test functions (Li and Wu, 2022).
Table 2 shows the parameter settings of the algorithm (Catalao
et al., 2011; Ai et al., 2022).

The number of iterations and population size of each optimization
algorithm remain consistent. Mmax is the maximum number of
iterations. wmax and wmin are the upper and lower limits of the
weight values, respectively; and c1 and c2 are self-cognition and
social cognition coefficients in the PSO algorithm, respectively (Liu
et al., 2021b). smin and smax are the initial velocity and adjoint velocity in
the TSA algorithm, respectively. b is used to define the spiral scale in the
MFO algorithm. Other parameters are default values.

The algorithms are tested on the same platform to ensure the
fairness of the results. The experimental environment of this study is
aWindows 10 operating system, 8GBmemory, and Intel Core i7. All
experiments are written and run based on MATLAB R2017a. Each
optimization algorithm was independently run 50 times for each
benchmark test function in this study to ensure the objectivity of the
test results. Assuming p1, p2, . . . , pn as the convergence results
obtained after the algorithm has been run 50 times, where n (n = 50)
represents the number of times the algorithms have been run. The
average running time of each algorithm is also calculated to reflect
the complexity of algorithm operation. Based on the statistical
results, the algorithm is evaluated using the optimal convergence
value (Opt), mean convergence value (Mean), and standard
deviation (Std), as follows:

Opt � min p1, p2, . . . ,pn{ }, (20a)

Mean � 1
n
∑n
i�1
pi, (21a)

Std �

����������∑n
i�1

pi − p*( )
n−1

√√
. (22a)

Table 3 shows that the ITSA proposed in this study converged to
the optimal value when solving F1 and F3 problems. Although ITSA did

FIGURE 2
Flowchart of ITSA.
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not converge to the optimal value when solving the F2 problem, it can
be seen from the Std index that the ITSA algorithm has superior
robustness. By comparing with the comparison algorithms, it can be
seen that the optimal value of ITSA is significantly better. From the
perspective of time indicators, the solving time of ITSA for F1, F2, and
F3 is 0.274, 0.31, and 2.189 s, respectively. The optimization time of
ITSA is longer than that of the comparison algorithms because the
improved strategy increases the complexity of algorithm operation.

Table 4 shows that TSA and ITSA achieved an optimal global
value when optimizing F6. ITSA can effectively avoid local
extremum solutions and has significant advantages in solving
multimodal optimization problems compared to existing
algorithms. For F4 and F6, ITSA converges to the optimal
solution 0 of the function under different test dimensions. For
F5, ITSA did not converge to the global optimal value, but it
converged to 8.88 × 10−16.

TABLE 1 Test function details.

Function Variable range Dimension Optimal value

f1(a) � ∑D
i�1a2i (−100, 100) 30 0

f2(a) � ∑D
i�1|ai| +∏D

i�1|ai| (−10, 10) 30 0

f3(a) � ∑D
i�1(∑i

j�1aj)2 (−100, 100) 30 0

f4(a) � ∑D
i�1[a2i −10 cos(2πai)]+20 (−5.12, 5.12) 30 0

f5 a( )� −20 exp −0.2
���������∑n

i�1a2i( )/n√( )−
exp

1
n
∑n

i�1 cos 2πai( )( )+20+e
(−32, 32) 30 0

f6(a) � 1
4000∑D

i�1a2i −∏D
i�1 cos( ai�

i
√ )+1 (−600, 600) 30 0

TABLE 2 Parameter settings.

Algorithm Parameter settings

TSA smin = 1, smax = 4, Mmax = 1,000, and pop = 30

ITSA Jmin = 0.4, Jmax = 0.9, smin = 1, smax = 4, Mmax = 1,000, and pop = 30

PSO wmax = 0.9, wmin = 0.1, c1 = c2 = 1.5, Mmax = 1,000, and pop = 30

MFO b = 1, Mmax = 1,000, and pop = 30

TABLE 3 Statistical results of unimodal function testing.

