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Distinct heat response molecular
mechanisms emerge in cassava
vasculature compared to leaf
mesophyll tissue under high
temperature stress
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Xu Shen1,2, Jia Luo1, Yuanchao Li2, Yinhua Chen1*

and Wenquan Wang1,2*

1College of Tropical Crops, Hainan University, Haikou, Hainan, China, 2Institute of Tropical
Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS),
Haikou, China, 3Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs,
Haikou Key Laboratory of Li Nationality Medicine, Hainan Ouality Monitoring and Technology Service
Center for Chinese Materia MedicaRaw Materials, School of Pharmacy, Hainan Medical University,
Haikou, Hainan, China
With growing concerns over global warming, cultivating heat-tolerant crops has

become paramount to prepare for the anticipated warmer climate. Cassava

(Manihot esculenta Crantz), a vital tropical crop, demonstrates exceptional

growth and productivity under high-temperature (HT) conditions. Yet, studies

elucidating HT resistance mechanisms in cassava, particularly within vascular

tissues, are rare. We dissected the leaf mid-vein from leaf, and did the

comparative transcriptome profiling between mid-vein and leaf to figure out

the cassava vasculature HT resistance molecular mechanism. Anatomical

microscopy revealed that cassava leaf veins predominantly consisted of

vasculature. A thermal imaging analysis indicated that cassava experienced

elevated temperatures, coinciding with a reduction in photosynthesis.

Transcriptome sequencing produced clean reads in total of 89.17G. Using

Venn enrichment, there were 65 differentially expressed genes (DEGs) and 93

DEGs had been found highly specifically expressed in leaf and mid-vein. Further

investigation disclosed that leaves enhanced pyruvate synthesis as a strategy to

withstand high temperatures, while mid-veins fortified themselves by bolstering

lignin synthesis by comprehensive GO and KEGG analysis of DEGs. The identified

genes in these metabolic pathways were corroborated through quantity PCR

(QPCR), with results aligning with the transcriptomic data. To verify the

expression localization of DEGs, we used in situ hybridization experiments to

identify the expression of MeCCoAMT(caffeoyl-coenzyme A-3-O-

methyltransferase) in the lignin synthesis pathway in cassava leaf veins xylem.

These findings unravel the disparate thermotolerance mechanisms exhibited by

cassava leaves and mid-veins, offering insights that could potentially inform

strategies for enhancing thermotolerance in other crops.
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Introduction

High-temperature (HT) stress poses a significant challenge to

global crop production and food security, exacerbated by the

escalating impacts of global warming. Crop species such as

soybean, corn, and rice have exhibited reduced yields under HT

stress (Lobell and Asner, 2003; Peng et al., 2004). This crisis is

becoming aggravated due to the global warming (Bita and Gerats,

2013). This crisis underscores the urgency to comprehend the

intricate impacts of HT stress on plant growth and production,

spanning physiology, biochemistry, and gene regulation.

Physiologically, HT stress induces scorching, accelerates leaf

senescence, and hampers shoot and root growth (Vollenweider

and Gunthardt-Goerg, 2005). Furthermore, HT stress impairs crop

production by diminishing shoot net assimilation rates (Wahid

et al., 2007). Biochemically, HT stress triggers metabolic shifts, with

the emergence of hydrogen peroxide (H2O2) damaging plant cell

lipid membranes (Hasanuzzaman et al., 2013). And prolonged

warming inhibited the tricarboxylic acid pathway in Arabidopsis

(Wang et al., 2020). Biochemically, HT stress triggers metabolic

shifts, with the emergence of H2O2 damaging plant cell lipid

membranes (Krasensky and Jonak, 2012).

The effects of observed heat stress are contingent not only

upon distinct biological levels but also specific plant organs. In

whole wheat seedlings, HT stress reduces the chlorophyll content

and membrane stability index, while increasing proline content

(Gupta et al., 2013). In leaves, photosynthesis rates decrease in

mature and dependent leaves; concurrently, HT stress curtails

stomatal conductance in Coffea arabica (Marias et al., 2017). In

roots, short-term severe heat stress diminishes total protein

concentration, along with levels of nutrient uptake and

assimilation proteins in tomatoes (Giri et al., 2017). The vascular

system also experiences alterations, as HT stress diminishes xylem

vessel density in Phragmites australis. Notably, research concerning

HT stress’s impact on the vascular system remains scarce compared

to other plant tissues. More importantly, vascular bundles play a

crucial role in the plant’s resistance processes, such as transmitting

signaling molecules and maintaining the resilience of plant tissues,

among other functions.

The plant vascular system plays a pivotal role in resource

distribution across plant organs and offers mechanical support.

Additionally, it serves as a communication nexus between shoots

and roots (Lucas et al., 2013). Vascular system development is

influenced by temperature fluctuations (Wei et al., 2023). Therefore,

the vasculature system has evolved many different bio-progresses

for plant to adapt to the unfavorite environment cues. Analyzing the

composition of phloem and xylem sap in stressed plants is a popular

approach to studying vascular responses to abiotic stress (Hu et al.,

2016). For example, there were 2558 proteins had been identified in

tomato phloem sap under the water deficiency condition (Ogden

et al., 2020).

Research on vascular responses to abiotic stress predominantly

employs vascular sap as the study subject, facilitated by EDTA.

However, this approach is marred by issues of contamination linked
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to both EDTA facilitated method and cucurbits exudation (Zhang

et al., 2012). While insect stylets offer relatively pure phloem sap

devoid of contamination, their limited sap exudate volume restricts

their utility (Reidel et al., 2009). Furthermore, these methods

exclusively identify mobile molecules, potentially overlooking the

roles of immobile molecules synthesized in the phloem as stress

responses (Sevanto, 2014). For example, researcher found that

vascular bundle could mediate systemic reactive oxygen signaling

during light stress (Zandalinas et al., 2020). Furthermore, these

methods exclusively identify mobile molecules, potentially

overlooking the roles of immobile molecules synthesized in the

phloem as stress responses.

