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Are acoustics enough? Semantic
e�ects on auditory salience in
natural scenes

Sandeep Reddy Kothinti and Mounya Elhilali*

Department of Electrical and Computer Engineering, Center for Language and Speech Processing, The

Johns Hopkins University, Baltimore, MD, United States

Auditory salience is a fundamental property of a sound that allows it to grab

a listener’s attention regardless of their attentional state or behavioral goals.

While previous research has shed light on acoustic factors influencing auditory

salience, the semantic dimensions of this phenomenon have remained relatively

unexplored owing both to the complexity of measuring salience in audition as

well as limited focus on complex natural scenes. In this study, we examine

the relationship between acoustic, contextual, and semantic attributes and their

impact on the auditory salience of natural audio scenes using a dichotic listening

paradigm. The experiments present acoustic scenes in forward and backward

directions; the latter allows to diminish semantic e�ects, providing a counterpoint

to the e�ects observed in forward scenes. The behavioral data collected from

a crowd-sourced platform reveal a striking convergence in temporal salience

maps for certain sound events, while marked disparities emerge in others. Our

main hypothesis posits that di�erences in the perceptual salience of events are

predominantly driven by semantic and contextual cues, particularly evident in

those cases displaying substantial disparities between forward and backward

presentations. Conversely, events exhibiting a high degree of alignment can largely

be attributed to low-level acoustic attributes. To evaluate this hypothesis, we

employ analytical techniques that combine rich low-level mappings from acoustic

profiles with high-level embeddings extracted from a deep neural network.

This integrated approach captures both acoustic and semantic attributes of

acoustic scenes along with their temporal trajectories. The results demonstrate

that perceptual salience is a careful interplay between low-level and high-

level attributes that shapes which moments stand out in a natural soundscape.

Furthermore, our findings underscore the important role of longer-term context

as a critical component of auditory salience, enabling us to discern and adapt

to temporal regularities within an acoustic scene. The experimental and model-

based validation of semantic factors of salience paves the way for a complete

understanding of auditory salience. Ultimately, the empirical and computational

analyses have implications for developing large-scale models for auditory salience

and audio analytics.
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1 Introduction

In its most general definition, attention can be described as

an information selection process that facilitates the brain’s ability

to select the most relevant information in the sensory space

while filtering out less relevant information (Posner and Petersen,

1990; Driver, 2001). Defining what is relevant depends on several

perceptual and cognitive processes, and the factors governing these

processes are often categorized as either top-down or bottom-

up factors (Corbetta and Shulman, 2002; Theeuwes, 2010). Top-

down or endogenous attention is a voluntary or goal-driven

process that aligns with the observer’s behavioral goals (Baluch

and Itti, 2011). Alternatively, bottom-up or exogenous attention is

stimulus-driven, where the sensory signal automatically captures

an observer’s attention (Theeuwes, 1991; Schreij et al., 2008; Kaya

and Elhilali, 2014). In auditory perception, the former mode of

attention describes our voluntary selection of a friend’s voice in

a busy cafeteria while ignoring background chatter. The latter

form of attention often manifests in the same setting where our

phone ringing will inadvertently grab our attention and that of

others around us. This interplay and competing demands on our

attentional control are at the core of what enables our brain to

make sense of the cacophony of sounds that enter our ears at

every moment in time and focus limited processing capacity on the

contingencies of that instant.

While studies of top-down auditory attention often invoke a

variety of behavioral and cognitive tasks to probe manifestations

of top-down control on sensory processing, studying bottom-

up auditory attention continues to be a challenge. Studies of

bottom-up attention need to examine a listener’s attentional state

without explicitly directing their attentional control. Organically

achieving this balance is often impossible due to the lack of

measurable biometric markers to probe a user’s engagement with

an acoustic stimulus. In contrast, studies of visual perception

have leveraged eye tracking (both fixation and eye movement)

to quantify the effect of images, scenes, and videos during free-

viewing or complex task execution by observers, making it a de

facto standard measure of bottom-up visual attention (Treue, 2003;

Foulsham and Underwood, 2008). Numerous studies have shown

that analysis of conspicuous or salient regions in a visual input

can account for predictions of eye gaze patterns, and that human

observers consciously access such salience computations to guide

perception (Borji et al., 2013; Borji, 2018).

By tapping into the natural behavior of eye movement during

free viewing, visual salience studies have revealed a complex

interplay of factors guiding attention to themost salient regions in a

scene (Koch and Ullman, 1985; Itti and Koch, 2001). Early research

focused on low-level visual attributes like contrast, orientation, and

color through behavioral experiments like pop-out searches and

odd-ball tasks. These attributes underpin popular computational

models of salience, explaining center-surround processing in the

early visual system (Itti et al., 1998; Itti and Koch, 2000; Peters et al.,

2005). They effectively predict human gaze patterns in controlled

visual settings (Parkhurst et al., 2002); though these mechanisms

fail to generalize to accounts of eye fixation with real-world

images with complex object layouts (Foulsham and Underwood,

2008). Psychophysical experiments manipulating semantic and

object information while retaining low-level visual cues uncovered

systematic effects of higher-order factors, including higher-order

statistics, objects, and object identity (Einhäuser et al., 2007;

Einhauser et al., 2008; Cerf et al., 2008). These studies observed that

human fixations tend to cluster around object centers (Foulsham

and Kingstone, 2013). Semantic factors, such as preferences for

faces and object-context consistency also influence fixations on

objects (Hershler andHochstein, 2005; Stirk andUnderwood, 2007;

Cerf et al., 2009). These results paint a more encompassing picture,

where low-level visual features and higher-order contextual and

semantic factors work dovetail to guide the human gaze in natural

vision.

Unlike eye movement, auditory perception has no behavioral

parallel to infer auditory perception in a non-intrusive manner.

Several experimental paradigms, such as odd-ball paradigms,

distraction tasks, and dichotic listening experiments, were

suggested as proxies for probing the effects of sensory salience on

auditory perception. Deviance detection and particularly odd-ball

paradigms examined the premise that contrast in low or high-level

statistics of a token relative to its surround results in enhanced

neural and perceptual representation, ultimately making it stand

out (Schröger and Wolff, 1996; Jacobsen et al., 2003; Grimm and

Escera, 2012). Still, the use of odd-ball paradigms in behavioral

studies of auditory salience does elicit active engagement of

listeners, hence confining the organic control of their attentional

state by sounds themselves in favor of the task or instructions given

(Shuai and Elhilali, 2014; Huang and Elhilali, 2020). Alternative

approaches employing distraction or dual tasks also successfully

probed various dimensions of auditory salience (Dalton and Lavie,

2006; Duangudom andAnderson, 2007). Owing to the complexities

of controlling the attentional state in addition to perceptual and

cognitive loads of such paradigms, the majority of these approaches

employed simplified stimuli such as tones and noise patterns

(Elhilali et al., 2009; Duangudom and Anderson, 2013; Petsas

et al., 2016) or controlled sequences of natural sound tokens

(Duangudom and Anderson, 2013; Tordini et al., 2015). Dichotic

listening (Cherry, 1953; Hugdahl, 2009) has been successfully

employed in studies of auditory salience on natural scenes, where

two competing stimuli are pitted against one another in different

ears (Huang and Elhilali, 2017; Kothinti et al., 2020, 2021) and

listeners continuously reported their attentional switches. This

paradigm offered the advantage of collecting continuous salience

profiles over time and minimized the top-down modulation effects

achieved by pairing sound scenes randomly across trials and

subjects. Kothinti et al. (2021) showed that online crowd-sourcing

of the dichotic salience task reliably reproduced salience data on

natural sound scenes, paving the way to scale salience data on

natural sounds to large samples from a diverse subject pool. In

addition, the use of complex everyday scenes broadens the space of

sensory stimuli and allows the investigation of multiple factors at

play in guiding a listener’s attention.

Using natural scenes to gauge auditory salience also paves

the way to exploring the effects of contextual and semantic

factors, aspects that have so far been lacking in theoretical and

experimental accounts of auditory salience. Contextual effects

relate to how a scene (and events within it) unfold over time. It

is an important element of auditory scene analysis and perception
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as natural sounds are characterized by their temporal dynamics

which can span multiple timescales from few milliseconds (e.g.,

speech phonemes) to hundreds of milliseconds (e.g,. syllables) or

longer (e.g., words, phrases). Such multiscale temporal integration

is a key computational principle for auditory function (Norman-

Haignere et al., 2022). Importantly, context is a critical factor

in auditory salience as knowing when a sound occurs and how

it relates to other changes in the scene shapes its perception.

