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Pancreatic cancer is a highly malignant tumor known for its extremely low survival
rate. The combination of genetic disorders within pancreatic cells and the tumor
microenvironment contributes to the emergence and progression of this
devastating disease. Extensive research has shed light on the nature of the
microenvironmental cells surrounding the pancreatic cancer, including
peripheral nerves and immune cells. Peripheral nerves release neuropeptides
that directly target pancreatic cancer cells in a paracrine manner, while
immune cells play a crucial role in eliminating cancer cells that have not
evaded the immune response. Recent studies have revealed the intricate
interplay between the nervous and immune systems in homeostatic condition
as well as in cancer development. In this review, we aim to summarize the function
of nerves in pancreatic cancer, emphasizing the significance to investigate the
neural-immune crosstalk during the advancement of this malignant cancer.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic
cancer, originating from the cells lining the pancreatic ducts. PDAC is characterized by its
highly invasive feature and rapid expansion ability. Despite rapid advancements in medical
biotechnology, the incidence of PDAC continues to rise, and its prognosis remains bleak,
with 12% of 5-year survival rate (Siegel et al., 2023). Therefore, PDAC has become one of the
leading contributors to increased cancer-related deaths worldwide (Siegel et al., 2022). There
are multiple risk factors associated with PDAC, including smoking, alcohol consumption,
obesity, aging, and family history (Arnold et al., 2009; Genkinger et al., 2009; Permuth-Wey
and Egan, 2009; Bosetti et al., 2012). Unfortunately, there are currently no clearly defined
effective preventive measures available for PDAC.

The development of PDAC involves several complicated steps that are related with acinar
and ductal cells. Acinar cells are responsible for the production and secretion of digestive
enzymes, while ductal cells transport these enzymes produced by acinar cells to the intestines.
PDAC is induced by pathological changes to the ductal epithelial cells, as well as acinar cells via
acinar-to-ductal metaplasia (ADM), which is supported by lineage tracing animal experiments
and in vitro studies (Rooman and Real, 2012). ADM is a reversible process in which pancreatic
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acinar cells are transdifferentiated to ductal cells in response to
inflammatory signaling, over-activation of KRAS and metabolic
stress (Parte et al., 2022). However, ADM becomes irreversible when
the oncogene KRAS is persistently overexpressed or abnormal growth
factors are persistently produced in pancreas (Storz, 2017). These cells
could undergo further deleterious differentiation via a process named
pancreatic intraepithelial neoplasia (PanIN), which is a heterogeneous
proliferation of tiny flat or columnar epithelial hyperplasia (Cornish and
Hruban, 2011). PanIN is considered to be precancerous lesions of
pancreatic cancer (Opitz et al., 2021). Therefore, both ADM and PanIN
are essential steps in the emergence of PDAC (Giroux andRustgi, 2017).

The pancreas has a dense neural network that provide a
microenvironment to interact with tumor cells by promoting
tumor growth or facilitating metastasis (Gasparini et al., 2019). It
remains unclear whether pancreatic nerve influence ADM but
sensory neurons can directly promote PanIN proliferation
through SP-NK-1R signaling and activation of Stat3 (Sinha et al.,
2017). Nerves also influence the transformation of PanIN into
PDAC by regulating the generation and maintenance of the
pancreatic inflammatory response. At the PanIN stage, sprouting
of sensory fibers and an increase in neurotrophic factors have been
detected, which is associated with an increase of pancreatic
inflammatory markers, a process known as neurogenic
inflammation (Vera-Portocarrero and Westlund, 2005). This
demonstrates that bidirectional signaling between the pancreas
and sensory neurons was already established prior to tumor
formation (Schwartz et al., 1985; Saloman et al., 2016). After
emergence of PDAC, nerves enhance tumor invasion through
perineural infiltration to facilitate metastasis and therefore spread
of PDAC into the whole body (Chen et al., 2019).

In recent years, there has been a growing knowledge of the
intricate interaction between the nervous and immune systems
during homeostatic condition, as well as their collaboration in
host reactions (Andersson and Tracey, 2012; Chiu et al., 2012).
These interactions also play a role in regulating tumor immune
evasion and anti-tumor immune responses. Several studies have
revealed the existence of complex interactions between the nervous
and immune systems within the tumor microenvironment of
PDAC, which have significant implications for the development
and metastasis of PDAC (Kuol et al., 2018; Cortese et al., 2020).
Gaining a deeper understanding of these intricate interactions will
provide valuable insights into the mechanisms underlying PDAC
progression and facilitate the development of more treatment
strategies. Targeting the neuro-immune crosstalk may prove to
be an effective approach in PDAC therapy and might also open
up new avenues for the treatment of other types of cancer.