Cassava (Manihot esculenta Crantz) stands out as a vital

tropical crop due to its robust root productivity and remarkable

HT tolerance (Wang W. et al., 2014). As a tropical crop, cassava

deploys a variety of adaptive, avoidance, and acclimation strategies

to counter HT stress. However, precisely because it is a tropical

crop, its heat tolerance is often considered the norm, leading to a

paucity of research on its specific heat-resistant capabilities. This is

especially true for studies focusing on leaf tissue and vascular

bundles. Therefore, comprehending cassava’s responses to HT

stress in its vasculature and leaf mesophyll holds significance for

enhancing heat tolerance in other crops.
Materials and methods

Growth condition and heat treatment

We used Cassava variety KU50 as materials in this study. When

KU50 seedlings sprouted, we only let one seedling in one pot. Then

we kept plants continuously growing in greenhouse with the day/

night temperature at 35/28°C. We initiated high temperature (HT)

treatment for KU50 at approximately 45 days after planting by

increasing the air temperature to 45°C for three hours. And the

control set of KU50 was watered normally and grew in the same

growth condition in normal temperature.
Physiological measurements

We observed the cassava leaf vein by using the light microscope

before the treatment to make sure the tissue collection was right for

this study. We used the Toluidine Blue O to stain the Cassava leaf

vein and observed by using the light microscope. Then cassava

KU50 seedlings were treated with high temperature (HT) by

increasing the air temperature from 35°C to 45°C for three hours.

During the HT treatment, we used the “Flir-One” system (FLIR,

Nashua, NH) to measure the leaf temperature on three leaves

localized on top part of the cassava seedlings. After the treatment,

we used a Li-Cor 6800 (LI-COR, Lincoln, NE) photosynthesis

apparatus to measure net photosynthetic rate, transpiration, and

stomatal conductance on the top three fully expanded leaves

following the instruction from the manufacturer.
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Statistical analyses

To compare the rates for photosynthesis, water potential,

stomatal conductance, six biological replicates and three technical

replicates were used for each of these measurements. The results

were mean ± SE of these independent replicates.
RNA extraction and RNA-Seq
library construction

We collected three top cassava leaves from each of the control

and heat stressed KU50 and then put them together as one sample

and one bio-replicate, we took 3 bio-replicates for each treatment.

Then we put all samples into liquid nitrogen. Total RNA was

extracted by E.Z.N.A plant RNA kit (Omega Bio-Tek Company,

Norcross, GA). We monitored RNA degradation and

contamination by using 1% agarose gels. And RNA purity was

assessed using the NanoDrop spectrophotometer (NanoDrop

Technologies Inc., Wilmington, DE). And we checked RNA

integrity by using the RNA Nano 6000 Assay Kit of the

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A

total amount of 1 mg RNA per sample was used as input material

for the RNA sample preparations. Sequencing libraries were

generated using NEBNext® UltraTM RNA Library Prep Kit for

Illumina® (NEB, USA) following manufacturer’s recommendations

and index codes were added to attribute sequences to each sample.
Transcriptomic data analysis

The library preparations were sequenced on an Illumina

Novaseq platform and 150 bp paired-end reads were generated.

And Raw data (raw reads) of fastq format were processed through

in-house perl scripts, then clean data (clean reads) were obtained by

removing reads containing adapter, reads containing ploy-N and

low-quality reads from raw data. At the same time, Q20, Q30 and

GC content the clean data were calculated. Reference genome

and gene model annotation files were downloaded from genome

website directly. Index of the reference genome was built using

Hisat2 v2.0.5 and paired-end clean reads were aligned to the

reference genome using Hisat2 v2.0.5. And then FPKM of each

gene was calculated based on the length of the gene and reads count

mapped to this gene. Differential expression analysis of heat

treatment and control for KU50 was performed using the DESeq2

R package. Genes with an adjusted P-value <0.05 found by DESeq2

were assigned as differentially expressed.

Gene Ontology (GO) enrichment analysis of differentially

expressed genes was implemented by the clusterProfiler R

package, in which gene length bias was corrected. GO terms with

corrected P-value less than 0.05 were considered significantly

enriched by differential expressed genes. KEGG is a database

resource for understanding high-level functions and utilities of

the biological system, such as the cell, the organism and the

ecosystem, from molecular-level information, especially large-
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scale molecular datasets generated by genome sequencing and

other high-through put experimental technologies (http://

www.genome.jp/kegg/). We used clusterProfiler R package to test

the statistical enrichment of differential expression genes in

KEGG pathways.
RNA preparation, reverse transcription, and
quantitative polymerase chain reaction

Total RNA was extracted from tissues using RNAprep Pure Plant

kit (TIAGEN, Beijing, China). RNA amounts were estimated using a

NanoDrop 2000 (Thermo FisherScientific, Waltham, MA USA).

cDNA synthesis was performed with approximately 2 µg of total

RNA and the reaction system followed the HiFi II M-MLV (H-)

Reverse Transcriptase Kit with gDNA Eraser (CWBIO, CW07435,

China) protocol. The cDNA was eluted with 100 µL deionized water.

A total of 2 µL of eluted cDNA was used as a template for QPCR

analysis. QPCR was performed on a BioRad sequence detection

system using MonAmp™ SYBR® Green qPCR Mix (Low ROX)

(Monad, RR820, MQ10201S, China) for detection. Amplification

conditions were as follows: 3 min of initial denaturation at 95°C,

followed by 40 cycles of 30 s at 95°C, 30 s at 56°C, and 30 s at 72°C.