For instance, a sudden loud noise might be less startling in a

context where loud noises are expected. Representation of context

is shaped by local and global statistics of a scene as sounds unfold

over time, and directly informs semantic interpretations of the

scene (i.e., recognizing what the sound is, when it occurs and

possibly where its source is). Controlling these very attributes

of an acoustic scene requires designing an experiment that can

eliminate or reduce their effects. One way to control contextual

and semantic information is by playing the sound in reverse. Time

reversal is a technique that was used as early as 1953 by Cherry

as a competing signal during dichotic listening (Cherry, 1953).

It has been employed in behavioral and physiological studies in

human and animals using speech, music and vocalization sounds

both as a control stimulus, but also to investigate sensitivity of the

auditory system to both meaning as well as acoustic profiles of the

signal (Glass andWollberg, 1983; Droit-Volet et al., 2013; Mushtaq

et al., 2019). When listening to time-reversed audio, the context is

reversed, affecting long-range temporal processing and increasing

the difficulty of object identification, hence curtailing semantic

effects. Time reversal has been shown to reduce the linguistic cues

of speech signals (Moore-Parks et al., 2010; Gherri and Eimer, 2011)

as well as influence the emotional valence and melodic judgment of

music signals (Droit-Volet et al., 2013).

The present study employs time-reversed scenes as a

counterpoint to natural listening to probe the role of acoustic,

contextual, and semantic factors in guiding auditory salience. We

hypothesize that a subset of sound events within natural settings

likely invoke similar behavioral responses whether played forward

or backward, and that such responses are likely explained by

low-level acoustic properties of the event. In contrast, other events

will likely be less interpretable when played backward, owing to

their contextual and semantic attributes. We hypothesize that

such events invoke different responses in forward and backward

scenes and that accounts of contextual and semantic attributes

can explain this difference. From a computational perspective,

we can quantify the higher-level attributes of a sound, which

extend beyond low-level acoustics, by harnessing the power of

deep neural networks. These models are trained to map the signal

onto relevant semantic spaces to recognize events, yielding a

nonlinear transformation of the audio signal onto meaningful

dimensions that facilitate recognition and detection (Heittola et al.,

2018; Mesaros et al., 2021). While the exact interpretation of these

network embeddings is highly dependent on the architecture,

data and learning strategy, these representations are nonetheless

valuable proxies for the contextual and semantic information

in audio signals which can then be used to accurately tag

the scenes.

The present study aims to quantify the role of effects beyond

low-level acoustic features in directing salience to natural scenes.

The experimental paradigm employs a dichotic listening task that

affords continuous accounts of perceptual salience and enables

the adoption of a wide range of acoustic profiles and semantic

settings using everyday scenes. We first describe the experimental

methods using forward and backward dichotic paradigms. The

analysis evaluates differences in behavioral responses between

these two paradigms and quantifies factors such as low-level,

contextual, and semantic attributes of the natural scenes. These

effects are then analyzed in a computational framework to quantify

their contributions and ability to account for behavioral salience

reported by human listeners.

2 Materials and methods

2.1 Behavioral procedure

2.1.1 Stimuli
This study used 20 natural audio scenes, ×2 min each (total

duration 40 min), as stimuli. These scenes were downloaded

from freesound.org (Font et al., 2013) and constituted a range of

settings, including speech, music, animals, vehicles, and abstract

sources. The sounds were chosen to balance several criteria:

scene complexity (few vs. many sources), recording environment

(indoor vs. outdoor), and coverage of sound classes. Two separate

experiments were conducted on the selected stimuli: A forward

experiment (referred to hereafter as fwd), where the scenes were

presented in their original format, and a backward experiment

(referred to hereafter as bwd), where the scenes were time-reversed

(Figure 1A). Table 1 shows the details of the scenes, with a short

description of audio events present in each one. All scenes were

sampled or resampled to 22 kHz and presented with 16-bit

encoding per sample. Scenes were normalized with root mean

squared (RMS) energy of the loudest 1% of the scene to provide

a similar dynamic range for acoustically rich and sparse scenes

(Huang and Elhilali, 2017).

2.1.2 Participants
A total of 268 participants were recruited for this study

from the Amazon Mechanical Turk (MTurk) platform for a web-

based experiment. Among this pool, 132 listeners participated

in the fwd experiment, and the remaining 136 participated

in the bwd experiment. The median age of participants was

29 years [standard deviation (std) = 8 years], with 170

male, 83 female, and 15 non-binary or unspecified gender.

While 116 participants reported having no musical experience,

76 participants reported having at least 2 years of musical

training. Participants were compensated for taking part in

the study after completion. All experimental procedures were

approved by the Johns Hopkins University Institutional Review

Board (IRB).

2.1.3 Experimental setup
The dichotic listening paradigm, used in earlier auditory

salience studies (Huang and Elhilali, 2017; Kothinti et al., 2021),
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FIGURE 1

(A) Schematic representation of an experimental trial in fwd and bwd experiments. (B) Example of individual subject responses for a single trial and the

average behavioral salience for the scene. (C) Example average behavioral salience for scene 1 from fwd and bwd . The response for the bwd scene

was reversed in time. (D) Representative examples of match and mismatch events in fwd and bwd experiments. Blue rectangles show fwd events and

orange rectangles show bwd events. (E) Distributions for matched and mismatched events for (i) duration (ii) strength (iii) slope, and (iv) absolute

consensus. The distributions were plotted by using kernel density using Gaussian kernels. Significant di�erences in medians are indicated by *.

was adopted for experiments in this study. Each experiment

consisted of the metadata collection stage, two training trials, and

10 test trials. Training trials were used to test the orientation

and loudness levels of headphones and acquaint participants with

the experimental setup. The experimental interface employed

psiTurk (Gureckis et al., 2016) back-end with a web-based interface

designed using jsPsych toolbox (de Leeuw, 2015). In each test

trial, the participants simultaneously listened to two scenes in

the two ears played dichotically and moved a cursor on the

screen toward the left or right to report which side they were

focusing on in each instant. Participants were asked to keep

the cursor in the center when they focused on both scenes or

neither. Vertical lines separated the screen into three parts (left,

right, and center) to inform the participants about the cursor

position. Scenes were randomly paired without replacement for

each participant, such that each of the 20 scenes was played once

in 10 test trials. The pairing was randomized to present each scene

with different opposing scenes across participants. The experiment

lasted 30 min on average, excluding the optional breaks between

test trials.

2.2 Behavioral data analysis

2.2.1 Data quality control
As outlined in earlier work (Kothinti et al., 2021), a quality

control process was performed on the collected data to remove

participants with abnormal responses. The average switching rate,

defined as the number of times a participant switches their attention

from one side to another per second, was used as metric to

flag and remove outlier data. Trials with average switching rates

higher than the 90 percentile (2 switches/s) and lower than the

10 percentile (0.05 switches/s) of the overall switching rates were
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TABLE 1 Duration and description of the stimuli used in the study.

Scene # Duration Description

1 2:02 Volleyball court, claps, and cheers

2 2:04 Beach, seagulls, kids playing

3 1:56 Birds singing

4 1:59 Street fair, music, cheers

5 2:04 Outdoor party, people talking

6 2:01 Dishes, cutlery

7 2:07 Market, people talking, vehicle horns

8 2:04 Train station, music, announcements

9 1:54 Street music, guitar

10 1:57 Restaurant, people chattering

11 1:56 Music concert, claps, cheers

12 2:03 Motor boat, birds

13 1:56 Restaurant, dishes, people talking

14 2:03 Ocean waves, birds

15 2:02 Machinery, mixing, and rotating sounds

16 2:02 Busy street, vehicle sounds, crowd talking

17 1:55 Top sounds on a table

18 1:55 Inside a bus, announcements

19 2:00 Fire pit, metal clanks, fire crackle

20 1:54 Airplane sounds, birds, squeaky toy

considered abnormal. Participants with more than five abnormal

trials were considered outliers and removed from subsequent data

analysis. Removing participants based on this cut-off resulted

in 101 and 107 participants for the fwd and bwd experiments,

respectively.