This review provides an overview of the role of neuro-immune
crosstalk in PDAC, including the influence of neuron on the immune
system and vice versa. We also discuss current therapeutic approaches
aimed at modulating neuro-immune interactions, which may provide
valuable insights for future PDAC treatment.

2 Neural regulation of PDAC

PDAC, an aggressive tumor with a poor prognosis, affects the
nervous system even in its precursor stage known as pancreatic
intraepithelial neoplasia (PanIN) (Saloman et al., 2016). The tumor

microenvironment refers to the complex cell environment
surroundings tumor cells, including immune cells, nerves,
endothelial cells, stromal cells, and cancer-associated fibroblasts (Li
et al., 2007). The tumor microenvironment plays a significant role in
tumor growth, invasion, metastasis, and treatment response (Hanahan
and Coussens, 2012; Yuan et al., 2016). The nervous system is an
essential component of the tumor microenvironment that contributes
to tumor initiation and progression (Shurin et al., 2020).

The pancreas contains a dense network of nerves, with the head
(proximal duodenal lobe) having a significantly higher density of nerve
plexus (Berthoud and Powley, 1991; Fasanella et al., 2008). The
innervation of the pancreas involves nerves through spinal cord and
the vagus nerve, both conveying sensory information, as well as the
parasympathetic and sympathetic nerves (Lindsay et al., 2005; Teff, 2008).

2.1 Perineural invasion

Perineural invasion (PNI) occurs when tumor cells infiltrate
along nerves or within the outer sheath and spaces surrounding
nerves (Bockman et al., 1994; Yang et al., 2020a). Perineural invasion
is a notable characteristic of PDAC, present in over 80% of PDAC
patients, even at early stages like pancreatic intraepithelial neoplasia
(Ceyhan et al., 2009; Saloman et al., 2016). Perineural invasion is
linked to the neural innervation of PDAC and correlates with pain
experienced by these patients (Ceyhan et al., 2009; Bapat et al.,
2011). Additionally, perineural invasion provides a pathway for
tumor invasion into nearby tissues and enhances the local invasive
capacity of the tumor (Ceyhan et al., 2009). The extent of perineural
invasion in PDAC is significantly associated with postoperative
prognosis, making it a predictive factor for survival. Controlling
perineural invasion is therefore crucial in PDAC treatment.

Neurotrophic factors secreted by the nervous system play a
critical role in PDAC, influencing the perineural invasion process
through autocrine or paracrine mechanisms (Huang et al., 2018).
Schwann cells and macrophages within the nerves can regulate
tumor cell behavior and contribute to PNI exacerbation (Demir
et al., 2014; Bakst et al., 2017). Furthermore, specific axon guidance
molecules, such as Semaphorin 3D, Plexin D1 and serine, have been
found to promote PNI in PDAC (Jurcak et al., 2019; Banh et al.,
2020; White and Wang, 2021).

2.2 Sympathetic and parasympathetic
nerves in PDAC

An increase in pancreatic neural plexus density is associated
with PDAC development (Bockman et al., 1994). The sympathetic
nervous system has a dual role in PDAC. On one hand, it has been
reported that the sympathetic nervous system can directly influence
the growth of PDAC through beta-adrenergic signaling by releasing
norepinephrine (Guo et al., 2013; Kim-Fuchs et al., 2014)
(Figure 1A). On the other hand, some evidence suggests that the
sympathetic nervous system exhibits inhibitory effects on pancreatic
cancer, either directly (Guillot et al., 2022) or indirectly via NK cells
(Song et al., 2017).

Research has indicated that parasympathetic nerve signaling can
slow down the progression of pancreatic tumors mediated by
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inflammation (De Couck et al., 2016). Parasympathetic nerve blockage
promotes the growth of PDAC and shortens overall survival (Partecke
et al., 2017), while the use ofmuscarinic agonists inhibits the occurrence
of PDAC and prolongs overall survival (Renz et al., 2018a) (Figure 1B).
However, besides its involvement in PDAC development through
suppressing inflammatory responses, promoting immune regulation,
and anti-tumor immune reactions, activation of the parasympathetic
nervous system is also believed to be associated with poor prognosis in
PDAC (Zhang et al., 2016a; Zhang et al., 2016b).

Thus, the roles of sympathetic and parasympathetic nerves in
PDAC are complex and sometimes controversial, requiring further
investigation.