Melt curves used to determine primer specificity were 10 s at

95°C, followed by cycles of 0.05 s at 65–95°C, rising 0.5°C/cycle.

Primers are listed in Supplemental Table 1. And the relative

expression level was calculated by 2−DDct method. Each include

three technical replicates. The FPKM values of DEGs in

transcriptome data can be used as a reference for their

expression patterns.
In tube in situ PCR on tissue sections of
cassava leaf mid-vein

In tube in situ PCR was carried out on sections of unfolded

leaves, and midveins from the fully unfolded leaf from 2-month-old

cassava plants of KU50 as described previously using primers 5’-

ATGATTAATCTTGTGTATTATTTGGTGA-3 ’ and 5 ’-

TCAGGAAATGCGCCTGCAGAT-3’ for MeCCoAMT. The

specificity of the primers was verified by DNA sequencing of the

PCR products. Prior to sectioning, all tissues were fixed in FAA (2%

formaldehyde, 5% acetic acid, and 60% ethanol in phosphate

buffered saline [PBS]) for 2h at 4°C and then washed three times

with washing buffer (60% ethanol and 5% acetic acid in PBS). The

tissue was embedded in 5% agarose in PBS to enable sectioning into

80 um tissue sections on a Leica vibratome. The sections were

treated 4h with 30µl of RNase-free DNase (40u) and RNase

inhibitor (4U) at 37°C and subsequently washed twice with water.

To partly release the coagulation of the fixative, the sections were

incubated in 30 µl of Pepsin (2ng in 1µl 10mM HCl) for 15 min

prior to the reverse transcriptase reaction, and the sections were

washed twice in water. The mRNA was translated to cDNA using

the specific reverse primers for MeCCoAOMT using the protocol

from Sensiscript (Qiagen 1017746). Before the cDNA was
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amplified, the reverse transcriptase solution was removed and the

PCR reagents were added. DIG-labeled dUTP was incorporated as

the basis for visualization. The expression was subsequently

visualized using e PCR ELISA, DIG-Detection package (Roche

Cat. No. 11 965 409 910). The more details see the manual

protocol of PCR ELISA, DIG-Detection package (Roche Cat. No.

11 965 409 910). The sections were mounted on glass slides and

examined using a Leica DM microscope.
Results

Effects of HT stress on the cassava KU50
and the tissue sampling

Emerging evidence highlights the divergent response

mechanisms of distinct plant tissues to abiotic stress. To elucidate

the molecular reaction of cassava vasculature to HT stress, we

conducted a comparative transcriptome analysis using cassava leaf

and mid-vein samples. Prior to HT treatment, we examined the

physiological structure of cassava leaf mid-veins through Toluidine

Blue staining and microscopy. The chosen cassava KU50 seedlings

(Figure 1A) possessed a mature root system, making them suitable

for HT stress assessment. Toluidine Blue-stained cross sections of

the main veins (Figure 1B) displayed a clear vasculature structure,

with deep, green-stained xylem surrounded by phloem, enabling

precise dissection of the mid-vein vascular bundle from the leaf.

However, it’s essential to acknowledge that this method might

retain some mesophyll tissue around the vasculature due to

incomplete separation. Consequently, we employed comparative

analysis of heat-stressed leaf and mid-vein samples to unravel the

molecular mechanisms of vasculature’s response to heat stress.

During HT treatment, we employed the “Flir One” system to

measure leaf temperature and Li-Cor 6800 to gauge photosynthetic

parameters. The thermal image of cassava leaves revealed a shift from

orange and blue (low temperature) to light yellow and orange (high

temperature) under HT treatment, indicating elevated leaf temperatures

due to heat stress (Figure 1C). The observed color change reinforced the

notion that KU50 was indeed subjected to HT stress.
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Compared with control, HT-stressed cassava exhibited a significant

reduction in net photosynthetic rate, declining from 13.38mmolm-2s-1

to 6.50mmolm-2s-1 (Figure 2A). Concurrently, stomatal conductance

decreased from 0.1689molm-2s-1 to 0.06787molm-2s-1 (Figure 2B),

while transpiration rate dropped from 0.0032molm-2s-1 to

0.00158molm-2s-1 (Figure 2C). Furthermore, the intercellular CO2

concentration decreased from 248.201mmolm-2s-1 to 223.04mmolm-

2s-1 under HT stress (Figure 2D).
Transcriptome analysis revealed the
different molecular responses from
vasculature to leaf mesophyll in cassava
under HT stress

Transcripts annotated response to HT stress
For this study, we collected three sets of HT-stressed leaf

mesophyll samples, three sets of HT-stressed mid-vein samples

(HL and HV), and three control samples each of control leaf (CL)

and mid-vein (CV) for RNA-Seq analysis. The assembly and

annotation outcomes are summarized in Table 1. In total, we

generated 613.94 million raw reads, of which 594.47 million were

deemed clean reads. While manually dissecting the mid-vein from

the leaf is not entirely precise in segregating vasculature from leaf

mesophyll, we took steps to enhance the identification of tissue-

specific differentially expressed genes (DEGs) responding to HT

stress. Our data underwent a Venn diagram-based filtering

approach (Log2 fold change > 2, p-value < 0.05) to focus on

significant differences. Specifically, we compared the transcripts

between KU50 leaf mesophyll and mid-vein under high-

temperature treatment against their respective control

sets (Figure 3).