2.2.2 Average behavioral salience
Responses from each trial represented attentional switches

toward one of the scenes in the dichotic listening paradigm.

Responses were assigned a value of 1 when participants listened

to a given scene and 0 otherwise. The resulting behavioral

salience for each scene was derived by averaging responses

from all participants for that scene (and different opposing

scenes). All individual responses were adjusted by 1 s to

account for an average participant reaction time delay, based

on estimates from earlier findings (Huang and Elhilali, 2017).

Mapped responses were then averaged across participants, followed

by three moving window average operations of duration 1.5 s,

to convert the responses to a temporal map in the [0, 1] range.

This smoothed temporal map is called the average behavioral

salience and reflects the attentional map for the scene over

time. Figure 1B shows an example of individual participant

responses and averaged behavioral salience for that scene across

subjects. For the bwd experiment, the behavioral response for

each scene was time-reversed (back to a forward time axis) for all

subsequent analyses.

2.2.3 Salient events
Salient event onsets and offsets, extracted from the average

behavioral salience, were moments where attentional switches

happen toward or away from a scene. To extract onsets and offsets,

a derivative of the average behavioral salience was computed using

first-order difference. Salient event onsets were derived as the

locations of the local maxima of this derivative. For each onset,

the offset was defined as the immediate local minimum of the

derivative following the maximum. The slope of the derivative

at the onset represents the fraction of participants responding

to the event. Absolute consensus computed as the maximum of

the average behavioral salience between onset and offset reflects

the fraction of subjects responding to the event. A real-valued

strength for each event was defined as the sum of the slope of

the derivative at the onset and the absolute consensus scaled by

75 percentile of the overall onset slopes from all the stimuli. The

event duration was computed as the difference between the offset

and onset timestamps.

2.2.4 Individual reaction times
Individual reaction times for each participant were measured

with respect to salient event onsets (defined above). For each

participant, the individual reaction time was defined as the time

elapsed from the event onset to when the participant switched

their attention toward the scene. If the participant did not change

their attention 1 s before or after the event onset, they were

considered non-responsive to the event. The choice of 1s before

the onset reflected the reaction time adjustment. Other reasonable

choices around 1 s resulted in quantitatively and qualitatively

similar results. For each participant, reaction times were averaged

across responsive events resulting in individual reaction times

per participant.

2.2.5 Forward/backward agreement
The agreement between continuous responses from fwd and

bwd experiments was analyzed using a rank-based correlation

metric. For each scene, fwd salience responses were correlated

with the corresponding time-reversed bwd salience response, using

Spearman correlation. This correlation served as a measure of

agreement between responses from playing a scene in forward and

backward directions.

In addition to continuous salience curves, agreement in timing

between fwd and bwd discrete salient events was also analyzed. bwd

event boundaries were reversed in time by subtracting the onsets

and offsets from the scene duration to match with fwd time stamps

as shown in Figure 1D. For each fwd event, the maximum overlap

with bwd event was computed by comparing with all bwd events

for the corresponding scene. An overlap score for each fwd event

was calculated by normalizing the maximum overlap with the event

duration. fwd events with more than 50% normalized overlap were

called forward-matched events (referred to hereafter as fwd-match),

and the remaining events were called forward-mismatched events

(referred to hereafter as fwd-mismatch) as shown in Figure 1D.

A similar analysis was carried out for bwd events, resulting in

bwd-match and bwd-mismatch events. While the 50% threshold
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TABLE 2 Description of features used in the acoustic analysis.

Feature Acronym Description

Loudness LD Average energy in bark-based decomposition

Spectral energy SE Energy in the spectrogram bands

Rate-scale energy RSE Energy in rate-scale (i.e., spectrotemporal modulation) decomposition

Brightness BR Spectral centroid

Bandwidth BW spectral spread around spectral centroid

Flatness FL Ratio of the geometric mean to the arithmetic mean of spectral magnitudes

Irregularity IR Measures jaggedness in the spectrum

Pitch P Pitch value based on template matching

Harmonicity H Degree of harmonicity as a measure of the strength of voicing

Maximum scale energy MS Maximum energy across all scales

Centroid of scales CS Scale centroid computed from scale decomposition

Maximum rate energy MR Maximum energy across all rates

High rate energy HR Measures roughness as energy in rates >20 Hz

Low rate energy LR Energy in rates ≤20 Hz

Centroid of rates CR Rate centroid computed from rate decomposition

Centroid with absolute rates CAR Rate centroid computed with the magnitude of rate in the weighted average

was chosen heuristically, similar results were obtained for different

reasonable thresholds around 50%.

2.3 Acoustic and semantic analysis

2.3.1 Acoustic analysis
Sixteen acoustic cues were used to analyze the effect of low-

level acoustic dimensions on salience, which are outlined in Table 2.

While these features represent a set of handcrafted attributes of

the signal, they cover an exhaustive range of characteristics than

span spectral, temporal, and spectro-temporal characteristics of

the audio. Loudness was measured using bark-scale-based filter

banks captured energy over time (Zwicker et al., 1991). Pitch

and harmonicity quantified the harmonic nature of sounds as a

function of time and were measured using a template matching

algorithm (Goldstein, 1973). Spectral centroid and bandwidth

captured first and second-order statistics, respectively, of the

spectral profile of the acoustic signal. Spectral irregularity and

flatness measured the smoothness of the spectral shape. Several

statistics of spectro-temporal modulations were computed using a

spectro-temporal cortical model (Wang and Shamma, 1994). These

metrics included centroids and maximum energies for scale (or

spectral modulations) and rate (or temporal modulations). High

(>20 Hz) and low (<20 Hz) rate modulations were computed

by averaging energies within the respective bands. The features

were first computed at 8 ms sampling period and were later

downsampled to 64 ms sampling period by taking the average

of eight non-overlapping frames and z-score normalized per

scene. Changes in these features were analyzed around salient

event onsets to examine the relation between acoustic changes

in the scene and attentional switches. Changes in features were

defined as the difference between the average feature in the

interval 0.5–1.0 s before and after the event. Feature changes were

analyzed for matched and mismatched events from the fwd and

bwd experiments to explore differences between these two classes

of events.

2.3.2 Semantic analysis
For semantic analysis of the scenes, the open-source EfficientAT

audio tagging model (Schmid et al., 2023) was used. EfficientAT1

is a deep convolutional neural network (CNN) based on the

MobileNetV3 architecture (Howard et al., 2019), trained on 2

million human-labeled 10-s audio segments to identify the presence

of 521 audio classes from the AudioSet ontology (Gemmeke et al.,

2017). The model used a time-frequency representation of the

audio segments as input and produced a posterior probability over

the audio classes. The model architecture consisted of 17 CNN

layers with inverted residual blocks (Sandler et al., 2018) and a fully

connected output layer.

EfficientAT was used to extract semantic features by

considering different semantic abstractions as represented by

different layers of the model, with the final layer corresponding

to class-level information. The final global average pooling layer

was removed to preserve the temporal resolution. During the

forward pass through the network, for each layer, l ∈ [1, 18], the

hidden vector denoted by yl ∈ RTxKl was computed, where Kl was

the flattened dimension of the lth layer and T denoted the time

samples. Since outputs of intermediate layers tend to be extremely

large (>105 in some layers), a layer-wise surprisal was computed

for each layer to compress the information to 1-dimension and

1 https://github.com/fschmid56/E�cientAT
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capture differences between the present and immediate past

representations (Huang et al., 2018). Surprisal for layer l, at time t,

was defined as the Euclidean distance between output yl,t and the

average output over the past 4 s. The 4 s past context was chosen

based on performance on the salience prediction performance,

and other choices of the past context around 4 s yielded similar

quantitative results.

EfficientAT was also used to determine semantic labels for

arbitrary segments of a scene. A segment under consideration

was assigned a dominant class label from the five top-level root

nodes in the AudioSet ontology: Human (speech, vocalizations,

etc.), Things (vehicles, tools, etc.), Music (musical instruments,

pieces, etc.), Animals (animals, birds, etc.), and Background (noise,

babble, etc.). Source-ambiguous sounds (ex: impact sounds) and

Channel, environment, and background sounds in the ontology

were merged into the Background category. For finding the

dominant class, the top 10 classes with maximum average posterior

probabilities within the segment were considered candidate classes.