2.3 Sensory nerve in PDAC

Severe and persistent pain is a common accompanying
symptom of PDAC and is frequently associated with the

prognosis of patients in advanced stages of the disease (Laitinen
et al., 2017). PDAC pain is a complex process involving various
mechanisms such as local tumor infiltration, nerve compression,
and inflammation (Mantyh et al., 2002; Wang et al., 2021).

While the mechanisms of PDAC pain are not yet fully
understood, it is well established that neurogenic inflammation
plays a significant role to induce pain (Wang et al., 2021).
Neurogenic inflammation is an inflammatory response that
influences the tumor microenvironment, involving vascular
dilation and plasma protein extravasation due to peripheral
release of substance P and calcitonin gene-related peptide, both
of which are neuropeptides (Schmelz and Petersen, 2001)
(Figure 1C). Pain-associated sensory neurons primarily release
substance P and are involved in the transmission of pain signals
(Pernow, 1953). Calcitonin gene-related peptide, belonging to the
calcitonin peptide family, is mainly synthesized and secreted by
sensory neurons within peripheral tissues. Studies have shown that
calcitonin gene-related peptide usually co-localizes with substance P

FIGURE 1
Peripheral nerve release neuropeptide to influence pancreatic tumor cells and microenvironmental immune cells. Multiple neuropeptides from
sympathetic nerve (A), parasympathetic nerve (B), sensory and other nerve (C) directly target to tumor cells or influence cancer progress by indirectly
target to immune cells.
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and both play a role in the transmission of sensory signals,
particularly pain (Gibbins et al., 1985).

Therefore, neurogenic inflammation results in persistent
neuropathic pain, which greatly influences the patient’s quality of
life (Breivik et al., 2006; Grace et al., 2014). Tumor cells not only
mechanically affect sensory nerve, they also release inflammatory
factors that stimulate nerve endings and cause pain (Mantyh et al.,
2002). Sensory neurons can also heighten nociceptive
hypersensitivity by releasing specific proteins like substance P
and calcitonin gene-related peptide. Additionally, sensory
neurons can secrete chemokines that act on chemokine receptors,
which enhances the sensitivity of nociceptive neurons and
promoting neurogenic inflammation (White et al., 2009). Hirth
et al. discovered a potential link between chemokines CXCL10 and
CCL21 with PDAC pain, and pain relief can be achieved by
neutralizing these chemokines (Hirth et al., 2020).

2.4 GABAergic and serotonergic neurons in
PDAC

In addition to substance P, calcitonin gene-related peptide and
chemokines, neurotransmitters play a crucial role in promoting the
development and survival of PDAC cells, including Gamma-
aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT),
commonly known as serotonin (Figure 1C).

Suppression of the inhibitory neurotransmitter GABA has been
reported to enhance the invasion and growth of tumor cells (Al-
Wadei and Schuller, 2009; Banerjee et al., 2016). Studies have shown
that supplementing with GABA can decrease cAMP levels and
inhibit the release of the pro-inflammatory cytokine interleukin-6
(IL-6), thus preventing pancreatic inflammation from progressing to
PDAC. GABA supplementation can also inhibit the abnormal
signaling pathway caused by ethanol-induced inhibition of
cAMP-mediated PKA signaling, suggesting it as a promising
preventive approach for pancreatitis-related PDAC and PDAC
caused by long-term alcohol consumption (Al-Wadei et al., 2013;
Banerjee et al., 2016).

It is well-known that tumor cells primarily rely on glycolysis as
their metabolic method under both aerobic and anaerobic
conditions (Hsu and Sabatini, 2008). This phenomenon, known
as the Warburg effect, is closely associated with the malignant
progression of PDAC (Yang et al., 2020b). Research indicates
that serotonin can modulate the Warburg effect by activating the
PI3K/Akt/mTOR pathway, thereby enhancing the survival
capabilities of tumor cells (Jiang et al., 2017). Lyn, a kinase
belonging to the Src family, has been found to play a promoting
role in the serotonin-induced PI3K/Akt/mTOR pathway. Knocking
down Lyn leads to significant reductions in both serotonin levels and
the extent of the Warburg effect (Jiang et al., 2017).