The analysis yielded 1287 DEGs in the mid-vein and 1173

DEGs in the mesophyll tissue in response to HT stress. Remarkably,

we identified 93 DEGs enriched within the HT-stressed mid-vein

vasculature and 65 DEGs enriched in the mesophyll tissue under

HT treatment. These findings underscore that cassava’s mid-vein

vasculature exhibits a more pronounced DEG response than the leaf

under high-temperature stress.
B CA

FIGURE 1

Phenotype of plant KU50 under HT (A). Normal plant of KU50 (Bar means 9cm) (B). The transection of KU50 leaf vein stained by toluidine blue O
(Bar means 0.2mm) (C). The thermal imaging figure of leaves for the HT KU50 and Control (Bar means 3cm).
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Mid-vein vasculature had different HT responsive
mechanism compared with leaf mesophyll

To comprehensively assess the functional implications of the

DEGs of HV and HL, GO analysis was performed and all DEGs

were classified into three categories: biological process, cellular

component and molecular function. Remarkably, our

investigation revealed that mid-vein vasculature displayed a more

pronounced array of heat-responsive molecular activities compared

to leaf mesophyll (Figure 4). In the realm of biological processes,
Frontiers in Plant Science 05
DEGs in HL were grouped into “protein folding,” “response to

stress,” and “amine metabolic process,” suggesting leaf involvement

in reactive oxygen species (ROS) reactions. Notably, the cellular

component analysis showcased associations with “cell wall,”

“external encapsulating structure,” “apoplast,” “extracellular

region,” and “cell periphery,” indicative of leaf engagement in

sucrose dynamics and cell osmotic regulation. Furthermore,

molecular function analyses linked DEGs to “unfolded protein

binding,” “DNA binding transcription factor activity,” “heme
TABLE 1 Summary of RNA-Seq data of KU50 under HT stress and the control.

Sample Raw Reads Clean Reads Error Rate Q20 Q30 GC content (%)

HL1 62473626 61225014 0.03 97.94 93.91 44.86

HL2 44824028 44090450 0.03 97.8 93.6 43.27

HL3 54217986 52275694 0.03 97.81 93.6 43.23

HV1 49484736 47971474 0.03 97.86 93.71 44.43

HV2 45441586 44077656 0.03 97.63 93.19 43.97

HV3 53481614 52269222 0.03 97.86 93.72 43.29

CL1 54116060 51915060 0.03 97.95 93.95 44.41

CL2 49519458 47648818 0.03 97.94 93.9 45.28

CL3 53559728 51311908 0.03 97.96 93.96 45.18

CV1 42036088 40568510 0.03 97.88 93.79 44.69

CV2 49488362 47763428 0.03 97.83 93.64 44.48

CV3 55292162 53348210 0.03 97.9 93.83 44.51

Total 613935434 594465444
B

C D

A

FIGURE 2

Changes of physiological parameters related to photosynthesis of plant KU50 under HT stress (A). The photosynthetic rate for HT treated cassava (B).
Stomatal Conductance for HT treated cassava (C). Transpiration rate for HT treated cassava (D). Intercellular CO2 Concentration for HT treated cassava.
Lowercase letters are difference significance markers.
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binding,” “tetrapyrrole binding,” and “xyloglucan:xyloglucosyl

transferase activity,” underscoring leaf participation in

photosynthesis and chlorophyll synthesis. Contrastingly, DEGs in

HV were allocated to “fatty acid biosynthetic process,” “drug

transmembrane transport,” “drug transport,” “response to drug,”

and “fatty acid metabolic process” within biological processes,

reflecting mid-vein vasculature’s role in cell membrane dynamics

and transport. Cellular component classification highlighted

connections with “cell wall,” “external encapsulating structure,”

“apoplast,” “cell periphery,” and “extracellular region,” indicating

mid-vein vasculature’s involvement in sucrose modulation and cell

osmotic equilibrium. In the realm of molecular function, DEGs

were linked to “tethering complex,” “terpene synthase activity,”

“carbon-oxygen lyase activity,” “heme binding,” and “tetrapyrrole
Frontiers in Plant Science 06
binding,” suggesting mid-vein vasculature’s engagement in

hormone and sucrose transduction.

To delve deeper into gene functions, we conducted KEGG

pathway classification (Figure 5). The three most enriched

pathways in HL were “Protein processing in endoplasmic

reticulum,” “Cysteine and methionine metabolism,” and “Plant-

pathogen interaction” (Figure 5A). Conversely, the top three

enriched KEGG pathways in HV encompassed “Protein

processing in endoplasmic reticulum,” “Flavonoid biosynthesis,”

and “Cutin, suberine, and wax biosynthesis” (Figure 5B), further

highlighting distinct pathway involvement between HV and HL. In

sum, our findings underscore the variances in heat stress-responsive

molecular activities between cassava mid-vein vasculature and leaf

mesophyll. Such insights broaden our understanding of tissue-
BA

FIGURE 4

GO term for HL (A) and HV (B).
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FIGURE 3

Venn picture for DEGs of leaf vasculature and mesophyll under HT stress compared with normal condition (HL, HT stressed leaf mesophyll; HV, HT
stressed leaf vein; CL, control leaf mesophyll; CV, control leaf vein).
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specific responses to heat stress and hold promise for advancing

heat tolerance strategies in crops.
Validation of RNA-seq gene expression
via QPCR

To validate the RNA-Seq expression data, we conducted QPCR

on four random DEGs, MeCYP71 , MeCYP79 , MePOD ,

MeSWEET11. Our assessment demonstrated a consistent

correlation between the RNA-Seq and QPCR results, despite

variations in the fold change magnitudes of gene expressions

(Figure 6). Among the selected genes, MeCYP71 and MeCYP79

are key players in cyanogenic glucoside biosynthesis. In this process,
Frontiers in Plant Science 07
CYP79 enzymes catalyze the conversion of amino acids to oximes,

crucial for cyanogenic glucoside synthesis. This phenomenon is

well-documented across several plant species, including cassava.