Posterior probabilities of these classes were added to the top-

level root node to propagate the beliefs. The top-level class with

maximum probability after the belief propagation was considered

the dominant class within the segment. This labeling method was

carried out for the segments from fwd scenes.

In order to ensure that the backwards scenes were not

disadvantageously processed using the semantic neural network

model, we evaluated the model separately on the fwd and bwd

scenes. The evaluation extracted the dominant 10 classes for each

scene presented in fwd and bwd fashion based on posterior values;

then, compared the predictions of bwd scenes with fwd and

identified hits and misses. A recall score of 80% was noted across

all scenes.

2.3.3 Regression models
Regression models predicting average behavioral salience

were developed using acoustic and semantic features. All

three representations (behavioral salience, acoustic features, and

semantic surprisals) were resampled at a sampling period of

64 ms. The resampled features were smoothed with moving-

average smoothing, with different averaging lengths for acoustic

and semantic features, which were treated as hyperparameters.

The regression model predicted each point rt on the salience

curve as a linear mapping from acoustic features at and semantic

features st . The features were sampled to include past context

and future context to incorporate long-term context and were

flattened into vectors of dimension da for acoustic features and

ds for semantic features (see Figure 3A). The lengths of past and

future contexts were considered hyperparameters. The model can

be mathematically written as

r̂t = W
T
a at +W

T
s st + b

Wa, at ∈ Rda ,Ws, st ∈ Rds

Wa,Ws, b = argmin
Wa ,Ws ,b

N∑

i=1

Ti∑

t=0

||ri,t − r̂i,t||
2
2 + λa||Wa||

2
2 + λs||Ws||

2
2

Wa,Wc and b were estimated to minimize the Euclidean

distance between behavioral salience rt and predicted salience r̂t .

Ridge regression with L2-regularization on the parameters was

utilized for parameter estimation to avoid model overfitting (Hoerl

and Kennard, 1970). Pearson correlation between behavioral

salience and predicted salience evaluated model performance.

Three linear regression models with different input features

were trained and evaluated. The first model, referred to as the

acoustic-only model, used only acoustic attributes with a limited

temporal context of up to 0.5 s. The second model, referred to as

the acoustic-context model, used a longer context of up to 4 s for

the acoustic features. The third model, referred to as the acoustic-

semantic model, used acoustic and semantic features context.

Regression models were evaluated on 8 s segments of the

stimulus/behavioral response with 4 s overlap (ignoring the first

and last 1 s to avoid edge effects), resulting in 547 segments

for both fwd and bwd data. If a matched (or mismatched) event

overlapped with a segment, the segment was labeled matched (or

mismatched). When a segment overlapped with both matched and

mismatched events, the category with higher overlap was assigned

to the segment. Segments with no overlap with any events were

placed in a non-event category. Assigning event categories to fwd

segments gave 59% fwd-match, 34% fwd-mismatch, and 7% no-event

segments. Similarly, bwd segments were split into 60% bwd-match ,

33% bwd-mismatch, and 7% no-event segments.

The regression model parameters were estimated using the 55

scenes from the DNSS-Ext dataset (Kothinti et al., 2021). DNSS-Ext

dataset was collected using the same paradigm used in the present

study. The DNSS-Ext dataset was split into 10-folds, and models

were trained by leaving 1-fold out. Hyper-parameters such as the

smoothing on the features, the temporal context length, λa, and λc

were chosen based on the correlation on the left-out fold. Once the

hyper-parameters were fixed, the model parameters were estimated

using the data from 55 scenes. We also evaluated the model using a

different approach. Two sets of regression models for fwd and bwd

data were trained using a 10-fold validation. By training on nine

folds and testing on the left out fold, predictions were computed

for the fwd and bwd data with their respective models. This second

evaluation method yielded statistically similar effects as the first

evaluation using the independent dataset.

2.3.4 Salient event detection
In addition to predicting continuous salience, the linear filter

framework was used to train a model to predict the timing of

salient event onsets (i.e., a detection framework). In this analysis,

the goal is not to produce a continuous estimate of salience

as the scene unfolds but to derive binary outcomes about the

onset timing of sound events. This approach is consistent with

other works from the literature and allows us to directly gauge

how the proposed acoustic and semantic features compare to

other conceptual accounts of salience and sound event detection.

We adopted the regression pipeline above with acoustic and/or

semantic features to detect the events. Given the changed scope

and limited data relative to degrees of freedom for the detection

model, the event detection model differed from the regression

model in a few ways: (i) a first-difference was applied to the features

as the first step, (ii) the temporal weights were shared across the

acoustic/semantic features, (iii) a sigmoid non-linearity was applied
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as the output function to convert the detection signal to a Bernoulli

variable in the range ∈ (0, 1). The detection model predicted if an

event onset occurred within an input segment of 1 s. Two variations

of this model were considered for evaluation. The first model,

referred to as the acoustic model, used only the acoustic features

within the 1 s duration and was referred to as the Acoustic model.

The second model (A-S model) utilized acoustic and semantic

features within the segment with a past context of 3s appended

to the 1 s segment. For both these models, a stochastic gradient

descent algorithm using a cross-entropy loss function on the 55

scenes from the DNSS-Ext dataset estimated model parameters.

The model was trained using a mini-batch size of 200 segments,

with a learning rate of 0.01 for 100 epochs through the whole

training data. The model with the lowest training loss was used as

the final model.

The performance of the A-S and A-only models was compared

with other models from the literature. EfficientAT is primarily an

audio tagging system and provides outputs that reflect changes

in sound events. EfficientAT posteriors were thresholded at 0.5

and were smoothed using a median filter of width 1 s to provide

smoothed binary labels indicating the presence of the audio

classes. A first-order difference followed by summing across the

classes resulted in a detection signal indicating changes in the

class distribution. A second comparison was performed using

the salient event detection model from Kim et al. (2014). The

model was implemented using Bark filterbank features combined

with linear discriminant weights trained on the DNSS-Ext dataset.

Additionally, the salience map from Kayser et al. (2005) was

used to generate a detection signal by summing across the

frequency dimensions of the salience map and taking a first-

order derivative. Finally, an interobserver agreement, computed by

finding the number of subjects who moved their attention toward

the scene within each segment, served as the detection signal with a

theoretical upper bound on achievable performance.

Receiver operating characteristic (ROC) and area under ROC

(AUROC) were used for evaluating performance. A range of

thresholds was applied to the detection signals from each model

to produce onset estimates. By comparing the estimates with the

reference, the fraction of hits and false alarms (FA) were computed

for each threshold.

3 Results

3.1 Behavioral analysis of forward and
backward scenes

Overall, participants responded with a similar reaction time to

both fwd and bwd scenes. Individual reaction times characterized

the delay between a salient event and when each participant

responded to that event. For the fwd experiment, the median

participant reaction time was 0.91 s (std = 0.14 s), and for the bwd

experiment, the median participant reaction time was 0.89 s (std =

0.15 s). The distributions of individual reaction times for fwd and

bwd scenes were not significantly different (two-sided rank-sum

test, p = 0.47).

The congruence of behavioral salience responses between fwd

and corresponding bwd scenes was variable, with an average

Spearman correlation ρ = 0.540 (std = 0.23) over 20 scenes.

Randomly pairing fwd and bwd salience responses provided a noise

floor for this correlation with an average ρ = 0.06 (std = 0.05)

over 100 random permutations. Across the 20 scenes, correlations

were widely variable (as low as ρ = 0.041 (p = 4e-10) for scene 10

and as high as ρ = 0.869 (p < 1e-100) for scene 20 (see Table 5).

Figure 1C shows average behavioral saliences for scene 1 from fwd

and bwd responses, yielding a correlation ρ = 0.587 (p < 1e-

100). While there was no clear factor explaining this variability,

the range of correlations suggested a strong interplay of scene

acoustics, sparsity, context, and semantics, as will be explored in

subsequent analyses.