Furthermore, HTR2B, a vital subtype of the serotonin receptor
(Nebigil et al., 2001), has a positive relationship with serotonin
expression and can facilitate the development of PDAC (Jiang et al.,
2017). Controlling the activity of HTR2B through knockdown
methods may contribute to reduce disease progression and
increase overall survival in PDAC patients (Jiang et al., 2017).
The expression of HTR2B can independently predict the
invasiveness of PDAC, suggesting that it could be a potential

target for PDAC therapy. Lowering down the levels of serotonin
through different approaches, such as targeting key factors involved
in its production, shows potential in slowing down the progression
of PDAC.

To sum up, there is a correlation between changes in the density
of the pancreatic neural plexus and the development of PDAC
(Ceyhan et al., 2009). However, more research is necessary to
investigate the complex interaction of various neural networks in
PDAC, in order to gain a better understanding of neuronal
regulation of PDAC to intervene disease progression.

3 The influence of nerve to immune
cells in pancreatic cancer

In PDAC, both the nervous system and the immune system play
important roles, respectively, in influencing tumorigenesis,
progression, treatment, and prognosis. However, whether there is
an interaction between the two systems and how such an interaction
takes place is still under investigation. This part will focus on the
crosstalk between the nervous system and the immune system in
PDAC (Figure 2).

3.1 The sympathetic system

Sympathetic nerves are predominantly believed to promote
tumor development, as seen in prostate and breast cancer
(Bauman and McVary, 2013; Kamiya et al., 2019). This
promotion may be attributed to the production of nerve growth
factor (NGF) (Renz et al., 2018b) and potentially angiogenesis (Kim-
Fuchs et al., 2014). In the case of PDAC, however, apart from the
existing studies on sympathetic promotion of tumor growth, there
have also been reports of sympathetic restriction of PDAC growth.
This cancer-protective effect is primarily achieved by modifying the
tumor microenvironment in PDAC. It has been demonstrated that
PDAC tumor cells tended to grow after both surgical
sympathectomy and peripheral chemical sympathectomy
achieved by using the neurotoxin 6-hydroxydopamine (6-
OHDA), respectively. This effect is likely caused by an increase
in CD163 macrophage (M2-type macrophage) cells (Guillot et al.,
2022), which have the potential to drive tumor progression by
suppressing T cell-mediated anti-tumor immunity (Etzerodt
et al., 2012; Cheng et al., 2017).

Natural killer (NK) cells play a crucial role in tumor recognition
and tumor cell elimination (Vivier et al., 2012; Chester et al., 2015).
It has been demonstrated in a mouse model of PDAC that anti-
tumor immunity was suppressed through peripheral chemical
sympathectomy. This suppression was observed by inhibiting the
expression of NKG2D and CCR5 in NK cells (Song et al., 2017).
However, contradictory findings have been reported vitro studies,
where norepinephrine has been shown to inhibit NK cell activity via
the β-adrenergic receptor (Ben-Eliyahu et al., 2000). This suggests
that sympathetic nerves may have a dual effect on NK cells.
Although these pioneer works investigated the role of
sympathetic nerves on NK cells in PDAC, further evidence is
necessary to fully understand their relationship as
microenvironment of PDAC.
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To sum up, sympathetic nerves exhibit distinct mechanisms in
different components of the PDAC environment and have
demonstrated both pro- and anti-tumor effects in various studies.
These differences may also be associated with α and β receptors, with
β receptors consistently linked to tumor promotion in existing
literature (Renz et al., 2018b). Conversely, the role of α receptors
remains unknown and requires further investigation in subsequent
studies.

3.2 The parasympathetic system

The vagus nerve is the primary component of the
parasympathetic nerves in pancreas and is involved in the
production of inflammatory factors as well as the regulation of
the immune systems. This is mainly achieved through the binding of
the neurotransmitter acetylcholine to muscarinic-type receptors
(M-receptors) or nicotinic-type receptors (N-receptors)
(Borovikova et al., 2000; Huston et al., 2009). Numerous studies
have demonstrated that the vagus nerve plays a protective role in
various tumors (Gidron et al., 2005; Reijmen et al., 2018; Li et al.,
2023). For instance, in pancreatic cancer, vagotomy, which involves
the cutting of the vagus nerve, can lead to increased tumor growth,
worsened survival, and higher levels of tumor-associated
macrophages and TNF-α (Partecke et al., 2017). Further
investigation has revealed that muscarinic receptors can inhibit
tumorigenesis by down-regulating MAPK and PI3K/AKT
signaling through CHRM1 receptors in tumor cells. Additionally,
activating muscarinic receptors has been found to increase levels of
circulating TNFα and CD11b+ myeloid cells (Renz et al., 2018a).