Notably, knockout of CYP79D1 has been shown to substantially

reduce linamarin and cyanide levels in leaves, emphasizing their

importance (Jorgensen et al., 2011; Juma et al., 2022). Our results

consistently highlighted higher enrichment of MeCYP71 and

MeCYP79 in mid-vein vasculature compared to leaf mesophyll,

corroborated by both RNA-Seq and QPCR data. Notably, certain

CYPs have been localized in the vasculature of Arabidopsis, while

MeCYP71E was specifically identified in the cortex cells of cassava’s

vascular tissue (Bak et al., 2011; Jorgensen et al., 2011). Another

gene, MePOD, associated with stress responses and postharvest

physiological deterioration conditions (Wu et al., 2019), exhibited
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FIGURE 6

Relative expression of four representative genes in HT stressed KU50 leaf and mid-vein. QPCR relative expression corresponds to log2 fold change
of the DDCT values normalized with the actin gene. Each column represents the mean value plus standard deviation from three biological replicates.
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reduced expression under heat stress. Similarly, MeSWEET11, a

transporter implicated in sugar transport through diverse

conformational states during the transport cycle (Eom et al.,

2015), displayed diminished expression under high-temperature

stress conditions. These consistent trends reinforced the robustness

and accuracy of our RNA-Seq findings.
Heat shock proteins involved in all tissue
response to the HT stress

In plants, Heat shock proteins (HSPs) are induced by stress and

are proposed to act as molecular chaperones to protect other

proteins from stress-induced damage (Waters and Vierling,

2020). Notably, HSPs play a pivotal role in orchestrating gene

expression alterations that enable plant survival under HT

conditions. Furthermore, Heat Shock Factors (HSFs) can also

modulate HSPs’ activity, contributing to plant adaptation to HT

stress (Khan and Shahwar, 2020). In our results, there are many

HSPs and HSFs had been increased significantly in both leaf

mesophyll tissue and mid-vein (Figure 7). Intriguingly, among

these genes, only three were exclusively expressed within the

vascular bundle, distinct from their expression in leaf mesophyll.

These genes encompass MesHSF (small heat shock factor,

Manes.10G020000), MeHSP40 (Manes.09G069500), and

MeHSP70 luminal-binding protein (BiP, Manes.01G05330). These

elements, alongside UDP-glucose glycoprotein glucosyl transferase,

are integral components of the endoplasmic reticulum quality
Frontiers in Plant Science 08
control (ER QC) machinery. This machinery diligently monitors

the accurate folding and processing of membrane and secretory

proteins(Park and Seo, 2015). Our findings underscored the

induction of 17 HSPs by HT stress across the entire cassava leaf.

Notably, within the cassava vascular bundle, three HSPs exhibited

heightened enrichment, suggesting a distinctive responsive

mechanism in cassava ’s vascular system to HT stress.

Furthermore, several of these HSPs demonstrated pronounced

GUS staining in the vasculature, exemplified by AtHSP90-2

(Kozeko and Kordyum, 2023).
Transcription factors involved in the HT
response of KU50

Transcription Factors (TFs), includingWRKY, MYB, NAC, and

AP2/ERF, are pivotal regulators of genes associated with diverse

stresses, making them prime candidates for enhancing plant

resistance against various stressors (Wang et al., 2016). Among

these, the WRKY transcription factors hold significant importance

in conferring HT resistance in plants. Notably, potato genes

StWRKY16, StWRKY45, and StWRKY55 have been identified as

crucial players enabling plants to combat high-temperature stress

(Gong et al., 2015). Certain WRKYs, such as BnWRKY41 and

CsWRKY13, play roles in regulating anthocyanin and lignin

biosynthesis, respectively (Duan et al., 2018; Teng et al., 2021).

Meanwhile, the MYB transcription factors exert substantial control

over genes involved in anthocyanin production. Notably, the R2R3-
FIGURE 7

Heat map for HSPs’ expression in KU50 leaf mesophyll and vascular bundle under HT stress (HL, HT stressed leaf mesophyll; HV, HT stressed vein.
Red bar represents foldchange.).
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MYB subfamily has been extensively studied for their role in

anthocyanin regulation, with examples spanning various plant

species. Across different plant species, numerous MYB genes have

been identified as regulators of anthocyanin biosynthesis. In

Arabidopsis thaliana, pivotal MYB transcription factors in

anthocyanin regulation include PAP1 (PRODUCTION OF

ANTHOCYANIN PIGMENT 1), MYB75, PAP2 (PRODUCTION

OF ANTHOCYANIN PIGMENT 2), MYB90, and MYB113. In

maize (Zea mays), several MYB transcription factors, such as C1,

Pl1, and B-Peru, are associated with anthocyanin biosynthesis.

The petunia (Petunia hybrida) PhAN2 (ANTHOCYANIN2)

MYB transcription factor is a key player in anthocyanin

regulation. Additionally, in grapevine (Vitis vinifera), MYB

transcription factors VvMYBA1 and VvMYBA2 are linked to

anthocyanin accumulation.

Our investigation yielded intriguing insights. Specifically, KU50

vasculature exhibited 829 TFs, while leaf mesophyll displayed 697

TFs under HT conditions. Remarkably, a majority of these TFs

belonged to the MYB and WRKY families (Figure 8). Within this

repertoire, numerous MYBs were implicated in the anthocyanin

biosynthesis pathway, including LIMYB3 and StMYB44, which

contribute to anthocyanin regulation under abiotic stress

conditions. Furthermore, it ’s noteworthy that LIMYB3

demonstrated expression in the Arabidopsis vasculature, further

highlighting the significance of these regulators in plant stress

responses (Liu et al., 2019; Yong et al., 2019).
KU50 leaf mesophyll decreased the
photosynthesis and increased the pyruvate
pathway to response the HT stress

The adverse impact of HT stress on photosynthesis is well-

documented, leading to compromised crop growth and production

(Lipiec et al., 2013). Our physiological investigations affirmed this

phenomenon, revealing a reduction in cassava photosynthesis

following high-temperature treatment (Figure 2). Moreover,

congruence between our transcriptome data and QPCR results

with the physiological outcomes (Figure 9) attests to the reliability
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of our transcriptomic findings, confirming the presence of HT stress

in cassava.