Unimodal function Algorithm Opt Mean Std Time (s)

F1 TSA 3.75 × 10−51 5.17 × 10−47 2.02 × 10−46 0.139

ITSA 0 0 0 0.274

PSO 0.67 × 103 1.83 × 103 0.76 × 103 0.159

MFO 7.80 × 10−6 3 × 104 5.44 × 103 0.174

F2 TSA 6.08 × 10−31 1.54 × 10−28 5.93 × 10−28 0.18

ITSA 7.08 × 10−270 2.14 × 10−243 0 0.31

PSO 11.38 22.30 7.62 0.23

MFO 9.58 × 10−5 30.20 22.08 0.219

F3 TSA 1.24 × 10−20 2.11 × 10−11 8.60 × 10−11 0.689

ITSA 0 0 0 2.189

PSO 2.12 × 103 5.41 × 103 3.22 × 103 0.709

MFO 0.75 × 103 2.04 × 104 1.09 × 104 0.745
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ITSA achieved the optimal statistical results for both unimodal and
multimodal functions based on the aforementioned analysis. This is
because the population position initialization method based on the
reverse learning mechanism strategy enables the initial population to
approximate the current solution better. The search method in the
iterative process of the non-linear self-learning factor balance algorithm
improves the global development and local mining abilities in the
optimization process. Cauchy variation can increase the diversity of
individual space and solve the problem of falling into local optima
during optimization. Compared to comparative algorithms, ITSA has
significant advantages in solving unimodal and multimodal
optimization problems. The numerical test results prove the
convergence performance of ITSA and its ability to avoid local
extremum solutions and verify the effectiveness and progressiveness
of the proposed algorithm.

5 Model establishment

5.1 Prediction model based on ITSA-ELM

Equation 20 is defined as the fitness function of ITSA and taken
as the objective function of the ITSA-ELM wind power prediction
model. The smaller the objective function value, the better the
prediction result of the model.

Obj � Fit � 1
N

∑N
i�1

pi − ai( )2, (20b)

where pi is the predicted value, N is the number of the data, and ai is
the actual value.

The performance evaluation indexes of the prediction model
adopted in this study are expressed as follows in equations 21–23
(Liu et al., 2020; Li et al., 2021):

MAPE � 100
N

× ∑N
i�1

pi − ai
pi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣, (21b)

R2 �
∑N
i�1

pi − amean( )2
∑N
i�1

ai − amean( )2

amean�
1
N

∑N
i�1
ai,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22b)

RMSE �

���������������
1

Ntest
∑Ntest

i�1
pi − ai( )2√√

, (23)

where RMSE is the root mean squared error, R2 is the goodness of fit,
and MAPE is the mean absolute percentage error.

The steps for predicting wind power output based on ITSA-ELM
are described as follows.

Step 1: Obtain a dataset related to wind power output.

Step 2: Due to the adverse effects caused by dimensional
differences, it is necessary to normalize the preprocessing of
output power data, as shown in Eq. 24 (Liu et al., 2021c):

tinor �
ti − tmin

tmax − tmin
, (24)

where tinor is the i-th sample value after normalization, ti is the i-th
sample value before normalization, tmax is the maximum value in the
sample, and tmin is the minimum value.

Step 3: Divide the dataset into training dataset and prediction
dataset according to a certain proportion.

Step 4: Import the training data into the ITSA-ELM model and
conduct model training.

Step 5: Determine whether the ITSA-ELM model meets the
training standards. If it meets the training standards, proceed to
Step 7. If it does not meet the training standards, continue training.

TABLE 4 Statistical results of multimodal function testing.

Multimodal function Algorithm Opt Mean Std Time (s)

F4 TSA 0.11 × 103 0.17 × 103 37.15 0.23

ITSA 0 0 0 0.215

PSO 68.258 0.12 × 103 26.46 0.142

MFO 97.506 0.16 × 103 31.09 0.174

F5 TSA 1.51 × 10−14 1.41 1.567 0.226

ITSA 8.88 × 10−16 8.88 × 10−16 0 0.351

PSO 7.98 11.18 1.237 0.21

MFO 9.44 × 10−3 14.34 7.66 0.202

F6 TSA 0 5.14 × 10−3 6.44 × 10−3 0.215

ITSA 0 0 0 0.324

PSO 5.157 15.981 5.886 0.216

MFO 3.50 × 10−5 18.105 44.755 0.235
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Step 6: The trained ITSA-ELMmodel uses test data to predict wind
power output.