Salience responses were also analyzed anchoring on events

representing attentional switches toward (onset) and away from

(offset) from the scene. On average, salient events in fwd and bwd

scenes were comparable in number and duration of events. There

were 451 events in fwd and 460 events in bwd responses, with an

average of 23 events per scene and one event approximately every

5s. The average event duration of fwd events was 2.75 s (std =1.46

s) and 2.63 s (std = 1.28 s) for bwd events, with no statistically

significant differences in duration between fwd and bwd events

(two-sided rank-sum test, p = 0.20). The average strengths of fwd

events (avg = 5.8e-4, std = 3.2e-4) and bwd events (avg = 5.5e-4, std

= 3.0e-4) were also not statistically significant (two-sided rank-sum

test, p = 0.07).

Looking closer at event types, we broke down events into

matched and mismatched categories for both experiments (see

Methods). We noted that the ratio of matched/mismatched events

was similar for fwd and bwd scenes. For fwd events, there were

63%matched and 37%mismatched events, whereas, for bwd events,

there were 61% matched events and 39% mismatched events. With

that, divergent patterns emerged betweenmatched andmismatched

categories. The matched and mismatched categories were analyzed

for differences in duration and strengths as shown in Figure 1E

and summarized in Table 3. For both fwd and bwd events, matched

events were shorter than mismatched events. Salience strengths for

matched events were higher than mismatched events for both fwd

and bwd events. In addition, slopes of matched events were higher

than mismatched events, indicating lower temporal agreement for

mismatched events compared to matched events. The absolute

consensus for matched events was not significantly different

from mismatched events, indicating that a similar percentage of

participants reacted to matched and mismatched events. Thus,

mismatched events showed variability when participants responded

to an event onset, but on average captured the attention of the same

number of participants as matched events.

3.2 Acoustic dimensions driving behavioral
salience for forward and backward events

Changes in the acoustic profile of the scene were likely a factor

in driving switches in attentional focus when listening to natural

scenes. Changes in acoustic features before and after a salient

event were quantified and contrasted for matched and mismatched

events for fwd scenes as well as bwd scenes. We first performed

an ANOVA to evaluate the differences in acoustic feature changes
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TABLE 3 Event attributes for fwd and bwd events divided by event type.

fwd-match (avg) fwd-mismatch (avg) p bwd-match (avg) bwd-mismatch (avg) p

Duration (s) 2.51 3.17 0.02 2.46 2.90 0.16

Strengths 6.2e-4 5.2e-4 4e-3 6.0e-4 4.5e-4 6e-5

Slopes 3.9e-4 2.9e-4 2e-3 3.8e-4 2.4e-4 1e-7

Consensus 0.47 0.46 0.20 0.45 0.44 0.41

The p-values are computed using two-sided rank-sum tests. Statistically significant differences are shown in bold.

FIGURE 2

Feature changes around event onsets for (A) fwd-match and fwd-mismatch events. (B) bwd-match and bwd-mismatch events. Acoustic features are

described in Table 2. The grouping of features based on their central characteristic is represented using arrows. The error bars represent ± 1 standard

error. Statistically significant di�erences between the two groups are indicated with ∗ after post-hoc HSD correction.

when grouped by the effects of scene presentation (fwd /bwd ),

event type (matched/mismatched), and feature type. The ANOVA

reveals that event type [F(1,14527) = 183.5, p = 1e-41], feature

type [F(15,14527) = 123.24, p <1e-100] groups showed significant

effects and presentation type [F(1,14527) = 0.44, p = 0.50] did

not show significant effects. The interactions among event and

feature types significantly affected the acoustic changes [F(15,14527)
= 16.67, p = 3e-44]. Interactions between presentation and event

types [F(1,14527) = 0.02, p = 0.90] and presentation and feature

types [F(15,14527) = 0.89, p = 0.58] were not significant. Next, we

evaluated changes in individual acoustic features near event onsets,

as shown in Figure 2. Table 4 summarizes the statistics quantifying

whether the change in that feature is significantly different than

zero or not. Table 5 recaps statistics from individual ANOVA

tests for each acoustic attribute, exploring the effects of scene

presentation and event type. Table 6 presents comparisons across

different groups with p-values corrected for multiple comparisons.

The features examined in this study spanned five general categories;

energy, spectral, pitch, spectral, and temporal modulations.

Energy features analyzed the signal strength (or intensity)

captured across different levels, including loudness (LD),

spectral energy (SE), and spectrotemporal energy (RSE). These

features were found to have significant changes at event onsets

for fwd-match, fwd-mismatch, bwd-match, and bwd-mismatch

events, indicating that subjects reacted to sudden increases in

sound energy. When compared across groups, for all energy

features, fwd-match and bwd-match events had a significantly

higher magnitude of changes compared to fwd-mismatch and

bwd-mismatch events, respectively. This indicated that changes

around mismatched events were more subtle in intensity

when compared to matched events. No significant differences

were observed between fwd-match and bwd-match events for

energy features.

Spectral features captured the timbral profiles of the scenes

and included brightness (BR), bandwidth (BW), flatness (FL), and

irregularity (IR). All four features considered showed significant

changes for fwd-match and bwd-match events, with brightness and

irregularity increasing at event onsets and bandwidth and flatness

decreasing around events. For fwd-mismatch and bwd-mismatch

events, while changes in BR, FL, and IR were significant, BW

did not have significant changes. fwd-match events had a higher

magnitude of changes compared to fwd-mismatch events only in

FL, IR. In contrast, bwd-match events had a higher magnitude of

changes compared to bwd-mismatch only for BR and FL features.

No significant differences were observed between fwd-match and

bwd-match events for the spectral features.

Pitch (P) and harmonicity (H) features captured harmonicity

and voicing information in the scenes. Both features increased
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TABLE 4 Statistics for feature change analysis.

Feature fwd-match fwd-mismatch bwd-match bwd-mismatch

t(284) p t(165) p t(278) p t(180) p

LD 12.1 1e-27 4.2 2e-05 12.6 3e-29 7.7 5e-13

SE 13.7 2e-33 5.7 3e-08 14.7 1e-36 8.0 6e-14

RSE 14.4 4e-36 6.7 1e-10 14.6 1e-36 7.9 2e-13

BR 4.0 5e-05 1.9 0.03 6.0 3e-09 2.1 0.02

BW −4.0 4e-05 −0.9 0.18 −2.4 8e-03 −1.6 0.06

FL −9.7 1e-19 −2.5 7e-03 −9.6 3e-19 −4.0 4e-05

IR 6.2 1e-09 1.8 0.04 5.0 6e-07 3.3 5e-04

P 4.6 4e-06 1.9 0.03 6.2 1e-09 1.8 0.04

H 11.9 3e-27 4.0 5e-05 11.7 3e-26 4.6 4e-06

MS 14.3 1e-35 6.6 2e-10 14.7 1e-36 7.8 3e-13

CS −6.2 1e-09 −2.4 8e-03 −6.7 5e-11 −4.9 1e-06

MR 13.5 2e-32 6.3 1e-09 13.4 3e-32 7.4 2e-12

HR 10.3 1e-21 5.8 2e-08 10.1 5e-21 6.3 1e-09

LR 8.7 1e-16 4.7 3e-06 8.4 1e-15 5.2 3e-07

CR −2.2 0.01 −0.3 0.39 −4.2 2e-05 −2.6 5e-03

CAR −2.8 3e-03 −2.4 8e-03 −2.1 0.02 −1.8 0.04

For each feature, the corresponding row shows statistics for a one-sided one-sample t-test. Statistically significant differences are shown in bold.

TABLE 5 ANOVA statistics for feature change analysis.