Plastocyanin (PC) is an indispensable and abundant copper

(Cu) protein essential for photosynthesis in higher plants. Severe

copper deficiency can disrupt photosynthetic electron transport by

causing a deficiency in PC (Shahbaz et al., 2015). A specialized

chloroplast sensor kinase (CSK) exists within chloroplasts, the

photosynthetic organelles of plants and algae. CSK governs the

transcription of chloroplast genes in response to fluctuations in

photosynthetic electron transport, playing a critical role (Ibrahim

et al., 2016). Integral to the light reaction pathway are Lhcb1, Lhcb2,

and Lhcb3, components of the light-harvesting complex (LHC) II

trimers, as well as the PsaL subunit vital for photosystem I trimer

formation (Chen et al., 2020). Notably, these genes, encompassing

LHCB, CSK, PC, and PsaL, function within the light reaction

pathway (Jonwal et al., 2022). Intriguingly, under HT stress, these

genes were predominantly downregulated, particularly in

leaf tissues.

LHCBs (Light Harvest Chlorophyll Binding Proteins) serve as key

players in guard cell signaling triggered by abscisic acid (ABA),

suggesting their potential involvement in ABA signaling through

modulation of ROS homeostasis (Xu et al., 2012). In drought-treated

jatropha leaves, genes like JcLhcb1.1, JcLhcb1.2, JcLhcb3, JcELIP, JcSEP2,

and JcSEP5 were upregulated, underlining their role in response to

water stress (Zhao et al., 2020). Similarly, MeLHCB demonstrated

significant upregulation in KU50 leaf mesophyll under HT stress.

Following the meticulous identification of DEGs specific to leaf

mesophyll response, we meticulously classified these genes and

observed a significant association with the pyruvate pathway.

Pyruvate, a pivotal molecule, plays a vanguard role in neutralizing

heat-induced ROS. Our findings unveil a noteworthy elevation in

the expression of key genes within the pyruvate synthesis pathway

under HT stress. This includes serine acetyltransferases (SERATs),

cysteine synthase (CYS), and aspartate aminotransferase (ASP),

with QPCR validation corroborating our RNA-seq data (Figure 10).

The gene family of SERATs orchestrates an essential interface

between the plant’s serine and sulfur metabolic pathways.

Functionally, SERATs provide the activated precursor, O-

acetylserine, which underpins the incorporation of reduced sulfur
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into cysteine. This occurs via the exchange of the serine hydroxyl

moiety with a sulfhydryl moiety, resulting in the formation of

diverse organic compounds containing reduced sulfur moieties

(Watanabe et al., 2018). In line with this, our results

unequivocally indicate a surge in SERAT expression triggered by

HT stress. Exploring the impact of enhanced expression,

overexpressing MsCYS in Alfalfa has been shown to bolster alkali

tolerance. This augmentation is attributed to the regulatory

influence of MsCYS on osmoregulatory substances and the

enhancement of antioxidant capacity (Yuan et al., 2021).

Collectively, this insight underscores the potential of CYS as a key

player in stress responses, with cascading benefits for improved

s t ress to lerance . Another integra l p layer , aspar ta te

aminotransferase, occupies a pivotal position in the intricate

orchestration of plant carbon and nitrogen allocation. Beyond this

role, ASP’s influence extends to impacting pathogen defense

mechanisms, thereby conferring a dynamic and multifaceted role

within plant biology (Brauc et al., 2011).
Frontiers in Plant Science 10
KU50 vasculature bundle altered the lignin
synthesis to response the HT stress

Following the meticulous filtration of vasculature bundle-

specific response DEGs, a comprehensive classification of these

genes was performed, revealing a predominant association with

lignin biosynthesis. A cornerstone of numerous biologically and

economically significant secondary metabolites, phenylalanine

synthesis underpins the accumulation of these crucial

compounds. Our study unearthed a remarkable upsurge in the

phenylalanine metabolism pathway within KU50 mid-vein

vasculature, under HT conditions. This shift was underscored by

a decrease in genes linked to flavonol synthesis, coupled with an

increase in genes steering the lignin synthesis pathway (Figure 11).

Our meticulous QPCR validation further corroborates these

findings, consolidating the premise that KU50 augments its

phenylalanine metabolism pathway to enhance lignin synthesis,

thereby navigating the challenges posed by HT stress.
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Relative expression of four representative genes in HT stressed KU50 leaf and vein. QPCR relative expression corresponds to log2 fold change of the
DCT values normalized with the actin gene. Each column represents the mean value plus standard deviation from three biological replicates.
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In situ localization validates vascular-
specific gene expression in KU50

With our focus on transcriptomic analysis within cassava’s

vascular tissue, a captivating question arises: are the identified

genes exclusive to the vasculature? In pursuit of an answer, we

embarked on in situ localization experiments to delve into the

spatial expression patterns of these identified genes. By conducting

these assays, we aimed to shed light on the precise locations of gene

expression within the KU50 mid-vein vasculature. Specifically, we

employed hybridization techniques to visualize the distribution of

the identified caffeoyl-coenzyme A-3-O-methyltransferase

(MeCCoAOMT) gene. In this endeavor, we meticulously sectioned

KU50 mid-vein samples and conducted hybridization experiments

utilizing targeted MeCCoAOMT probes. Our results unveiled a

striking revelation: MeCCoAOMT expression manifested

prominently within mid-vein xylem vessels, precisely during the
Frontiers in Plant Science 11
phase of robust lignification. This localization pattern aligns