Nicotinic receptors also contribute to vagus nerve-mediated tumor
suppression. Tracy’s study describes the vagus nerve’s role in
suppressing inflammation as a “cholinergic anti-inflammatory
pathway,” (Tracey, 2002) which relies on the nAChR (Wang
et al., 2003). This pathway explains how the vagus nerve may
reduce the production of inflammatory cytokines in PDAC.
Acetylcholine released by the vagus nerve exerts its effect
through the α7 nicotinic acetylcholine receptor (α7nAChR)
found on macrophages, inhibiting the production and release of
pro-inflammatory cytokines like TNF, IL-1β, IL-6, and IL-18
(Borovikova et al., 2000; Wang et al., 2003; Falvey, 2022).

There are clinical studies that suggest the vagus nerve can reduce
the risk of death in metastatic PDAC (De Couck et al., 2016). Both
muscarinic and nicotinic receptors play a role in inhibiting PDAC.
Research has demonstrated that subdiaphragmatic vagotomy, the
cutting of the vagus nerve below the diaphragm, leads to accelerated
PDAC development. Normal cellular phenotypes can be restored by
using the muscarinic agonist bethanechol. However, similar to
sympathetic nerves, the vagus nerve also plays a dual role in
PDAC by modulating the tumor microenvironment.

Research has indicated that when perineural invasion occurs in
PDAC, there is an elevated level of acetylcholine, which promotes
tumor growth primarily by affecting T cell responses. Acetylcholine
impairs PDAC cells’ ability to recruit CD8+ T cells and reduces their
anti-tumor immunity by inhibiting CCL5 through HDAC1-
mediated mechanisms. Additionally, acetylcholine directly
inhibits interferon production by CD8+ T cells in a dose-
dependent manner through the nicotinic acetylcholine receptor
(nAChR). This promotes Th2 polarization of T cells and a
decrease in the Th1/Th2 ratio, which is essential balance in

FIGURE 2
PDAC progression is associated with crosstalk between neurons and immune cells. Pancreatic nerves release VIP or acetylcholine to target T cells to
reduce their anti-tumor effect or to inhibit interferon production from T cells. Norepinephrine has been shown to inhibit NK cell activity via the β-
adrenergic receptor in vitro. Vagus nerve-derived acetylcholine exerts its effect onmyeloid cells, inhibiting the release of pro-inflammatory cytokines. In
PDAC, tumor-associated macrophages at the tumor invasion site secrete high levels of GDNF. These recruited tumor-associated macrophages
promote perineural invasion by secreting large amounts of cathepsin B (CTSB) to degrades collagen IV facilitating the invasion and spread of tumor cells
along the nerve. LIF has a positive correlation with PDAC-associated neural remodeling. NE, norepinephrine; Ach, acetylcholine; VIP, vasoactive intestinal
peptide; LIF, leukemia inhibitory factor; CTSB, cathepsin B; GDNF, Glial-derived neurotrophic factor.
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immune response, thereby facilitating tumor growth and lowering
the survival rate (Yang et al., 2020a).

These existing studies suggest that the exact functions of
acetylcholine are complex and sometimes controversial, which
requires further investigation taking into account the specific
context of acetylcholine receptors, components of the tumor
microenvironment as well as the progression stages of the disease.

3.3 Other neuromodulators

3.3.1 Vasoactive intestinal peptide (VIP)
Vasoactive intestinal peptide is a neuropeptide consisting of

28 amino acids. It is primarily released by neurons and immune
cells, with a crucial role as a neurotransmitter in immune regulation
and vasodilation (Delgado and Ganea, 2013). VIP’s involvement in
tumor growth and metastasis is linked to its regulation by immune
cells (Moody et al., 1993; Fernandez-Martinez et al., 2009). There is a
high expression of VIP receptors on immune cells, and in the case of
PDAC, these receptors are upregulated during T cell activation.
Tumor cells produce VIP, which acts on T cells through the
paracrine manner, inhibiting their anti-tumor activity and
promoting the development of Treg and Th2 cells. Inhibiting
VIP receptors using VIP-R antagonists has shown promise in
inhibiting PDAC progression and is considered to be a viable
treatment option for the condition (Ravindranathan et al., 2022).