Feature fwd vs. bwd Match vs. Mismatch interactions

F(1,907) p F(1,907) p F(1,907) p

LD 2.3 0.13 58.5 5e-14 0.3 0.61

SE 0.9 0.33 60.4 2e-14 0.2 0.64

RSE 0.1 0.77 54.7 3e-13 0.1 0.74

BR 1.2 0.27 8.4 4e-03 0.5 0.47

BW 0.3 0.60 2.9 0.09 1.4 0.23

FL 0.3 0.56 32.2 2e-08 0.8 0.38

IR 0.0 0.96 9.9 2e-03 1.1 0.30

P 0.9 0.33 11.8 6e-04 0.9 0.35

H 0.0 0.87 46.7 2e-11 0.1 0.77

MS 0.1 0.78 49.4 4e-12 0.5 0.47

CS 1.7 0.19 3.5 0.06 1.3 0.25

MR 0.0 0.84 41.8 2e-10 0.7 0.39

HR 0.0 0.98 32.7 1e-08 0.0 0.95

LR 0.0 0.94 22.7 2e-06 0.0 0.90

CR 4.1 0.04 2.4 0.12 0.0 0.90

CAR 0.6 0.43 0.0 0.88 0.0 0.96

For each feature, the corresponding row shows statistics of ANOVA tests. Statistically significant differences are shown in bold.

near event onsets for all event groups. While, fwd-match and bwd-

match events had significantly higher changes compared to fwd-

mismatch and bwd-mismatch events for H, only bwd-match showed

significant differences from bwd-mismatch for P. No significant

differences were observed between fwd-match and bwd-match

events for pitch and harmonicity.
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TABLE 6 Statistics for feature change analysis with pair-wise comparisons.

Feature fwd-match vs. fwd-mismatch bwd-match vs. bwd-mismatch fwd-match vs. bwd-match

t(449) p t(458) p t(562) p

LD 5.7 7e-08 5.1 2e-06 −0.7 0.85

SE 5.6 5e-08 5.4 1e-06 −0.4 0.98

RSE 5.3 4e-07 5.1 3e-06 0.0 1.00

BR 1.5 0.42 2.6 0.05 −1.4 0.45

BW −2.0 0.17 −0.4 0.98 −1.3 0.50

FL −4.5 3e-05 −3.5 3e-03 −0.2 1.00

IR 2.9 0.02 1.5 0.43 0.7 0.85

P 1.8 0.30 3.0 1e-02 −1.4 0.41

H 5.0 4e-06 4.7 2e-05 0.1 1.00

MS 5.3 4e-07 4.6 4e-05 0.3 0.98

CS −2.1 0.15 −0.5 0.96 0.1 1.00

MR 4.9 2e-06 4.2 4e-04 0.8 0.83

HR 4.0 3e-04 4.1 3e-04 0.1 1.00

LR 3.4 3e-03 3.3 5e-03 0.1 1.00

CR −1.2 0.65 −1.0 0.74 1.5 0.41

CAR 0.1 1.00 0.1 1.00 −0.6 0.93

For each feature, the corresponding row shows statistics of two-sample t-tests. Statistically significant differences are shown in bold. p-values were corrected for multiple comparisons using

HSD correction.

Spectral modulation features captured changes in

spectral variations in the scenes. Max-scale energy (MS)

increased at event onsets, and scale centroid (CS) decreased

around event onsets. fwd-match and bwd-match events had

significantly larger changes compared to fwd-mismatch and

bwd-mismatch events only for MS. No significant differences

were observed between fwd-match and bwd-match events for the

scale-related features.

Temporal modulations were captured using features reflecting

average and maximum changes in temporal rates or variations in

the scenes. Maximum rate energy (MR), high-rate energy (HR),

and low-rate energy (LR) increased at event onsets. Rate centroid

(CR) had significant negative changes for fwd-match, bwd-match,

and bwd-mismatch events and no significant changes for fwd-

mismatch events. Absolute rate centroid (CAR), which ignored

the direction of modulations, had significant negative changes

for all categories of events. As with other energy features, MR,

HR, and LR features showed significant differences between fwd-

mismatch and fwd-match events and between bwd-mismatch and

bwd-match events. Both CR and CAR showed no significant

differences between fwd-match and fwd-mismatch as well as

bwd-match and bwd-mismatch groups. No significant differences

were observed between fwd-match and bwd-match events for the

temporal features.

Overall, pairwise comparisons showed that mismatched

events had lower acoustic changes compared to

matched events for both fwd and bwd events. There

were no significant differences between fwd-match and

bwd-match events.

3.3 Accounts of auditory salience spanning
acoustics, context, and semantics

The feature change analysis was limited in showing driving

factors of salience as several features presented were highly

correlated (Kothinti et al., 2021). Regression models account for

these correlations and provide more direct evidence for factors

contributing to salience. Among the three models considered,

the acoustic-only model (A-only model, refer to Figure 3B)

showed the worst performance in general for all the event

categories. For the acoustic-only model, the average correlation

for fwd (avg = 0.557) was significantly lower (one-sided rank-

sum test, zval = −2.04, p = 0.02) than bwd segments (avg =

0.618). When the segments were broken down by the matched-

mismatched categories, performance for fwd-match segments

(avg = 0.581) segments was significantly higher than fwd-

mismatch segments (avg = 0.473) (one-sided rank-sum test,

zval = 2.22, p = 0.01). Similarly, performance on bwd-match

segments (avg = 0.631) was significantly higher than bwd-mismatch

segments(avg = 0.577) (one-sided rank-sum test, zval = 1.99,

p = 0.024). No significant differences were observed between

fwd-match and bwd-match segment correlations (two-sided rank-

sum test, zval = 1.62, p = 0.11). Thus, instantaneous acoustic

features predicted behavioral salience better around matched

events when compared to mismatched events for both fwd and

bwd scenes.

Adding long-term context to acoustic features (A-C model,

refer to Figure 3B) improved salience prediction. Segment

correlations were improved for both fwd (avg = 0.581) and bwd
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FIGURE 3

Regression model and performance. (A) Schematic of the model. A window of acoustic features and layer-wise surprisals was converted to a vector

and was used as variables to predict the behavioral surprisal. (B) Correlations for fwd-match, fwd-mismatch, bwd-match, and bwd-mismatch

segments. Statistically significant di�erences are indicated by ∗. The S-model performance is shown as a line in black. (C) Layer-wise model

performance measured relative to A-C model for fwd-match and fwd-mismatch segments. Shaded in black is the model performance with random

features added to A-C model, with the shaded area representing standard error across 10 random trials. Shaded in blue is the A-C model

performance. (D) Layer-wise model performance measured relative to A-C model for bwd-match and bwd-mismatch segments. Shaded in black is

the model performance with random features added to A-C model, with the shaded area representing standard error across 10 random trials.

Shaded in red is the A-C model performance. (E) Autocorrelation function of the features (left y-axis) and the model weights (right y-axis) for three

di�erent features.

(avg = 0.642) segments. Pairwise sign-rank tests indicated the

improvements were significant for both fwd (one-sided sign

rank test, zval = 5.15, p = 1e-7) and bwd (zval = 4.81, p = 1e-6)

segments. Comparison between fwd and bwd segments indicated a

significant difference in correlations (one-sided rank-sum test, zval

= -1.99, p = 0.023). Breaking down by the events, adding long-term

context significantly improved performance for fwd-match (avg =

0.591, sign-rank test, zval = 2.69, p = 0.003), fwd-mismatch (avg

= 0.514, sign-rank test, zval = 3.43, p = 3e-4), bwd-match (avg =

0.650, sign-rank test, zval = 3.57, p = 2e-4) bwd-mismatch (avg =
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0.599, sign-rank test, zval = 2.21, p = 0.01) segments. Despite the

improvements in salience prediction with the long-term context,

the differences between fwd-match and fwd-mismatch segments

(one-sided rank-sum test, zval = 1.85, p = 0.03) and between

bwd-match and bwd-mismatch segments (one-sided rank-sum test,

zval = 1.96, p = 0.025) remained statistically significant. Significant

differences were observed between fwd-match and bwd-match

segment correlations (one-sided rank-sum test, zval = 1.96, p =

0.037). The relative improvements in average correlations from

using the long-term context were higher for fwd-mismatch (9%)

in comparison to fwd-match (2%), bwd-match (3%), and bwd-

mismatch (4%). Thus, acoustic features with long-term context

predicted salience better than those without context across all the

segments and categories. The effect was strongest for fwd-mismatch

segments, as indicated by the improvement in correlation. The

addition of long-term context reduced the differences between

fwd-match and fwd-mismatch events.