Step 7:Output prediction results based on ITSA-ELM, and evaluate
the predicted performance.

The detailed flowchart based on ITSA-ELM is shown in Figure 3.

5.2 Result analysis

This study conducted simulation validation to verify the
effectiveness of ITSA-ELM in predicting wind power output.
Researchers often use the open wind power dataset provided by
the La Haute Borne wind farm in northeastern France to validate
predictive models (Li et al., 2020). This study selected output power
data from May and December of 2017 as the training and testing
sample sets for the model, lasting 8 consecutive days. The data
resolution of the power plant is 10 min, which means that the daily
wind power dataset includes 144 data points, with a total of
1,152 data points in 8 days. Day 8 is designated as the day to be
predicted, resulting in 144 sample points to be predicted.

The wind power actual value is set as the output of ITSA-ELM,
and the wind direction and wind speed are the inputs of ITSA-ELM.
The ELM (Liu et al., 2021a), kernel-based extreme learning machine
(KELM) (Zhou et al., 2022), sparrow search algorithm–extreme
learning machine (SSA-ELM) (Li et al., 2021), TSA-ELM, and ITSA-

ELM models are selected to compare their prediction performance.
The number of hidden layer nodes in ELM is 20. The wind power
prediction results of different models in May and December are
shown in Figures 4, 5, respectively.

Figures 4, 5 show the wind power prediction results of different
models. Figure 4 shows that the wind power output fluctuated
significantly in May. The wind power output showed an overall
upward trend in December in Figure 5. The prediction trends of
different prediction models were generally good. By zooming in
locally, ELM deviates significantly from the actual curve, indicating
that its prediction results are the worst. The prediction curve of ITSA-
ELM is closer to the actual output power of wind power and can
accurately reflect the changes in the actual value of wind power,
indicating that the model has the best prediction effect. Furthermore,
Figures 6, 7 show the wind power prediction error curve.

In Figures 6, 7, each method has certain errors in predicting wind
power. In May’s wind power prediction, the prediction errors of each
method were relatively large at the beginning of sampling, and the error
curves of each method had a certain deviation from the 0-error curve,
which later became relatively stable. When the number of sampling
points is between 45 and 80, the prediction error curves fluctuate
significantly, and there is a significant deviation in the predicted results
of each method. However, compared to other methods, the prediction
error of ELM is greater. From the wind power prediction error figure for
the entiremonth ofMay, it can be seen that the prediction error curve of
the proposed ITSA-ELM is more stable, indicating that this method has

FIGURE 3
Prediction process based on ITSA-ELM.
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a better predictive ability in wind power prediction in May. In the
December wind power forecast, the fluctuation of the ELM and KELM
prediction error curves is stronger, with the maximum error reaching
over 200 kW. Although the prediction error of ITSA-ELM also has
strong fluctuations, the fluctuation amplitude is smaller than other
methods, indicating that the prediction error of this method is smaller
and its ability to characterize wind power is stronger. Figures 8, 9 show
the statistical results of the absolute errors of each method in wind
power prediction in May and December, respectively.

From Figures 8, 9, it can be seen that the proposed ITSA-ELM
model has more points in the low error range for wind power
prediction in May and in December, and there are relatively fewer
points with a prediction error above 20% in December. Therefore,
compared to other models, ITSA-ELM has smaller prediction errors
and a stronger ability to follow wind power changes.

Table 5 shows the evaluation results of each model under
three evaluation indicators. The evaluation results of ELM under
the three evaluation indicators are not ideal. From those
mentioned previously, it can be seen that the wind power
prediction error fluctuation of ITSA-ELM is relatively small.
Moreover, the wind power prediction results of ITSA-ELM
have the highest value of R2 and the lowest value of MAPE
and RMSE. The MAPE value of ITSA-ELM showed a decrease
of 1.20%, 13.73%, 6.89%, and 32.16%, respectively, compared
with TSA-ELM, SSA-ELM, KELM, and ELM in May. The MAPE
value of ITSA-ELM showed a decrease of 21.67%, 21.77%,
29.18%, and 36.21%, respectively, compared with TSA-ELM,
SSA-ELM, KELM, and ELM in December. This indicates that
ITSA-ELM has the smallest deviation in prediction error and the
highest prediction accuracy.