3.3.2 Netrin G1
Netrin G1 is a neuronal cell adhesion molecule that belongs to

the netrin family. Its primary function is to serve as a long-range
chemical axon guidance cue during development (Zhang et al.,
2016c). In human PDAC tissue, Netrin G1 is found to be
overexpressed compared to normal tissue, and its expression is
negatively correlated with survival rates. Both in vivo and in vitro
studies have revealed that treatment with anti- Netrin
G1 monoclonal antibodies effectively inhibits tumor formation,
indicating that Netrin G1 may be a potential target for PDAC
therapy. Knockdown of Netrin G1 in tumor-associated fibroblasts in
PDAC has been shown to reduce the presence of immuno-
suppressive factors (Francescone et al., 2021). However, it is
important to note that the expression of IL15, a crucial factor in
activating NK cells and enhancing the anti-tumor activity of CD8+

T cells, is significantly higher in tumor cells compared to Netrin G1
(Fehniger et al., 2002; Waldmann, 2003; Klebanoff et al., 2004). This
suggests that reducing Netrin G1 expression may activate NK cells,
facilitating to create a less immunosuppressive tumor
microenvironment and inhibiting PDAC progression. More
comprehensive research on Netrin G1 and clinical trials
involving anti- Netrin G1 monoclonal antibodies are necessary to
fully understand treatment efficacy and potential adverse reactions.

4 The influence of immune cells on the
nervous system in pancreatic cancer

Despite immune cells constituting nearly 50% of PDAC’s
cellular component (Clark et al., 2007), PDAC still exhibits an
immunosuppressive tumor microenvironment because of the

abundance of immunosuppressive cells over anti-tumor effector
cells. This immunosuppressive environment is characterized by
T-cell exhaustion and the infiltration of various
immunosuppressive cells, including tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), and regulatory T cells (Tregs) (Liu et al., 2019). These
immunosuppressive cells contribute to the reduction of anti-tumor
immunity and the promotion of tumor growth through the secretion
of cytokines and the inhibition of CD8+ T cells (Zheng et al., 2013).
Additionally, there is a subset of cells that influence the nervous
system to promote tumor development, with tumor-associated
macrophages being the most extensively studied in this regard.

4.1 Origin of tumor-associated
macrophages

A significant influx of infiltrating tumor-associated
macrophages is observed as early as the PanINs stage of the
pancreatic cancer, persisting throughout PDAC (Clark et al.,
2007). Initially, monocytes are recruited into the PDAC
microenvironment and undergo differentiation into tumor-
associated macrophages under the chemotactic influence of
various factors secreted by tumor cells, Schwann cells, and other
cells, resulting in the formation of a unique tumor
microenvironment (Franklin et al., 2014; Bakst et al., 2017).
Tumor cells not only secrete high levels of colony-stimulating
factor 1 (CSF-1) to independently recruit macrophages (Zhu
et al., 2014) but also release the chemokine CCL2 in conjunction
with Schwann cells, facilitating the infiltration of inflammatory
monocytes via the CCL2/CCR2 axis (Sanford et al., 2013; Bakst
et al., 2017). Furthermore, the vascular endothelial growth factor
(VEGF)/epidermal growth factor receptor (EGFR) signaling axis
(Dineen et al., 2008) and the hypoxic tumor microenvironment are
also implicated in macrophage recruitment in PDAC (Doedens
et al., 2010).

4.2 Important signaling mediating crosstalk
between nerve and tumor-associated
macrophages

4.2.1 Glial-derived neurotrophic factor (GDNF)
Glial-derived neurotrophic factor (GDNF) is a crucial

neurotrophic factor that supports the survival of neural cells in
both the central and peripheral nervous systems (Airaksinen and
Saarma, 2002; Ito et al., 2005). When GDNF initially binds to the
GDNF family receptor α1 (GFRα1), this complex then activates the
transmembrane proto-oncogene Ret receptor (RET) by inducing
phosphorylation of RET tyrosine residues. Therefore, the interaction
between GFRα1 and RET is necessary for a response to GDNF.

In PDAC, activated and recruited tumor-associated
macrophages at the tumor invasion site secrete high levels of
GDNF (Cavel et al., 2012). This leads to phosphorylation of RET
and subsequent activation of extracellular signal-regulated kinases
(ERK) in PDAC tumor cells, ultimately promoting the perineural
invasion of pancreatic cancer cells. Interestingly, dorsal root ganglia
can release soluble GFRα1 even in the absence of cancer cell
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expression of GFRα1. The GFRα1 released by nerves further
enhances RET activation and amplifies cancer cell perineural
invasion (He et al., 2014).

Notably, the effect of GDNF is more pronounced in cells with
the G691S RET polymorphism, which exhibits higher activation of
the MAPK signaling pathway. This suggests a direct correlation
between the G691S RET single nucleotide polymorphism and the
aggressive growth of pancreatic cancers (Okada et al., 1999; Sawai
et al., 2005).