The acoustic-semantic model (A-S model), which used

semantic features in addition to acoustic features with long context,

provided further gains in prediction. Adding semantic features

improved prediction for fwd (avg = 0.600, sign-rank test, zval =

1.92, p = 0.03) and bwd segments (avg = 0.644, sign-rank test, zval =

0.02, p = 0.98), with only the improvements on fwd segments being

significant. For this model, segment correlations for fwd were not

significantly different from bwd (two-sided rank-sum test, zval =

1.44, p = 0.15). The further breakdown of fwd segment correlations

revealed that the gains from the A-S model (compared to the A-

C model) were significant only for fwd-mismatch segments (avg

= 0.562, sign-rank test, zval = 3.33, p = 4e-4). For other event

groups, the difference in correlations between the A-S and A-C

models was not significant (sign-rank test: fwd-match (avg = 0.590,

zval = 0.8, p = 0.38), bwd-match (avg = 0.661, zval = 0.22, p =

0.82), bwd-mismatch (avg = 0.577, zval = 1.11, p = 0.27)). With the

contribution from the semantic features, segment correlations for

fwd-mismatch segments were not statistically different from fwd-

match correlations (rank-sum test, zval = 0.39, p = 0.69), while

bwd-mismatch segments were predicted significantly worse than

bwd-match segments (rank-sum test, zval = 2.34, p = 0.02). Thus,

the semantic features were only effective in improving prediction

for fwd-mismatch segments, supporting our hypothesis that the

mismatched events from fwd scenes were strongly driven by

semantic attributes of the scene.

To analyze the gains from the semantic surprisals, we

tested regression models which incrementally included surprisals

from different layers, from input layers to classification layers.

Figures 3C, D compares the prediction performance with each

layer cumulatively added to the lower layers. The performance

gains added by incremental addition of higher layers were

mostly prominent for fwd-mismatch segments. To account for

the added parameters with the addition of more layers, we

trained randomized baseline models by incrementally adding

random values for surprisals. Performance of the randomized

baseline models stayed constant for all the layers, which further

cements the benefits of the layer-wise surprisals. When only the

semantic surprisal was used for predicting the behavioral salience

(S model), the performance across all segments was lower than the

A-S model.

To further understand the gains from the long-term context,

we analyzed temporal correlations for individual features, focusing

on segments around events. In Figure 3E, the temporal correlations

represent the normalized autocorrelation values of each feature

as a function of the delay computed from all the scenes. The

autocorrelation showed a slow decay in magnitude over the

temporal lag. The temporal weights from the model for individual

features, shown as temporal response functions, seemed to follow

the autocorrelation function closely, thus tracking the dynamics of

the features. Since themodel was trained tomimic human response,

we can infer that the human response also takes long-term feature

dependencies into account.

3.4 Classwise analysis of forward matched

and mismatched events

Further characterization of the salience prediction examined

the effects of sound classes. Examining the matched-mismatched

segmentation and class labels revealed that mismatched segments

had a higher percentage of Human, Things, and Music classes

when compared to matched (Figure 4A). Figures 4B, C show the

class-wise performance breakup for fwd-match and fwd-mismatch

segments, respectively. The segment correlations were analyzed for

A-only and A-S models. A wide range of correlations was observed

across different classes, and the improvement from the semantic

models was not uniform across classes. In fwd-match segments,

there were no significant differences in performance between A-

only and A-S models (one-sided sign-rank test, H: zval = 1.47, p

= 0.14, Bgr: zval = 0.73, p = 0.46, Th: zval = 0.81, p = 0.41, M:

zval = 0.24, p = 0.80, A: zval = 1.15, p = 0.25). In fwd-mismatch

segments, Human, Music, and Animal classes showed significant

improvements with the A-S model (one-sided sign-rank test, H:

zval = 3.41, p = 3e-4, M: zval = 2.41, p = 0.008, A: zval = 2.22, p

= 0.01) and the remaining classes showed no significant differences

(Bgr: zval = 0, p = 0.99, Th: zval = 1.33, p = 0.09). These differences

in class-wise performance indicated a higher-order dependence on

semantics that is class-dependent.

3.5 E�ect of context and semantics for
event detection

The event detection paradigm was used to quantify the

benefits of context and semantics in predicting event onsets.

Salient event detection using models with acoustic and semantic

cues was compared with several existing models of salient event

detection for this purpose. As seen from the ROC curves in

Figure 5, long-term context and semantic features (A-S) provided

the best detection performance on the fwd data with AUROC

of 0.761. The A-S model showed a significant improvement over

the acoustic (A-only) model (AUROC = 0.723), validating the

benefits of semantics and acoustic context. In comparison, a

detection model using loudness from bark filters (Kim et al., 2014)

(AUROC = 0.646) performed poorly, indicating that low-level

features considered in this study were better at predicting events
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FIGURE 4

(A) Classwise breakdown of the fwd-match and fwd-mismatch segments. (B) Correlations of fwd-match segments for A-only and A-S models. (C)

Correlations of fwd-mismatch segments for A-only and A-S models. Error bars indicated ±1 standard error in fraction estimate. Statistically

significant di�erences are marked with a ∗.

FIGURE 5

Salient event detection performance of di�erent models on the

forward data shown as ROC curves.

than simple time-frequency representations. Similarly, the center-

surround analysis from Kayser et al. performed worse (AUROC

= 0.608), indicating that local contrast does not characterize the

salient events completely. Additionally, event detection using an

audio tagging model was also found to be inferior (AUROC =

0.632) to the A-S model. The interobserver agreement has an

AUROC of 0.801, showing a significant gap from the A-S model.

4 Discussion

Exploring the contextual and semantic effects on auditory

salience in natural audio is the central focus of this study. Working

with a dichotic listening paradigm and using time-reversed audio

to contrast behavioral responses, we explored an experimental

method to capture the higher-order effects of auditory salience.

Overall, the experimental findings show that the conspicuity of

acoustic events is perceived differently depending on their acoustic

and semantic characteristics. For a subset of events with strong

acoustic variations, behavioral responses were generally similar

when presented normally or time-reversed. These matched events

were not unique to any sound class and could be best predicted

using rich representations of their acoustic attributes with temporal

context. No additional information could be gleaned from their

semantic features supporting the hypothesis that sound events with

sufficient acoustic variability relative to their surrounds will stand

out from the acoustic scene. This result is in line with a contrast

theory that has been posited to underlie salience in other sensory

modalities across multiscale and multirate features (Itti and Koch,

2001; Nothdurft, 2005; Wang et al., 2014). In contrast, other sound

events with more nuanced or muted changes in acoustic attributes

-relative to their context- can also stand out as salient. These events

induce a different behavioral response when heard naturally or

time-reversed. These mismatched events are also not unique to any

sound category, but do benefit from some knowledge of sound

semantics in order to improve their fit in predicting behavioral

measures of salience.

Distinguishing effects of acoustic, contextual and semantic

attributes leveraged the use of time-reversal using the same scenes.

This experimental setup provides a comparative framework to

assess how temporal context and semantic factors play a role in

determining salience. Existing experimental paradigms tested the

effects of temporal context and semantics on auditory salience as

part of expectation-violation in sequences of tokens (Parmentier,

2008; Marsh et al., 2009; Hughes, 2014; Macken, 2014). These

studies explored the contextual and semantic factors mostly with
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controlled or synthetic stimuli where the notion of semantics

often contrasted simple tones with meaningful word, rather than

a broader analysis of the semantic content an an entire scene. The

present study aims to quantitatively assess contextual and semantic

effects on auditory salience in natural scenes to address this gap.

To establish the contextual and semantic effects, we first

demonstrated that the bwd experiment shows differences in human

responses compared to fwd data. Comparing average behavioral

salience using a correlation-based analysis showed a significant

difference in how subjects reacted to the same scenes played in

different directions. If salience was driven only by instantaneous

acoustics, the responses from fwd and bwd (after reversing) should

have a high agreement, as the acoustics remain similar when

scenes are reversed. The lack of agreement points to additional

factors other than acoustics playing a role. At the same time,

various behavioral metrics such as reaction times, number of

events, event durations, and event strengths were not significantly

different, indicating a similar participation profile across the two

experiments. The high variability in the correlations (min = 0.04,

max = 0.87) across the scenes, which had a variety of objects,

hints at a complex interplay of scene context and semantics along

with acoustics.