FIGURE 4
Prediction results of different models in May.

FIGURE 5
Prediction results of different models in December.
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FIGURE 6
Power output prediction error curve in May.

FIGURE 7
Power output prediction error curve in December.

FIGURE 8
Absolute error percentage distribution of May.

FIGURE 9
Absolute error percentage distribution of December.
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In addition, the RMSE value of ITSA-ELM decreased by 6.54,
10.36, 13.16, and 23.22 kW compared with TSA-ELM, SSA-ELM,
KELM, and ELM, respectively, in May. The RMSE value of ITSA-
ELM decreased by 9.2, 9.02, 12.8, and 21.05 kW compared with
TSA-ELM, SSA-ELM, KELM, and ELM, respectively, in December.
It indicates that the difference between the wind power predicted
output data on ITSA-ELM and the actual value was the smallest. The
prediction result of ITSA-ELM was the most ideal. Compared with
other prediction models, ITSA-ELM has the highest value of R2,
indicating that the overall prediction fit of the model is the best and
has a higher prediction stability.

The prediction results show that ITSA-ELM established in this
study can accurately predict wind power in different months and has
strong adaptability to wind power with strong volatility and
randomness characteristics.

6 Conclusion and implications

With the large-scale grid connection of renewable energy, the
uncertainty and complexity of power system scheduling will
significantly increase. Accurate wind power prediction is the most
direct way to reduce scheduling uncertainty and complexity. This
study proposes a method that can accurately predict wind power
output in response to the practical problems the power system faces
after wind power is connected to the grid. By combining an intelligent
algorithm with a machine learning model, a prediction model based
on ITSA-ELMwas constructed to characterize the uncertainty of wind
power output accurately. The main conclusions are given as follows:

(1) This study proposes ITSA in response to the limitations of
TSA, such as being prone to falling into local extremum
solutions and weak global convergence performance, which
enhances the optimization ability of the algorithm through a
reverse learning mechanism, non-linear self-learning factor, and
Cauchy mutation strategy.

(2) Due to the ELM random parameters affecting the prediction
performance and being difficult to be selected, ITSA was used to

optimize ELM for improving its ability to characterize the wind
power uncertainty.

(3) The optimization ability of the proposed ITSA was verified
using unimodal and multimodal test functions, and the results
showed that compared with existing algorithms, the
convergence accuracy and stability of ITSA were better.

(4) Two numerical examples validated the ability based on the
ITSA-ELM predicted model. The results showed that ITSA-
ELM has a better ability to follow the actual wind power changes
in different scenarios. Compared with TSA-ELM, SSA-ELM,
KELM, and ELM, ITSA-ELM showed a decrease of 1.20%,
13.73%, 6.89%, 32.16%, and 21.67%, 21.77%, 29.18%, and
36.21% of the MAPE value in May and December, respectively.

This study conducted forward-looking and meaningful work. A
prediction model that significantly improves the accuracy was
proposed to solve the problem of wind power fluctuations and
difficulty in prediction. However, it is important to note that this
study has certain limitations. Future research can address these
limitations by focusing on the following tasks: 1) combining the
ITSA-ELM method with practical scheduling problems and
conducting more case studies to further validate its effectiveness;
and 2) according to the findings of this study, it is recommended to
conduct further research on power system scheduling, taking into
consideration the specific requirements and challenges of the power
system.

However, this study still has limitations. Future research can
focus on the following tasks: 1) combining with practical scheduling
problems and adopting more case studies to verify ITSA-ELM; 2)
based on this study, it is necessary to conduct scheduling research on
the power system.
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TABLE 5 Evaluation of statistical results.

Month Model MAPE R2 RMSE (kW)

May ELM 13.34 0.9520 71.82

KELM 9.72 0.9649 61.76

SSA-ELM 10.49 0.9682 58.96

TSA-ELM 9.16 0.9748 55.14

ITSA-ELM 9.05 0.9834 48.60

December ELM 9.97 0.9756 83.67

KELM 8.98 0.9838 75.42

SSA-ELM 8.13 0.9843 71.64

TSA-ELM 8.12 0.9829 71.82

ITSA-ELM 6.36 0.9859 62.62

The bold text in the table represents the model proposed by this study and the evaluation

index values obtained.
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