4.2.2 Cathepsin B
Cathepsin B (CTSB) is a member of the papain superfamily and

plays a role in various physiological processes, including protein
degradation, lipid metabolism, and antigen presentation (Mort et al.,
1997). In tumors, cathepsin B contributes to tumor cell invasion by
regulating angiogenesis, disrupting cellular junctions, and cleaving
cell adhesion molecules (Olson and Joyce, 2015). In PDAC, it has
been reported that CCL2 derived from Schwann cells facilitates the
differentiation of monocytes into tumor-associated macrophages.
These recruited tumor-associated macrophages promote perineural
invasion by secreting large amounts of cathepsin B. Cathepsin B
effectively degrades collagen IV, an essential component of the
protective nerve bundle membrane, thus facilitating the invasion
of tumor cells into nerves and their spread along the nerve (Bakst
et al., 2017).

4.2.3 Leukemia inhibitory factor (LIF)
Prior to the onset of perineural invasion, significant

alterations occur in several neural compartments, collectively
known as PDAC-associated neural remodeling (PANR) (Demir
et al., 2010; Saloman et al., 2016). This process is promoted by the
crosstalk between stromal cells and nerves. Co-culturing
macrophages with fibroblasts greatly enhances the secretion of
leukemia inhibitory factor by fibroblasts. Leukemia inhibitory
factor activation subsequently triggers JAK/STAT3/AKT
signaling, promoting glial cell differentiation, inducing their
migration, and increasing plasticity in dorsal root ganglion
neurons by extending the number of neurite protrusions and
cytosolic area. The experimental results support a positive
correlation between LIF and PDAC-associated neural
remodeling, highlighting the potential of serum LIF as a
stratification marker for PDAC. Furthermore, the combined
detection of LIF and CA19-9, which is an important molecular
marker for pancreatic cancer, could be utilized as a diagnostic
and predictive marker (Bressy et al., 2018).

4.2.4 Macrophage migration inhibitory factor (MIF)
and CD74

Macrophage migration inhibitory factor (MIF) is a protein
secreted by various immune and epithelial cells, including
macrophages with pro-inflammatory properties (Funamizu
et al., 2013). Macrophage migration inhibitory factor promotes
tumor development through multiple pathways and its levels are
significantly elevated in PDAC (Wang et al., 2018). CD74, a
protein on the cell membrane, acts as a surface receptor for
macrophage migration inhibitory factor, whose main function is
to cooperate with MHCII molecules, regulating antigen
presentation and affecting the proliferation and survival of

B cells (Cohen and Shachar, 2012). Additionally, CD74 can
also participate in signal transduction pathways (Becker-
Herman et al., 2005) and is considered a prognostic factor in
cancer, as higher expression of CD74 indicates tumor
progression. In PDAC, CD74 levels progressively increase with
disease progression. Through the PI3K/AKT/EGR-1 pathway,
CD74 enhances tumor invasion and promotes neuroplasticity
by increasing GDNF secretion, thereby facilitating tumor
invasion (Zhang et al., 2021). Knocking down CD74 has been
found to reduce the invasive ability of PDAC and the growth
index of dorsal root ganglia, achieving an inhibitory effect on
PNI. Targeting CD74 for PDAC treatment shows promising
potential.

5 Therapeutic targets of PDAC

The limitations of surgical intervention and the strong resistance
of PDAC to chemotherapy enables PDAC treatment to be a
challenging task (Andersson et al., 2009; Lambert et al., 2019).
Molecular therapy, utilizing specific drugs or substances to target
specific molecules or sites within tumor cells, is not universally
effective for PDAC patients, particularly those with advanced PDAC
(metastatic pancreatic cancer) (Remond et al., 2022).
Immunotherapy, an emerging field in cancer treatment, aims to
activate the patient’s immune system to inhibit and eliminate cancer
cells. However, the immunosuppressive tumor microenvironment
of PDAC limits the efficacy of immunotherapies such as immune
checkpoint inhibitors (ICI), CAR-T cell therapy, or vaccines in
PDAC treatment (Zhang et al., 2022). The interaction between
the nervous and immune systems plays a crucial role in tumor
growth and proliferation, underscoring its significance in PDAC
treatment (Kuol et al., 2018; Cortese et al., 2020). The next section
will discuss several PDAC treatment approaches based on neuro-
immune crosstalk.