seamlessly with the findings of PhCCoAMT (Chen et al., 2000),

reinforcing the credibility of our insights and bolstering the premise

that these genes indeed exhibit vascular-specific expression.
Discussion

High temperature caused by global warming is the one of the

major environmental factors limiting crop yields. With growing

population, the food crisis caused by the shortage of food supplies is

becoming more and more prominent. Therefore, helping crops

getting strong HT resistance agronomic trait is one of the important

ways to alleviate food crisis (Wahid et al., 2007). Cassava, a tropical

staple crop known for its robust productivity, boasts inherent HT

tolerance (El-Sharkawy, 2006). However, perhaps precisely because

it is a tropical crop, there is currently limited research on the heat
FIGURE 10

Pyruvate biosynthesis pathway in HT treated KU50 leaf mesophyll (Red color means increased expression). Relative expression of three representative
genes in HT stressed KU50 leaf and vein. QPCR relative expression corresponds to log2 fold change of the DCT values normalized with the actin gene.
Each column represents the mean value plus standard deviation from three biological replicates. SERAT1, Serine Acetyltransferase 1; CYS, Cysteine
synthase; ASP, Aspartate aminotransferase. Blue line means RNA-seq readcount, column means QPCR relative expression.
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tolerance of cassava. Given the distinct physiological roles of various

plant tissues, their tissue-specific responses to abiotic stress come to

the forefront. The vascular system plays a crucial role in plant

development and stress resistance, serving functions such as

mechanical support and signal transmission. Despite this, scant

attention has been devoted to deciphering cassava’s HT responses,

especially within its vascular tissue. Accordingly, unraveling the HT

tolerance mechanisms across different cassava tissues assumes
Frontiers in Plant Science 12
paramount importance, holding the potential to guide heat-

resilient crop breeding.

In this experiment, to confirm that the primary tissue in cassava

leaf mid-vein is vascular bundle, we employed toluidine blue

staining on cassava leaf mid-vein, and the results confirmed that

the primary component of cassava leaf mid-veins was vascular

bundle. Subjecting cassava to HT treatment was further validated

through thermal imaging, substantiating its exposure to HT stress.
FIGURE 11

Phenylalanine metabolism pathway in HT treated KU50 mid-vein vasculature (Red color means increased expression and the blue color means
decreased expression). Relative expression of four representative genes in HT stressed KU50 leaf and vein. QPCR relative expression corresponds to
log2 fold change of the DDCT values normalized with the actin gene. Each column represents the mean value plus standard deviation from three
biological replicates.
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Concurrently, assessment of photosynthetic efficiency indicated a

reduction under HT conditions, and there were more HSPs which

were HT stress marker genes had been found increased in the HT

treated groups. These multifaceted observations collectively validate

the effective imposition of HT stress on cassava, a fact amply

supported by our congruent QPCR results.

Subsequent to HT stress, both leaves and main veins were

meticulously collected, ensuring three biological replicates for both

control and treatment groups. Leveraging transcriptome

sequencing, we sought to minimize errors arising from manual

dissection and the residual presence of mesophyll tissue within

main veins. Our meticulous approach encompassed distinct

comparisons and enrichments of leaf mesophyll-specific DEGs,

alongside mid-vein vasculature-specific DEGs. Intriguingly, the

Venn diagram delineated 65 DEGs exclusively responding to HT

within cassava mesophyll. Notably, some of these DEGs had

previously been identified in leaf mesophyll, exemplified by

Glutathione S-transferases (GSTs), a protein family pivotal in

oxidative damage mitigation (Kumar and Trivedi, 2018), as well

as SbGST found within leaves (Tiwari et al., 2016). Likewise, among

the 93 DEGs specific to vascular bundles, select genes including

Os4CL had been validated for their vasculature location in rice (Gui

et al., 2011). A subset of four randomly selected genes underwent

QPCR validation, with the resulting trends mirroring the

transcriptome data, underscoring the reliability of our findings.

The outcomes collectively suggest a heightened responsiveness of

cassava leaf vasculature to HT stress, a differential behavior

expounded by distinct molecular mechanisms unveiled through

GO and KEGG analyses.
Cassava mesophyll reduced the damage
of peroxides under HT by improving
pyruvate synthesis

Photosynthesis, a pivotal physiological process, is acutely

sensitive to heat stress. Particularly, the activity of photosystem II

(PSII) can be significantly reduced or even halted under HT

conditions, owing to the heightened vulnerability of the PSII

complex [51]. The comprehensive analysis of transcriptome data

unveiled the down-regulation of photosynthesis-related genes in

cassava leaves, aligning harmoniously with corroborative QPCR

results and physiological assessments of photosynthetic activity. Of

intrigue is the observation that despite HT causing a decrease in

cassava’s stomatal conductance and related physiological markers,

the intercellular CO2 concentration remained relatively stable. This

curious outcome may be attributed to cassava’s dual C3 and C4

facultative crop characteristics. This is because cassava closes its

stomata in water-deficient conditions, yet it can still recycling CO2

through the phosphoenolpyruvate to resist drought (Punyasu

et al., 2023).