In addition to the salience curves, we analyzed the temporal

alignment between fwd and bwd events with a threshold on

the amount of overlap (chosen as 50%). This analysis provides

mismatched events, which are moments in time where the fwd

and bwd events did not have a corresponding shift in attention in

the opposite direction. The proposed temporal alignment process

is a novel approach that can theoretically separate contextually or

semantically driven events from purely acoustically driven events.

The similarity in absolute consensus for matched and mismatched

events across fwd and bwd data points to a consistent attention

switch within the event. This separation of events provided an

anchor to explore the role of acoustics and semantics.

Acoustic characterization provides an indirect validation of the

effects of semantics on salient events. Acoustic feature changes

around event onsets were previously (Huang and Elhilali, 2017)

employed to measure the change in stimuli properties that may

have caused an attention switch. The feature change analysis

revealed how fwd-mismatch and bwd-mismatch events were driven

by lower acoustic changes when compared to fwd-match and bwd-

match events, respectively. While this effect was most evident in

energy features, several other spectral and temporal modulation

features showed similar trends. Features such as pitch, brightness,

and roughness were observed to affect salience directly (Arnal

et al., 2019; Bouvier et al., 2023), and the lower changes in these

features for mismatched events suggest contribution from other

factors. Additionally, none of the acoustic features considered

showed significant differences between fwd-match and bwd-match

events. Thus, the matched events for fwd and bwd are driven by

similar acoustic changes, which are distinctly different from the

mismatched events. The feature change analysis does not provide

a measure of contributions from individual features due to the

cross-correlations between the features (Kothinti et al., 2021).

For semantic characterization, this study employed changes

in in abstract embeddings of the scenes that were trained to

identify sound events in the scene using a large deep scale neural

network. Using a state-of-the-art model trained on an audio tagging

task, the network embeddings (or weights) reflect implicit features

representations that generally reflect the semantic content of the

acoustic scene and ultimately facilitate the tagging task for which

the model is trained (LeCun et al., 2015). There is sparse prior

work utilizing object or semantic information in auditory salience

models. In the visual domain, early works used manual annotation

of the object information (Einhauser et al., 2008) and object

detectionmodels (Cerf et al., 2009). Adopting these methods can be

difficult owing to the ambiguity about the appropriate abstraction

of objects and the time-intensive process involved in assigning such

information in natural scenes. More recent works in visual salience

used information from deep learning models to capture high-

level information (Li and Yu, 2016). Along the same lines, recent

developments in deep learning models for audio classification

paved the way for utilizing large-scale models pretrained on general

audio datasets such as AudioSet (Gemmeke et al., 2017). The multi-

stage hierarchical nature of these models provides multiple levels

of abstractions that closely correspond with various processing

stages of the auditory cortex based on fMRI studies (Kell et al.,

2018; Giordano et al., 2023). Based on similar assumptions, Huang

et al. (2018) used surprisal from intermediate layers of an audio

taggingmodel measuring semantic expectation-violation, which we

adopted in this study. We reduced each layer to one dimension

to accommodate the small training data at our disposal. Future

exploration of computational accounts can build on our paradigm

with other dimensionality reduction techniques, such as Kernel

PCA as used by Giordano et al. (2023).

Prediction models such as linear regression take cross-

correlations into account and provide a method to evaluate the

relevance of individual features with the predicted variable. In this

study, we used a linear model to predict salience from different

features. By using a model with temporal weights and semantic

features, we validated the effect of context and semantics in driving

salience. This approach parallels several visual salience models

that incorporated contextual and semantic factors using linear

combinations of low-level and object-level salience (Cerf et al.,

2009; Li and Yu, 2016).

The role of temporal context in salience prediction has been

demonstrated in a number of studies. The present analysis shows

that such context operates over larger time scales than originally

reported in previous work. Earlier studies employed temporal

context as a smoothing operation (Huang and Elhilali, 2017) over

a few seconds or by using linear filtering on temporal context

(Kim et al., 2014). These approaches were restrictive because of

the simplicity of the smoothing or the amount of context used

in the temporal filtering. Effectively, earlier models of contextual

effects relied on a general averaging that operates across all low-

level or high-level features under study. In the present study, the

temporal context is learned through supervised training to infer

relative weighting of individual acoustic or semantic attributes of

the scene. By training the filters to predict salience from long-range

stimulus properties, we aim to capture temporal processing used by

humans in producing behavioral salience. The filter shape shown in

Figure 3E highlights the filtering mechanism for different features

that seems to span a few seconds. The autocorrelation of these

features has a decay period of more than 3 s. The slow decay of the
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features when compared to the autocorrelation profiles is indicative

of the way statistics were dynamically by humans.

While including long temporal context improved performance

for different segment categories, as shown in Figure 3B, the

degree of improvement was higher for fwd-mismatch segments

than other segments. The context effect was stronger for fwd-

mismatch, supporting our hypothesis that these segments were

influenced by long-term temporal context. Secondly, adding

semantic information offered a more striking result, with the

improvement only observed for fwd-mismatch segments. While

the acoustic feature change suggested both fwd-mismatch and

bwd-mismatch events had lower acoustic changes, the semantic

information only helped fwd-mismatch segments. These two

observations provide strong evidence supporting our hypothesis

that fwd-mismatch events were driven by high-level factors.

Exploring the prediction performance for different event categories

in the fwd-mismatch data indicated Human, Music, and Animal

categories benefit from contextual and semantic information.

In this study, events from bwd data served as a counterpoint

to fwd events. While bwd-mismatch events show lower acoustic

changes than bwd-match , similar to fwd-mismatch events, they do

not benefit from the semantic information. Although the results

shown in Figure 3B are from models trained on 55 DNSS-Ext

scenes played in the forward direction, qualitatively similar trends

were observed even when models were trained with bwd data

from this study. Thus, the fwd-mismatch events are distinct from

bwd-mismatch events in that they are driven by semantics.

The event detection paradigm provides an alternative

framework to evaluate salience models, where the focus is detecting

the moments when subjects switched their attention. In addition,

we used this framework to compare the salience models proposed

in this study with some notable computational frameworks of

salience. As noted previously by Huang and Elhilali (2017), the

linear discriminant analysis on a wide range of acoustic features

performs much better than using bark-scale-based time-frequency

features and saliency maps inspired by visual salience models.

The addition of semantics and long-term context improved the

detection performance, similar to the salience prediction results.

While the improvements from semantic features were explored

in Huang and Elhilali (2018), the current study proposed a model

with more flexibility in the amount of context used. An additional

benefit of the event-based paradigm is the theoretical upper bound

on the detection performance as indicated by the interobserver

agreement. As seen from Figure 5, there is a significant gap between

the interobserver agreement and the A-S model.

A natural question arising from the event detection framework

is whether a model trained with a sound event detection objective

is suitable for detecting salient events. A change detection analysis

of the posteriors from the audio tagging model detected salient

events better than chance but worse than the proposed model.

The acoustics and intermediate representations from the tagging

model are essential for salient event detection. Thus, the high-level

information from the tagging model useful for salience constitutes

more than the object categories. We note that the detection

framework focuses only on the onsets as opposed to sound event

detection paradigms, which consider event offsets as well (Mesaros

et al., 2021). This difference resulted from the dichotic listening

paradigm, which focuses on when the subjects shift their attention

toward a scene and not away from a scene. The offsets derived from

the behavioral data may not be precise moments when they moved

away from the scene. But, if necessitated, the proposed framework

can be extended to offset detection by expanding the output of

the model to a 3-way classification for onset, offset, and “during

event” probabilities.

The models proposed in this study for salience prediction and

event detection use simple parametric formulations, which make

them flexible to incorporate different types of semantic information

with varied context lengths.While such simplicity can be limiting, it

also enables easy incorporation of additional semantic abstractions.

There is a possibility that more granular measures such as phonetic

features and lexical surprisals could explain the salience of human

sounds. The goal of building a comprehensive picture of salience

has important technological consequences in addition to scientific

benefits. Salience measures can be useful in associating a degree of

perceptual confidence to audio events for applications such as audio

event detection and audio captioning. More ready usage of salience

in real-world applications requires further efforts to improve the

computational models. The experimental data collected in this data

can serve as a benchmark to evaluate and improve salience models

such that they can closely match human experience in real-world

scenarios.
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