5.1 Combination of VIP receptor antagonists
and ICI

As mentioned earlier, when VIP binds to VIP receptors on
T cells, it sends inhibitory signals that suppress the anti-tumor
activity of T cells and promote tumor cell growth. VIP receptor
antagonists can inhibit this signaling, thereby preventing the
reduction in anti-tumor activity of T cells and countering the
immune-suppressive tumor microenvironment in PDAC
(Ravindranathan et al., 2022). These antagonists can be used in
combination with immune checkpoint inhibitors to enhance their
therapeutic effects by mitigating the impact of the immune-
suppressive tumor microenvironment (Zhang et al., 2022).
Experimental studies have shown that VIP receptor antagonists
alone can downregulate the expression levels of PD-1 and PD-L1 on
immune cells (Li et al., 2016). Furthermore, the combination of VIP
receptor antagonists with anti-PD-1 treatment significantly
enhances the induction of tumor-specific T cell responses and
provides protective immunity against tumor re-attack
(Ravindranathan et al., 2022). Administration of anti-PD-1 alone
leads to upregulation of CXCR4 expression in T cells, but this effect
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can be counteracted by co-administration of a VIP receptor
antagonist with anti-PD-1 (Ravindranathan et al., 2022).
Combination therapy has proven to be more effective than
monotherapy. Although VIP receptor antagonists have shown
efficacy in treating various types of tumors, their specific
applications and characteristics are still under investigation and
have not yet been formally implemented in clinical treatment
(Moody et al., 1993; Zia et al., 1996; Ravindranathan et al., 2022).

5.2 Targeted therapy for CD74 and its
conjugates

CD74 acts as a co-factor for MHCII molecules, and its
expression levels progressively increase with PDAC progression.
CD74 can also increase the secretion of GDNF through the PI3K/
AKT/EGR-1 pathway (Zhang et al., 2021). Studies have shown a
positive correlation between CD74 levels and GDNF. Since GDNF
promotes the occurrence and development of pancreatic
neuroplasticity invasion, targeting CD74 can lower down GDNF
levels and inhibit PNI (Cavel et al., 2012). Milatuzumab, a novel
immunotherapeutic drug targeting CD74, has shown promising
results in clinical trials for cancer treatment (Kaufman et al.,
2013). However, CD74 targeted therapy is more effective in
hematological tumors compared to solid tumors (Burton et al.,
2004; Govindan et al., 2013). Studies suggest that the efficacy of
CD74 targeting in solid tumors can be improved through drug
conjugation. For example, the Milatuzumab-SN-38 conjugate has
increased the survival period of mice with solid tumor xenografts
and enhanced targeting and anti-tumor toxicity (Govindan et al.,
2013). Nonetheless, the specific therapeutic effects and
characteristics of Milatuzumab conjugates are still under
investigation and have not been widely used in clinical treatment.

Currently, therapeutic approaches that target the neuroimmune
dialogue in PDAC are still in the clinical research stage, with
imperfect techniques and outcomes. However, treatment methods
based on the neuroimmune dialogue in PDAC show promising
prospects and can be considered as future directions for PDAC
treatment research.

6 Conclusion and future perspectives

Numerous studies have indicated that the interaction
between the nervous system and immune system plays a
crucial role in the development of PDAC, in addition to their
individual contributions. The pancreas harbors a significant
number of nerves, which not only contribute to pain through
neurogenic inflammation but also engage in crosstalk with tumor
cells, promoting tumor growth through perineural invasion.
Moreover, the nervous system also participates in immune
regulation in PDAC. While existing research has highlighted
the involvement of both sympathetic and parasympathetic nerves
in pro- and anti-tumor immunity, their precise roles require
further investigation. Additionally, various neuromodulator
factors influence the neuro-immune crosstalk together with
impact in the progression of PDAC, offering potential targets
for treatment. Conversely, macrophages in the immune system

contribute to perineural invasion and neural remodeling by
interacting with the nervous system. Circulating monocytes
infiltrate the tumor’s periphery microenvironment and
differentiate into macrophages in response to diverse factors,
influencing tumor neural infiltration and remodeling through
direct and indirect mechanisms.

Despite these advancements, several unresolved questions
persist within the neuro-immune crosstalk network. It remains
unknown whether additional neuromodulators are involved in
this process, and if other immune cells besides macrophages
communicate with the nervous system. Therapies targeting
neuro-immune crosstalk are still in the preclinical stage,
requiring additional research to establish their efficacy. Overall,
understanding the significance of neuro-immune crosstalk in
PDAC is crucial for unraveling its pathogenesis and developing
novel treatment approaches.
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