Concurrently, our investigation shed light on the pyruvate

synthesis pathway, which exhibited a notable up-regulation in

mesophyll tissues. This phenomenon suggests an augmented

pyruvate content within the mesophyll. This is because research

has indicated that under abiotic stress, pyruvate can mitigate the
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damage caused by peroxides to plants. For example, in celery,

increasing pyruvate content through exogenous melatonin

enhances its heat tolerance (Li et al., 2022). Our results are

consistent with previous research findings, indicating that cassava

leaves respond to HT stress by increasing pyruvate content. In

summary, we hypothesize that the heat tolerance mechanism in

cassava leaves may involve mitigating damage caused by HT

through enhanced pyruvate metabolism.
The vascular bundles of cassava leaves
resist HT by enhancing lignin synthesis

Plants tend to synthesize more lignin to enhance their HT

resistance. Because during lignification, the deposition of lignin in

the cell wall enhances its stiffness and reduces the permeability of

the xylem cell wall to water. This facilitates the efficient long-

distance transport of water, minerals, and organic matter within the

plant. For instance, poplar increased the lignin biosynthesis in stem

to cope with HT stress (Zhao et al., 2022). In the transcriptome

results of vascular bundle, phenylalanine metabolism pathway was

significantly enriched in the HT treated group. Phenylalanine, a

precursor to crucial metabolites, serves as the foundation for both

lignin and anthocyanin synthesis. Our findings showcased an

evident up-regulation of the phenylalanine metabolic pathway,

alongside a concurrent down-regulation of genes linked to the

downstream anthocyanin synthesis pathway, and an up-

regulation of corresponding lignin synthesis pathway genes. This

study was further substantiated through QPCR verification of

pivotal genes from the phenylalanine, anthocyanin, and lignin

pathways, with results harmonizing with transcriptome trends.

These combined results signify the predominant response of

cassava’s leaf mid-vein vascular bundle to HT stress via the

orchestrated regulation of lignin synthesis. Additionally, in situ

hybridization assays targeting MeCCoAMT, a pivotal gene in the

lignin biosynthesis pathway implicated in stress tolerance and

disease resistance (Lam et al., 2007), revealed its expression

within the xylem of cassava leaf mid-vein (Figure 12).

The integral role of lignin in plant cell walls and its malleability

in response to changing environments is well acknowledged (Endler

et al., 2015). The cell wall often acts as a frontline defense against

stressors and intrusions (Van Sandt et al., 2007). Similar to our

findings, the expression of similar genes was observed in coffee

leaves under HT stress, reflecting the modification of cell wall

structure and composition (Lima et al., 2013). The similar genes’

expression had been found in our results (Table 2). HT-induced

expression of MeXET (Xyloglucan Endotransglucosylase) in

cassava’s vascular bundle underlines its direct involvement in

shaping and restructuring plant cell walls (Fry, 2004). The wheat

Lipid Transfer Protein 3 (TaLTP3), when overexpressed in

Arabidopsis, confers enhanced thermotolerance at the seedling

stage (Wang F. et al., 2014). Similarly, its counterpart in cassava

(MeLTP) exhibited heightened expression under heat stress in our

study. Augmented expression ofMeWAK (Wall-associated receptor

kinase), a receptor for pectins, associated with cell expansion during

plant development (Kohorn and Kohorn, 2012), further
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corroborates vascular bundle adaptation to HT stress. Moreover,

the down-regulation of MeGH (glycoside hydrolases), which

catalyze the hydrolysis of plant cell wall polysaccharides (Su et al.,

2012), provides insights into how cassava’s vascular bundles

strategically enhance lignin biosynthesis to fortify cell wall

integrity, effectively responding to HT stress.
Conclusions

In most studies on plant HT tolerance, there has been limited

classification research distinguishing between leaf mesophyll and leaf

vein vascular bundles. Instead, leaves are often studied as an entity,

potentially causing us to overlook crucial information. This is

significant because under HT stress, signals generated within plant

leaf tissues rely on vascular bundles for transmission. Furthermore,

different tissues should possess distinct adaptive mechanisms to
Frontiers in Plant Science 14
environmental stress, and vascular bundles require their own

defenses against HT. Our experimental results demonstrate that leaf

vein vascular bundles and mesophyll exhibit distinct response

mechanisms under HT conditions. Through differential expression

analysis, we identified genes within both cassava leaf mesophyll and

mid-vein vascular tissue that dynamically responded to the challenges

imposed by HT stress. Intriguingly, our investigation revealed

substantial disparities in the transcriptomic profiles of these distinct

tissue types. We propose a compelling hypothesis that within the same

leaf, the mid-vein vascular tissue activates distinct responsive

mechanisms in contrast to the leaf mesophyll when confronted with

HT stress. This suggests an intricate tissue-specific orchestration of

adaptive strategies under these conditions. Specifically, while leaf

mesophyll tissue experiences a decline in photosynthesis rates due to

HT stress, it concurrently activates an up-regulated pyruvate synthesis

pathway to counteract the thermal stress. In parallel, the mid-vein

vascular tissue notably enhances the phenylalanine metabolism
TABLE 2 Vasculature specific DEGs in HT treated KU50.

Gene ID Gene name Log2 foldchange p-Value

Manes.14G114400 XET 2.33 0.0003

Manes.10G152900 lipid transfer 2.29 0.0005

Manes.06G000800 Pyridoxal-dependent decarboxylase 2.21 1.6993346092335E-13

Manes.12G104300 O-methyltransferase 2.13 0.0028

Manes.04G099400 Wall-associated receptor kinase 2.09 0.00014

Manes.12G006700 Sugar efflux transporter 2.05 0.0002

Manes.12G144000 P450 -2.97 0.0002

Manes.12G144200 P450 -2.86 0.00004

Manes.10G037200 Glutathione S-transferase -2.81 8.59232545070319E-19

Manes.10G144100 Glycosyl hydrolase -2.55 5.8010244088709E-12

Manes.11G072700 Glycosyl hydrolase -2.54 2.750764917365E-10
FIGURE 12

In situ location of MeCCoAOMT in transversal sections of KU50 mid-vein by microscopy.
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pathway, promoting the synthesis of lignin to reinforce its resilience

against HT stress. These findings represent a significant advancement

in comprehending how different tissues within cassava modulate gene

expression patterns in response to HT stress. Our study on the heat

tolerance mechanisms of cassava can offer valuable insights for heat-

resistant breeding in a broader range of crops and provide reference

points for the expansion of temperate crops to more southern regions.
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